WorldWideScience

Sample records for beam spot welds

  1. Some studies on weld bead geometries for laser spot welding process using finite element analysis

    International Nuclear Information System (INIS)

    Siva Shanmugam, N.; Buvanashekaran, G.; Sankaranarayanasamy, K.

    2012-01-01

    Highlights: → In this study, a 2 kW Nd:YAG laser welding system is used to conduct laser spot welding trials. → The size and shape of the laser spot weld is predicted using finite element simulation. → The heat input is assumed to be a three-dimensional conical Gaussian heat source. → The result highlights the effect of beam incident angle on laser spot welds. → The achieved results of numerical simulation are almost identical with a real weldment. -- Abstract: Nd:YAG laser beam welding is a high power density welding process which has the capability to focus the beam to a very small spot diameter of about 0.4 mm. It has favorable characteristics namely, low heat input, narrow heat affected zone and lower distortions, as compared to conventional welding processes. In this study, finite element method (FEM) is applied for predicting the weld bead geometry i.e. bead length (BL), bead width (BW) and depth of penetration (DP) in laser spot welding of AISI 304 stainless steel sheet of thickness 2.5 mm. The input parameters of laser spot welding such as beam power, incident angle of the beam and beam exposure time are varied for conducting experimental trials and numerical simulations. Temperature-dependent thermal properties of AISI 304 stainless steel, the effect of latent heat of fusion, and the convective and radiative aspects of boundary conditions are considered while developing the finite element model. The heat input to the developed model is assumed to be a three-dimensional conical Gaussian heat source. Finite-element simulations of laser spot welding were carried out by using Ansys Parametric Design Language (APDL) available in finite-element code, ANSYS. The results of the numerical analysis provide the shape of the weld beads for different ranges of laser input parameters that are subsequently compared with the results obtained through experimentation and it is found that they are in good agreement.

  2. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  3. Twin-spot laser welding of advanced high-strength multiphase microstructure steel

    Science.gov (United States)

    Grajcar, Adam; Morawiec, Mateusz; Różański, Maciej; Stano, Sebastian

    2017-07-01

    The study addresses the results concerning the laser welding of TRIP (TRansformation Induced Plasticity) steel using a beam focused at two spots (also referred to as twin-spot laser welding). The analysis involved the effect of variable welding thermal cycles on the properties and microstructure of welded joints. The tests were performed using a linear energy of 0.048 and 0.060 kJ/mm and the laser beam power distribution of 50%:50%, 60%:40% and 70%:30%. The tests also involved welding performed using a linear energy of 0.150 kJ/mm and the laser beam power distribution of 70%:30%. In addition, the research included observations of the microstructure of the fusion zone, heat affected zone and the transition zone using light microscopy and scanning electron microscopy. The fusion zone was composed of blocky-lath martensite whereas the HAZ (heat-affected zone) was characterised by the lath microstructure containing martensite, bainite and retained austenite. The distribution of twin-spot laser beam power significantly affected the microstructure and hardness profiles of welded joints. The highest hardness (480-505 HV), regardless of welding variants used, was observed in the HAZ.

  4. Analysis and validation of laser spot weld-induced distortion

    Energy Technology Data Exchange (ETDEWEB)

    Knorovsky, G.A.; Kanouff, M.P.; Maccallum, D.O.; Fuerschbach, P.W.

    1999-12-09

    Laser spot welding is an ideal process for joining small parts with tight tolerances on weld size, location, and distortion, particularly those with near-by heat sensitive features. It is also key to understanding the overlapping laser spot seam welding process. Rather than attempting to simulate the laser beam-to-part coupling (particularly if a keyhole occurs), it was measured by calorimetry. This data was then used to calculate the thermal and structural response of a laser spot welded SS304 disk using the finite element method. Five combinations of process parameter values were studied. Calculations were compared to experimental data for temperature and distortion profiles measured by thermocouples and surface profiling. Results are discussed in terms of experimental and modeling factors. The authors then suggest appropriate parameters for laser spot welding.

  5. Spot weld arrangement effects on the fatigue behavior of multi-spot welded joints

    International Nuclear Information System (INIS)

    Hassanifard, Soran; Zehsaz, Mohammad; Esmaeili, Firooz

    2011-01-01

    In the present study, the effects of spot weld arrangements in multi-spot welded joints on the fatigue behavior of the joints are studied. Three different four-spot welded joints are considered: one-row four-spot parallel to the loading direction, one-row four-spot perpendicular to the loading direction and two-row four-spot weld specimens. The experimental fatigue test results reveal that the differences between the fatigue lives of three spot welded types in the low cycle regime are more considerable than those in the high cycle regime. However, all kinds of spot weld specimens have similar fatigue strength when approaching a million cycles. A non-linear finite element analysis is performed to obtain the relative stress gradients, effective distances and notch strength reduction factors based on the volumetric approach. The work here shows that the volumetric approach does a very good job in predicting the fatigue life of the multi-spot welded joints

  6. Design of automatic tracking system for electron beam welding

    International Nuclear Information System (INIS)

    He Chengdan; Chinese Academy of Space Technology, Lanzhou; Li Heqi; Li Chunxu; Ying Lei; Luo Yan

    2004-01-01

    The design and experimental process of an automatic tracking system applied to local vacuum electron beam welding are dealt with in this paper. When the annular parts of an exactitude apparatus were welded, the centre of rotation of the electron gun and the centre of the annular weld are usually not superposed because of the machining error, workpiece's setting error and so on. In this teaching process, a little bundle of electron beam is used to scan the weld groove, the amount of the secondary electrons reflected from the workpiece is different when the electron beam scans the both sides and the centre of the weld groove. The difference can indicate the position of the weld and then a computer will record the deviation between the electron beam spot and the centre of the weld groove. The computer will analyze the data and put the data into the storage software. During the welding process, the computer will modify the position of the electron gun based on the deviation to make the electron beam spot centered on the annular weld groove. (authors)

  7. Resistance Spot Welding of dissimilar Steels

    Directory of Open Access Journals (Sweden)

    Ladislav Kolařík

    2012-01-01

    Full Text Available This paper presents an analysis of the properties of resistance spot welds between low carbon steel and austenitic CrNi stainless steel. The thickness of the welded dissimilar materials was 2 mm. A DeltaSpot welding gun with a process tape was used for welding the dissimilar steels. Resistance spot welds were produced with various welding parameters (welding currents ranging from 7 to 8 kA. Light microscopy, microhardness measurements across the welded joints, and EDX analysis were used to evaluate the quality of the resistance spot welds. The results confirm the applicability of DeltaSpot welding for this combination of materials.

  8. Investigation of Thermal Stress Distribution in Laser Spot Welding Process

    OpenAIRE

    Osamah F. Abdulateef

    2009-01-01

    The objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transf...

  9. Spot Welding of Honeycomb Structures

    Science.gov (United States)

    Cohal, V.

    2017-08-01

    Honeycomb structures are used to prepare meals water jet cutting machines for textile. These honeycomb structures are made of stainless steel sheet thickness of 0.1-0.2 mm. Corrugated sheet metal strips are between two gears with special tooth profile. Hexagonal cells for obtaining these strips are welded points between them. Spot welding device is three electrodes in the upper part, which carries three welding points across the width of the strip of corrugated sheet metal. Spot welding device filled with press and advance mechanisms. The paper presents the values of the regime for spot welding.

  10. Improved simulation method of automotive spot weld failure with an account of the mechanical properties of spot welds

    Science.gov (United States)

    Wu, H.; Meng, X. M.; Fang, R.; Huang, Y. F.; Zhan, S.

    2017-12-01

    In this paper, the microstructure and mechanical properties of spot weld were studied, the hardness of nugget and heat affected zone (HAZ) were also tested by metallographic microscope and microhardness tester. The strength of the spot weld with the different parts' area has been characterized. According to the experiments result, CAE model of spot weld with HAZ structure was established, and simulation results of different lap-shear CAE models were analyzed. The results show that the spot weld model which contained the HAZ has good performance and more suitable for engineering application in spot weld simulation.

  11. Laser based spot weld characterization

    Science.gov (United States)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  12. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  13. Weld nugget formation in resistance spot welding of new lightweight sandwich material

    DEFF Research Database (Denmark)

    Sagüés Tanco, J.; Nielsen, Chris Valentin; Chergui, Azeddine

    2015-01-01

    Weldability of a new lightweight sandwich material, LITECOR®, by resistance spot welding is analyzed by experiments and numerical simulations. The spot welding process is accommodated by a first pulse squeezing out the non-conductive polymer core of the sandwich material locally to allow metal......–metal contact. This is facilitated by the use of a shunt tool and is followed by a second pulse for the actual spot welding and nugget formation. A weldability lobe in the time-current space of the second pulse reveals a process window of acceptable size for automotive assembly lines. Weld growth curves...... with experimental results in the range of welding parameters leading to acceptable weld nugget sizes. The validated accuracy of the commercially available software proves the tool useful for assisting the choice of welding parameters....

  14. Ultrasonic C-scan Technique for Nondestructive Evaluation of Spot Weld Quality

    International Nuclear Information System (INIS)

    Park, Ik Gun

    1994-01-01

    This paper discusses the feasibility of ultrasonic C-scan technique for nondestructive evaluation of spot weld quality. Ultrasonic evaluation for spot weld quality was performed by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of the corona bond from nugget, preliminary infinitesimal gap experiment by newton ring is tried in order to set up the optimum ultrasonic test condition. Ultrasonic image data obtained were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be measured with the accuracy of 1.0mm, and voids included in nugget can be detected to 10μm extent with simplicity and accuracy. Finally, it was found that it is necessary to make a profound study of definite discrimination of corona bond from nugget and the approach of quantitative evaluation of nugget diameter by utilizing the various image processing techniques

  15. Finite Element Method Based Modeling of Resistance Spot-Welded Mild Steel

    Directory of Open Access Journals (Sweden)

    Miloud Zaoui

    Full Text Available Abstract This paper deals with Finite Element refined and simplified models of a mild steel spot-welded specimen, developed and validated based on quasi-static cross-tensile experimental tests. The first model was constructed with a fine discretization of the metal sheet and the spot weld was defined as a special geometric zone of the specimen. This model provided, in combination with experimental tests, the input data for the development of the second model, which was constructed with respect to the mesh size used in the complete car finite element model. This simplified model was developed with coarse shell elements and a spring-type beam element was used to model the spot weld behavior. The global accuracy of the two models was checked by comparing simulated and experimental load-displacement curves and by studying the specimen deformed shapes and the plastic deformation growth in the metal sheets. The obtained results show that both fine and coarse finite element models permit a good prediction of the experimental tests.

  16. Friction stir spot welding of dissimilar aluminium alloys

    International Nuclear Information System (INIS)

    Bozkurt, Yahya

    2016-01-01

    Friction stir spot welding (FSSW) has been proposed as an effective technology to spot weld the so-called “difficult to be welded” metal alloys such as thin sheets aluminum alloys and dissimilar materials. FSSW is derived from friction stir welding technology, its principle benefit being low cost joining, lower welding temperature and shorter welding time than conventional welding methods. In this study, dissimilar AlMg 3 and AlCu 4 Mg 1 aluminium alloy plates were FSSWed by offsetting the low strength sheet on upper side of the weld. The effects of tool rotation speed on the microstructure, lap shear fracture load (LSFL), microhardness and fracture features of the weld are investigated by constant welding parameters. The maximum LSFL was obtained by increasing the tool rotational speed. However, the joints exhibited pull-out nugget fracture mode under lap shear tensile testing conditions. The largest completely bonded zone was observed as 5.86 mm which was narrower at the opposite position of the joint. Key words: friction stir spot welding, aluminium alloys, mechanical properties, dissimilar joint, welding parameters

  17. Resistance Spot Welding with Middelfrequency-Inverter Weling Gun

    DEFF Research Database (Denmark)

    Rasmussen, Mogens H.

    The paper presents the results of investigations concerning the process stability and weldability lobes for uncoated sheets of 1.0 mm thickness when performing resistance spot welding with a middlefrequency-inverter welding gun......The paper presents the results of investigations concerning the process stability and weldability lobes for uncoated sheets of 1.0 mm thickness when performing resistance spot welding with a middlefrequency-inverter welding gun...

  18. Damage tolerance reliability analysis of automotive spot-welded joints

    International Nuclear Information System (INIS)

    Mahadevan, Sankaran; Ni Kan

    2003-01-01

    This paper develops a damage tolerance reliability analysis methodology for automotive spot-welded joints under multi-axial and variable amplitude loading history. The total fatigue life of a spot weld is divided into two parts, crack initiation and crack propagation. The multi-axial loading history is obtained from transient response finite element analysis of a vehicle model. A three-dimensional finite element model of a simplified joint with four spot welds is developed for static stress/strain analysis. A probabilistic Miner's rule is combined with a randomized strain-life curve family and the stress/strain analysis result to develop a strain-based probabilistic fatigue crack initiation life prediction for spot welds. Afterwards, the fatigue crack inside the base material sheet is modeled as a surface crack. Then a probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction for spot welds. Both methods are implemented with MSC/NASTRAN and MSC/FATIGUE software, and are useful for reliability assessment of automotive spot-welded joints against fatigue and fracture

  19. Electron beam welding

    International Nuclear Information System (INIS)

    Schwartz, M.M.

    1974-01-01

    Electron-beam equipment is considered along with fixed and mobile electron-beam guns, questions of weld environment, medium and nonvacuum welding, weld-joint designs, tooling, the economics of electron-beam job shops, aspects of safety, quality assurance, and repair. The application of the process in the case of individual materials is discussed, giving attention to aluminum, beryllium, copper, niobium, magnesium, molybdenum, tantalum, titanium, metal alloys, superalloys, and various types of steel. Mechanical-property test results are examined along with the areas of application of electron-beam welding

  20. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    Science.gov (United States)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  1. Effects of welding parameters on friction stir spot welding of high density polyethylene sheets

    International Nuclear Information System (INIS)

    Bilici, Mustafa Kemal; Yukler, Ahmet Irfan

    2012-01-01

    Graphical abstract: (a) Schematic illustration of the cross section of a friction stir spot weld and (b) Geometry of the weld bonded area, x: nugget thickness and y: the thickness of the upper sheet. Highlights: → Welding parameters affect the FSSW nugget formation and the strength of the joint. → Melting of polyethylene occurred in the vicinity of the tool pin. → The joint that fractures with a pull nugget failure mode has a higher strength. -- Abstract: Friction stir spot welding parameters affect the weld strength of thermoplastics, such as high density polyethylene (HDPE) sheets. The effects of the welding parameters on static strength of friction stir spot welds of high density polyethylene sheets were investigated. For maximizing the weld strength, the selection of welding parameters is very important. In lap-shear tests two fracture modes were observed; cross nugget failure and pull nugget failure. The tool rotational speed, tool plunge depth and dwell time were determined to be important in the joint formation and its strength. The joint which had a better strength fails with a pull nugget failure morphology. Weld cross section image analysis of the joints were done with a video spectral comparator. The plunge rate of the tool was determined to have a negligible effect on friction stir spot welding.

  2. Electron beam welding using fusion and cold wire fill

    International Nuclear Information System (INIS)

    Kuncz, F.F.

    1977-01-01

    A straight-fusion (self-filler) welding technique generally poses no problem for electron beam welding. However, where control of penetration is a critical item and burn-through cannot be tolerated, this technique may not be satisfactory. To assure against beam-spike burn-through on a 1/4-inch deep weld joint, a low-power root-fusion pass, supplemented by numerous filler passes, was selected. However, this technique proved to have numerous problems. Voiding and porosity showed frequently in the first applications of this cold-wire filler process. Taper-out cratering, bead-edge undercutting, and spatter were also problems. These imperfections, however, were overcome. Employment of a circle generator provided the necessary heating of the joint walls to eliminate voids. The moving beam spot also provided a stirring action, lessening porosity. Taper-out cratering was eliminated by adjusting the timing of the current cutoff and wire-feed cutoff. Undercutting, bead height, and spatter were controlled by beam defocus

  3. Experimental and simulated strength of spot welds

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bennedbæk, Rune A.K.; Larsen, Morten B.

    2014-01-01

    Weld strength testing of single spots in DP600 steel is presented for the three typical testing procedures, i.e. tensile-shear, cross-tension and peel testing. Spot welds are performed at two sets of welding parameters and strength testing under these conditions is presented by load......-elongation curves revealing the maximum load and the elongation at break. Welding and strength testing is simulated by SORPAS® 3D, which allows the two processes to be prepared in a combined simulation, such that the simulated welding properties are naturally applied to the simulation of strength testing. Besides...... the size and shape of the weld nugget, these properties include the new strength of the material in the weld and the heat affected zone based on the predicted hardness resulting from microstructural phase changes simulated during cooling of the weld before strength testing. Comparisons between overall...

  4. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  5. Development of laser beam welding for the lip seal configuration

    International Nuclear Information System (INIS)

    Yadav, Ashish; Joshi, Jaydeep; Singh, Dhananjay Kumar; Natu, Harshad; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2015-01-01

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  6. Development of laser beam welding for the lip seal configuration

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ashish, E-mail: ashish.yadav@iter-india.org [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Joshi, Jaydeep; Singh, Dhananjay Kumar [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Natu, Harshad [Magod Laser Machining Pvt. Ltd., KIADB Ind. Area, Jigani, Anekal Taluk, Bengaluru 560105 (India); Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India)

    2015-10-15

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  7. Reliability of copper based alloys for electric resistance spot welding

    International Nuclear Information System (INIS)

    Jovanovicj, M.; Mihajlovicj, A.; Sherbedzhija, B.

    1977-01-01

    Durability of copper based alloys (B-5 and B-6) for electric resistance spot-welding was examined. The total amount of Be, Ni and Zr was up to 2 and 1 wt.% respectively. Good durability and satisfactory quality of welded spots were obtained in previous laboratory experiments carried out on the fixed spot-welding machine of an industrial type (only B-5 alloy was examined). Electrodes made of both B-5 and B-6 alloy were tested on spot-welding grips and fixed spot-welding machines in Tvornica automobila Sarajevo (TAS). The obtained results suggest that the durability of electrodes made of B-5 and B-6 alloys is more than twice better than of that used in TAS

  8. Spot Welding Characterizations With Time Variable

    International Nuclear Information System (INIS)

    Abdul Hafid; Pinitoyo, A.; History; Paidjo, Andryansyah; Sagino, Sudarmin; Tamzil, M.

    2001-01-01

    For obtain spot welding used effective data, this research is made, so that time operational of machine increasing. Welding parameters are material classification, electrical current, and weld time. All of the factors are determined welding quality. If the plate more thick, the time must be longer when the current constant. Another factor as determined welding quality are surface condition of electrode, surface condition of weld material, and material classifications. In this research, the weld machine type IP32A2 VI (110 V), Rivoira trademark is characterized

  9. austenitic stainless steel by electron beam welding process

    African Journals Online (AJOL)

    user

    Electron beam welding (EBW) is a fusion joining process that produces a ... fabrication of engineering parts with low-distortion joints, although its application to large assemblies is often restricted by the ... speed, focal point location, focal spot size, etc. ... Experimental data were collected as per central composite design and ...

  10. Studies on post weld heat treatment of dissimilar aluminum alloys by laser beam welding technique

    Science.gov (United States)

    Srinivas, B.; Krishna, N. Murali; Cheepu, Muralimohan; Sivaprasad, K.; Muthupandi, V.

    2018-03-01

    The present study mainly focuses on post weld heat treatment (PWHT) of AA5083 and AA6061 alloys by joining these using laser beam welding at three different laser power and two different beam spot sizes and three different welding speeds. Effects of these parameters on microstructural and mechanical properties like hardness, tensile strength were studied at PWHT condition and significant changes had been observed. The PWHT used was artificial aging technique. The microstructural observations revealed that there was a appreciable changes were taken place in the grain size. The microhardness observations proven that the change in the hardness profile in AA6061 was appreciable than in the AA5083. The tensile strength of 246 MPa was recorded as highest. The fractured surfaces observed are predominantly ductile in nature.

  11. Weldability of an iron meteorite by Friction Stir Spot Welding: A contribution to in-space manufacturing

    Science.gov (United States)

    Evans, William Todd; Neely, Kelsay E.; Strauss, Alvin M.; Cook, George E.

    2017-11-01

    Friction Stir Welding has been proposed as an efficient and appropriate method for in space welding. It has the potential to serve as a viable option for assembling large scale space structures. These large structures will require the use of natural in space materials such as those available from iron meteorites. Impurities present in most iron meteorites limit its ability to be welded by other space welding techniques such as electron beam laser welding. This study investigates the ability to weld pieces of in situ Campo del Cielo meteorites by Friction Stir Spot Welding. Due to the rarity of the material, low carbon steel was used as a model material to determine welding parameters. Welded samples of low carbon steel, invar, and Campo del Cielo meteorite were compared and found to behave in similar ways. This study shows that meteorites can be Friction Stir Spot Welded and that they exhibit properties analogous to that of FSSW low carbon steel welds. Thus, iron meteorites can be regarded as another viable option for in-space or Martian construction.

  12. Microstructure Evolution during Friction Stir Spot Welding of TRIP Steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    In this study, the feasibility of friction stir spot welding of TRIP steel is investigated. In addition to manufacturing successful welds, the present study aims at a fundamental understanding of the mechanisms occurring at the (sub)micron scale during friction stir spot welding. As one of the ma...... electron microscopy, and electron backscatter diffraction. Microhardness measurements and lap-shear tensile tests completed the investigations of the welded samples and allow evaluation of the quality of the welds.......In this study, the feasibility of friction stir spot welding of TRIP steel is investigated. In addition to manufacturing successful welds, the present study aims at a fundamental understanding of the mechanisms occurring at the (sub)micron scale during friction stir spot welding. As one of the main...... parameters to control friction stir welding, the influence of the rotational speed of the tool was investigated. Three different rotational speeds (500 rpm, 1000 rpm and 1500 rpm, respectively) were applied. The microstructure of the welded samples was investigated with reflected light microscopy, scanning...

  13. Finite Element and Experimental Study of Shunting in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Seyyedian Choobi, M.; Nielsen, C. V.; Bay, N.

    2015-01-01

    This research is focused on one of the problems frequently encountered in spot welding in industry. In many applications several spot welds are made close to each other. The spots made after the first spot may become smaller in size due to shunt effect. A numerical and experimental study has been...... conducted to investigate the effect of shunting on nugget size in spot welding of HSLA steel sheets. Different cases with different spacing between weld spots have been examined. The nugget sizes have been measured by metallographic examination and have been compared with 3D finite element simulations...

  14. Energy reduction for the spot welding process in the automotive industry

    International Nuclear Information System (INIS)

    Cullen, J D; Athi, N; Al-Jader, M A; Shaw, A; Al-Shamma'a, A I

    2007-01-01

    When performing spot welding on galvanised metals, higher welding force and current are required than on uncoated steels. This has implications for the energy usage when creating each spot weld, of which there are approximately 4300 in each passenger car. The paper presented is an overview of electrode current selection and its variance over the lifetime of the electrode tip. This also describes the proposed analysis system for the selection of welding parameters for the spot welding process, as the electrode tip wears

  15. Assessment of Nugget Size of Spot Weld using Neutron Radiography

    Directory of Open Access Journals (Sweden)

    Triyono

    2011-08-01

    Full Text Available Resistance spot welding (RSW has been widely used for many years in the fabrication of car body structures, mainly due to the cost and time considerations. The weld quality as well as the nugget size is an issue in various manufacturing and processes due to the strong link between the weld quality and safety. It has led to the development of various destructive and non-destructive tests for spot welding such as peel testing, ultrasonic inspections, digital shearography, and infrared thermography. However, such methods cannot show spot weld nugget visually and the results are very operator’s skill dependent. The present work proposes a method to visualize the nugget size of spot welds using neutron radiography. Water, oil and various concentrations of gadolinium oxide-alcohol mixture were evaluated as a contrast media to obtain the best quality of radiography. Results show that mixture of 5 g gadolinium oxide (Gd2O3 in 25 ml alcohol produces the best contrast. It provides the possibility to visualize the shape and size of the nugget spot weld. Furthermore, it can discriminate between nugget and corona bond. The result of neutron radiography evaluation shows reasonable agreement with that of destructive test.

  16. Laser spot welding of cobalt-based amorphous metal foils

    International Nuclear Information System (INIS)

    Runchev, Dobre; Dorn, Lutc; Jaferi, Seifolah; Purbst, Detler

    1997-01-01

    The results concerning weldability of amorphous alloy (VAC 6025F) in shape of foils and the quality of laser-spot welded joints are presented in this paper. The aim of the research was the production of a high quality welding joint, by preserving the amorphous structure. The quality of the joint was tested by shear strength analysis and microhardness measuring. The metallographic studies were made by using optical microscope and SEM. The results show that (1) overlapped Co based amorphous metals foils can be welded with high-quality by a pulsed Nd: YAG-Laser, but only within a very narrow laser parameter window; (2) the laser welded spots show comparably high strength as the basic material; (3) the structure of the welded spot remains amorphous, so that the same characteristics as the base material can be achieved. (author)

  17. Ultrasonic diagnosis of spot welding in thin plates

    International Nuclear Information System (INIS)

    Kim, No You; Hong, Min Sung

    2005-01-01

    Spot welding widely used in automotive and aerospace industries has made it possible to produce more precise and smaller electric part by robotization and systemization of welding process. The quality of welding depends upon the size of nugget between the overlapped steel plates. Recently, the thickness of the steel plates becomes much thinner and hence, it introduces the smaller size of nugget. Therefore, it is necessary to develop the criterion to evaluate the quality of weld in order to obtain the optimal welding conditions for the better performance. In this paper, a thin steel plates, 0.1 mm through 0.3 mm thickness, have been spot-welded at different welding conditions and the nugget sizes are examined by defocused scanning microscopy. The relationships between nugget sizes and weldability have been investigated experimentally. The result of ultrasonic technique shows the good agreement with that of the tensile test.

  18. Experimental Study of Tensile Test in Resistance Spot Welding Process

    Directory of Open Access Journals (Sweden)

    Lebbal Habib

    Full Text Available Abstract Resistance spot welding (RSW is a widely used joining process for fabricating sheet metal assemblies in automobile industry .In comparison with other welding processes the RSW is faster and easier for automation. This process involves electrical, thermal and mechanical interactions. Resistance spot welding primarily takes place by localized melting spot at the interface of the sheets followed by its quick solidification under sequential control of pressure water-cooled electrode and flow of required electric current for certain duration. In this work the tensile tests were studied, the results obtained show that the type material, the overlap length, the angle of the rolling direction and the thickness of the sheet have an influence in resistance spot welding process.

  19. Failure mode transition in AHSS resistance spot welds. Part I. Controlling factors

    International Nuclear Information System (INIS)

    Pouranvari, M.; Marashi, S.P.H.

    2011-01-01

    Highlights: → Interfacial to pullout failure mode transition for AHSS RSWs is studied. → An analytical mode is proposed to predict failure mode of AHSS RSWs. → Hardness characteristics of RSWs plays key role in the failure mode transition. - Abstract: Failure mode of resistance spot welds is a qualitative indicator of weld performance. Two major types of spot weld failure are pull-out and interfacial fracture. Interfacial failure, which typically results in reduced energy absorption capability, is considered unsatisfactory and industry standards are often designed to avoid this occurrence. Advanced High Strength Steel (AHSS) spot welds exhibit high tendency to fail in interfacial failure mode. Sizing of spot welds based on the conventional recommendation of 4t 0.5 (t is sheet thickness) does not guarantee the pullout failure mode in many cases of AHSS spot welds. Therefore, a new weld quality criterion should be found for AHSS resistance spot welds to guarantee pull-out failure. The aim of this paper is to investigate and analyze the transition between interfacial and pull-out failure modes in AHSS resistance spot welds during the tensile-shear test by the use of analytical approach. In this work, in the light of failure mechanism, a simple analytical model is presented for estimating the critical fusion zone size to prevent interfacial fracture. According to this model, the hardness ratio of fusion zone to pull-out failure location and the volume fraction of voids in fusion zone are the key metallurgical factors governing type of failure mode of AHSS spot welds during the tensile-shear test. Low hardness ratio and high susceptibility to form shrinkage voids in the case of AHSS spot welds appear to be the two primary causes for their high tendency to fail in interfacial mode.

  20. Electron beam welding

    International Nuclear Information System (INIS)

    Gabbay, M.

    1972-01-01

    The bead characteristics and the possible mechanisms of the electron beam penetration are presented. The different welding techniques are exposed and the main parts of an electron beam welding equipment are described. Some applications to nuclear, spatial and other industries are cited [fr

  1. Spot-Welding Gun With Adjustable Pneumatic Spring

    Science.gov (United States)

    Burley, Richard K.

    1990-01-01

    Proposed spot-welding gun equipped with pneumatic spring, which could be bellows or piston and cylinder, exerts force independent of position along stroke. Applies accurate controlled force to joint welded, without precise positioning at critical position within stroke.

  2. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  3. Study on the Joining Strength of Spot Welding using POMISPOT Device

    International Nuclear Information System (INIS)

    Mohd Azhar Ahmad; Siti Aiasah Hashim; Mohd Rizal Chulan

    2015-01-01

    Welding is a process to join metals. Spot welding is commonly used for specific purposes such joining in small areas or making temporary joints. POMISPOT is a spot welder that was designed and built by the ADC group, using capacitive resistance method. This study was made to obtain the welding strength that can be made by this spot welder. The study used stainless steel pieces of different thickness and by varying the applied voltage. The strength of welded pieces is tested by applying loads. The relationship between the thickness, voltage and welding strength will be used as the basis of specifications of this tool. (author)

  4. Bonding mechanisms in spot welded three layer combinations

    DEFF Research Database (Denmark)

    Moghadam, Marcel; Tiedje, Niels Skat; Seyyedian Choobi, Mahsa

    2016-01-01

    this interface. It has been shown previously that such a joint can reach relatively high strength resulting in plug failure in tensileshear testing. Additional strength due to these bonding mechanisms is also obtained in common spot welds in the so-called corona band around the weld nugget.......The strength of a spot weld generally stems from fusion bonding of the metal layers, but other solid state bonding mechanisms also contribute to the overall strength. Metallographic analyses are presented to identify the phases formed near and across the weld interfaces and to identify...... the occurring bonding mechanisms. When welding a combination of three galvanized steel layers where one outer layer is a thin low-carbon steel it is a common challenge to obtain nugget penetration into the thin low-carbon steel. It therefore happens in real production that no nugget is formed across...

  5. Fatigue life estimation considering welding residual stress and hot-spot stress of welded components

    International Nuclear Information System (INIS)

    Han, S. H.; Lee, T. K.; Shin, B. C.

    2002-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation have to be considered quantitatively which are equivalent to mean stress by external loads. The hot-spot stress concept should be also adopted which can be reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which are composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is confirmed that this model can be applied to predict reasonably their fatigue lives

  6. Material Characterization of Dissimilar Friction Stir Spot Welded Aluminium and Copper Alloy

    Science.gov (United States)

    Sanusi, K. O.; Akinlabi, E. T.

    2017-08-01

    In this research study, material characterization of dissimilar friction stir spot welded Aluminium and Copper was evaluated. Rotational speeds of 800 rpm and transverse speeds of 50 mm/min, 150 mm/min and 250 mm/min were used. The total numbers of samples evaluated were nine altogether. The spot welds were characterised by microstructure characterization using optical microscope (OEM) and scanning electron microscopy technique (SEM) by observing the evolution of the microstructure across the weld’s cross-section. lap-shear test of the of the spot weld specimens were also done. From the results, it shows that welding of metals and alloys using Friction stir spot welding is appropriate and can be use in industrial applications.

  7. Effect of tool geometry on friction stir spot welding of polypropylene sheets

    Directory of Open Access Journals (Sweden)

    M. K. Bilici

    2012-10-01

    Full Text Available The effects of tool geometry and properties on friction stir spot welding properties of polypropylene sheets were studied. Four different tool pin geometries, with varying pin angles, pin lengths, shoulder diameters and shoulder angles were used for friction stir spot welding. All the welding operations were done at the room temperature. Lap-shear tensile tests were carried out to find the weld static strength. Weld cross section appearance observations were also done. From the experiments the effect of tool geometry on friction stir spot weld formation and weld strength were determined. The optimum tool geometry for 4 mm thick polypropylene sheets were determined. The tapered cylindrical pin gave the biggest and the straight cylindrical pin gave the lowest lap-shear fracture load.

  8. Effects of Welding Parameters on Strength and Corrosion Behavior of Dissimilar Galvanized Q&P and TRIP Spot Welds

    Directory of Open Access Journals (Sweden)

    Pasquale Russo Spena

    2017-12-01

    Full Text Available This study investigates the effects of the main welding parameters on mechanical strength and corrosion behavior of galvanized quenching and partitioning and transformation induced plasticity spot welds, which are proposed to assemble advanced structural car elements for the automotive industry. Steel sheets have been welded with different current, clamping force, and welding time settings. The quality of the spot welds has been assessed through lap-shear and salt spray corrosion tests, also evaluating the effects of metal expulsion on strength and corrosion resistance of the joints. An energy dispersive spectrometry elemental mapping has been used to assess the damage of the galvanized zinc coating and the nature of the corrosive products. Welding current and time have the strongest influence on the shear strength of the spot welds, whereas clamping force is of minor importance. However, clamping force has the primary effect on avoiding expulsion of molten metal from the nugget during the joining process. Furthermore, clamping force has a beneficial influence on the corrosion resistance because it mainly hinders the permeation of the corrosive environment towards the spot welds. Although the welded samples can exhibit high shear strength also when a metal expulsion occurs, this phenomenon should be avoided because it enhances the damage and vaporization of the protective zinc coating.

  9. Method for laser spot welding monitoring

    Science.gov (United States)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  10. Optimization of welding current waveform for dissimilar material with DP590 and Al5052 by Delta-spot welding process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Sun; Kim, In Ju; Kim, Young Gon [Korea Institute of Industrial Technology, Gwangju (Korea, Republic of)

    2016-06-15

    The automotive industry has a target goal to improve fuel consumption due to restricted exhaust gas regulation. For this reason, the applicability of lightweight material, Al alloys, Mg alloys is also being expanded. In this concept, high strength steel, DP590 and light alloy, AL5052 are joined in the right place of the car body. However, it is difficult to join to steel and aluminum by conventional fusion welding. Generally, in respect to dissimilar metal joining by fusion welding, intermetallic compound layer is formed at the joint interface, hot cracking is generated. In this study, the effect of the current waveform on the mechanical characteristics and microstructure in Delta spot welding process of dissimilar metal was investigated. As results, Intermetallic compound (IMC) layer was reduced from 2.355 μm to 1.09 μm by using Delta spot welding process; also the welding current range improved by 50% in the delta spot welding, higher than in the inverter resistance welding. To conclude, the delta spot welding process adopting the process tapes contributes to improving the welding quality for dissimilar metals (Al5052 and DP590) due to a decrease in IMC layer.

  11. Neural Network-Based Resistance Spot Welding Control and Quality Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D., Jr.; Ivezic, N.D.; Zacharia, T.

    1999-07-10

    This paper describes the development and evaluation of neural network-based systems for industrial resistance spot welding process control and weld quality assessment. The developed systems utilize recurrent neural networks for process control and both recurrent networks and static networks for quality prediction. The first section describes a system capable of both welding process control and real-time weld quality assessment, The second describes the development and evaluation of a static neural network-based weld quality assessment system that relied on experimental design to limit the influence of environmental variability. Relevant data analysis methods are also discussed. The weld classifier resulting from the analysis successfldly balances predictive power and simplicity of interpretation. The results presented for both systems demonstrate clearly that neural networks can be employed to address two significant problems common to the resistance spot welding industry, control of the process itself, and non-destructive determination of resulting weld quality.

  12. Effect of beam oscillation on borated stainless steel electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    RajaKumar, Guttikonda [Tagore Engineering College, Chennai (India). Dept. of Mechanical Engineering; Ram, G.D. Janaki [Indian Institute of Technology (IIT), Chennai (India). Dept. of Metallurgical and Materials Engineering; Rao, S.R. Koteswara [SSN College of Engineering, Chennai (India). Mechanical Engineering

    2015-07-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  13. Effect of beam oscillation on borated stainless steel electron beam welds

    International Nuclear Information System (INIS)

    RajaKumar, Guttikonda; Ram, G.D. Janaki; Rao, S.R. Koteswara

    2015-01-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  14. Evaluation of the Weldability in Spot Welding using Ultrasonic Technique

    International Nuclear Information System (INIS)

    Hong, Min Sung; Kim, No Hyu

    2005-01-01

    Spot welding is the most widely used in automotive and aerospace industries. The quality of weld depends upon the size of nugget between the overlapped steel plates. Recently, the thickness of the steel plates is much thinner and hence, it introduces the smaller size of nugget. Therefore, it is necessary not only to develop the criterion to evaluate the quality of weld but also to obtain the optimal welding conditions for the better performance. In this paper, the steel plates, 0.5 mm through 1.5 mm thickness, have been spot welded at different welding conditions and the nugget sizes are examined by ultrasonic technique (C-scan type). The relationships between the nugget sizes and the weldability have been investigated. The result of ultrasonic technique shows the good agreement with that of the tensile test

  15. Evaluation of the Weldability in Spot Welding using Ultrasonic Technique

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Sung [Ajou University, Suwon (Korea, Republic of); Kim, No Hyu [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2005-06-15

    Spot welding is the most widely used in automotive and aerospace industries. The quality of weld depends upon the size of nugget between the overlapped steel plates. Recently, the thickness of the steel plates is much thinner and hence, it introduces the smaller size of nugget. Therefore, it is necessary not only to develop the criterion to evaluate the quality of weld but also to obtain the optimal welding conditions for the better performance. In this paper, the steel plates, 0.5 mm through 1.5 mm thickness, have been spot welded at different welding conditions and the nugget sizes are examined by ultrasonic technique (C-scan type). The relationships between the nugget sizes and the weldability have been investigated. The result of ultrasonic technique shows the good agreement with that of the tensile test

  16. An investigation of the dynamic separation of spot welds under plane tensile pulses

    International Nuclear Information System (INIS)

    Ma, Bohan; Fan, Chunlei; Chen, Danian; Wang, Huanran; Zhou, Fenghua

    2014-01-01

    We performed ultra-high-speed tests for purely opening spot welds using plane tensile pulses. A gun system generated a parallel impact of a projectile plate onto a welded plate. Induced by the interactions of the release waves, the welded plate opened purely under the plane tensile pulses. We used the laser velocity interferometer system for any reflector to measure the velocity histories of the free surfaces of the free part and the spot weld of the welded plate. We then used a scanning electron microscope to investigate the recovered welded plates. We found that the interfacial failure mode was mainly a brittle fracture and the cracks propagated through the spot nugget, while the partial interfacial failure mode was a mixed fracture comprised ductile fracture and brittle fracture. We used the measured velocity histories to evaluate the tension stresses in the free part and the spot weld of the welded plate by applying the characteristic theory. We also discussed the different constitutive behaviors of the metals under plane shock loading and under uniaxial split Hopkinson pressure bar tests. We then compared the numerically simulated velocity histories of the free surfaces of the free part and the spot weld of the welded plate with the measured results. The numerical simulations made use of the fracture stress criteria, and then the computed fracture modes of the tests were compared with the recovered results

  17. Effect on spot welding variables on nugget size and bond strength of 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Charde, Nachimani

    2012-01-01

    Resistance spot welding (RSW) has revolutionized mechanical assembly in the automotive industry since its introduction in the early 1970s. Currently, one mechanical assembly in five is welded using spot welding technology, with welding of stainless steel sheet becoming increasingly common. Consequently, this research paper examines the spot welding of 2 mm thick 304 austenitic stainless steel sheet. The size of a spot weld nugget is primarily determined by the welding parameters: welding current, welding time, electrode force and electrode tip diameter However, other factors such as electrode deformation, corrosion, dissimilar materials and material properties also affect the nugget size and shape. This paper analyzes only the effects of current, weld time and force variations with unchanged electrode tip diameter. A pneumatically driven 75kVA spot welder was used to accomplish the welding process and the welded samples were subjected to tensile, hardness and metallurgical testing to characterize the size and shape of the weld nugget and the bond strength.

  18. Microstructure and fatigue properties of Mg-to-steel dissimilar resistance spot welds

    International Nuclear Information System (INIS)

    Liu, L.; Xiao, L.; Chen, D.L.; Feng, J.C.; Kim, S.; Zhou, Y.

    2013-01-01

    Highlights: ► Mg/steel dissimilar spot weld had the same fatigue strength as Mg/Mg similar weld. ► Crack propagation path of Mg/Mg and Mg/steel welds was the same. ► Penetration of Zn into the Mg base metal led to crack initiation of Mg/steel weld. ► HAZ weakening and stress concentration led to crack initiation of Mg/Mg weld. -- Abstract: The structural application of lightweight magnesium alloys in the automotive industry inevitably involves dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change and fatigue resistance of Mg/steel resistance spot welds, in comparison with Mg/Mg welds. The microstructure of Mg/Mg spot welds can be divided into: base metal, heat affected zone and fusion zone (nugget). However, the microstructure of Mg/steel dissimilar spot welds had three different regions along the joined interface: weld brazing, solid-state joining and soldering. The horizontal and vertical Mg hardness profiles of Mg/steel and Mg/Mg welds were similar. Both Mg/steel and Mg/Mg welds were observed to have an equivalent fatigue resistance due to similar crack propagation characteristics and failure mode. Both Mg/steel and Mg/Mg welds failed through thickness in the magnesium sheet under stress-controlled cyclic loading, but fatigue crack initiation of the two types of welds was different. The crack initiation of Mg/Mg welds was occurred due to a combined effect of stress concentration, grain growth in the heat affected zone (HAZ), and the presence of Al-rich phases at HAZ grain boundaries, while the penetration of small amounts of Zn coating into the Mg base metal stemming from the liquid metal induced embrittlement led to crack initiation in the Mg/steel welds.

  19. Matrix phased array (MPA) imaging technology for resistance spot welds

    Science.gov (United States)

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  20. Matrix phased array (MPA) imaging technology for resistance spot welds

    International Nuclear Information System (INIS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-01-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed

  1. Matrix phased array (MPA) imaging technology for resistance spot welds

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jeong K.; Gleeson, Sean T. [Edison Welding Institute, 1250 Arthur E. Adams Drive, Columbus, OH 43221 (United States)

    2014-02-18

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  2. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    Science.gov (United States)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  3. Electron beam welding of iridium heat source capsules

    International Nuclear Information System (INIS)

    Mustaleski, T.M.; Yearwood, J.C.; Burgan, C.E.; Green, L.A.

    1991-01-01

    The development of the welding procedures for the production of DOP-26 iridium alloy cups for heat source encapsulation is described. All the final assembly welds were made using the electron beam welding process. The welding of the 0.13-mm weld shield required the use of computer controlled X-Y table and a run-off tab. Welding of the frit vent to the cup required that a laser weld be made to hold the frit assembly edges together for the final electron beam weld. Great care is required in tooling design and beam placement to achieve acceptable results. Unsuccessful attempts to use laser beam welding for heat shield butt weld are discussed

  4. Weld Growth Mechanisms and Failure Behavior of Three-Sheet Resistance Spot Welds Made of 5052 Aluminum Alloy

    Science.gov (United States)

    Li, Yang; Yan, Fuyu; Luo, Zhen; Chao, Y. J.; Ao, Sansan; Cui, Xuetuan

    2015-06-01

    This paper investigates the weld nugget formation in three-sheet aluminum alloy resistance spot welding. The nugget formation process in three equal thickness sheets and three unequal thickness sheets of 5052 aluminum alloy were studied. The results showed that the nugget was initially formed at the workpiece/workpiece interfaces (i.e., both upper interface and lower interface). The two small nuggets then grew along the radial direction and axial direction (welding direction) as the welding time increased. Eventually, the two nuggets fused into one large nugget. During the welding process, the Peltier effect between the Cu-Al caused the shift of the nugget in the welding direction. In addition, the mechanical strength and fracture mode of the weld nuggets at the upper and lower interfaces were also studied using tensile shear specimen configuration. Three failure modes were identified, namely interfacial, mixed, and pullout. The critical welding time and critical nugget diameter corresponding to the transitions of these modes were investigated. Finally, an empirical failure load formula for three-sheet weld similar to two-sheet spot weld was developed.

  5. Identification of Damaged Spot Welds in a Complicated Joined Structure

    International Nuclear Information System (INIS)

    Yunus, M A; Rani, M N Abdul; Ouyang, H; Deng, H; James, S

    2011-01-01

    In automotive engineering, spot welds on assembled structures such as Body in White (BiW) have a significant effect on the vehicles' dynamic characteristics. Understandably, imperfections in the spot welds will cause variations in the dynamic properties such as natural frequencies and mode shapes of the structure. In this paper, a complicated welded structure which is a simplified Natural Gas Vehicle (NGV) platform is investigated. The structure fabricated from thin metal sheets consists of ten components. They are jointed together by a number of scattered spot welds. NASTRAN Solution 200 based on sensitivity analysis is used to identify the most sensitive parameters to natural frequencies. The numerical model of the undamaged structure is initially updated in order to minimise the discrepancies between the measured and numerical data using NASTRAN optimisation code. The initial updated model serves as a benchmark for the subsequent structural damage identification. The numerical data of the benchmark model is then compared with the measured data obtained from the damaged structure. The same updating procedure is applied to the benchmark model in order to bring the numerical data as close as possible to the measured data of the damaged structure. The disparity in certain parameter values from the parameter values used in the benchmark model shows a fault or damage in the location of a particular joint, depending on the severity of this disparity. The challenge in this work is to localise damaged area and quantify the damage of the complicated structure with multiple spot welds in the presence of uncertainty in the location and material properties of the welds.

  6. Temperature profiles induced by a stationary CW laser beam in a multi-layer structure: application to solar cell interconnect welding

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J.E.; Ianno, N.J.; Ahmed, A.U.

    1985-01-01

    A three-dimensional heat transfer model for heating of a multilayer structure by a stationary Gaussian CW CO/sub 2/ laser beam is developed and applied to solar cell interconnect welding. This model takes into account the temperature dependence of the thermal conductivity and diffusivity as well as free carrier absorption of the incident beam in the silicon where appropriate. Finally, the theoretical temperature profiles are used to determine the weld spot size and these values are compared to results obtained from a simple welding experiment, where excellent agreement is obtained. 18 references, 13 figures.

  7. Identification of Damaged Spot Welds in a Complicated Joined Structure

    Energy Technology Data Exchange (ETDEWEB)

    Yunus, M A; Rani, M N Abdul; Ouyang, H; Deng, H; James, S, E-mail: h.ouyang@liverpool.ac.uk [Department of Engineering, Harrison Hughes Building, University of Liverpool, Brownlow Hill, Liverpool L69 3GH (United Kingdom)

    2011-07-19

    In automotive engineering, spot welds on assembled structures such as Body in White (BiW) have a significant effect on the vehicles' dynamic characteristics. Understandably, imperfections in the spot welds will cause variations in the dynamic properties such as natural frequencies and mode shapes of the structure. In this paper, a complicated welded structure which is a simplified Natural Gas Vehicle (NGV) platform is investigated. The structure fabricated from thin metal sheets consists of ten components. They are jointed together by a number of scattered spot welds. NASTRAN Solution 200 based on sensitivity analysis is used to identify the most sensitive parameters to natural frequencies. The numerical model of the undamaged structure is initially updated in order to minimise the discrepancies between the measured and numerical data using NASTRAN optimisation code. The initial updated model serves as a benchmark for the subsequent structural damage identification. The numerical data of the benchmark model is then compared with the measured data obtained from the damaged structure. The same updating procedure is applied to the benchmark model in order to bring the numerical data as close as possible to the measured data of the damaged structure. The disparity in certain parameter values from the parameter values used in the benchmark model shows a fault or damage in the location of a particular joint, depending on the severity of this disparity. The challenge in this work is to localise damaged area and quantify the damage of the complicated structure with multiple spot welds in the presence of uncertainty in the location and material properties of the welds.

  8. Microstructural evolution and mechanical performance of resistance spot welded DP1000 steel with single and double pulse welding

    NARCIS (Netherlands)

    Chabok, Ali; van der Aa, Ellen; De Hosson, Jeff; Pei, Yutao T.

    2017-01-01

    Two welding schemes of single and double pulse were used for the resistance spot welding of DP1000 dual phase steel. The changes in the mechanical performance and variant pairing of martensite under two different welding conditions were scrutinized. It is demonstrated that, although both welds fail

  9. Microstructure characterization of Friction Stir Spot Welded TRIP steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Adachi, Yoshitaka; Peterson, Jeremy

    2012-01-01

    Transformation Induced Plasticity (TRIP) steels have not yet been successfully joined by any welding technique. It is desirable to search for a suitable welding technique that opens up for full usability of TRIP steels. In this study, the potential of joining TRIP steel with Friction Stir Spot...

  10. Bearing Capacity of Resistance Spot Welding Under Conditions of Europe, Indonesia

    Directory of Open Access Journals (Sweden)

    Miroslav Müller

    2015-01-01

    Full Text Available A common attribute of production companies is a requirement for a bond creation. A resistance spot welding is a prospective method of bonding. An effect determination of environmental influences on mechanical properties of resistance spot welded bonds is necessary owing to export activities of particular companies. The operating conditions and degradation processes influence were examined in Central Europe, southeast Indonesia and laboratory during 2, 4 and 6 months. From the results the simulation was worked out serving for the prediction of the welded bond bearing capacity for longer time interval. The simulation was verified by the parametric testing during 80 months (Central Europe. The experimental determination of the climatic and geographic different environment influence on the bearing capacity of the resistance spot welded bonds was the aim of the laboratory testing. Considering the globalized society and the export possibilities the knowledge of the experimental study will be used for further testing.

  11. Diffractive beam shaping for enhanced laser polymer welding

    Science.gov (United States)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  12. Metallography of Battery Resistance Spot Welds

    Science.gov (United States)

    Martinez, J. E.; Johannes, L. B.; Gonzalez, D.; Yayathi, S.; Figuered, J. M.; Darcy, E. C.; Bilc, Z. M.

    2015-01-01

    Li-ion cells provide an energy dense solution for systems that require rechargeable electrical power. However, these cells can undergo thermal runaway, the point at which the cell becomes thermally unstable and results in hot gas, flame, electrolyte leakage, and in some cases explosion. The heat and fire associated with this type of event is generally violent and can subsequently cause damage to the surrounding system or present a dangerous risk to the personnel nearby. The space flight environment is especially sensitive to risks particularly when it involves potential for fire within the habitable volume of the International Space Station (ISS). In larger battery packs such as Robonaut 2 (R2), numerous Li-ion cells are placed in parallel-series configurations to obtain the required stack voltage and desired run-time or to meet specific power requirements. This raises a second and less obvious concern for batteries that undergo certification for space flight use: the joining quality at the resistance spot weld of battery cells to component wires/leads and battery tabs, bus bars or other electronic components and assemblies. Resistance spot welds undergo materials evaluation, visual inspection, conductivity (resistivity) testing, destructive peel testing, and metallurgical examination in accordance with applicable NASA Process Specifications. Welded components are cross-sectioned to ensure they are free of cracks or voids open to any exterior surface. Pore and voids contained within the weld zone but not open to an exterior surface, and are not determined to have sharp notch like characteristics, shall be acceptable. Depending on requirements, some battery cells are constructed of aluminum canisters while others are constructed of steel. Process specific weld schedules must be developed and certified for each possible joining combination. The aluminum canisters' positive terminals were particularly difficult to weld due to a bi-metal strip that comes ultrasonically

  13. Fully Automatic Spot Welding System for Application in Automotive Industry

    Directory of Open Access Journals (Sweden)

    Peter Puschner

    2015-12-01

    Full Text Available Abstract A Virtual Machine has led to a fully automatic spot welding system. All necessary parameters are created by measuring systems and algorithms running in the Virtual Machine. A hybrid operating circuit allows the Virtual Machine to read the exact process voltage between the tips of the electrodes every 50 µs. Actual welding voltage and current allow for the first time reading process impedance, electric power and total energy being transferred to the spot weld. Necessary energy input is calculated by a calorimetric model after measuring the total thickness of the materials to be welded as soon as the welding gun is positioned at the workpiece. A precision potentiometer implemented in the gun delivers the total material thickness within the 0.1 mm range during the pre-pressure phases. The internal databank of the Virtual Machine controls all essential parameters to guide the total welding process. Special generator characteristics of the welding power unit are created by the Virtual Machine just during the upslope and the welding phases. So the process will be initialized in differentiating the kind of material, mild steel or high strengthen steel. This will affect the kind of energy input and current decrease during the upslope and downslope phases.

