WorldWideScience

Sample records for beam splitting

  1. Splitting of high power, cw proton beams

    CERN Document Server

    Facco, Alberto; Berkovits, Dan; Yamane, Isao

    2007-01-01

    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  2. Optimized design of parallel beam-splitting prism

    Institute of Scientific and Technical Information of China (English)

    Peitao Zhao(赵培涛); Guohua Li(李国华)

    2004-01-01

    A large lateral shearing distance of parallel beam-splitting prism is often needed in laser modulation and polarization interference. In this letter, we present an optimized design of parallel beam-splitting prism and list some different cases in detail. The optimized design widens the use range of parallel beam-splitting prism. At the wavelength of 632.8 nm, the law that the enlargement ratio changes with the refractive index and the apex angle is verified.

  3. Trap split with Laguerre-Gaussian beams

    CERN Document Server

    Kazemi, Seyedeh Hamideh; Mahmoud, Mohammad

    2016-01-01

    The optical trapping techniques have been extensively used in physics, biophysics, micro-chemistry, and micro-mechanics to allow trapping and manipulation of materials ranging from particles, cells, biological substances, and polymers to DNA and RNA molecules. In this Letter, we present a convenient and effective way to generate a novel phenomenon of trapping, named trap split, in a conventional four-level double-$\\Lambda$ atomic system driven by four femtosecond Laguerre-Gaussian laser pulses. We find that trap split can be always achieved when atoms are trapped by such laser pulses, as compared to Gaussian ones. This work would greatly facilitate the trapping and manipulating the particles and generation of trap split. It may also suggest the possibility of extension into new research fields, such as micro-machining and biophysics.

  4. Strong-Strong Beam-Beam Simulation of Bunch Length Splitting at the LHC

    CERN Document Server

    Qiang, J; Pieloni, Tatiana; Ohmi, Kazuhito

    2015-01-01

    Longitudinal bunch length splitting was observed for some LHC beams. In this paper, we will report on the study of the observation using strong-strong beam-beam simulations. We explore a variety of factors including initial momentum deviation, collision crossing angle, synchrotron tune, chromaticity, working points and bunch intensity that contribute to the beam particle loss and the bunch length splitting, and try to understand the underlying mechanism of the observed phenomena.

  5. Efficient beam splitting with continuous relief DOEs and microlens arrays

    Science.gov (United States)

    Krasnaberski, Aliaksei; Miklyaev, Yuri; Pikhulya, Denis; Kleinschmidt, Lisa; Imgrunt, Waleri; Ivanenko, Mikhail; Lissotschenko, Vitalij

    2012-02-01

    Diffractive optical elements (DOEs) are of rising importance for many industrial laser applications, especially for laser beam shaping and laser beam splitting. Typically, such applications require high damage threshold of the diffractive optical elements as well as high diffraction efficiency. Usually DOEs with multilevel (step-like) phase profiles are made microlithographically and suffer from "quantisation" errors and scattering on profile derivative discontinuities. The steplike structure lowers the DOE damage threshold compared to the intrinsic material values. LIMO's microoptical technology is suitable for the production of high-precision free programmable continuous surface profiles in optical glasses, crystals and metals. It can be applied for manufacturing of microlens and micro-mirror arrays as well as for manufacturing of diffractive optics with continuous reliefs. Both the arrays and DOEs with continuous relief are suitable for high efficiency laser beam splitting. However, the design approaches to obtain a desirable solution for the corresponding continuous phase profiles are different. The results of the wave-optical simulations made by LIMO's own program and by VirtualLab software, and experimental studies for a 1 to 11 beam splitter with a continuous profile for the wavelength of 532 nm are presented. Continuous phase profiles for the DOEs were designed by a procedure based on the theory of beam splitting by a phase grating. Comparative theoretical and experimental studies were also done for splitting with a double-sided microlens array. For both types of beam splitting the efficiency can be very high (> 98%). The DOEs show especially high homogeneities of the resulting intensity distribution, however, they are much more sensitive to wavelength variations. The microlens arrays demonstrate even weaker ghost orders as the DOE splitters and their surface profiles are simpler. However, the efficiency and homogeneity suffer on interlens gaps.

  6. Improved Bunch Splitting for the 75ns LHC Beam

    CERN Document Server

    Damerau, H

    2011-01-01

    The 75ns variant was added to the PS arsenal of LHC-type beams by adapting the 20MHz cavity used to produce the 25 and 50ns variants to operate at a switchable 13MHz. This permitted splitting from harmonic 14 to 28, but at a cost in adiabaticity compared with the h=2142 splitting of the other two cases. Consequently, a delicate empirical optimization was necessary to bring the 75ns beam inside specification. More recently the speed at which the bunches, once fully distinct, are moved apart has been revisited and further optimization achieved. As a by-product, deliberately degrading the splitting by moving the bunches apart too quickly led to sufficient coherent motion in the resultant bunch pair to permit a voltage calibration of the 13MHz cavity by means of the influence on convergence of the rf voltage input into the iterative algorithm of the Tomoscope [1,2].

  7. Research on beam splitting prism in laser heterodyne interferometer

    Science.gov (United States)

    Fu, Xiu-hua; Xiong, Shi-fu; Kou, Yang; Pan, Yong-gang; Chen, Heng; Li, Zeng-yu; Zhang, Chuan-xin

    2014-08-01

    With the rapid development of optical testing technology, laser heterodyne interferometer has been used more and more widely. As the testing precision requirements continue to increase, the technical prism is an important component of heterodyne interference. The research utilizing thin film technology to improve optical performance of interferometer has been a new focus. In the article, based on the use requirements of interferometer beam splitting prism, select Ta2O5 and SiO2 as high and low refractive index materials respectively, deposit on substrate K9. With the help of TFCalc design software and Needle method, adopting electron gun evaporation and ion assisted deposition, the beam splitting prism is prepared successfully and the ratio of transmittance and reflectance for this beam splitting prism in 500~850 nm band, incident angle 45 degree is 8:2. After repeated tests, solved the difference problem of film deposition process parameters ,controlled thickness monitoring precision effectively and finally prepared the ideal beam splitting prism which is high adhesion and stable optics properties. The film the laser induced damage threshold and it meet the requirements of heterodyne interferometer for use.

  8. Mechanically tunable photonic crystal split-beam nanocavity

    Science.gov (United States)

    Lin, Tong; Zou, Yongchao; Zhou, Guangya; Chau, Fook Siong; Deng, Jie

    2016-03-01

    Photonic crystal split-beam nanocavities allow for ultra-sensitive optomechanical transductions but are degraded due to their relatively low optical quality factors. We report our recent work in designing a new type of one-dimensional photonic crystal split-beam nanocavity optimized for an ultra-high optical quality factor. The design is based on the combination of the deterministic method and hill-climbing algorithm. The latter is the simplest and most straightforward method of the local search algorithm, which provides the local maximum of the chosen quality factors. This split-beam nanocavity is made up of two mechanical uncoupled cantilever beams with Bragg mirrors patterned onto it and separated by a 75 nm air gap. Experimental results emphasize that the quality factor of the second order TE mode can be as high as 19,900. Additionally, one beam of the device is actuated in the lateral direction with the aid of a NEMS actuator and the quality factor maintains quite well even there's a lateral offset up to 64 nm. We also apply Fano resonance to further increase the Q-factor by constructing two interfering channels. Before tuning, the original Q-factor is 60,000; it's noteworthy that the topmost Q-factor reaches 67,000 throughout out-of-plane electrostatic force tuning. The dynamic mechanical modes of two devices is analyzed as well. Potentially promising applications, such as ultra-sensitive optomechanical torque sensor, local tuning of fano resonance, all-optical-reconfigurable filters etc, are foreseen.

  9. Light sources generating self-splitting beams and their propagation in non-Kolmogorov turbulence.

    Science.gov (United States)

    Mei, Zhangrong

    2014-06-01

    A class of random sources producing far fields self-splitting intensity profiles with variable spacing between the x and y directions is introduced. The beam conditions for ensuring the sources to generate a beam are derived. Based on the derived analytical expression, the evolution behavior of the beams produced by these families of sources in free space and turbulence atmospheric are explored and comparatively analyzed. By changing the modulation parameters n and m, the degree of coherence of Gaussian Schell-model source in the x and y directions are modulated respectively, and then the number of splitting beams and the spacing between splitting beams can be adjusted. It is illustrated that the self-splitting intensity profile is stable when beams propagate in free space, but they eventually transformed into a Gaussian profiles when it passes at sufficiently large distances from its source through the turbulent atmosphere.

  10. Ultra-thin anisotropic metasurface for polarized beam splitting and reflected beam steering applications

    Science.gov (United States)

    Guo, Wenlong; Wang, Guangming; Li, Tangjing; Li, Haipeng; Zhuang, Yaqiang; Hou, Haisheng

    2016-10-01

    In this paper, we propose a polarization beam splitter utilizing an ultra-thin anisotropic metasurface. The proposed anisotropic element is composed of triple-layered rectangular patches spaced with double-layered dielectric isolators. By tailoring the metallic patches, the cell is capable of transmitting x-polarized waves efficiently and reflecting y-polarized beams with almost 100% efficiency at 15 GHz. In addition to this, the reflected phases can be modulated by adjusting the size of the element, which contributes to beam steering in reflection mode. By assigning gradient phases on the metasurface, the constructed sample has the ability to refract x-polarized waves normally and reflect y-polarized beams anomalously. For verification, a sample with a size of 240 × 240 mm2 is fabricated and measured. Consistent numerical and experimental results have both validated the efficiently anomalous reflection for y-polarized waves and normal refraction for x-polarized beams operating from 14.6-15.4 GHz. Furthermore, the proposed sample has a thickness of 0.1λ at 15 GHz, which provides a promising approach for steering and splitting beams in a compact size.

  11. A multibeam atom laser: coherent atom beam splitting from a single far detuned laser

    OpenAIRE

    Dugué, J.; Dennis, G.; Jeppesen, M.; Johnsson, M. T.; Figl, C.; Robins, N. P.; Close, J. D.

    2007-01-01

    We report the experimental realisation of a multibeam atom laser. A single continuous atom laser is outcoupled from a Bose-Einstein condensate (BEC) via an optical Raman transition. The atom laser is subsequently split into up to five atomic beams with slightly different momenta, resulting in multiple, nearly co-propagating, coherent beams which could be of use in interferometric experiments. The splitting process itself is a novel realization of Bragg diffraction, driven by each of the optic...

  12. Tuning beam power-splitting characteristics through modulating a photonic crystal slab’s output surface

    Science.gov (United States)

    Feng, Shuai; Xiao, Ting-Hui; Gan, Lin; Wang, Yi-Quan

    2017-01-01

    Light-beam-splitting characteristics are theoretically and experimentally studied in 2D square-lattice photonic crystals (PhCs) with delicately designed and modulated output surfaces. Compared with the traditional branch-waveguide and self-collimation-type PhC splitters, our proposed structure can not only split the input light beam into different numbers of branches but also realize the adjustment of their relative light intensities in each branch. Moreover, the influence of a light beam’s incident angle on both the output branch beams’ relative intensity and propagation direction is investigated. This proposed light beam splitter is able to work within a broad frequency range, and the propagation directions of the output split beams can be modified with the incident beam’s frequency. In addition, when the PhC device becomes thicker, a kind of light-beam-focusing phenomenon is observed. Advantageously, our light-beam-splitting device has no restriction as to the incident light beam’s location and width, so it is much more convenient and practical for achieving optical connection with other functional devices in complicated, large-scale, all-optical integrated circuits.

  13. Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation

    Science.gov (United States)

    Konoshonkin, Alexander V.; Kustova, Natalia V.; Borovoi, Anatoli G.

    2015-10-01

    The open-source beam-splitting code is described which implements the geometric-optics approximation to light scattering by convex faceted particles. This code is written in C++ as a library which can be easy applied to a particular light scattering problem. The code uses only standard components, that makes it to be a cross-platform solution and provides its compatibility to popular Integrated Development Environments (IDE's). The included example of solving the light scattering by a randomly oriented ice crystal is written using Qt 5.1, consequently it is a cross-platform solution, too. Both physical and computational aspects of the beam-splitting algorithm are discussed. Computational speed of the beam-splitting code is obviously higher compared to the conventional ray-tracing codes. A comparison of the phase matrix as computed by our code with the ray-tracing code by A. Macke shows excellent agreement.

  14. Time-delayed beam splitting with energy separation of x-ray channels

    Energy Technology Data Exchange (ETDEWEB)

    Stetsko, Yuri P.; Shvyd' ko, Yuri V.; Brian Stephenson, G. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2013-10-21

    We introduce a time-delayed beam splitting method based on the energy separation of x-ray photon beams. It is implemented and theoretically substantiated on an example of an x-ray optical scheme similar to that of the classical Michelson interferometer. The splitter/mixer uses Bragg-case diffraction from a thin diamond crystal. Another two diamond crystals are used as back-reflectors. Because of energy separation and a minimal number (three) of optical elements, the split-delay line has high efficiency and is simple to operate. Due to the high transparency of diamond crystal, the split-delay line can be used in a beam sharing mode at x-ray free-electron laser facilities.

  15. Time-delayed beam splitting with energy separation of x-ray channels

    CERN Document Server

    Stetsko, Yuri P; Stephenson, G Brian

    2013-01-01

    We introduce a time-delayed beam splitting method based on the energy separation of x-ray photon beams. It is implemented and theoretically substantiated on an example of an x-ray optical scheme similar to that of the classical Michelson interferometer. The splitter/mixer uses Bragg-case diffraction from a thin diamond crystal. Another two diamond crystals are used as back-reflectors. For energy separation the back-reflectors are set at slightly different temperatures and angular deviations from exact backscattering. Because of energy separation and a minimal number (three) of optical elements, the split-delay line has high efficiency and is simple to operate. Due to the high transparency of diamond crystal, the split-delay line can be used in a beam sharing mode at x-ray free-electron laser facilities. The delay line can be made more compact by adding a fourth crystal.