  14. Welding by using doubly-deflected rotating electron beam

    International Nuclear Information System (INIS)

    Dabek, J.W.; Friedel, K.

    1997-01-01

    The paper presents the welding process by using double-deflected rotating electron beam, as a method to obtain good quality welds. It is shown possible variants of work of modified beam, principles of creation, process control and results of welding. Comparison of quality welds obtained by using traditional and modified electron beams is made too. (author). 11 refs, 8 figs

  15. Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models

    International Nuclear Information System (INIS)

    Sommer, Silke

    2010-01-01

    This paper presents the modeling of deformation and fracture behavior of resistance spot welded joints in DP600 steel sheets. Spot welding is still the most commonly used joining technique in automotive engineering. In overloading situations like crash joints are often the weakest link in a structure. For those reasons, crash simulations need reliable and applicable tools to predict the load bearing capacity of spot welded components. Two series of component tests with different spot weld diameters have shown that the diameter of the weld nugget is the main influencing factor affecting fracture mode (interfacial or pull-out fracture), load bearing capacity and energy absorption. In order to find a correlation between nugget diameter, load bearing capacity and fracture mode, the spot welds are simulated with detailed finite element models containing base metal, heat affected zone and weld metal in lap-shear loading conditions. The change in fracture mode from interfacial to pull-out or peel-out fracture with growing nugget diameter under lap-shear loading was successfully modeled using the Gologanu-Leblond model in combination with the fracture criteria of Thomason and Embury. A small nugget diameter is identified to be the main cause for interfacial fracture. In good agreement with experimental observations, the calculated pull-out fracture initiates in the base metal at the boundary to the heat affected zone.

  16. Resistance spot welding of AISI 430 ferritic stainless steel: Phase transformations and mechanical properties

    International Nuclear Information System (INIS)

    Alizadeh-Sh, M.; Marashi, S.P.H.; Pouranvari, M.

    2014-01-01

    Highlights: • Phase transformations during RSW of AISI430 are detailed. • Grain growth, martensite formation and carbide precipitation are dominant phase transformations. • Failure mode of AISI430 resistance spot welded joints are analyzed. • Larger FZ size provided improved load bearing capacity and energy absorption capability. - Abstract: The paper aims at investigating the process–microstructure–performance relationship in resistance spot welding of AISI 430 ferritic stainless steel. The phase transformations which occur during weld thermal cycle were analyzed in details, based on the physical metallurgy of welding of the ferritic stainless steels. It was found that the microstructure of the fusion zone and the heat affected zone is influenced by different phenomena including grain growth, martensite formation and carbide precipitation. The effects of welding cycle on the mechanical properties of the spot welds in terms of peak load, energy absorption and failure mode are discussed

  17. Experimental and computer simulation results of the spot welding process using SORPAS software

    International Nuclear Information System (INIS)

    Al-Jader, M A; Cullen, J D; Athi, N; Al-Shamma'a, A I

    2009-01-01

    The highly competitive nature of the automotive industry drives demand for improvements and increased precision engineering in resistance spot welding. Currently there are about 4300 weld points on the average steel vehicle. Current industrial monitoring systems check the quality of the nugget after processing 15 cars, once every two weeks. The nuggets are examined off line using a destructive process, which takes approximately 10 days to complete causing a long delay in the production process. This paper presents a simulation of the spot welding growth curves, along with a comparison to growth curves performed on an industrial spot welding machine. The correlation of experimental results shows that SORPAS simulations can be used as an off line measurement to reduce factory energy usage. The first section in your paper

  18. Electron beam welding of aluminium components

    International Nuclear Information System (INIS)

    Maajid, Ali; Vadali, S.K.; Maury, D.K.

    2015-01-01

    Aluminium is one of the most widely used materials in industries like transportation, shipbuilding, manufacturing, aerospace, nuclear, etc. The challenges in joining of aluminium are distortion, cleanliness and quality. Main difficulties faced during fusion welding of aluminium components are removal of surface oxide layer, weld porosity, high heat input requirement, distortion, hot cracking, etc. Physical properties of aluminium such as its high thermal conductivity, high coefficient of thermal expansion, no change in colour at high temperature, large difference in the melting points of the metal and its oxide (∼ 1400 °C) compound the difficulties faced during welding. Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Plasma Arc Welding (PAW), etc are generally used in industries for fusion welding of aluminium alloys. However in case of thicker jobs the above processes are not suitable due to requirements of elaborate edge preparation, preheating of jobs, fixturing to prevent distortion, etc. Moreover, precise control over the heat input during welding and weld bead penetration is not possible with above processes. Further, if heat sensitive parts are located near the weld joint then high energy density beam welding process like Electron Beam Welding (EBW) is the best possible choice for aluminium welding.This paper discusses EB welding of aluminium components, typical geometry of components, selection/optimization of welding parameters, problems faced during standardization of welding and process parameters and their remedies etc.

  19. Resistance spot welding of a complicated joint in new advanced high strength steel

    NARCIS (Netherlands)

    Joop Pauwelussen; Nick den Uijl

    2015-01-01

    The goal of this article is to investigate resistance spot welding of a complicated welding configuration of three sheets of dissimilar steel sheet materials with shunt welds, using simulations. The configuration used resembles a case study of actual welds in automotive applications. One of the

  20. The Mechanism of Ultrasonic Vibration on Grain Refining and Degassing in GTA Spot Welding of Copper Joints.

    Science.gov (United States)

    Al-Ezzi, Salih; Quan, Gaofeng; Elrayah, Adil

    2018-05-07

    This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties.

  1. Electron-beam welding of thorium-doped iridium alloy sheets

    International Nuclear Information System (INIS)

    David, S.A.; Liu, C.T.; Hudson, J.D.

    1979-04-01

    Modified iridium alloys containing 100 ppM Th were found to be very susceptible to hot-cracking during gas tungsten-arc and electron-beam welding. However, the electron-beam welding process showed greater promise of success in welding these alloys, in particular Ir--0.3% W doped with 200 ppM Th and 50 ppM Al. The weldability of this particular alloy was extremely sensitive to the welding parameters, such as beam focus condition and welding speed, and the resulting fusion zone structure. At low speed successful electron-beam welds were made over a narrow range of beam focus conditions. However, at high speeds successful welds can be made over an extended range of focus conditions. The fusion zone grain structure is a strong function of welding speed and focus condition, as well. In the welds that showed hot-cracking, a region of positive segregation of thorium was identified at the fusion boundary. This highly thorium-segregated region seems to act as a potential source for the nucleation of a liquation crack, which later grows as a centerline crack

  2. Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet

    International Nuclear Information System (INIS)

    Braun, R.; Dalle Donne, C.; Staniek, G.

    2000-01-01

    Butt welds of 1.6 mm thick 6013-T6 sheet were produced using laser beam welding and friction stir welding processes. Employing the former joining technique, filler powders of the alloys Al-5%Mg and Al-12%Si were used. Microstructure, hardness profiles, tensile properties and the corrosion behaviour of the welds in the as-welded condition were investigated. The hardness in the weld zone was lower compared to that of the base material in the peak-aged temper. Hardness minima were measured in the fusion zone and in the thermomechanically affected zone for laser beam welded and friction stir welded joints, respectively. Metallographic and fractographic examinations revealed pores in the fusion zone of the laser beam welds. Porosity was higher in welds made using the filler alloy Al-5%Mg than using the filler metal Al-12%Si. Transmission electron microscopy indicated that the β '' (Mg 2 Si) hardening precipitates were dissolved in the weld zone due to the heat input of the joining processes. Joint efficiencies achieved for laser beam welds depended upon the filler powders, being about 60 and 80% using the alloys Al-5%Mg and Al-12%Si, respectively. Strength of the friction stir weld approached over 80% of the ultimate tensile strength of the 6013-T6 base material. Fracture occurred in the region of hardness minima unless defects in the weld zone led to premature failure. The heat input during welding did not cause a degradation of the corrosion behaviour of the welds, as found in continuous immersion tests in an aqueous chloride-peroxide solution. In contrast to the 6013-T6 parent material, the weld zone was not sensitive to intergranular corrosion. Alternate immersion tests in 3.5% NaCl solution indicated high stress corrosion cracking resistance of the joints. For laser beam welded sheet, the weld zone of alternately immersed specimens suffered severe degradation by pitting and intergranular corrosion, which may be associated with galvanic coupling of filler metal and

  3. Variable-spot ion beam figuring

    International Nuclear Information System (INIS)

    Wu, Lixiang; Qiu, Keqiang; Fu, Shaojun

    2016-01-01

    This paper introduces a new scheme of ion beam figuring (IBF), or rather variable-spot IBF, which is conducted at a constant scanning velocity with variable-spot ion beam collimated by a variable diaphragm. It aims at improving the reachability and adaptation of the figuring process within the limits of machine dynamics by varying the ion beam spot size instead of the scanning velocity. In contrast to the dwell time algorithm in the conventional IBF, the variable-spot IBF adopts a new algorithm, which consists of the scan path programming and the trajectory optimization using pattern search. In this algorithm, instead of the dwell time, a new concept, integral etching time, is proposed to interpret the process of variable-spot IBF. We conducted simulations to verify its feasibility and practicality. The simulation results indicate the variable-spot IBF is a promising alternative to the conventional approach.

  4. The laser beam welding test of ODS fuel claddings

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu

    2004-06-01

    As a alternative method of pressurized resistance welding being currently developed, integrity evaluations for a laser beam welding joint between a ODS cladding tube and a FMS end plug were conducted for the purpose of studying the applicability of the laser beam welding technique to the welding with the lower end plug. The laser beam welding causes blowholes in the welding zone, whose effect on the high cycle fatigue strength of the joint is essential because of the flow-induced vibration during irradiation. The rotary bending tests using specimens with laser beam welding between ODS cladding tubes and FMS end plugs were carried out to evaluate the fatigue strength of the welding joint containing blowholes. The fatigue limit of stress amplitude about 200 MPa from 10 6 -10 7 cycles suggested that the laser beam welding joint had enough strength against the flow-induced vibration. Sizing of blowholes in the welding zone by using a micro X ray CT technique estimated the rate of defect areas due to blowholes at 1-2%. It is likely that the fatigue strength remained nearly unaffected by blowholes because of the no correlation between the breach of the rotary bending test specimen and the rate of defect area. Based on results of tensile test, internal burst test, Charpy impact test and fatigue test of welded zone, including study of allowable criteria of blowholes in the inspection, it is concluded that the laser beam welding can be probably applied to the welding between the ODS cladding tube and the FMS lower end plug. (author)

  5. Numerical simulation of electron beam welding with beam oscillations

    Science.gov (United States)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  6. Welding quality evaluation of resistance spot welding using the time-varying inductive reactance signal

    Science.gov (United States)

    Zhang, Hongjie; Hou, Yanyan; Yang, Tao; Zhang, Qian; Zhao, Jian

    2018-05-01

    In the spot welding process, a high alternating current is applied, resulting in a time-varying electromagnetic field surrounding the welder. When measuring the welding voltage signal, the impedance of the measuring circuit consists of two parts: dynamic resistance relating to weld nugget nucleation event and inductive reactance caused by mutual inductance. The aim of this study is to develop a method to acquire the dynamic reactance signal and to discuss the possibility of using this signal to evaluate the weld quality. For this purpose, a series of experiments were carried out. The reactance signals under different welding conditions were compared and the results showed that the morphological feature of the reactance signal was closely related to the welding current and it was also significantly influenced by some abnormal welding conditions. Some features were extracted from the reactance signal and combined to construct weld nugget strength and diameter prediction models based on the radial basis function (RBF) neural network. In addition, several features were also used to monitor the expulsion in the welding process by using Fisher linear discriminant analysis. The results indicated that using the dynamic reactance signal to evaluate weld quality is possible and feasible.

  7. Investigation of Hardness Change for Spot Welded Tailored Blank in Hot Stamping Using CCT and Deformation-CCT Diagrams

    Science.gov (United States)

    Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi

    2018-04-01

    When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.

  8. Investigation of Hardness Change for Spot Welded Tailored Blank in Hot Stamping Using CCT and Deformation-CCT Diagrams

    Science.gov (United States)

    Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi

    2018-06-01

    When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.

  9. Electron beam welding fundamentals and applications

    International Nuclear Information System (INIS)

    Mara, G.L.; Armstrong, R.E.

    1975-01-01

    The electron beam welding process is described and the unique mode of operation and penetration explained by a description of the forces operating within the weld pool. This penetration model is demonstrated by high speed cinematography of the weld pool on several materials. The conditions under which weld defects are formed are discussed and examples are presented. (auth)

  10. Apparatus for spot welding sheathed thermocouples to the inside of small-diameter tubes at precise locations

    International Nuclear Information System (INIS)

    Baucum, W.E.; Dial, R.E.

    1976-01-01

    Equipment and procedures used to spot weld tantalum- or stainless-steel-sheathed thermocouples to the inside diameter of Zircaloy tubing to meet the requirements of the Multirod Burst Test (MRBT) Program at ORNL are described. Spot welding and oxide cleaning tools were fabricated to remove the oxide coating on the Zircaloy tubing at local areas and spot weld four thermocouples separated circumferentially by 90 0 at any axial distribution desired. It was found necessary to apply a nickel coating to stainless-steel-sheathed thermocouples to obtain acceptable welds. The material and shape of the inner electrode and resistance between inner and outer electrodes were found to be critical parameters in obtaining acceptable welds

  11. An online real time ultrasonic NDT system for the quality control of spot welding in the automotive industry

    International Nuclear Information System (INIS)

    Athi, N; Wylie, S R; Cullen, J D; Al-Jader, M; Al-Shamma'a, A I; Shaw, A

    2009-01-01

    Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.

  12. An online real time ultrasonic NDT system for the quality control of spot welding in the automotive industry

    Science.gov (United States)

    Athi, N.; Wylie, S. R.; Cullen, J. D.; Al-Jader, M.; Al-Shamma'a, A. I.; Shaw, A.

    2009-07-01

    Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.

  13. Characteristics of Resistance Spot Welded Ti6Al4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-10-01

    Full Text Available Ti6Al4V titanium alloy is applied extensively in the aviation, aerospace, jet engine, and marine industries owing to its strength-to-weight ratio, excellent high-temperature properties and corrosion resistance. In order to extend the application range, investigations on welding characteristics of Ti6Al4V alloy using more welding methods are required. In the present study, Ti6Al4V alloy sheets were joined using resistance spot welding, and the weld nugget formation, mechanical properties (including tensile strength and hardness, and microstructure features of the resistance spot-welded joints were analyzed and evaluated. The visible indentations on the weld nugget surfaces caused by the electrode force and the surface expulsion were severe due to the high welding current. The weld nugget width at the sheets’ faying surface was mainly affected by the welding current and welding time, and the welded joint height at weld nugget center was chiefly associated with electrode force. The maximum tensile load of welded joint was up to 14.3 kN in the pullout failure mode. The hardness of the weld nugget was the highest because of the coarse acicular α′ structure, and the hardness of the heat-affected zone increased in comparison to the base metal due to the transformation of the β phase to some fine acicular α′ phase.

  14. Metallurgical Effects of Shunting Current on Resistance Spot-Welded Joints of AA2219 Sheets

    Science.gov (United States)

    Jafari Vardanjani, M.; Araee, A.; Senkara, J.; Jakubowski, J.; Godek, J.

    2016-08-01

    Shunting effect is the loss of electrical current via the secondary circuit provided due to the existence of previous nugget in a series of welding spots. This phenomenon influences on metallurgical aspects of resistance spot-welded (RSW) joints in terms of quality and performance. In this paper RSW joints of AA2219 sheets with 1 mm thickness are investigated metallurgically for shunted and single spots. An electro-thermal finite element analysis is performed on the RSW process of shunted spot and temperature distribution and variation are obtained. These predictions are then compared with experimental micrographs. Three values of 5 mm, 20 mm, and infinite (i.e., single spot) are assumed for welding distance. Numerical and experimental results are matching each other in terms of nugget and HAZ geometry as increasing distance raised nugget size and symmetry of HAZ. In addition, important effect of shunting current on nugget thickness, microstructure, and Copper segregation on HAZ grain boundaries were discovered. A quantitative analysis is also performed about the influence of welding distance on important properties including ratio of nugget thickness and diameter ( r t), ratio of HAZ area on shunted and free side of nugget ( r HA), and ratio of equivalent segregated and total amount of Copper, measured in sample ( r Cu) on HAZ. Increasing distance from 5 mm to infinite, indicated a gain of 111.04, -45.55, and -75.15% in r t, r HA, and r Cu, respectively, while obtained ratios for 20 mm welding distance was suitable compared to single spot.

  15. Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints

    Science.gov (United States)

    Wu, Dong; Shen, Jun; Zhou, Meng-bing; Cheng, Liang; Sang, Jia-xing

    2017-10-01

    A liquid-nitrogen-cooling friction stir spot welding (C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone (SZ) and the heat-affected zone (HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone (TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding (FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time.

  16. Applicability evaluation of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Kobayashi, Noriyasu; Kasuya, Takashi; Ueno, Souichi; Ochiai, Makoto; Yuguchi, Yasuhiro

    2010-01-01

    We clarified a defect detecting capability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding. An underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in groove and welding surface grinding as a post treatment. Therefore groove and grinded welding surface inspections are required underwater. We curried out defect detection tests using three kinds of specimens simulated a groove, reactor vessel nozzle dissimilar metal welding materials and a laser beam welding material with a cross coil ECT probe. From experimental results, we confirmed that it is possible to detect 0.3 mm or more depth electro-discharge machining slits on machining surfaces in all specimens and an ECT has possibility as a surface inspection technique for underwater laser beam welding. (author)

  17. IR-based spot weld NDT in automotive applications

    Science.gov (United States)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  18. Developments in welding and joining methods of metallic materials

    International Nuclear Information System (INIS)

    Pilarczyk, J.

    2007-01-01

    The impact of the welding technology on the economy development. The welding and joining methods review. The particular role of the laser welding and its interesting applications: with filler metal, twin spot laser welding, hybrid welding process, remote welding. The fiber lasers. The high intensity electron beams applications for surface modification. The TIG welding with the use of the active flux. Friction welding, friction stir welding and friction linear welding. (author)

  19. Shimmed electron beam welding process

    Science.gov (United States)

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  20. Dynamic analysis of I cross beam section dissimilar plate joined by TIG welding

    Science.gov (United States)

    Sani, M. S. M.; Nazri, N. A.; Rani, M. N. Abdul; Yunus, M. A.

    2018-04-01

    In this paper, finite element (FE) joint modelling technique for prediction of dynamic properties of sheet metal jointed by tungsten inert gas (TTG) will be presented. I cross section dissimilar flat plate with different series of aluminium alloy; AA7075 and AA6061 joined by TTG are used. In order to find the most optimum set of TTG welding dissimilar plate, the finite element model with three types of joint modelling were engaged in this study; bar element (CBAR), beam element and spot weld element connector (CWELD). Experimental modal analysis (EMA) was carried out by impact hammer excitation on the dissimilar plates that welding by TTG method. Modal properties of FE model with joints were compared and validated with model testing. CWELD element was chosen to represent weld model for TTG joints due to its accurate prediction of mode shapes and contains an updating parameter for weld modelling compare to other weld modelling. Model updating was performed to improve correlation between EMA and FEA and before proceeds to updating, sensitivity analysis was done to select the most sensitive updating parameter. After perform model updating, average percentage of error of the natural frequencies for CWELD model is improved significantly.

  1. Underwater laser beam welding of Alloy 690

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Kono, Wataru; Kawano, Shohei; Yoda, Masaki

    2009-01-01

    Stress Corrosion Clacking (SCC) has been reported at Alloy 600 welds between nozzles and safe-end in Pressurized Water Reactor (PWR) plant. Alloy 690, which has higher chromium content than Alloy 600, has been applied for cladding on Alloy 600 welds for repairing damaged SCC area. Toshiba has developed Underwater Laser Beam Welding technique. This method can be conducted without draining, so that the repairing period and the radiation exposure during the repair can be dramatically decreased. In some old PWRs, high-sulfur stainless steel is used as the materials for this section. It has a high susceptibility of weld cracks. Therefore, the optimum welding condition of Alloy 690 on the high-sulfur stainless steel was investigated with our Underwater Laser Beam Welding unit. Good cladding layer, without any crack, porosity or lack of fusion, could be obtained. (author)

  2. Summary of the guideline on underwater laser beam repair welding

    International Nuclear Information System (INIS)

    Ichikawa, Hiroya; Yoda, Masaki; Motora, Yuichi

    2013-01-01

    It is known that stress corrosion cracking (SCC) might occur at the weld of a reactor pressure vessel or core internals. Underwater laser beam clad welding for mitigation of SCC has been already established and the guideline 'Underwater laser beam clad welding' was published. Moreover, the guideline 'Seal welding' was also published as a repair method for SCC. In addition to these guidelines, the guideline 'Underwater laser beam repair welding' was newly published in November, 2012 for the repair welding after completely removing a SCC crack occurred in weld or base metal. This paper introduces the summary of this guideline. (author)

  3. Application of local vacuum slide sealing electron beam welding procedure

    International Nuclear Information System (INIS)

    Sato, Shozo; Takano, Genta; Minami, Masaharu; Enami, Koji; Uchikawa, Takashi; Kuri, Shuhei

    1982-01-01

    Electron beam welding process is efficient and is superior in workmanship and its application to the welding of large plate structures is eagerly awaited. However, since electron beam welding is generally performed with the object of welding entirely put in a vacuum chamber, high welding cost becomes a problem. In response to this demand, two kinds of local vacuum slide sealing type electron beam welding machines have been developed. These welding machines are designed to perform welding with only the neighborhood of the weld line put in vacuum, one of which is for longitudinal joints and the other for circumferential joints. The welding machine for circumferential joints has been put to practical use for the welding of nucear fusion reactor vacuum vessels (outside diameter 3.5 m, inside diameter 1.7 m), showing that it is applicable to the welding of large structures. (author)

  4. Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids.

    Science.gov (United States)

    Yan, Xiao-Jun; Yang, Da-Zhi

    2006-04-01

    The purpose of this study was to investigate corrosion resistance of a laser spot-welded joint of NiTi alloy wires using potentiodynamic tests in Hank's solution at different PH values and the PH 7.4 NaCl solution for different Cl- concentrations. Scanning electron microscope observations were carried out before and after potentiodynamic tests. The composition of a laser spot-welded joint and base metal were characterized by using an electron probe microanalyzer. The results of potentiodynamic tests showed that corrosion resistance of a laser spot-welded joint of NiTi alloy wire was better than that of base metal, which exhibited a little higher breakdown potential and passive range, and a little lower passive current density. Corrosion resistances of a laser spot-welded joint and base metal decreased with increasing of the Cl- concentration and PH value. The improvement of corrosion resistance of the laser spot-welded joint was due to the decrease of the surface defects and the increase of the Ti/Ni ratio. (c) 2005 Wiley Periodicals, Inc.

  5. Improving Stiffness-to-weight Ratio of Spot-welded Structures based upon Nonlinear Finite Element Modelling

    Science.gov (United States)

    Zhang, Shengyong

    2017-07-01

    Spot welding has been widely used for vehicle body construction due to its advantages of high speed and adaptability for automation. An effort to increase the stiffness-to-weight ratio of spot-welded structures is investigated based upon nonlinear finite element analysis. Topology optimization is conducted for reducing weight in the overlapping regions by choosing an appropriate topology. Three spot-welded models (lap, doubt-hat and T-shape) that approximate “typical” vehicle body components are studied for validating and illustrating the proposed method. It is concluded that removing underutilized material from overlapping regions can result in a significant increase in structural stiffness-to-weight ratio.

  6. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  7. Electron Beam Welding of Gear Wheels by Splitted Beam

    Directory of Open Access Journals (Sweden)

    Dřímal Daniel

    2014-06-01

    Full Text Available This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max..

  8. Overview of advanced process control in welding within ERDA

    International Nuclear Information System (INIS)

    Armstrong, R.E.

    1977-01-01

    The special kinds of demands placed on ERDA weapons and reactors require them to have very reliable welds. Process control is critical in achieving this reliability. ERDA has a number of advanced process control projects underway with much of the emphasis being on electron beam welding. These include projects on voltage measurement, beam-current control, beam focusing, beam spot tracking, spike suppression, and computer control. A general discussion of process control in welding is followed by specific examples of some of the advanced joining process control projects in ERDA

  9. Cold metal transfer spot plug welding of AA6061-T6-to-galvanized steel for automotive applications

    International Nuclear Information System (INIS)

    Cao, R.; Huang, Q.; Chen, J.H.; Wang, Pei-Chung

    2014-01-01

    Highlights: • Two Al-to-galvanized steel spot plug welding joints were studied by CMT method. • The optimum process variables for the two joints were gotten by orthogonal test. • Connection mechanism of the two joints were discussed. -- Abstract: In this study, cold metal transfer (CMT) spot plug joining of 1 mm thick Al AA6061-T6 to 1 mm thick galvanized steel (i.e., Q235) was studied. Welding variables were optimized for a plug weld in the center of a 25 mm overlap region with aluminum 4043 wire and 100% argon shielding gas. Microstructures and elemental distributions were characterized by scanning electron microscopy with energy dispersive X-ray spectrometer. Mechanical testing of CMT spot plug welded joints was conducted. It was found that it is feasible to join Al AA6061T6-to-galvanized steel by CMT spot plug welding method. The process variables for two joints with Al AA6061T6-to-galvanized mild steel and galvanized mild steel-to-Al AA6061T6 are optimized. The strength of CMT spot welded Al AA6061T6-to-galvanized mild steel is determined primarily by the strength and area of the brazed interface. While, the strength of the galvanized mild steel-to-Al AA6061T6 joint is mainly dependent upon the area of the weld metal

  10. Some electron beam welding equipments for the nuclear industry

    International Nuclear Information System (INIS)

    Helm, H.; Rodier, R.; Sayegh, G.

    1978-01-01

    Results of various electron beam welding equipment developed for the nuclear industry obtained from a 100 kW electron beam machine to weld thick plates made of stainless steel and reactor steel, and from some equipment with local vacuum to weld pipes onto a pipe wall. (orig.) [de

  11. Effect of tool rotational speed and penetration depth on dissimilar aluminum alloys friction stir spot welds

    Directory of Open Access Journals (Sweden)

    Joaquín M. Piccini

    2017-03-01

    Full Text Available In the last years, the automotive industry is looking for the use of aluminum parts in replace of steel parts in order to reduce the vehicles weight. These parts have to be joined, for instance, by welding processes. The more common welding process in the automotive industry is the Resistance Spot Welding (RSW technique. However, RSW of aluminum alloys has many disadvantages. Regarding this situation, a variant of the Friction Stir Welding process called Friction Stir Spot Welding (FSSW has been developed, showing a strong impact in welding of aluminum alloys and dissimilar materials in thin sheets. Process parameters affect the characteristics of the welded joints. However, the information available on this topic is scarce, particularly for dissimilar joints and thin sheets. The aim of this work was to study the effect of the rotational speed and the tool penetration depth on the characteristics of dissimilar FSS welded joints. Defects free joints have been achieved with higher mechanical properties than the ones reported. The maximum fracture load was 5800 N. It was observed that the effective joint length of the welded spots increased with the tool penetration depth, meanwhile the fracture load increased and then decreased. Finally, welding at 1200 RPM produced welded joints with lower mechanical properties than the ones achieved at 680 and 903 RPM.

  12. Cu-Fe welding techniques by electromagnetic and electron beam welding processes

    International Nuclear Information System (INIS)

    Kumar, Satendra; Saroj, P.C.; Kulkarni, M.R.; Sharma, A.; Rajawat, R.K.; Saha, T.K.

    2015-01-01

    Electromagnetic welding being a solid state welding process has been found suitable for welding Copper and Iron which are conventionally very tricky. Owing to good electrical conductivity of both copper and iron, they are best suited combination for EM welding. For the experimental conditions presented above, 1.0 mm wall thickness of Cu tube was lap welded to Fe disc. A heavy duty four disc stainless steel coil was used for electromagnetic welding of samples. MSLD of the welded samples indicated leak proof joints. Metallographic examination of the welds also revealed defect free interfaces. Electron beam welding is also a non-conventional welding process used for joining dissimilar materials. Autogenous welding of the above specimen was carried out by EBW method for the sake of comparison. A characterization analysis of the above mentioned joining processes will be discussed in the paper. (author)

  13. Fracture Mechanics Approach to X-Ray Diffraction Method for Spot Welded Lap Joint Structure of Rolled Steel Considered Residual Stress

    International Nuclear Information System (INIS)

    Baek, Seung Yeb; Bae, Dong Ho

    2011-01-01

    Cold and hot-rolled carbon steel sheets are commonly used in railroad cars or commercial vehicles such as the automobile. The sheets used in these applications are mainly fabricated by spot welding, which is a type of electric resistance welding. However, the fatigue strength of a spot-welded joint is lower than that of the base metal because of high stress concentration at the nugget edge of the spot-welded part. In particular, the fatigue strength of the joint is influenced by not only geometrical and mechanical factors but also the welding conditions for the spot-welded joint. Therefore, there is a need for establishing a reasonable criterion for a long-life design for spot-welded structures. In this thesis, ΔP-N f relation curves have been used to determine a long-life fatigue-design criterion for thin-sheet structures. However, as these curves vary under the influence of welding conditions, mechanical conditions, geometrical factors, etc. It is very difficult to systematically determine a fatigue-design criterion on the basis of these curves. Therefore, in order to eliminate such problems, the welding residual stresses generated during welding and the stress distributions around the weld generated by external forces were numerically and experimentally analyzed on the basis of the results, reassessed fatigue strength of gas welded joints

  14. Kekuatan Geser dan Pola Patahan Loop Space Maintainer yang Dibuat dengan Teknik Spot Welding Elektrik

    Directory of Open Access Journals (Sweden)

    Elin Karlina

    2015-10-01

    Full Text Available The aim of this research was to study the effect of spot variations on shear strength of spot welds in an electric loop space maintainer. Stainless steel wire of 0.8 mm diameter and nickel chromium crwon for lower second molar of temporary teeth were used. A loop 1 cm wide, made of 3.5 cm stainless steel wire, was welded with 3 dots on the crown using an electric spot welder. Each dot for each group took different spot variations from 1 X – 4 X. A loop space maintainer made with the usual materials and techniques as applied at the IKGA FKG UI Clinic was used as a control, with a torch as heat source. Ten specimens each were prepared for shear testing and three spesimens each for metallography. Universal testing machine was used for shear strength testing at a crosshead speed of 0.5 mm/min, and SEM/EDS was used for metallography and fractography. The data were statistically analyzed with one-way ANOVA at p = 0.05, and Tukey post hoc test. The results show that the shear strength of the welded loop space maintainer was higher than that of a soldered loop space maintainer, although the difference was not statistically significant with spot variation 1 X. SEM/EDS analysis suggests that a new alloy forms at the contact area of welded and soldered loop space maintainer. Fractography of the joints suggests that welds are better than soldered joints, with higher ductility and toughness, as can be seen from the dimpled pattern of the welded joint and cleavage patterns in the control joints. In conclusion, the loop space maintainer is better made by welding than by soldering.

  15. Hybrid welding of hollow section beams for a telescopic lifter

    Science.gov (United States)

    Jernstroem, Petteri

    2003-03-01

    Modern lifting equipment is normally constructed using hollow section beams in a telescopic arrangement. Telescopic lifters are used in a variety number of applications including e.g. construction and building maintenance. Also rescue sector is one large application field. It is very important in such applications to use a lightweight and stable beam construction, which gives a high degree of flexibility in working high and width. To ensure a high weld quality of hollow section beams, high efficiency and minimal distortion, a welding process with a high power density is needed. The alternatives, in practice, which fulfill these requirements, are laser welding and hybrid welding. In this paper, the use of hybrid welding process (combination of CO2 laser welding and GMAW) in welding of hollow section beam structure is presented. Compared to laser welding, hybrid welding allows wider joint tolerances, which enables joints to be prepared and fit-up less accurately, aving time and manufacturing costs. A prerequisite for quality and effective use of hybrid welding is, however, a complete understanding of the process and its capabilities, which must be taken into account during both product design and manufacture.

  16. Electron backscattering for process control in electron beam welding

    International Nuclear Information System (INIS)

    Ardenne, T. von; Panzer, S.

    1983-01-01

    A number of solutions to the automation of electron beam welding is presented. On the basis of electron backscattering a complex system of process control has been developed. It allows an enlarged imaging of the material's surface, improved adjustment of the beam focusing and definite focus positioning. Furthermore, both manual and automated positioning of the electron beam before and during the welding process has become possible. Monitoring of the welding process for meeting standard welding requirements can be achieved with the aid of a control quantity derived from the results of electronic evaluation of the high-frequency electron backscattering

  17. Laser and electron beam welding of Ti-alloys: Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Cam, G; Santos, J.F. dos; Kocak, M [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1998-12-31

    The welding of titanium alloys must be conducted in completely inert or vacuum environments due to the strong affinity of titanium to oxygen. Residual stresses in titanium welds can greatly influence the performance of a fabricated aerospace component by degrading fatigue properties. Moreover, distortion can cause difficulties in the final assembly and operation of high-tolerance aerospace systems. Power beam welding processes, namely laser and electron beam welding, offer remarkable advantages over conventional fusion welding processes and have a great potential to produce full-penetration, single-pass autogenous welds with minimal component distortion due to low heat input and high reproducibility of joint quality. Moreover, electron beam welding process, which is conducted in a vacuum chamber, inherently provides better atmospheric protection. Although considerable progress has been made in welding of titanium alloys by power beam processes, there is still a lack of a complete set of mechanical properties data of these joints. Furthermore, the problem of solid-state cracking in fusion welding of {gamma}-TiAl intermetallic alloys due to their low ductility is still to be overcome. The purpose of this literature review is to outline the progress made in this area and to provide basic information for the Brite-Euram project entitled assessment of quality of power beam weld joints ``ASPOW``. (orig.) 31 refs.

  18. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  19. Electron beam welding of high-purity copper accelerator cells

    International Nuclear Information System (INIS)

    Delis, K.; Haas, H.; Schlebusch, P.; Sigismund, E.

    1986-01-01

    The operating conditions of accelerator cells require high thermal conductivity, low gas release in the ultrahigh vacuum, low content of low-melting metals and an extremely good surface quality. In order to meet these requirements, high-purity copper (OFHC, Grade 1, according to ASTM B 170-82 and extra specifications) is used as structural material. The prefabricated components of the accelerator cells (noses, jackets, flanges) are joined by electron beam welding, the weld seam being assessed on the basis of the same criteria as the base material. The welding procedures required depend, first, on the material and, secondly, on the geometries involved. Therefore experimental welds were made first on standardized specimens in order to study the behaviour of the material during electron beam welding and the influence of parameter variations. The welded joints of the cell design were planned on the basis of these results. Seam configuration, welding procedures and the parameters were optimized on components of original geometry. The experiments have shown that high-quality joints of this grade of copper can be produced by the electron beam welding process, if careful planning and preparation of the seams and adequate containment of the welding pool are assured. (orig.)

  20. Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet

    International Nuclear Information System (INIS)

    Bakavos, D.; Prangnell, P.B.

    2010-01-01

    Resistance spot welding (RSW) is difficult to apply to aluminium automotive alloys. High power ultrasonic spot welding (HP-USW) is a new alternative method which is extremely efficient, using ∼2% of the energy of RSW. However, to date there have been few studies of the mechanisms of bond formation and the material interactions that take place with this process. Here, we report on a detailed investigation where we have used X-ray tomography, high resolution SEM, and EBSD, and dissimilar alloy welds, to track the interface position and characterise the stages of weld formation, and microstructure evolution, as a function of welding energy. Under optimum conditions high quality welds are produced, showing few defects. Welding proceeds by the development and spread of microwelds, until extensive plastic deformation occurs within the weld zone, where the temperature reaches ∼380 deg. C. The origin of the weld interface 'flow features' characteristic of HP-USW are discussed.

  1. Hybrid multi-response optimization of friction stir spot welds: failure ...

    Indian Academy of Sciences (India)

    O O OJO

    2018-06-08

    Jun 8, 2018 ... Friction stir spot welding; effective bonded size; failure load; expelled flash volume; hybrid multi- response ... eliminated with the application of FSSW process. Conse- ... design of experiment is generally applied in either single.

  2. Technology of electron beam welding for Zr-4 alloy spacer grid

    International Nuclear Information System (INIS)

    Pei Qiusheng; Wu Xueyi; Yang Qishun

    1989-10-01

    The welding technology for Zr-4 alloy spacer grid by using vacuum electron beam was studied. Through a series of welding technological experiments, metallographic examinations of seam structure and detecting tests for welding defect by X-ray defectoscopy, a good welding technology was selected to meet the requirements. The experimental results indicated that the Zr-4 alloy spacer grid welded by vacuum electron beam welding is feasible

  3. Innovative electron-beam welding of high-melting metals

    International Nuclear Information System (INIS)

    Behr, W.; Reisgen, U.

    2007-01-01

    Since its establishment as nuclear research plant Juelich in the year 1956, the research centre Juelich (FZJ) is concerned with the material processing of special metals. Among those are, above all, the high-melting refractory metals niobium, molybdenum and tungsten. Electron beam welding has always been considered to be an innovative special welding method; in the FZJ, electron beam welding has, moreover, always been adapted to the increasing demands made by research partners and involved manufacturing and design sectors. From the manual equipment technology right up to highly modern multi-beam technique, the technically feasible for fundamental research has, this way, always been realised. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [de

  4. Effect of shroud material on the spherical aberration in electromagnetic focusing lens used in electron beam welding machines

    International Nuclear Information System (INIS)

    Saha, Srijit Kumar; Gupta, Sachin; Kandaswamy, E.

    2015-01-01

    Beam Power density on the target (typically 10"5 -10"6 W/cm"2 ) plays a major role in attaining good weld quality in electron beam welding. Spherical aberration in the electromagnetic focusing lenses places a limitation in attaining the required power density on the target. Conventionally, iron or low carbon steel core are being used as a shroud material in the electromagnetic lenses. The practical difficulty faced in the long term performance of these lenses has initiated a systematic study for various shroud materials and the effect on spherical aberration limited spot size. The particle trajectories were simulated with different magnetic materials, using commercial software. The spherical aberration was found to be the lowest in the air core lens. The possibility of using an aircore electromagnetic focusing lens in electron beam machines is discussed in this paper. The beam power density is limited by various factors such as spherical aberration, space charge aberrations, gun alignment and power source parameters. (author)

  5. Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets

    International Nuclear Information System (INIS)

    Bilici, Mustafa Kemal; Yuekler, Ahmet Irfan

    2012-01-01

    Highlights: → All velding parameters and different tool geometries have demonstrated a different effects on weld strength. → Friction stir spot welding of polyethylene mechanical scission is very important. → Metric screw the tool has a great influence on the weld strength of FSSW. -- Abstract: The effect of important welding parameters and tool properties that are effective on static strength in friction stir spot welds of polyethylene sheets were studied. Six different tool pin profiles (straight cylindrical, tapered cylindrical, threaded cylindrical, triangular, square and hexagonal) with different shoulder geometries, different pin length, pin angle and concavity angle were used to fabricate the joints. The tool rotational speed, tool plunge depth and dwell time were determined welding parameters. All the welding operations were done at the room temperature. Welding force and welding zone material temperature measurements were also done. Lap-shear tests were carried out to find the weld static strength. Weld cross section appearance observations were also done. From the experiments, the effect of pin profile, pin length, pin angle, dwell time and tool rotational speed on friction stir spot welding formation and weld strength was determined.

  6. Analysis of ripple formation in single crystal spot welds

    Energy Technology Data Exchange (ETDEWEB)

    Rappaz, M. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab de Metallurgie Physique; Corrigan, D.; Boatner, L.A. [Oak Ridge National Lab., TN (United States). Solid State Div.

    1997-10-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 {micro}m) and spacing (typically {approximately} 60 {micro}m) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f{sub 0} given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v{sub s}/f{sub 0}, where v{sub s} is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  7. Two-process approach to electron beam welding control

    International Nuclear Information System (INIS)

    Lastovirya, V.N.

    1987-01-01

    The analysis and synthesis of multi-dimensional welding control systems, which require the usage of computers, should be conducted within the temporal range. From the general control theory point two approaches - one-process and two-process - are possible to electron beam welding. In case of two-process approach, subprocesses of heat source formation and direct metal melting are separated. Two-process approach leads to two-profile control system and provides the complete controlability of electron beam welding within the frameworks of systems with concentrated, as well as, with distributed parameters. Approach choice for the given problem solution is determined, first of all, by stability degree of heat source during welding

  8. MICROSTRUCTURE AND FATIGUE PROPERTIES OF DISSIMILAR SPOT WELDED JOINTS OF AISI 304 AND AISI 1008

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2013-06-01

    Full Text Available Carbon steel and stainless steel composites are being more frequently used for applications requiring a corrosion resistant and attractive exterior surface and a high strength structural substrate. Spot welding is a potentially useful and efficient jointing process for the production of components consisting of these two materials. The spot welding characteristics of weld joints between these two materials are discussed in this paper. The experiment was conducted on dissimilar weld joints using carbon steel and 304L (2B austenitic stainless steel by varying the welding currents and electrode pressing forces. Throughout the welding process; the electrical signals from the strain sensor, current transducer and terminal voltage clippers are measured in order to understand each and every millisecond of the welding process. In doing so, the dynamic resistances, heat distributions and forging forces are computed for various currents and force levels within the good welds’ regions. The other process controlling parameters, particularly the electrode tip and weld time, remained constant throughout the experiment. The weld growth was noted for the welding current increment, but in the electrode force increment it causes an adverse reaction to weld growth. Moreover, the effect of heat imbalance was clearly noted during the welding process due to the different electrical and chemical properties. The welded specimens finally underwent tensile, hardness and metallurgical testing to characterise the weld growth.

  9. Testing of electron beam welding by ultrasonic transducers

    International Nuclear Information System (INIS)

    Touffait, A.-M.; Roule, M.; Destribats, M.-T.

    1978-01-01

    Focalized ultrasonic testing is well adapted to the study of electron beam welding. This type of welding leads to narrow weld beads and to small dimension testing zones. Focalized transducers can be used enabling very small defects to be detected [fr

  10. Comparative estimation of the properties of heat resisting nickel alloy welded joints made by electron-beam and arc welding

    International Nuclear Information System (INIS)

    Morochko, V.P.; Sorokin, L.I.; Yakushin, B.F.; Moryakov, V.F.

    1977-01-01

    As compared to argon arc welding of refractory nickel alloys at 15 m/hour rate, electron beam welding decreases energy consumption per unit length (from 4300 to 2070 cal/cm), the weld area (from 108 to 24 mm 2 ), and the length of the thermal effect zone (from 0.9-1.8 to 0.4-0.8 mm). Electron beam welding also provides for better resistance to hot cracking in the weld metal and in the near-weld zone, as compared to automatic argon arc welding and manual welding with addition of the basic metal. However, this advantage is observed only at welding rates less than 45 m/hour. Electron beam welded joints of refractory nickel alloys with intermetallide reinforcement have higher strength, plasticity and impact strength, and lower scattering of these properties than arc welded joints

  11. Electron Beam Welding of Thick Copper Material

    Energy Technology Data Exchange (ETDEWEB)

    Broemssen, Bernt von [IVF Industriforskning och utveckling AB, Stockholm (Sweden)

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter.

  12. Electron Beam Welding of Thick Copper Material

    International Nuclear Information System (INIS)

    Broemssen, Bernt von

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter

  13. Finite element analysis of spot laser of steel welding temperature history

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2009-01-01

    Full Text Available Laser welding process reduces the heat input to the work-piece which is the main goal in aerospace and electronics industries. A finite element model for axi-symmetric transient heat conduction has been used to predict temperature distribution through a steel cylinder subjected to CW laser beam of rectangular beam profile. Many numerical improvements had been used to reduce time of calculation and size of the program so as to achieve the task with minimum time required. An experimental determined absorptivity has been used to determine heat induced when laser interact with material. The heat affected zone and welding zone have been estimated to determine the effect of welding on material. The ratio of depth to width of the welding zone can be changed by proper selection of beam power to meet the specific production requirement. The temperature history obtained numerically has been compared with experimental data indicating good agreement.

  14. A comparative study of the microstructure and mechanical properties of HTLA steel welds obtained by the tungsten arc welding and resistance spot welding

    International Nuclear Information System (INIS)

    Ghazanfari, H.; Naderi, M.; Iranmanesh, M.; Seydi, M.; Poshteban, A.

    2012-01-01

    Highlights: ► Hardness mapping is a novel method to identify different phases. ► Surface hardness mapping, tabulates the hardness of a large area of weld. ► Hardness maps can be used to depict the strength map through the specimen. ► Hardness mapping is an easy way to identify the phase fractions within the specimen. - Abstract: Hardness tests are routinely employed as simple and efficient methods to investigate the microstructure and mechanical properties of steels. Each microstructural phase in steel has its own hardness level. Therefore, using surface hardness mapping data over a large area of weld zone would be a reasonable method to identify the present phases in steel. The microstructure distribution and mechanical properties variation through welded structures is inhomogeneous and not suitable for certain applications. So, studying the microstructure of weld zone has a significant importance. 4130 steel is classified in HTLA steels and it is widely used in marine industry due to its superior hardenability, good corrosion resistance and high strength. Gas tungsten arc and resistance spot welding are the most usable processes in joining of 4130 sheets. In this work a series of welds have been fabricated in 4130 steel tube by gas tungsten arc and resistance spot welding. The tube was subjected to quench-tempered heat treatment. Slices from the welds before and after heat treatment were polished and etched and the macrostructure and microstructure were observed. Hardness maps were then determined over the large area of weld zone, including the heat affected zone and base plate. Results show good relations between the various microstructures, strength and hardness values. It is also proved that this method is precise and applicable to estimate phase fraction of each phase in various regions of weld. In the current study some equations were proposed to calculate the ultimate tensile stress and yield stress from the weld. The calculated data were compared

  15. Investigation on fracture toughness of laser beam welded steels

    International Nuclear Information System (INIS)

    Riekehr, S.; Cam, G.; Santos, J.F. dos; Kocak, M.; Klein, R.M.; Fischer, R.

    1999-01-01

    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO 2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat micro-tensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strength mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)

  16. Fundamental studies on electron beam welding on heat resistant superalloys for nuclear plants, 6

    International Nuclear Information System (INIS)

    Susei, Syuzo; Shimizu, Sigeki; Nagai, Hiroyoshi; Aota, Toshikazu; Satoh, Keisuke

    1980-01-01

    In this report, base metal of superalloys for nuclear plants, its electron beam and TIG weld joints were compared with each other in the mechanical properties. Obtained conclusions are summarized as follows: 1) TIG weld joint is superior to electron beam weld joint and base metal in 0.2% proof stress irrespective of the material, and electron beam weld joint is also superior to base metal. There is an appreciable difference in tensile stress between base metal and weld joint regardless of the materials. Meanwhile, electron beam weld joint is superior to TIG weld joint in both elongation and reduction of area. 2) Electron beam weld joint has considerably higher low-cycle fatigue properties at elevated temperatures than TIG weld joint, and it is usually as high as base metal. 3) In the secondary creep rate, base metal of Hastelloy X (HAEM) has higher one than its weld joints. However, electron beam weld joint is nearly comparable to the base metal. 4) There is hardly any appreciable difference between base metal and weld joint in the creep rupture strength without distinction of the material. In the ductility, base metal is much superior and is followed by electron beam weld joint and TIG weld joint in the order of high ductility. However, electron beam weld joint is rather comparable to base metal. 5) In consideration of welded pipe with a circumferential joint, the weld joint should be evaluated in terms of secondary creep rate, elongation and rupture strength. As the weld joint of high creep rupture strength approaches the base metal in the secondary creep rate and the elongation, it seems to be more resistant against the fracture due to creep deformation. In this point of view, electron beam weld joint is far superior to TIG weld joint and nearly comparable to the base metal. (author)

  17. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    weld pool has been evaluated in case of high power CO2 laser beam welding. The ... The experiments based on twin or triple spot interaction geometry have also ... while the other one is between the liquid and the solid states of the metal.

  18. Elemental segregation during resistance spot welding of boron containing advanced high strength steels

    NARCIS (Netherlands)

    Amirthalingam, M.; Van der Aa, E.M.; Kwakernaak, C.; Hermans, M.J.M.; Richardson, I.M.

    2015-01-01

    The partitioning behaviour of carbon, phosphorous and boron during the solidification of a resistance spot weld pool was studied using experimental simulations and a phase field model. Steels with varying carbon, phosphorous and boron contents were designed and subjected to a range of resistant spot

  19. Microstructure and Mechanical Properties of an Ultrasonic Spot Welded Aluminum Alloy: The Effect of Welding Energy

    Directory of Open Access Journals (Sweden)

    He Peng

    2017-04-01

    Full Text Available The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique–ultrasonic spot welding (USW–at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with “river-flow” patterns and characteristic fatigue striations.

  20. Electron beam welding of dissimilar metals

    International Nuclear Information System (INIS)

    Metzger, G.; Lison, R.

    1976-01-01

    Thirty-three two-memeber combinations of dissimilar metals were electron beam welded as square-groove butt joints in 0.08 and 0.12 in. sheet material. Many joints were ''braze welded'' by offsetting the electron beam about 0.02 in. from the butt joint to achieve fusion of the lower melting point metal, but no significant fusion of the other member of the pair. The welds were evaluated by visual and metallographic examination, transverse tensile tests, and bend tests. The welds Ag/Al, Ag/Ni15Cr7Fe, Cu/Ni15Cr7Fe, Cu/V, Cu20Ni/Ni15Cr7Fe, Fe18Cr8Ni/Ni, Fe18Cr8Ni/Ni15Cr7Fe, Nb/Ti, Nb/V, Ni/Ni15Cr7Fe, and Cb/V10Ti were readily welded and weld properties were excellent. Others which had only minor defects included the Ag/Cu20Ni, Ag/Ti, Ag/V, Cu/Fe18Cr8Ni, Cu/V10Ti, Cu20Ni/Fe18Cr8Ni, and Ti/Zr2Sn welds. The Cu/Ni weld had deep undercut, but was in other respects excellent. The mechanical properties of the Ag/Fe18Cr8Ni weld were poor, but the defect could probably be corrected. Difficulty with cracking was experienced with the Al/Ni and Fe18Cr8Ni/V welds, but sound welds had excellent mechanical properties. The remaining welds Al-Cu, Al/Cu20Ni, Al/Fe18Cr8Ni, Al/Ni15Cr7Fe, Cu20Ni/V, Cu20Ni/V10Ti, Cb/Zr2Sn, Ni/Ti, Ni15Cr7Fe/V, Ni15Cr7Fe/V10Ti, and Ti/V were unsuccessful, due to brittle phases, primarily at the weld metal-base metal interface. In addition to the two-member specimens, several joints were made by buttering. Longitudinal weld specimens of the three-member combination Al/Ni/Fe18Cr8Ni and the five member combination Fe18Cr8Ni/V/Cb/Ti/Zr2Sn showed good tensile strength and satisfactory elongation. 6 tables, 16 figures

  1. Single-sided sheet-to-tube spot welding investigated by 3D numerical simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Chergui, Azeddine; Zhang, Wenqi

    The single-sided resistance spot welding process is analyzed by a 3D numerical study of sheet-to-tube joining. Finite element simulations are carried out in SORPAS® 3D. Two levels of electrode force and five levels of welding current are simulated. The overall effects of changing current and force...

  2. Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing.

    Science.gov (United States)

    Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J

    2008-09-01

    Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology.

  3. Comparison of Metallurgical and Ultrasonic Inspections of Galvanized Steel Resistance Spot Welds

    International Nuclear Information System (INIS)

    Potter, Timothy J.; Ghaffari, Bita; Mozurkewich, George; Reverdy, Frederic; Hopkins, Deborah

    2006-01-01

    Metallurgical examination of galvanized steel resistance spot welds was used to gauge the capabilities of two ultrasonic, non-destructive, scanning techniques. One method utilized the amplitude of the echo from the weld faying surface, while the other used the spectral content of the echo train to map the fused area. The specimens were subsequently sectioned and etched, to distinguish the fused, zinc-brazed, and non-fused areas. The spectral maps better matched the metallurgical maps, while the interface-amplitude method consistently overestimated the weld size

  4. Laser Welding Characterization of Kovar and Stainless Steel Alloys as Suitable Materials for Components of Photonic Devices Packaging

    International Nuclear Information System (INIS)

    Fadhali, M. M. A.; Zainal, Saktioto J.; Munajat, Y.; Jalil, A.; Rahman, R.

    2010-01-01

    The weldability of Kovar and stainless steel alloys by Nd:YAG laser beam is studied through changing of some laser beam parameters. It has been found that there is a suitable interaction of the pulsed laser beam of low power laser pulse with both the two alloys. The change of thermophysical properties with absorbed energy from the laser pulse is discussed in this paper which reports the suitability of both Kovar and stainless steel 304 as the base materials for photonic devices packaging. We used laser weld system (LW4000S from Newport) which employs Nd:YAG laser system with two simultaneous beams output for packaging 980 nm high power laser module. Results of changing both laser spot weld width and penetration depth with changing both the pulse peak power density, pulse energy and pulse duration show that there are good linear relationships between laser pulse energy or peak power density and pulse duration with laser spot weld dimensions( both laser spot weld width and penetration depth). Therefore we concluded that there should be an optimization for both the pulse peak power and pulse duration to give a suitable aspect ratio (laser spot width to penetration depth) for achieving the desired welds with suitable penetration depth and small spot width. This is to reduce the heat affected zone (HAZ) which affects the sensitive optical components. An optimum value of the power density in the order of 10 5 w/cm 2 found to be suitable to induce melting in the welded joints without vaporization. The desired ratio can also be optimized by changing the focus position on the target material as illustrated from our measurements. A theoretical model is developed to simulate the temperature distribution during the laser pulse heating and predict the penetration depth inside the material. Samples have been investigated using SEM with EDS. The metallographic measurements on the weld spot show a suitable weld yield with reasonable weld width to depth ratio.

  5. Microstructure and mechanical properties of electron beam welded dissimilar steel to Fe–Al alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Dinda, Soumitra Kumar; Basiruddin Sk, Md.; Roy, Gour Gopal [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur (India); Srirangam, Prakash, E-mail: p.srirangam@warwick.ac.uk [Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-11-20

    Electron beam welding (EBW) technique was used to perform dissimilar joining of plain carbon steel to Fe–7%Al alloy under three different weld conditions such as with beam oscillation, without beam oscillation and at higher welding speed. The effect of weld parameters on the microstructure and mechanical properties of dissimilar joints was studied using optical microscopy, SEM, EBSD, hardness, tensile and erichsen cup tests. Microstructure results show that the application of beam oscillation resulted in uniform and homogeneous microstructure compared to without beam oscillations and higher welding speed. Further, it was observed that weld microstructure changes from equiaxed to columnar grains depending on the weld speed. High weld speed results in columnar grain structure in the weld joint. Erichsen cup test results show that the application of beam oscillation results in excellent formability as compared to high weld speed. Tensile test results show no significant difference in strength properties in all three weld conditions, but the ductility was found to be highest for joints obtained with the application of weld beam oscillation as compared to without beam oscillation and high weld speed. This study shows that the application of beam oscillations plays an important role in improving the weld quality and performance of EBW dissimilar steel to Fe–Al joints.

  6. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    Science.gov (United States)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) -Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  7. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    International Nuclear Information System (INIS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos

    2014-01-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl 2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting

  8. Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys

    International Nuclear Information System (INIS)

    Rao, H.M.; Yuan, W.; Badarinarayan, H.

    2015-01-01

    Highlights: • Lap-shear failure load of ∼2.5 kN was achieved in dissimilar Mg to Al spot welds. • Failure load depends on both welding geometrical features and IMCs formation. • Thin and discontinuous IMCs formed in stir zone are beneficial for weld strength. • Low heat input and good material mixing/interlocking is essential for high strength. - Abstract: Friction stir spot welding was applied to dissimilar cast magnesium (Mg) alloy AM60B and wrought aluminum (Al) alloy 6022-T4 under various welding conditions. The influence of tool rotation rate and shoulder plunge depth on lap-shear failure load was examined. Welds were made at four different tool rotation rates of 1000, 1500, 2000 and 2500 revolution per minute (rpm) and various tool shoulder plunge depths from 0 mm to 0.9 mm. The cross section of each weld exhibited the formation of intermetallic compounds (IMCs) in the stir zone. An increase in tool rotation rate decreased the width of the stir zone and resulted in lower lap-shear failure loads. The stir zone width increased and interlocking of IMCs was observed with an increase in tool shoulder plunge depth at 1000 rpm. High lap-shear failure loads were achieved in welds having a large stir zone width with formation of discontinuous IMCs at the tip of the interfacial hook. An average lap-shear failure load of 2.5 kN was achieved for welds made at 1000 rpm and 0.9 mm shoulder plunge. The present study suggests that the mechanical properties of friction stir spot welded dissimilar alloys are greatly influenced by the stir zone width, interfacial hooks and IMCs which are all weld process dependent

  9. A comparative study of the microstructure and mechanical properties of HTLA steel welds obtained by the tungsten arc welding and resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Ghazanfari, H., E-mail: ghazanfari@aut.ac.ir [AmirKabir University of Technology, Department of Mining and Metallurgy, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Naderi, M., E-mail: mnaderi@aut.ac.ir [AmirKabir University of Technology, Department of Mining and Metallurgy, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Iranmanesh, M., E-mail: imehdi@aut.ac.ir [AmirKabir University of Technology, Department of Maritime Engineering, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Seydi, M., E-mail: afsan_sy@yahoo.com [Zarin Joosh Aria Co., Tehran (Iran, Islamic Republic of); Poshteban, A., E-mail: ali_poshtiban@yahoo.com [Hamyar Sanat Eghbal Co., Tehran (Iran, Islamic Republic of)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Hardness mapping is a novel method to identify different phases. Black-Right-Pointing-Pointer Surface hardness mapping, tabulates the hardness of a large area of weld. Black-Right-Pointing-Pointer Hardness maps can be used to depict the strength map through the specimen. Black-Right-Pointing-Pointer Hardness mapping is an easy way to identify the phase fractions within the specimen. - Abstract: Hardness tests are routinely employed as simple and efficient methods to investigate the microstructure and mechanical properties of steels. Each microstructural phase in steel has its own hardness level. Therefore, using surface hardness mapping data over a large area of weld zone would be a reasonable method to identify the present phases in steel. The microstructure distribution and mechanical properties variation through welded structures is inhomogeneous and not suitable for certain applications. So, studying the microstructure of weld zone has a significant importance. 4130 steel is classified in HTLA steels and it is widely used in marine industry due to its superior hardenability, good corrosion resistance and high strength. Gas tungsten arc and resistance spot welding are the most usable processes in joining of 4130 sheets. In this work a series of welds have been fabricated in 4130 steel tube by gas tungsten arc and resistance spot welding. The tube was subjected to quench-tempered heat treatment. Slices from the welds before and after heat treatment were polished and etched and the macrostructure and microstructure were observed. Hardness maps were then determined over the large area of weld zone, including the heat affected zone and base plate. Results show good relations between the various microstructures, strength and hardness values. It is also proved that this method is precise and applicable to estimate phase fraction of each phase in various regions of weld. In the current study some equations were proposed to

  10. Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach.

    Science.gov (United States)

    Su, Zheng-Ming; Qiu, Qi-Hong; Lin, Pai-Chen

    2016-08-09

    A simple thermal-mechanical model for friction stir spot welding (FSSW) was developed to obtain similar weld performance for different weld tools. Use of the thermal-mechanical model and a combined approach enabled the design of weld tools for various sizes but similar qualities. Three weld tools for weld radii of 4, 5, and 6 mm were made to join 6061-T6 aluminum sheets. Performance evaluations of the three weld tools compared fracture behavior, microstructure, micro-hardness distribution, and welding temperature of welds in lap-shear specimens. For welds made by the three weld tools under identical processing conditions, failure loads were approximately proportional to tool size. Failure modes, microstructures, and micro-hardness distributions were similar. Welding temperatures correlated with frictional heat generation rate densities. Because the three weld tools sufficiently met all design objectives, the proposed approach is considered a simple and feasible guideline for preliminary tool design.

  11. Electron beam welding of heat exchangers

    International Nuclear Information System (INIS)

    Chergov, I.V.; Jarinov, V.I.; Minine, V.A.

    1983-01-01

    For a long time neither qualitative, nor quantitative criteria have been available that would have allowed choosing the most suitable welding techniques from the three stated below: 1) electron gun rotates relative to stationary tube; 2) electron beam is magnetically deviated relative to stationary tube; 3) permanent deviation magnet is rotated mechanically relative to stationary tube and gun. To our experience, the 2nd technique is most promising when welding 16x1.5 diameter stainless tubes. The e-b welds are vulnerable to root defects. With welding done in a movable manner, the root defect area will be found to locate in the tube plate body and, hence, the weldment, as a whole, will not be impaired [fr

  12. Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels

    International Nuclear Information System (INIS)

    Marashi, P.; Pouranvari, M.; Amirabdollahian, S.; Abedi, A.; Goodarzi, M.

    2008-01-01

    Resistance spot welding was used to join austenitic stainless steel and galvanized low carbon steel. The relationship between failure mode and weld fusion zone characteristics (size and microstructure) was studied. It was found that spot weld strength in the pullout failure mode is controlled by the strength and fusion zone size of the galvanized steel side. The hardness of the fusion zone which is governed by the dilution between two base metals, and fusion zone size of galvanized carbon steel side are dominant factors in determining the failure mode

  13. Investigations in thermal fields and stress fields induced by electron beam welding

    International Nuclear Information System (INIS)

    Basile, G.

    1979-12-01

    This document presents the thermal study of electron beam welding and identifies stresses and strains from welding: description of the operating principles of the electron gun and characterization of various welding parameters, examination of the temperature fields during electron beam welding development of various mathematic models and comparison with experimental results, measurement and calculation of stresses and strains in the medium plane of the welding assembly, residual stresses analysis [fr

  14. Study on laser beam welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2012-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  15. Load-Displacement Curves of Spot Welded, Bonded, and Weld-Bonded Joints for Dissimilar Materials and Thickness

    Directory of Open Access Journals (Sweden)

    E.A. Al-Bahkali

    2011-12-01

    Full Text Available Three-dimensional finite element models of spot welded, bonded and weld-bonded joints are developed using ABAQUS software. Each model consists of two strips with dissimilar materials and thickness and is subjected to an axial loading. The bonded and weld-bonded joints have specific adhesive thickness. A detailed experimental plan to define many properties and quantities such as, the elastic - plastic properties, modulus of elasticity, fracture limit, and properties of the nugget and heat affected zones are carried out. Experiments include standard testing of the base metal, the adhesive, the nugget and heat affected zone. They also include employing the indentation techniques, and ductile fracture limits criteria, using the special notch tests. Complete load-displacement curves are obtained for all joining models and a comparison is made to determine the best combination.

  16. Predicting failure response of spot welded joints using recent extensions to the Gurson model

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2010-01-01

    The plug failure modes of resistance spot welded shear-lab and cross-tension test specimens are studied, using recent extensions to the Gurson model. A comparison of the predicted mechanical response is presented when using either: (i) the Gurson-Tvergaard-Needleman model (GTN-model), (ii...... is presented. The models are applied to predict failure of specimens containing a fully intact weld nugget as well as a partly removed weld nugget to address the problems of shrinkage voids or larger weld defects. All analysis are carried out by full 3D finite element modelling....

  17. Electron-beam fusion welding of beryllium

    International Nuclear Information System (INIS)

    Campbell, R.P.; Dixon, R.D.; Liby, A.L.

    1978-01-01

    Ingot-sheet beryllium (Be) having three different chemistries and three different thicknesses was fusion-welded by the electron-beam process. Several different preheats were used to obtain 100% penetration and crack-free welds. Cracking susceptability was found to be related to aluminum (Al) content; the higher Al-content material was most susceptable. However, adequate preheat allowed full penetration and crack-free welds to be made in all materials tested. The effect of a post-weld heat treatment on the mechanical properties of these compositions was also determined. The heat treatment produced no significant effect on the ultimate tensile strength. However, the yield strength was decreased and the ductility was increased. These changes are attributed to the formation of AlFeBe 4 and FeBe 11

  18. Effect of weld spacing on microstructure and mechanical properties of CLAM electron beam welding joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yutao; Huang, Bo, E-mail: aufa0007@163.com; Zhang, Junyu; Zhang, Baoren; Liu, Shaojun; Huang, Qunying

    2016-11-15

    Highlights: • The welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding, and a simplified model of CLAM sheet was proposed. • The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). • The effect of the welding thermal cycle was significantly when the weld spacings were smaller than 4 mm. • When the weld spacing was small enough, the original microstructures would be fragmented with the high heat input. - Abstract: China low activation martensitic (CLAM) steel has been chosen as the primary structural material in the designs of dual function lithium-lead (DFLL) blanket for fusion reactors, China helium cooled ceramic breeder (HCCB) test blanket module (TBM) for ITER and China fusion engineering test reactor (CFETR) blanket. The cooling components of the blankets are designed with high density cooling channels (HDCCs) to remove the high nuclear thermal effectively. Hence, the welding spacing among the channels are small. In this paper, the welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding (EBW). The weld spacing was designed to be 2 mm, 3 mm, 4 mm, 6 mm and 8 mm. The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). The PWHT is tempering at 740 °C for 120 min. The results showed that the grain size in the heat affected zone (HAZ) increased with the increasing weld spacing, and the joint with small weld spacing had a better performance after PWHT. This work would give useful guidance to improve the preparation of the cooling components of blanket.

  19. Today's status of application of high power electron beam welding to heavy electric machinery

    International Nuclear Information System (INIS)

    Kita, Hisanao; Okuni, Tetsuo; Sejima, Itsuhiko.

    1980-01-01

    The progress in high energy welding is remarkable in recent years, and electron beam welding is now widely used in heavy industries. However, there are number of problems to be solved in the application of high power electron beam welding to ultra thick steel plates (over 100 mm). The following matters are described: the economy of high power electron beam welding; the development of the welding machines; the problems in the actual application; the instances of the welding in a high-pressure spherical gas tank, non-magnetic steel structures and high-precision welded structures; weldor training; etc. For the future rise in the capacities of heavy electric machinery, the high efficiency by high power electron beam welding will be useful. The current status is its applications to the high-precision welding of large structures with 6 m diameter and the high-quality welding of heavy structures with 160 mm thickness. (J.P.N.)

  20. Evaluation of the nugget diameter in spot welded joints between two steel sheets by means of a potential drop technique

    International Nuclear Information System (INIS)

    Tohmyoh, Hironori; Ikarashi, Hidetomo; Matsui, Yoichi; Hasegawa, Yuta; Obara, Satoshi

    2015-01-01

    A potential drop technique which utilizes the electrical circuit used in resistance spot welding is reported. Spot welded samples comprising two steel sheets were inserted between the two Cu electrodes and a constant direct current was supplied between the electrodes. The potential drop between two points, one on each electrode, was determined by analysis for various values of nugget diameter and various values of the contact resistance between the Cu electrodes and the steel sheet sample. The nugget diameter of the spot welded joint could be quantitatively evaluated from the measured potential drop and the equation obtained from the analysis. (paper)

  1. Evaluation of the nugget diameter in spot welded joints between two steel sheets by means of a potential drop technique

    Science.gov (United States)

    Tohmyoh, Hironori; Ikarashi, Hidetomo; Matsui, Yoichi; Hasegawa, Yuta; Obara, Satoshi

    2015-08-01

    A potential drop technique which utilizes the electrical circuit used in resistance spot welding is reported. Spot welded samples comprising two steel sheets were inserted between the two Cu electrodes and a constant direct current was supplied between the electrodes. The potential drop between two points, one on each electrode, was determined by analysis for various values of nugget diameter and various values of the contact resistance between the Cu electrodes and the steel sheet sample. The nugget diameter of the spot welded joint could be quantitatively evaluated from the measured potential drop and the equation obtained from the analysis.

  2. The Influence of Welding Parameters on the Nugget Formation of Resistance Spot Welding of Inconel 625 Sheets

    Science.gov (United States)

    Rezaei Ashtiani, Hamid Reza; Zarandooz, Roozbeh

    2015-09-01

    A 2D axisymmetric electro-thermo-mechanical finite element (FE) model is developed to investigate the effect of current intensity, welding time, and electrode tip diameter on temperature distributions and nugget size in resistance spot welding (RSW) process of Inconel 625 superalloy sheets using ABAQUS commercial software package. The coupled electro-thermal analysis and uncoupled thermal-mechanical analysis are used for modeling process. In order to improve accuracy of simulation, material properties including physical, thermal, and mechanical properties have been considered to be temperature dependent. The thickness and diameter of computed weld nuggets are compared with experimental results and good agreement is observed. So, FE model developed in this paper provides prediction of quality and shape of the weld nuggets and temperature distributions with variation of each process parameter, suitably. Utilizing this FE model assists in adjusting RSW parameters, so that expensive experimental process can be avoided. The results show that increasing welding time and current intensity lead to an increase in the nugget size and electrode indentation, whereas increasing electrode tip diameter decreases nugget size and electrode indentation.

  3. Fundamental studies on electron-beam welding of heat-resistant superalloys for nuclear plants: Report 4. Mechanical properties of welded joints

    International Nuclear Information System (INIS)

    Susei, S.; Shimizu, S.; Aota, T.

    1982-04-01

    In this report, electron-beam (EB) welded joints and TIG welded joints of various superalloys to be used for nuclear plants, such as Hastelloy-type, Inconel-type and Incoloy-type, are systematically evaluated in terms of tensile properties, low-cycle fatigue properties at elevated temperatures, creep and creep-rupture properties. It was fully confirmed as conclusion that the EB welded joints are superior to the TIG welded ones in mechanical properties, especially at high temperature. In the evaluation of creep properties, ductility is one of the most important criteria to represent the resistance against fracture due to creep deformation, and this criterion is very useful in evaluating the properties of welded joints. Therefore, the more comparable to the base metal the electron beam welded joint becomes in terms of ductility, the more resistant is it against fracture. From this point of view, the electron beam welded joint is considerably superior to the TIG welded joint [fr

  4. Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets

    Science.gov (United States)

    Pathak, N.; Bandyopadhyay, K.; Sarangi, M.; Panda, Sushanta Kumar

    2013-01-01

    Friction stir spot welding (FSSW) is a recent trend of joining light-weight sheet metals while fabricating automotive and aerospace body components. For the successful application of this solid-state welding process, it is imperative to have a thorough understanding of the weld microstructure, mechanical performance, and failure mechanism. In the present study, FSSW of aluminum-5754 sheet metal was tried using tools with circular and tapered pin considering different tool rotational speeds, plunge depths, and dwell times. The effects of tool design and process parameters on temperature distribution near the sheet-tool interface, weld microstructure, weld strength, and failure modes were studied. It was found that the peak temperature was higher while welding with a tool having circular pin compared to tapered pin, leading to a bigger dynamic recrystallized stir zone (SZ) with a hook tip bending towards the upper sheet and away from the keyhole. Hence, higher lap shear separation load was observed in the welds made from circular pin compared to those made from tapered pin. Due to influence of size and hardness of SZ on crack propagation, three different failure modes of weld nugget were observed through optical cross-sectional micrograph and SEM fractographs.

  5. Electron-beam welding of aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, Marcel; de Bony, Yves

    1980-08-15

    The objective of this article is to describe the status of the application of electron-beam welding to aluminum alloys. These alloys are widely employed in the aeronautics, space and nuclear industries.

  6. Defect detectability of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Ueno, Souichi; Kobayashi, Noriyasu; Ochiai, Makoto; Kasuya, Takashi; Yuguchi, Yasuhiro

    2011-01-01

    We clarified defect detectability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding works of dissimilar metal welding (DMW) of reactor vessel nozzle. The underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in the grooves and welded surface grinding as a post treatment. Therefore groove and welded surface inspections are required in the underwater condition. The ECT is a major candidate as this inspection technique because a penetrant testing is difficult to perform in the underwater condition. Several kinds of experiments were curried out using a cross coil an ECT probe and ECT data acquisition system in order to demonstrate the ECT defect detectability. We used specimens, simulating groove and DMW materials at an RV nozzle, with electro-discharge machining (EDM) slits over it. Additionally, we performed a detection test for artificial stress corrosion cracking (SCC) defects. From these experimental results, we confirmed that an ECT was possible to detect EDM slits 0.3 mm or more in depth and artificial SCC defects 0.02 mm to 0.48 mm in depth on machined surface. Furthermore, the underwater ECT defect detectability is equivalent to that in air. We clarified an ECT is sufficiently usable as a surface inspection technique for underwater laser beam welding works. (author)

  7. 3D modelling of plug failure in resistance spot welded shear-lab specimens (DP600-steel)

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2008-01-01

    are based on uni-axial tensile testing of the basis material, while the modelled tensile response of the shear-lab specimens is compared to experimental results for the case of a ductile failure near the heat affected zone (HAZ). A parametric study for a range of weld diameters is carried out, which makes......Ductile plug failure of resistance spot welded shear-lab specimens is studied by full 3D finite element analysis, using an elastic-viscoplastic constitutive relation that accounts for nucleation and growth of microvoids to coalescence (The Gurson model). Tensile properties and damage parameters...... it possible to numerically relate the weld diameter to the tensile shear force (TSF) and the associated displacement, u (TSF) , respectively. Main focus in the paper is on modelling the localization of plastic flow and the corresponding damage development in the vicinity of the spot weld, near the HAZ...

  8. Study on laser beam welding technology for nuclear power plants title

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2011-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  9. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  10. Ultrasonic spot welding of Al/Mg/Al tri-layered clad sheets

    International Nuclear Information System (INIS)

    Macwan, A.; Patel, V.K.; Jiang, X.Q.; Li, C.; Bhole, S.D.; Chen, D.L.

    2014-01-01

    Highlights: • The optimal welding condition is achieved at 100 J and 0.1 s. • Failure load first increases and then decreases with increasing welding energy. • The highest failure load after welding is close to that of the clad sheets. • At low energy levels failure occurs in the mode of interfacial failure. • At high energy levels failure takes place at the edge of nugget region. - Abstract: Solid-state ultrasonic spot welding (USW) was used to join Al/Mg/Al tri-layered clad sheets, aiming at exploring weldability and identifying failure mode in relation to the welding energy. It was observed that the application of a low welding energy of 100 J was able to achieve the optimal welding condition during USW at a very short welding time of 0.1 s for the tri-layered clad sheets. The optimal lap shear failure load obtained was equivalent to that of the as-received Al/Mg/Al tri-layered clad sheets. With increasing welding energy, the lap shear failure load initially increased and then decreased after reaching a maximum value. At a welding energy of 25 J, failure occurred in the mode of interfacial failure along the center Al/Al weld interface due to insufficient bonding. At a welding energy of 50 J, 75 J and 100 J, failure was also characterized by the interfacial failure mode, but it occurred along the Al/Mg clad interface rather than the center Al/Al weld interface, suggesting stronger bonding of the Al/Al weld interface than that of the Al/Mg clad interface. The overall weld strength of the Al/Mg/Al tri-layered clad sheets was thus governed by the Al/Mg clad interface strength. At a welding energy of 125 J and 150 J, thinning of weld nugget and extensive deformation at the edge of welding tip caused failure at the edge of nugget region, leading to a lower lap shear failure load

  11. Analysis of Using Acoustic Microscopy to Evaluate Defects in Spot Welding Joints

    Directory of Open Access Journals (Sweden)

    Korzeniowski M.

    2016-06-01

    Full Text Available The article presents the possibilities of using acoustic microscopy to evaluate defects in resistance spot welding joints. For this purpose, the welded joints were made from two grades of aluminium plates EN AW5754 H24 and EN AW6005 T606, which were then subjected to non-destructive testing using acoustic microscopy and conventional destructive testing using traditional light microscopy techniques. Additionally, the study examined the influence of the typical contaminants found in industrial conditions on the quality of the joint.

  12. Measuring and recording system for electron beam welding parameters

    International Nuclear Information System (INIS)

    Lobanova, N.G.; Lifshits, M.L.; Efimov, I.I.

    1987-01-01

    The observation possibility during electron beam welding of circular articles with guaranteed clearance of welding bath leading front in joint gap and flare cloud over the bath by means of television monitor is considered. The composition and operation mode of television measuring system for metric characteristics of flare cloud and altitude of welding bath leading front in the clearance are described

  13. New technique of skin embedded wire double-sided laser beam welding

    Science.gov (United States)

    Han, Bing; Tao, Wang; Chen, Yanbin

    2017-06-01

    In the aircraft industry, double-sided laser beam welding is an approved method for producing skin-stringer T-joints on aircraft fuselage panels. As for the welding of new generation aluminum-lithium alloys, however, this technique is limited because of high hot cracking susceptibility and strengthening elements' uneven distributions within weld. In the present study, a new technique of skin embedded wire double-sided laser beam welding (LBW) has been developed to fabricate T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys using eutectic alloy AA4047 filler wire. Necessary dimension parameters of the novel groove were reasonably designed for achieving crack-free welds. Comparisons were made between the new technique welded T-joint and conventional T-joint mainly on microstructure, hot crack, elements distribution features and mechanical properties within weld. Excellent crack-free microstructure, uniform distribution of silicon and superior tensile properties within weld were found in the new skin embedded wire double-sided LBW T-joints.

  14. Heat transfer and fluid flow during laser spot welding of 304 stainless steel

    CERN Document Server

    He, X; Debroy, T

    2003-01-01

    The evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool. The weld pool geometry, weld thermal cycles and various solidification parameters were calculated. The fusion zone geometry, calculated from the transient heat transfer and fluid flow model, was in good agreement with the corresponding experimentally measured values for various welding conditions. Dimensional analysis was used to understand the importance of heat transfer by conduction and convection and the roles of various driving forces for convection in the weld pool. During solidification, the mushy zone grew at a rapid rate and the maximum size of the mushy zone was reached when the pure liquid region vanished. The solidification rate of the mushy zone/liquid interface was shown to increase while the temperature gradient in the liquid zone at...

  15. Electron Beam Welding of a Depleted Uranium Alloy to Niobium Using a Calibrated Electron Beam Power Density Distribution

    International Nuclear Information System (INIS)

    Elmer, J.W.; Teruya, A.T.; Terrill, P.E.

    2000-01-01

    Electron beam test welds were made joining flat plates of commercially pure niobium to a uranium-6wt%Nb (binary) alloy. The welding parameters and joint design were specifically developed to minimize mixing of the niobium with the U-6%Nb alloy. A Modified Faraday Cup (MFC) technique using computer-assisted tomography was employed to determine the precise power distribution of the electron beam so that the welding parameters could be directly transferred to other welding machines and/or to other facilities

  16. Identification of the Thickness of Nugget on Worksheet Spot Welding Using Non Destructive Test (NDT) - Effect of Pressure

    Science.gov (United States)

    Sifa, A.; Baskoro, A. S.; Sugeng, S.; Badruzzaman, B.; Endramawan, T.

    2018-02-01

    Resistance Spot Welding (RSW) is a process of connecting between two worksheet with thermomechanical loading process, RSW is widely used in automotive industry, the quality of splicing spot welding is influenced by several factors. One of the factors at the time of the welding process is pressure. The quality of welding on the nuggets can be determined by undertaking non-destructive testing by using Non Destructive Test (NDT) - Ultrasonic Test. In the NDT test is done by detecting the thickness of the nugget area, the purpose of research conducted to determine the effect of pressure to welding quality with Nugget thickness gauge measurement with Non Destructive Test method and manual measurement with micrometer, Experimental welding process by entering the welding parameters that have been specified and pressure variables 1 -5 bars on the worksheet thickness of 1 mm. The results of testing with NDT show there is addition of thickness in nugget superiority after compare with measurement result of thickness of nugget with micrometer which slightly experience thickness in nugget area, this indicates that the welding results have a connection between worksheet 1 and worksheet 2.

  17. Evaluation of a method to shield a welding electron beam from magnetic interference

    Science.gov (United States)

    Wall, W. A.

    1976-01-01

    It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.

  18. Electron beam welding of heavy section 3Cr-1.5Mo alloy

    International Nuclear Information System (INIS)

    King, J.F.; David, S.A.; Nasreldin, A.

    1986-01-01

    Welding of thick section steels is a common practice in the fabrication of pressure vessels for energy systems. The fabrication cost is strongly influenced by the speed at which these large components can be welded. Conventional welding processes such as shielded metal arc (SMA) and submerged arc (SA) are time-consuming and expensive. Hence there is a great need to reduce welding time and the tonnage of weld metal deposited. Electron beam welding (EBW) is a process that potentially could be used to achieve dramatic reduction in the welding time and costs. The penetrating ability of the beam produces welds with high depth-to-width ratios at relatively high travel speeds, making it possible to weld thick sections with one or two passes without filler metals and other consumables. The paper describes a study that was undertaken to investigate the feasibility of using a high power electron beam welding machine to weld heavy section steel. The main emphasis of this work was concentrated on determining the mechanical properties of the resulting weldment, characterizing the microstructure of the various weldment regions, and comparing these results with those from other processes. One of the steels selected for the heavy section electron beam welding study was a new 3 Cr-1.5 Mo-0.1 V alloy. The steel was developed at the AMAX Materials Research Center by Wada and co-workers for high temperature, high pressure hydrogen service as a possible improved replacement for 2-1/4 Cr-1 Mo steels. The excellent strength and toughness of this steel make it a promising candidate for future pressure vessels such as those for coal gasifiers. The work was conducted on 102 mm (4 in.) thick plates of this material in the normalized-and-tempered condition

  19. Electron beam welding: study of process capabilities and limitations towards development of nuclear components

    International Nuclear Information System (INIS)

    Vadolia, Gautam; Singh, Kongkham Premjit

    2015-01-01

    Electron beam (EB) welding technology is an established and widely adopted technique in nuclear research and development area. Electron Beam welding is thought of as a candidate process for ITER Vacuum Vessel Fabrication. Dhruva Reactor @ BARC, Mumbai and Niobium Superconducting accelerator Cavitity @ BARC has adopted the EB welding technique as a fabrication route. The highly concentrated energy input of the electron beam has added the advantages over the conventional welding as being less HAZ and provided smooth and clean surface. EB Welding has also been used for the joining of various reactive and refractory materials. EB system as heat source has also been used for vacuum brazing application. The Welding Institute (TWI) has demonstrated that EBW is potentially suitable to produce high integrity joints in 50 mm pure copper. TWI has also examined 150 kV Reduced Pressure Electron Beam (RPEB) gun in welding 140 mm and 147 mm thickness Nuclear Reactor Pressure Vessel Steel (SA 508 grade). EBW in 10 mm thick SS316 plates were studied at IPR and results were encouraging. In this paper, the pros and cons and role of electron beam process will be studied to analyze the importance of electron beam welding in nuclear components fabrication. Importance of establishing the high precision Wire Electro Discharge Machining (WEDM) facility will also be discussed. (author)

  20. Disk Laser Welding of Car Body Zinc Coated Steel Sheets / Spawanie Laserem Dyskowym Blach Ze Stali Karoseryjnej Ocynkowanej

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2015-12-01

    Full Text Available Autogenous laser welding of 0.8 mm thick butt joints of car body electro-galvanized steel sheet DC04 was investigated. The Yb:YAG disk laser TruDisk 3302 with the beam spot diameter of 200 μm was used. The effect of laser welding parameters and technological conditions on weld shape, penetration depth, process stability, microstructure and mechanical performance was determined. It was found that the laser beam spot focused on the top surface of a butt joint tends to pass through the gap, especially in the low range of heat input and high welding speed. All test welds were welded at a keyhole mode, and the weld metal was free of porosity. Thus, the keyhole laser welding of zinc coated steel sheets in butt configuration provides excellent conditions to escape for zinc vapours, with no risk of porosity. Microstructure, microhardness and mechanical performance of the butt joints depend on laser welding conditions thus cooling rate and cooling times. The shortest cooling time t8/5 was calculated for 0.29 s.

  1. Artificial neural networks for prediction of quality in resistance spot welding

    International Nuclear Information System (INIS)

    Martin, O.; Lopez, M.; Martin, F.

    2006-01-01

    An artificial neural network is proposed as a tool for predicting from three parameters (weld time, current intensity and electrode sort) if the quality of a resistance spot weld reaches a certain level or not. The quality id determined by cross tension testing. The fact of reaching this quality level or not is the desired output that goes with each input of the artificial neural network during its supervised learning. The available data set is made up of input/desired output pairs and is split randomly into a training subset (to update synaptic weight values) and a validation subset (to avoid overfitting phenomenon by means of cross validation). (Author) 44 refs

  2. Possibility of designing television control system for welded joint formation on electron beam welding

    International Nuclear Information System (INIS)

    Lifshits, M.L.; Lobanova, N.G.

    1987-01-01

    Regression equations (models), connecting seam characteristics: width and depth with the welding bath leading front in joint gap and seam width respectively - are obtained at electron beam welding of circular articles with guaranteed clearance with application of television control system. Dispersion analysis showed the models adequancy to the process in the range, where they were identified

  3. SPOT WELDING COPPER–1%Cr ELECTRODE TIPS PRODUCED VIA EQUAL CHANNEL ANGULAR PRESSING

    Directory of Open Access Journals (Sweden)

    Luay Bakir Hussain

    2010-09-01

    Full Text Available A sharp 120o Equal channel angular pressing (ECAP following rout Bc was applied at room temperature to refine the grains sizes of pure copper and copper-1%Chromium alloy for spot welding electrode tips application. Initially deformation behavior was investigated with the position using colorful plasticine as work piece followed by copper alloy. It was found the deformation at the central part of the work piece is heavily sheared than the outer part. Optical and Scanning electron microscopy were used to study the progress of grain refining under the influence of rotation and number of passes during pressing. The influnece of elongated fibrous nano graines on electrical conductivity and hardness were discussed. Shear test of spot welded 303 stainless steel indicated that nano structural Cu-1%Cr electrode tips used showed a superior results compared to commercial electrodes

  4. Research of the welding of amorphous Co-based alloys in shape of foils with Nd: YAG-LASER

    International Nuclear Information System (INIS)

    Runchev, Dobre

    1996-01-01

    In this study the results concerning the research of the welding of amorphous Co-based alloys in form of foils, with impulsive Nd: YAG LASER are given. The welding was effected on alloys with manufactured sign VAC 6025, VAC 6030, VAC 6150 as well as with different chemical structure and dimensions. Two overlapped foils of the same alloy have been connected with 6 welded spots, under laboratory conditions and in air surrounding. The welding was effected only with negative focus position (-Def.). The basic aim of the researches is the production of a spot welded joints by preserving the amorphous structure of the material. To achieve this purpose, examinations of the optical characteristics of the welded alloys were effected, by measuring the reflective energy of the laser beam from the surface of the AMF. The quality of the spot welded joint is established by shearing examination, measuring of the microhardness, metallographic examinations of the structure by both light microscope and SEM, as well as measuring of the welded spot diameter. After the examinations and the analysis of the achieved results, it is defined that the welding of AMF A and B the established aim was achieved. The welded spots ware with good quality, the structure remained amorphous and the mechanical characteristics, such as Rm and HV0, 2 were at the level of the basic materials. During the welding of AMF C, D and E, the established aim was not achieved. The welded spots ware with bad quality, as a result of the appeared crystal structure in the welded spots. The experimental researches presented in this study, have been carried out in the Technical University in Berlin. (author)

  5. Study on unified fatigue strength assessment method for welded structure. Hot spot stress evaluating method for various combinations of plate thickness and weld leg length; Yosetsu kozo no toitsutekina hiro kyodo hyokaho ni kansuru kenkyu. Itaatsu to yosetsu ashinaga no kumiawase ni taisuru hot spot oryoku sanshutsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.; Inamura, F.; Koe, S. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1996-12-31

    There has been tried to apply unified assessment method using hot spot stress, which is effective to evaluate fatigue strength of fillet welded structures for ships and marine structures. This method can be applied to complicated structures and is independent of welding processes. In this study, first, stress analysis has been conducted for two-dimensional fillet welded joint models with various combinations of plate thickness and weld leg length of general fillet structures by means of boundary element method. Then, critical position, which is not affected by local stress concentration due to bead, was determined from the detailed stress distribution in the vicinity of weld toe. As a result, a general equation has been proposed to estimate the hot spot stress by one-point representative method. Second, the fatigue tests of typical fillet welded joints have been conducted by applying this method. Consequently, it was demonstrated that the unified fatigue strength can be evaluated by the S-N data based on hot spot stress range determined from the proposed equation, independent of structural stress concentration. 22 refs., 14 figs.

  6. Study on unified fatigue strength assessment method for welded structure. Hot spot stress evaluating method for various combinations of plate thickness and weld leg length; Yosetsu kozo no toitsutekina hiro kyodo hyokaho ni kansuru kenkyu. Itaatsu to yosetsu ashinaga no kumiawase ni taisuru hot spot oryoku sanshutsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K; Inamura, F; Koe, S [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1997-12-31

    There has been tried to apply unified assessment method using hot spot stress, which is effective to evaluate fatigue strength of fillet welded structures for ships and marine structures. This method can be applied to complicated structures and is independent of welding processes. In this study, first, stress analysis has been conducted for two-dimensional fillet welded joint models with various combinations of plate thickness and weld leg length of general fillet structures by means of boundary element method. Then, critical position, which is not affected by local stress concentration due to bead, was determined from the detailed stress distribution in the vicinity of weld toe. As a result, a general equation has been proposed to estimate the hot spot stress by one-point representative method. Second, the fatigue tests of typical fillet welded joints have been conducted by applying this method. Consequently, it was demonstrated that the unified fatigue strength can be evaluated by the S-N data based on hot spot stress range determined from the proposed equation, independent of structural stress concentration. 22 refs., 14 figs.

  7. Microstructure evolution of electron beam welded Ti3Al-Nb joint

    International Nuclear Information System (INIS)

    Feng Jicai; Wu Huiqiang; He Jingshan; Zhang Bingang

    2005-01-01

    The microstructure evolution characterization in high containing Nb, low Al titanium aluminide alloy of electron beam welded joints was investigated by means of OM, SEM, XRD, TEM and microhardness analysis. The results indicated that the microstructure of the weld metal made with electron beam under the welding conditions employed in this work was predominantly metastable, retaining ordered β phase (namely B2 phase), and was independent of the welding parameters but independent of the size and the orientation of the weld solidification structures. As the heat input is decreased, the cellular structure zone is significantly reduced, and then the crystallizing morphology of fusion zone presented dendritically columnar structure. There existed grain growth coarsening in heat affected zone (HAZ) for insufficient polygonization. Both fusion zone (FZ) and the HAZ had higher microhardness than the base metal

  8. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Klimenov, V. A., E-mail: klimenov@tpu.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Kurgan, K. A., E-mail: kirill-k2.777@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Chumaevskii, A. V., E-mail: tch7av@gmail.com [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii pr., Tomsk, 634021 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Gnyusov, S. F., E-mail: gnusov@rambler.ru [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  9. The fracture mechanics of steam turbine electron beam welded rotors

    International Nuclear Information System (INIS)

    Coulon, P.A.

    1987-01-01

    Increased steam turbine unit ratings presupposes that steelmakers are capable of manufacturing larger and larger rotor components. However, there are few steelmakers in the world capable of manufacturing monobloc rotors for high rated turbines, which limits the choice of supplier. Most nuclear turbine rotors have a composite arrangement and are made either by shrinking discs on a shaft or using elements welded together. Those in favour of welding have applied a classical socalled ''submerged'' method using a filler metal. However welding can also be performed by using an Electron Beam in a vacuum room without a filler metal. This technique has many advantages: mechanical characteristics of the joint are identical to those of the base material after tempering without heat affected zones. Moreover, parts are only very slightly deformed during welding. Two steam turbine rotors have been produced in this way. This paper described the destructive tests carried out in the four Electron Beam (EB) welds (two on each rotor)

  10. Structure and properties of an aluminium alloy welded by electron beam

    International Nuclear Information System (INIS)

    Ruzimov, Sh.M.; Palvanov, S.R.; Pogrebnjak, A.D.

    2005-01-01

    Full text: In the given work the experimental results on research of influence of electronic beams on structure of an aluminum alloy are submitted. As a basis of samples the alloy Al-Mg-Zn-Cu by the additives Se-0.5 % and Nb-0.15 % is chosen. Samples from a cast aluminum alloy by thickness of 3 mm such as B-96 were welded with an electronic beam in three different modes at radius circle of a root of a welded seam of 5 mm. The welding was carried out by an alloy Amg 63 and Sv-1571 with application electron team welding joint of parts. The basic influence on the given process makes energy - allocation of an electronic beam. For research of phase structure used of X-ray beams (XRD), DRON-2 in copper K α - Cu measurement. For research of structure and morphology of a surface used optical microscope with increase 800-1500 times and electronic microscope with the microanalysis. On figures of optical microscopy the morphology of a seam sharply differs from morphology of an initial part. The microanalysis carried out with a place of a seam, has shown presence of the whole spectrum of elements, such as, Al; Zn; Na; Mg; Cu; and Mn. All measurements carried out in welding zone and in frontier zones that it was possible to carry out the comparative analysis. The element structure of these zones essentially differs in dependence of a condition of welding

  11. Process parameters-weld bead geometry interactions and their influence on mechanical properties: A case of dissimilar aluminium alloy electron beam welds

    Directory of Open Access Journals (Sweden)

    P. Mastanaiah

    2018-04-01

    Full Text Available Prediction of weld bead geometry is always an interesting and challenging research topic as it involves understanding of complex multi input and multi output system. The weld bead geometry has a profound impact on the load bearing capability of a weld joint, which in-turn decides the performance in real time service conditions. The present study introduces a novel approach of detecting a relationship between weld bead geometry and mechanical properties (e.g. tensile load for the purpose of catering the best the process could offer. The significance of the proposed approach is demonstrated by a case of dissimilar aluminium alloy (AA2219 and AA5083 electron beam welds. A mathematical model of tensile braking load as a function of geometrical attributes of weld bead geometry is presented. The results of investigation suggests the effective thickness of weld – a geometric parameter of weld bead has the most significant influence on tensile breaking load of dissimilar weld joint. The observations on bead geometry and the mechanical properties (microhardness, ultimate tensile load and face bend angle are correlated with detailed metallurgical analysis. The fusion zone of dissimilar electron beam weld has finer grain size with a moderate evaporation and segregation of alloying elements magnesium and copper respectively. The mechanical properties of weld joint are controlled by optimum bead geometry and HAZ softening in weaker AA5083 Al alloy. Keywords: Electron beam welding, AA2219, AA5083, Bead geometry, Tensile breaking load

  12. Joining of Dissimilar alloy Sheets (Al 6063&AISI 304 during Resistance Spot Welding Process: A Feasibility Study for Automotive industry

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2014-12-01

    Full Text Available Present design trends in automotive manufacture have shifted emphasis to alternative lightweight materials in order to achieve higher fuel efficiency and to bring down vehicle emission. Although some other joining techniques are more and more being used, spot welding still remains the primary joining method in automobile manufacturing so far. Spot welds for automotive applications should have a sufficiently large diameter, so that nugget pullout mode is the dominant failure mode. Interfacial mode is unacceptable due to its low load carrying and energy absorption capability. Strength tests with different static loading were performed in, to reveal the failure mechanisms for the lap-shear geometry and the cross-tension geometry. Based on the literature survey performed, venture into this work was amply motivated by the fact that a little research work has been conducted to joining of dissimilar materials like non ferrous to ferrous. Most of the research works concentrated on joining of different materials like steel to steel or aluminium alloy to aluminium alloy by resistance spot welding. In this work, an experimental study on the resistance spot weldability of aluminium alloy (Al 6063 and austenitic stainless steel (AISI304 sheets, which are lap joined by using a pedestal type resistance spot welding machine. Welding was conducted using a 45-deg truncated cone copper electrode with 10-mm face diameter. The weld nugget diameter, force estimation under lap shear test and T – peel test were investigated using digital type tensometer attached with capacitive displacement transducer (Mikrotech, Bangalore, Model: METM2000ER1. The results shows that joining of Al 6063 and AISI 304 thin sheets by RSW method are feasible for automotive structural joints where the loads are below 1000N act on them, it is observed that by increasing the spots per unit length, then the joint with standing strength to oppose failure is also increased linearly incase of

  13. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor.

  14. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    International Nuclear Information System (INIS)

    Walz, Dieter R

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor

  15. Effects of heat treatment and welding process on superelastic behaviour and microstructure of micro electron beam welded NiTi

    Directory of Open Access Journals (Sweden)

    Balz Isabel

    2016-09-01

    Full Text Available Medical devices with small dimensions made of superelastic NiTi become more popular, but joining these parts remains challenging. Since laser welding was found to be an option, electron beam welding seems to be an interesting alternative as it provides additional advantages due to the precise beam positioning and the high vacuum. Superelasticity is influenced by microstructure and surface layer composition that are mainly affected by welding process and by heat treatment and therefore will be investigated in the present paper.

  16. Heat-affected zone liquation crack on resistance spot welded TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Dulal Chandra [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Chang, InSung [Automotive Production Development Division, Hyundai Motor Company (Korea, Republic of); Park, Yeong-Do, E-mail: ypark@deu.ac.kr [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2014-07-01

    In this study, the heat affected zone (HAZ) liquation crack and segregation behavior of the resistance spot welded twinning induced plasticity (TWIP) steel have been reported. Cracks appeared in the post-welded joints that originated at the partially melted zone (PMZ) and propagated from the PMZ through the heat affected zone (HAZ) to the base metal (BM). The crack length and crack opening widths were observed increasing with heat input; and the welding current was identified to be the most influencing parameter for crack formation. Cracks appeared at the PMZ when nugget diameter reached at 4.50 mm or above; and the liquation cracks were found to occur along two sides of the notch tip in the sheet direction rather than in the electrode direction. Cracks were backfilled with the liquid films which has lamellar structure and supposed to be the eutectic constituent. Co-segregation of alloy elements such as, C and Mn were detected on the liquid films by electron-probe microanalysis (EPMA) line scanning and element map which suggests that the liquid film was enrich of Mn and C. The eutectic constituent was identified by analyzing the calculated phase diagram along with thermal temperature history of finite element simulation. Preliminary experimental results showed that cracks have less/no significant effect on the static cross-tensile strength (CTS) and the tensile-shear strength (TSS). In addition, possible ways to avoid cracking were discussed. - Highlights: • The HAZ liquation crack during resistance spot welding of TWIP steel was examined. • Cracks were completely backfilled and healed with divorced eutectic secondary phase. • Co-segregation of C and Mn was detected in the cracked zone. • Heat input was the most influencing factor to initiate liquation crack. • Cracks have less/no significant effect on static tensile properties.

  17. Heat-affected zone liquation crack on resistance spot welded TWIP steels

    International Nuclear Information System (INIS)

    Saha, Dulal Chandra; Chang, InSung; Park, Yeong-Do

    2014-01-01

    In this study, the heat affected zone (HAZ) liquation crack and segregation behavior of the resistance spot welded twinning induced plasticity (TWIP) steel have been reported. Cracks appeared in the post-welded joints that originated at the partially melted zone (PMZ) and propagated from the PMZ through the heat affected zone (HAZ) to the base metal (BM). The crack length and crack opening widths were observed increasing with heat input; and the welding current was identified to be the most influencing parameter for crack formation. Cracks appeared at the PMZ when nugget diameter reached at 4.50 mm or above; and the liquation cracks were found to occur along two sides of the notch tip in the sheet direction rather than in the electrode direction. Cracks were backfilled with the liquid films which has lamellar structure and supposed to be the eutectic constituent. Co-segregation of alloy elements such as, C and Mn were detected on the liquid films by electron-probe microanalysis (EPMA) line scanning and element map which suggests that the liquid film was enrich of Mn and C. The eutectic constituent was identified by analyzing the calculated phase diagram along with thermal temperature history of finite element simulation. Preliminary experimental results showed that cracks have less/no significant effect on the static cross-tensile strength (CTS) and the tensile-shear strength (TSS). In addition, possible ways to avoid cracking were discussed. - Highlights: • The HAZ liquation crack during resistance spot welding of TWIP steel was examined. • Cracks were completely backfilled and healed with divorced eutectic secondary phase. • Co-segregation of C and Mn was detected in the cracked zone. • Heat input was the most influencing factor to initiate liquation crack. • Cracks have less/no significant effect on static tensile properties

  18. Contribution to a research on electron beam welding of metals

    International Nuclear Information System (INIS)

    Stohr, J.

    1964-03-01

    The electron beam welding of metals is performed by the travelling of the focusing point along the junction of two pieces to be connected. Welding parameters are the electron gun power W, the value of the electron impact surface S, the welding speed s. From the beginning of our research in 1954, the preponderant part played by specific power W/s on the shape of the welded zone and the penetrating depth, became evident. A more methodical research has been undertaken in the laboratories of C.E.N. under the patronage of Professor CHAUDRON, in order to define in a better way the importance of the different welding parameters and to determine their influence on the metallurgical qualities of welded assemblies. This research induced us to define an electron gun adapted as well as possible to the performance of weldings, not only from the point of view of behaviour, especially during the passage from the atmospheric to a low pressure at 10 -5 Torr, necessary for the carrying out of a welding, but also from the point of view of adjustment conveniences of the different welding parameters, indispensable to the intended research work. The variations of welding parameters show that the shape of the molten zone turns from a circle segment to that of a very high triangle, which implies a continual change of the mode of heat transmission. Tests have been made, in order to confirm this way of looking, especially in order to achieve isotherms in dynamic operating and also the comparison of these isotherms with that recorded while using a method of argon arc welding. The thermal balance of energy supplied to the part, the necessary welding energy, and the energy loss (through conduction, radiation and evaporation) has also been established. These results proved that almost the whole of energy has been used for melting, that the different losses are negligible and that heat transmission can not occur by thermal conduction through the part during 'welding' time, when operating under

  19. Measurements of hot spots and electron beams in Z-pinch devices

    International Nuclear Information System (INIS)

    Deeney, C.

    1988-04-01

    Hot spots and Electron Beams have been observed in different types of Z-pinches. There is, however, no conclusive evidence on how either are formed although there has been much theoretical interest in both these phenomena. In this thesis, nanosecond time resolved and time correlated, X-ray and optical diagnostics, are performed on two different types of Z-pinch: a 4 kJ, 30 kV Gas Puff Z-pinch and a 28 kJ, 60 kV Plasma Focus. The aim being to study hot spots and electron beams, as well as characterise the plasma, two different Z-pinch devices. Computer codes are developed to analyse the energy and time resolved data obtained in this work. These codes model both, X-ray emission from a plasma and X-ray emission due to electron beam bombardment of a metal surface. The hot spot and electron beam parameters are measured, from the time correlated X-ray data using these computer codes. The electron beams and the hot spots are also correlated to the plasma behaviour and to each other. The results from both devices are compared with each other and with the theoretical work on hot spot and electron beam formation. A previously unreported 3-5 keV electron temperature plasma is identified, in the gas puff Z-pinch plasma, prior to the formation of the hot spots. it is shown, therefore, that the hot spots are more dense but not hotter than the surrounding plasma. Two distinct periods of electron beam generation are identified in both devices. (author)

  20. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    Science.gov (United States)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-05-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  1. Fundamental studies of electron beam welding of heat-resistant superalloys for nuclear plants, 5

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Terai, Kiyohide; Nagai, Hiroyoshi; Shimizu, Shigeki; Aota, Toshiichi.