  16. Influence of laser mode on splitting beam illumination effect of Dammann grating

    Institute of Scientific and Technical Information of China (English)

    Liping Liu; Ye Tian; Xiudong Sun; Yuan Zhao; Yong Zhang; Chenfei Jin

    2009-01-01

    The influences of various laser modes on the splitting beam effect of Dammann grating are studied in theory and by numerical simulation.The results show that fundamental mode laser resembles plane wave while high order mode laser differs from plane wave in the splitting beam effect by Dammann grating.Therefore,the fundamental mode laser is more suitable to be the light source to improve the energy efficiency in far-distance image detecting systems,such as laser image ladar,which use Dammann grating in the illumination system.

  17. Unsharp particle-wave duality in a photon split-beam experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mittelstaedt, P.; Prieur, A.; Schieder, R.

    1987-09-01

    In a quantum mechanical two-slit experiment one can observe a single photon simultaneously as particle (measuring the path) and as wave (measuring the interference pattern) if the path and the interference pattern are measured in the sense of unsharp observables. These theoretical predictions are confirmed by a photon split-beam experiment using a modified Mach-Zehnder interferometer.

  18. Pulse splitting of self-focusing-beams in normally dispersive media

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.

    1996-01-01

    The influence of the normal group-velocity dispersion on anisotropic self-focusing beams in nonlinear Kerr media is studied analytically. It is shown that a light pulse self-focusing in the presence of normal dispersion is split up into several small-scale cells preventing a catastrophic collapse...

  19. Design of mechanically-tunable photonic crystal split-beam nanocavity.

    Science.gov (United States)

    Lin, Tong; Tian, Feng; Shi, Peng; Chau, Fook Siong; Zhou, Guangya; Tang, Xiaosong; Deng, Jie

    2015-08-01

    Photonic crystal split-beam nanocavities allow for ultra-sensitive optomechanical transductions but are degraded due to their relatively low optical quality factors. We have proposed and experimentally demonstrated a new type of one-dimensional photonic crystal split-beam nanocavity optimized for an ultra-high optical-quality factor. The design is based on the combination of the deterministic method and hill-climbing algorithm. The latter is the simplest and most straightforward method of the local search algorithm that provides the local maximum of the chosen quality factors. This split-beam nanocavity is made up of two mechanical uncoupled cantilever beams with Bragg mirrors patterned onto it and separated by a 75-nm air gap. Experimental results emphasize that the quality factor of the second-order TE mode can be as high as 1.99×10(4). Additionally, one beam of the device is actuated in the lateral direction with the aid of a NEMS actuator, and the quality factor maintains quite well even if there is a lateral offset up to 64 nm. Potentially promising applications, such as sensitive optomechanical torque sensor, local tuning of Fano resonance, all-optical-reconfigurable filters, etc., are foreseen.

  20. Coherent and dynamic beam splitting based on light storage in cold atoms

    Science.gov (United States)

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-01-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing. PMID:27677457

  1. Comprehensive proton dose algorithm using pencil beam redefinition and recursive dynamic splitting

    CERN Document Server

    Gottschalk, Bernard

    2016-01-01

    We compute, from first principles, the absolute dose or fluence distribution per incident proton charge in a known heterogeneous terrain exposed to known proton beams. The algorithm is equally amenable to scattered or scanned beams. All objects in the terrain (including collimators) are sliced into slabs, of any convenient thickness, perpendicular to the nominal beam direction. Transport is by standard Fermi-Eyges theory. Transverse heterogeneities are handled by breaking up pencil beams (PBs) either by conventional redefinition or a new form of 2D recursive dynamic splitting: the mother PB is replaced, conserving emittance and charge, by seven daughters of equal transverse size. One has 1/4 the charge and travels in the mother's direction and six have 1/8 the charge, are arranged hexagonally and radiate from the mother's virtual point source. The longitudinal (energy-like) variable is pv (proton momentum times speed). Each material encountered is treated on its own merits, not referenced to water. Slowing do...

  2. The effect of e-beam irradiation on water splitting protochloride

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sam S. [Korea Univ., Seoul (Korea, Republic of)

    2013-07-01

    Photocatalysis of water splitting promises a low-cost and environmentally friendly hydrogen production via free solar energy. We used the well-controlled aerosol deposition (AD) technique to fabricate TiO2 thin film as photo-electrodes. The AD TiO2 films were irradiated with lower energy electron beam from a 0.2 MeV (1mA) electrostatic accelerator under ambient conditions. The dose absorbed to the sample is 12kGy. The current-potential curve results showed the enhancement of photocurrent density after e-beam irradiation from 39.2 to 204.3 {mu}A/cm2 at +0.20V vs. Ag/AgCl.

  3. A high temperature hybrid photovoltaic-thermal receiver employing spectral beam splitting for linear solar concentrators

    Science.gov (United States)

    Mojiri, Ahmad; Stanley, Cameron; Rosengarten, Gary

    2015-09-01

    Hybrid photovoltaic/thermal (PV-T) solar collectors are capable of delivering heat and electricity concurrently. Implementing such receivers in linear concentrators for high temperature applications need special considerations such as thermal decoupling of the photovoltaic (pv) cells from the thermal receiver. Spectral beam splitting of concentrated light provides an option for achieving this purpose. In this paper we introduce a relatively simple hybrid receiver configuration that spectrally splits the light between a high temperature thermal fluid and silicon pv cells using volumetric light filtering by semi-conductor doped glass and propylene glycol. We analysed the optical performance of this device theoretically using ray tracing and experimentally through the construction and testing of a full scale prototype. The receiver was mounted on a commercial parabolic trough concentrator in an outdoor experiment. The prototype receiver delivered heat and electricity at total thermal efficiency of 44% and electrical efficiency of 3.9% measured relative to the total beam energy incident on the primary mirror.

  4. Evidence of Wigner rotation phenomena in the beam splitting experiment at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-07-15

    A result from particle tracking states that, after a microbunched electron beam is kicked, its trajectory changes while the orientation of the microbunching wavefront remains as before. Experiments at the LCLS showed that radiation in the kicked direction is produced practically without suppression. This could be explained if the orientation of the microbunching wavefront is readjusted along the kicked direction. In previous papers we showed that when the evolution of the electron beam modulation is treated according to relativistic kinematics, the orientation of the microbunching wavefront in the ultrarelativistic asymptotic is always perpendicular to the electron beam velocity. There we refrained from using advanced theoretical concepts to explain or analyze the wavefront rotation. For example, we only hinted to the relation of this phenomenon with the concept of Wigner rotation. This more abstract view of wavefront rotation underlines its elementary nature. The Wigner rotation is known as a fundamental effect in elementary particle physics. The composition of non collinear boosts does not result in a simple boost but, rather, in a Lorentz transformation involving a boost and a rotation, the Wigner rotation. Here we show that during the LCLS experiments, a Wigner rotation was actually directly recorded for the first time with a ultrarelativistic, macroscopic object: an ultrarelativistic electron bunch in an XFEL modulated at nm-scale of the size of about 10 microns. Here we point out the role of Wigner rotation in the analysis and interpretation of experiments with ultrarelativistic, microbunched electron beams in FELs. After the beam splitting experiment at the LCLS it became clear that, in the ultrarelativistic asymptotic, the projection of the microbunching wave vector onto the beam velocity is a Lorentz invariant, similar to the helicity in particle physics.

  5. Relative infaunal bivalve density assessed from split beam echosounder angular information

    Directory of Open Access Journals (Sweden)

    Noela Sánchez-Carnero

    2014-06-01

    Full Text Available Management of shellfish resources requires a spatial approach where mapping is a key tool. Acoustic techniques have been rarely used to map infaunal organisms with a patchy distribution. We propose and test the use of split-beam echosounder angular information to assess razor shell presence and relative density. Our statistical approach combines textural analysis of angular echograms, standard unsupervised multivariate methods and hierarchical classification through dendrograms to identify groups of locations with similar clam densities. The statistical analyses show that the classification is consistent with groundtruthing data and that results are insensitive to boat motion or seabed granulometry. The method developed here constitutes a promising tool for assessing the relative density of razor clam grounds.

  6. Sub microsecond notching of a negative hydrogen beam at low energy utilizing a magnetron ion source with a split extractor

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, Douglas; /Fermilab

    2004-12-01

    A technique for sub-microsecond beam notching is being developed at 20 keV utilizing a Magnetron ion source with a slit extraction system and a split extractor. Each half of the extractor is treated as part of a 50 ohm transmission line which can be pulsed at {+-}700 volts creating a 1400 volt gradient. This system along with the associated electronics is electrically floated on top of a pulsed extraction voltage. A beam reduction of 95% has been observed at the end of the Fermilab 400 MeV Linac and 35% notching has recently been achieved in the Booster.

  7. Steps towards the hyperfine splitting measurement of the muonic hydrogen ground state: pulsed muon beam and detection system characterization

    CERN Document Server

    Adamczak, A; Bakalov, D; Baldazzi, G; Bertoni, R; Bonesini, M; Bonvicini, V; Campana, G; Carbone, R; Cervi, T; Chignoli, F; Clemenza, M; Colace, L; Curioni, A; Danailov, M; Danev, P; D'Antone, I; De, A; De, C; De, M; Furini, M; Fuschino, F; Gadejisso-Tossou, K; Guffanti, D; Iaciofano, A; Ishida, K; Iugovaz, D; Labanti, C; Maggi, V; Margotti, A; Marisaldi, M; Mazza, R; Meneghini, S; Menegolli, A; Mocchiutti, E; Moretti, M; Morgante, G; Nardò, R; Nastasi, M; Niemela, J; Previtali, E; Ramponi, R; Rachevski, A; P., L; Rossella, M; Rossi, P L; Somma, F; Stoilov, M; Stoychev, L; Tomaselli, A; Tortora, L; Vacchi, A; Vallazza, E; Zampa, G; Zuffa, M

    2016-01-01

    The high precision measurement of the hyperfine splitting of the muonic-hydrogen atom ground state with pulsed and intense muon beam requires careful technological choices both in the construction of a gas target and of the detectors. In June 2014, the pressurized gas target of the FAMU experiment was exposed to the low energy pulsed muon beam at the RIKEN RAL muon facility. The objectives of the test were the characterization of the target, the hodoscope and the X-ray detectors. The apparatus consisted of a beam hodoscope and X-rays detectors made with high purity Germanium and Lanthanum Bromide crystals. In this paper the experimental setup is described and the results of the detector characterization are presented.

  8. A single diffractive optical element for implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency

    CERN Document Server

    Ye, Jia-Sheng; Huang, Qing-Li; Dong, Bi-Zhen; Zhang, Yan; Yang, Guo-Zhen

    2013-01-01

    In this paper, a novel method is proposed, and employed to design a single diffractive optical element (DOE) for implementing spectrum-splitting and beam-concentration (SSBC) functions simultaneously. We develop an optimization algorithm, through which the SSBC DOE can be optimized within an arbitrary thickness range, according to the limitations of modern photolithography technology. Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency. It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.

  9. A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency

    Institute of Scientific and Technical Information of China (English)

    Ye Jia-Sheng; Wang Jin-Ze; Huang Qing-Li; Dong Bi-Zhen; Zhang Yan; Yang Guo-Zhen

    2013-01-01

    In this paper,a novel method is proposed and employed to design a single diffractive optical element (DOE) for implementing spectrum-splitting and beam-concentration (SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modem photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.

  10. Transverse beam splitting made operational: Recent progress of the multi-turn extraction at the CERN proton synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Borburgh, Jan; Damjanovic, Sanja; Gilardoni, Simone; Giovannozzi, Massimo; Hourican, Michael; Kahle, Karsten; Michels, Olivier; Sterbini, Guido; Hernalsteens, Cedric; Le Godec, Gilles

    2016-01-01

    Following a successful commissioning period, the Multi-Turn Extraction (MTE) at the CERN Proton Synchrotron (PS) has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS) since September 2015. This exceptional extraction technique was proposed to replace the long-serving Continuous Transfer (CT) extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of non-linear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and non-linear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. The results of the related experimental and simulation studies, a summary ...

  11. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    Directory of Open Access Journals (Sweden)

    Jasper J. van Thor

    2015-01-01

    Full Text Available In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe” which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.

  12. Staged ridge-split evaluated using cone beam computed tomography and peri-implant plastic surgery in the mandibular arch

    Directory of Open Access Journals (Sweden)

    Nikhil Vasant Jain

    2015-01-01

    Full Text Available Lack of sufficient bone to place an implant at a functionally and an esthetically appropriate position is a common problem, especially in the mandibular posterior region. Narrow edentulous alveolar ridges <5 mm wide require bone augmentation before implant placement to establish a bony wall of at least 1 mm around the endosseous implant. Various surgical widening techniques are available, including lateral augmentation with or without guided bone regeneration, ridge-split technique and horizontal distraction osteogenesis. The ridge-split technique aims at creating a new implant bed by longitudinal osteotomy of the alveolar bone. The buccal cortex is repositioned laterally by greenstick fracture, and the space between the buccal and lingual cortices is filled with a graft material. Peri-implant plastic surgery focuses on harmonizing peri-implant structures by means of hard- and soft-tissue engineering and includes bone structure enhancement, soft-tissue enhancement, precision in implant placement and improves quality of the prosthetic restoration. The rationale for the peri-implant plastic surgery approach goes well beyond pure esthetics as it creates peri-implant keratinized mucosa and interimplant soft-tissue height in order to avoid food impaction, interimplant airflow, and speech problems. This case report demonstrates a staged ridge-split technique evaluated with cone beam computed tomography using a piezosurgical unit and a surgical technique to restore a papilla-like tissue at the time of the second-stage implant surgery.

  13. Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence.

    Science.gov (United States)

    Yu, Jiayi; Chen, Yahong; Liu, Lin; Liu, Xianlong; Cai, Yangjian

    2015-05-18

    Elegant Hermite-Gaussian correlated Schell-model (EHGCSM) beam was introduced in theory and generated in experiment just recently [Phys. Rev. A 91, 013823 (2015)]. In this paper, we study the propagation properties of an EHGCSM beam in turbulent atmosphere with the help of the extended Huygens-Fresnel integral. Analytical expressions for the cross-spectral density and the propagation factors of an EHGCSM beam propagating in turbulent atmosphere are derived. The statistical properties, such as the spectral intensity, the spectral degree of coherence and the propagation factors, of an EHGCSM beam in Kolmogorov and non-Kolmogorov turbulence are illustrated numerically. It is found that an EHGCSM beam exhibits splitting and combing properties in turbulent atmosphere, and an EHGCSM beam with large mode orders is less affected by turbulence than an EHGCSM beam with small mode orders or a Gaussian Schell-model beam or a Gaussian beam, which will be useful in free-space optical communications.

  14. Increasing the effective aperture of a detector and enlarging the receiving field of view in a 3D imaging lidar system through hexagonal prism beam splitting.

    Science.gov (United States)

    Lee, Xiaobao; Wang, Xiaoyi; Cui, Tianxiang; Wang, Chunhui; Li, Yunxi; Li, Hailong; Wang, Qi

    2016-07-11

    The detector in a highly accurate and high-definition scanning 3D imaging lidar system requires high frequency bandwidth and sufficient photosensitive area. To solve the problem of small photosensitive area of an existing indium gallium arsenide detector with a certain frequency bandwidth, this study proposes a method for increasing the receiving field of view (FOV) and enlarging the effective photosensitive aperture of such detector through hexagonal prism beam splitting. The principle and construction of hexagonal prism beam splitting is also discussed in this research. Accordingly, a receiving optical system with two hexagonal prisms is provided and the splitting beam effect of the simulation experiment is analyzed. Using this novel method, the receiving optical system's FOV can be improved effectively up to ±5°, and the effective photosensitive aperture of the detector is increased from 0.5 mm to 1.5 mm.

  15. Evidence of Wigner Rotation Phenomena in the Beam Splitting Experiment at the LCLS

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2016-01-01

    A result from particle tracking states that, after a microbunched electron beam is kicked, its trajectory changes while the orientation of the microbunching wavefront remains as before. Experiments at the LCLS showed that radiation in the kicked direction is produced practically without suppression. This could be explained if the orientation of the microbunching wavefront is readjusted along the kicked direction. In previous papers we showed that when the evolution of the electron beam modulation is treated according to relativistic kinematics, the orientation of the microbunching wavefront in the ultrarelativistic asymptotic is always perpendicular to the electron beam velocity. There we refrained from using advanced theoretical concepts to explain or analyze the wavefront rotation. For example, we only hinted to the relation of this phenomenon with the concept of Wigner rotation. This more abstract view of wavefront rotation underlines its elementary nature. The Wigner rotation is known as a fundamental eff...

  16. Operational performance of the CERN injector complex with transversely split beams

    Science.gov (United States)

    Abernethy, S.; Akroh, A.; Bartosik, H.; Blas, A.; Bohl, T.; Cettour-Cave, S.; Cornelis, K.; Damerau, H.; Gilardoni, S.; Giovannozzi, M.; Hernalsteens, C.; Huschauer, A.; Kain, V.; Manglunki, D.; Métral, G.; Mikulec, B.; Salvant, B.; Sanchez Alvarez, J.-L.; Steerenberg, R.; Sterbini, G.; Wu, Y.

    2017-01-01

    With the progress made in 2015, the beams produced by the CERN Proton Synchrotron using multiturn extraction (MTE) have been delivered to the Super Proton Synchrotron (SPS) for the fixed-target physics run. Operation successfully started in the second half of September 2015 and continued until the end of the proton physics program by mid November. In this paper the overall performance and beam quality is discussed in detail considering the complete chain of accelerators, from the PS-Booster to the SPS. Moreover, a thorough comparison of the global performance of the MTE scheme against the previously used technique, the so-called continuous transfer (CT), is also carried out.

  17. On amplitude beam splitting of tender X-rays (2-8 keV photon energy) using conical diffraction from reflection gratings with laminar profile.

    Science.gov (United States)

    Jark, Werner; Eichert, Diane

    2016-01-01

    Conical diffraction is obtained when a radiation beam impinges onto a periodically ruled surface structure parallel or almost parallel to the ruling. In this condition the incident intensity is diffracted through an arc, away from the plane of incidence. The diffracted intensity thus lies on a cone, which leads to the name `conical diffraction'. In this configuration almost no part of the ruled structure will produce any shadowing effect for the incident or the diffracted beam. Then, compared with a grating in the classical orientation, relatively higher diffraction efficiencies will be observed for fewer diffraction orders. When the incident beam is perfectly parallel to the grooves of a rectangular grating profile, the symmetry of the setup causes diffraction of the intensity symmetrically around the plane of incidence. This situation was previously tested experimentally in the VUV spectral range for the amplitude beam splitting of a radiation beam with a photon energy of 25 eV. In this case the ideally expected beam splitting efficiency of about 80% for the diffraction into the two first orders was confirmed for the optimum combination of groove depth and angle of grazing incidence. The feasibility of the amplitude beam splitting for hard X-rays with 12 keV photon energy by use of the same concept was theoretically confirmed. However, no related experimental data are presented yet, not even for lower energy soft X-rays. The present study reports the first experimental data for the conical diffraction from a rectangular grating profile in the tender X-ray range for photon energies of 4 keV and 6 keV. The expected symmetries are observed. The maximum absolute efficiency for beam splitting was measured to be only about 30%. As the reflectivity of the grating coating at the corresponding angle of grazing incidence was found to be only of the order of 50%, the relative beam splitting efficiency was thus 60%. This is to be compared also here with an ideally

  18. Acoustic beam splitting in two-dimensional phononic crystals using self-collimation effect

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Department of Experiment Education, Guangdong University of Technology, Guangzhou 510006 (China); Wu, Fugen, E-mail: wufugen@21cn.com; Zhong, Huilin [Department of Experiment Education, Guangdong University of Technology, Guangzhou 510006 (China); Yao, Yuanwei; Zhang, Xin [Department of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2015-10-14

    We propose two models of self-collimation-based beam splitters in phononic crystals. The finite element method is used to investigate the propagation properties of acoustic waves in two-dimensional phononic crystals. The calculated results show that the efficiency of the beam splitter can be controlled systematically by varying the radius of the rods or by changing the orientation of the square rods in the line defect. The effect of changing the side length of the square rods on acoustic wave propagation is discussed. The results show that the total transmission/reflection range decreases/increases as the side length increases. We also find that the relationship between the orientation of the transflective point and the side length of the square rods is quasi-linear.

  19. Asymmetrically filled slits in a metal film that split a light beam into two depending on its wavelength

    CERN Document Server

    Huang, Danhong

    2012-01-01

    By applying a scattering-wave theory, the electromagnetic response of an arbitrary array of multiple slits perforated on a metallic film and filled with different slit dielectric materials can be studied in an analytical way. Here, the wavelength-dependent splitting of a light beam into two by asymmetrically filled slits in a metal film using intra- and inter-slit dual-wave interferences is fully explored. We consider a triple-slit structure perforated on a gold film, where the middle slit is used for the surface-plasmon excitation by a narrow Gaussian beam while the two side slits are used for the detection of a transmitted surface-plasmon wave propagated from the middle opaque slit either at a particular wavelength or at double that wavelength, respectively. For this proposed simple structure, we show that only one of the two side observation slits can be in a passing state for a particular wavelength, but the other blocked slit will change to a passing state at double that wavelength with a specific design...

  20. In-beam measurement of the hydrogen hypernine splitting - towards antihydrogen spectroscopy

    CERN Document Server

    Diermaier, M.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M.C.; Zmeskal, J.; Widmann, E.

    2016-01-01

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison to hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of $\

  1. In-beam measurement of the hydrogen hypernine splitting - towards antihydrogen spectroscopy

    CERN Document Server

    Diermaier, Martin; The Asacusa AD-3 collaboration; Kolbinger, Bernadette; Malbrunot, Chloé; Massiczek, Oswald; Sauerzopf, Clemens; Simon, Martin Christian; Zmeskal, Johann; Widmann, Eberhard

    2016-01-01

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison to hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA' s antihydrogen experiment. The measured value of nu_HF=1 420 405 748.4(3.4)(1.6) Hz with a relative precision of 2.7 × 10(−9) constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the ppb level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are no...

  2. Analysis of Mixed Mode I/II/III Fracture in Foam Core Sandwich Structures Using Imposed Displacement Split Cantilever Beams

    Directory of Open Access Journals (Sweden)

    Rizov V.

    2015-09-01

    Full Text Available Static fracture in foam core sandwich structures under mixed mode I/II/III loading conditions was studied theoretically. In order to generate such loading conditions, a thread guide was used to impose in- plane displacements of the lower crack arm of a sandwich Split Cantilever Beam (SCB. The upper crack arm was loaded by a transverse force. A three-dimensional finite element model of the imposed displacement sandwich SCB configuration was developed. The fracture was studied applying the concepts of linear-elastic fracture mechanics. The strain energy release rate mode components distribution along the crack front was analyzed using the virtual crack closure technique. The influence of the imposed displacement magnitude and the crack length on the fracture was evaluated. The effect of the sandwich core material on the mixed-mode I/II/III fracture was studied. For this purpose, finite element simulations were carried-out assuming that the core is made by different rigid cellular foams. It was found that the strain energy release rate decreases when the foam density increases.

  3. Cost-Effective Mapping of Benthic Habitats in Inland Reservoirs through Split-Beam Sonar, Indicator Kriging, and Historical Geologic Data

    Energy Technology Data Exchange (ETDEWEB)

    Venteris, Erik R.; May, Cassandra

    2014-04-23

    Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.

  4. Cost-effective mapping of benthic habitats in inland reservoirs through split-beam sonar, indicator kriging, and historical geologic data.

    Science.gov (United States)

    Venteris, Erik R; May, Cassandra J

    2014-01-01

    Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.

  5. Cost-effective mapping of benthic habitats in inland reservoirs through split-beam sonar, indicator kriging, and historical geologic data.

    Directory of Open Access Journals (Sweden)

    Erik R Venteris

    Full Text Available Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay sediments overlapped a lower and narrower range for hard (gravel substrates. Thus, we used indicator kriging (IK to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.

  6. Fungal decontamination and enhancement of shelf life of edible split beans of wild legume Canavalia maritima by the electron beam irradiation

    Science.gov (United States)

    Supriya, P.; Sridhar, K. R.; Ganesh, S.

    2014-03-01

    Ripened split beans of the coastal sand dune wild legume Canavalia maritima serve as one of the traditional nutritional sources of the coastal dwellers in Southwest coast of India. Nine fungi were isolated from the unirradiated dry beans by plating on the potato dextrose agar medium. Toxigenic fungus Aspergillus niger showed the highest incidence (33-50%) followed by Aspergillus flavus (14-20%) and Penicillium chrysogenum (7-13%). Unirradiated dry beans and irradiated dry beans with electron beam doses 2.5, 5, 10 and 15 kGy were monitored for occurrence of fungal species and their incidence during 0, 3 and 6 months storage period under laboratory conditions. Irradiation resulted in dose-dependent decrease in fungal species (5-7, 4-6, 3-6 and 0 on irradiation at 0, 2.5, 5 and 10 or 15 kGy, respectively) as well as incidence (80-99, 19-46, 13-21 and 0%, respectively). Although aflatoxins (B1 and B2) were found below detectable level (<2 ng/g) in 0, 3 and 6 months stored unirradiated and irradiated beans (2.5 and 5 kGy), they were not present in beans irradiated with 10 and 15 kGy. In spite of occurrence of toxigenic fungus Aspergillus ochraceus in unirradiated and irradiated beans (2.5 and 5 kGy) stored for 3 and 6 months, the beans were devoid of ochratoxin-A. Electron beam irradiation dose 10 kGy could be recommended for fungal decontamination and improvement of shelf life of C. maritima ripened dry split beans.