    1978-01-01

    In this paper, the mechanical properties of base metal, its electron beam and TIG weld joint of superalloys for nuclear plants were made clear and compared with each other. As a result, it has been clarified that electron beam weld joint is superior to TIG weld joint and nearly comparable to base metal. (author)

  2. Study of residual stresses in CT test specimens welded by electron beam

    Science.gov (United States)

    Papushkin, I. V.; Kaisheva, D.; Bokuchava, G. D.; Angelov, V.; Petrov, P.

    2018-03-01

    The paper reports result of residual stress distribution studies in CT specimens reconstituted by electron beam welding (EBW). The main aim of the study is evaluation of the applicability of the welding technique for CT specimens’ reconstitution. Thus, the temperature distribution during electron beam welding of a CT specimen was calculated using Green’s functions and the residual stress distribution was determined experimentally using neutron diffraction. Time-of-flight neutron diffraction experiments were performed on a Fourier stress diffractometer at the IBR-2 fast pulsed reactor in FLNP JINR (Dubna, Russia). The neutron diffraction data estimates yielded a maximal stress level of ±180 MPa in the welded joint.

  3. Technical Note: Spot characteristic stability for proton pencil beam scanning.

    Science.gov (United States)

    Chen, Chin-Cheng; Chang, Chang; Moyers, Michael F; Gao, Mingcheng; Mah, Dennis

    2016-02-01

    The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0-226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  4. Influences of Laser Spot Welding on Magnetic Property of a Sintered NdFeB Magnet

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2016-08-01

    Full Text Available Laser welding has been considered as a promising method to join sintered NdFeB permanent magnets thanks to its high precision and productivity. However, the influences of laser welding on the magnetic property of NdFeB are still not clear. In the present paper, the effects of laser power on the remanence (Br were experimentally investigated in laser spot welding of a NdFeB magnet (N48H. Results show that the Br decreased with the increase of laser power. For the same welding parameters, the Br of magnets, that were magnetized before welding, were much lower than that of magnets that were magnetized after welding. The decrease in Br of magnets after laser welding resulted from the changes in microstructures and, in turn, the deterioration of magnetic properties in the nugget and the heat affected zone (HAZ in a laser weld. It is recommended that the dimensions of nuggets and HAZ in laser welds of a NdFeB permanent magnet should be as small as possible, and the magnets should be welded before being magnetized in order to achieve a better magnetic performance in practical engineering applications.

  5. Minimum Time Path Planning for Robotic Manipulator in Drilling/ Spot Welding Tasks

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2016-04-01

    Full Text Available In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.

  6. Ultrasonic Spot and Torsion Welding of Aluminum to Titanium Alloys: Process, Properties and Interfacial Microstructure

    Science.gov (United States)

    Balle, Frank; Magin, Jens

    Hybrid lightweight structures shape the development of future vehicles in traffic engineering and the aerospace industry. For multi-material concepts made out of aluminum and titanium alloys, the ultrasonic welding technique is an alternative effective joining technology. The overlapped structures can be welded in the solid state, even without gas shielding. In this paper the conventional ultrasonic spot welding with longitudinal oscillation mode is compared to the recent ultrasonic torsion welding with a torsional mode at 20 kHz working frequency. For each technique the process parameters welding force, welding energy and oscillation amplitude were optimized for the hybrid joints using design of experiments. Relationships between the process parameters, mechanical properties and related welding zone should be understood. Central aspects of the research project are microscopic studies of the joining zone in cross section and extensive fracture surface analysis. Detailed electron microscopy and spectroscopy of the hybrid interface help to understand the interfacial formation during ultrasonic welding as well as to transfer the gained knowledge for further multi-metal joints.

  7. Visualization of Spot- welding Resistance

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2016-01-01

    Full Text Available This contribution devotes to monitoring of processes running during joining of steel sheets by incadescent so called point welding using non-destructive trial method – acoustic emission (AE. The joining process is detailed described within experimental measuring from the point of view of metallurgic effects runnig during weld creation (records obtained by means of AE method. It takes into consideration quality of joined steels within welding data of steel producer. Steel welding (determined by chemical composition during mechanical verification and firmness of welds consider results of measurement AE and fracture effect of point joints. The measurement also demonstrates conclusion about connection of metallurgic processes with material wave effects (AE measurement and their impact on firmness of joint at steel with guaranteed welding, difficult welding and at their potential combination.

  8. Research on electron beam welding technology of steel HR-4

    International Nuclear Information System (INIS)

    Guo Peng; Guan Kai

    2001-01-01

    The electron beam weldability of HR- 4 steels (J75 and J90) is studied and the welding parameters needed for design and usage are presented. The assessment on the effect of mechanical properties by different processing order of welding and heat-treatment is made

  9. THE INFLUENCE OF POSTHEAT TREATMENT ON FERRITE REDISTRIBUTION IN DUPLEX STEELS ELECTRON BEAM WELDS

    OpenAIRE

    Zita Iždinská; František Kolenič

    2009-01-01

    The duplex stainless steel is two-phase steel with the structure composed of austenite and ferrite with optimum austenite/ferrite proportion 50%. At present, classical arc processes for welding duplex steels are generally regarded as acceptable. On the other hand electron and laser beam welding is up to now considered less suitable for welding duplex steels. The submitted work presents the results of testing various thermal conditions at welding duplex stainless steel with electron beam. It w...

  10. Microstructure and Mechanical Properties of Ultrasonic Spot Welded Mg/Al Alloy Dissimilar Joints

    Directory of Open Access Journals (Sweden)

    He Peng

    2018-04-01

    Full Text Available Lightweight structural applications of magnesium and aluminum alloys inevitably necessitate welding and joining, especially dissimilar welding between these alloys. The objective of this study was to examine the feasibility of joining ZEK100 Mg alloy to Al6022 alloy via ultrasonic spot welding, focusing on effects of welding energy. An interface diffusion layer consisting of α-Mg and Al12Mg17 eutectic structure was observed to form, with its thickness increased from ~0.5 µm to ~30 µm with increasing welding energy from 500 J to 2000 J. The tensile lap shear peak load or strength and critical stress intensity of the welded joints first increased and then decreased with increasing welding energy, with their peak values achieved at 750 J. Fatigue life of the joints made at 750 J and 2000 J was equivalent at the lower cyclic loading levels, while it was longer for the joints made at 750 J at the higher cyclic loading levels. Fatigue fracture mode changed from interfacial failure to mainly transverse-through-thickness crack growth with decreasing cyclic loading level, which corresponded well to the bi-linear characteristic of S-N curves. Crack initiation basically occurred at the weld nugget border and at the interface between the two sheets, which can be understood via a theoretical stress analysis.

  11. Beam Spot Measurement on a 400 keV Electron Accelerator

    DEFF Research Database (Denmark)

    Miller, Arne

    1979-01-01

    A line probe is used to measure the beam spot radius and beam divergence at a 400 keV ICT electron accelerator, and a method is shown for reducing the line probe data in order to get the radial function.......A line probe is used to measure the beam spot radius and beam divergence at a 400 keV ICT electron accelerator, and a method is shown for reducing the line probe data in order to get the radial function....

  12. Microstructure and Tensile-Shear Properties of Resistance Spot-Welded Medium Mn Steel

    Directory of Open Access Journals (Sweden)

    Qiang Jia

    2018-01-01

    Full Text Available The medium Mn steels are gaining increasing attention due to their excellent combination of mechanical properties and material cost. A cold-rolled 0.1C5Mn medium Mn steel with a ferrite matrix plus metastable austenite duplex microstructure was resistance spot-welded with various welding currents and times. The nugget size rose with the increase of heat input, but when the welding current exceeded the critical value, the tensile-shear load increased slowly and became unstable due to metal expulsion. The fusion zone exhibited a lath martensite microstructure, and the heat-affected zone was composed of a ferrite/martensite matrix with retained austenite. The volume fraction of retained austenite decreased gradually from the base metal to the fusion zone, while the microhardness presented a reverse varying trend. Interfacial failure occurred along the interface of the steel sheets with lower loading capacity. Sufficient heat input along with serious expulsion brought about high stress concentration around the weld nugget, and the joint failed in partial interfacial mode. Pull-out failure was absent in this study.

  13. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  14. Optimization of resistance spot welding on the assembly of refractory alloy 50Mo-50Re thin sheet

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianhui [Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington, KY 40506 (United States); Jiang, Xiuping [Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington, KY 40506 (United States); Zeng, Qiang [Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington, KY 40506 (United States); Zhai, Tongguang [Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington, KY 40506 (United States)]. E-mail: tzhai0@engr.uky.edu; Leonhardt, Todd [Rhenium Alloys Inc., Elyria, OH 44036 (United States); Farrell, John [Semicon Associates, 695 Laco Drive, Lexington, KY 40510 (United States); Umstead, Williams [Semicon Associates, 695 Laco Drive, Lexington, KY 40510 (United States); Effgen, Michael P. [Semicon Associates, 695 Laco Drive, Lexington, KY 40510 (United States)

    2007-07-01

    Resistance spot welding (RSW) was employed to pre-join refractory alloy 50Mo-50Re (wt%) sheet with a 0.127 mm gage. Five important welding parameters (hold time, electrode, ramp time, weld current and electrode force) were adjusted in an attempt to optimize the welding quality. It was found that increasing the hold time from 50 ms to 999 ms improved the weld strength. Use of rod-shaped electrodes produced symmetric nugget and enhanced the weld strength. Use of a ramp time of 8 ms minimized electrode sticking and molten metal expulsion. The weld strength continuously increased with increasing the weld current up to 1100 A, but the probabilities of occurrence of electrode sticking and molten metal expulsion were also increased. Electrode force was increased from 4.44 N to 17.8 N, in order to reduce the inconsistency of the welding quality. Welding defects including porosities, columnar grains and composition segregation were also studied.

  15. Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)], E-mail: joindoc@kumamoto-u.ac.jp; Kawamura, Y. [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)

    2007-04-15

    We successfully welded 3 mm thick Zr{sub 41}Be{sub 23}Ti{sub 14}Cu{sub 12}Ni{sub 10} bulk metallic glass plate to Ti metal by electron beam welding with a beam irradiated 0.4 mm on the BMG side of the interface. There was no crystallization or defects in the weld because changes in the chemical composition of the weld metal were prevented. Bending showed that the welded sample had a higher strength than the Ti base metal. The interface had a 10 {mu}m thick interdiffusion layer of Zr and Ti.

  16. THE INFLUENCE OF POSTHEAT TREATMENT ON FERRITE REDISTRIBUTION IN DUPLEX STEELS ELECTRON BEAM WELDS

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2009-04-01

    Full Text Available The duplex stainless steel is two-phase steel with the structure composed of austenite and ferrite with optimum austenite/ferrite proportion 50%. At present, classical arc processes for welding duplex steels are generally regarded as acceptable. On the other hand electron and laser beam welding is up to now considered less suitable for welding duplex steels. The submitted work presents the results of testing various thermal conditions at welding duplex stainless steel with electron beam. It was shown, that application of suitable postheat made possible to reduce the ferrite content in weld metal.

  17. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    Science.gov (United States)

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  18. Method of beam welding metallic parts together and apparatus for doing same

    Science.gov (United States)

    Lewandowski, E.F.; Cassidy, D.A.; Sommer, R.G.

    1985-11-29

    This method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. The exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extrucing beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

  19. Embedded Artificial Neuval Network-Based Real-Time Half-Wave Dynamic Resistance Estimation during the A.C. Resistance Spot Welding Process

    Directory of Open Access Journals (Sweden)

    Liang Gong

    2013-01-01

    Full Text Available Online monitoring of the instantaneous resistance variation during the A.C. resistance spot welding is of paramount importance for the weld quality control. On the basis of the welding transformer circuit model, a new method is proposed to measure the transformer primary-side signal for estimating the secondary-side resistance in each 1/4 cycle. The tailored computing system ensures that the measuring method possesses a real-time computational capacity with satisfying accuracy. Since the dynamic resistance cannot be represented via an explicit function with respect to measurable parameters from the primary side of the welding transformer, an offline trained embedded artificial neural network (ANN successfully realizes the real-time implicit function calculation or estimation. A DSP-based resistance spot welding monitoring system is developed to perform ANN computation. Experimental results indicate that the proposed method is applicable for measuring the dynamic resistance in single-phase, half-wave controlled rectifier circuits.

  20. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2010-01-01

    For resistance spot welded shear-lab specimens, interfacial failure under ductile shearing or ductile plug failure are analyzed numerically, using a shear modified Gurson model. The interfacial shear failure occurs under very low stress triaxiality, where the original Gurson model would predict...

  1. Evaluation of Electron Beam Welding Performance of AA6061-T6 Plate-type Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Soo-Sung; Seo, Kyoung-Seok; Lee, Don-Bae; Park, Jong-Man; Lee, Yoon-Sang; Lee, Chong-Tak

    2014-01-01

    As one of the most commonly used heat-treatable aluminum alloys, AA6061-T6 aluminum alloy is available in a wide range of structural materials. Typically, it is used in structural members, auto-body sheet and many other applications. Generally, this alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW(Electron Beam Welding). However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the plate-type nuclear fuel fabrication and assembly, a fundamental electron beam welding experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the suitable welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the plate-type fuel assembly has been also studied by the weld penetrations of side plate to end fitting and fixing bar and weld inspections using computed tomography

  2. Tensile properties of electron-beam-welded single crystals of molybdenum

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Irie, Hirosada; Fujii, Tadayuki.

    1987-01-01

    The purpose of this study is to investigate the macro- and microstructures and the tensile properties of electron-beam-welded single crystals of molybdenum. The single-crystal sheets were prepared by means of secondary recrystallization. The welding was carried out by a melt-run technique. The weld metal had the same crystallographic orientation as the base metal, and no grain boundary was observed. However, many large weld pores were formed mostly along the weld bond. The strength and ductility of the welded joints of single crystals were almost the same as those of the base metal (''annealed'' single crystals). It is concluded that the joint efficiency of molybdenum single crystals at room temperature or above was excellent and nearly 100 %. (author)

  3. Effect of Post Weld Heat Treatment on Corrosion Behavior of AA2014 Aluminum – Copper Alloy Electron Beam Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work pertains to the study of corrosion behavior of aluminum alloy electron beam welds. The aluminium alloy used in the present study is copper containing AA2014 alloy. Electron Beam Welding (EBW) was used to weld the alloys in annealed (O) condition. Microstructural changes across the welds were recorded and the effect of post weld heat treatment (PWHT) in T4 (Solutionized and naturally aged) condition on pitting corrosion resistance was studied. A software based PAR basic electrochemical system was used for potentio-dynamic polarization tests. From the study it is observed that weld in O condition is prone to more liquation than that of PWHT condition. This may be attributed to re-melting and solidification of excess eutectic present in the O condition of the base metal. It was also observed that slightly higher hardness values are recorded in O condition than that of PWHT condition. The pitting corrosion resistance of the PMZ/HAZ in PWHT condition is better than that of O condition. This is attributed to copper segregation at the grain boundaries of PMZ in O condition.

  4. HOT SPOT RELIEF WITH EMBEDDED BEAM FOR CDMA SYSTEMS IN HAPS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper proposes a novel micro/macro beam coverage scheme used in High Altitude Platform System (HAPS) Code Division Multiple Access (CDMA) systems. A relief of traffic burden in hot spot areas is achieved by embedding micro-beams into the macro-beams at the hot spot locations, together with appropriate power ratio control and user ratio control. The simulation results show that the hot spot problem can be relieved efficiently with the presented configuration, and a higher and more stable system capacity is expectable despite the variation of user distribution.

  5. A Fundamental Study of Laser Beam Welding Aluminum-Lithium Alloy 2195 for Cryogenic Tank Applications

    Science.gov (United States)

    Martukanitz, R. P.; Jan. R.

    1996-01-01

    Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.

  6. Laser beam welding of titanium additive manufactured parts

    OpenAIRE

    Wits, Wessel Willems; Jauregui Becker, Juan Manuel

    2015-01-01

    In this paper the joinability of titanium Additive Manufactured (AM) parts is explored. Keyhole welding, using a pulsed laser beam, of conventionally produced parts is compared to AM parts. Metal AM parts are notorious for having remaining porosities and other non-isotropic properties due to the layered manufacturing process. This study shows that due to these deficiencies more energy per unit weld length is required to obtain a similar keyhole geometry for titanium AM parts. It is also demon...

  7. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

    Science.gov (United States)

    Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao

    2018-03-01

    In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

  8. Technical Note: Spot characteristic stability for proton pencil beam scanning

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chin-Cheng, E-mail: chen.ccc@gmail.com; Chang, Chang; Mah, Dennis [ProCure Treatment Center, Somerset, New Jersey 08873 (United States); Moyers, Michael F. [ProCure Treatment Center, Somerset, New Jersey 08873 and Shanghai Proton and Heavy Ion Center, Shanghai 201321 (China); Gao, Mingcheng [CDH Proton Center, Warrenville, Illinois 60555 (United States)

    2016-02-15

    Purpose: The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. Methods: A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0–226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Results: Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. Conclusions: For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  9. Technical Note: Spot characteristic stability for proton pencil beam scanning

    International Nuclear Information System (INIS)

    Chen, Chin-Cheng; Chang, Chang; Mah, Dennis; Moyers, Michael F.; Gao, Mingcheng

    2016-01-01

    Purpose: The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. Methods: A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0–226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Results: Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. Conclusions: For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter

  10. Laser Beam Caustic Measurement with Focal Spot Analyser

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Gong, Hui; Bagger, Claus

    2005-01-01

    In industrial applications of high power CO2-lasers the caustic characteristics of the laser beam have great effects on the performance of the lasers. A welldefined high intense focused spot is essential for reliable production results. This paper presents a focal spot analyser that is developed...

  11. Soldagem por ponto no estado sólido de ligas leves Solid state spot welding of lightweight alloys

    Directory of Open Access Journals (Sweden)

    Leonardo Contri Campanelli

    2011-09-01

    Full Text Available A recente preocupação quanto às mudanças climáticas vem impulsionando pesquisas em eficiência energética dos meios de transportes no sentido de reduzir a emissão de gases. Uma das principais soluções consiste na redução do peso estrutural através da aplicação de novos materiais, como as ligas leves de alumínio e magnésio. Entretanto, novos usos ficam muitas vezes limitados pela dificuldade de união desses materiais. A técnica de soldagem por fricção e mistura (FSW é um processo de união no estado sólido que surge como uma alternativa viável para substituir ou complementar as tecnologias de união consagradas. Como uma junta contínua não é sempre a requisitada, duas tecnologias de união por ponto derivadas do FSW estão em desenvolvimento: soldagem por fricção e mistura por ponto (FSSW e soldagem por fricção por ponto (FSpW. Além de fornecerem juntas de elevada resistência e praticamente isentas de defeitos, estas técnicas apresentam alta eficiência energética, curto ciclo de soldagem, facilidade de automação e compatibilidade com o meio-ambiente, fazendo frente às técnicas convencionais de união por ponto, como a soldagem por resistência por ponto (RSW e a rebitagem.The recent concern about climate change has stimulated research into transport energy efficiency in order to reduce the emission of gases. One of the main solutions is to reduce the structural weight through the application of new materials, such as aluminum and magnesium lightweight alloys. However, new applications are often limited by the difficulty of joining these materials. Friction Stir Welding (FSW is a solid state joining technique that emerges as a viable alternative to replace or complement the established joining technologies. As a continuous weld is not always requested, two spot welding technologies derived from FSW are under development: Friction Stir Spot Welding (FSSW and Friction Spot Welding (FSpW. Besides providing

  12. Electrochemical Testing of Gas Tungsten Arc Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    Day, S D; Wong, F G; Gordon, S R; Wong, L L; Rebak, R B

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIG method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCl at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  13. Electrochemical Testing of Gas Tungsten ARC Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    S. Daniel Day; Frank M.G. Wong; Steven R. Gordon; Lana L. Wong; Raul B. Rebak

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIC method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCI at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  14. Preliminary assessment of the fracture behavior of weld material in full-thickness clad beams

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.; Iskander, S.K.

    1994-10-01

    This report describes a testing program that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from a section of an RPV wall (removed from a canceled nuclear plant) that includes weld, plate, and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients due to welding and cladding applications, as well as material inhomogeneities in welded regions due to reheating in multiple weld passes. A summary of the testing program includes a description of the specimen geometry, material properties, the testing procedure, and the experimental results form three specimens. The yield strength of the weld material was determined to be 36% higher than the yield strength of the base material. An irradiation-induced increase in yield strength of the weld material could result in a yield stress that exceeds the upper limit where code curves are valid. The high yield strength for prototypic weld material may have implications for RPV structural integrity assessments. Analyses of the test data are discussed, including comparisons of measured displacements with finite-element analysis results, applications of toughness estimation techniques, and interpretations of constraint conditions implied by stress-based constraint methodologies. Metallurgical conditions in the region of the cladding heat-affected zone are proposed as a possible explanation for the lower-bound fracture toughness measured with one of the shallow-crack clad beam specimens. Fracture toughness data from the three clad beam specimens are compared with other shallow- and deep-crack uniaxial beam and cruciform data generated previously from A 533 Grade B plate material

  15. Measuring penetration depth of electron beam welds. Final report

    International Nuclear Information System (INIS)

    Hill, J.W.; Collins, M.C.; Mentesana, C.P.; Watterson, C.E.

    1975-07-01

    The feasibility of evaluating electron beam welds using state-of-the-art techniques in the fields of holographic interferometry, micro-resistance measurements, and heat transfer was studied. The holographic study was aimed at evaluating weld defects by monitoring variations in weld strength under mechanical stress. The study, along with successful work at another facility, proved the feasibility of this approach for evaluating welds, but it did not assign any limitations to the technique. The micro-resistance study was aimed at evaluating weld defects by measuring the electrical resistance across the weld junction as a function of distance along the circumference. Experimentation showed this method, although sensitive, is limited by the same factors affecting other conventional nondestructive tests. Nevertheless, it was successful at distinguishing between various depths of penetration. It was also shown to be a sensitive thickness gage for thin-walled parts. The infrared study was aimed at evaluating weld defects by monitoring heat transfer through the weld under transient thermal conditions. Experimentation showed that this theoretically sound technique is not workable with the infrared equipment currently available at Bendix Kansas City. (U.S.)

  16. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  17. Application of electron beam welding to large size pressure vessels made of thick low alloy steel

    International Nuclear Information System (INIS)

    Kuri, S.; Yamamoto, M.; Aoki, S.; Kimura, M.; Nayama, M.; Takano, G.

    1993-01-01

    The authors describe the results of studies for application of the electron beam welding to the large size pressure vessels made of thick low alloy steel (ASME A533 Gr.B cl.2 and A533 Gr.A cl.1). Two major problems for applying the EBW, the poor toughness of weld metal and the equipment to weld huge pressure vessels are focused on. For the first problem, the effects of Ni content of weld metal, welding conditions and post weld heat treatment are investigated. For the second problem, an applicability of the local vacuum EBW to a large size pressure vessel made of thick plate is qualified by the construction of a 120 mm thick, 2350 mm outside diameter cylindrical model. The model was electron beam welded using local vacuum chamber and the performance of the weld joint is investigated. Based on these results, the electron beam welding has been applied to the production of a steam generator for a PWR. (author). 3 refs., 10 figs., 4 tabs

  18. Pulsed Nd-YAG laser welding of Prototype Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Suresh Varma, P.V.; Gupta, Amit; Amit, K.; Bhatt, R.B.; Afzal, Mohd.; Panakkal, J.P.; Kamath, H.S.

    2009-02-01

    End plug welding of Prototype Fast Breeder Reactor (PFBR) fuel elements involves welding of fully Austenitic Stainless Steel (ASS) of grade D9 clad tube with 316M end plug. Pulsed Gas Tungsten Arc Welding (GTAW) is being used for the production of PFBR fuel elements at Advanced Fuel Fabrication Facility (AFFF). GTAW is an established process for end plug welding and hence adopted by many countries. GTAW has got certain limitations like heat input, arc gap sensitivity and certain sporadic defects like tungsten inclusion. Experiments have been carried out at AFFF to use Laser Beam Welding (LBW) technique as LBW offers a number of advantages over the former process. This report mainly deals with the optimization of laser parameters for welding of PFBR fuel elements. To facilitate pulsed Nd-YAG laser spot welding, parameters like peak power, pulse duration, pulse energy, frequency and defocusing of laser beam on to the work piece have been optimized. On the basis of penetration requirement laser welding parameters have been optimized. (author)

  19. Grey relational and neural network approach for multi-objective optimization in small scale resistance spot welding of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei [Huazhong University of Science and Technology, Wuhan (China)

    2016-06-15

    The prediction and optimization of weld quality characteristics in small scale resistance spot welding of TC2 titanium alloy were investigated. Grey relational analysis, neural network and genetic algorithm were applied separately. Quality characteristics were selected as nugget diameter, failure load, failure displacement and failure energy. Welding parameters to be optimized were set as electrode force, welding current and welding time. Grey relational analysis was conducted for a rough estimation of the optimum welding parameters. Results showed that welding current played a key role in weld quality improvement. Different back propagation neural network architectures were then arranged to predict multiple quality characteristics. Interaction effects of welding parameters were analyzed with the proposed neural network. Failure load was found more sensitive to the change of welding parameters than nugget diameter. Optimum welding parameters were determined by genetic algorithm. The predicted responses showed good agreement with confirmation experiments.

  20. Frequency response function (FRF) based updating of a laser spot welded structure

    Science.gov (United States)

    Zin, M. S. Mohd; Rani, M. N. Abdul; Yunus, M. A.; Sani, M. S. M.; Wan Iskandar Mirza, W. I. I.; Mat Isa, A. A.

    2018-04-01

    The objective of this paper is to present frequency response function (FRF) based updating as a method for matching the finite element (FE) model of a laser spot welded structure with a physical test structure. The FE model of the welded structure was developed using CQUAD4 and CWELD element connectors, and NASTRAN was used to calculate the natural frequencies, mode shapes and FRF. Minimization of the discrepancies between the finite element and experimental FRFs was carried out using the exceptional numerical capability of NASTRAN Sol 200. The experimental work was performed under free-free boundary conditions using LMS SCADAS. Avast improvement in the finite element FRF was achieved using the frequency response function (FRF) based updating with two different objective functions proposed.

  1. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    Science.gov (United States)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  2. Investigations on the structure – Property relationships of electron beam welded Inconel 625 and UNS 32205

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Sridhar, R.; Periwal, Saurabh; Oza, Smitkumar; Saxena, Vimal; Hidad, Preyas; Arivazhagan, N.

    2015-01-01

    Highlights: • Joining of dissimilar metals of Inconel 625 and UNS S32205 using electron beam welding. • Detailed structure – property relationship of dissimilar welds. • Improved metallurgical and tensile properties from the EB welding. - Abstract: The metallurgical and mechanical properties of electron beam welded Ni based superalloy Inconel 625 and UNS S32205 duplex stainless steel plates have been investigated in the present study. Interface microstructure studies divulged the absence of any grain coarsening effects or the formation of any secondary phases at the heat affected zone (HAZ) of the electron beam (EB) weldments. Tensile studies showed that the fracture occurred at the weld zone in all the trials and the average weld strength was reported to be 850 MPa. Segregation of Mo rich phases was witnessed at the inter-dendritic arms of the fusion zone. The study recommended the use of EB welding for joining these dissimilar metals by providing detailed structure – property relationships

  3. Resistance Spot Welding of Steel Sheets of the Same and Different Thickness

    Directory of Open Access Journals (Sweden)

    Milan Brožek

    2017-01-01

    Full Text Available Resistance welding ranks among progressive and in practice often used manufacturing techniques of rigid joints. It is applied in single‑part production, short‑run production as well as in mass production. The basis of this method is in the utilization of the Joulean heat, which arises at the passage of current through connected sheets at collective influence of compressive force. The aim of the carried out tests was the determination of the dependence between the rupture force of spot welds made using steel sheets of the same and different thickness for different welding conditions. For carrying out of this aim 360 assemblies were prepared. The sheets (a total of 720 pieces of dimensions 100 × 25 mm and thickness of 0.8 mm, 1.5 mm and 3.0 mm were made from low carbon steel. In the place determined for welding the test specimens were garnet blasted and then degreased with acetone. The welding of two specimens always of the same (0.8+0.8 mm, 1.5+1.5 mm a 3.0+3.0 mm and different (0.8 + 1.5 mm, 0.8+3.0 mm a 1.5+3.0 mm thickness was carried out using the welding machine type BV 2,5.21. At this type the welding current value is constant (Imax = 6.4 kA. The welding time (the time of the passage of the current was changed in the whole entirety, namely 0.10 s, 0.15 s, 0.20 s, 0.25 s, 0.3 s, 0.4 s, 0.6 s, 0.8 s, 1.0 s, 1.3 s, 1.6 s and 2.0 s. The compressive force was chosen according to the thickness of the connected sheets in the range from 0.8 to 2.4 kN. From the results of carried out tests it follows that using the working variables recommended by the producer we obtain the quality welds. But it we use the longer welding times, we can obtain stronger welds, namely up to 21 % compared to welds made using working variables recommended by the producer.

  4. CO2 and diode laser welding of AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Zhu Jinhong; Li Lin; Liu Zhu

    2005-01-01

    Magnesium alloys are being increasingly used in automotive and aerospace structures. Laser welding is an important joining method in such applications. There are several kinds of industrial lasers available at present, including the conventional CO 2 and Nd:YAG lasers as well as recently available high power diode lasers. A 1.5 kW diode laser and a 2 kW CO 2 laser are used in the present study for the welding of AZ31 alloys. It is found that different welding modes exist, i.e., keyhole welding with the CO 2 laser and conduction welding with both the CO 2 and the diode lasers. This paper characterizes welds in both welding modes. The effect of beam spot size on the weld quality is analyzed. The laser processing parameters are optimized to obtain welds with minimum defects

  5. Microstructure and Mechanical Properties of Dissimilar Friction Stir Spot Welding Between St37 Steel and 304 Stainless Steel

    Science.gov (United States)

    Khodadadi, Ali; Shamanian, Morteza; Karimzadeh, Fathallah

    2017-05-01

    In the present study, St37 low-carbon steel and 304 stainless steel were welded successfully, with the thickness of 2 mm, by a friction stir spot welding process carried out at the tool dwell time of 6 s and two different tool rotational speeds of 630 and 1250 rpm. Metallographic examinations revealed four different zones including SZ and HAZ areas of St37 steel and SZ and TMAZ regions of 304 stainless steel in the weld nugget, except the base metals. X-ray diffraction and energy-dispersive x-ray spectroscopy experiments were used to investigate the possible formation of such phases as chromium carbide. Based on these experiments, no chromium carbide precipitation was found. The recrystallization of the weld nugget in the 304 steel and the phase transformations of the weld regions in the St37 steel enhanced the hardness of the weld joint. Hardness changes of joint were acceptable and approximately uniform, as compared to the resistance spot weld. In this research, it was also observed that the tensile/shear strength, as a crucial factor, was increased with the rise in the tool rotational speed. The bond length along the interface between metals, as an effective parameter to increase the tensile/shear strength, was also determined. At higher tool rotational speeds, the bond length was found to be improved, resulting in the tensile/shear strength of 6682 N. Finally, two fracture modes were specified through the fracture mode analysis of samples obtained from the tensile/shear test consisting of the shear fracture mode and the mixed shear/tensile fracture mode.

  6. Use of pre-pulse in laser spot welding of materials with high optical reflection

    Science.gov (United States)

    Mys, Ihor; Geiger, Manfred

    2003-11-01

    Laser micro welding has become a standard manufacturing technique, particularly in industry sectors, such as automotive and aerospace electronics or medical devices, where the requirements for strength, miniaturization and temperature resistance are constantly rising. So far the use of laser micro welding is limited due to the fluctuation of the quality of the welded joints, because the welding results for material with high optical reflection and thermal conductivity, such as copper and copper alloys, depend very strongly on the condition of the material surface. This paper presents investigations on the use of a laser pre-pulse in spot welding of electronic materials with Nd:YAG laser. In order to achieve reproducible joining results two strategies are followed-up. The first one utilizes a reflection-based process control for measuring the reflection during the short pre-pulse. The intensity of the reflected light is used to calculate an appropriated welding pulse power, which corresponds to the measured relative absorption. Adjustment of laser parameters according to the condition of the surface is done in real time before laser main pulse. A second possibility for the stabilization of copper welding is the employment of a short and powerful laser pre-pulse before laser main pulse. This pre-pulse affects the workpiece surface and creates more reproducible absorption conditions for the main pulse, independent from the initial situation on material surface.

  7. Effect of Sleeve Plunge Depth on Microstructure and Mechanical Properties of Refill Friction Stir Spot Welding of 2198 Aluminum Alloy

    Science.gov (United States)

    Yue, Yumei; Shi, Yao; Ji, Shude; Wang, Yue; Li, Zhengwei

    2017-10-01

    Refill friction stir spot welding (RFSSW) is a new spot welding technology, by which spot joint without keyhole can be obtained. In this work, RFSSW was used to join 2-mm-thick 2198-T8 aluminum alloy sheets and effects of the sleeve plunge depth on microstructure and lap shear properties of the joints were mainly discussed. Results showed that when using small plunge depths of 2.4 and 2.6 mm, joints showed good formation and no defects were observed. Incomplete refilling defect was observed with increasing plunge depth due to material loss during welding. Size of the grains at sleeve-affected zone (SAZ) is smaller than that at the pin-affected zone, and the size becomes bigger with increasing the plunge depth. More secondary phase particles can be observed at SAZ with increasing the sleeve plunge depth. The lap shear failure load firstly increased and then decreased with increasing the sleeve plunge depth. The maximum failure load of 9819 N was attained with plug fracture mode when using 2.6 mm. Fracture morphologies show ductile fracture mode.

  8. Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints

    International Nuclear Information System (INIS)

    Xu, W.; Chen, D.L.; Liu, L.; Mori, H.; Zhou, Y.

    2012-01-01

    Highlights: ► Adhesive reduces shrinkage porosity and stress concentration around the weld nugget. ► Adhesive promotes the formation of intermetallic compounds during weld bonding. ► In Mg/steel joints fusion zone appears only at the Mg side with dendritic structures. ► Weld-bonded Mg/steel joints are considerably stronger than RSW Mg/steel joints. ► Fatigue strength is three-fold higher for weld-bonded joints than for RSW joints. - Abstract: The aim of this study was to evaluate microstructures, tensile and fatigue properties of weld-bonded (WB) magnesium-to-magnesium (Mg/Mg) similar joints and magnesium-to-steel (Mg/steel) dissimilar joints, in comparison with resistance spot welded (RSW) Mg/steel dissimilar joints. In the WB Mg/Mg joints, equiaxed dendritic and divorced eutectic structures formed in the fusion zone (FZ). In the dissimilar joints of RSW and WB Mg/steel, FZ appeared only at Mg side with equiaxed and columnar dendrites. At steel side no microstructure changed in the WB Mg/steel joints, while the microstructure in the RSW Mg/steel joints consisted of lath martensite, bainite, pearlite and retained austenite leading to an increased microhardness. The relatively low cooling rate suppressed the formation of shrinkage porosity but promoted the formation of MgZn 2 and Mg 7 Zn 3 in the WB Mg/steel joints. The added adhesive layer diminished stress concentration around the weld nugget. Both WB Mg/Mg and Mg/steel joints were significantly stronger than RSW Mg/steel joints in terms of the maximum tensile shear load and energy absorption, which also increased with increasing strain rate. Fatigue strength was three-fold higher for WB Mg/Mg and Mg/steel joints than for RSW Mg/steel joints. Fatigue failure in the RSW Mg/steel joints occurred from the heat-affected zone near the notch root at lower load levels, and in the mode of interfacial fracture at higher load levels, while it occurred in the Mg base metal at a maximum cyclic load up to ∼10 kN in

  9. Underwater cladding with laser beam and plasma arc welding

    International Nuclear Information System (INIS)

    White, R.A.; Fusaro, R.; Jones, M.G.; Solomon, H.D.; Milian-Rodriguez, R.R.

    1997-01-01

    Two welding processes, plasma arc (transferred arc) (PTA) and laser beam, were investigated to apply cladding to austenitic stainless steels and Inconel 600. These processes have long been used to apply cladding layers , but the novel feature being reported here is that these cladding layers were applied underwater, with a water pressure equivalent to 24 m (80 ft). Being able to apply the cladding underwater is very important for many applications, including the construction of off-shore oil platforms and the repair of nuclear reactors. In the latter case, being able to weld underwater eliminates the need for draining the reactor and removing the fuel. Welding underwater in reactors presents numerous challenges, but the ability to weld without having to drain the reactor and remove the fuel provides a huge cost savings. Welding underwater in reactors must be done remotely, but because of the radioactive corrosion products and neutron activation of the steels, remote welding would also be required even if the reactor is drained and the fuel removed. In fact, without the shielding of the water, the remote welding required if the reactor is drained might be even more difficult than that required with underwater welds. Furthermore, as shall be shown, the underwater welds that the authors have made were of high quality and exhibit compressive rather than tensile residual stresses

  10. In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser

    International Nuclear Information System (INIS)

    Kawahito, Yousuke; Kito, Masayuki; Katayama, Seiji

    2007-01-01

    A gap is one of the most important issues to be solved in laser welding of a micro butt joint, because the gap results in welding defects such as underfilling or a non-bonded joint. In-process monitoring and adaptive control has been expected as one of the useful procedures for the stable production of sound laser welds without defects. The objective of this research is to evaluate the availability of in-process monitoring and adaptive control in micro butt welding of pure titanium rods with a pulsed neodymium : yttrium aluminium garnet (Nd : YAG) laser beam of a 150 μm spot diameter. It was revealed that a 45 μm narrow gap was detected by the remarkable jump in a reflected light intensity due to the formation of the molten pool which could bridge the gap. Heat radiation signal levels increased in proportion to the sizes of molten pools or penetration depths for the respective laser powers. As for adaptive control, the laser peak power was controlled on the basis of the reflected light or the heat radiation signals to stably produce a sound deeply penetrated weld reduced underfilling. In the case of a 100 μm gap, the underfilling was greatly reduced by half smaller than those made with a conventional rectangular pulse shape in seam welding as well as spot welding with a pulsed Nd : YAG laser beam. Consequently, the adaptive control of the laser peak power on the basis of in-process monitoring could reduce the harmful effects due to a gap in micro butt laser welding with a pulsed laser beam

  11. Study of CW Nd-Yag laser welding of Zn-coated steel sheets

    International Nuclear Information System (INIS)

    Fabbro, Remy; Coste, Frederic; Goebels, Dominique; Kielwasser, Mathieu

    2006-01-01

    The welding of Zn-coated steel thin sheets is a great challenge for the automotive industry. Previous studies have defined the main physical processes involved. For non-controlled conditions, the zinc vapour expelled from the interface of the two sheets violently expands inside the keyhole and expels the melt pool. When using CO 2 lasers, we have previously shown that an elongated laser spot produces an elongated keyhole, which is efficient for suppressing this effect. We have adopted a similar approach for CW Nd : Yag laser welding and we observe that an elongated spot is not necessary for achieving good weld seams. Several diagnostics were used in order to understand these interesting results. High-speed video camera visualizations of the top and the bottom of the keyhole during the process show the dynamics of the keyhole hydrodynamic behaviour. It appears that the role of the reflected beam on the front keyhole wall for generating a characteristic rear wall deformation is crucial for an efficient stabilization of the process. Our dynamic keyhole modelling, which includes ray tracing, totally confirms this interpretation and explains the results for very different experimental conditions (effect of welding speed, laser intensity, variable sheet thickness, laser beam intensity distribution) that will be presented

  12. A reliability-based preventive maintenance methodology for the projection spot welding machine

    Directory of Open Access Journals (Sweden)

    Fayzimatov Ulugbek

    2018-06-01

    Full Text Available An effective operations of a projection spot welding (PSW machine is closely related to the effec-tiveness of the maintenance. Timely maintenance can prevent failures and improve reliability and maintainability of the machine. Therefore, establishing the maintenance frequency for the welding machine is one of the most important tasks for plant engineers. In this regard, reliability analysis of the welding machine can be used to establish preventive maintenance intervals (PMI and to identify the critical parts of the system. In this reliability and maintainability study, analysis of the PSW machine was carried out. The failure and repair data for analysis were obtained from automobile manufacturing company located in Uzbekistan. The machine was divided into three main sub-systems: electrical, pneumatic and hydraulic. Different distributions functions for all sub-systems was tested and their parameters tabulated. Based on estimated parameters of the analyzed distribu-tions, PMI for the PSW machines sub-systems at different reliability levels was calculated. Finally, preventive measures for enhancing the reliability of the PSW machine sub-systems are suggested.

  13. Mechanical properties of weldings by electron beams on alloy 8090 (CP 271)

    International Nuclear Information System (INIS)

    Le Poac, P.; Nomine, A.M.; Miannay, D.

    1987-06-01

    Weldings by electron beams got on rings in alloy 8090 in the T4 and T6 state are mechanically tested in traction in the original state of welding or after a thermal processing of 12 hours at 210 0 C [fr

  14. Resistance spot weldability of 11Cr–ferritic/martensitic steel sheets

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Yano, Yasuhide; Ito, Masahiro

    2012-01-01

    Resistance spot welding of 11Cr–0.4Mo–2W, V, Nb ferritic/martensitic steel sheets with different thicknesses was examined to develop a manufacturing technology for a fast reactor fuel subassembly with an inner duct structure. In the spot welding, welding current, electrode force, welding time and holding time were varied as welding parameters to investigate the appropriate welding conditions. Welding conditions under which spot weld joints did not have either crack or void defects in the nugget could be found when the electrode force was increased to 9.8 kN. It was also found that the electrode cap with a longer tip end length was effective for preventing weld defect formations. Strength of the spot welded joint was characterized from micro hardness and shear tension tests. In addition, the ductile-to-brittle transition temperature of the spot welded joint was measured by Charpy impact tests with specimens that had notches in the welded zone.

  15. Improving the properties of stainless steel electron-beam welds by laser treatment

    International Nuclear Information System (INIS)

    Wu Xueyi; Zhou Changchi

    1991-10-01

    For improving the properties of corrosion resistance of stainless steel, which is widely used in nuclear engineering, the technological test on rapid fusing and setting formed by using laser treatment in electron-beam welds on stainless steel was investigated and the analytical results of welding structure and properties were reported. The experimental results show that after laser treatment more finegrained structure in the surface of the welding centreline and welding heat-affected zone was observed. Segregation of chemical composition was reduced. Plasticity and corrosion resistance in the welding zone was increased. Intergranular corrosion of heat-affected zone was improved

  16. A study of electron beam welding of Mo based TZM alloy

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Krishnamurthy, N.

    2013-12-01

    Mo based TZM alloy is one of the most promising refractory alloy having several unique high temperature properties suitable for structural applications in the new generation advanced nuclear reactors. However, this alloy easily picks up interstitial impurities such as N 2 , H 2 and C from air during welding due to its reactive nature. High melting point of TZM alloy also restricts use of conventional welding technique for welding. Hence, Electron beam welding (EBW) technique with its deep penetration power to produce narrow heat affected zones under high vacuum was employed to overcome the above welding constraints by conducting a systematic study using both processes of bead on plate and butt joint configuration. Uniform and defect free weld joints were produced. Weld joints were subjected to optical characterization, chemical homogeneity analysis and microhardness profile study across the width of welds. Improved grain structure with equiaxed grains was obtained in the weld zone as compared to fibrous base structure. Original chemical composition was retained in the weld zone. The detailed results are described in this report. (author)

  17. Characteristics of Laser Beam and Friction Stir Welded AISI 409M Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Balasubramanian, V.

    2012-04-01

    This article presents the comparative evaluation of microstructural features and mechanical properties of friction stir welded (solid-state) and laser beam welded (high energy density fusion welding) AISI 409M grade ferritic stainless steel joints. Optical microscopy, microhardness testing, transverse tensile, and impact tests were performed. The coarse ferrite grains in the base material were changed to fine grains consisting duplex structure of ferrite and martensite due to the rapid cooling rate and high strain induced by severe plastic deformation caused by frictional stirring. On the other hand, columnar dendritic grain structure was observed in fusion zone of laser beam welded joints. Tensile testing indicates overmatching of the weld metal relative to the base metal irrespective of the welding processes used. The LBW joint exhibited superior impact toughness compared to the FSW joint.

  18. Effect of Brass Interlayer Sheet on Microstructure and Joint Performance of Ultrasonic Spot-Welded Copper-Steel Joints

    Science.gov (United States)

    Satpathy, Mantra Prasad; Kumar, Abhishek; Sahoo, Susanta Kumar

    2017-07-01

    Solid-state ultrasonic spot welding (USW) inevitably offers a potential solution for joining dissimilar metal combination like copper (Cu) and steel (SS). In this study, the USW has been performed on Cu (UNS C10100) and SS (AISI 304) with brass interlayer by varying various welding parameters, aiming to identify the interfacial reaction, changes in microstructure and weld strength. The highest tensile shear and T-peel failure loads of 1277 and 174 N are achieved at the optimum conditions like 68 µm of vibration amplitude, 0.42 MPa of weld pressure and 1 s of weld time. The fractured surface analysis of brass interlayer and AISI 304 stainless steel samples reveals the features like swirls, voids and intermetallic compounds (IMCs). These IMCs are composed of CuZn and FeZn composite-like structures with 1.0 μm thickness. This confirms that the weld quality is specifically sensitive to the levels of input parameter combinations as well as the type of material present on the sonotrode side.

  19. Effect of Interfacial Reaction on the Mechanical Performance of Steel to Aluminum Dissimilar Ultrasonic Spot Welds

    Science.gov (United States)

    Xu, Lei; Wang, Li; Chen, Ying-Chun; Robson, Joe D.; Prangnell, Philip B.

    2016-01-01

    The early stages of formation of intermetallic compounds (IMC) have been investigated in dissimilar aluminum to steel welds, manufactured by high power (2.5 kW) ultrasonic spot welding (USW). To better understand the influence of alloy composition, welds were produced between a low-carbon steel (DC04) and two different aluminum alloys (6111 and 7055). The joint strengths were measured in lap shear tests and the formation and growth behavior of IMCs at the weld interface were characterized by electron microscopy, for welding times from 0.2 to 2.4 seconds. With the material combinations studied, the η (Fe2Al5) intermetallic phase was found to form first, very rapidly in the initial stage of welding, with a discontinuous island morphology. Continuous layers of η and then θ (FeAl3) phase were subsequently seen to develop on extending the welding time to greater than 0.7 second. The IMC layer formed in the DC04-AA7055 combination grew thicker than for the DC04-AA6111 welds, despite both weld sets having near identical thermal histories. Zinc was also found to be dissolved in the IMC phases when welding with the AA7055 alloy. After post-weld aging of the aluminum alloy, fracture in the lap shear tests always occurred along the joint interface; however, the DC04-AA6111 welds had higher fracture energy than the DC04-AA7055 combination.

  20. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  1. Effects of surface coating on weld growth of resistance spot-welded hot-stamped boron steels

    International Nuclear Information System (INIS)

    Ji, Chang Wook; Lee, Hyun Ju; Kim, Yang Do; Jo, Il Guk; Choi, Il Dong; Park, Yeong Do

    2014-01-01

    Aluminum-silicon-based and zinc-based metallic coatings have been widely used for hot-stamped boron steel in automotive applications. In this study, resistance spot weldability was explored by investigating the effects of the properties of metallic coating layers on heat development and nugget growth during resistance spot welding. In the case of the aluminum-silicon-coated hot-stamped boron steel, the intermetallic coating transformed into a liquid film that covered the faying interface. A wide, weldable current range was obtained with slow heat development because of low contact resistance and large current passage. In the case of the zinc-coated hot-stamped boron steel, a buildup of liquid and vapor formation under large vapor pressure was observed at the faying interface because of the high contact resistance and low vaporization temperature of the intermetallic layers. With rapid heat development, the current passage was narrow because of the limited continuous layer at the faying interface. A more significant change in nugget growth was observed in the zinc coated hot-stamped boron steel than in the aluminum-silicon-coated hot-stamped boron steel.

  2. Laser beam welding of titanium additive manufactured parts

    NARCIS (Netherlands)

    Wits, Wessel Willems; Jauregui Becker, Juan Manuel

    2015-01-01

    In this paper the joinability of titanium Additive Manufactured (AM) parts is explored. Keyhole welding, using a pulsed laser beam, of conventionally produced parts is compared to AM parts. Metal AM parts are notorious for having remaining porosities and other non-isotropic properties due to the

  3. Residual stress reduction in beam welded joints by means of stress redistribution using defocused electron or laser beams; Eigenspannungsreduktion in strahlgeschweissten Naehten mittels Spannungsumlagerung durch den Einsatz defokussierter Elektronen- bzw. Laserstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    Toelle, Florian

    2013-08-01

    Among the multiple advantages of beam welding processes the high longitudinal residual stresses in beam welds ranging till the local yield stress are one disadvantage. These high stresses can influence the service life of the welded components. The residual stresses in other welding processes exist in an equal high level but primarily in the transverse direction to the weld. To mitigate the high residual stresses a couple of methods were developed for these welding processes in the last decades. However these methods need large contact surfaces next to the welds for the installation of matched heating and cooling elements and other additional equipment. Furthermore, the previous developed stress mitigating processes offer a low efficiency for the small beam welds. The stress reduction by using the welding source after the welding process for a remote heat treatment of the welded components afford a flexible tool for the stress mitigation in beam welds. This method does not need any additional equipment and it is applicable for complex welding and component geometries. During this post welding heat treatment the material next to the weld is heated by the defocused electron or by the defocused laser beam, respectively, to temperatures of some hundreds degree Celsius. Hereby low plastic deformations in these regions are generated. While cooling down due to the thermal shrinkage the material between the weld and the heat treated region is compressed in longitudinal direction to the weld. This intermediate material zone constrained the shrinkage of the weld while cooling down from the melting temperature and leads to the high longitudinal residual stresses in the weld. In consequence of the compression of this intermediate zones by the heat treated zones the resistance to the shrinkage of the weld is lowered and the longitudinal stresses in the weld are reduced. In the process the quantity of the stress reduction is controlled by the selection of the process parameters

  4. Technical assistance to AECL: electron beam welding of thick-walled copper containers for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1984-01-01

    This report describes the results of Phase Two of the copper electron beam welding project for the final closure of copper containers for nuclear fuel waste disposal. It has been demonstrated that single pass, electron beam square butt welds (depth of weld penetration > 25 mm) can be made without preheat in both electrolytic tough-pitch copper and oxygen-free copper plates. The present results show that oxygen-free copper exhibits better weldability than the electrolytic tough-pitch copper in terms of weld penetration and vulnerability to weld defects such as gas porosity, erratic metal overflow and blow holes. The results of ultrasonic inspection studies of the welds are also discussed

  5. Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi objective Taguchi method and RSM

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Nora Siah; Manurung Yupiter HP; Hafidzi, Moham Mad; Abas, Sun Haji Kiyai; Tham, Ghalib; Haru Man, Esa [Universiti Teknologi MARA (UiTM), Selangor (Malaysia)

    2012-08-15

    This paper presents an alternative method to optimize process parameters of resistance spot welding (RSW) towards weld zone development. The optimization approach attempts to consider simultaneously the multiple quality characteristics, namely weld nugget and heat affected zone (HAZ), using multi objective Taguchi method (MTM). The experimental study was conducted for plate thickness of 1.5mm under different welding current, weld time and hold time. The optimum welding parameters were investigated using the Taguchi method with L9 orthogonal array. The optimum value was analyzed by means of MTM, which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR). A significant level of the welding parameters was further obtained by using analysis of variance (ANOVA). Furthermore, the first order model for predicting the weld zone development is derived by using response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can be effectively applied to estimate the size of weld zone, which can be used to enhance and optimized the welding performance in RSW or other application.