  7. Higher-Order Wide-Angle Split-Step Spectral Method for Non-Paraxial Beam Propagation

    Science.gov (United States)

    2013-06-25

    GPU ) using compute unified device architecture ( CUDA ) technology from NVIDIA™. 2. Formulation Beam propagation in a medium with a non-uniform...448 CUDA cores at 574 MHz core clock speed (750 MHz memory clock speed) and 6 GB of dedicated GPU DDR5 RAM. The simulation was run using the...NVIDIA compute unified device architecture ( CUDA ) to make use of the processing power of the graph- ics processing unit ( GPU ). Modern GPUs possess

  8. Annihilation detector for an in-beam spectroscopy apparatus to measure the ground state hyperfine splitting of antihydrogen

    Science.gov (United States)

    Sauerzopf, Clemens; Capon, Aaron A.; Diermaier, Martin; Fleck, Markus; Kolbinger, Bernadette; Malbrunot, Chloé; Massiczek, Oswald; Simon, Martin C.; Vamosi, Stefan; Zmeskal, Johann; Widmann, Eberhard

    2017-02-01

    The matter-antimatter asymmetry observed in the universe today still lacks a quantitative explanation. One possible mechanism that could contribute to the observed imbalance is a violation of the combined Charge-, Parity- and Time symmetries (CPT). A test of CPT symmetry using anti-atoms is being carried out by the ASACUSA-CUSP collaboration at the CERN Antiproton Decelerator using a low temperature beam of antihydrogen-the most simple atomic system built only of antiparticles. While hydrogen is the most abundant element in the universe, antihydrogen is produced in very small quantities in a laboratory framework. A detector for in-beam measurements of the ground state hyperfine structure of antihydrogen has to be able to detect very low signal rates within high background. To fulfil this challenging task, a two layer barrel hodoscope detector was developed. It is built of plastic scintillators with double sided readout via Silicon Photomultipliers (SiPMs). The SiPM readout is done using novel, compact and cost efficient electronics that incorporate power supply, amplifier and discriminator on a single board. This contribution will evaluate the performance of the new hodoscope detector.

  9. The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams

    Science.gov (United States)

    Chen, Jiannong; Gao, Xiumin; Zhu, Linwei; Xu, Qinfeng; Ma, Wangzi

    2014-05-01

    We demonstrate that a complete right-handed or left-handed spiral-shaped focus can be created by focusing circularly polarized and three spatially shifted vortex beams through high numerical objective. By dividing the back aperture into multi annular zones and applying an additional phase term, the multi focal spots aligned along z axis of individual three dimensional focal shapes can be generated. The spiral shaped focus provides a pathway of manipulating the micro-particles in a curved trajectory and opens up a possibility of measuring mechanical torque of biological large molecules such as DNA by chemically binding one end on the cover-glass. The multi focal spots aligned along the z axis can eliminate the need of z axis scanning in the direct laser writing fabrication of some metamaterials which is composed of three-dimensional array of specific shapes of building blocks.

  10. [Tablet splitting].

    Science.gov (United States)

    Quinzler, R; Haefeli, W E

    2006-06-01

    The splitting of scored tablets provides many advantages. One benefit is to achieve dose flexibility to account for the huge interindividual differences in dose requirements for instance in paediatric and geriatric patients, which are often not covered by the available strengths in the market. Moreover, large-sized tablets can easier be swallowed if broken before swallowing and medication costs can often be reduced by splitting brands with higher strength. But not all tablets, mostly unscored tablets, are suitable for splitting. Splitting of extended release formulations can result in an overdose by uncontrolled release of the active component and degradation of the compound can occur if an enteric coating is destroyed by the splitting process. Whether tablets are suitable for splitting depends on the properties of the active component (e.g. light sensitivity), the galenics, the shape of the tablet, and the shape of the scoreline. Moreover, not all patients are informed, able, or willing to split tablets and the majority of the elderly population is not capable to break tablets. When split tablets are prescribed it is therefore important to view the shape of the tablet, to assess the patients ability and willingness to break tablets, to properly inform the patient about the appropriate way of splitting, and if necessary to suggest (and instruct) the use of a tablet splitting device.

  11. Effects of low energy E-beam irradiation on graphene and graphene field effect transistors and raman metrology of graphene on split gate test structures

    Science.gov (United States)

    Rao, Gayathri S.

    2011-12-01

    to the graphene Dirac bands thereby reducing the inelastic scattering and inhibiting the phonon decay medicated by SiO2 surface polar phonons (SPP). This model also explains the enhancement of n-type doping in GFETS observed for multi-step irradiation. These results highlight the impact of substrate defects and interaction of induced defectivity with the e-beam along with the role of interfacial water in impacting graphene device performance. The thesis also presents data on Raman-based characterization of graphene including layer number determination and carrier concentration measurement. Determination of layer number for graphene exfoliates focused on the splitting of the 2D Raman band. In addition, an alternate Raman-based thickness metrology was evaluated for CVD-based, polycrystalline graphene. Both were carried out on split gate test structures as a method for monolayer or bilayer confirmation in device geometries. In addition, carrier concentration measurements of exfoliates on 300nm SiO2 and split-gate test structure substrate have also been characterized with back gate biasing. These measurements made use of the stiffening of the Raman G-band with doping and the narrowing of the G-band FWHM. These results were important for validating conclusions from the e-beam irradiation experiments mentioned above regarding carrier doping.

  12. 双芯光纤的偏振分束特性研究%Research of Polarization Beam Splitting using Dual-core Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    毛艳萍; 季敏宁; 解清明; 刘珍

    2014-01-01

    Polarization beam splitter is an important device in optics, it separates the incident light according to its polarization features, and is mainly used in the optical system whose polarization characteristic needs to be controlld effectively. The miniatur-ization of the polarization beam splitter has become the trend of research in the optical communication. Twin- core optical fiber po-larization beam splitter inherits the special advantage of twin-core, is a kind of polarization beam splitter based on interference pat-terns,and is according to the difference of coupling length between two different polarization of incident light.This kind of beam splitter has the characteristics of flexible design, small size, low cost, wide application, etc.Based on the twin-core optical fiber with elliptical core, this paper first introduces the principle of the polarization beam splitting from the aspects of theory. Then the variation trends of x and y polarization coupling length and their difference with the long and short axis ratio of the elliptical core, the wavelength of incident light, the refractive index difference between core and cladding, and the normalized distance are simu-lated by using the Rsoft. Through optimization designing, a polarization beam splitter with 224mm long and extinction ratio higher than 20dB is acquired.%偏振分束器是光学中的重要器件,它将入射光按其偏振特性进行分离,它主要应用于需要对偏振态进行有效控制的光学系统中。微型化光波导偏振分束器已成为光通信领域的研究趋势。双芯光纤偏振分束器承接了双芯的特殊优势,是一类基于模式干涉的偏振分束器,根据耦合长度的不同将两种偏振态分离开来,这一类的分束器具有设计灵活、体型小、价格低廉、应用广泛等优点。本文基于椭圆芯双芯光纤,先从理论方面介绍了偏振分束的原理,再利用Rsoft软件模拟分析了x、y方向的耦合长

  13. Cone Beam Computed Tomographic Analyses of the Position and Course of the Mandibular Canal: Relevance to the Sagittal Split Ramus Osteotomy

    Directory of Open Access Journals (Sweden)

    Ahmet Ercan Sekerci

    2014-01-01

    Full Text Available Purpose. The aim of this study was to document the position and course of the mandibular canal through the region of the mandibular angle and body in dental patients, using cone beam computed tomographic imaging. Methods. The position and course of the mandibular canal from the region of the third molar to the first molar were measured at five specific locations in the same plane: at three different positions just between the first and second molars; between the second and third molars; and just distal to the third molar. Results. The study sample was composed of 500 hemimandibles from 250 dental patients with a mean age of 26.32. Significant differences were found between genders, distances, and positions. B decreased significantly from the anterior positions to the posterior positions in both females and males. The mean values of S and CB increased significantly from the posterior positions to the anterior positions in both females and males. Conclusion. Because the sagittal split ramus osteotomy is a technically difficult procedure, we hope that the findings of the present study will help the surgeon in choosing the safest surgical technique for the treatment of mandibular deformities.

  14. Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy

    KAUST Repository

    Tangi, Malleswararao

    2016-07-26

    The dislocation free Inx Al 1-xN nanowires (NWs) are grown on Si(111) by nitrogen plasma assisted molecular beam epitaxy in the temperature regime of 490 °C–610 °C yielding In composition ranges over 0.50 ≤ x ≤ 0.17. We study the optical properties of these NWs by spectroscopic ellipsometry (SE), photoluminescence, and Raman spectroscopies since they possesses minimal strain with reduced defects comparative to the planar films. The optical bandgap measurements of Inx Al 1-xN NWs are demonstrated by SE where the absorption edges of the NW samples are evaluated irrespective of substrate transparency. A systematic Stoke shift of 0.04–0.27 eV with increasing x was observed when comparing the micro-photoluminescence spectra with the Tauc plot derived from SE. The micro-Raman spectra in the NWs with x = 0.5 showed two-mode behavior for A1(LO) phonons and single mode behavior for E2 H phonons. As for x = 0.17, i.e., high Al content, we observed a peculiar E2 H phonon mode splitting. Further, we observe composition dependent frequency shifts. The 77 to 600 K micro-Raman spectroscopy measurements show that both AlN- and InN-like modes of A1(LO) and E2 H phonons in Inx Al 1-xN NWs are redshifted with increasing temperature, similar to that of the binary III group nitride semiconductors. These studies of the optical properties of the technologically important Inx Al 1-xN nanowires will path the way towards lasers and light-emitting diodes in the wavelength of the ultra-violet and visible range.

  15. Splitting Descartes

    DEFF Research Database (Denmark)

    Schilhab, Theresa

    2007-01-01

    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...

  16. Experiments for possible hydroacoustic discrimination of free-swimming juvenile gadoid fish by analysis of broadband pulse spectra as well as 3D fish position form video images and split beam acoustics

    DEFF Research Database (Denmark)

    Lundgren, Bo; Nielsen, J. Rasmus

    2002-01-01

    , alignment of acoustic and optical-reference frames, and automatic position-fitting of fish models to manually marked fix-points on fish images. The software also performs Fourier spectrum analysis and pulse-shape analysis of broad-bandwidth echoes. Therefore, several measurement series on free......Measurements were made of the broad-bandwidth (80–220 kHz) acoustic backscattering from free-swimming juvenile gadoids at various orientations and positions in an acoustic beam, under controlled conditions. The experimental apparatus consisted of a stereo-video camera system, a broad...... were estimated from stereo-images captured synchronously when broad-bandwidth echoes were received from passing fish. Fish positions were also estimated from data collected with a synchronized split-beam echosounder. Software was developed for image analysis and modelling, including calibration...

  17. Ray splitting in paraxial optical cavities

    CERN Document Server

    Puentes, G; Woerdman, J P

    2003-01-01

    We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent.

  18. INVESTIGATION OF DYNAMIC PARAMETRS OF SPLIT SKEWED BRIDGE SPANS IN CASE OF LOSS OF CONTACT BETWEEN END BEAM AND ITS SUPPORT

    Directory of Open Access Journals (Sweden)

    V.S.Safronov

    2015-02-01

    Full Text Available Statement of the problem. In order to get a valid estimate of risks of fracture during the mainten-ance of simply supported skew slab-and-girder reinforced concrete spans of highway bridges the influence of the supporting skew on the natural frequencies spectrum and the corresponding ei-genmodes in case of changing the design model due to loss of contact between beams and support.Results. Possible loss of contact between one of the marginal beams and its support near the sharp angle during the maintenance of transport facility depending on its type and geometrical parameters is substantiated. Modal and frequency spectrum analysis of spans in case of loss of contact between one of the marginal beams and its support is performed.Conclusions. The analysis revealed possible loss of contact between marginal beams and support, which increases as the skew angle grows and the width and length of the span reduce. A signifi-cant influence of support separation on eigenmodes and frequency spectrum of spans is revealed.

  19. Light splitting with imperfect wave plates.

    Science.gov (United States)

    Jackson, Jarom S; Archibald, James L; Durfee, Dallin S

    2017-02-01

    We discuss the use of wave plates with arbitrary retardances, in conjunction with a linear polarizer, to split linearly polarized light into two linearly polarized beams with an arbitrary splitting fraction. We show that for non-ideal wave plates, a much broader range of splitting ratios is typically possible when a pair of wave plates, rather than a single wave plate, is used. We discuss the maximum range of splitting fractions possible with one or two wave plates as a function of the wave plate retardances, and how to align the wave plates to achieve the maximum splitting range possible when simply rotating one of the wave plates while keeping the other one fixed. We also briefly discuss an alignment-free polarization rotator constructed from a pair of half-wave plates.

  20. A study on the effect of low energy ion beam irradiation on Au/TiO2 system for its application in photoelectrochemical splitting of water

    Science.gov (United States)

    Verma, Anuradha; Srivastav, Anupam; Sharma, Dipika; Banerjee, Anamika; Sharma, Shailja; Satsangi, Vibha Rani; Shrivastav, Rohit; Avasthi, Devesh Kumar; Dass, Sahab

    2016-07-01

    Nanostructured TiO2 thin films were deposited on indium tin oxide (ITO) substrate via sol-gel technique and were modified by plasmonic Au layer. The plasmonic Au modified TiO2 (Au/TiO2) thin films were then irradiated with 500 keV Ar2+ ion beam at different ion fluences viz. 1 × 1016, 3 × 1016 and 1 × 1017 to study the effect of nuclear energy deposition on the morphology, crystallinity, band gap, surface plasmon resonance (SPR) peak exhibited by Au particles and photoelectrochemical properties of the system. Prepared thin films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS) measurements and UV-visible spectroscopy. The photoelectrochemical measurements revealed that both Au/TiO2 and Au/TiO2 thin film irradiated at 1 × 1016 fluence exhibits enhanced photoelectrochemical response in comparison to pristine TiO2. The film irradiated at 1 × 1016 fluence offered maximum applied bias photon-to-current efficiency (ABPE) and shows 6 times increment in photocurrent density which was attributed to more negative flat band potential, maximum decrease in band gap, high open circuit voltage (Voc) and reduced charge transfer resistance.

  1. A study on the effect of low energy ion beam irradiation on Au/TiO{sub 2} system for its application in photoelectrochemical splitting of water

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Anuradha; Srivastav, Anupam; Sharma, Dipika; Banerjee, Anamika; Sharma, Shailja [Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282005 (India); Satsangi, Vibha Rani [Department of Physics & Computer Science, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282005 (India); Shrivastav, Rohit [Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282005 (India); Avasthi, Devesh Kumar [Inter University Accelerator Centre, P.O. Box 10502, New Delhi 110067 (India); Amity University, Noida-201313, Uttar Pradesh (India); Dass, Sahab, E-mail: drsahabdas@gmail.com [Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282005 (India)

    2016-07-15

    Nanostructured TiO{sub 2} thin films were deposited on indium tin oxide (ITO) substrate via sol–gel technique and were modified by plasmonic Au layer. The plasmonic Au modified TiO{sub 2} (Au/TiO{sub 2}) thin films were then irradiated with 500 keV Ar{sup 2+} ion beam at different ion fluences viz. 1 × 10{sup 16}, 3 × 10{sup 16} and 1 × 10{sup 17} to study the effect of nuclear energy deposition on the morphology, crystallinity, band gap, surface plasmon resonance (SPR) peak exhibited by Au particles and photoelectrochemical properties of the system. Prepared thin films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS) measurements and UV–visible spectroscopy. The photoelectrochemical measurements revealed that both Au/TiO{sub 2} and Au/TiO{sub 2} thin film irradiated at 1 × 10{sup 16} fluence exhibits enhanced photoelectrochemical response in comparison to pristine TiO{sub 2}. The film irradiated at 1 × 10{sup 16} fluence offered maximum applied bias photon-to-current efficiency (ABPE) and shows 6 times increment in photocurrent density which was attributed to more negative flat band potential, maximum decrease in band gap, high open circuit voltage (V{sub oc}) and reduced charge transfer resistance.

  2. Designing Optical Element of Beam Splitting Illumination for Adjusting Light path in ICF%用于ICF光路调整的分光照明元件设计

    Institute of Scientific and Technical Information of China (English)

    张超; 谭建军; 黄小霞; 赵曦; 高福华

    2013-01-01

    在惯性约束核聚变激光驱动装置中,光路庞大复杂且元器件众多,为保证激光系统正常运行需对光路进行精密调节.特别是装置中的多个4F系统,需调整激光光路使其聚焦后对准焦平面滤波小孔中心,以保证激光顺利通过并实现低通滤波作用.目前实际工程中采用凹透镜背光照明的方法判断光束是否准确过孔,但该方法步骤繁琐且调整精度较低,给实际光路调整带来了极大的不便.本文基于全息原理,提出了一种简单高效的4F系统光路调整方法,通过一特殊设计的分光照明衍射光学元件,可一步实现激光聚焦过孔的判断与调整,可有效解决现有4F系统光路调整的困难.%Numerous elements and huge laser system are existed in Inertial Confine Fusion driver (ICF).It is necessary to adjust light path accurately so as to ensure that the laser system can work normally.Expecially,the 4F system in ICF plays a role of low-pass filtering,so the purpose of adjusting is to make laser pass the center of filter hole in focus plane.Currently,the method in practical engineering is to use a concave lens for splitting light illumination to judge whether the beam pass the filter hole.However,the disadvantage of this method is tedious and low precision,which is inconvenient in actual adjusting.In this paper,a simple but effective way to adjust light path in 4F system is presented based on holography theory.With a specially designed diffractive optical element for splitting light illumination,judging and adjusting laser to pass the filter hole can be easily achieving.Thus,it can solve the difficulty of existing method.

  3. Split-ball resonator

    CERN Document Server

    Kuznetsov, Arseniy I; Fu, Yuan Hsing; Viswanathan, Vignesh; Rahmani, Mohsen; Valuckas, Vytautas; Kivshar, Yuri; Pickard, Daniel S; Lukiyanchuk, Boris

    2014-01-01

    We introduce a new concept of split-ball resonator and demonstrate a strong omnidirectional magnetic dipole response for both gold and silver spherical plasmonic nanoparticles with nanometer-scale cuts. Tunability of the magnetic dipole resonance throughout the visible spectral range is demonstrated by a change of the depth and width of the nanoscale cut. We realize this novel concept experimentally by employing the laser-induced transfer method to produce near-perfect spheres and helium ion beam milling to make cuts with the nanometer resolution. Due to high quality of the spherical particle shape, governed by strong surface tension forces during the laser transfer process, and the clean, straight side walls of the cut made by helium ion milling, magnetic resonance is observed at 600 nm in gold and at 565 nm in silver nanoparticles. Structuring arbitrary features on the surface of ideal spherical resonators with nanoscale dimensions provides new ways of engineering hybrid resonant modes and ultra-high near-f...

  4. Split liver transplantation.

    Science.gov (United States)

    Yersiz, H; Cameron, A M; Carmody, I; Zimmerman, M A; Kelly, B S; Ghobrial, R M; Farmer, D G; Busuttil, R W

    2006-03-01

    Seventy-five thousand Americans develop organ failure each year. Fifteen percent of those on the list for transplantation die while waiting. Several possible mechanisms to expand the organ pool are being pursued including the use of extended criteria donors, living donation, and split deceased donor transplants. Cadaveric organ splitting results from improved understanding of the surgical anatomy of the liver derived from Couinaud. Early efforts focused on reduced-liver transplantation (RLT) reported by both Bismuth and Broelsch in the mid-1980s. These techniques were soon modified to create both a left lateral segment graft appropriate for a pediatric recipient and a right trisegment for an appropriately sized adult. Techniques of split liver transplantation (SLT) were also modified to create living donor liver transplantation. Pichlmayr and Bismuth reported successful split liver transplantation in 1989 and Emond reported a larger series of nine split procedures in 1990. Broelsch and Busuttil described a technical modification in which the split was performed in situ at the donor institution with surgical division completed in the heart beating cadaveric donor. In situ splitting reduces cold ischemia, simplifies identification of biliary and vascular structures, and reduces reperfusion hemorrhage. However, in situ splits require specialized skills, prolonged operating room time, and increased logistical coordination at the donor institution. At UCLA over 120 in situ splits have been performed and this technique is the default when an optimal donor is available. Split liver transplantation now accounts for 10% of adult transplantations at UCLA and 40% of pediatric transplantations.

  5. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  6. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...... as possible. Evaluations show that the proposed protocol provides considerable gains over the standard tree splitting protocol applying SIC. The improvement comes at the expense of an increased feedback and receiver complexity....

  7. Accuracy of tablet splitting.

    Science.gov (United States)

    McDevitt, J T; Gurst, A H; Chen, Y

    1998-01-01

    We attempted to determine the accuracy of manually splitting hydrochlorothiazide tablets. Ninety-four healthy volunteers each split ten 25-mg hydrochlorothiazide tablets, which were then weighed using an analytical balance. Demographics, grip and pinch strength, digit circumference, and tablet-splitting experience were documented. Subjects were also surveyed regarding their willingness to pay a premium for commercially available, lower-dose tablets. Of 1752 manually split tablet portions, 41.3% deviated from ideal weight by more than 10% and 12.4% deviated by more than 20%. Gender, age, education, and tablet-splitting experience were not predictive of variability. Most subjects (96.8%) stated a preference for commercially produced, lower-dose tablets, and 77.2% were willing to pay more for them. For drugs with steep dose-response curves or narrow therapeutic windows, the differences we recorded could be clinically relevant.

  8. Split Cord Malformations

    Directory of Open Access Journals (Sweden)

    Yurdal Gezercan

    2015-06-01

    Full Text Available Split cord malformations are rare form of occult spinal dysraphism in children. Split cord malformations are characterized by septum that cleaves the spinal canal in sagittal plane within the single or duplicated thecal sac. Although their precise incidence is unknown, split cord malformations are exceedingly rare and represent %3.8-5 of all congenital spinal anomalies. Characteristic neurological, urological, orthopedic clinical manifestations are variable and asymptomatic course is possible. Earlier diagnosis and surgical intervention for split cord malformations is associated with better long-term fuctional outcome. For this reason, diagnostic imaging is indicated for children with associated cutaneous and orthopedic signs. Additional congenital anomalies usually to accompany the split cord malformations. Earlier diagnosis, meticuolus surgical therapy and interdisciplinary careful evaluation and follow-up should be made for good prognosis. [Cukurova Med J 2015; 40(2.000: 199-207

  9. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  10. (O)Mega Split

    CERN Document Server

    Benakli, Karim; Goodsell, Mark

    2015-01-01

    We study two realisations of the Fake Split Supersymmetry Model (FSSM), the simplest model that can easily reproduce the experimental value of the Higgs mass for an arbitrarily high supersymmetry scale, as a consequence of swapping higgsinos for equivalent states, fake higgsinos, with suppressed Yukawa couplings. If the LSP is identified as the main Dark matter component, then a standard thermal history of the Universe implies upper bounds on the supersymmetry scale, which we derive. On the other hand, we show that renormalisation group running of soft masses above the supersymmetry scale barely constrains the model - in stark contrast to Split Supersymmetry - and hence we can have a "Mega Split" spectrum even with all of these assumptions and constraints, which include the requirements of a correct relic abundance, a gluino life-time compatible with Big Bang Nucleosynthesis and absence of signals in present direct detection experiments of inelastic dark matter. In an appendix we describe a related scenario, ...

  11. Splitting Ward identity

    CERN Document Server

    Safari, Mahmoud

    2015-01-01

    Within the background field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We finally introduce the modified master equation and emphasize its role in constraining the effective action.

  12. Split Malcev Algebras

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado

    2012-05-01

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.

  13. Splitting Ward identity

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Mahmoud [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)

  14. The Splitting Loope

    Science.gov (United States)

    Wilkins, Jesse L. M.; Norton, Anderson

    2011-01-01

    Teaching experiments have generated several hypotheses concerning the construction of fraction schemes and operations and relationships among them. In particular, researchers have hypothesized that children's construction of splitting operations is crucial to their construction of more advanced fractions concepts (Steffe, 2002). The authors…

  15. Pendulum separatrix splitting

    CERN Document Server

    Gallavotti, G; Mastropietro, V

    1997-01-01

    An exact expression for the determinant of the splitting matrix is derived: it allows us to analyze the asympotic behaviour needed to amend the large angles theorem proposed in Ann. Inst. H. Poincaré, B-60, 1, 1994. The asymptotic validity of Melnokov's formulae is proved for the class of models considered, which include polynomial perturbations.

  16. P-wave Cooper pair splitting

    Directory of Open Access Journals (Sweden)

    Henning Soller

    2012-07-01

    Full Text Available Background: Splitting of Cooper pairs has recently been realized experimentally for s-wave Cooper pairs. A split Cooper pair represents an entangled two-electron pair state, which has possible application in on-chip quantum computation. Likewise the spin-activity of interfaces in nanoscale tunnel junctions has been investigated theoretically and experimentally in recent years. However, the possible implications of spin-active interfaces in Cooper pair splitters so far have not been investigated.Results: We analyze the current and the cross correlation of currents in a superconductor–ferromagnet beam splitter, including spin-active scattering. Using the Hamiltonian formalism, we calculate the cumulant-generating function of charge transfer. As a first step, we discuss characteristics of the conductance for crossed Andreev reflection in superconductor–ferromagnet beam splitters with s-wave and p-wave superconductors and no spin-active scattering. In a second step, we consider spin-active scattering and show how to realize p-wave splitting using only an s-wave superconductor, through the process of spin-flipped crossed Andreev reflection. We present results for the conductance and cross correlations.Conclusion: Spin-activity of interfaces in Cooper pair splitters allows for new features in ordinary s-wave Cooper pair splitters, that can otherwise only be realized by using p-wave superconductors. In particular, it provides access to Bell states that are different from the typical spin singlet state.

  17. Polarized Spatial Splitting of Four-Wave Mixing Signal in Multi-Level Atomic Systems

    Institute of Scientific and Technical Information of China (English)

    FU Yu-Xin; ZHAO Jin-Yan; SONG Yue; DAI Guo-Xian; HUO Shu-Li; ZHANG Yan-Peng

    2011-01-01

    @@ We illustrate our experimental observation of the periodic changes of spatial splitting of the generated four-wave mixing(FWM)signal induced by different polarization states of one of the dressing beams.It is pointed out that the changes of intensity of the dressing beam and the FWM signal have influences on the spatial splitting and their influences compete with each other.The differences between p- and s-polarized FWM beams are demonstrated.The influences of the dressing beams, which lead to the larger spatial splitting with different polarization states or frequency detuning, are observed as well.%We illustrate our experimental observation of the periodic changes of spatial splitting of the generated four-wave mixing (FWM) signal induced by different polarization states of one of the dressing beams. It is pointed out that the changes of intensity of the dressing beam and the FWM signal have influences on the spatial splitting and their influences compete with each other. The differences between p- and s-polarized FWM beams are demonstrated.The influences of the dressing beams, which lead to the larger spatial splitting with different polarization states or frequency detuning, are observed as well.

  18. Fee splitting in ophthalmology.

    Science.gov (United States)

    Levin, Alex V; Ganesh, Anuradha; Al-Busaidi, Ahmed

    2011-02-01

    Fee splitting and co-management are common practices in ophthalmology. These arrangements may conflict with the ethical principles governing the doctor-patient relationship, may constitute professional misconduct, and at times, may be illegal. Implications and perceptions of these practices may vary between different cultures. Full disclosure to the patient may minimize the adverse effects of conflicts of interest that arise from these practices, and may thereby allow these practices to be deemed acceptable by some cultural morays, professional guidelines, or by law. Disclosure does not necessarily relieve the physician from a potential ethical compromise. This review examines the practice of fee splitting in ophthalmology, its legal implications, the policies or guidelines governing such arrangements, and the possible ethical ramifications. A comparative view between 3 countries, Canada, the United States, and Oman, was conducted; illustrating that even in disparate cultures, there may be some universality to the application of ethical principles.