  6. Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi objective Taguchi method and RSM

    International Nuclear Information System (INIS)

    Muhammad, Nora Siah; Manurung Yupiter HP; Hafidzi, Moham Mad; Abas, Sun Haji Kiyai; Tham, Ghalib; Haru Man, Esa

    2012-01-01

    This paper presents an alternative method to optimize process parameters of resistance spot welding (RSW) towards weld zone development. The optimization approach attempts to consider simultaneously the multiple quality characteristics, namely weld nugget and heat affected zone (HAZ), using multi objective Taguchi method (MTM). The experimental study was conducted for plate thickness of 1.5mm under different welding current, weld time and hold time. The optimum welding parameters were investigated using the Taguchi method with L9 orthogonal array. The optimum value was analyzed by means of MTM, which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR). A significant level of the welding parameters was further obtained by using analysis of variance (ANOVA). Furthermore, the first order model for predicting the weld zone development is derived by using response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can be effectively applied to estimate the size of weld zone, which can be used to enhance and optimized the welding performance in RSW or other application

  7. SU-E-J-72: Geant4 Simulations of Spot-Scanned Proton Beam Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, T; Sutherland, K; Matsuura, T; Umegaki, K; Shirato, H [Hokkaido University, Sapporo, Hokkaido (Japan)

    2014-06-01

    Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 × 0.98 × 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generated and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.

  8. A comparative study of laser beam welding and laser-MIG hybrid welding of Ti-Al-Zr-Fe titanium alloy

    International Nuclear Information System (INIS)

    Li Ruifeng; Li Zhuguo; Zhu Yanyan; Rong Lei

    2011-01-01

    Research highlights: → Ti-Al-Zr-Fe titanium alloy sheets were welded by LBW and LAMIG methods. → LAMIG welded joints have better combination of strength and ductility. → LAMIG welding is proved to be feasible for the production of titanium sheet joints. - Abstract: Ti-Al-Zr-Fe titanium alloy sheets with thickness of 4 mm were welded using laser beam welding (LBW) and laser-MIG hybrid welding (LAMIG) methods. To investigate the influence of the methods difference on the joint properties, optical microscope observation, microhardness measurement and mechanical tests were conducted. Experimental results show that the sheets can be welded at a high speed of 1.8 m/min and power of 8 kW, with no defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam. In addition, all tensile test specimens fractured at the parent metal. Compared with the LBW, the LAMIG welding method can produce joints with higher ductility, due to the improvement of seam formation and lower microhardness by employing a low strength TA-10 welding wire. It can be concluded that LAMIG is much more feasible for welding the Ti-Al-Zr-Fe titanium alloy sheets.

  9. Two self-referencing methods for the measurement of beam spot position

    International Nuclear Information System (INIS)

    Nyiri, Balazs J.; Smale, Jason R.; Gerig, Lee H.

    2012-01-01

    Purpose: Two quantitative methods of measuring electron beam spot position with respect to the collimator axis of rotation (CAOR) are described. Methods: Method 1 uses a cylindrical ion chamber (IC) mounted on a jig corotational with the collimator making the relationship among the chamber, jaws, and CAOR fixed and independent of collimator angle. A jaw parallel to the IC axis is set to zero and the IC position adjusted so that the IC signal is approximately 50% of the open field value, providing a large dose gradient in the region of the IC. The cGy/MU value is measured as a function of collimator rotation, e.g., every 30°. If the beam spot does not lie on the CAOR, the signal from the ion chamber will vary with collimator rotation. Based on a measured spatial sensitivity, the distance of the beam spot from the CAOR can be calculated from the IC signal variation with rotation. The 2nd method is image based. Two stainless steel rods, 3 mm in diameter, are mounted to a jig attached to the Linac collimator. The rods, offset from the CAOR, lay in different planes normal to the CAOR, one at 158 cm SSD and the other at 70 cm SSD. As the collimator rotates the rods move tangent along an envelope circle, the centers of which are on the CAOR in their respective planes. Three images, each at a different collimator rotation, containing the shadows of both rods, are acquired on the Linac EPID. At each angle the shadow of the rods on the EPID defines lines tangent to the projection of the envelope circles. From these the authors determine the projected centers of the two circles at different heights. From the distance of these two points using the two heights and the source to EPID distance, the authors calculate the distance of the beam spot from the CAOR. Measurements with all two techniques were performed on an Elekta Linac. Measurements were performed with the beam spot in nominal clinical position and in a deliberately offset position. Measurements were also performed

  10. Two self-referencing methods for the measurement of beam spot position

    Energy Technology Data Exchange (ETDEWEB)

    Nyiri, Balazs J.; Smale, Jason R.; Gerig, Lee H. [Ottawa Hospital Cancer Centre, Ottawa K1H 8L6 (Canada) and Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5 (Canada); Elekta Canada, Ottawa, Ontario K1Y 1Z3 (Canada); Ottawa Hospital Cancer Centre, Ottawa K1H 8L6 (Canada); Department of Physics, Carleton University, Ottawa K1S 5B6 (Canada) and Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5 (Canada)

    2012-12-15

    Purpose: Two quantitative methods of measuring electron beam spot position with respect to the collimator axis of rotation (CAOR) are described. Methods: Method 1 uses a cylindrical ion chamber (IC) mounted on a jig corotational with the collimator making the relationship among the chamber, jaws, and CAOR fixed and independent of collimator angle. A jaw parallel to the IC axis is set to zero and the IC position adjusted so that the IC signal is approximately 50% of the open field value, providing a large dose gradient in the region of the IC. The cGy/MU value is measured as a function of collimator rotation, e.g., every 30 Degree-Sign . If the beam spot does not lie on the CAOR, the signal from the ion chamber will vary with collimator rotation. Based on a measured spatial sensitivity, the distance of the beam spot from the CAOR can be calculated from the IC signal variation with rotation. The 2nd method is image based. Two stainless steel rods, 3 mm in diameter, are mounted to a jig attached to the Linac collimator. The rods, offset from the CAOR, lay in different planes normal to the CAOR, one at 158 cm SSD and the other at 70 cm SSD. As the collimator rotates the rods move tangent along an envelope circle, the centers of which are on the CAOR in their respective planes. Three images, each at a different collimator rotation, containing the shadows of both rods, are acquired on the Linac EPID. At each angle the shadow of the rods on the EPID defines lines tangent to the projection of the envelope circles. From these the authors determine the projected centers of the two circles at different heights. From the distance of these two points using the two heights and the source to EPID distance, the authors calculate the distance of the beam spot from the CAOR. Measurements with all two techniques were performed on an Elekta Linac. Measurements were performed with the beam spot in nominal clinical position and in a deliberately offset position. Measurements were also

  11. Upgrade of laser and electron beam welding database

    CERN Document Server

    Furman, Magdalena

    2014-01-01

    The main purpose of this project was to fix existing issues and update the existing database holding parameters of laser-beam and electron-beam welding machines. Moreover, the database had to be extended to hold the data for the new machines that arrived recently at the workshop. As a solution - the database had to be migrated to Oracle framework, the new user interface (using APEX) had to be designed and implemented with the integration with the CERN web services (EDMS, Phonebook, JMT, CDD and EDH).

  12. Effect of gaussian beam on microstructural and mechanical properties of dissimilarlaser welding ofAA5083 and AA6061 alloys

    Science.gov (United States)

    Srinivas, B.; Cheepu, Muralimohan; Sivaprasad, K.; Muthupandi, V.

    2018-03-01

    The present study focuses on a sheet thickness of 4 mm using different laser power and welding rate by the laser beam welding (LBW) at a beam size180 μm. The observations on the weldments are showing that thermal conductivity of the materials plays a major role on microstructural changes. The as-welded mechanical properties were studied by correlation with its microstructures. Due to the steeper temperature gradient during the laser beam welding AA6061 was showing the greater variation compares with AA5083 side in the micro hardness studies.Also, the tensile strength of 241 MPa has been reported as highest with the welds made of laser powerat 3.5 kW and welding rate at 3.5 mmin-1.

  13. Optimization of Joint Power and Bandwidth Allocation in Multi-Spot-Beam Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    Heng Wang

    2014-01-01

    Full Text Available Multi-spot-beam technique has been widely applied in modern satellite communication systems. However, the satellite power and bandwidth resources in a multi-spot-beam satellite communication system are scarce and expensive; it is urgent to utilize the resources efficiently. To this end, dynamically allocating the power and bandwidth is an available way. This paper initially formulates the problem of resource joint allocation as a convex optimization problem, taking into account a compromise between the maximum total system capacity and the fairness among the spot beams. A joint bandwidth and power allocation iterative algorithm based on duality theory is then proposed to obtain the optimal solution of this optimization problem. Compared with the existing separate bandwidth or power optimal allocation algorithms, it is shown that the joint allocation algorithm improves both the total system capacity and the fairness among spot beams. Moreover, it is easy to be implemented in practice, as the computational complexity of the proposed algorithm is linear with the number of spot beams.

  14. Ti–6Al–4V welded joints via electron beam welding: Microstructure, fatigue properties, and fracture behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China); Li, Shaolin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Qi, Hongyu, E-mail: qhy@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China)

    2014-03-01

    The effect of microstructural characteristics on the fatigue properties of electron beam-welded joints of forged Ti–6Al–4V and its fracture behavior were investigated. Tensile tests and fatigue tests were conducted at room temperature in air atmosphere. The test data were analyzed in relation to microstructure, high-cycle fatigue properties, low-cycle fatigue properties, and fatigue crack propagation properties. The high-cycle fatigue test results indicated that the fatigue strength of the joint welded via electron beam welding was higher than that of the base metal because the former had a high yield strength and all high-cycle fatigue specimens were fractured in the base metal. Although the joint specimens had a lower low-cycle fatigue life than the base metal, they mainly ruptured at the fusion zone of the joint specimen and their crack initiation mechanism is load-dependent. The fatigue crack propagation test results show that the joint had a slower crack propagation rate than the base metal, which can be attributed to the larger grain in the fusion zone.

  15. Ultrasonic testing of electron beam closure weld on pressure vessel

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1975-01-01

    One of the special products manufactured at the General Electric Neutron Devices Department (GEND) is a small stainless steel vessel designed to hold a component under high pressure for long periods. The vessel is a thick-walled cylinder with a threaded receptacle into which a plug is screwed and welded after receiving the unit to be tested. The test cavity is then pressurized through a small diameter opening in the bottom and that opening is welded closed. When x-ray inspection techniques did not reveal defective welds at the threaded plug in a pressured vessel, occasional ''leakers'' occurred. With normal equipment tolerances, the electron beam spike tends to wander from the desired path, particularly at the root of the weld. Ultrasonic techniques were used to successfully inspect the weld. The testing technique is based on the observation that ultrasonic energy is reflected from the unwelded screw threads and not from the regions where the threads are completely fused together by welding. Any gas pore or any threaded region outside the weld bead can produce an echo. The units are rotated while the ultrasonic transducer travels in a direction parallel to the axis of rotation and toward the welded end. This produces a helical scan which is converted to a two-dimensional presentation in which incomplete welds can be noted. (U.S.)

  16. Focal spot size predictions for beam transport through a gas-filled reactor

    International Nuclear Information System (INIS)

    Yu, S.S.; Lee, E.P.; Buchanan, H.L.

    1980-01-01

    Results from calculations of focal spot size for beam transport through a gas-filled reactor are summarized. In the converging beam mode, we find an enlargement of the focal spot due to multiple scattering and zeroth order self-field effects. This enlargement can be minimized by maintaining small reactors together with a careful choice of the gaseous medium. The self-focused mode, on the other hand, is relatively insensitive to the reactor environment, but is critically dependent upon initial beam quality. This requirement on beam quality can be significantly eased by the injection of an electron beam of modest current from the opposite wall

  17. Low cycle fatigue behavior of electron beam and friction welded joints of an α-β titanium alloy

    International Nuclear Information System (INIS)

    Mohandas, T.; Varma, V.K.; Banerjee, D.; Kutumbarao, V.V.

    1996-01-01

    Fusion welds in titanium alloys, with intermediate β stabilizing additions, show poor mechanical properties due to large fusion zone grain size coupled with a brittle plate martensitic microstructure and hydrogen induced microporosity. These problems, associated with fusion welding, have been reported to be overcome by friction welding. The alloy used in this study is a Soviet composition (VT9) of the α-β class with the nominal chemical composition Ti-6.5Al-3.3Mo-1.6Zr-0.3 Si (in weight percent), intended to be used as discs and blades in compressor stages of gas turbine engine where low cycle fatigue (LCF) loading is experienced. Electron beam welding of the alloy was largely unsuccessful for the reasons described above. Fatigue properties of such welds had large scatter due to the presence of microporosity. A continuous drive friction welding technique was investigated to overcome this problem These welds showed encouraging results in that microporosity, a problem in the electron beam welding, was not observed and the mechanical properties were at par or better than those of the base metal. This paper deals with the study of stress controlled LCF behavior of friction welds and electron beam welds of the α-β titanium alloy at ambient temperature and the results are compared with those of base metal

  18. Electron beam welding of flanges with tubular shafts of steel 40KhNMA

    International Nuclear Information System (INIS)

    Leskov, G.I.; Zhivaga, L.I.; Shipitsyn, B.N.; Savichev, R.V.

    1975-01-01

    The results are presented of elaborating the technological process for the electron beam welding of flanges with a tube of the 40KhNMA steel and of investigation into the quality of the welded joints. A welded piece has been fabricated conforming to the technology suggested observing the parameters worked-out in the following sequence: assembling the piece; pre-welding of the edges in some points; welding; high tempering; welds quality control; removal of the seam reinforcement inside of the tube and the weld root to the depth of 2 mm; quenching; tempering; welds quality control; finishing. The welds quality control consists in visual inspection, ultrasonic testing, magnetic flaw detection, as well as X-ray and metallographic analyses. The mechanical properties are studied on notched samples cut out of the welded joints. The test results have shown that the mechanical properties of the welded joints meet the requirements on the same level with the base metal

  19. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    International Nuclear Information System (INIS)

    Yousef, Adel K. M.; Taha, Ziad A.; Shehab, Abeer A.

    2011-01-01

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied.Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  20. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  1. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    International Nuclear Information System (INIS)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man

    2012-01-01

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  2. Fabrication of AA6061-T6 Plate Type Fuel Assembly Using Electron Beam Welding Process

    International Nuclear Information System (INIS)

    Kim, Soosung; Seo, Kyoungseok; Lee, Donbae; Park, Jongman; Lee, Yoonsang; Lee, Chongtak

    2014-01-01

    AA6061-T6 aluminum alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW. However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the shrinkage measurement and weld inspection using computed tomography. This study was carried out to determine the suitable welding parameters and to evaluate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory electron beam welding process of the full-sized sample was being developed. Based on this fundamental study, fabrication of the plate-type fuel assembly will be provided for the future Ki-Jang research reactor project

  3. Application of CO2 laser beam weld for repair of fuel element of nuclear reactor 'YAYOI'

    International Nuclear Information System (INIS)

    Hashimoto, Mitsuo; Yanagi, Hideharu; Sukegawa, Toshio; Saito, Isao; Sasuga, Norihiko; Aizawa, Nagaaki; Miya, Kenzo

    1986-01-01

    The present studies are to develop CO 2 laser beam welding techniques in order to apply for repoint of nuclear reactor fuel of Fast Neutron Source Reactor YAYOI. For that purpos, many experiments were conduted to obtain various effects of laser welding variables with use of SUS 304 plates, pipes and simulated dumy fuels. These experiments provided us an optimal welding condition through metallurgical observations, non-destructive and mechanical tests. It was found that the laser welds exhibited properties equivalent to those of the base metal, in addition they provided us a favorable system than that of electron beam welds against a cladding of radioactive nuclear fuel in a hot cell. The present paper reports on the characteristics of laser welds, structural analysis of fuel element and a system design of remotely operated devices setting in a hot cell. (author)

  4. Measuring a narrow Bessel beam spot by scanning a charge-coupled device (CCD) pixel

    International Nuclear Information System (INIS)

    Tiwari, S K; Ram, S P; Jayabalan, J; Mishra, S R

    2010-01-01

    By scanning a charge-coupled device (CCD) camera transverse to the beam axis and observing the variation in counts on a marked pixel, we demonstrate that we can measure a laser beam spot size smaller than the size of the CCD-pixel. We find this method particularly attractive for measuring the size of central spot of a Bessel beam, for which the established scanning knife-edge method does not work appropriately because of the large contribution of the rings surrounding the central spot to the signal

  5. Numerical microstructural analysis of automotive-grade steels when joined with an array of welding processes

    International Nuclear Information System (INIS)

    Gould, J.E.; Khurana, S.P.; Li, T.

    2004-01-01

    Weld strength, formability, and impact resistance for joints on automotive steels is dependent on the underlying microstructure. A martensitic weld area is often a precursor to reduced mechanical performance. In this paper, efforts are made to predict underlying joint microstructures for a range of processing approaches, steel types, and gauges. This was done first by calculating cooling rates for some typical automotive processes [resistance spot welding (RSW), resistance mash seam welding (RMSEW), laser beam welding (LBW), and gas metal arc welding (GMAW)]. Then, critical cooling rates for martensite formation were calculated for a range of automotive steels using an available thermodynamically based phase transformation model. These were then used to define combinations of process type, steel type, and gauge where welds could be formed avoiding martensite in the weld area microstructure

  6. Electron Beam Welding of Duplex Steels with using Heat Treatment

    Science.gov (United States)

    Schwarz, Ladislav; Vrtochová, Tatiana; Ulrich, Koloman

    2010-01-01

    This contribution presents characteristics, metallurgy and weldability of duplex steels with using concentrated energy source. The first part of the article describes metallurgy of duplex steels and the influence of nitrogen on their solidification. The second part focuses on weldability of duplex steels with using electron beam aimed on acceptable structure and corrosion resistance performed by multiple runs of defocused beam over the penetration weld.

  7. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  8. Real-time measurement of electron beam weld penetration in uranium by acoustic emission monitoring

    International Nuclear Information System (INIS)

    Whittaker, J.W.; Murphy, J.L.

    1991-07-01

    High quality electron beam (EB) welds are required in uranium test articles. Acoustic emission (AE) techniques are under development with the goal of measuring weld penetration in real-time. One technique, based on Average Signal Level (ASL) measurement was used to record weld AE signatures. Characteristic AE signatures were recorded for bead-on-plate (BOP) and butt joint (BJ) welds made under varied welding conditions. AE waveforms were sampled to determine what microscopic AE behavior led to the observed macroscopic signature features. Deformation twinning and weld expulsion are two of the main sources of emission. AE behavior was correlated with weld penetration as measured by standard metallographic techniques. The ASL value was found to increase approximately linearly with weld penetration in BJ welds. These results form the basis for a real-time monitoring technique for weld penetration. 5 refs

  9. Laser welding of galvanized steel: analytical study in view of dual-beam solution

    International Nuclear Information System (INIS)

    Iqbal, S.; Gualini, M.M.S.

    2005-01-01

    In this paper, the solution of a new dual laser beam method to lap weld galvanized steel sheets is being discussed, modeled and analyzed. This method involves a pre-cursor beam and a higher-power actual beam used on the job in tandem, generated independently or otherwise split from the same source. The pre-cursor beam cuts a slot, thus making an exit path for the zinc vapours, while the second beam performs the needed welding. After giving detailed theoretical coverage and diverse mathematical simulations, the paper also presents and discusses some experimental results of the method. Along with this, a comparison is being made with some other methods proposed till today to solve this problem including some quantitative analysis. As presented, general view in industrial perspective supports this method to be easier to implement on the production lines along with yielding desired results. (author)

  10. 3D Modeling and Testing of Contact Problems in Resistance Welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin

    A generic, electro-thermo-mechanically coupled finite element program is developed for three-dimensional simulation of resistance welding. The developed computer program has reached a level of a complete standalone software that can be utilized as a tool in the analysis of resistance welding...... of resistance welding processes, which cover a wide range of spot welding and projection welding applications. Three-dimensional simulation of spot welding enables the analysis of critical effects like electrode misalignment and shunt effects between consecutive spots. A single-sided spot welding case involving...... three-dimensional contact is also presented. This case was suggested by and discussed with a German steel manufacturer. When it comes to projection welding, a natural need for three-dimensional analysis arises in many cases because of the involved geometries. Cross-wire welding and welding of square...

  11. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  12. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    Science.gov (United States)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  13. Underwater laser beam welding technology for reactor vessel nozzles of PWRs

    International Nuclear Information System (INIS)

    Yoda, Masaki; Tamura, Masataka; Tamura, Masataka

    2010-01-01

    Toshiba has developed an underwater laser beam welding technology for the maintenance of reactor vessel nozzles of pressurized water reactors (PWRs), which eliminates the need for the drainage of water from the reactor vessel. The new welding system makes it possible to both reduce the work period and minimize the radiation exposure of workers compared with conventional technologies for welding in ambient air. We have confirmed the effectiveness of this technology through experiments in which stress corrosion cracking (SCC) was mitigated on the inner surfaces of nozzles. We are promoting its practical application in Japan and overseas in cooperation with Westinghouse Electric Company, a group company of Toshiba. (author)

  14. Effects of spot parameters in pencil beam scanning treatment planning.

    Science.gov (United States)

    Kraan, Aafke Christine; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M

    2018-01-01

    distances, many beam directions, and low fractional dose values. The choice of spot parameters values is a trade-off between accelerator and beam line design, plan quality, and treatment efficiency. We recommend the use of small spot sizes for better organ-at-risk sparing and lateral interspot distances of 1.5σ to avoid long treatment times. We note that plan quality is influenced by the charge cutoff. Our results show that the charge cutoff can be sufficiently large (i.e., 10 6 protons) to accommodate limitations on beam delivery systems. It is, therefore, not necessary per se to include the charge cutoff in the treatment planning optimization such that Pareto navigation (e.g., as practiced at our institution) is not excluded and optimal plans can be obtained without, perhaps, a bias from the charge cutoff. We recommend that the impact of a minimum charge cut impact is carefully verified for the spot sizes and spot distances applied or that it is accommodated in the TPS. © 2017 American Association of Physicists in Medicine.

  15. The Role of Mechanical Connection during Friction Stir Keyholeless Spot Welding Joints of Dissimilar Materials

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2017-06-01

    Full Text Available Contrast experiments of lap joints among dissimilar AZ31B Mg alloy, Mg99.50, zinc-coated DP600 sheet, and non-zinc-coated DP600 sheet were made by friction stir keyholeless spot welding (FSKSW and vacuum diffusion welding (VDW, respectively. Scanning electron microscopy (SEM and energy disperse spectroscopy (EDS were used to investigate the microstructures and components of the joints welded. The experimental results show that the FSKSW bonding method is a kind of compound mode that contains a mechanical connection and element diffusion fusion connection, in which mechanical connection has the main decisive function on joints of Mg/steel. Elements diffusion exists in the interfacial region of the joints and the elements diffusion extent is basically the same to that of VDW. The elements’ diffusion in Mg/steel using FSKSW is defined in the reaction between small amounts elements of the base metal and zinc-coated metals. The intermetallic compounds and composite oxide perform some reinforcement on the mechanical connection strength.

  16. High-energy-beam welding of type 316LN stainless steel for cryogenic applications

    International Nuclear Information System (INIS)

    Siewert, T.A.; Gorni, D.; Kohn, G.

    1988-01-01

    Laser and electron beam welds in 25-mm-thick AISI 316LN specimens containing 0.16 wt.$% N were evaluated for fusion reactor applications and their mechanical properties were compared with those of welds generated by lower productivity processes such as shielded-metal-arc and gas-metal-arc welding. Tensile tests were performed on transverse tensile specimens at 4 K. For both welding processes the fractures occurred in the base metal at a strength level near 950 MPa. This indicated that the weld and heat affected zone had a strength similar to that of the base metal. The 4 K weld fracture toughness was only slightly less than that for the base metal and comparable to the best values achieved with conventional welding processes in 316Ln weld metal. The Charpy V-notch absorbed energies averaged near 70 J at 76 K. Metallographic analysis revealed cellular and fully austenitic solidification with little porosity and no evidence of hot cracking

  17. SU-D-BRE-03: Dosimetric Impact of In-Air Spot Size Variations for Commissioning a Room-Matched Beam Model for Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Zhang, Y; Giebeler, A; Mascia, A; Piskulich, F; Perles, L; Lepage, R; Dong, L

    2014-01-01

    Purpose: To quantitatively evaluate dosimetric consequence of spot size variations and validate beam-matching criteria for commissioning a pencil beam model for multiple treatment rooms. Methods: A planning study was first conducted by simulating spot size variations to systematically evaluate dosimetric impact of spot size variations in selected cases, which was used to establish the in-air spot size tolerance for beam matching specifications. A beam model in treatment planning system was created using in-air spot profiles acquired in one treatment room. These spot profiles were also acquired from another treatment room for assessing the actual spot size variations between the two treatment rooms. We created twenty five test plans with targets of different sizes at different depths, and performed dose measurement along the entrance, proximal and distal target regions. The absolute doses at those locations were measured using ionization chambers at both treatment rooms, and were compared against the calculated doses by the beam model. Fifteen additional patient plans were also measured and included in our validation. Results: The beam model is relatively insensitive to spot size variations. With an average of less than 15% measured in-air spot size variations between two treatment rooms, the average dose difference was −0.15% with a standard deviation of 0.40% for 55 measurement points within target region; but the differences increased to 1.4%±1.1% in the entrance regions, which are more affected by in-air spot size variations. Overall, our single-room based beam model in the treatment planning system agreed with measurements in both rooms < 0.5% within the target region. For fifteen patient cases, the agreement was within 1%. Conclusion: We have demonstrated that dosimetrically equivalent machines can be established when in-air spot size variations are within 15% between the two treatment rooms

  18. Metallurgy and deformation of electron beam welded similar titanium alloys

    Science.gov (United States)

    Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.

    2012-04-01

    Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.

  19. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    International Nuclear Information System (INIS)

    Al-Sarraf, Z; Lucas, M

    2012-01-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  20. Ti-6Al-4V electron beam weld qualification using laser scanning confocal microscopy

    International Nuclear Information System (INIS)

    Wanjara, P.; Brochu, M.; Jahazi, M.

    2005-01-01

    Processing conditions for manufacturing Ti-6Al-4V components by welding using an electron beam source are known to influence the transformation microstructure in the narrow fusion and heat-affected zones of the weld region. This work examined the effect of multiple-sequence welding on the characteristics of the transformed beta microstructure, using laser scanning confocal microscopy to resolve the Widmanstaetten alpha-beta structure in the fusion zone. The evolution in the alpha interlamellar spacing and plate thickness with processing was then related to microhardness measurements in the weld region

  1. Refined Analysis of Fatigue Crack Initiation Life of Beam-to-Column Welded Connections of Steel Frame under Strong Earthquake

    Directory of Open Access Journals (Sweden)

    Weilian Qu

    2017-01-01

    Full Text Available This paper presents a refined analysis for evaluating low-cycle fatigue crack initiation life of welded beam-to-column connections of steel frame structures under strong earthquake excitation. To consider different length scales between typical beam and column components as well as a few crucial beam-to-column welded connections, a multiscale finite element (FE model having three different length scales is formulated. The model can accurately analyze the inelastic seismic response of a steel frame and then obtain in detail elastoplastic stress and strain field near the welded zone of the connections. It is found that the welded zone is subjected to multiaxial nonproportional loading during strong ground motion and the elastoplastic stress-strain field of the welded zone is three-dimensional. Then, using the correlation of the Fatemi-Socie (FS parameter versus fatigue life obtained by the experimental crack initiation fatigue data of the structural steel weldment subjected to multiaxial loading, the refined evaluation approach of fatigue crack initiation life is developed based on the equivalent plastic strain at fatigue critical position of beam end seams of crucial welded connections when the steel frame is subjected to the strong earthquake excitation.

  2. THE FORMATION OF BIMETALLIC CONNECTION IN WELDER DEPOSITION UNDER LASER WELDING WITH THE FILLER WIRE FEED

    Directory of Open Access Journals (Sweden)

    A. P. Yelistratov

    2017-01-01

    Full Text Available The metallurgical and technological features of welding deposition in a robotic unit with a semiconductor laser are analyzed. The prospects of using beam with low energy density in the spot heating for applying metallic layers using filler wire are shown. 

  3. Quantifying spot size reduction of a 1.8 kA electron beam for flash radiography

    Science.gov (United States)

    Burris-Mog, T. J.; Moir, D. C.

    2018-03-01

    The spot size of Axis-I at the Dual Axis Radiographic Hydrodynamic Test facility was reduced by 15.5% by including a small diameter drift tube that acts to aperture the outer diameter of the electron beam. Comparing the measured values to both analytic calculations and results from a particle-in-cell model shows that one-third to one-half of the spot size reduction is due to a drop in beam emittance. We infer that one-half to two-thirds of the spot-size reduction is due to a reduction in beam-target interactions. Sources of emittance growth and the scaling of the final focal spot size with emittance and solenoid aberrations are also presented.

  4. Texture Development and Material Flow Behavior During Refill Friction Stir Spot Welding of AlMgSc

    Science.gov (United States)

    Shen, Junjun; Lage, Sara B. M.; Suhuddin, Uceu F. H.; Bolfarini, Claudemiro; dos Santos, Jorge F.

    2018-01-01

    The microstructural evolution during refill friction stir spot welding of an AlMgSc alloy was studied. The primary texture that developed in all regions, with the exception of the weld center, was determined to be 〈110〉 fibers and interpreted as a simple shear texture with the 〈110〉 direction aligned with the shear direction. The material flow is mainly driven by two components: the simple shear acting on the horizontal plane causing an inward-directed spiral flow and the extrusion acting on the vertical plane causing an upward-directed or downward-directed flow. Under such a complex material flow, the weld center, which is subjected to minimal local strain, is the least recrystallized. In addition to the geometric effects of strain and grain subdivision, thermally activated high-angle grain boundary migration, particularly continuous dynamic recrystallization, drives the formation of refined grains in the stirred zone.

  5. Microstructural examination of Zr-2.5%Nb alloy welds made by pulsed Nd:YAG laser and TIG welding technique

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Varma, P.V.S.; Panakkal, J.P.; Srivastava, D.; Dey, G.K.

    2009-01-01

    The paper describes the weld microstructure of Zr-2.5%Nb alloy material. Bead on plate welds were made using pulsed Nd:YAG laser and TIG welding technique at different parameters. These welds were characterized at macro and microstructural level. Weld pools of Pulsed Laser and TIG welds were not resolved by optical microscopy. SEM too did not reveal much. Orientation imaging microscopy could reveal the presence of fine martensite. It was observed that microstructure is very sensitive to welding parameters. Microhardness studies suggested formation of martensite in the weld pool. It was also observed that laser welds had very sharp weld pool boundary as compared to TIG welds. Variation in microhardness of the weldment is seen and is influenced by overlapping of weld spots causing thermal treatment of previously deposited spots. (author)

  6. Variations the diameter tip of electrode on the resistance spot welding using electrode Cu on worksheet Fe

    Science.gov (United States)

    Baskoro, A. S.; Sugeng, S.; Sifa, Agus; Badruzzaman; Endramawan, Tito

    2018-04-01

    Resistance Spot Weld (RSW) is a welding technology which plays an important role that is often used in industry in large manufacturing industries, especially in the automotive sector, some of the parameters are affecting the welding process that give impact in the weld quality, diameter tip important impact on the resistance spot welding, This study can be categorized as experimental study by using Electrode material such as Cu and Fe Worksheet Materials, with a material thickness of 1 mm,0,8 mm, and 0,6 mm on each worksheet, and the large diameter of tip electrode (5√t) depend on the thickness of worksheet. Testing the material in the electrode and the worksheet by testing the composition and tensile test, and the hardness of the material used are to know the material used certainly. The result of the welding process was done by using the parameters voltage of 8KV, with a duty cycle of 50% using a variation of the time 8s-10s, and variations the electrode tip diameter that are affected by the thickness of the worksheet 5\\sqrt{t}, plate thickness used 1 mm, 0,8 mm and 0,6 mm, so that the electrodes was used to a thickness of 1 mm diameter tip electrode 5 mm, thickness 0,8 mm with an electrode tip diameter 4,5 mm and a thickness 0,6 mm with an electrode diameter of 4 mm, with current welding parameter 8kVA, and variations in holding time 10s, 9s and 8s 50% duty cycle, then testing welds with the standard shear test refers ASTM A370-2012 with more results to a thickness of 0,6 has the ability to withstand greater load on the holding time 8s and 9s, 10s, to a thickness 0,8 mm and 1 mm shear test results demonstrate the ability to withstand loads on the holding time of 10s and 9s have a greater ability than 8s on worksheet that has thickness 1 mm at a holding time of 10s, and then Maximum shear test averaging of 36,41 N at a worksheet with a thickness of 0,8 mm (diameter tip 4,5 mm) at a holding time of 8s and a mean minimum shear stress of 23,73 N at worksheet that

  7. Investigation of hot cracking in deep penetration electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    Thorvaldson, W.G.

    1978-06-10

    A defect in a deep penetration electron beam weld of 304L stainless steel to 21-6-9 stainless steel has been identified as a centerline hot crack. The study discussed in this report was made to define and to eliminate the cause of cracking.

  8. Investigation on the Mechanism and Failure Mode of Laser Transmission Spot Welding Using PMMA Material for the Automotive Industry

    Science.gov (United States)

    Wang, Xiao; Liu, Baoguang; Liu, Wei; Zhong, Xuejiao; Jiang, Yingjie; Liu, Huixia

    2017-01-01

    To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA) is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s) and type II (pulse frequency and the duration is 5 Hz, 3 s)) to the welding quality was investigated. The result showed that, in the case of the same peak voltages and defocusing distances, the number of bubbles for type I was obviously more than type II. The failure mode of type I was the base plate fracture along the solder joint, and the connection strength of type I was greater than type II. The weld pool diameter:depth ratio for type I was significantly greater than type II. It could be seen that there was a certain relationship between the weld pool diameter:depth ratio and the welding strength. By the finite element simulation, the weld pool for type I was more slender than type II, which was approximately the same as the experimental results. PMID:28772383

  9. Investigation on the Mechanism and Failure Mode of Laser Transmission Spot Welding Using PMMA Material for the Automotive Industry.

    Science.gov (United States)

    Wang, Xiao; Liu, Baoguang; Liu, Wei; Zhong, Xuejiao; Jiang, Yingjie; Liu, Huixia

    2017-01-01

    To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA) is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s) and type II (pulse frequency and the duration is 5 Hz, 3 s)) to the welding quality was investigated. The result showed that, in the case of the same peak voltages and defocusing distances, the number of bubbles for type I was obviously more than type II. The failure mode of type I was the base plate fracture along the solder joint, and the connection strength of type I was greater than type II. The weld pool diameter:depth ratio for type I was significantly greater than type II. It could be seen that there was a certain relationship between the weld pool diameter:depth ratio and the welding strength. By the finite element simulation, the weld pool for type I was more slender than type II, which was approximately the same as the experimental results.

  10. Investigation on the Mechanism and Failure Mode of Laser Transmission Spot Welding Using PMMA Material for the Automotive Industry

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    2017-01-01

    Full Text Available To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s and type II (pulse frequency and the duration is 5 Hz, 3 s to the welding quality was investigated. The result showed that, in the case of the same peak voltages and defocusing distances, the number of bubbles for type I was obviously more than type II. The failure mode of type I was the base plate fracture along the solder joint, and the connection strength of type I was greater than type II. The weld pool diameter:depth ratio for type I was significantly greater than type II. It could be seen that there was a certain relationship between the weld pool diameter:depth ratio and the welding strength. By the finite element simulation, the weld pool for type I was more slender than type II, which was approximately the same as the experimental results.

  11. Friction stir spot welding of 2024-T3 aluminum alloy with SiC nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Paidar, Moslem; Sarab, Mahsa Laali [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-01-15

    In this study, the Friction stir spot welding (FSSW) of 2024-T3 aluminum alloy with 1.6 mm thickness was investigated. The effects of the silicon carbide (SiC) nanoparticles on the metallurgical and mechanical properties were discussed. The effects of particles on tension shear and wear tests were also investigated. The process was conducted at a constant rotational speed of 1000 rpm. Results showed that adding SiC nanoparticles to the weld during FSSW had a major effect on the mechanical properties. In fact, the addition of nanoparticles as barriers prevented grain growth in the Stir zone (SZ). The data obtained in the tensile-shear and wear tests showed that tensile-shear load and wear resistance increased with the addition of SiC nanoparticles, which was attributed to the fine grain size produced in the SZ.

  12. Fracture toughness properties of similar and dissimilar electron beam welds

    International Nuclear Information System (INIS)

    Kocak, M.; Junghans, E.

    1994-01-01

    The weldability aspects, tensile and Crack Tip Opening Displacement (CTOD) toughness properties of 9Cr1MoNbV (P91) martensitic steel with austenitic 316L steel were evaluated for electron beam (EB) welds on 35 mm thick pates. The effects of mechanical heterogeneity (mis-matching) at the vicinity of the crack tip of dissimilar three point bend specimens on the CTOD fracture toughness values was also discussed. The CTOD tests were performed on similar and dissimilar EB welds of austenitic and tempered martensitic P91 steels at room temperature. Dilution of austenitic with martensitic steel resulted in predominantly martensitic EB weld metal, exhibiting rather high yield strength and hardness. Nevertheless, the weld metal produced high CTOD toughness values due to the beneficial effect of the lower strength austenitic steel part of the specimen in which crack deviation occured (mis-match effect). The coarse grained HAZ of the P91 steel side exhibits extremely poor CTOD toughness properties in the as-welded condition at room temperature. The CTOD values obtained are believed to be representing the intrinsic property of this zone since the distance of the crack tip to the weaker austenitic steel part of the SENB specimens was too large to cause an effective stress relaxation at the crack tip. Further post weld heat treatment at 750 C for two hours improved the CTOD toughness marginally. (orig.)

  13. Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding

    Science.gov (United States)

    Naito, Yasuaki; Katayama, Seiji; Matsunawa, Akira

    2003-03-01

    Hybrid welding was carried out on Type 304 stainless steel plate under various conditions using YAG laser combined with TIG arc. During arc and laser-arc hybrid welding, arc voltage variation was measured, and arc plasma, laser-induced plume and evaporation spots as well as keyhole behavior and liquid flow in the molten pool were observed through CCD camera and X-ray real-time transmission apparatus. It was consequently found that hybrid welding possessed many features in comparison with YAG laser welding. The deepest weld bead could be produced when the YAG laser beam of high power density was shot on the molten pool made beforehand stably with TIG arc. A keyhole was long and narrow, and its behavior was rather stable inside the molten pool. It was also confirmed that porosity was reduced by the suppression of bubble formation in hybrid welding utilizing a laser of a moderate power density.

  14. Effect of post-weld heat treatments on strength and toughness behavior of T-250 maraging steel welded by laser beam

    International Nuclear Information System (INIS)

    Li, Kun; Shan, Jiguo; Wang, Chunxu; Tian, Zhiling

    2016-01-01

    This paper elucidates here the strength and toughness behavior of T-250 maraging steel welded by laser beam under different approaches of three post-weld heat treatments, i.e. aging (A), solutionizing+aging (SA) and homogenizing+solutionizing+aging (HSA). The microstructures of the weld metals with A and SA processes both comprised of finely dispersive Ni 3 (Ti, Mo) precipitates, small martensite lath and reverted austenite along the grain boundary. However, in the weld metal with HSA process, it exhibited the same Ni 3 (Ti, Mo) precipitate with the large martensite lath and the absence of reverted austenite. The ultimate tensile strength and static toughness of the welded joint with HSA process were 1350.6 MPa and 63.8 MJ m −3 , respectively. The static toughness has been remarkably improved from 71% to 91% of the applied parent metal compared with that of the welded joint with A process. The present study underscores that the Ni 3 (Ti, Mo) precipitate and martensite are significant to ensure the high strength of welded joints. Due to its inconsistent deformation with the matrix of martensite, the reverted austenite has a notable influence on the toughness of welded joints. It shows that the post-weld heat treatments of HSA process can influence the mechanical behavior of welded joints by eliminating the reverted austenite.

  15. Effect of post-weld heat treatments on strength and toughness behavior of T-250 maraging steel welded by laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [Laser Processing Research Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Shan, Jiguo, E-mail: shanjg@mail.tsinghua.edu.cn [Laser Processing Research Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Professing Technology, Ministry of Education, Tsinghua University, Beijing 100084 (China); Wang, Chunxu; Tian, Zhiling [Institute for Special Steel, Central Iron & Steel Research Institute, Beijing 100081 (China)

    2016-04-29

    This paper elucidates here the strength and toughness behavior of T-250 maraging steel welded by laser beam under different approaches of three post-weld heat treatments, i.e. aging (A), solutionizing+aging (SA) and homogenizing+solutionizing+aging (HSA). The microstructures of the weld metals with A and SA processes both comprised of finely dispersive Ni{sub 3}(Ti, Mo) precipitates, small martensite lath and reverted austenite along the grain boundary. However, in the weld metal with HSA process, it exhibited the same Ni{sub 3}(Ti, Mo) precipitate with the large martensite lath and the absence of reverted austenite. The ultimate tensile strength and static toughness of the welded joint with HSA process were 1350.6 MPa and 63.8 MJ m{sup −3}, respectively. The static toughness has been remarkably improved from 71% to 91% of the applied parent metal compared with that of the welded joint with A process. The present study underscores that the Ni{sub 3}(Ti, Mo) precipitate and martensite are significant to ensure the high strength of welded joints. Due to its inconsistent deformation with the matrix of martensite, the reverted austenite has a notable influence on the toughness of welded joints. It shows that the post-weld heat treatments of HSA process can influence the mechanical behavior of welded joints by eliminating the reverted austenite.

  16. A comparative evaluation of microstructural and mechanical behavior of fiber laser beam and tungsten inert gas dissimilar ultra high strength steel welds

    Directory of Open Access Journals (Sweden)

    Jaiteerth R. Joshi

    2016-12-01

    Full Text Available The influence of different welding processes on the mechanical properties and the corresponding variation in the microstructural features have been investigated for the dissimilar weldments of 18% Ni maraging steel 250 and AISI 4130 steel. The weld joints are realized through two different fusion welding processes, tungsten inert arc welding (TIG and laser beam welding (LBW, in this study. The dissimilar steel welds were characterized through optical microstructures, microhardness survey across the weldment and evaluation of tensile properties. The fiber laser beam welds have demonstrated superior mechanical properties and reduced heat affected zone as compared to the TIG weldments.

  17. Welding for fusion grade neutral beam components - requirements, challenges, experiences and learnings

    International Nuclear Information System (INIS)

    Joshi, Jaydeep; Patel, Hitesh; Yadav, Ashish; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2016-01-01

    Negative ion based Neutral Beam Injectors (NBI) are the integral part of large size fusion devices where Neutral Beams of Hydrogen/Deuterium atoms are injected into the fusion reactor to heat the plasma, drive a plasma current, provide fuel to the plasma and also help to diagnose the plasma through spectroscopic measurements. The presentation shares the experiences of handling, some of special welding activities applicable for fusion prototypes developments, experiments, methodology developed for the inspection/tests, criteria considered with the appropriate justifications. This also shares the view point of authors code should further be supplement and incorporate the fusion specific applications considering future needs. In addition, explorations to meet our future needs of welding with specific attention to indigenous developments have been described

  18. Monitoring of martensite formation during welding by means of acoustic emission

    International Nuclear Information System (INIS)

    Bohemen, S.M.C. van; Hermans, M.J.M.; Ouden, G. den

    2001-01-01

    The martensitic transformation during gas tungsten arc (GTA) welding of steel 42CrMo4 has been studied using the acoustic emission (AE) monitoring technique. Welds were produced under static conditions (spot welding) and under stationary conditions (travelling arc welding). After spot welding, the root mean square (RMS) value of the continuous acoustic emission was measured, revealing a peak that reflects the evolution of martensite formation during cooling of the spot weld. The RMS value was also measured during travelling arc welding at different heat inputs and corrected for the noise of the welding process to obtain the RMS value due to martensite formation. After welding, optical metallography was carried out to quantify the amount of martensite formed during cooling of the weld. An analysis of the results shows that the squared RMS value is proportional to the volume rate of martensite formation during welding, which is consistent with theory and in good agreement with the results obtained in the case of spot welding. The obtained results suggest that AE can be applied as a real time monitoring technique for the detection of martensite formation during steel welding. (author)

  19. Material flow and microstructural evolution during friction stir spot welding of AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Yuan, W.; Mishra, R.S.; Carlson, B.; Verma, R.; Mishra, R.K.

    2012-01-01

    Material flow and local texture evolution during friction stir spot welding (FSSW) of AZ31 magnesium alloy was characterized by varying tool rotation rates. Texture at various locations of the welded region was measured using electron backscatter diffraction (EBSD). Material flow is significantly influenced by tool rotation rate with a conical step spiral pin tool, and FSSW introduces a unique basal fiber texture in the welded region. Results indicate that local texture evolution is dominated by shear deformation through material flow. The tool shoulder applies both shear and compressive deformation to the upper region material; however, the rotating pin introduces only shear deformation to the adjacent material. As the tool rotation rate increases, the effect of both tool shoulder and pin becomes more prominent by introducing a higher degree of basal pole tilt with respect to the initial rolling texture at the periphery of the pin, but less tilt in the upper region beneath the tool shoulder undersurface. The equiaxed fine grain structure in the stir zone appears to result from the twinning-induced dynamic recrystallization and discontinuous dynamic recrystallization.

  20. Laser beam-plasma plume interaction during laser welding

    Science.gov (United States)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  1. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    Science.gov (United States)

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  2. Joining of cemented carbides to steel by laser beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Barbatti, C.; Garcia, J.; Pyzalla, A. [Max-Planck-Institut fuer Eisenforschung GmbH, 40237 Duesseldorf (Germany); Liedl, G. [TU Wien, Institut fuer Umform- und Hochleistungslasertechnik (IFLT), 1040 Vienna (Austria)

    2007-11-15

    Welding of dissimilar materials such as steel and cemented carbides (hardmetals, cermets) is particularly challenging e.g. because mismatches in their thermal expansion coefficients and thermal conductivities result in residual stress formation and because of the formation of brittle intermetallic phases. Laser beam welding of cemented carbides to steel appears as an attractive complementary technique to conventional brazing processes due to its high precision, high process speed, low heat input and the option of welding without filler. Here a laser welding process including pre-heat treatment and post-heat treatment was applied successfully to joining as-sintered and nitrided hardmetals and cermets to low alloyed steel. The microstructure and mechanical properties of the welds are investigated by microscopy, X-ray diffraction, microhardness measurements, and bending tests. The results reveal that the three-step laser beam welding process produced crack-free and non-porous joints. Nitridation of the cemented carbides results in a significant reduction of the amount of brittle intermetallic phases. The mechanical properties of the joints are competitive to those of the conventional brazed steel-cemented carbide joints. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Das Schweissen von ungleichartigen Werkstoffen wie z. B. Staehlen mit Hartmetallen und Cermets stellt eine erhebliche Herausforderung dar, u. a. infolge der unterschiedlichen thermischen Ausdehnungskoeffizienten und Waermeleitfaehigkeiten, welche die Bildung von Eigenspannungen zur Folge haben, sowie aufgrund der Bildung sproeder intermetallischer Phasen. Das Laserstrahlschweissen von Hartmetallen/Cermets mit Stahl erscheint als attraktives komplementaeres Verfahren zum ueblicherweise verwendeten Loeten, da es die Herstellung von Verbindungen mit hoeherer Praezision, hoeherer Geschwindigkeit sowie geringerem Waermeeintrag erlaubt und die Verwendung eines Zusatzwerkstoffs nicht notwendig ist

  3. Magnetic property effect on transport processes in resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Wei, P S [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424 (China); Wu, T H, E-mail: pswei@mail.nsysu.edu.tw, E-mail: wux0064@gmail.com [Department of Mechanical Engineering, Yung Ta Institute of Technology and Commerce, Pintong, Taiwan 909 (China)

    2011-08-17

    This study investigates the effects of the Curie temperature and magnetic permeability on transport variables, solute distribution and nugget shapes during resistance spot welding. The Curie temperature is the temperature below which a metal or alloy is ferromagnetic with a high magnetic permeability, and above which it is paramagnetic with a small magnetic permeability. The model proposed here accounts for electromagnetic force, heat generation and contact resistance at the faying surface and electrode-workpiece interfaces and bulk resistance in workpieces. Contact resistance includes constriction and film resistances, which are functions of hardness, temperature, electrode force and surface condition. The computed results show that transport variables and nugget shapes can be consistently interpreted from the delay of response time and jump of electric current density as a result of finite magnetic diffusion, rather than through the examination of the variations of dynamic electrical resistance with time. The molten nugget on the faying surface is initiated earlier with increasing magnetic permeability and Curie temperature. A high Curie temperature enhances convection and solute mixing, and readily melts through the workpiece surface near the electrode edge. Any means to reduce the Curie temperature or magnetic permeability, such as adjusting the solute content, can be a good way to control weld quality. This study can also be applied to interpret the contact problems encountered in various electronics and packaging technologies, and so on.

  4. An investigation of fusion zone microstructures in electron beam welding of copper-stainless steel

    International Nuclear Information System (INIS)

    Magnabosco, I.; Ferro, P.; Bonollo, F.; Arnberg, L.

    2006-01-01

    The article presents a study of three different welded joints produced by electron beam welding dissimilar materials. The junctions were obtained between copper plates and three different austenitic stainless steel plates. Different welding parameters were used according to the different thicknesses of the samples. Morphological, microstructural and mechanical (micro-hardness test) analyses of the weld bead were carried out. The results showed complex heterogeneous fusion zone microstructures characterized both by rapid cooling and poor mixing of the materials which contain main elements which are mutually insoluble. Some defects such as porosity and microfissures were also found. They are mainly due to the process and geometry parameters

  5. Development of a high power electron beam welding gun with replaceable high voltage feed-through insulators

    Energy Technology Data Exchange (ETDEWEB)

    Saha, T.K; Mascarenhas, M.; Kandaswamy, E., E-mail: tanmay@barc.gov.in [Power Beam Equipment Design Section, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Ceramic to metal sealed feed-through insulators are commonly used in electron beam welding gun. The above feed-through insulators are susceptible to failure, as the brazing joints in them are not always very strong. Failure in one of these feed-through could render the complete gun unusable. This problem has already been faced in BARC, which led to the development of the electron gun with replaceable feed through insulators. A 24 kW Electron Beam Welding (EBW) gun with indigenous designed replaceable insulators is fabricated in BARC. Emphasis during the design of the gun had been to reduce the use of imported components to zero. This paper describes the design and fabrication of this gun and reports various simulations and tests performed. Beam trajectory of the gun is numerically computed and presented. Weld passes were carried out on stainless steel plates show satisfactory penetrations. (author)

  6. A reliability analysis framework with Monte Carlo simulation for weld structure of crane's beam

    Science.gov (United States)

    Wang, Kefei; Xu, Hongwei; Qu, Fuzheng; Wang, Xin; Shi, Yanjun

    2018-04-01

    The reliability of the crane product in engineering is the core competitiveness of the product. This paper used Monte Carlo method analyzed the reliability of the weld metal structure of the bridge crane whose limit state function is mathematical expression. Then we obtained the minimum reliable welding feet height value for the welds between cover plate and web plate on main beam in different coefficients of variation. This paper provides a new idea and reference for the growth of the inherent reliability of crane.

  7. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    Science.gov (United States)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  8. Multi-image acquisition-based distance sensor using agile laser spot beam.

    Science.gov (United States)

    Riza, Nabeel A; Amin, M Junaid

    2014-09-01

    We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.

  9. Microstructural evolution of fusion zone in laser beam welds of pure titanium

    International Nuclear Information System (INIS)

    Liu, H.; Nakata, K.; Zhang, J.X.; Yamamoto, N.; Liao, J.