  19. Syntax for Split Preorders

    CERN Document Server

    Dosen, K

    2009-01-01

    A split preorder is a preordering relation on the disjoint union of two sets, which function as source and target when one composes split preorders. The paper presents by generators and equations the category SplPre, whose arrows are the split preorders on the disjoint union of two finite ordinals. The same is done for the subcategory Gen of SplPre, whose arrows are equivalence relations, and for the category Rel, whose arrows are the binary relations between finite ordinals, and which has an isomorphic image within SplPre by a map that preserves composition, but not identity arrows. It was shown previously that SplPre and Gen have an isomorphic representation in Rel in the style of Brauer. The syntactical presentation of Gen and Rel in this paper exhibits the particular Frobenius algebra structure of Gen and the particular bialgebraic structure of Rel, the latter structure being built upon the former structure in SplPre. This points towards algebraic modelling of various categories motivated by logic, and re...

  20. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Krantz, Timothy L.

    1994-06-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  1. Split ring resonator resonance assisted terahertz antennas

    CERN Document Server

    Galal, Hossam; Vitiello, Miriam S

    2016-01-01

    We report on the computational development of novel architectures of low impedance broadband antennas, for efficient detection of Terahertz (THz) frequency beams. The conceived Split Ring Resonator Resonance Assisted (SRR RA) antennas are based on both a capacitive and inductive scheme, exploiting a 200 Ohm and 400 Ohm impedance, respectively. Moreover, the impedance is tunable by varying the coupling parameters in the exploited geometry, allowing for better matching with the detector circuit for maximum power extraction. Our simulation results have been obtained by assuming a 1.5 THz operation frequency.

  2. Non-paraxial Elliptical Gaussian Beam

    Institute of Scientific and Technical Information of China (English)

    WANG Zhaoying; LIN Qiang; NI Jie

    2001-01-01

    By using the methods of Hertz vector and angular spectrum transormation, the exact solution of non-paraxial elliptical Gaussion beam with general astigmatism based on Maxwell′s equations is obtained. We discussed its propagation characteristics. The results show that the orientation of the elliptical beam spot changes continuously as the beam propagates through isotropic media. Splitting or coupling of beam spots may occur for different initial spot size. This is very different from that of paraxial elliptical Gaussian beam.

  3. MTN magnet for the SPS extracted beam.

    CERN Multimedia

    1976-01-01

    This type of dipole magnet was used in the extracted beam lines of the North Area. It shows an opening for three different proton beam lines: a primary extracted proton beam, split by an upstream magnetic beam splitter (see photo 7612017) into three separated beams passes through different parts of its aperture: right, left up, left down. These magnets were designed to be concrete-insulated for radiation resistance. F. Streun stands on the right.

  4. Split Q-balls

    Science.gov (United States)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.

    2017-02-01

    We investigate the presence of non-topological solutions of the Q-ball type in (1 , 1) spacetime dimensions. The model engenders the global U (1) symmetry and is of the k-field type, since it contains a new term, of the fourth-order power in the derivative of the complex scalar field. It supports analytical solution of the Q-ball type which is stable quantum mechanically. The new solution engenders an interesting behavior, with the charge and energy densities unveiling a splitting profile.

  5. Resolving two beams in beam splitters with a beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device. In the Advanced Hydrotest Facility (AHF), 20-ns beam pulses (bunches) are extracted from the 50-GeV main proton synchrotron and then are transported to the target by an elaborated transport system. The beam transport system splits the beam bunches into equal parts in its splitting sections so that up to 12 synchronous beam pulses can be delivered to the target for the multi-axis proton radiography. Information about the transverse positions of the beams in the splitters, and possibly the bunch longitudinal profile, should be delivered by some diagnostic devices. Possible candidates are the circular wall current monitors in the circular pipes connecting the splitter elements, or the conventional stripline BPMs. In any case, we need some estimates on how well the transverse positions of the two beams can be resolved by these monitors.

  6. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Rashidi, Majid; Krantz, Timothy

    A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.

  7. Split Quasi-adequate Semigroups

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang GUO; Ting Ting PENG

    2012-01-01

    The so-called split IC quasi-adequate semigroups are in the class of idempotent-connected quasi-adequate semigroups.It is proved that an IC quasi-adequate semigroup is split if and only if it has an adequate transversal.The structure of such semigroup whose band of idempotents is regular will be particularly investigated.Our obtained results enrich those results given by McAlister and Blyth on split orthodox semigroups.

  8. Solar water splitting: efficiency discussion

    OpenAIRE

    Juodkazyte, Jurga; Seniutinas, Gediminas; Sebeka, Benjaminas; Savickaja, Irena; Malinauskas, Tadas; Badokas, Kazimieras; Juodkazis, Kestutis; Juodkazis, Saulius

    2016-01-01

    The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxide formation as an intermediate in oxygen evolution reaction is newly revealed and explains why a...

  9. Comet LINEAR Splits Further

    Science.gov (United States)

    2001-05-01

    Third Nucleus Observed with the VLT Summary New images from the VLT show that one of the two nuclei of Comet LINEAR (C/2001 A2), now about 100 million km from the Earth, has just split into at least two pieces . The three fragments are now moving through space in nearly parallel orbits while they slowly drift apart. This comet will pass through its perihelion (nearest point to the Sun) on May 25, 2001, at a distance of about 116 million kilometres. It has brightened considerably due to the splitting of its "dirty snowball" nucleus and can now be seen with the unaided eye by observers in the southern hemisphere as a faint object in the southern constellation of Lepus (The Hare). PR Photo 18a/01 : Three nuclei of Comet LINEAR . PR Photo 18b/01 : The break-up of Comet LINEAR (false-colour). Comet LINEAR splits and brightens ESO PR Photo 18a/01 ESO PR Photo 18a/01 [Preview - JPEG: 400 x 438 pix - 55k] [Normal - JPEG: 800 x 875 pix - 136k] ESO PR Photo 18b/01 ESO PR Photo 18b/01 [Preview - JPEG: 367 x 400 pix - 112k] [Normal - JPEG: 734 x 800 pix - 272k] Caption : ESO PR Photo 18a/01 shows the three nuclei of Comet LINEAR (C/2001 A2). It is a reproduction of a 1-min exposure in red light, obtained in the early evening of May 16, 2001, with the 8.2-m VLT YEPUN (UT4) telescope at Paranal. ESO PR Photo 18b/01 shows the same image, but in a false-colour rendering for more clarity. The cometary fragment "B" (right) has split into "B1" and "B2" (separation about 1 arcsec, or 500 km) while fragment "A" (upper left) is considerably fainter. Technical information about these photos is available below. Comet LINEAR was discovered on January 3, 2001, and designated by the International Astronomical Union (IAU) as C/2001 A2 (see IAU Circular 7564 [1]). Six weeks ago, it was suddenly observed to brighten (IAUC 7605 [1]). Amateurs all over the world saw the comparatively faint comet reaching naked-eye magnitude and soon thereafter, observations with professional telescopes indicated

  10. Leptogenesis from split fermions

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, Yukinori; Perez, Gilad

    2004-01-11

    We present a new type of leptogenesis mechanism based on a two-scalar split-fermions framework. At high temperatures the bulk scalar vacuum expectation values (VEVs) vanish and lepton number is strongly violated. Below some temperature, T{sub c}, the scalars develop extra dimension dependent VEVs. This transition is assumed to proceed via a first order phase transition. In the broken phase the fermions are localized and lepton number violation is negligible. The lepton-bulk scalar Yukawa couplings contain sizable CP phases which induce lepton production near the interface between the two phases. We provide a qualitative estimation of the resultant baryon asymmetry which agrees with current observation. The neutrino flavor parameters are accounted for by the above model with an additional approximate U(1) symmetry.

  11. Thermally induced photon splitting

    CERN Document Server

    Elmfors, P; Elmfors, Per; Skagerstam, Bo-Sture

    1998-01-01

    We calculate thermal corrections to the non-linear QED effective action for low-energy photon interactions in a background electromagnetic field. The high-temperature expansion shows that at $T \\gg m$ the vacuum contribution is exactly cancelled to all orders in the external field except for a non-trivial two-point function contribution. The high-temperature expansion derived reveals a remarkable cancellation of infrared sensitive contributions. As a result photon-splitting in the presence of a magnetic field is suppressed in the presence of an electron-positron QED-plasma at very high temperatures. In a cold and dense plasma a similar suppression takes place. At the same time Compton scattering dominates for weak fields and the suppression is rarely important in physical situations.

  12. 薄钢板部分外包组合截面柱-钢梁中节点T 形件焊接连接滞回性能研究%HYSTERETIC BEHAVIOR OF MEDIAN JOINT WITH WELDED SPLIT-TEE CONNECTION OF BUILT-UP THIN-WALLED CHANNEL SECTION PEC COLUMN-STEEL BEAM

    Institute of Scientific and Technical Information of China (English)

    陆森强; 方有珍

    2016-01-01

    To study the hysteretic behavior of partially encased composite ( PEC) columns fabricated with thin-walled channel built-up section and steel beams median joint with welded split-tee and pretension through-out high strength bolted connections, one specimen was designed and fabricated by 1∶1.6 scale which represented the median joint. The pseudo-static test for the specimen was conducted and ABAQUS software was simulated the test and to verify the rationality of the FE model.By comparison of the hysteretic behaviors, energy-dissipation capacity and failure mode, the results showed that through-out bolts exhibited partial self-centering function and effectively realized the force-transfer mechanism of concrete equivalent strut in the panel zone;the failure mode primary induced by plastic hinge formed in the steel beam section near the end of split-tee web because of strengthening and the rotation angles of the joint all surpassed 0.02 rad.%为研究采用预拉对穿螺栓的薄钢板部分外包组合截面( PEC)柱-钢梁中节点T形件焊接连接的滞回性能,按照1∶1.6缩尺设计制作了1个中节点试件,对其进行低周循环荷载试验,并采用有限元软件ABAQUS进行数值模拟验证,对比分析试件的滞回曲线、耗能能力和破坏模式。研究结果显示:预拉对穿螺栓具有部分自复位功效,且较好实现了混凝土斜压带传力机理;所有试件破坏模式均由于T形件对梁端加强而使梁截面塑性铰的出现位置向T形件腹板尾部附近梁截面转移,且所有试件达到破坏时,节点转角均超过了0.02 rad。

  13. Split-Field Magnet facility upgraded

    CERN Multimedia

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  14. ISR split-field magnet

    CERN Multimedia

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  15. Semantic Parameters of Split Intransitivity.

    Science.gov (United States)

    Van Valin, Jr., Robert D.

    1990-01-01

    This paper argues that split-intransitive phenomena are better explained in semantic terms. A semantic analysis is carried out in Role and Reference Grammar, which assumes the theory of verb classification proposed in Dowty 1979. (49 references) (JL)

  16. Operational beams for the LHC

    CERN Document Server

    Papaphilippou, Y; Rumolo, G; Manglunki, D

    2014-01-01

    The variety of beams, needed to set-up in the injectors as requested in the LHC, are reviewed, in terms of priority but also performance expectations and reach during 2015. This includes the single bunch beams for machine commissioning and measurements (probe, Indiv) but also the standard physics beams with 50 ns and 25 ns bunch spacing and their high brightness variants using the Bunch Compression Merging and Splitting (BCMS) scheme. The required parameters and target performance of special beams like the doublet for electron cloud enhancement and the more exotic 8b$\\oplus$4e beam, compatible with some post-scrubbing scenarios are also described. The progress and plans for the LHC ion production beams during 2014-2015 are detailed. Highlights on the current progress of the setting up of the various beams are finally presented with special emphasis on potential performance issues across the proton and ion injector chain.

  17. Split NMSSM with electroweak baryogenesis

    OpenAIRE

    Demidov, S.; Gorbunov, D; Kirpichnikov, D.

    2016-01-01

    In light of the Higgs boson discovery and other results of the LHC we re-consider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for t...

  18. Hybrid laser-beam-shaping system for rotatable dual beams with long depth of focus

    Science.gov (United States)

    Chou, Fu-Lung; Chen, Cheng-Huan; Lin, Yu-Chung; Lin, Mao-Chi

    2016-08-01

    A laser processing system consisting of two diffractive elements and one refractive element is proposed enabling a Gaussian laser beam to be transformed into two beams with a depth of focus of up to 150 µm and focal spot smaller than 5 µm. For specific laser processing, the two beams are rotatable when the beam-splitting diffractive element is rotated. The overall system is versatile for laser cutting and drilling.

  19. Diffraction-free beams in fractional Schr\\"odinger equation

    CERN Document Server

    Zhang, Yiqi; Belić, Milivoj R; Ahmed, Noor; Zhang, Yanpeng; Xiao, Min

    2015-01-01

    We consider the propagation of one-dimensional and two-dimensional (1D, 2D) Gaussian beams in FSE without a potential, analytically and numerically. Without chirp, a 1D Gaussian beam splits into two nondiffracting Gaussian beams during propagation, while a 2D Gaussian beam undergoes conical diffraction. When a Gaussian beam carries linear chirp, the 1D beam deflects along the trajectories $z=\\pm2(x-x_0)$, which are independent of the chirp. In the case of 2D Gaussian beam, the propagation is also deflected, but the trajectories align along the diffraction cone $z=2r$ and the direction is determined by the chirp. Both 1D and 2D Gaussian beams are diffractionless and display uniform propagation. The nondiffracting property discovered in this model applies to other beams as well. Based on this nondiffracting and splitting property, we introduce the Talbot effect of diffractionless beams in FSE.

  20. Solar water splitting: efficiency discussion

    CERN Document Server

    Juodkazyte, Jurga; Sebeka, Benjaminas; Savickaja, Irena; Malinauskas, Tadas; Badokas, Kazimieras; Juodkazis, Kestutis; Juodkazis, Saulius

    2016-01-01

    The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxide formation as an intermediate in oxygen evolution reaction is newly revealed and explains why an oxygen evolution is not taking place at the thermodynamically expected 1.23 V potential. Solar hydrogen production with electrical-to-hydrogen conversion efficiency of 52% is demonstrated using a simple ~0.7%-efficient n-Si/Ni Schottky solar cell connected to a water electrolysis cell. This case study shows that separation of the processes of solar harvesting and electrolysis avoids photo-electrode corrosion and utilizes optimal electrodes for hydrogen and oxygen evolution reactions and achieves ~10% efficiency in light...

  1. Lattice splitting under intermittent flows

    CERN Document Server

    Schläpfer, Markus

    2010-01-01

    We study the splitting of regular square lattices subject to stochastic intermittent flows. By extensive Monte Carlo simulations we reveal how the time span until the occurence of a splitting depends on various flow patterns imposed on the lattices. Increasing the flow fluctuation frequencies shortens this time span which reaches a minimum before rising again due to inertia effects incorporated in the model. The size of the largest connected component after the splitting is rather independent of the flow fluctuations but sligthly decreases with the link capacities. Our results are relevant for assessing the robustness of real-life systems, such as electric power grids with a large share of renewable energy sources including wind turbines and photovoltaic systems.

  2. On Split Lie Triple Systems

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín

    2009-04-01

    We begin the study of arbitrary split Lie triple systems by focussing on those with a coherent 0-root space. We show that any such triple systems with a symmetric root system is of the form $T=\\mathcal{U}+\\sum_j I_j$ with $\\mathcal{U}$ a subspace of the 0-root space $T_0$ and any $I_j$ a well described ideal of , satisfying $[I_j,T,I_k]=0$ if $j≠ k$. Under certain conditions, it is shown that is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of is characterized. The key tool in this job is the notion of connection of roots in the framework of split Lie triple systems.

  3. Femtosecond laser-induced subwavelength ripples formed by asymmetrical grating splitting

    Science.gov (United States)

    Feng, Pin; Jiang, Lan; Li, Xin; Zhang, Kaihu; Shi, Xuesong; Li, Bo; Lu, Yongfeng

    2016-05-01

    The formation process and mechanism of subwavelength ripples were studied upon irradiation of ZnO by a femtosecond laser (800 nm, 50 fs, 1 kHz). An abnormally asymmetrical grating-splitting phenomenon was discovered. At relatively high laser fluences (F = 0.51-0.63 J/cm2), near-wavelength ripples were split asymmetrically to create subwavelength laser-induced periodic surface structures (LIPSS) with dual gaps (˜230 nm and ˜430 nm) on the primary grooves. At relatively low laser fluences (F = 0.4-0.45 J/cm2), near-wavelength ripples were split symmetrically, leading to the formation of uniform subwavelength structures with a period of ˜340 nm. The splitting phenomena are related to the varying laser beam dose induced by the overlapping during line scanning. The two grating-splitting types further imply that the dominated mechanism for LIPSS formation may be changed under different processing conditions.

  4. Splitting strings on integrable backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Vicedo, Benoit

    2011-05-15

    We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)

  5. Split Supersymmetry in String Theory

    CERN Document Server

    Antoniadis, Ignatios

    2006-01-01

    Type I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with \\sin^2{\\theta_W}=3/8 at the compactification scale of M_{\\rm GUT}\\simeq 2 \\times 10^{16} GeV. I discuss mechanisms for generating gaugino and higgsino masses at the TeV scale, as well as generalizations to models with split extended supersymmetry in the gauge sector.

  6. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    Ignatios Antoniadis

    2006-11-01

    Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with sin2 W = 3/8 at the com-pactification scale of GUT ≃ 2 × 1016 GeV. I discuss mechanisms for generating gaugino and higgsino masses at the TeV scale, as well as generalizations to models with split extended supersymmetry in the gauge sector.

  7. Split NMSSM with electroweak baryogenesis

    Science.gov (United States)

    Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.

    2016-11-01

    In light of the Higgs boson discovery and other results of the LHC we re-consider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  8. Spin-Valley Beam Splitter in Graphene

    CERN Document Server

    Song, Yu; Shi, Zhi-Gui; Li, Shun; Zhang, Jian

    2016-01-01

    The fourfold spin-valley degenerate degrees of freedom in bulk graphene can support rich physics and novel applications associated with multicomponent quantum Hall effects and linear conductance filtering. In this work, we study how to break the spin-valley degeneracy of electron beams spatially. We propose a spin-valley beam splitter in a gated ferromagnetic/pristine/strained graphene structure. We demonstrate that, in a full resonant tunneling regime for all spin-valley beam components, the formation of quasi-standing waves can lead four giant lateral Goos-H\\"{a}nchen shifts as large as the transverse beam width, while the interplay of the two modulated regions can lead difference of resonant angles or energies for the four spin-valley flavors, manifesting an effective spin-valley beam splitting effect. The beam splitting effect is found to be controllable by the gating and strain.

  9. Torque-Splitting Gear Drive

    Science.gov (United States)

    Kish, J.

    1991-01-01

    Geared drive train transmits torque from input shaft in equal parts along two paths in parallel, then combines torques in single output shaft. Scheme reduces load on teeth of meshing gears while furnishing redundancy to protect against failures. Such splitting and recombination of torques common in design of turbine engines.

  10. Water splitting by cooperative catalysis

    NARCIS (Netherlands)

    D.G.H. Hetterscheid; J.I. van der Vlugt; B. de Bruin; J.N.H. Reek

    2009-01-01

    A mononuclear Ru complex is shown to efficiently split water into H2 and O2 in consecutive steps through a heat- and light-driven process (see picture). Thermally driven H2 formation involves the aid of a non-innocent ligand scaffold, while dioxygen is generated by initial photochemically induced re

  11. Splitting Neutrino masses and Showering into Sky

    Science.gov (United States)

    Fargion, D.; D'Armiento, D.; Lanciano, O.; Oliva, P.; Iacobelli, M.; de Sanctis Lucentini, P. G.; Grossi, M.; de Santis, M.

    2007-06-01

    Neutrino masses might be as light as a few time the atmospheric neutrino mass splitting. The relic cosmic neutrinos may cluster in wide Dark Hot Local Group Halo. High Energy ZeV cosmic neutrinos (in Z-Showering model) might hit relic ones at each mass in different resonance energies in our nearby Universe. This non-degenerated density and energy must split UHE Z-boson secondaries (in Z-Burst model) leading to multi injection of UHECR nucleons within future extreme AUGER energy. Secondaries of Z-Burst as neutral gamma, below a few tens EeV are better surviving local GZK cut-off and they might explain recent Hires BL-Lac UHECR correlations at small angles. A different high energy resonance must lead to Glashow's anti-neutrino showers while hitting electrons in matter. In water and ice it leads to isotropic light explosions. In air, Glashow's anti-neutrino showers lead to collimated and directional air-showers offering a new Neutrino Astronomy. Because of neutrino flavor mixing, astrophysical energetic tau neutrino above tens GeV must arise over atmospheric background. At TeV range is difficult to disentangle tau neutrinos from other atmospheric flavors. At greater energy around PeV, Tau escaping mountains and Earth and decaying in flight are effectively showering in air sky. These Horizontal showering is splitting by geomagnetic field in forked shapes. Such air-showers secondaries release amplified and beamed gamma bursts (like observed TGF), made also by muon and electron pair bundles, with their accompanying rich Cherenkov flashes. Also planet's largest (Saturn, Jupiter) atmosphere limbs offer an ideal screen for UHE GZK and Z-burst tau neutrino, because their largest sizes. Titan thick atmosphere and small radius are optimal for discovering up-going resonant Glashow resonant anti-neutrino electron showers. Detection from Earth of Tau, anti-Tau, anti-electron neutrino induced Air-showers by twin Magic Telescopes on top mountains, or space based detection on

  12. Cool covered sky-splitting spectrum-splitting FK

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid, Spain and Universidad Politécnica de Madrid (UPM), Madrid (Spain); Buljan, Marina [Universidad Politécnica de Madrid (UPM), Madrid (Spain)

    2014-09-26

    Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.

  13. Dirac and Maxwell equations in Split Octonions

    CERN Document Server

    Beradze, Revaz

    2016-01-01

    The split octonionic form of Dirac and Maxwell equations are found. In contrast with the previous attempts these equations are derived from the octonionic analyticity condition and also we use different basis of the 8-dimensional space of split octonions.

  14. Split Left GC-Lpp Semigroups

    Institute of Scientific and Technical Information of China (English)

    Zhen Zhen LI; Xiao Jiang GUO; Zhi Qing FU

    2012-01-01

    A left GC-lpp semigroup S is called split if the natural homomorphism γb of S onto S/γ induced by γ is split.It is proved that a left GC-lpp semigroup is split if and only if it has a left adequate transversal.In particular,a construction theorem for split left GC-lpp semigroups is established.

  15. The Split Variational Inequality Problem

    CERN Document Server

    Censor, Yair; Reich, Simeon

    2010-01-01

    We propose a new variational problem which we call the Split Variational Inequality Problem (SVIP). It entails finding a solution of one Variational Inequality Problem (VIP), the image of which under a given bounded linear transformation is a solution of another VIP. We construct iterative algorithms that solve such problems, under reasonable conditions, in Hilbert space and then discuss special cases, some of which are new even in Euclidean space.

  16. Split NMSSM with electroweak baryogenesis

    CERN Document Server

    Demidov, S V; Kirpichnikov, D V

    2016-01-01

    In light of the Higgs boson discovery we reconsider generation of the baryon asymmetry in the non-minimal split Supersymmetry model with an additional singlet superfield in the Higgs sector. We find that successful baryogenesis during the first order electroweak phase transition is possible within phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  17. Torsional Split Hopkinson Bar Optimization

    Science.gov (United States)

    2012-04-10

    pillow blocks used to mount the incident and transmitter bars are cast iron based- mounted Babbitt -lined bearing split, for 1 in. shaft diameter...Total 1 McMaster-CARR 5911k16 1" Dia, 6" long anodized aluminum shaft $15.38 8 $123.04 2 McMaster-CARR 6359k37 Cast iron base-mounted babbitt

  18. 7 CFR 51.2002 - Split shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack....

  19. Geometrical Applications of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2015-01-01

    Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.

  20. Testing split supersymmetry with inflation

    Science.gov (United States)

    Craig, Nathaniel; Green, Daniel

    2014-07-01

    Split supersymmetry (SUSY) — in which SUSY is relevant to our universe but largely inaccessible at current accelerators — has become increasingly plausible given the absence of new physics at the LHC, the success of gauge coupling unification, and the observed Higgs mass. Indirect probes of split SUSY such as electric dipole moments (EDMs) and flavor violation offer hope for further evidence but are ultimately limited in their reach. Inflation offers an alternate window into SUSY through the direct production of superpartners during inflation. These particles are capable of leaving imprints in future cosmological probes of primordial non-gaussianity. Given the recent observations of BICEP2, the scale of inflation is likely high enough to probe the full range of split SUSY scenarios and therefore offers a unique advantage over low energy probes. The key observable for future experiments is equilateral non-gaussianity, which will be probed by both cosmic microwave background (CMB) and large scale structure (LSS) surveys. In the event of a detection, we forecast our ability to find evidence for superpartners through the scaling behavior in the squeezed limit of the bispectrum.

  1. Beam splitter and combiner based on Bloch oscillations in spatially modulated waveguide arrays

    CERN Document Server

    Zhang, Yiqi; Zhong, Weiping; Wen, Feng; Guo, Yang; Guo, Yao; Lu, Keqing; Zhang, Yanpeng

    2014-01-01

    We numerically investigate the light beam propagation in periodic waveguide arrays which are elaborately modulated with certain structures. We find that the light beam may split, coalesce, deflect, and be localized during propagation in these spatially modulated waveguide arrays. All the phenomena originate from Bloch oscillations, and supply possible method for fabricating on-chip beam splitters and beam combiners.

  2. Alternating tip splitting in directional solidification.

    Science.gov (United States)

    Utter, B; Ragnarsson, R; Bodenschatz, E

    2001-05-14

    We report experimental results on the tip splitting dynamics of seaweed growth in directional solidification of succinonitrile alloys. Despite the random appearance of the growth, a tip splitting morphology was observed in which the tip alternately splits to the left and to the right. The tip splitting frequency f was found to be related to the growth velocity V as a power law f~V1.5. This finding is consistent with the predictions of a tip splitting model that is also presented. Small anisotropies are shown to lead to different kinds of seaweed morphologies.

  3. Multi-resonance split ring resonator structures at sub-terahertz frequencies

    CERN Document Server

    Galal, Hossam

    2016-01-01

    This paper reports on the computational development of novel architectures of multi-resonance Split Ring Resonators (SRRs), for efficient manipulation of Terahertz (THz) frequency beams. The conceived resonators are based on both a capacitive and inductive scheme. Simulation results have been obtained for a 60 GHz to 240 GHz operational bandwidth.

  4. CBM split title in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, L.M. [EnCana Corp., Calgary, AB (Canada); Laurin, W.