    2012-01-01

    Microstructural evolution of fusion zone in laser beam welds of pure titanium was studied by means of electron backscattering diffraction. The microstructural evolution is strongly affected by the β → α transformation mechanism dependent on the cooling rate during phase transformation. The long-range diffusional transformation mainly occurs in the fusion zone at the low cooling rate, and the massive transformation dominantly takes place at the high cooling rate. For this reason, the grain morphologies probably change from the granular-like to columnar-like grains with the cooling rate increasing. - Highlights: ► Microstructures of fusion zone in laser beam welds of pure titanium are studied. ► Increasing cooling rate changes grain morphology from granular to columnar one. ► Final microstructures depend on the β→α transformation mechanisms.

  10. Interactions Between Fibroblast Cells and Laser Beam Welded AISI 2205 Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ceyhun KÖSE

    2018-05-01

    Full Text Available Because of their high mechanical strength, excellent corrosion resistance and good weldability, duplex stainless steels are mostly used in industries such as oil, chemistry, petrochemistry, food and occasionally used in medical industry. These properties have enabled us to use duplex stainless steels in biomedical applications recently. Accordingly, duplex stainless steel material can be highly important to examine the toxic effect on the cells. In this study, the effect of the AISI 2205 duplex stainless steels which are joined by CO2 laser beam welding on viability of L929 fibroblast cells has been studied in vitro for the first time. For this aim, the cells were kept in DMEM/F-12 (Thermofisher Scientific 31331-028 medium for 7 days. The viability study was experimentally studied using the MTT (Thiazolyl Blue Tetrazolium Bromide method for 7 days. The cell viability of the laser beam welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. According to the obtained results, it was revealed that laser beam welded and base metal AISI 2205 duplex stainless steel has been found suitable to study for biomedical applications. DOI: http://dx.doi.org/10.5755/j01.ms.24.2.18006

  11. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.

    2004-01-01

    . The overall assessment of the weld bonding process is made using several commercial adhesives with varying working times under different surface conditions. The quality of the resulting joints is evaluated by means of macroetching observations, tension-shear tests and peel tests. The theoretical investigation......This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding...... of the process consists of numerical predictions based on the commercial finite element program SORPAS with the purpose of establishing the most favourable parameters that allow spot-welding through the adhesives....

  12. A study of dynamic resistance during small scale resistance spot welding of thin Ni sheets

    International Nuclear Information System (INIS)

    Tan, W; Zhou, Y; Kerr, H W; Lawson, S

    2004-01-01

    The dynamic resistance has been investigated during small scale resistance spot welding (SSRSW) of Ni sheets. Electrical measurements have been correlated with scanning electron microscope images of joint development. The results show that the dynamic resistance curve can be divided into the following stages based on physical change in the workpieces: asperity heating, surface breakdown, asperity softening, partial surface melting, nugget growth and expulsion. These results are also compared and contrasted with dynamic resistance behaviour in large scale RSW

  13. Spot size characterization of focused non-Gaussian X-ray laser beams

    NARCIS (Netherlands)

    Chalupsky, J.; Krzywinski, J.; Juha, L.; Hajkova, V.; Cihelka, J.; Burian, T.; Vysin, L.; Gaudin, J.; Gleeson, A.; Jurek, M.; Khorsand, A. R.; Klinger, D.; Wabnitz, H.; Sobierajski, R.; Stormer, M.; Tiedtke, K.; Toleikis, S.

    2010-01-01

    We present a new technique for the characterization of non-Gaussian laser beams which cannot be described by an analytical formula. As a generalization of the beam spot area we apply and refine the definition of so called effective area (A(eff)) [1] in order to avoid using the full-width at half

  14. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William

    2014-01-01

    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...... of the welding machines. Simulations of the mechanical tests take into account material softening due to the accumulation of ductile damage and cover conventional tests, such as tensile–shear tests, cross-tension test and peel tests, as well as the possibility of special-purpose tests designed by the users...

  15. Mikrostruktur udvikling i trip-stål under frictionstir spot svejsning

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    In this work the feasibility of joining TRIP steel by Friction Stir Spot Welding is investigated. The aim is to produce successful welds and to get a fundamental understanding of the mechanisms occurring in the microstructure during welding. One of the primary parameters in Friction Stir Spot...

  16. Development of the electron beam welding of the aluminium alloy 6061-T6 for the Jules Horowitz reactor

    International Nuclear Information System (INIS)

    Leblanc, Y.

    2013-01-01

    The aluminium alloy 6061-T6 has been selected for the construction of the Jules Horowitz's reactor vessel. This reactor vessel is pressurized and will be made through butt welding of ∼ 2 cm thick aluminium slabs. The electron beam welding process has been tested and qualified. It appears that this welding process allows: -) welding without pre-heating, -) vacuum welding, -) welding of 100% of the thickness in one passage, -) very low deforming welding process, -) very low density and very low volume of blow holes, -) weak ZAT (Thermal Affected Zones), and -) high reproducibility that permits automation. (A.C.)

  17. Feasibility study of electron beam welding of spent nuclear fuel canisters

    International Nuclear Information System (INIS)

    Sanderson, A.; Szluha, T.F.; Turner, J.L.; Leggatt, R.H.

    1983-04-01

    A thick walled copper container is presently the prime Swedish alternative for encapsulation of spent nuclear fuel. In order to demonstrate the feasibility of encapsulating high-level nuclear waste in copper containers, a study of electron beam welding of thick copper has been performed. Two copper qualities have been investigated, oxygen free high conductivity (OFHC) copper and phosphorous desoxydized high conductivity copper (PDO). The findings in this study are summarized below. In 100 mm thick copper penetration can be achived at power level of about 75 kW (typically 150 kV x 500 mA) at welding speed of 100 mm/min. The welds in OFHC copper made under these conditions are free from major defects during constant welding conditions. The welds in PDO copper show a microporosity level considerably higher than those in OFHC copper, but no major defects are produced in the welds in PDO copper. In the ending of the weld (ie the fade out) it is still not possible to completely eliminate root and cold-shut defects. A semi-full-scale lid weld has been performed successfully. Automatic ultrasonic C-scan has been shown to be useful in detecting and displaying defects, but some problems still remain with defect sizing. The different speciments of OFHS copper had different attenuation of the ultrasonic signal, forged copper showing a far lower attenuation than hot extruded copper, indicating that attention must be paid in choosing copper that allows accurate ultrasonic testing. Resiudal stresses in the welded zone has been measured and are found to lie in the range -32N/mm 2 to +36N/mm 2 . The peak stress was less than half the assumed value of the proof stress of the fused metal. (authors)

  18. Multi-focus beam shaping of high power multimode lasers

    Science.gov (United States)

    Laskin, Alexander; Volpp, Joerg; Laskin, Vadim; Ostrun, Aleksei

    2017-08-01

    Beam shaping of powerful multimode fiber lasers, fiber-coupled solid-state and diode lasers is of great importance for improvements of industrial laser applications. Welding, cladding with millimetre scale working spots benefit from "inverseGauss" intensity profiles; performance of thick metal sheet cutting, deep penetration welding can be enhanced when distributing the laser energy along the optical axis as more efficient usage of laser energy, higher edge quality and reduction of the heat affected zone can be achieved. Building of beam shaping optics for multimode lasers encounters physical limitations due to the low beam spatial coherence of multimode fiber-coupled lasers resulting in big Beam Parameter Products (BPP) or M² values. The laser radiation emerging from a multimode fiber presents a mixture of wavefronts. The fiber end can be considered as a light source which optical properties are intermediate between a Lambertian source and a single mode laser beam. Imaging of the fiber end, using a collimator and a focusing objective, is a robust and widely used beam delivery approach. Beam shaping solutions are suggested in form of optics combining fiber end imaging and geometrical separation of focused spots either perpendicular to or along the optical axis. Thus, energy of high power lasers is distributed among multiple foci. In order to provide reliable operation with multi-kW lasers and avoid damages the optics are designed as refractive elements with smooth optical surfaces. The paper presents descriptions of multi-focus optics as well as examples of intensity profile measurements of beam caustics and application results.

  19. Fatigue life estimation of welded components considering welding residual stress relaxation and its mean stress effect

    International Nuclear Information System (INIS)

    Han, Seung Ho; Han, Jeong Woo; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives

  20. TU-FG-BRB-12: Real-Time Visualization of Discrete Spot Scanning Proton Therapy Beam for Quality Assurance

    International Nuclear Information System (INIS)

    Matsuzaki, Y; Jenkins, C; Yang, Y; Xing, L; Yoshimura, T; Fujii, Y; Umegaki, K

    2016-01-01

    Purpose: With the growing adoption of proton beam therapy there is an increasing need for effective and user-friendly tools for performing quality assurance (QA) measurements. The speed and versatility of spot-scanning proton beam (PB) therapy systems present unique challenges for traditional QA tools. To address these challenges a proof-of-concept system was developed to visualize, in real-time, the delivery of individual spots from a spot-scanning PB in order to perform QA measurements. Methods: The PB is directed toward a custom phantom with planar faces coated with a radioluminescent phosphor (Gd2O2s:Tb). As the proton beam passes through the phantom visible light is emitted from the coating and collected by a nearby CMOS camera. The images are processed to determine the locations at which the beam impinges on each face of the phantom. By so doing, the location of each beam can be determined relative to the phantom. The cameras are also used to capture images of the laser alignment system. The phantom contains x-ray fiducials so that it can be easily located with kV imagers. Using this data several quality assurance parameters can be evaluated. Results: The proof-of-concept system was able to visualize discrete PB spots with energies ranging from 70 MeV to 220 MeV. Images were obtained with integration times ranging from 20 to 0.019 milliseconds. If not limited by data transmission, this would correspond to a frame rate of 52,000 fps. Such frame rates enabled visualization of individual spots in real time. Spot locations were found to be highly correlated (R"2=0.99) with the nozzle-mounted spot position monitor indicating excellent spot positioning accuracy Conclusion: The system was shown to be capable of imaging individual spots for all clinical beam energies. Future development will focus on extending the image processing software to provide automated results for a variety of QA tests.

  1. TU-FG-BRB-12: Real-Time Visualization of Discrete Spot Scanning Proton Therapy Beam for Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Y [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Jenkins, C; Yang, Y; Xing, L [Stanford University, Stanford, California (United States); Yoshimura, T; Fujii, Y [Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan); Umegaki, K [Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: With the growing adoption of proton beam therapy there is an increasing need for effective and user-friendly tools for performing quality assurance (QA) measurements. The speed and versatility of spot-scanning proton beam (PB) therapy systems present unique challenges for traditional QA tools. To address these challenges a proof-of-concept system was developed to visualize, in real-time, the delivery of individual spots from a spot-scanning PB in order to perform QA measurements. Methods: The PB is directed toward a custom phantom with planar faces coated with a radioluminescent phosphor (Gd2O2s:Tb). As the proton beam passes through the phantom visible light is emitted from the coating and collected by a nearby CMOS camera. The images are processed to determine the locations at which the beam impinges on each face of the phantom. By so doing, the location of each beam can be determined relative to the phantom. The cameras are also used to capture images of the laser alignment system. The phantom contains x-ray fiducials so that it can be easily located with kV imagers. Using this data several quality assurance parameters can be evaluated. Results: The proof-of-concept system was able to visualize discrete PB spots with energies ranging from 70 MeV to 220 MeV. Images were obtained with integration times ranging from 20 to 0.019 milliseconds. If not limited by data transmission, this would correspond to a frame rate of 52,000 fps. Such frame rates enabled visualization of individual spots in real time. Spot locations were found to be highly correlated (R{sup 2}=0.99) with the nozzle-mounted spot position monitor indicating excellent spot positioning accuracy Conclusion: The system was shown to be capable of imaging individual spots for all clinical beam energies. Future development will focus on extending the image processing software to provide automated results for a variety of QA tests.

  2. Microstructural and Mechanical Characterization of Electron Beam Welded Joints of High Strength S960QL and Weldox 1300 Steel Grades

    Directory of Open Access Journals (Sweden)

    Błacha S.

    2017-06-01

    Full Text Available The paper shows the results of metallographic examination and mechanical properties of electron beam welded joints of quenched and tempered S960QL and Weldox 1300 steel grades. The aim of this study was to examine the feasibility of producing good quality electron beam welded joints without filler material.

  3. Welding of the VNZh7-3 alloy with the VT1-0 titanium by laser beam

    International Nuclear Information System (INIS)

    Baranov, M.S.; Voshchinskij, M.L.; Fedorov, P.M.; Shilov, I.F.; Zytner, G.D.

    1980-01-01

    Found is the principle possibility of the laser welding of dissimilar metals and the optimum welding mode as well with the testing of quality and strength indices of welded joints and with mode test on structural elements. The possibility of laser welding of the sintered VNZh 7-3 alloy with the VT1-0 titanium in argon is shown. Studied is the technique of forming of welded edge joint of the above dissimilar metals. Established is the optimum method of laser beam setting at an angle of 20 deg to the butt surface and with the shift by 1/3 of diameter of welded point in the titanium direction. Shear tests of elementary and natural samples have shown that real strength of welded joint exceeds the VT1-0 titanium strength. Macro- and microstructure of welded joints has layer-vortex alloy structure on the base of the VT1-0 titanium inclusion of tungsten grains that indicates the intensive mixing of metals during the welding

  4. Electron beam weld parameter set development and cavity cost

    International Nuclear Information System (INIS)

    John Brawley; John Mammossor; Larry Philips

    1997-01-01

    Various methods have recently been considered for use in the cost-effective manufacturing of large numbers of niobium cavities. A method commonly assumed to be too expensive is the joining of half cells by electron beam welding (EBW), as has been done with multipurpose EBW equipment for producing small numbers of cavities at accelerator laboratories. The authors have begun to investigate the advantages that would be available if a single-purpose, task-specific EBW processing tool were used to produce cavities in a high-volume commercial-industrial context. For such a tool and context they have sought to define an EBW parameter set that is cost-effective not only in terms of per-cavity production cost, but also in terms of the minimization of quench-producing weld defects. That is, they define cavity cost-effectiveness to include both production and performance costs. For such an EBW parameter set, they have developed a set of ideal characteristics, produced and tested samples and a complete cavity, studied the weld-defect question, and obtained industrial estimates of cavity high-volume production costs. The investigation in ongoing. This paper reports preliminary findings

  5. Efeito do tipo de revestimento na soldagem a ponto de aços galvanizados Effect of coating type on spot welding of galvanized steel

    Directory of Open Access Journals (Sweden)

    Tarcélio Anício da Silva

    2010-09-01

    Full Text Available Os aços galvanizados são cada vez mais utilizados pela indústria automobilística devido à sua excelente resistência à corrosão e boa trabalhabilidade. A soldagem a pontos por resistência de aços galvanizados apresenta o inconveniente de um maior desgaste dos eletrodos quando comparada com a soldagem de aços não revestidos. Este é causado pela reação do zinco com o cobre do eletrodo, formando uma liga Zn-Cu (latão que diminui a vida útil do eletrodo. No presente trabalho, foram feitos testes de soldagem a ponto utilizando aços livres de intersticiais (IF, revestidos por imersão a quente com zinco puro (GI e liga Zn-Fe (GA. Foram determinados os campos de soldabilidade dinâmicos e a vida útil dos eletrodos para juntas formadas pelas combinações GA/GA, GI/GI e GA/GI. O estudo do campo de soldabilidade dinâmica mostrou que os valores de corrente necessários para a obtenção de uma solda adequada aumentam mais rapidamente para a junta de materiais GI/GI e este efeito foi associado com a maior contaminação do eletrodo pelo Zn do revestimento. Por sua vez, a soldagem da junta GA/GI apresenta taxas de variação desta corrente um pouco maiores do que a da junta GA/GA, mas menores que a da junta GI/GI. Em geral, a junta GA/GI apresentou resultados nos testes de soldagem mais próximos dos da junta GA/GA em comparação com os testes com a junta GI/GI. Isto mostra a influência positiva, do revestimento GA, no aumento do número de pontos de solda, mesmo quando a junta é constituída de aços com dois tipos de revestimentos diferentes (GA e GI.Steels coated with zinc and zinc-iron alloys are being increasingly used by the car industry due to their excellent corrosion resistance and good workability. Spot welding of coated steels has the disadvantage of increasing electrodes wear when compared to uncoated steels. Such wear is caused by the reaction of the zinc coating with the copper of the electrode forming an alloy Zn

  6. Clamp and Gas Nozzle for TIG Welding

    Science.gov (United States)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  7. Pulmonary function abnormalities and airway irritation symptoms of metal fumes exposure on automobile spot welders.

    Science.gov (United States)

    Luo, Jiin-Chyuan John; Hsu, Kuang-Hung; Shen, Wu-Shiun

    2006-06-01

    Spot or resistance welding has been considered less hazardous than other types of welding. Automobile manufacturing is a major industry in Taiwan. Spot and arc welding are common processes in this industry. The respiratory effects on automobile spot welders exposed to metal fumes are investigated. The cohort consisted of 41 male auto-body spot welders, 76 male arc welders, 71 male office workers, and 59 assemblers without welding exposure. Inductivity Coupled Plasma Mass Spectrophotometer (ICP-MS) was applied to detect metals' (zinc, copper, nickel) levels in the post-shift urine samples. Demographic data, work history, smoking status, and respiratory tract irritation symptoms were gathered by a standard self-administered questionnaire. Pulmonary function tests were also performed. There were significantly higher values for average urine metals' (zinc, copper, nickel) levels in spot welders and arc welders than in the non-welding controls. There were 4 out of 23 (17.4%) abnormal forced vital capacity (FVC) among the high-exposed spot welders, 2 out of 18 (11.1%) among the low-exposed spot welders, and 6 out of 130 (4.6%) non-welding-exposed workers. There was a significant linear trend between spot welding exposure and the prevalence of restrictive airway abnormalities (P = 0.036) after adjusting for other factors. There were 9 out of 23 (39.1%) abnormal peak expiratory flow rate (PEFR) among high-exposed spot welders, 5 out of 18 (27.8%) among the low-exposed spot welders, and 28 out of 130 (21.5%) non-welding-exposed workers. There was a borderline significant linear trend between spot welding exposure and the prevalence of obstructive lung function abnormalities (P = 0.084) after adjusting for other factors. There was also a significant dose-response relationship of airway irritation symptoms (cough, phlegm, chronic bronchitis) among the spot welders. Arc welders with high exposure status also had a significant risk of obstructive lung abnormalities (PEFR

  8. Residual stresses due to weld repairs, cladding and electron beam welds and effect of residual stresses on fracture behavior. Annual report, September 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Rybicki, E.F.

    1978-11-01

    The study is divided into three tasks. Task I is concerned with predicting and understanding the effects of residual stresses due to weld repairs of pressure vessels. Task II examines residual stresses due to an electron beam weld. Task III addresses the problem of residual stresses produced by weld cladding at a nozzle vessel intersection. The objective of Task I is to develop a computational model for predicting residual stress states due to a weld repair of pressure vessel and thereby gain an understanding of the mechanisms involved in the creation of the residual stresses. Experimental data from the Heavy Section Steel Technology (HSST) program at Oak Ridge National Laboratories (ORNL) is used to validate the computational model. In Task II, the residual stress model is applied to the case of an electron beam weld of a compact tension freacture specimen. The results in the form of residual stresses near the weld are then used to explain unexpected fracture behavior which is observed in the testing of the specimen. For Task III, the residual stress model is applied to the cladding process used in nozzle regions of nuclear pressure vessels. The residual stresses obtained from this analysis are evaluated to determine their effect on the phenomena of under-clad cracking

  9. Welding feasibility study of U-shape lips at ITER Port-Plug with new laser beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Behr, W., E-mail: w.behr@fz-juelich.de; Faidel, D.; Fischer, K.; Pap, M.; Offermanns, G.

    2013-10-15

    A “Cut and weld feasibility study of U shape lips” shown on June 2007 was initial of the following investigations. A new solution for Port Plug sealing at ITER was demanded and the experience in laser beam welding of the ZAT (Central Institute of Technology) in Jülich (Research Centre Jülich) offered an alternative solution. Up to now mechanically fixed sealing or sealing by TIG welding is used with typical benefits and problems, as heat input, shrinkage or limited room for tools. New disc-laser application for tight welding (leakage rate < 10{sup −9} mbar l/s) of the sealing lips is presented in the following. Both in the metallographic investigation and by means of leakage rate investigation the suitability of the selected procedure as seal alternative at the ITER Port Plug could be pointed out. The distance between two connections can be reduced to approx. 5 mm. The presented milling process for weld seam removal offers an option additionally to laser beam cutting. Final tests with a new disc-laser source offered additional benefits concerning seam quality, process stability and seam geometry. The distance between two connections will be reduced to less than 3 mm in next investigations. Construction unit near investigations and a demo part in original size underline finally the industrial suitability of the laser-welding-process for Port-Plug sealing at ITER.

  10. Study of welding characteristics of inconel 600 alloy using a continuous wave Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Song, Seong Wook; Yoo, Young Tae; Shin, Ho Jun

    2004-01-01

    Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for Inconel 600 plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between plate and plate, etc. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power. Welding characteristics of austienite Inconel 600 using a continuous wave Nd:YAG laser are experimentally investigated. This paper describes the weld ability of inconel 600 for machine structural use by Nd:YAG laser

  11. Automated translating beam profiler for in situ laser beam spot-size and focal position measurements

    Science.gov (United States)

    Keaveney, James

    2018-03-01

    We present a simple and convenient, high-resolution solution for automated laser-beam profiling with axial translation. The device is based on a Raspberry Pi computer, Pi Noir CMOS camera, stepper motor, and commercial translation stage. We also provide software to run the device. The CMOS sensor is sensitive over a large wavelength range between 300 and 1100 nm and can be translated over 25 mm along the beam axis. The sensor head can be reversed without changing its axial position, allowing for a quantitative estimate of beam overlap with counter-propagating laser beams. Although not limited to this application, the intended use for this device is the automated measurement of the focal position and spot-size of a Gaussian laser beam. We present example data of one such measurement to illustrate device performance.

  12. Laser and electron beam welding study on niobium based Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Kushwaha, R.P.; Tewari, R.; Dey, G.K.

    2016-01-01

    The refractory metal based alloys are most suitable for the structural applications in high temperature reactors envisaged to operate at temperature higher than 1000°C. The Nb-1Zr-0.1C (wt. %) is being considered for structural applications in the proposed Compact High Temperature Reactors (CHTR). The welding of this alloy is a difficult task due to its reactive nature and higher thermal conductivity. Laser and Electron Beam (EB) welds were produced on sheet of Nb-1Zr-0.1C alloy at various processing parameters and their effects on weld quality was studied by characterizing their optical and SEM micrographs and microhardness profile. The joining efficiency of both welding processes were also studied. The laser welds done in air with argon shielding showed higher hardness values compared to EB welds indicating need for adequate shielding. This study will help to find the optimized welding parameters to produce defect free welds of Nb-1Zr-0.1C alloy. (author)

  13. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    Science.gov (United States)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  14. Microstructural Characteristics and Mechanical Properties of Friction Stir Spot Welded 2A12-T4 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Huijie Liu

    2013-01-01

    Full Text Available 2A12-T4 aluminum alloy was friction stir spot welded, and the microstructural characteristics and mechanical properties of the joints were investigated. A softened microstructural region existed in the joint, and it consisted of stir zone (SZ, thermal mechanically affected zone (TMAZ, and heat affected zone (HAZ. The minimum hardness was located in TMAZ, and the average hardness value in SZ can be improved by appropriately increasing welding heat input. The area of complete bonding region at the interface increased with increasing welding heat input because more interface metals were mixed. In a certain range of FSSW parameters, the tensile shear failure load of the joint increased with increasing rotation speed, but it decreased with increasing plunge rate or decreasing shoulder plunging depth. Two kinds of failure modes, that is, shear fracture mode and tensile-shear mixed fracture mode, can be observed in the tensile shear tests, and the joint that failed in the tensile-shear mixed fracture mode possessed a high carrying capability.

  15. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  16. Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars

    Science.gov (United States)

    Iatcheva, Ilona; Darzhanova, Denitsa; Manilova, Marina

    2018-03-01

    The aim of this work is the modeling of coupled electric and heat processes in a system for spot resistance welding of cross-wire reinforced steel bars. The real system geometry, dependences of material properties on the temperature, and changes of contact resistance and released power during the welding process have been taken into account in the study. The 3D analysis of the coupled AC electric and transient thermal field distributions is carried out using the finite element method. The novel feature is that the processes are modeled for several successive time stages, corresponding to the change of contact area, related contact resistance, and reduction of the released power, occurring simultaneously with the creation of contact between the workpieces. The values of contact resistance and power changes have been determined on the basis of preliminary experimental and theoretical investigations. The obtained results present the electric and temperature field distributions in the system. Special attention has been paid to the temperature evolution at specified observation points and lines in the contact area. The obtained information could be useful for clarification of the complicated nature of interrelated electric, thermal, mechanical, and physicochemical welding processes. Adequate modeling is also an opportunity for proper control and improvement of the system.

  17. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  18. Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints

    International Nuclear Information System (INIS)

    Shen, Zhikang; Yang, Xinqi; Zhang, Zhaohua; Cui, Lei; Li, Tielong

    2013-01-01

    Highlights: ► There is a correlation between the void in the weld and the joint strength. ► The preferable mechanical properties can be obtained by lowering rotational speed. ► The alclad has an adverse effect on the mechanical properties. -- Abstract: In this paper, the microstructure and mechanical properties of 7075-T6 aluminum alloy joints joined by refill friction stir spot welding (RFSSW) were investigated. The keyhole was refilled successfully, and the microstructure of the weld exhibited variations in the grain sizes in the width and the thickness directions. There existed defects (hook, voids, bonding ligament, etc.) associated to the material flow in the weld. Mechanical properties of the joint have been investigated in terms of hardness and tensile/shear and cross-tension test, and the fracture mechanisms were observed by SEM (scanning electron microscope). The hardness profile of the weld exhibited a W-shaped appearance in the macroscopic level, which reached the minimum at the boundary of the sleeve and the clamping ring. The variation laws between tensile/shear and cross-tension strength and processing parameters were rather complicated. The void in the weld played an important role in determining the strength of the joint. On the whole, the preferable strength can be obtained at lower rotational speed. Shear fracture mode was observed under tensile–shear loadings, and nugget debonding, plug type fracture (on the upper sheet) and plug type fracture (on the lower sheet) modes were observed under cross-tension loadings. It was also observed that the main feature affecting the mechanical properties of the joint is the alclad between the upper and lower sheets and the connecting qualities between the stir zone and thermo-mechanically affected zone.

  19. Relation between second-order moment radius of focal spot and near field distribution of laser beam

    International Nuclear Information System (INIS)

    Gao Xueyan; Su Yi; Ye Yidong; Guan Youguang

    2011-01-01

    In order to analyze the effect of aberration of amplitude and phase of laser beam on second-order moment radius of focal spot, based on the Fraunhofer formula for light wave scalar diffraction theory and the definition of second-order moment radius, the general expression for focal spot second-order moment radius depending on the complex amplitude of near field is derived. The second-order moment radius of the focal spot depending on intensity distribution and phase distribution of near field is derived, and its clear physical meaning is described. The second-order moment radius and the divergence angle of focal spot may be easily calculated with the second-order moment radius expression of focal spot. At last, the divergence angles of focal spots of several kinds of Gaussian laser beams are calculated directly, and the results are in accordance with those in the related references. (authors)

  20. Limit load solution for electron beam welded joints with single edge weld center crack in tension

    Science.gov (United States)

    Lu, Wei; Shi, Yaowu; Li, Xiaoyan; Lei, Yongping

    2012-05-01

    Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments. However, there are no limit load solutions exist for the single edge crack weldments in tension (SEC(T)), which is also a typical geometry in fracture analysis. The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses. The real weld configurations are simplified as a strip, and different weld strength mis-matching ratio M, crack depth/width ratio a/ W and weld width 2H are in consideration. As a result, it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M, a/ W and ligament-to-weld width ratio ( W-a)/ H. Moreover, useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T). For the EBW joints with SEC(T), the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal, when M changing from 1.6 to 0.6. When M decreasing to 0.4, the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of ( W-a)/ H. The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T). The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).

  1. Applying of dilatometric effect for resistance welding automation

    Directory of Open Access Journals (Sweden)

    Bondarenko O. F.

    2017-06-01

    Full Text Available The important issue of resistance spot welding control to obtain high quality welded joints, especially in living tissue welding, is considered. The actual state of the issue is described and analyzed. In order to improve the quality of welded joints, the applying of dilatometric effect to control the resistance spot welding process, namely of shifting the welding electrodes, is suggested. To register the shifting, the use of modern inertial microelectromechanical sensors (MEMS is proposed. The experimental measuring system, which processes the MEMS-sensor signal and makes it suitable for use as a feedback signal, is developed. The structure and operational algorithm of the system are described. The abilities of measuring with MEMS-sensors the values of electrode shifting caused by dilatometric effect under resistance welding are assessed. These method and equipment are recommended for welding the metals, as well as for welding the living tissues. The results of preliminary studies prove the advisability and relevance of the suggested solutions.

  2. METHOD AND SYSTEM FOR LASER WELDING

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to laser welding of at least two adjacent, abutting or overlapping work pieces in a welding direction using multiple laser beams guided to a welding region, wherein at least two of the multiple laser beams are coupled into the welding region so as to form a melt and at least...

  3. Microstructure and mechanical performance of autogenously fibre laser beam welded Ti-6242 butt joints

    Energy Technology Data Exchange (ETDEWEB)

    Kashaev, Nikolai, E-mail: nikolai.kashaev@hzg.de; Pugachev, Dmitry; Ventzke, Volker; Fomin, Fedor; Burkhardt, Irmela; Enz, Josephin; Riekehr, Stefan

    2017-05-10

    This work deals with the effects of laser beam power, focus position and advance speed on the geometry, microstructure and mechanical properties such as the tensile strength and microhardness of autogenously fibre laser beam welded Ti-6Al-2Sn-4Zr-2Mo (denoted as Ti-6242) butt joints used for high temperature applications. The Ti-6242 sheet employed here is characterized by a globular (α+β) microstructure. Laser beam welded butt joints consisted of a martensitic fusion zone, inhomogeneous heat affected zones and equiaxed base materials. The microhardness increased from 330 HV 0.3 in base material to 430 HV 0.3 in fusion zone due to the martensitic transformation. Butt joints showed the base material level of strength in tensile test. The local increase in microhardness provided a shielding effect that protected the Ti-6242 butt joint against mechanical damage during the static tensile load test. The predicted critical total underfill depth that does not reduce the tensile strength of the weld was determined to be 25% of the specimen thickness. - Highlights: • Autogenous fibre LBW of Ti-6242 was successfully achieved. • Butt joints showed low levels of porosity and an appropriate seam geometry. • Base material level of strength achieved for tensile strength. • Predicted critical underfill depth is 25% of the specimen thickness.

  4. Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si

    Science.gov (United States)

    Kennedy, J. R.; Gilman, P. S.; Zedalis, M. S.; Skinner, D. J.; Peltier, J. M.

    1991-01-01

    The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated.

  5. An analysis of electron beam welds in a dual coolant liquid metal breeder blanket

    International Nuclear Information System (INIS)

    Cizelj, L.; Riesch-Oppermann, H.; Kernforschungszentrum Karlsruhe GmbH

    1994-10-01

    Numerical simulation of electron beam welding of blanket segments was performed using non-linear finite element code ABAQUS. The thermal and stress fields were assumed uncoupled, while preserving the temperature dependency of all material parameters. The martensite-austenite and austenite-martensite transformations were taken into account through volume shrinking/expansion effects, which is consistent with available data. The distributions of post welding residual stress in a complex geometry of the first wall are obtained. Also, the effects of preheating and post-welding heat treatment were addressed. Time dependent temperature and stress-strain fields obtained provide good insight into the welding process. They may be used directly to support reliability and life-time studies of blanket structures. On the other hand, they provide useful hints about the feasibility of the geometrical configurations as proposed by different design concepts. (orig.) [de

  6. Metallurgical examination of powder metallurgy uranium alloy welds

    International Nuclear Information System (INIS)

    Morrison, A.G.M.; Dobbins, A.G.; Holbert, R.K.; Doughty, M.W.

    1986-01-01

    Inertia welding provided a successful technique for joining full density, powder metallurgy uranium-6 wt pct niobium alloy. Initial joining attempts concentrated on the electron beam method, but this method failed to produce a sound weld. The electron beam welds and the inertia welds were evaluated by radiography and metallography. Electron beam welds were attempted on powder metallurgy plates which contained various levels of oxygen and nitrogen. All welds were porous. Sixteen inertia welds were made and all welds were radiographically sound. The tensile properties of the joints were found to be equivalent to the p/m base metal properties

  7. Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints

    International Nuclear Information System (INIS)

    Padmanaban, G.; Balasubramanian, V.

    2011-01-01

    This paper reports the influences of welding processes such as friction stir welding (FSW), laser beam welding (LBW) and pulsed current gas tungsten arc welding (PCGTAW) on mechanical and metallurgical properties of AZ31B magnesium alloy. Optical microscopy, scanning electron microscopy, transmission electron microscopy and X-Ray diffraction technique were used to evaluate the metallurgical characteristics of welded joints. LBW joints exhibited superior tensile properties compared to FSW and PCGTAW joints due to the formation of finer grains in weld region, higher fusion zone hardness, the absence of heat affected zone, presence of uniformly distributed finer precipitates in weld region.

  8. Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Hisashi, E-mail: serizawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-10-15

    Highlights: • The micro hardness of weld metal in F82H/SUS316L joint partially decreases after PWHT by shifting beam position to SUS316L. • Charpy impact energy of F82H/SUS316L joint obviously increases after PWHT due to the release of residual stress. • The tensile strength of weld metal in F82H/SUS316L joint is higher than that of SUS316L. • The fiber laser welding seems to be one of the most candidate methods to join between F82H and SUS316L pipes practically. - Abstract: A dissimilar butt-joint between reduced activation ferritic/martensitic steel F82H and SUS316L austenitic stainless steel was made by 4 kW fiber laser and the influence of laser beam position on its mechanical properties before and after post-weld heat treatment (PWHT) was examined at room temperature. From the nano-indentation measurements and the microstructural observations, it is found that the micro hardness of weld metal partially decreases after PWHT by shifting beam position to SUS316L because its phase seems to move from only the martensitic phase to the mixture of austenitic and martensitic phases. In addition, Charpy impact test suggests that the impact energy slightly increases by shifting beam position before PWHT and obviously increases after PWHT due to the release of residual stress. Moreover, the tensile test indicates that the tensile strength of weld metal is higher than that of SUS316L and the fracture occurs at the base metal of SUS316L regardless of laser beam position.

  9. SU-G-TeP1-04: Deriving Spot Shape Criteria for Proton Pencil Beam Scanning

    International Nuclear Information System (INIS)

    Wulff, J; Huggins, A

    2016-01-01

    Purpose: The shape of a single beam in proton PBS influences the resulting dose distribution. Spot profiles are modelled as two-dimensional Gaussian (single/ double) distributions in treatment planning systems (TPS). Impact of slight deviations from an ideal Gaussian on resulting dose distributions is typically assumed to be small due to alleviation by multiple Coulomb scattering (MCS) in tissue and superposition of many spots. Quantitative limits are however not clear per se. Methods: A set of 1250 deliberately deformed profiles with sigma=4 mm for a Gaussian fit were constructed. Profiles and fit were normalized to the same area, resembling output calibration in the TPS. Depth-dependent MCS was considered. The deviation between deformed and ideal profiles was characterized by root-mean-squared deviation (RMSD), skewness/ kurtosis (SK) and full-width at different percentage of maximum (FWxM). The profiles were convolved with different fluence patterns (regular/ random) resulting in hypothetical dose distributions. The resulting deviations were analyzed by applying a gamma-test. Results were compared to measured spot profiles. Results: A clear correlation between pass-rate and profile metrics could be determined. The largest impact occurred for a regular fluence-pattern with increasing distance between single spots, followed by a random distribution of spot weights. The results are strongly dependent on gamma-analysis dose and distance levels. Pass-rates of >95% at 2%/2 mm and 40 mm depth (=70 MeV) could only be achieved for RMSD<10%, deviation in FWxM at 20% and root of quadratic sum of SK <0.8. As expected the results improve for larger depths. The trends were well resembled for measured spot profiles. Conclusion: All measured profiles from ProBeam sites passed the criteria. Given the fact, that beam-line tuning can result shape distortions, the derived criteria represent a useful QA tool for commissioning and design of future beam-line optics.

  10. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding

    Science.gov (United States)

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio

    2017-11-01

    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

  11. Welding device for nuclear fuel rods

    International Nuclear Information System (INIS)

    Kurosawa, Satoru; Tsuboi, Hajime; Kidooka, Masayasu.

    1985-01-01

    Purpose: To enable high quality welding with no dropping of small tungsten particles to the weld portion. Constitution: An opening capable of inserting a cladding tube is disposed to the side wall of a welding chamber and a laser beam introducing window is disposed to another side wall in perpendicular to said side wall. Further, a laser beam generation device is disposed to the outside of the welding chamber for concentrating the laser beams by way of the laser beam introducing window to the weld portion between the cladding tube and an end plug. Upon welding the end plug, opening end of the cladding tube is inserted through the side wall opening into the chamber. Then, the inside of the chamber is evacuated and replaced with an inert gas through conduits to establish a super atmospheric pressure state. Then, the end plug is forced to the opening end of the cladding tube by means of an end plug enforcing mechanism and laser beams are concentrated to the joining portion between the end plug and cladding tube to conduct welding while rotating the cladding tube. (Kawakami, Y.)

  12. Integrated beam orientation and scanning-spot optimization in intensity-modulated proton therapy for brain and unilateral head and neck tumors.

    Science.gov (United States)

    Gu, Wenbo; O'Connor, Daniel; Nguyen, Dan; Yu, Victoria Y; Ruan, Dan; Dong, Lei; Sheng, Ke

    2018-04-01

    Intensity-Modulated Proton Therapy (IMPT) is the state-of-the-art method of delivering proton radiotherapy. Previous research has been mainly focused on optimization of scanning spots with manually selected beam angles. Due to the computational complexity, the potential benefit of simultaneously optimizing beam orientations and spot pattern could not be realized. In this study, we developed a novel integrated beam orientation optimization (BOO) and scanning-spot optimization algorithm for intensity-modulated proton therapy (IMPT). A brain chordoma and three unilateral head-and-neck patients with a maximal target size of 112.49 cm 3 were included in this study. A total number of 1162 noncoplanar candidate beams evenly distributed across 4π steradians were included in the optimization. For each candidate beam, the pencil-beam doses of all scanning spots covering the PTV and a margin were calculated. The beam angle selection and spot intensity optimization problem was formulated to include three terms: a dose fidelity term to penalize the deviation of PTV and OAR doses from ideal dose distribution; an L1-norm sparsity term to reduce the number of active spots and improve delivery efficiency; a group sparsity term to control the number of active beams between 2 and 4. For the group sparsity term, convex L2,1-norm and nonconvex L2,1/2-norm were tested. For the dose fidelity term, both quadratic function and linearized equivalent uniform dose (LEUD) cost function were implemented. The optimization problem was solved using the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The IMPT BOO method was tested on three head-and-neck patients and one skull base chordoma patient. The results were compared with IMPT plans created using column generation selected beams or manually selected beams. The L2,1-norm plan selected spatially aggregated beams, indicating potential degeneracy using this norm. L2,1/2-norm was able to select spatially separated beams and achieve

  13. A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding

    International Nuclear Information System (INIS)

    Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui

    2016-01-01

    In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within  ±0.09 mV s −1 0.005% s −1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class. (paper)

  14. Laser beam welding of high strength aluminium-lithium alloys; Laserstrahlschweissen von hochfesten Aluminium-Lithium Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Enz, Josephin

    2012-07-01

    The present development in aircraft industry determined by the demand for a higher cost-effectiveness. Laser beam welding is one of the most promising joining technologies for the application in the aircraft industry through the considerable reduction of the production costs. Furthermore the weight of an aircraft structure can be reduced by the use of light and high strength aluminium alloys. This paper deals with the development of a process for the laser beam welding of a skin-stringer-joint where the Al-Li-alloy AA2196 is used as stringer material and the Al-Li-alloy AA2198 is used as skin and stringer material. By the use of design of experiments the optimal welding process parameters for different material combinations were determined which will be used for the welding of a 5-stringer panel. Therefore the weld seams of the joints were tested for irregularities and microstructural characteristics. In addition several mechanical tests were performed, which define the quality of the welded joint. Furthermore the influence of the oxide layer and the welding preparation on the welding performance was investigated. (orig.) [German] Die derzeitigen Entwicklungen im Flugzeugbau werden durch die allgemeine Forderung nach einer Steigerung der Wirtschaftlichkeit bestimmt. Das Laserstrahlschweissen ist dabei eines der vielversprechendsten Fuegeverfahren fuer die Anwendung im Flugzeugbau durch das die Herstellungskosten deutlich reduziert werden koennen. Zudem kann durch die Verwendung von leichten und hochfesten Aluminium-Legierungen das Gewicht einer Flugzeugstruktur zusaetzlich reduziert werden. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Prozesses zum Laserstrahlschweissen einer Skin-Stringer-Verbindung aus den Aluminium-Lithium-Legierungen AA2196 (als Stringer-Werkstoff) und AA2198 (als Skin- und Stringer-Werkstoff). Unter Verwendung der statistischen Versuchsplanung wurden die optimalen Einstellungen der Schweissprozessparameter fuer die

  15. Quality descriptors of optical beams based on centred reduced moments I spot analysis

    CERN Document Server

    Castaneda, R; García-Sucerquia, J

    2003-01-01

    A method for analyzing beam spots is discussed. It is based on the central reduced moments of the spot and its associated density functions. These functions allow us to separately analyze specific spot fractions, in such a way that specific combinations of higher order moments can be interpreted as coordinates of their centre of mass and the length and orientations of their principal axis. So, the descriptors of the associated density functions deal with the quantitative estimation of spot features, such as coma-like and astigmatism-like distortions. To assure high accuracy, background noise suppression and an optimal match of the spot support onto the region [-1,1]x[- 1,1] are performed prior to the calculation of the moments. Simulations were performed for illustrating the method.

  16. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  17. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  18. Microstructural characterization of laser and electron beam (EB) welds of Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Tewari, R.; Dey, G.K.; Samajdar, I.

    2015-01-01

    Nb-1wt%Zr-0.1wt%C alloy is being considered for the structural applications in proposed Compact High Temperature Reactor (CHTR) on account of its excellent combination of high temperature properties. The applications of this alloy calls for welding, which is a difficult task due to its reactive nature, higher thermal conductivity and melting point. The high energy density techniques like laser and electron beam were employed to produce the welds on sheets of Nb-alloy at various processing parameters in bead-on-plate and square butt joint configurations. The weld joints produced were characterized by studying their optical, Scanning Electron Microscopy (SEM) and Electron Back Scattering Diffraction (EBSD) micro-graphs. The SEM micrograph of EB fusion zone along with the heat affected zone (HAZ) and the base region were studied and abrupt changes in the grain morphology were found in each zone. The fusion zone shows larger grains indicating the rapid grain growth after solidification, whereas the HAZ shows relatively smaller size of the grains but still much larger than the base zone. The SEM micrograph of central part of the same butt weld shows clear grain boundaries with a large variation in the grain size (45-82 micrometer) in the weld region. The heat affected zone (HAZ) and base metal showed fine carbide precipitates along the grain boundaries, whereas carbides were found dissolved in the weld zone. The EBSD micrograph of electron beam fusion zone describing the grain orientation in the weld region are described. The micro-hardness profile across the width of welds was also studied. The detailed results of all these studies are described in this paper. (author)

  19. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  20. Microstructure Evolution during Friction Stir Spot Welding of TRIP steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding

    , scanning electron microscopy and electron backscatter diffraction. Microhardness measurements and lab-shear tests completed the investigations of the welded samples and allow evaluation of the quality of the welds as seen from a practical point of view. Selected samples were also investigated by X...... Welding (FSSW) is investigated. The aim of the study is to assess whether high quality welds can be produced and, in particular, to obtain an understanding of the microstructural changes during welding. The microstructure of the welded samples was investigated by means of reflected light microscopy......-ray diffraction. The complementary use of the various characterization techniques allowed subdivision of the microstructure in the weld in different zones: two thermo-mechanically affected zones (TMAZs), and two heat-affected zones (HAZs). The dual behavior of the microstructure in the zones is related to the two...

  1. Comparison of surface doses from spot scanning and passively scattered proton therapy beams

    International Nuclear Information System (INIS)

    Arjomandy, Bijan; Sahoo, Narayan; Gillin, Michael; Cox, James; Lee, Andrew

    2009-01-01

    Proton therapy for the treatment of cancer is delivered using either passively scattered or scanning beams. Each technique delivers a different amount of dose to the skin, because of the specific feature of their delivery system. The amount of dose delivered to the skin can play an important role in choosing the delivery technique for a specific site. To assess the differences in skin doses, we measured the surface doses associated with these two techniques. For the purpose of this investigation, the surface doses in a phantom were measured for ten prostate treatment fields planned with passively scattered proton beams and ten patients planned with spot scanning proton beams. The measured doses were compared to evaluate the differences in the amount of skin dose delivered by using these techniques. The results indicate that, on average, the patients treated with spot scanning proton beams received lower skin doses by an amount of 11.8% ± 0.3% than did the patients treated with passively scattered proton beams. That difference could amount to 4 CGE per field for a prescribed dose of 76 CGE in 38 fractions treated with two equally weighted parallel opposed fields. (note)

  2. High-power CW and long-pulse lasers in the green wavelength regime for copper welding

    Science.gov (United States)

    Pricking, Sebastian; Huber, Rudolf; Klausmann, Konrad; Kaiser, Elke; Stolzenburg, Christian; Killi, Alexander

    2016-03-01

    We report on industrial high-power lasers in the green wavelength regime. By means of a thin disk oscillator and a resonator-internal nonlinear crystal for second harmonic generation we are able to extract up to 8 kW pulse power in the few-millisecond range at a wavelength of 515 nm with a duty cycle of 10%. Careful shaping and stabilization of the polarization and spectral properties leads to a high optical-to-optical efficiency larger than 55%. The beam parameter product is designed and measured to be below 5 mm·mrad which allows the transport by a fiber with a 100 μm core diameter. The fiber and beam guidance optics are adapted to the green wavelength, enabling low transmission losses and stable operation. Application tests show that this laser is perfectly suited for copper welding due to the superior absorption of the green wavelength compared to IR, which allows us to produce weld spots with an unprecedented reproducibility in diameter and welding depth. With an optimized set of parameters we could achieve a splatter-free welding process of copper, which is crucial for welding electronic components. Furthermore, the surface condition does not influence the welding process when the green wavelength is used, which allows to skip any expensive preprocessing steps like tin-coating. With minor changes we could operate the laser in cw mode and achieved up to 1.7 kW of cw power at 515 nm with a beam parameter product of 2.5 mm·mrad. These parameters make the laser perfectly suitable for additional applications such as selective laser melting of copper.

  3. Quality descriptors of optical beams based on centred reduced moments I: spot analysis

    International Nuclear Information System (INIS)

    Castaneda, Roman; Garcia-Sucerquia, Jorge; Brand, Frank

    2003-03-01

    A method for analyzing beam spots is discussed. It is based on the central reduced moments of the spot and its associated density functions. These functions allow us to separately analyze specific spot fractions, in such a way that specific combinations of higher order moments can be interpreted as coordinates of their centre of mass and the length and orientations of their principal axis. So, the descriptors of the associated density functions deal with the quantitative estimation of spot features, such as coma-like and astigmatism-like distortions. To assure high accuracy, background noise suppression and an optimal match of the spot support onto the region [-1,1]x[- 1,1] are performed prior to the calculation of the moments. Simulations were performed for illustrating the method. (author)

  4. Impact of Spot Size and Beam-Shaping Devices on the Treatment Plan Quality for Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Moteabbed, Maryam; Yock, Torunn I.; Depauw, Nicolas; Madden, Thomas M.; Kooy, Hanne M.; Paganetti, Harald

    2016-01-01

    Purpose: This study aimed to assess the clinical impact of spot size and the addition of apertures and range compensators on the treatment quality of pencil beam scanning (PBS) proton therapy and to define when PBS could improve on passive scattering proton therapy (PSPT). Methods and Materials: The patient cohort included 14 pediatric patients treated with PSPT. Six PBS plans were created and optimized for each patient using 3 spot sizes (∼12-, 5.4-, and 2.5-mm median sigma at isocenter for 90- to 230-MeV range) and adding apertures and compensators to plans with the 2 larger spots. Conformity and homogeneity indices, dose-volume histogram parameters, equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and integral dose were quantified and compared with the respective PSPT plans. Results: The results clearly indicated that PBS with the largest spots does not necessarily offer a dosimetric or clinical advantage over PSPT. With comparable target coverage, the mean dose (D_m_e_a_n) to healthy organs was on average 6.3% larger than PSPT when using this spot size. However, adding apertures to plans with large spots improved the treatment quality by decreasing the average D_m_e_a_n and EUD by up to 8.6% and 3.2% of the prescribed dose, respectively. Decreasing the spot size further improved all plans, lowering the average D_m_e_a_n and EUD by up to 11.6% and 10.9% compared with PSPT, respectively, and eliminated the need for beam-shaping devices. The NTCP decreased with spot size and addition of apertures, with maximum reduction of 5.4% relative to PSPT. Conclusions: The added benefit of using PBS strongly depends on the delivery configurations. Facilities limited to large spot sizes (>∼8 mm median sigma at isocenter) are recommended to use apertures to reduce treatment-related toxicities, at least for complex and/or small tumors.

  5. Impact of Spot Size and Beam-Shaping Devices on the Treatment Plan Quality for Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, Maryam, E-mail: mmoteabbed@partners.org; Yock, Torunn I.; Depauw, Nicolas; Madden, Thomas M.; Kooy, Hanne M.; Paganetti, Harald

    2016-05-01

    Purpose: This study aimed to assess the clinical impact of spot size and the addition of apertures and range compensators on the treatment quality of pencil beam scanning (PBS) proton therapy and to define when PBS could improve on passive scattering proton therapy (PSPT). Methods and Materials: The patient cohort included 14 pediatric patients treated with PSPT. Six PBS plans were created and optimized for each patient using 3 spot sizes (∼12-, 5.4-, and 2.5-mm median sigma at isocenter for 90- to 230-MeV range) and adding apertures and compensators to plans with the 2 larger spots. Conformity and homogeneity indices, dose-volume histogram parameters, equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and integral dose were quantified and compared with the respective PSPT plans. Results: The results clearly indicated that PBS with the largest spots does not necessarily offer a dosimetric or clinical advantage over PSPT. With comparable target coverage, the mean dose (D{sub mean}) to healthy organs was on average 6.3% larger than PSPT when using this spot size. However, adding apertures to plans with large spots improved the treatment quality by decreasing the average D{sub mean} and EUD by up to 8.6% and 3.2% of the prescribed dose, respectively. Decreasing the spot size further improved all plans, lowering the average D{sub mean} and EUD by up to 11.6% and 10.9% compared with PSPT, respectively, and eliminated the need for beam-shaping devices. The NTCP decreased with spot size and addition of apertures, with maximum reduction of 5.4% relative to PSPT. Conclusions: The added benefit of using PBS strongly depends on the delivery configurations. Facilities limited to large spot sizes (>∼8 mm median sigma at isocenter) are recommended to use apertures to reduce treatment-related toxicities, at least for complex and/or small tumors.

  6. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

    International Nuclear Information System (INIS)

    Lin Shixiong; Boehringer, Terence; Coray, Adolf; Grossmann, Martin; Pedroni, Eros

    2009-01-01

    Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.

  7. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Lin Shixiong; Boehringer, Terence; Coray, Adolf; Grossmann, Martin; Pedroni, Eros [Center for Proton Therapy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2009-11-15

    Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.

  8. Laser penetration spike welding : A microlaser welding technique enabling novel product designs and constructions

    NARCIS (Netherlands)

    Dijken, D.K; Hoving, W.; de Hosson, J.T.M.

    A novel method for laser penetration microspot welding of sheet metal is presented. With this so called "laser spike-welding," large gap tolerances are allowed. Depending on the ratio of laser spot radius to top plate thickness, gaps of 100% of the top layer thickness and more can be bridged. With

  9. Atom-probe field-ion microscopy investigation of CMSX-4 Ni-base superalloy laser beam welds

    International Nuclear Information System (INIS)

    Babu, S.S.; David, S.A.; Vitek, J.M.; Miller, M.K.

    1996-01-01

    CMSX-4 superalloy laser beam welds were investigated by transmission electron microscopy and atom probe field-ion microscopy (APFIM). The weld microstructure consisted of fine (10- to 50-nm) irregularly shaped γ' precipitates (0.65 to 0.75 volume fraction) within the γ matrix. APFIM compositions of the γ and γ' phases were found to be different from those in the base metal. Concentration profiles across the γ and γ' phases showed extensive variations of Cr, Co and Al concentrations as a function of distance within the γ phase. Calculated lattice misfits near the γ/γ' interface in the welds are positive values compared to the negative values for base metal. (orig.)

  10. Numerical model of the plasma formation at electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The Department for Applied Physics, Perm National Research Polytechnic University, Perm 614990 (Russian Federation); The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784 Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora, 1309 Sofia (Bulgaria)

    2015-01-07

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.

  11. Comparison of CO2 and Nd:YAG laser welding of grade 250 maraging steel, IIW doc. II-A-173-06

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2006-11-01

    Full Text Available are the SEM images of the single spot (SS/6), twin spot (TS/4) and pulsed YAG (PY) butt welds after PWHT. More reverted austenite was observed in the twin spot weld compared to the single spot and pulsed Nd:YAG welds. EDS (energy dispersive spectroscopy... line, c) TS/4 near fusion line, d) TS/4 weld centre line, e) PY near fusion line, f) PY weld centre line EDS line scans were performed in the unetched condition. Areas were observed that was enriched in Mo and Ti. Etched samples were analysed...

  12. Sensor device for X-ray beam to evaluate the radiation focal spot

    International Nuclear Information System (INIS)

    Santos, Lara H.E. dos; Schiabel, Homero; Silva, Aderbal A.B. da; Marques, Paulo M.A.; Campos, Marcelo; Slaets, Annie F.F.

    1996-01-01

    A new electronic device to determine the position of the central ray of the radiation beam is proposed. The device aims to provide a perfect alignment of test objects used for evaluating focal spots with this reference axis

  13. Monitoring and Tracking the LHC Beam Spot within the ATLAS High Level Trigger

    CERN Document Server

    Winklmeier, F; The ATLAS collaboration

    2012-01-01

    The parameters of the beam spot produced by the LHC in the ATLAS interaction region are computed online using the ATLAS High Level Trigger (HLT) system. The high rate of triggered events is exploited to make precise measurements of the position, size and orientation of the luminous region in near real-time, as these parameters change significantly even during a single data-taking run. We present the challenges, solutions and results for the online determination, monitoring and beam spot feedback system in ATLAS. A specially designed algorithm, which uses tracks registered in the silicon detectors to reconstruct event vertices, is executed on the HLT processor farm of several thousand CPU cores. Monitoring histograms from all the cores are sampled and aggregated across the farm every 60 seconds. The reconstructed beam values are corrected for detector resolution effects, measured in situ from the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual ...

  14. Analysis and Modelling of Electrode Wear in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Madsen, Anders; Pedersen, Kim; Friis, Kasper Storgaard

    2010-01-01

    A model describing electrode wear as a function of weld number, initial tip diameter, truncated cone angle, welding current and electrode force is proposed. Excellent agreement between the model and experimental results is achieved, showing that the model can describe the change in electrode tip...... diameter with increasing weld number at different weld settings. Furthermore a method for measuring the worn tip diameter in a fast and robust manner is developed. The method relies on a well-known technique for capturing the electrode tip area by the use of carbon imprints and a new developed image...... a central cavity is formed and one where smaller pits are formed randomly across the electrode face. The influence of these two types of surface pits on the nugget size are investigated using the FE code SORPAS, revealing ring welds and undersized weld nuggets....

  15. SU-F-T-182: A Stochastic Approach to Daily QA Tolerances On Spot Properties for Proton Pencil Beam Scanning

    International Nuclear Information System (INIS)

    St James, S; Bloch, C; Saini, J

    2016-01-01

    Purpose: Proton pencil beam scanning is used clinically across the United States. There are no current guidelines on tolerances for daily QA specific to pencil beam scanning, specifically related to the individual spot properties (spot width). Using a stochastic method to determine tolerances has the potential to optimize tolerances on individual spots and decrease the number of false positive failures in daily QA. Individual and global spot tolerances were evaluated. Methods: As part of daily QA for proton pencil beam scanning, a field of 16 spots (corresponding to 8 energies) is measured using an array of ion chambers (Matrixx, IBA). Each individual spot is fit to two Gaussian functions (x,y). The spot width (σ) in × and y are recorded (32 parameters). Results from the daily QA were retrospectively analyzed for 100 days of data. The deviations of the spot widths were histogrammed and fit to a Gaussian function. The stochastic spot tolerance was taken to be the mean ± 3σ. Using these results, tolerances were developed and tested against known deviations in spot width. Results: The individual spot tolerances derived with the stochastic method decreased in 30/32 instances. Using the previous tolerances (± 20% width), the daily QA would have detected 0/20 days of the deviation. Using a tolerance of any 6 spots failing the stochastic tolerance, 18/20 days of the deviation would have been detected. Conclusion: Using a stochastic method we have been able to decrease daily tolerances on the spot widths for 30/32 spot widths measured. The stochastic tolerances can lead to detection of deviations that previously would have been picked up on monthly QA and missed by daily QA. This method could be easily extended for evaluation of other QA parameters in proton spot scanning.

  16. Forming mechanism and avoiding measures of blue-ring on electronic beam welding sample after water corrosion

    International Nuclear Information System (INIS)

    Ren Defang; Luo Xiandian; Tong Shenxiu; Guo Xulin; Peng Haiqing

    2001-01-01

    After water corrosion in compliance with ASTM G2, the blue ring appears on the nuclear fuel rod samples of AFA 2G welded by using a Big Chamber Electron Beam Welder made in Russia. The characteristics, appearance, chemical composition, microstructure of b lue ring a nd some condition test are described. The mechanism of forming blue ring may be depicted as following: welding metal vapor and the splash produced by secondary and scatter electrons on metal clamp and gun body deposit in the area between HAZ and substrate because of the water cooling down effects on the clamp; these deposits, after water corrosion, appears as blue ring on the fuel rod surface. Avoiding measure is that the side of the clamp closing to weld seal is chamfered, while making the welding chamber cleaner

  17. Metals welding by using laser

    International Nuclear Information System (INIS)

    Al-Qaisy, R.A.W.

    1991-01-01

    In the present work, same welding ''conduction limited type'' under atmospheric conditions was performed using pulsed Ng:YAG laser to weld; low carbon steel (LCS), stainless steel (304) (SUS304), stainless steel (303) (SUS303), and brass. Microstructure of welded zone, heat affected zone (HAZ), and the laser energy on penetration depth and effective diameter were studied. Tensile test, micro-hardness, and surface roughness of welded and parent metals were also dealt with. Melting efficiency was worked out and an under vacuum seam welding of low carbon steel has been accomplished. Finally spot welding of aluminium tungsten, and platinium wires were employed using different layer energies. 34 tabs.; 82 figs.; 51 refs.; 1 app

  18. Quantitative characterization of the microstructure of an electron-beam welded medium strength Al-Zn-Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, A., E-mail: alexis.deschamps@simap.grenoble-inp.fr [SIMAP, INPGrenoble-CNRS-UJF, BP 75, 38402 St Martin d' Heres Cedex (France); Ringeval, S.; Texier, G. [SIMAP, INPGrenoble-CNRS-UJF, BP 75, 38402 St Martin d' Heres Cedex (France) and CEA, centre de Valduc, SEMP, LECM, 21120 Is-Sur-Tille (France); Delfaut-Durut, L. [CEA, centre de Valduc, SEMP, LECM, 21120 Is-Sur-Tille (France)

    2009-08-20

    The microstructure of an electron beam weld of a medium strength Al-4.5%Zn-1%Mg (wt.%) alloy has been characterized in terms of solute element distribution, grain structure and fine-scale precipitates after a T6 post-welding heat treatment. It is found that the weld nugget consists of small grains, whose size (1-50 {mu}m) is heterogeneously distributed. The nugget composition is unaffected in Mg but depleted of 20% in Zn in the first run zone. This is shown to affect the fine-scale precipitate microstructure, which has been mapped in the weld cross-section using Small-Angle X-ray Scattering. It is shown that the nugget exhibits a precipitate size only slightly different from that of the base material after the post-welding heat treatment, and that the difference in volume fraction, much more significant, can be understood from the magnitude of the solute depletion. The relative precipitate sizes and volume fractions in the weld nugget and base material enable to understand effectively the corresponding microhardness levels.

  19. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  20. Viewing Welds By Computer Tomography

    Science.gov (United States)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  1. Residual stress measurement of electron beam welded copper plates using prism hole drilling method

    International Nuclear Information System (INIS)

    Laakkonen, M.

    2013-12-01

    Eleven electron beam (EB) welded copper plates were measured in this investigation with Prism hole drilling equipment made by Stresstech Oy. All samples contained a linear weld in their center. Two different sets of plates were measured in this investigation. The first set included five samples (X436, X437, X438, X439 and X440) which were welded using four different welding speeds. Samples X439 and X440 were welded with the same speed but X440 is the only sample of the set that received a cosmetic pass. The second set received heat treatments at four different temperatures. Samples X456 and X458 were annealed at the same temperature but sample X456 received a cosmetic pass while X458 did not. Samples X455 and X457 were both annealed at a different temperature, with (X455) or without (X457) the cosmetic pass. Two areas were machined from the samples. About five millimeters was machined from the surfaces on the both of areas. Machined surfaces located on the top surfaces. The measurement points on the top surface are located on the weld and 20 mm and 120 mm from the weld on machined areas. Lower surface measurements are located -20 mm, 20 mm and 120 mm from the weld. All measurements were about 122 mm from the edges perpendicular to the weld. The top surfaces of all samples were machined in two areas across the weld. About 5 mm were removed. Stress measurements on the top surfaces were performed in these two areas, on the weld and 20 mm and 120 mm away from the weld. Stresses were also measured on the back sides, at -20 mm, 20 mm and 120 mm distance from the weld. All measurement locations were about 122mm from the sample edges. Most of the measurements give tensile strengths from 0 MPa to 30 MPa. Stresses parallel to the weld were slightly higher than weld stresses in transverse direction. The machined surfaces have residual stress values above 30 MPa near the surface. (orig.)

  2. Residual stress measurement of electron beam welded copper plates using prism hole drilling method

    Energy Technology Data Exchange (ETDEWEB)

    Laakkonen, M. [Stresstech Oy, Jyvaeskylae (Finland)

    2013-12-15

    Eleven electron beam (EB) welded copper plates were measured in this investigation with Prism hole drilling equipment made by Stresstech Oy. All samples contained a linear weld in their center. Two different sets of plates were measured in this investigation. The first set included five samples (X436, X437, X438, X439 and X440) which were welded using four different welding speeds. Samples X439 and X440 were welded with the same speed but X440 is the only sample of the set that received a cosmetic pass. The second set received heat treatments at four different temperatures. Samples X456 and X458 were annealed at the same temperature but sample X456 received a cosmetic pass while X458 did not. Samples X455 and X457 were both annealed at a different temperature, with (X455) or without (X457) the cosmetic pass. Two areas were machined from the samples. About five millimeters was machined from the surfaces on the both of areas. Machined surfaces located on the top surfaces. The measurement points on the top surface are located on the weld and 20 mm and 120 mm from the weld on machined areas. Lower surface measurements are located -20 mm, 20 mm and 120 mm from the weld. All measurements were about 122 mm from the edges perpendicular to the weld. The top surfaces of all samples were machined in two areas across the weld. About 5 mm were removed. Stress measurements on the top surfaces were performed in these two areas, on the weld and 20 mm and 120 mm away from the weld. Stresses were also measured on the back sides, at -20 mm, 20 mm and 120 mm distance from the weld. All measurement locations were about 122mm from the sample edges. Most of the measurements give tensile strengths from 0 MPa to 30 MPa. Stresses parallel to the weld were slightly higher than weld stresses in transverse direction. The machined surfaces have residual stress values above 30 MPa near the surface. (orig.)

  3. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Parkins, R.N.

    1985-04-01

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm 2 for parent plate without a weld, 400 N/mm 2 for specimens with welds on one side only and 600 N/mm 2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  4. Numerical investigation on the variation of welding stresses after material removal from a thick titanium alloy plate joined by electron beam welding

    International Nuclear Information System (INIS)

    Liu, Chuan; Zhang, Jianxun; Wu, Bing; Gong, Shuili

    2012-01-01

    Highlights: → After less materials removal from the top, stresses on the bottom remain unchanged. → The transverse stress within the weld decreases significantly with material removal. → Local material removal does not influence the longitudinal stress significantly. -- Abstract: The stress modification after material removal from a 50 mm thick titanium alloy plate jointed by electron beam welding (EBW) was investigated through the finite element method (FEM). The welding experiment and milling process were carried out to experimentally determine the stresses induced by EBW and their modification after local material removal. The modification of as-welded stresses due to the local material removal method and the whole layer removal method was discussed with the finite element analysis. Investigated results showed that with less materials removal from the top, the stresses on the bottom surface remain almost unchanged; after material removal from the top and bottom part, the transverse stress on the newly-formed surface decreases significantly as compared to the as-welded stresses at the same locations; however, the stress modification only occurs at the material removal region in the case of local region removal method; the longitudinal stress decreases with the whole layer removal method while remains almost unchanged with the local region removal method.

  5. Spot size characterization of focused non-Gaussian X-ray laser beams.

    Science.gov (United States)

    Chalupský, J; Krzywinski, J; Juha, L; Hájková, V; Cihelka, J; Burian, T; Vysín, L; Gaudin, J; Gleeson, A; Jurek, M; Khorsand, A R; Klinger, D; Wabnitz, H; Sobierajski, R; Störmer, M; Tiedtke, K; Toleikis, S

    2010-12-20

    We present a new technique for the characterization of non-Gaussian laser beams which cannot be described by an analytical formula. As a generalization of the beam spot area we apply and refine the definition of so called effective area (A(eff)) [1] in order to avoid using the full-width at half maximum (FWHM) parameter which is inappropriate for non-Gaussian beams. Furthermore, we demonstrate a practical utilization of our technique for a femtosecond soft X-ray free-electron laser. The ablative imprints in poly(methyl methacrylate) - PMMA and amorphous carbon (a-C) are used to characterize the spatial beam profile and to determine the effective area. Two procedures of the effective area determination are presented in this work. An F-scan method, newly developed in this paper, appears to be a good candidate for the spatial beam diagnostics applicable to lasers of various kinds.

  6. Prediction of residual stresses and distortions due to laser beam welding of butt joints in pressure vessels

    International Nuclear Information System (INIS)

    Moraitis, G.A.; Labeas, G.N.

    2009-01-01

    A two-level three-dimensional Finite Element (FE) model has been developed to predict keyhole formation and thermo-mechanical response during Laser Beam Welding (LBW) of steel and aluminium pressure vessel or pipe butt-joints. A very detailed and localized (level-1) non-linear three-dimensional transient thermal model is initially developed, which simulates the mechanisms of keyhole formation, calculates the temperature distribution in the local weld area and predicts the keyhole size and shape. Subsequently, using a laser beam heat source model based on keyhole assumptions, a global (level-2) thermo-mechanical analysis of the LBW butt-joint is performed, from which the joint residual stresses and distortions are calculated. All the major physical phenomena associated to LBW, such as laser heat input via radiation, heat losses through convection and radiation, as well as latent heat are accounted for in the numerical model. Material properties and particularly enthalpy, which is very important due to significant material phase changes, are introduced as temperature-dependent functions. The main advantages of the developed model are its efficiency, flexibility and applicability to a wide range of LBW problems (e.g. welding for pressure vessel or pipework construction, welding of automotive, marine or aircraft components, etc). The model efficiency arises from the two-scale approach applied. Minimal or no experimental data are required for the keyhole size and shape computation by the level-1 model, while the thermo-mechanical response calculation by the level-2 model requires only process and material data. Therefore, it becomes possible to efficiently apply the developed simulation model to different material types and varying welding parameters (i.e. welding speed, heat source power, joint geometry, etc.) in order to control residual stresses and distortions within the welded structure

  7. Effect of trace solute hydrogen on the fatigue life of electron beam welded Ti-6Al-4V alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Junhui; Hu, Shubing, E-mail: 187352581@qq.com; Ji, Longbo

    2017-01-27

    This paper describes an experimental hydrogenating treatment on a Ti-6Al-4V fatigue specimen containing an electron beam welding joint. The effect of trace solute hydrogen on the microstructures and fatigue behavior of welded Ti-6Al-4V alloy joints was investigated using an optical microscope, X-ray diffractometer, scanning electron microscope, transmission electron microscope and other methodologies. The results demonstrated that no hydride formed in the hydrogenated weld joint at a hydrogen concentration of less than 0.140 wt%. Internal hydrogen, which was present in the alloy in the form of solid solution atoms, caused lattice distortion in the β phase. The fatigue properties of the Ti-6Al-4V weld joint hydrogenated with trace solute hydrogen decreased significantly. The solute hydrogen led to an increase in the brittleness of the hydrogenated weld joint. The dislocation densities in the secondary α and β phase were higher. Fatigue cracks nucleated at the α/β interfaces. The effect of solute hydrogen accelerated the separation of the persistent slip bands, which decreased the threshold required for fatigue crack growth. Solute hydrogen also accelerated the fatigue crack growth rate. These two factors contributed to the degradation of the fatigue life in the electron beam welded Ti-6Al-4V alloy joints.

  8. An Experimental Evaluation of Electron Beam Welded Thixoformed 7075 Aluminum Alloy Plate Material

    Directory of Open Access Journals (Sweden)

    Ava Azadi Chegeni

    2017-12-01

    Full Text Available Two plates of thixoformed 7075 aluminum alloy were joined using Electron Beam Welding (EBW. A post-welding-heat treatment (PWHT was performed within the semi-solid temperature range of this alloy at three temperatures, 610, 617 and 628 °C, for 3 min. The microstructural evolution and mechanical properties of EB welded plates, as well as the heat-treated specimens, were investigated in the Base Metal (BM, Heat Affected Zone (HAZ, and Fusion Zone (FZ, using optical microscopy, Scanning Electron Microscopy (SEM, EDX (Energy Dispersive X-ray Analysis, and Vickers hardness test. Results indicated that after EBW, the grain size substantially decreased from 67 µm in both BM and HAZ to 7 µm in the FZ, and a hardness increment was observed in the FZ as compared to the BM and HAZ. Furthermore, the PWHT led to grain coarsening throughout the material, along with a further increase in hardness in the FZ.

  9. Electron beam deflection control system of a welding and surface modification installation

    Science.gov (United States)

    Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.

    2018-03-01

    In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.

  10. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    Through years, the dynamic resistance across the electrodes has been used for weld quality estimation and contact resistance measurement. However, the previous methods of determining the dynamic resistance were mostly based on measuring the voltage and current on the secondary side of the transfo......Through years, the dynamic resistance across the electrodes has been used for weld quality estimation and contact resistance measurement. However, the previous methods of determining the dynamic resistance were mostly based on measuring the voltage and current on the secondary side...... of the transformer in resistance welding machines, implying defects from induction noise and interference with the leads connected to the electrodes for measuring the voltage. In this study, the dynamic resistance is determined by measuring the voltage on the primary side and the current on the secondary side...

  11. Technical Note: Using experimentally determined proton spot scanning timing parameters to accurately model beam delivery time.

    Science.gov (United States)

    Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin

    2017-10-01

    To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (T BDT ) were compared with the BDTs recorded in the treatment delivery log files (T Log ): ∆t = T Log -T BDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may

  12. Electron beam welding in the fabrication of thick-walled large-size pipes of C-Mn steels. Final report; Elektronenstrahlschweissen bei der Fertigung von dickwandigen Grossrohren aus C-Mn-Staehlen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Woeste, K

    2001-11-01

    This research project investigates electron beam welding as a method of fabrication of large-size pipes with longitudinal welds. The effects of the welding speed on the mechanical and technological properties of the weld are investigated. From the economic view, electron beam welding is much more favourable than submerged-arc welding. [German] Dieses Forschungsprojekt soll dazu beitragen, das Elektronenstrahlschweissen als Fertigungsverfahren fuer laengsnahtgeschweisste Grossrohre zu qualifizieren. Dabei wird der Einfluss der Schweissgeschwindigkeit auf die mechanisch-technologischen Eigenschaften der Schweissung untersucht. Im Wirtschaftlichkeitsvergleich schneidet Elektronenstrahlschweissverfahren gegenueber dem Unterpulverschweissverfahren eindeutig besser ab.

  13. Analysis of the crystallographic signature of electron beam welds in Cu: implications for variations in etching characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Trimby, Patrick (Oxford Instruments Nordiska AB, Lidingoe (Sweden))

    2009-06-15

    The proposed design for the long term disposal of radioactive waste in Sweden involves the use of corrosion-resistant copper containers. The manufacture of these containers involves the welding of forged lids onto fabricated copper tubes; however, it has been reported (SKB report TR-02-07) that the grain sizes obtained in the lids and bottoms is much coarser than in the side walls (the tubes). The electro beam welding (EBW) of the lids onto the tubes also produces significant grain coarsening, as well as the growth of intermetallic phases at grain boundaries (SKB report TR-06-01). One of the fundamental questions regarding the suitability of these containers concerns the distribution and nature of corrosion at the lid-wall interface. Previous studies have focused on the possibility of grain boundary corrosion, and have concluded that the boundary corrosion is limited and is not likely to adversely affect the properties of the containers. However, differences in the corrosion/etching characteristics between the lid, the wall and the weld areas are observed. The cylinder wall shows reduced boundary etching compared to the weld area and the cylinder lid. This preliminary study investigates whether these differences can be explained by the crystallographic characteristics of the copper in these regions. A single sample, taken from an electron beam welded canister lid, was analysed using electron backscattered diffraction: a summary of the results from this study and some preliminary conclusions are presented in this report

  14. Electron-beam welding of the grill flanges of the FTU additional heating system

    International Nuclear Information System (INIS)

    Cucchiaro, A.; Marra, A.

    1994-10-01

    The research and development program of the fusion sector of ENEA (Italian Agency for New Technologies, Energy and Environment) Frascati center is mainly based on experiments on the Frascati Tokamak Upgrade (FTU) machine. The FTU is a medium-high magnetic field (8 T) tokamak with a radio-frequency (RF) additional heating system (8 MW, 8 GHz) that can heat the plasma to temperatures of fusionistic interest. The RF power is coupled to the plasma by a coupling structure consisting of three grills, each formed of an array of waveguides welded at the terminal flanges by an electron-beam technique. This solution allows highly accurate dimensions and optimum clean-surface conditions of the welded copper joints

  15. X-ray Radiation Mechanisms and the Beaming Effect of Hot Spots ...

    Indian Academy of Sciences (India)

    Astr. (2011) 32, 193–196 c Indian Academy of Sciences. X-ray Radiation Mechanisms and the Beaming Effect of Hot Spots and Knots in AGN Jets. Jin Zhang1,∗. , Jin-Ming Bai2, Liang Chen2 & Enwei Liang3. 1College of Physics and Electronic Engineering, Guangxi Teachers Education University,. Nanning 530001, China.

  16. Thermo-Mechanical Characterization of Friction Stir Spot Welded AA7050 Sheets by Means of Experimental and FEM Analyses.

    Science.gov (United States)

    D'Urso, Gianluca; Giardini, Claudio

    2016-08-11

    The present study was carried out to evaluate how the friction stir spot welding (FSSW) process parameters affect the temperature distribution in the welding region, the welding forces and the mechanical properties of the joints. The experimental study was performed by means of a CNC machine tool obtaining FSSW lap joints on AA7050 aluminum alloy plates. Three thermocouples were inserted into the samples to measure the temperatures at different distance from the joint axis during the whole FSSW process. Experiments was repeated varying the process parameters, namely rotational speed, axial feed rate and plunging depth. Axial welding forces were measured during the tests using a piezoelectric load cell, while the mechanical properties of the joints were evaluated by executing shear tests on the specimens. The correlation found between process parameters and joints properties, allowed to identify the best technological window. The data collected during the experiments were used to validate a simulation model of the FSSW process, too. The model was set up using a 2D approach for the simulation of a 3D problem, in order to guarantee a very simple and practical solution for achieving results in a very short time. A specific external routine for the calculation of the thermal energy due to friction acting between pin and sheet was developed. An index for the prediction of the joint mechanical properties using the FEM simulations was finally presented and validated.

  17. Thermo-Mechanical Characterization of Friction Stir Spot Welded AA7050 Sheets by Means of Experimental and FEM Analyses

    Directory of Open Access Journals (Sweden)

    Gianluca D’Urso

    2016-08-01

    Full Text Available The present study was carried out to evaluate how the friction stir spot welding (FSSW process parameters affect the temperature distribution in the welding region, the welding forces and the mechanical properties of the joints. The experimental study was performed by means of a CNC machine tool obtaining FSSW lap joints on AA7050 aluminum alloy plates. Three thermocouples were inserted into the samples to measure the temperatures at different distance from the joint axis during the whole FSSW process. Experiments was repeated varying the process parameters, namely rotational speed, axial feed rate and plunging depth. Axial welding forces were measured during the tests using a piezoelectric load cell, while the mechanical properties of the joints were evaluated by executing shear tests on the specimens. The correlation found between process parameters and joints properties, allowed to identify the best technological window. The data collected during the experiments were used to validate a simulation model of the FSSW process, too. The model was set up using a 2D approach for the simulation of a 3D problem, in order to guarantee a very simple and practical solution for achieving results in a very short time. A specific external routine for the calculation of the thermal energy due to friction acting between pin and sheet was developed. An index for the prediction of the joint mechanical properties using the FEM simulations was finally presented and validated.

  18. Advantages of fibre lasers in 3D metal cutting and welding applications supported by a 'beam in motion (BIM)' beam delivery system

    Science.gov (United States)

    Scheller, Torsten; Bastick, André; Griebel, Martin

    2012-03-01

    Modern laser technology is continuously opening up new fields of applications. Driven by the development of increasingly efficient laser sources, the new technology is successfully entering classical applications such as 3D cutting and welding of metals. Especially in light weight applications in the automotive industry laser manufacturing is key. Only by this technology the reduction of welding widths could be realised as well as the efficient machining of aluminium and the abrasion free machining of hardened steel. The paper compares the operation of different laser types in metal machining regarding wavelength, laser power, laser brilliance, process speed and welding depth to give an estimation for best use of single mode or multi mode lasers in this field of application. The experimental results will be presented by samples of applied parts. In addition a correlation between the process and the achieved mechanical properties will be made. For this application JENOPTIK Automatisierungstechnik GmbH is using the BIM beam control system in its machines, which is the first one to realize a fully integrated combination of beam control and robot. The wide performance and wavelength range of the laser radiation which can be transmitted opens up diverse possibilities of application and makes BIM a universal tool.

  19. A Novel Location-Awareness Method Using CubeSats for Locating the Spot Beam Emitters of Geostationary Communications Satellites

    Directory of Open Access Journals (Sweden)

    Weicai Yang

    2018-01-01

    Full Text Available As more spacecraft are launched into the Geostationary Earth Orbit (GEO belt, the possibility of fatal collisions or unnecessary interference between spacecraft increases. In this paper, a new location-awareness method that uses CubeSats is proposed to assist with radiofrequency (RF domain verification by means of awareness and identification of the positions of the spot beam emitters of communications satellites in geostationary orbit. By flying a CubeSat (or a constellation of CubeSats through the coverage area of a spot beam, the spot beam emitter’s position is identified and the spot beam’s pattern knowledge is characterized. The geometry, the equations of motion of the spacecraft, the measurement process, and the filtering equations in a location system are addressed with respect to the location methods investigated in this study. A realistic scenario in which a CubeSat receives signals from GEO communications satellites is simulated using the Systems Tool Kit (STK. The results of the simulation and the analysis presented in this study provide a thorough verification of the performance of the location-awareness method.

  20. Internal attachment of laser beam welded stainless steel sheathed thermocouples into stainless steel upper end caps in nuclear fuel rods for the LOFT Reactor

    International Nuclear Information System (INIS)

    Welty, R.K.; Reid, R.D.

    1980-01-01

    The Exxon Nuclear Company, Inc., acting as a subcontractor to EG and G Idaho Inc., Idaho National Engineering Laboratory, Idaho Falls, Idaho, conducted a laser beam welding study to attach internal stainless steel thermocouples into stainless steel upper end caps in nuclear fuel rods. The objective of this study was to determine the feasibility of laser welding a single 0.063 inch diameter stainless steel (304) sheathed thermocouple into a stainless steel (316) upper end cap for nuclear fuel rods. A laser beam was selected because of the extremely high energy input in unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. A special weld fixture was designed and fabricated to hold the end cap and the thermocouple with angular and rotational adjustment under the laser beam. A commercial pulsed laser and energy control system was used to make the welds

  1. Tensile properties of four types of austenitic stainless steel welded joints

    International Nuclear Information System (INIS)

    Balladon, P.

    1990-01-01

    In the field of an LMFBR research programme on austenitic stainless steel welds in a Shared Cost Action Safety, Research Area 8, coordinated by JRC-Ispra, four cooperating laboratories (ECN, IKE/MPA, the Welding Institute and UNIREC) have been involved in the fabrication and extensive characterization of welded joints made from one plate of ICL 167 stainless steel. The materials included parent metal, four vacuum electron beam welds, one non vacuum electron beam weld, one submerged arc weld, one gas metal arc weld and one manual metal arc weld. This report summarizes the 106 tensile tests performed at room temperature and 550 0 C, including the influence of strain rate, specimen orientation and welding procedure. Main results are that electron beam welds have tensile properties close to those of parent metal with higher values of yield strength in longitudinal orientation and lower values of total elongation in transverse orientation but with a similar reduction of area, that filler metal welds own the highest values of yield strength and lowest values of ductility. Most of the welds properties are higher than the minimum specified for parent metal, except for some values of total elongation, mainly in transverse orientation. In view of using electron beam welding for production of components used in LMFBR, results obtained show that tensile properties of electron beam welds compare well to those of classical welds. (author)

  2. The Low Pressure Gas Effects On The Potency Of An Electron Beam On Ceramic Fabric Materials For Space Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.; Fragomeni, James M.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This investigation was undertaken to evaluate if molten metal or electron beam impingement could damage or burn through the fabric of the astronauts Extravehicular Mobility Unit (EMU) during electron beam welding exercises performed in space. An 8 kilovolt electron beam with a current in the neighborhood of 100 milliamps from the Ukrainian space welding "Universal Hand Tool" burned holes in Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The burnthrough time was on the order of 8 seconds at standoff distances between UHT and cloth ranging from 6 to 24 inches. At both closer (2") and farther (48") standoff distances the potency of the beam against the cloth declined and the burnthrough time went up significantly. Prior to the test it had been expected that the beam would lay down a static charge on the cloth and be deflected without damaging the cloth. The burnthrough is thought to be an effect of partial transmission of beam power by a stream of positive ions generated by the high voltage electron beam from contaminant gas in the "vacuum" chamber. A rough quantitative theoretical computation appears to substantiate this possibility.

  3. Toughness study of an under matched welded joint: application to the mechanical integrity of the electron beam welded joint of 6016-T6 aluminium alloy

    International Nuclear Information System (INIS)

    Rekik, Wissal

    2016-01-01

    For the demonstration of the integrity of the most sensitive nuclear components, conventional defects, as cracks for example, must be considered within the design step as required by the nuclear safety authority. This phase is particularly crucial for dimensioning of welded structures. To ensure a conservative prediction, the position of the initial crack within the welded joint must be the most detrimental in fracture behavior. Commonly used analyzes consider homogeneous structure with the behavior of the base metal of the welded joint, considered as the weakest metallurgical zone in the case of an overmatched weld. In contrast, similar analysis is not conservative in case of under matched weld. The thesis contributes by the development of an experimental and numerical methodology allowing the identification of the detrimental metallurgical zone in fracture behavior of an under matched welded joint. The methodology proposed is applied to an electron beam welded joint on al 6061-T6. To reach this goal, the gradient of the mechanical behavior along the welded joint was first identified. This is particularly interesting to conduct an advanced analysis based on a multi material approach. In a second step, the fracture behavior of the welded joint was studied on CT specimen. The transferability of the J integral at initiation was approved on another geometry: this represents an important foundation for the transferability assumption to structure. Finally, a numerical analysis on full scale tube was developed. Residual welding stresses and structural effects were considered. The results demonstrate that the heat affected zone located at 13 mm from the middle of the welded joint is the most detrimental zone for fracture analysis. This contradicts the conventional methods conducted on fracture analysis which consider a conventional defect within the fusion zone. (author) [fr

  4. Experimental investigation and finite element simulation of laser beam welding induced residual stresses and distortions in thin sheets of AA 6056-T4

    International Nuclear Information System (INIS)

    Zain-ul-abdein, Muhammad; Nelias, Daniel; Jullien, Jean-Francois; Deloison, Dominique

    2010-01-01

    Laser beam welding has recently found its application in the fabrication of aircraft structures where fuselage panels, made of thin sheets of AA 6056-T4 (an aluminium alloy), are welded with stiffeners of the same material in a T-joint configuration. The present work simulates laser beam welding induced residual stresses and distortions using industrially employed thermal and mechanical boundary conditions. Various measurements performed on small-scale welded test specimens provide a database of experimental results that serves as a benchmark for qualification of the simulation results. The welding simulation is performed with the commercial finite element software Abaqus and a Fortran programme encoding a conical heat source with Gaussian volumetric distribution of flux. A sequentially coupled temperature-displacement analysis is undertaken to simulate the weld pool geometry, transient temperature and displacement fields. The material is assumed to follow an elasto-plastic law with isotropic hardening behaviour (von Mises plasticity model). A comparison between the experimental and simulation results shows a good agreement. Finally, the residual stress and strain states in a T-joint are predicted.

  5. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process

    Energy Technology Data Exchange (ETDEWEB)

    Das, C.R., E-mail: chitta@igcar.gov.in [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Albert, S.K. [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar (India); Mastanaiah, P. [Defense Research and Development Laboratory, Hyderabad (India); Chaitanya, G.M.S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Murthy, C.V.S. [Defense Research and Development Laboratory, Hyderabad (India); Kumar, E. Rajendra [Institute for Plasma Research, Gandhinagar (India)

    2014-11-15

    Highlights: • Width of HAZ is smaller in the 9Cr–1W RAFM weldment prepared by EB process compared to that reported for TIG weldments in literature. • Weld joint is stronger than that of the base metal. • Toughness of weld metal prepared by EB welding process is comparable to that (in PWHT condition) prepared by TIG process. • DBTT of as-welded 9Cr–1W RAFM weldment prepared by EB process is comparable to that reported for TIG weld metal in PWHT condition. - Abstract: Microstructure and mechanical properties of the weldments prepared from 9Cr–1W reduced activation ferritic martensitic (RAFM) steel using electron beam welding (EBW) process were studied. Microstructure consists of tempered lath martensite where precipitates decorating the boundaries in post weld heat treated (PWHT) condition. Lath and precipitate sizes were found to be finer in the weld metal than in base metal. Accordingly, hardness of the weld metal was found to be higher than the base metal. Tensile strength of the cross weldment specimen was 684 MPa, which was comparable with the base metal tensile strength of 670 MPa. On the other hand, DBTT of 9Cr–1W weld metal in as-welded condition is similar to that reported for TIG weld metal in PWHT condition.

  6. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process

    International Nuclear Information System (INIS)

    Das, C.R.; Albert, S.K.; Sam, Shiju; Mastanaiah, P.; Chaitanya, G.M.S.K.; Bhaduri, A.K.; Jayakumar, T.; Murthy, C.V.S.; Kumar, E. Rajendra

    2014-01-01

    Highlights: • Width of HAZ is smaller in the 9Cr–1W RAFM weldment prepared by EB process compared to that reported for TIG weldments in literature. • Weld joint is stronger than that of the base metal. • Toughness of weld metal prepared by EB welding process is comparable to that (in PWHT condition) prepared by TIG process. • DBTT of as-welded 9Cr–1W RAFM weldment prepared by EB process is comparable to that reported for TIG weld metal in PWHT condition. - Abstract: Microstructure and mechanical properties of the weldments prepared from 9Cr–1W reduced activation ferritic martensitic (RAFM) steel using electron beam welding (EBW) process were studied. Microstructure consists of tempered lath martensite where precipitates decorating the boundaries in post weld heat treated (PWHT) condition. Lath and precipitate sizes were found to be finer in the weld metal than in base metal. Accordingly, hardness of the weld metal was found to be higher than the base metal. Tensile strength of the cross weldment specimen was 684 MPa, which was comparable with the base metal tensile strength of 670 MPa. On the other hand, DBTT of 9Cr–1W weld metal in as-welded condition is similar to that reported for TIG weld metal in PWHT condition

  7. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The department for Applied Physics, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784, Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora,1309, Sofia (Bulgaria); Belenkiy, V. Ya., E-mail: mtf@pstu.ru; Varushkin, S. V., E-mail: stepan.varushkin@mail.ru [The department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation)

    2014-04-15

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  8. Laser Spot Welding of Copper-aluminum Joints Using a Pulsed Dual Wavelength Laser at 532 and 1064 nm

    Science.gov (United States)

    Stritt, Peter; Hagenlocher, Christian; Kizler, Christine; Weber, Rudolf; Rüttimann, Christoph; Graf, Thomas

    A modulated pulsed laser source emitting green and infrared laser light is used to join the dissimilar metals copper and aluminum. The resultant dynamic welding process is analyzed using the back reflected laser light and high speed video observations of the interaction zone. Different pulse shapes are applied to influence the melt pool dynamics and thereby the forming grain structure and intermetallic phases. The results of high-speed images and back-reflections prove that a modulation of the pulse shape is transferred to oscillations of the melt pool at the applied frequency. The outcome of the melt pool oscillation is shown by the metallurgically prepared cross-section, which indicates different solidification lines and grain shapes. An energy-dispersivex-ray analysis shows the mixture and the resultant distribution of the two metals, copper and aluminum, within the spot weld. It can be seen that the mixture is homogenized the observed melt pool oscillations.

  9. Welding problems in nuclear power engineering

    International Nuclear Information System (INIS)

    Zubchenko, A.S.

    1986-01-01

    The problems of welding industry in nuclear power plant engineering, mainly related to the improvement of molten bath protection, are considered. Development of new materials for welding electrodes, for cladding and welding fluxes, is pointed out. Production of the following equipment is brought to a commercial level: welding heads and welding machines for branch pipe welding, anticorrosion cladding, zonal thermal treatment, electron beam welding facilities for the welding and maintenance of turbineblades, equipment for nondestructive testing of welded joints

  10. Technical Note: Validation of halo modeling for proton pencil beam spot scanning using a quality assurance test pattern

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Liyong, E-mail: linl@uphs.upenn.edu; Huang, Sheng; Kang, Minglei; Solberg, Timothy D.; McDonough, James E.; Ainsley, Christopher G. [Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104 (United States)

    2015-09-15

    Purpose: The purpose of this paper is to demonstrate the utility of a comprehensive test pattern in validating calculation models that include the halo component (low-dose tails) of proton pencil beam scanning (PBS) spots. Such a pattern has been used previously for quality assurance purposes to assess spot shape, position, and dose. Methods: In this study, a scintillation detector was used to measure the test pattern in air at isocenter for two proton beam energies (115 and 225 MeV) of two IBA universal nozzles (UN #1 and UN #2). Planar measurements were compared with calculated dose distributions based on the weighted superposition of location-independent (UN #1) or location-dependent (UN #2) spot profiles, previously measured using a pair-magnification method and between two nozzles. Results: Including the halo component below 1% of the central dose is shown to improve the gamma-map comparison between calculation and measurement from 94.9% to 98.4% using 2 mm/2% criteria for the 115 MeV proton beam of UN #1. In contrast, including the halo component below 1% of the central dose does not improve the gamma agreement for the 115 MeV proton beam of UN #2, due to the cutoff of the halo component at off-axis locations. When location-dependent spot profiles are used for calculation instead of spot profiles at central axis, the gamma agreement is improved from 98.0% to 99.5% using 2 mm/2% criteria. The two nozzles clearly have different characteristics, as a direct comparison of measured data shows a passing rate of 89.7% for the 115 MeV proton beam. At 225 MeV, the corresponding gamma comparisons agree better between measurement and calculation, and between measurements in the two nozzles. Conclusions: In addition to confirming the primary component of individual PBS spot profiles, a comprehensive test pattern is useful for the validation of the halo component at off-axis locations, especially for low energy protons.

  11. Resistance Element Welding of Magnesium Alloy/austenitic Stainless Steel

    Science.gov (United States)

    Manladan, S. M.; Yusof, F.; Ramesh, S.; Zhang, Y.; Luo, Z.; Ling, Z.

    2017-09-01

    Multi-material design is increasingly applied in the automotive and aerospace industries to reduce weight, improve crash-worthiness, and reduce environmental pollution. In the present study, a novel variant of resistance spot welding technique, known as resistance element welding was used to join AZ31 Mg alloy to 316 L austenitic stainless steel. The microstructure and mechanical properties of the joints were evaluated. It was found that the nugget consisted of two zones, including a peripheral fusion zone on the stainless steel side and the main fusion zone. The tensile shear properties of the joints are superior to those obtained by traditional resistance spot welding.

  12. Mehanical Properties of Electron Beam Welded Joints in Thick Gage CA6NM Stainless Steel

    Science.gov (United States)

    Sarafan, Sheida; Wanjara, Priti; Gholipour, Javad; Champliaud, Henri; Mathieu, Louis

    2017-10-01

    Design of hydroelectric turbine components requires high integrity welds (without detectable volumetric defects) in heavy gage sections of stainless steel materials, such as ASTM A743 grade CA6NM—a low carbon 13% Cr-4% Ni martensitic stainless steel that is manufactured in cast form. In this work, 90-mm-thick plates of CA6NM were joined using a single-pass autogenous electron beam (EB) welding process and the mechanical properties were evaluated in the as-welded condition to characterize the performance of the joints. The static tensile properties that were evaluated in two directions—transverse and longitudinal to the EB weld seam—demonstrated conformance of the joints with the requirements of the ASME Section IX standard. The Charpy impact energies of the EB welds—measured at -18 °C on samples with V-notch roots located in the fusion and heat-affected zones—met the minimum requirements of 27 J specified in ASME Section VIII standard. In addition, bend tests that were conducted on the entire weld cross section displayed no discontinuities on the tension side of the bent joints. Hence, the developed EB welding process was demonstrated to render high-performance joints and promises key advantages for industrialization, such as cost savings through reductions in consumable material, production time and labor intensity.

  13. Effects of Energy Density and Shielding Medium on Performance of Laser Beam Welding (LBW) Joints on SAF2205 Duplex Stainless Steel

    Science.gov (United States)

    Zhang, W. W.; Cong, S.; Luo, S. B.; Fang, J. H.

    2018-05-01

    The corrosion resistance performance of SAF2205 duplex stainless steel depends on the amount of ferrite to austenite transformation, but the ferrite content after power beam welding is always excessively high. To obtain laser beam welding joints with better mechanical and corrosion resistance performance, the effects of the energy density and shielding medium on the austenite content, hardness distribution, and shear strength were investigated. The results showed that ferrite to austenite transformation was realized with increase in the energy density. When the energy density was increased from 120 J/mm to 200 J/mm, the austenite content of the welding joint changed from 2.6% to 38.5%. Addition of nitrogen gas to the shielding medium could promote formation of austenite. When the shielding medium contained 50% and 100% nitrogen gas, the austenite content of the welding joint was 42.7% and 47.2%, respectively. The hardness and shear strength were significantly improved by increase in the energy density. However, the shielding medium had less effect on the mechanical performance. Use of the optimal welding process parameters resulted in peak hardness of 375 HV and average shear strength of 670 MPa.

  14. Hydrogen assisted stress-cracking behaviour of electron beam welded supermartensitic stainless steel weldments

    International Nuclear Information System (INIS)

    Bala Srinivasan, P.; Sharkawy, S.W.; Dietzel, W.

    2004-01-01

    Supermartensitic stainless steel (SMSS) grades are gaining popularity as an alternate material to duplex and super duplex stainless steels for applications in oil and gas industries. The weldability of these steels, though reported to be better when compared to conventional martensitic stainless steels, so far has been addressed with duplex stainless steel electrodes/fillers. This work addresses the stress-cracking behaviour of weldments of a high-grade supermartensitic stainless steel (11% Cr, 6.5% Ni and 2% Mo) in the presence of hydrogen. Welds were produced with matching consumables, using electron beam welding (EBW) process. Weldments were subjected to slow strain rate tests in 0.1 M NaOH solution, with introduction of hydrogen into the specimens by means of potentiostatic cathodic polarisation at a potential of -1200 mV versus Ag/AgCl electrode. Reference tests were performed in air for comparison, and the results suggest that both the SMSS base material and the EB weld metal are susceptible to embrittlement under the conditions of hydrogen charging

  15. Finite element simulation of the welding process and structural behaviour of welded components

    International Nuclear Information System (INIS)

    Locci, J.M.; Rouvray, A. de; Barbe, B.; Poirier, J.

    1977-01-01

    In the field of inelastic analysis of nuclear metal structures, the computation of residual stresses in welds, and their effects on the strength of welded components is of major importance. This paper presents an experimentally checked finite element simulation with the general nonlinear program PAM NEP-D, of the electron beam welding of two thick hemispherical shells, and the behaviour of the welded sphere under various additional thermomechanical sollicitations. (Auth.)

  16. Effect of welding parameters (plunge depths of shoulder, pin geometry, and tool rotational speed) on the failure mode and stir zone characteristics of friction stir spot welded aluminum 2024-T3 sheets

    Energy Technology Data Exchange (ETDEWEB)

    Paidar, Moslem; Sarab, Mahsa Lali; Taheri, Morteza; Khodabandeh, Alireza [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-15

    The main purpose of this study was to investigate the effect of welding parameters on the failure mode and stir zone characteristics of aluminum alloy 2024-T3 joined by friction stir spot welding. The welding parameters in this work are tool rotational speed, plunge depths of shoulder, and pin geometry. In accordance with the methods of previous investigations, the rotational speeds were set to 630 rpm to 2000 rpm. Two pin geometries with concave shoulder were used: triangular and cylindrical. The plunge depths of the shoulder were 0.3, 0.5 and 0.7 mm. The shoulder diameter and pin height for both geometries were 14 and 2.4 mm, respectively. The diameter of the cylindrical and triangular pins was 5 mm. Results show that the parameters mentioned earlier influence fracture mode under tension shear loading. Two different fracture modes were observed during the examinations. Low-penetration depths and low-rotational speeds lead to shear fracture, whereas high values of these factors cause the tension-shear fracture mode. Fracture of the lower sheet sometimes occurs at high rotational speeds.

  17. A Method for Identifying the Mechanical Parameters in Resistance Spot Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    Mechanical dynamic responses of resistance welding machine have a significant influence on weld quality and electrode service life, it must be considered when the real welding production is carried out or the welding process is stimulated. The mathematical models for characterizing the mechanical...

  18. Characterization of electron beam welded Zircaloy-4

    International Nuclear Information System (INIS)

    Anishetty, Sharath; Manna, I.; Majumdar, J. Dutta

    2015-01-01

    Zirconium (Zr) alloys are the backbone materials for thermal reactors because of their low neutron absorption cross section and in addition have suitable properties like high temperature mechanical and corrosion properties. For various structural applications, different Zirconium based alloys are used. Zircaloy-4 (Zr-4) is most commonly used as channel boxes in boiling water reactors (BWRs), intermediate grid applications in pressurized water reactors (PWRs) and in fuel cladding. Zircaloy cladding acts as a barrier between the radioactive fuel and exterior coolants. Therefore, the structural integrity of the cladding tube is extremely important in the safe operation of reactors. Efforts are being made to produce Zircaloy-4 products with better mechanical properties. Different routes of processing are involved like forging, pilgering and extrusion are developed over years in fabricating components to improve in-reactor performance. In this study, microstructure and hardness properties of electron beam welded Zr-4 was evaluated

  19. Perspectives of special welding methods. 1

    International Nuclear Information System (INIS)

    Herden, G.; Buness, G.; Wiesner, P.

    1976-01-01

    Laser, electron, ion, and light beam welding as well as plasma arc welding are considered to be special fusion welding methods. The stage of development and possible future applications of these methods are described. (author)

  20. Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel

    Science.gov (United States)

    Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.

    2012-10-01

    The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.

  1. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Lu, J.; Zhang, Wenqi

    2007-01-01

    is influenced by inductive noise caused by the high welding current. In this study, the dynamic resistance is determined by measuring the voltage at primary side and current at secondary side. This increases the accuracy of measurement because of higher signal-noise ratio, and allows to apply to in-process......The conventional methods of determining the dynamic resistance were mostly done by measuring the voltage and current at secondary side of transformer in resistance welding machines, in which the measuring set-up normally interferes with the movement of electrode, and the measuring precision...

  2. Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding Alloy 690 butt weldments

    International Nuclear Information System (INIS)

    Lee, H T; Wu, J L

    2009-01-01

    This study investigates the correlation between the thermal cycles experienced by Alloy 690 weldments fabricated using gas tungsten arc welding (GTAW) and laser beam welding (LBW) processes, and their corresponding corrosion resistance properties. The corrosion resistance of the weldments is evaluated using a U-bend stress corrosion test in which the specimens are immersed in a boiling, acid solution for 240 h. The experimental results reveal that the LBW inputs significantly less heat to the weldment than the GTAW, and therefore yields a far faster cooling rate. Moreover, the corrosion tests show that in the GTAW specimen, intergranular corrosion (IGC) occurs in both the fusion zone (FZ) and the heat affected zone (HAZ). By contrast, the LBW specimen shows no obvious signs of IGC.

  3. A fundamental study on the structural integrity of magnesium alloys joined by friction stir welding

    Science.gov (United States)

    Rao, Harish Mangebettu

    The goal of this research is to study the factors that influence the physical and mechanical properties of lap-shear joints produced using friction stir welding. This study focuses on understanding the effect of tool geometry and weld process parameters including the tool rotation rate, tool plunge depth and dwell time on the mechanical performance of similar magnesium alloy and dissimilar magnesium to aluminum alloy weld joints. A variety of experimental activities were conducted including tensile and fatigue testing, fracture surface and failure analysis, microstructure characterization, hardness measurements and chemical composition analysis. An investigation on the effect of weld process conditions in friction stir spot welding of magnesium to magnesium produced in a manner that had a large effective sheet thickness and smaller interfacial hook height exhibited superior weld strength. Furthermore, in fatigue testing of friction stir spot welded of magnesium to magnesium alloy, lap-shear welds produced using a triangular tool pin profile exhibited better fatigue life properties compared to lap-shear welds produced using a cylindrical tool pin profile. In friction stir spot welding of dissimilar magnesium to aluminum, formation of intermetallic compounds in the stir zone of the weld had a dominant effect on the weld strength. Lap-shear dissimilar welds with good material mixture and discontinues intermetallic compounds in the stir zone exhibited superior weld strength compared to lap-shear dissimilar welds with continuous formation of intermetallic compounds in the stir zone. The weld structural geometry like the interfacial hook, hook orientation and bond width also played a major role in influencing the weld strength of the dissimilar lap-shear friction stir spot welds. A wide scatter in fatigue test results was observed in friction stir linear welds of aluminum to magnesium alloys. Different modes of failure were observed under fatigue loading including crack

  4. Probability of defect detection of Posiva's electron beam weld

    International Nuclear Information System (INIS)

    Kanzler, D.; Mueller, C.; Pitkaenen, J.

    2013-12-01

    The report 'Probability of Defect Detection of Posiva's electron beam weld' describes POD curves of four NDT methods radiographic testing, ultrasonic testing, eddy current testing and visual testing. POD-curves are based on the artificial defects in reference blocks. The results are devoted to the demonstration of suitability of the methods for EB weld testing. Report describes methodology and procedure applied by BAM. Report creates a link from the assessment of the reliability and inspection performance to the risk assessment process of the canister final disposal project. Report ensures the confirmation of the basic quality of the NDT methods and their capability to describe the quality of the EB-weld. The probability of detection curves are determined based on the MIL-1823 standard and it's reliability guidelines. The MIL-1823 standard was developed for the determination of integrity of gas turbine engines for the US military. In the POD-process there are determined as a key parameter for the defect detectability the a90/95 magnitudes, i.e. the size measure a of the defect, for which the lower 95 % confidence band crosses the 90 % POD level. By this way can be confirmed that defects with a size of a90/95 will be detected with 90 % probability. In case the experiment will be repeated 5 % might fall outside this confidence limit. (orig.)

  5. Comparison of creep rupture behavior of tungsten inert gas and electron beam welded grade 91 steel

    International Nuclear Information System (INIS)

    Dey, H.C.; Vanaja, J.; Laha, K.; Bhaduri, A.K.; Albert, S.K.; Roy, G.G.

    2016-01-01

    Creep rupture behavior of Grade 91 steel weld joints fabricated by multi-pass tungsten inert gas (TIG) and electron beam welding (EBW) processes has been studied and compared with base metal. Cross-weld creep specimens were fabricated from the X-ray radiography qualified and post weld heat treated (760°C/4 h) weld joints. Creep testing of weld joints and base metal was carried out at 650°C over a stress range of 40°120 MPa. Creep life of EBW joint is comparable to base metal; whereas multi-pass TIG joint have shown significant drop in creep life tested for the same stress level. Both types of weld joints show Type IV cracking for all the stress levels. The steady state creep rate of multi-pass TIG is found to be fifteen times than that of EBW joint for stress level of 80 MPa, which may be attributed to over tempering, more re-austenization, and fine grain structure of inter-critical and fine grain heat affected zone regions of the TIG joint. In contrast, single-pass and rapid weld thermal cycles associated with EBW process causes minimum phase transformation in the corresponding regions of heat affected zone. Microstructure studies on creep tested specimens shows creep cavities formed at the primary austenite grain boundaries nucleated on coarse carbide precipitates. The hardness measured across the weld on creep tested specimens shows significant drop in hardness in the inter-critical and fine grain heat affected zone regions of multi-pass TIG (176 VHN) in comparison to 192 VHN in the corresponding locations in EBW joint. (author)

  6. Strength Evaluation of Heat Affected Zone in Electron Beam Welded ARAA for HCCR TBM in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. S.; Kim, S. K.; Jin, H. G.; Lee, E. H.; Lee, D. W. [KAERI, Daejeon (Korea, Republic of); Cho, S. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) has been developed for ITER, and Korean reduced activation ferritic martensitic (RAFM) steel, called advanced reduced activation alloy (ARAA), has also been developed for a structural material of the HCCR TBM. One case of limited optimized electron beam (EB) welding conditions was selected based on previous work, and the weldability of an EB weld was evaluated for TBM fabrication. The micro-hardness was measured from the base to the weld region, and the microstructures were also observed. A small punch (SP) test considering the HAZ was carried out at room and high (550 .deg. C) temperatures. The empirical mechanical properties of HAZ in the EB weld were evaluated, and the fracture behavior was investigated after the SP test. The SP results show that the estimated yield and tensile strength of the HAZ were higher than the base metal at both temperatures. Korean RAFM steel, ARAA, was developed as a TBM structural material. Using one of the program alloys in ARAA (F206), one case of a limited optimized EB welding condition was selected based on previous works, and the weldability of an EB weld using the SP test was evaluated for TBM fabrication at room and high (550 .deg. C) temperatures. From a micro-Vickers hardness evaluation, the HAZ gave the highest values compared with the other regions. The irregular grain boundaries in the HAZ were observed, but its width was narrower than the TIG weld from the previous results. The optimized welding methods such as the TIG, EB, and laser weld, and the welding procedure considering the PWHT are being established, and the weldability evaluation is also progressing according to the development of the ARAA for the fusion material application in Korea.

  7. Sequential ultrasonic spot welding of thermoplastic composites : An experimental study on the welding process and the mechanical behaviour of (multi-)spot welded joints

    NARCIS (Netherlands)

    Zhao, T.

    2018-01-01

    The popularity of thermoplastic composites (TPCs) has been growing steadily in the last decades in the aircraft industry. This is not only because of their excellent material properties, but also owing to their fast and cost-effective manufacturing process. Fusion bonding, or welding, is a typical

  8. Stabilization of electron beam spot size by self bias potential

    International Nuclear Information System (INIS)

    Kwan, T.J.T.; Moir, D.C.; Snell, C.M.; Kang, M.

    1998-01-01

    In high resolution flash x-ray imaging technology the electric field developed between the electron beam and the converter target is large enough to draw ions from the target surface. The ions provide fractional neutralization and cause the electron beam to focus radially inward, and the focal point subsequently moves upstream due to the expansion of the ion column. A self-bias target concept is proposed and verified via computer simulation that the electron charge deposited on the target can generate an electric potential, which can effectively limit the ion motion and thereby stabilize the growth of the spot size. A target chamber using the self bias target concept was designed and tested in the Integrated Test Stand (ITS). The authors have obtained good agreement between computer simulation and experiment

  9. Welding of iridium heat source capsule components

    International Nuclear Information System (INIS)

    Mustaleski, T.M.; Yearwood, J.C.; Burgan, C.E.; Green, L.A.

    1991-01-01

    Interplanetary spacecraft have long used radioisotope thermoelectric generators (RTG) to produce power for instrumentation. These RTG produce electrical energy from the heat generated through the radioactive decay of plutonium-238. The plutonium is present as a ceramic pellet of plutonium oxide. The pellet is encapsulated in a containment shell of iridium. Iridium is the material of choice for these capsules because of its compatibility with the plutonium dioxide. The high-energy beam welding (electron beam and laser) processes used in the fabrication of the capsules has not been published. These welding procedures were originally developed at the Mound Laboratories and have been adapted for use at the Oak Ridge Y-12 Plant. The work involves joining of thin material in small sizes to exacting tolerances. There are four different electron beam welds on each capsule, with one procedure being used in three locations. There is also a laser weld used to seal the edges of a sintered frit assembly. An additional electron beam weld is also performed to seal each of the iridium blanks in a stainless steel waster sheet prior to forming. In the transfer of these welding procedures from one facility to another, a number of modifications were necessary. These modifications are discussed in detail, as well as the inherent problems in making welds in material which is only 0.005 in. thick. In summary, the paper discusses the welding of thin components of iridium using the high energy beam processes. While the peculiarities of iridium are pertinent to the discussion, much of the information is of general interest to the users of these processes. This is especially true of applications involving thin materials and high-precision assemblies

  10. Study of weld quality real-time monitoring system for auto-body assembly

    Science.gov (United States)

    Xu, Jun; Li, Yong-Bing; Chen, Guan-Long

    2005-12-01

    Resistance spot welding (RSW) is widely used for the auto-body assembly in automotive industry. But RSW suffers from a major problem of inconsistent quality from weld to weld. The major problem is the complexity of the basic process that may involve material coatings, electrode force, electrode wear, fit up, etc. Therefore weld quality assurance is still a big challenge and goal. Electrode displacement has proved to be a particularly useful signal which correlates well with weld quality. This paper introduces a novel auto-body spot weld quality monitoring system which uses electrode displacement as the quality parameter. This system chooses the latest laser displacement sensor with high resolution to measure the real-time electrode displacement. It solves the interference problem of sensor mounting by designing special fixture, and can be successfully applied on the portable welding machine. It is capable of evaluating weld quality and making diagnosis of process variations such as surface asperities, shunting, worn electrode and weld expansion with real-time electrode displacement. As proved by application in the workshop, the monitoring system has good stability and reliability, and is qualified for monitoring weld quality in process.

  11. Microstructural Characterization and Mechanical Properties of Electron Beam Welded Joint of High Strength Steel Grade S690QL

    Directory of Open Access Journals (Sweden)

    Błacha S.

    2016-06-01

    Full Text Available In the paper the results of metallographic examination and mechanical properties of electron beam welded joint of quenched and tempered steel grade S690QL are presented. Metallographic examination revealed that the concentrated electron beam significantly affect the changes of microstructure in the steel. Parent material as a delivered condition (quenched and tempered had a bainitic-martensitic microstructure at hardness about 290 HV0.5. After welding, the microstructure of heat affected zone is composed mainly of martensite (in the vicinity of the fusion line of hardness 420 HV0.5. It should be noted, however, that the microstructure of steel in the heat affected zone varies with the distance from the fusion line. The observed microstructural changes were in accordance with the CCT-S transformation diagram for the examined steel.

  12. Application of e-beam welding in W/Cu divertor project for EAST

    International Nuclear Information System (INIS)

    Wang, Wanjing; Li, Qiang; Zhao, Sixiang; Xu, Yue; Wei, Ran; Cao, Lei; Yao, Damao; Qin, Sigui; Peng, Lingjian; Shi, Yingli; Pan, Ningjie; Liu, Guohui; Li, Hui; Luo, Guang-Nan

    2015-01-01

    Highlights: • To develop the actively cooled W/Cu components, we have to meet the application of EBW. • In this work, the microstructure of the fusion zone and the mechanical properties of Cu−Cu and Cu−Ni joint welded by EBW have been investigated. • In the practice of quality control, it was found that under present standard the helium leak detection is unreliable. Thus the UT has been introduced and the premier results have shown it's effective. • In addition, the control of configuration tolerance has also been investigated. And a solidified welding procedure with jigs was established before the batch production. - Abstract: In the development of EAST actively cooled W/Cu components, the ITER-grade CuCrZr has been chosen as the heat sink material for its good thermomechanics properties. To realize the seal joint of the heat sink, a large number of electron beam welding (EBW) of CuCrZr/CuCrZr or CuCrZr/Inconel625 has been carried out. In the quality control of the W/Cu components, the helium leak detection at thermal condition has been performed on the entire components before delivery. However, in the operation of EAST device some micro leak on the components was detected indicating that the helium leak detection under present standard was unreliable for the quality control. Therefore, the ultrasonic non-destructive testing technique was introduced to exclude the defects. In addition, the welding shrinkage and bending has also been investigated to meet the required tight tolerances for plasma-facing components in vacuum vessel.

  13. Application of e-beam welding in W/Cu divertor project for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wanjing, E-mail: wjwang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China); Li, Qiang; Zhao, Sixiang; Xu, Yue; Wei, Ran; Cao, Lei; Yao, Damao [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China); Qin, Sigui; Peng, Lingjian; Shi, Yingli; Pan, Ningjie; Liu, Guohui [Advanced Technology and Materials Company - AT& M, Beijing (China); Li, Hui [Beijing Zhongke Electric Co. Ltd., Beijing (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China)

    2015-10-15

    Highlights: • To develop the actively cooled W/Cu components, we have to meet the application of EBW. • In this work, the microstructure of the fusion zone and the mechanical properties of Cu−Cu and Cu−Ni joint welded by EBW have been investigated. • In the practice of quality control, it was found that under present standard the helium leak detection is unreliable. Thus the UT has been introduced and the premier results have shown it's effective. • In addition, the control of configuration tolerance has also been investigated. And a solidified welding procedure with jigs was established before the batch production. - Abstract: In the development of EAST actively cooled W/Cu components, the ITER-grade CuCrZr has been chosen as the heat sink material for its good thermomechanics properties. To realize the seal joint of the heat sink, a large number of electron beam welding (EBW) of CuCrZr/CuCrZr or CuCrZr/Inconel625 has been carried out. In the quality control of the W/Cu components, the helium leak detection at thermal condition has been performed on the entire components before delivery. However, in the operation of EAST device some micro leak on the components was detected indicating that the helium leak detection under present standard was unreliable for the quality control. Therefore, the ultrasonic non-destructive testing technique was introduced to exclude the defects. In addition, the welding shrinkage and bending has also been investigated to meet the required tight tolerances for plasma-facing components in vacuum vessel.

  14. Beam Expansion of Blind Spot Detection Radar Antennas Using a Radome with Defected Corrugated Inner Wall

    Directory of Open Access Journals (Sweden)

    Hayeon Kim

    2017-01-01

    Full Text Available A beam expanding radome for 76.5 GHz automotive radar antennas is presented whose inner surface is engraved with corrugations. The radar used for blind spot detection (BSD requires a very wide beam width to ensure longer time for tracking out-of-sight objects. It is found that the corrugations modulate the phase velocities of the waves along the surface, which increases beam width in the far field. In addition, defects in the corrugation increase beam width even further. The presented structure satisfies the beam width requirement while keeping a low profile.

  15. Ablation centration after active eye tracker-assisted LASIK and comparison of flying-spot and broad-beam laser.

    Science.gov (United States)

    Lin, Jane-Ming; Chen, Wen-Lu; Chiang, Chun-Chi; Tsai, Yi-Yu

    2008-04-01

    To evaluate ablation centration of flying-spot LASIK, investigate the effect of patient- and surgeon-related factors on centration, and compare flying-spot and broad-beam laser results. This retrospective study comprised 173 eyes of 94 patients who underwent LASIK with the Alcon LADARVision4000 with an active eye-tracking system. The effective tracking rate of the system is 100 Hz. The amount of decentration was analyzed by corneal topography. Patient- (low, high, and extreme myopia; effect of learning) and surgeon-related (learning curve) factors influencing centration were identified. Centration was compared to the SCHWIND Multiscan broad-beam laser with a 50-Hz tracker from a previous study. Mean decentration was 0.36+/-0.18 mm (range: 0 to 0.9 mm). Centration did not differ in low, high, and extreme myopia or in patients' first and second eyes. There were no significant differences in centration between the first 50 LASIK procedures and the last 50 procedures. Comparing flying-spot and broad-beam laser results, there were no differences in centration in low myopia. However, the LADARVision4000 yielded better centration results in high and extreme myopia. The Alcon LADARVision4000 active eye tracking system provides good centration for all levels of myopic correction and better centration than the Schwind broad-beam Multiscan in eyes with high and extreme myopia.

  16. DEFORMATION INFLUENCE ON A LIFETIME OF WELDING ELECTRODE TIPS

    Directory of Open Access Journals (Sweden)

    Ján Viňáš

    2009-02-01

    Full Text Available The contribution deals with the influence of welding electrode tips deformation on their lifetime. The influence of material properties, production technology and the intensity of welding electrodes load on their lifetime are presented. The electrode tips of the most used type of CuCr1Zr alloy of three basic standard shapes before and after the process of welding are evaluated. The process of welding is realized with low, middle and maximum welding parameters on programmable pneumatic spot welding machine VTS BPK 20. The influence of welding parameters on chosen material characteristics of welding tips is observed. Through the use of upsetting test, dependency of forming strength and deformation of material on used technology of welding tip production is observed.

  17. Auto Body Welding 2 (Course Outline), Automotive Body Repair and Refinishing 1: 9033.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The 90-hour course is a foundation quinmester course in welding for the auto body repairman. The outline consists of seven blocks of instruction (orientation, 6 hours; auto body oxyacetylene welding, 10 hours; electric arc welding equipment, 6 hours; auto body electric arc welding, 8 hours; position welding, 40 hours; electric spot welders, 16…

  18. Electron-beam-welded segmental heat pipes of AlMgSi 1 for the thermal model of the satellite Aeros-A

    Energy Technology Data Exchange (ETDEWEB)

    Hoell, H.; Lasar, H.

    1974-07-01

    For the purposes of tests with the thermal model of the German aeronomy satellite Aeros-A, a heat pipe system of optimized weight was developed in order to transport thermal energy from the solar cells of the cylindrical satellite to the conical bottom. Because of stringent requirements on the fabrication process, electron beam welding is used for bonding. The welding process is described and preliminary test results are given. (LEW)

  19. Effects of B4C Addition on the Laser Beam Welding Characteristics of Al/SiC MMCs Produced By P/M

    Directory of Open Access Journals (Sweden)

    Serdar KARAOĞLU

    2011-01-01

    Full Text Available Fusion weldability characteristics of metal matrix composites (MMC produced by powder metallurgy (P/M are usually insufficient due to unwanted micro-structural changes that occur during welding. This study aims to investigate the effects of B4C addition as reinforcement on the weld quality of Al/SiC MMCs. After the production of Al/SiC MMCs by P/M with or without the addition of B4C, laser beam welding (LBW characteristics of the materials were investigated by focusing on the integrity of the welds. Optical microscopy (OM, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX were utilized for the characterization of the welds. Results show that Al/SiC MMCs produced by P/M can not be easily welded by LBW, but weldability characteristics of the material can be improved by the addition of B4C.

  20. Characterization of lap joints laser beam welding of thin AA 2024 sheets with Yb:YAG disk-laser

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Sergi, Vincenzo

    2012-06-01

    Lap joints obtained by overlapping two plates are widely diffused in aerospace industry. Nevertheless, because of natural aging, adhesively bonded and riveted aircraft lap joints may be affected by cracks from rivets, voids or corrosion. Friction stir welding has been proposed as a valid alternative, although large heat affected zones are produced both in the top and the bottom plate due to the pin diameter. Interest has therefore been shown in studying laser lap welding as the laser beam has been proved to be competitive since it allows to concentrate the thermal input and increases productivity and quality. Some challenges arise as a consequence of aluminum low absorptance and high thermal conductivity; furthermore, issues are due to metallurgical challenges such as both micro and macro porosity formation and softening in the fused zone. Welding of AA 2024 thin sheets in a lap joint configuration is discussed in this paper: tests are carried out using a recently developed Trumpf TruDisk 2002 Yb:YAG disk-laser with high beam quality which allows to produce beads with low plates distortion and better penetration. The influence of the processing parameters is discussed considering the fused zone extent and the bead shape. The porosity content as well as the morphological features of the beads have been examined.

  1. Development of TIG Welding System for a Nuclear Fuel Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Changyoung; Ahn, Sungho; Hong, Jintae; Kim, Kahye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rig and rods. To manufacture the nuclear fuel test rig, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rig and rods jointing the various sensors and end caps on a fuel cladding tube, which is charged with fuel pellets and component parts. Thus, we designed and fabricated the precision welding system consisting of an orbital TIG welder, a low-pressure chamber, and a high-pressure chamber. Using this system, the performance tests were performed with the round and seal spot welds for each welding condition. This paper describes not only the contents for the fabrication of precision TIG welding system but also some results from weld tests using the low-pressure and high-pressure chambers to verify the performance of this system. The TIG welding system was developed to manufacture the nuclear fuel test rig and rods. It has been configured to be able to weld the nuclear fuel test rigs and rods by applying the TIG welder using a low-pressure chamber and a high-pressure chamber. The performance tests using this system were performed with the round and seal spot welds for the welding conditions. The soundness of the orbital TIG welding system was confirmed through performance tests in the low-pressure and high-pressure chambers.

  2. Development of TIG Welding System for a Nuclear Fuel Test Rig

    International Nuclear Information System (INIS)

    Joung, Changyoung; Ahn, Sungho; Hong, Jintae; Kim, Kahye

    2013-01-01

    The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rig and rods. To manufacture the nuclear fuel test rig, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rig and rods jointing the various sensors and end caps on a fuel cladding tube, which is charged with fuel pellets and component parts. Thus, we designed and fabricated the precision welding system consisting of an orbital TIG welder, a low-pressure chamber, and a high-pressure chamber. Using this system, the performance tests were performed with the round and seal spot welds for each welding condition. This paper describes not only the contents for the fabrication of precision TIG welding system but also some results from weld tests using the low-pressure and high-pressure chambers to verify the performance of this system. The TIG welding system was developed to manufacture the nuclear fuel test rig and rods. It has been configured to be able to weld the nuclear fuel test rigs and rods by applying the TIG welder using a low-pressure chamber and a high-pressure chamber. The performance tests using this system were performed with the round and seal spot welds for the welding conditions. The soundness of the orbital TIG welding system was confirmed through performance tests in the low-pressure and high-pressure chambers

  3. A System for Monitoring and Tracking the LHC Beam Spot within the ATLAS High Level Trigger

    CERN Document Server

    Bartoldus, R; The ATLAS collaboration; Cogan, J; Salnikov, A; Strauss, E; Winklmeier, F

    2012-01-01

    The parameters of the beam spot produced by the LHC in the ATLAS interaction region are computed online using the ATLAS High Level Trigger (HLT) system. The high rate of triggered events is exploited to make precise measurements of the position, size and orientation of the luminous region in near real-time, as these parameters change significantly even during a single data-taking run. We present the challenges, solutions and results for the online determination, monitoring and beam spot feedback system in ATLAS. A specially designed algorithm, which uses tracks registered in the silicon detectors to reconstruct event vertices, is executed on the HLT processor farm of several thousand CPU cores. Monitoring histograms from all the cores are sampled and aggregated across the farm every 60 seconds. The reconstructed beam values are corrected for detector resolution effects, measured in situ from the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual ...

  4. Capabilities of infrared weld monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  5. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Science.gov (United States)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  6. Artificial neural networks for prediction of quality in resistance spot welding; Redes neuronales artificiales para la prediccion de la calidad en soldadura por resistencia por puntos

    Energy Technology Data Exchange (ETDEWEB)

    Martin, O.; Lopez, M.; Martin, F.

    2006-07-01

    An artificial neural network is proposed as a tool for predicting from three parameters (weld time, current intensity and electrode sort) if the quality of a resistance spot weld reaches a certain level or not. The quality is determined by cross tension testing. The fact of reaching this quality level or not is the desired output that goes with each input of the artificial neural network during its supervised learning. The available data set is made up of input/desired output pairs and is split randomly into a training subset (to update synaptic weight values) and a validation subset (to avoid overfitting phenomenon by means of cross validation). (Author) 44 refs.

  7. METHOD OF ELECTRON BEAM PROCESSING

    DEFF Research Database (Denmark)

    2003-01-01

    As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which is the o......As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which...... is the option of welding workpieces of large thicknesses. Therefore the idea is to guide the electron beam (2) to the workpiece via a hollow wire, said wire thereby acting as a prolongation of the vacuum chamber (4) down to workpiece. Thus, a workpiece need not be placed inside the vacuum chamber, thereby...... exploiting the potential of electron beam processing to a greater degree than previously possible, for example by means of electron beam welding...

  8. Influence of surface pretreatment in resistance spot welding of aluminum AA1050

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    quality. An experimental study of the influence of pretreatment on weld quality in RSW of AA1050 sheets with three thicknesses, comparing welding of as-received sheet with pretreated sheet by either pickling in NaOH or glass-blasting were investigated. Different weld settings were applied with low...

  9. Feedback control of laser welding based on frequency analysis of light emissions and adaptive beam shaping

    Czech Academy of Sciences Publication Activity Database

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    2012-01-01

    Roč. 39, NOV (2012), s. 784-791 ISSN 1875-3892. [LANE 2012. Laser Assisted Net Shape Engineering /7./ International Conference on Photonic Technologies. Fürth, 12.11.2012-15.12.2012] Institutional support: RVO:68081731 Keywords : laser welding * feedback control * frequency analysis * adaptive beam shaping Subject RIV: BH - Optics, Masers, Lasers

  10. Scaling of spiking and humping in keyhole welding

    Energy Technology Data Exchange (ETDEWEB)

    Wei, P S; Chuang, K C [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); DebRoy, T [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Ku, J S, E-mail: pswei@mail.nsysu.edu.tw, E-mail: cielo.zhuang@gmail.com, E-mail: rtd1@psu.edu, E-mail: jsku@mail.nsysu.edu.tw [Institute of Materials Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

    2011-06-22

    Spiking, rippling and humping seriously reduce the strength of welds. The effects of beam focusing, volatile alloying element concentration and welding velocity on spiking, coarse rippling and humping in keyhole mode electron-beam welding are examined through scale analysis. Although these defects have been studied in the past, the mechanisms for their formation are not fully understood. This work relates the average amplitudes of spikes to fusion zone depth for the welding of Al 6061, SS 304 and carbon steel, and Al 5083. The scale analysis introduces welding and melting efficiencies and an appropriate power distribution to account for the focusing effects, and the energy which is reflected and escapes through the keyhole opening to the surroundings. The frequency of humping and spiking can also be predicted from the scale analysis. The analysis also reveals the interrelation between coarse rippling and humping. The data and the mechanistic findings reported in this study are useful for understanding and preventing spiking and humping during keyhole mode electron and laser beam welding.

  11. Fundamental studies on electron beam welding on heat-resistant superalloys for nuclear plants, 2

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Terai, Kiyohide; Nagai, Hiroyoshi; Shimizu, Shigeki; Aota, Toshiichi.

    1978-01-01

    In this report, the correlation was discussed between the susceptibility to weld cracking in electron beam welding of heat-resistant superalloys for nuclear plants and its characteristics of hot ductility. Trans-Varestraint and Varestraint tests. Obtained conclusions may be summarized as follows, using technical symbols which are given meanings in this report. 1) Such criteria obtained in the hot ductility test are herein employed to evaluate the susceptibility to microcracking as sub(ND) T sub(H), sub(ND) T sub(C), ΔT sub(H.C) (= sub(ND) T sub(H) - sub(ND) T sub(C)) and sub(B) T sub(R) (= T sub(L) - sub(ND) T sub(C)). Both with the decrease of sub(ND) T sub(H) and sub(ND) T sub(C) and with the increase of ΔT sub(H.C) and sub(B) T sub(R), superalloys are considered to become more susceptible to microcracking. Of these criteria, ΔT sub(H.C.) and sub(B) T sub(R) correlate best with q sub(CR) which is one of the effective criteria to evaluate the susceptibility to microcracking in the electron beam welding. 2) It is recognized that ΔT sub(H.C) and sub(B) T sub(R) in hot ductility test correlate well with sub(TV) T sub(R.5%) in Trans-Varestraint test and sub(V) C sub(m.1%) in the Varestraint test. 3) sub(TV) T sub(R.5%) in the Trans-Varestraint test and sub(V) C sub(m.1%) in the Varestraint test are respectively effective to evaluate the susceptibility to microcracking. Moreover, these criteria clearly correlate with q sub(CR). (auth.)

  12. Numerical methods in simulation of resistance welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi

    2015-01-01

    Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...... thecontact area and the distribution of contact pressure. The numerical simulation of resistancewelding is illustrated by a spot welding example that includes subsequent tensile shear testing...

  13. Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel

    Science.gov (United States)

    Sathiya, P.; Panneerselvam, K.; Soundararajan, R.

    2012-09-01

    Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.

  14. Process Simulation of Resistance Weld Bonding and Automotive Light-weight Materials

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Chergui, Azeddine; Nielsen, Chris Valentin

    of mechanical, electrical, thermal and metallurgical processes, which are essential for simulation of resistance welding process to predict the welding results and evaluate the weldability of materials. These functions have been further extended with new functions for optimization of welding process parameters...... and predicting welding process window, for weld planning with optimal welding parameter settings, and for modeling microstructures and hardness distribution after welding. Latest developments have been made on simulation of resistance welding with nonconductive materials for applications in weld bonding......This paper presents the latest developments in numerical simulation of resistance welding especially with the new functions for simulation of microstructures, weld bonding and spot welding of new light-weight materials. The fundamental functions in SORPAS® are built on coupled modeling...

  15. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye

    2013-01-01

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses

  16. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses.

  17. Influence of heat input in electron beam process on microstructure and properties of duplex stainless steel welded interface

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Lv, Xiaoqing; Zhang, Jianyang

    2018-03-01

    The influence of heat input in electron beam (EB) process on microstructure, mechanical properties, and pitting corrosion resistance of duplex stainless steel (DSS) welded interface was investigated. The rapid cooling in EB welding resulted in insufficient austenite formation. The austenite mainly consisted of grain boundary austenite and intragranular austenite, and there was abundant Cr2N precipitation in the ferrite. The Ni, Mo, and Si segregation indicated that the dendritic solidification was primarily ferrite in the weld. The weld exhibited higher hardness, lower toughness, and poorer pitting corrosion resistance than the base metal. The impact fractures of the welds were dominated by the transgranular cleavage failure of the ferrite. The ferrite was selectively attacked because of its lower pitting resistance equivalent number than that of austenite. The Cr2N precipitation accelerated the pitting corrosion. In summary, the optimised heat input slightly increased the austenite content, reduced the segregation degree and ferrite texture intensity, decreased the hardness, and improved the toughness and pitting corrosion resistance. However, the effects were limited. Furthermore, optimising the heat input could not suppress the Cr2N precipitation. Taking into full consideration the microstructure and properties, a heat input of 0.46 kJ/mm is recommended for the EB welding of DSS.

  18. Analysis on Development of Transverse - Sectioned Weld Zone using FEM Verified with Multipulsed Resistance Seam Welding

    Directory of Open Access Journals (Sweden)

    N Muhammad

    2013-12-01

    Full Text Available This paper details an investigation, through an experimental study, of the development of weld nuggets and a heat-affected zone (HAZ in resistance seam welding(RSEW using a numerical simulation approach. SYSWELD software for the simulation of heat treatment, welding, and welding assembly was utilized for the simulation process. The integrated Spot Weld Advisor (SWA in SYSWELD was applied to simulate the RSEW model using a two-dimensional axis-symmetric FE model with customized electrode meshing. The thermal-mechanical-electrical characteristic and contact condition were taken into account throughout this study. The developed model comprised a transverse cross section for welding two layers of low carbon steel with a thickness of 1 mm. For the experimental verification, three-pulsed RSEW with two different current stages was carried out. It was discovered that this program code, Spotweld Advisor, when used with the meshing method, was capable of offering results that were in agreement with physical experiments.

  19. Keyhole shapes during laser welding of thin metal sheets

    International Nuclear Information System (INIS)

    Aalderink, B J; Lange, D F de; Aarts, R G K M; Meijer, J

    2007-01-01

    Camera observations of the full penetration keyhole laser welding process show that the keyhole shape is elongated under certain welding conditions. Under these unfavourable circumstances, the welding process is susceptible to holes in the weld bead. Existing models of the pressure balance at the keyhole wall cannot explain this keyhole elongation. In this paper a new model is presented, accounting for the doubly curved shape of the keyhole wall. In this model, the surface tension pressure has one term that tends to close the keyhole and another term that tries to open it. Model calculations show that when the keyhole diameter is of the same order as the sheet thickness, the latter part can become dominant, causing the keyhole to elongate. Experiments on thin aluminium (AA5182) and mild steel (DC04) sheets verify these model calculations. As the keyhole radius depends on the radius of the focused laser spot, it was found for both materials that the ratio of the spot radius and the sheet thickness must be above a critical value to prevent keyhole elongation. These critical radii are 0.25 for AA5182 and 0.4 for DC04, respectively. Furthermore, differences in appearance of the weld bead between the circular and the elongated keyhole welds could be explained by this model

  20. Heat Source - Materials Interactions during Fusion Welding.

    Science.gov (United States)

    1982-04-30

    the capabilities of ultrasonic weld pool measurement, and to address questions of applications to active pool size control. -- mom- 44 TIG welding ...preparation. The fraction of absorbed power increases dramatically upon formation of a keyhole . As a result, welds made with sharply beveled edge...laser end electron beam welding processes characteristically produce a deel,, narrow weld bead. This bead is formed by a keyhole mode of operation in

  1. Number size distribution of fine and ultrafine fume particles from various welding processes.

    Science.gov (United States)

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  2. Characterization of the inhomogeneous constitutive properties of laser welding beams by the micro-Vickers hardness test and the rule of mixture

    International Nuclear Information System (INIS)

    Song, Yanli; Hua, Lin; Chu, Dongning; Lan, Jian

    2012-01-01

    Highlights: ► Relationship between Vickers hardness and material parameters was quantitatively built. ► Inhomogeneous weld properties were determined by hardness test combined the rule of mixture. ► Instrumented indentation tests verified these calculated properties of welds. ► Deviations between the calculated and experimental results were limited to 8.0%. -- Abstract: A novel approach has been proposed to characterize the inhomogeneous mechanical properties of weld materials by using the micro-Vickers hardness test combined with the rule of mixture. This proposed method has introduced the influences of the inhomogeneous properties of weld materials by considering the variations in plastic behaviour across the weld cross-section. The inhomogeneous properties of laser welding beams for tailor welded blanks (TWBs), which were three different types of combinations of DX56D and DP600 automotive steel sheets, were extracted by using this proposed method. The instrumented indentation tests were conducted to verify the measured inhomogeneous properties of weld materials. The fact that the calculated true stress–strain curves agreed well with the experimental ones has confirmed the reliability and accuracy of the proposed method.

  3. The effect of CO{sub 2} laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Köse, Ceyhun, E-mail: ceyhun.kose@gop.edu.tr [Faculty of Natural Sciences and Engineering, Department of Mechanical Engineering, Gaziosmanpaşa University, Tokat (Turkey); Kaçar, Ramazan, E-mail: rkacar@karabuk.edu.tr [Faculty of Technology Department of Manufacturing Engineering, Karabuk University, Karabuk 78050 (Turkey); Zorba, Aslı Pınar, E-mail: aslipinarzorba@gmail.com [Graduate School of Natural and Applied Sciences, Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Bağırova, Melahat, E-mail: mbagir@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Allahverdiyev, Adil M., E-mail: adil@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey)

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO{sub 2} laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and

  4. SU-E-T-510: Interplay Between Spots Sizes, Spot / Line Spacing and Motion in Spot Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Lee, TK

    2015-01-01

    Purpose In proton beam configuration for spot scanning proton therapy (SSPT), one can define the spacing between spots and lines of scanning as a ratio of given spot size. If the spacing increases, the number of spots decreases which can potentially decrease scan time, and so can whole treatment time, and vice versa. However, if the spacing is too large, the uniformity of scanned field decreases. Also, the field uniformity can be affected by motion during SSPT beam delivery. In the present study, the interplay between spot/ line spacing and motion is investigated. Methods We used four Gaussian-shape spot sizes with 0.5cm, 1.0cm, 1.5cm, and 2.0cm FWHM, three spot/line spacing that creates uniform field profile which are 1/3*FWHM, σ/3*FWHM and 2/3*FWHM, and three random motion amplitudes within, +/−0.3mm, +/−0.5mm, and +/−1.0mm. We planned with 2Gy uniform single layer of 10×10cm2 and 20×20cm2 fields. Then, mean dose within 80% area of given field size, contrubuting MU per each spot assuming 1cGy/MU calibration for all spot sizes, number of spots and uniformity were calculated. Results The plans with spot/line spacing equal to or smaller than 2/3*FWHM without motion create ∼100% uniformity. However, it was found that the uniformity decreases with increased spacing, and it is more pronounced with smaller spot sizes, but is not affected by scanned field sizes. Conclusion It was found that the motion during proton beam delivery can alter the dose uniformity and the amount of alteration changes with spot size which changes with energy and spot/line spacing. Currently, robust evaluation in TPS (e.g. Eclipse system) performs range uncertainty evaluation using isocenter shift and CT calibration error. Based on presented study, it is recommended to add interplay effect evaluation to robust evaluation process. For future study, the additional interplay between the energy layers and motion is expected to present volumetric effect

  5. Numerical Simulation Of The Laser Welding

    Directory of Open Access Journals (Sweden)

    Aleksander Siwek

    2008-01-01

    Full Text Available The model takes into consideration thermophysical and metallurgical properties of theremelting steel, laser beam parameters and boundary conditions of the process. As a resultof heating the material, in the area of laser beam operation a weld pool is being created,whose shape and size depends on convection caused by the Marangoni force. The directionof the liquid stream depends on the temperature gradient on the surface and on the chemicalcomposition as well. The model created allows to predict the weld pool shape depending onmaterial properties, beam parameters, and boundary conditions of the sample.

  6. Microstructure and mechanical properties of resistance spot welded dissimilar thickness DP780/DP600 dual-phase steel joints

    International Nuclear Information System (INIS)

    Zhang, Hongqiang; Wei, Ajuan; Qiu, Xiaoming; Chen, Jianhe

    2014-01-01

    Highlights: • We examine changes of microstructure of dissimilar thickness DP600/DP780 joints. • The hardness profile of RSW joints can be predicted by the equation. • Failure modes, peak load and energy describes the mechanical properties of joints. • The nugget diameter is the key factor of transition between the failure modes. - Abstract: In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the microstructure and mechanical properties of single-lap joints between DP780 and DP600. The results show that the weld joints consist of three regions including base metal (BM), heat affected zone (HAZ) and fusion zone (FZ). The grain size and martensite volume fractions increase in the order of BM, HAZ and FZ. The hardness in the FZ is significantly higher than hardness of base metals. Tensile properties of the joints were described in terms of the failure modes and static load-carrying capabilities. Two distinct failure modes were observed during the tensile shear test of the joints: interfacial failure (IF) and pullout failure (PF). The FZ size plays a dominate role in failure modes of the joints

  7. Investigation of mixing and diffusion processes in hybrid spot laser-MIG keyhole welding

    International Nuclear Information System (INIS)

    Zhou, J; Tsai, H L

    2009-01-01

    In hybrid laser-MIG keyhole welding, anti-crack elements can be added into the weld pool through a filler metal in anticipation of compensating mass loss, preventing porosity formation and improving compositional and mechanical properties of the welds. Understanding the mixing and diffusion of the filler metal in the molten pool is vital to achieve these desired objectives. In this study, mathematical models and associated numerical techniques have been developed to investigate the mixing and diffusion processes in hybrid laser-MIG keyhole welding. The transient interactions between droplets and weld pool and dynamics of the melt flow are studied. The effects of key process parameters, such as droplet size (wire diameter), droplet generation frequency (wire feed speed) and droplet impinging speed, on mixing/diffusion are systematically investigated. It was found that compositional homogeneity of the weld pool is determined by the competition between the mixing rate and the solidification rate. A small-size filler droplet together with high generation frequency can increase the latitudinal diffusion of the filler metal into the weld pool, while the large-size droplet along with the low generation frequency helps to get more uniform longitudinal diffusion. Increasing the impinging velocity of the filler droplet can improve the latitudinal diffusion of the filler metal. However, a high impinging velocity can cause a lower diffusion zone in the upper part of the welds. This study provides a good foundation for optimizing the hybrid laser-MIG keyhole welding process to achieve quality welds with desired properties.

  8. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  9. Structure/property relationships in multipass GMA welding of beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, P. W. (Patrick W.); Hults, W. L. (William L.); Thoma, D. J. (Dan J.); Dave, V. R. (Vivek R.); Kelly, A. M. (Anna Marie); Pappin, P. A. (Pallas A.); Cola, M. J. (Mark J.); Burgardt, P. (Paul)

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  10. Thermomechanical Modelling of Resistance Welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi

    2007-01-01

    The present paper describes a generic programme for analysis, optimization and development of resistance spot and projection welding. The programme includes an electrical model determining electric current and voltage distribution as well as heat generation, a thermal model calculating heat...

  11. Nickel-base alloy overlay weld with improved ultrasonic flaw detection by magnetic stirring welding

    International Nuclear Information System (INIS)

    Takashi, Hirano; Kenji, Hirano; Masayuki, Watando; Takahiro, Arakawa; Minoru, Maeda

    2001-01-01

    Ultrasonic flaw detection is more difficult in Nickel-base alloy welds containing dendrites owing to the decrease ultrasonic transmissibility they cause. The present paper discusses application of magnetic stirring welding as a means for reducing dendrite growth with consequent improvement in ultrasonic transmissibility. Single pass and multi-pass welding tests were conducted to determine optimal welding conditions. By PT and macro observation subsequent to welding was carried out, optimal operation conditions were clarified. Overlay welding tests and UT clearly indicated ultrasonic beam transmissibility in overlay welds to be improved and detection capacity to be greater through application of magnetic stirring welding. Optimal operation conditions were determined based on examination of temper bead effects in the heat affected zone of low alloy steel by application of magnetic stirring welding to the butt welded joints between low alloy and stainless steel. Hardness in this zone of low alloy steel after the fourth layer was less than 350 HV. (author)

  12. Grain structure, texture and mechanical property evolution of automotive aluminium sheet during high power ultrasonic welding

    International Nuclear Information System (INIS)

    Haddadi, Farid; Tsivoulas, Dimitrios

    2016-01-01

    High power ultrasonic spot welding (HPUSW) is a joining technique which is performed within less than a second and provides a more energy-efficient alternative to friction stir spot welding (FSSW), which is considered a longer cycle manufacturing process for joining automotive alloys. To date, only a few reports exist on the deformation mechanisms that take place during high power ultrasonic spot welding. In this work, dynamic recrystallization and grain growth were examined using electron backscatter diffraction (EBSD). HPUSW causes extensive deformation within the weld zone where the temperature increases to 440 °C. An ultra-fine grain structure was observed in a thin band of flat weld interface within a short welding time of 0.10 s. With increasing welding time the interface was displaced and ‘folds’ or ‘crests’ appeared together with shear bands. The weld interface progressively changed from flat to sinusoidal and eventually to a convoluted wave-like pattern when the tool fully penetrated the workpiece, having a wavelength of ~ 1 mm after 0.40 s. Finally, the microstructure and texture varied significantly depending on the location within the weld. Although the texture near the weld interface was relatively weak, a shift was observed with increasing welding time from an initially Cube-dominated texture to one where the typical β-fibre Brass component prevailed. - Highlights: •Lap shear strength of ~2.9 kN was achieved in 0.30 sec welding time. •Temperature approached 440 °C along the weld centreline for the highest welding time. •The texture near the teeth was dominated by Brass, P and S components at optimum condition. •The weld interface showed typical β-fibre deformation texture at optimum condition.

  13. Grain structure, texture and mechanical property evolution of automotive aluminium sheet during high power ultrasonic welding

    Energy Technology Data Exchange (ETDEWEB)

    Haddadi, Farid, E-mail: farid.haddadi@gmail.com [Clemson University–International Center for Automotive Research (CU-ICAR), #347, 4 Research Drive, Greenville, SC 29607 (United States); School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Tsivoulas, Dimitrios, E-mail: dim.tsivoulas@gmail.com [School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Clean Energy/Nuclear Services, Amec Foster Wheeler, 601 Faraday Street, Birchwood Park, Warrington WA3 6GN (United Kingdom)

    2016-08-15

    High power ultrasonic spot welding (HPUSW) is a joining technique which is performed within less than a second and provides a more energy-efficient alternative to friction stir spot welding (FSSW), which is considered a longer cycle manufacturing process for joining automotive alloys. To date, only a few reports exist on the deformation mechanisms that take place during high power ultrasonic spot welding. In this work, dynamic recrystallization and grain growth were examined using electron backscatter diffraction (EBSD). HPUSW causes extensive deformation within the weld zone where the temperature increases to 440 °C. An ultra-fine grain structure was observed in a thin band of flat weld interface within a short welding time of 0.10 s. With increasing welding time the interface was displaced and ‘folds’ or ‘crests’ appeared together with shear bands. The weld interface progressively changed from flat to sinusoidal and eventually to a convoluted wave-like pattern when the tool fully penetrated the workpiece, having a wavelength of ~ 1 mm after 0.40 s. Finally, the microstructure and texture varied significantly depending on the location within the weld. Although the texture near the weld interface was relatively weak, a shift was observed with increasing welding time from an initially Cube-dominated texture to one where the typical β-fibre Brass component prevailed. - Highlights: •Lap shear strength of ~2.9 kN was achieved in 0.30 sec welding time. •Temperature approached 440 °C along the weld centreline for the highest welding time. •The texture near the teeth was dominated by Brass, P and S components at optimum condition. •The weld interface showed typical β-fibre deformation texture at optimum condition.

  14. One-step femtosecond laser welding and internal machining of three glass substrates

    Science.gov (United States)

    Tan, Hua; Duan, Ji'an

    2017-05-01

    In this paper, it demonstrated one-step femtosecond laser welding and internal machining of three fused silica substrates in the optical- and non-optical-contact regimes by focusing 1030-nm laser pulses at the middle of the second substrate. Focusing laser pulses within the second glass in optical-contact and non-optical-contact samples induces permanent internal structural modification, leading to the three glass substrates bonding together simultaneously. The bonding mechanism is based on the internal modification of glass, and this mechanism is different from that of ordinary glass welding at the interface. Welding-spot size is affected by not only the gap distance (ablation effect) and heat transmission, but also by gravity through examining the sizes of the welding spots on the four contact welding surfaces. The maximum bonding strength of the lower interface (56.2 MPa) in the optical-contact regime is more than double that (27.6 MPa) in the non-optical-contact regime.

  15. Effects of filler wire on residual stress in electron beam welded QCr0.8 copper alloy to 304 stainless steel joints

    International Nuclear Information System (INIS)

    Zhang, Bing-Gang; Zhao, Jian; Li, Xiao-Peng; Chen, Guo-Qing

    2015-01-01

    The electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with or without copper filler wire was studied in detail. The temperature fields and magnitude and distribution of stress fields in the joints during the welding process were numerically simulated using finite element method. The temperature cycles and residual stresses were also experimentally measured by thermometric and hole-drilling methods, respectively. The accuracy of the modeling procedure was verified by the good agreement between the calculated results and experimental data. The temperature distribution in the joint was found to be asymmetric along the center of weld. In particular, the temperature in the copper alloy plate is much higher than that in the 304 SS plate owing to the great difference in thermal conductivity between the two materials. The peak three-dimensional residual stresses all appeared at the interface between the copper and steel in the two different joints. Furthermore, the weld was subjected to tensile stress. The longitudinal residual stress, generally the most harmful to the integrity of the structure among the stress components in EBW with filler wire (EBFW), was 53 MPa lower than that of autogenous EBW (AEBW), and the through-thickness residual stress was 12 MPa lower. The transverse residual stress of EBFW was 44 MPa higher than that of AEBW. However, analysis of the von Mises stress showed that the EBFW process effectively reduced the extent of the high residual stress region in the weld location and the magnitude of the residual stresses in the copper side compared with those of the AEBW joint. - Highlights: • Copper and steel was welded by electron beam welding with copper filler wire. • The copper wire fed into gap can reduce the peak value of residual stress. • The peak value of longitudinal stress can be reduced 53 MPa by the filler wire. • The range of nov Mises stress in the weld could be reduced by the wire

  16. Numerical simulation of heat transfer and fluid flow during double-sided laser beam welding of T-joints for aluminum aircraft fuselage panels

    Science.gov (United States)

    Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan

    2017-06-01

    In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.

  17. Welding parameter optimization of alloy material by friction stir welding using Taguchi approach and design of experiments

    Science.gov (United States)

    Karwande, Amit H.; Rao, Seeram Srinivasa

    2018-04-01

    Friction stir welding (FSW) a welding process in which metals are joint by melting them at their solid state. In different engineering areas such as civil, mechanical, naval and aeronautical engineering beams are widely used of the magnesium alloys for different applications and that are joined by conventional inert gas welding process. Magnesium metal has less density and low melting point for that reason large heat generation in the common welding process so its necessity to adapt new welding process. FSW process increases the weld quality which observed under various mechanical testing by using different tool size.

  18. Optimization of Power Allocation for Multiusers in Multi-Spot-Beam Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    Heng Wang

    2014-01-01

    Full Text Available In recent years, multi-spot-beam satellite communication systems have played a key role in global seamless communication. However, satellite power resources are scarce and expensive, due to the limitations of satellite platform. Therefore, this paper proposes optimizing the power allocation of each user in order to improve the power utilization efficiency. Initially the capacity allocated to each user is calculated according to the satellite link budget equations, which can be achieved in the practical satellite communication systems. The problem of power allocation is then formulated as a convex optimization, taking account of a trade-off between the maximization of the total system capacity and the fairness of power allocation amongst the users. Finally, an iterative algorithm based on the duality theory is proposed to obtain the optimal solution to the optimization. Compared with the traditional uniform resource allocation or proportional resource allocation algorithms, the proposed optimal power allocation algorithm improves the fairness of power allocation amongst the users. Moreover, the computational complexity of the proposed algorithm is linear with both the numbers of the spot beams and users. As a result, the proposed power allocation algorithm is easy to be implemented in practice.

  19. An experimental study on fracture toughness of resistance spot welded galvanized and ungalvanized DP 450 steel sheets used in automotive body

    Directory of Open Access Journals (Sweden)

    Sevim, Ibrahim

    2016-09-01

    Full Text Available The purpose of this study is to determine fracture toughness of Resistance Spot Welded (RSW Dual Phase (DP steels. RSW of galvanized and ungalvanized DP 450 steel sheets was carried out on spot welding machine. Fracture toughness of RSW joints of galvanized and ungalvanized DP 450 steel sheets was calculated from tensile-shear tests. New empirical equations were developed using Least Squares Method (LSM between energy release rate, fracture toughness and critical crack size depending on the relationship between hardness and fracture toughness values. Results indicated that fracture toughness of joints welded by using RSW increased exponentially while the hardness decreased. In addition, fracture toughness and energy release rate of RSW galvanized DP 450 steel sheets were lower compared to RSW ungalvanized DP 450 steel sheets which had approximately the same hardness.El objetivo de este estudio es determinar la tenacidad de fractura de los aceros dual (DP soldados por puntos de resistencia (RSW. En la máquina de soldadura por puntos se realizó la soldadura de láminas de acero DP 450 galvanizado y sin galvanizar. A partir de los ensayos de tracción-cizallamiento, se calculó la tenacidad a la fractura de las uniones del acero DP 450 galvanizado y sin galvanizar. Aplicando el método de mínimos cuadrados (LSM se desarrollaron nuevas ecuaciones empíricas entre el porcentaje de energía liberada, la tenacidad de fractura y el tamaño de grieta crítica en función de la relación entre los valores de tenacidad de fractura y de dureza. Los resultados indicaron que la tenacidad de fractura de las uniones soldadas por RSW aumentó exponencialmente, mientras que la dureza disminuyó. Además, el porcentaje de energía liberada de las láminas de acero DP 450 galvanizadas y soldadas fueron menores que en el caso de las láminas sin galvanizar a valores iguales de dureza.

  20. Global and local characteristics of an autogenous single pass electron beam weld in thick gage UNS S41500 steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarafan, S., E-mail: Sheida.Sarafan.1@ens.etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada); National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Wanjara, P., E-mail: priti.wanjara@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Gholipour, J., E-mail: Javad.gholipour@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Champliaud, H., E-mail: henri.champliaud@etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada)

    2016-06-01

    Electron beam welding of UNS S41500, a low carbon martensitic stainless steel utilized in hydroelectric turbine manufacturing, was investigated by applying a single pass autogenous process to penetrate a section thickness of 72 mm without preheating. In the as-welded and post-weld heat treated conditions, the evolution in microhardness and microstructure across the weldments, as well as the global and local tensile properties, were evaluated. In the as-welded condition, assessment of the microhardness and the associated microstructure across the welds led to the identification of six regions, including the fusion zone, four heat affected zones and the base metal; each of these regions consisted of different phase constituents, such as tempered martensite, untempered martensite, delta ferrite and retained austenite. Post-weld heat treatment, undertaken to temper the untempered martensite in the as-welded microstructure, was effective in homogenizing the hardness across the weldment. The mechanical response of the welds, determined through tensile testing at room temperature with an automated non-contact three-dimensional deformation measurement system, indicated that the global tensile properties in the as-welded and post-weld heat treated conditions met the acceptance criteria in the ASME Section IX standard. Also, evaluation of the local tensile properties in the fusion and heat affected zones of the as-welded samples allowed a more comprehensive understanding of the strength and ductility associated with the different microstructures in the “composite” nature of the weldment. Fractographic analysis demonstrated dimpled features on the tensile fracture surfaces and failure was associated with debonding between the martensitic matrix and the secondary phases (such as delta ferrite and retained austenite) that resulted in the formation, growth and coalescence of voids into a macroscale crack.