    2006-07-01

    Coalbed methane (CBM) coal underlies most of central and southern Alberta. This article discussed disputes surrounding CBM ownership and split-titles. Historically, ownership of lands in Alberta implied possession and rights of all under- and overground substances. Surface estates are now typically separated from the subsurface estate, and subsurface estates are further divided either on the basis of substances or stratigraphically to create a split-title. Mineral severances are used to separate respective mineral rights among owners. While there is a relative certainty that under provincial Crown tenure CBM is included in natural gas tenure, there is currently no Canadian jurisprudence in respect of CBM entitlement on split-title private lands. Where compressed natural gas (CNG) and coal are separately held, and CBM ownership is not specifically addressed in the mineral severance, there is no Canadian law respecting CBM ownership. Resolution of ownership issues has proceeded on a case by case basis. Coal owners argue that there is a distinct interrelationship between CBM and its host coal strata. Gas owners argue that the chemical composition of CBM is identical to CNG, and that the recovery method is similar to that of CNG. Courts have historically applied the vernacular test to resolve mineral substance ownership disputes, which considers the meanings of the word coal and coalbed methane as defined by industry. The most recent and relevant application of the vernacular test were the Borys/Anderson, which effectively implemented a gas-oil interface ownership determination, which if applied to a coal grant or reservation, may lead to the conclusion that the coal strata includes CBM. It was concluded that there are 26,000 individual mineral owners in Alberta that may become involved in CBM litigation. and could become parties to litigation. refs., tabs., figs.

  5. Slow light beam splitter.

    Science.gov (United States)

    Xiao, Yanhong; Klein, Mason; Hohensee, Michael; Jiang, Liang; Phillips, David F; Lukin, Mikhail D; Walsworth, Ronald L

    2008-07-25

    We demonstrate a slow light beam splitter using rapid coherence transport in a wall-coated atomic vapor cell. We show that particles undergoing random and undirected classical motion can mediate coherent interactions between two or more optical modes. Coherence, written into atoms via electromagnetically induced transparency using an input optical signal at one transverse position, spreads out via ballistic atomic motion, is preserved by an antirelaxation wall coating, and is then retrieved in outgoing slow light signals in both the input channel and a spatially-separated second channel. The splitting ratio between the two output channels can be tuned by adjusting the laser power. The slow light beam splitter may improve quantum repeater performance and be useful as an all-optical dynamically reconfigurable router.

  6. Generalized Forward-Backward Splitting

    OpenAIRE

    2011-01-01

    International audience; This paper introduces a generalized forward-backward splitting algorithm for finding a zero of a sum of maximal monotone operators $B + \\sum_{i=1}^{n} A_i$, where $B$ is cocoercive. It involves the computation of $B$ in an explicit (forward) step and of the parallel computation of the resolvents of the $A_i$'s in a subsequent implicit (backward) step. We prove its convergence in infinite dimension, and robustness to summable errors on the computed operators in the expl...

  7. Partitions of generalized split graphs

    OpenAIRE

    Shklarsky, Oren

    2012-01-01

    We discuss matrix partition problems for graphs that admit a partition into k independent sets and ` cliques. We show that when k + ` 6 2, any matrix M has finitely many (k; `) minimal obstructions and hence all of these problems are polynomial time solvable. We provide upper bounds for the size of any (k; `) minimal obstruction when k = ` = 1 (split graphs), when k = 2; ` = 0 (bipartite graphs), and when k = 0; ` = 2 (co-bipartite graphs). When k = ` = 1, we construct an exponential size spl...

  8. Generalized Forward-Backward Splitting

    CERN Document Server

    Raguet, Hugo; Peyré, Gabriel

    2011-01-01

    This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form $F + \\sum_{i=1}^n G_i$, where $F$ has a Lipschitz-continuous gradient and the $G_i$'s are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than $n = 1$ non-smooth function, our method generalizes it to the case of arbitrary $n$. Our method makes an explicit use of the regularity of $F$ in the forward step, and the proximity operators of the $G_i$'s are applied in parallel in the backward step. This allows the generalized forward backward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of $F$. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.

  9. THE SPLITTING OF COMET HALLEY

    Institute of Scientific and Technical Information of China (English)

    Chen Daohan; Liu Linzhong; Alan Gilmore

    2000-01-01

    In combination with the authors previous obsewation about the splitting of Comet Halley in March 1986, the events involving the sharp, straight feature in the antisolar direction observed in the head of Comet Halley in 1910 (such as those occurring on May 14, 25 and 31, and June 2) are rediscussed The analysis leads to the following scenario: When Comet Halley explodes and splits, a fragment jettisoned or thrown off from the nucleus will, after moving in the direction of its tail, develop into a mini-comet. Although not well developed or permanent, it has its own plasma tail and, sometimes, a dust tail. If Bobrovnikoffs definition of a secondary nucleus is assumed, then the fragment should be considered as a real secondary nucleus. It seems that the current idea of a tailward jet suggested by Sekanina and Larson is a wrong explanation for the plasma tail of a mini-comet and hence the rotation period of 52-53h for Comet Halley is doubtful

  10. The splitting of Comet Halley

    Institute of Scientific and Technical Information of China (English)

    陈道汉; 刘麟仲; Alan Gilmore

    1995-01-01

    In combination with the authors’ previous observation about the splitting of Comet Halley in March 1986, the events involving the sharp, straight feature in the antisolar direction observed in the bead of Comet Halley in 1910 (such as those occurring on May 14, 25 and 31, and June 2) are rediscussed. The analysis leads to the following scenario: When Comet Halley explodes and splits, a fragment jettisoned or thrown off from the nucleus will, after moving in the direction of its tail, develop into a mini-comet. Although not well developed or permanent, it has its own plasma tail and, sometimes, a dust tail. If Bobrovnikoff’s definition of a secondary nucleus is assumed, then the fragment should be considered as a real secondary nucleus. It seems that the current idea of a tailward jet suggested by Sekanina and Larson is a wrong explanation for the plasma tail of a mini-comet and hence the rotation period of 52- 53 h for Comet Halley is doubtful.

  11. Telugu Bigram Splitting using Consonant-based and Phrase-based Splitting

    Directory of Open Access Journals (Sweden)

    T. Kameswara Rao

    2014-06-01

    Full Text Available Splitting is a conventional process in most of Indian languages according to their grammar rules. It is called ‘pada vicchEdanam’ (a Sanskrit term for word splitting and is widely used by most of the Indian languages. Splitting plays a key role in Machine Translation (MT particularly when the source language (SL is an Indian language. Though this splitting may not succeed completely in extracting the root words of which the compound is formed, but it shows considerable impact in Natural Language Processing (NLP as an important phase. Though there are many types of splitting, this paper considers only consonant based and phrase based splitting.

  12. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tongsong, E-mail: jiangtongsong@sina.com [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China); Department of Mathematics, Heze University, Heze, Shandong 274015 (China); Jiang, Ziwu; Zhang, Zhaozhong [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China)

    2015-08-15

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  13. A split-electrode for clearing scattered electrons in the RHIC e-lens

    Energy Technology Data Exchange (ETDEWEB)

    Gu X.; Pikin, A.; Thieberger, P.; Fischer, W.; Hock, J.; Hamdi, K.; Gassner,D.; Luo, Y.; Montag, C.; Okamura, M.

    2012-05-20

    We are designing two electron lenses that will be installed at RHIC IR10 to compensate for the head-on beam-beam effect. To clear accumulated scattered electrons from 100 GeV proton-electron head-on collisions in the e-lens, a clearing split electrode may be constructed. The feasibility of this proposed electrode was demonstrated via the CST Particle Studio and Opera program simulations. By splitting one of the drift tubes in the e-lens and applying {approx} 380 V across the two parts, the scattered electrons can be cleared out within several hundred micro-seconds. At the same time we can restrict the unwanted shift of the primary electron-beam that already passed the 2-m interaction region in e-lens, to less than 15um.

  14. SPS beam to the West Hall

    CERN Multimedia

    1976-01-01

    One of the two target stations feeding the West Hall (see Annual Report 1976). After the proton beam was split into three branches, the outer two were directed on to targets in the cast iron shielding box, the centre one passing through the box to another target station downstream. Five different targets could be put in each beam, controlled by the mechanism seen on top.

  15. Method for carbon dioxide splitting

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James E.; Diver, Jr., Richard B.; Siegel, Nathan P.

    2017-02-28

    A method for splitting carbon dioxide via a two-step metal oxide thermochemical cycle by heating a metal oxide compound selected from an iron oxide material of the general formula A.sub.xFe.sub.3-xO.sub.4, where 0.ltoreq.x.ltoreq.1 and A is a metal selected from Mg, Cu, Zn, Ni, Co, and Mn, or a ceria oxide compound of the general formula M.sub.aCe.sub.bO.sub.c, where 0

  16. Salt splitting with ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  17. Signature splitting in 129Ce

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; WU Xiao-Guang; ZHU Li-Hua; LI Guang-Sheng; HE Chuang-Ye; LI Xue-Qin; PAN Bo; HAO Xin; LI Li-Hua; WANG Zhi-Min; LI Zhong-Yu; XU Qiang

    2009-01-01

    The high spin states of 129Ce have been populated via heavy-ion fusion evaporation reaction 96Mo (37C1, 1p3n) 129Ce. The γ-γ coincidence and intensity balance used to measure the B(M1; I→I-1)/B(E2; I→I-2) (the probability ratio of the dipole and quadrupole transition) in v7/2[523] rotational band of 129Ce. And the energy splitting (Δe') has been got through the experimental Routhians. The lifetimes and quadrupole moments Qt have been extracted from the lineshape analyses using DSAM. The deformation of the v7/2[523] rotational band of 129Ce was extracted from the Qt and moment of inertia JRR.

  18. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  19. Collision energy dependence of elliptic flow splitting between particles and their antiparticles from an extended multiphase transport model

    CERN Document Server

    Xu, Jun

    2016-01-01

    Based on an extended multiphase transport model, which includes mean-field potentials in both the partonic and hadronic phases, uses the mix-event coalescence, and respects charge conservation during the hadronic evolution, we have studied the collision energy dependence of the elliptic flow splitting between particles and their antiparticles. This extended transport model reproduces reasonably well the experimental data at lower collision energies but only describes qualitatively the elliptic flow splitting at higher beam energies. The present study thus indicates the existence of other mechanisms for the elliptic flow splitting besides the mean-field potentials and the need of further improvements of the multiphase transport model.

  20. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  1. Standard Model Particles from Split Octonions

    CERN Document Server

    Gogberashvili, Merab

    2016-01-01

    We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors). It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  2. Transferring Goods or Splitting a Resource Pool

    Science.gov (United States)

    Dijkstra, Jacob; Van Assen, Marcel A. L. M.

    2008-01-01

    We investigated the consequences for exchange outcomes of the violation of an assumption underlying most social psychological research on exchange. This assumption is that the negotiated direct exchange of commodities between two actors (pure exchange) can be validly represented as two actors splitting a fixed pool of resources (split pool…

  3. Distinguishing division algebras by finite splitting fields

    CERN Document Server

    Krashen, Daniel

    2010-01-01

    This paper is concerned with the problem of determining the number of division algebras which share the same collection of finite splitting fields. As a corollary we are able to determine when two central division algebras may be distinguished by their finite splitting fields over certain fields.

  4. 2-Photon tandem device for water splitting

    DEFF Research Database (Denmark)

    Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard;

    2014-01-01

    Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim of th...

  5. Cheating More when the Spoils Are Split

    Science.gov (United States)

    Wiltermuth, Scott S.

    2011-01-01

    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  6. Splitting of quantum information in travelling wave fields using only linear optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, W B; De Almeida, N G; Avelar, A T; Baseia, B [Instituto de Fisica, Universidade Federal de Goias, 74.001-970, Goiania-GO (Brazil)

    2011-02-28

    In this paper we present a feasible post-selection scheme to split quantum information in the realm of travelling waves with success probability of 50%. Taking advantage of this scheme we have also proposed the generation of a class of W states useful for perfect teleportation and superdense coding. The scheme employs only linear optical elements as beam splitters (BS) and phase shifters, plus two photon counters and a source of two spontaneous parametric down-conversion photons. It is shown that splitting of quantum information with high fidelity is possible, even when using inefficient detectors and photoabsorption BS.

  7. Pump induced normal mode splittings in phase conjugation in a Kerr nonlinear waveguide

    Indian Academy of Sciences (India)

    S Dutta Gupta

    2000-03-01

    Phase conjugation in a Kerr nonlinear waveguide is studied with counter-propagating normally incident pumps and a probe beam at an arbitrary angle of incidence. Detailed numerical results for the specular and phase conjugated reflectivities are obtained with full account of pump depletion. For sufficient strengths of the pump a normal mode splitting is demonstrated in both the specular and the phase conjugated reflectivities of the probe wave. The splitting is explained in terms of a simple model under undepleted pump approximation.

  8. Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact

    Energy Technology Data Exchange (ETDEWEB)

    Wójcik, P., E-mail: pawel.wojcik@fis.agh.edu.pl; Adamowski, J., E-mail: janusz.adamowski@fis.agh.edu.pl; Wołoszyn, M.; Spisak, B. J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, Kraków (Poland)

    2015-07-07

    We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.

  9. Anisotropic Spin Splitting in Step Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    HAO Ya-Fei; CHEN Yong-Hai; HAO Guo-Dong; WANG Zhan-Guo

    2009-01-01

    By the method of finite difference,the anisotropic spin splitting of the Alx Ga1-x As/GaAs/Aly Ga1-y As/Alx Ga1-x As step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field.We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field.The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin.The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.

  10. Crushing or splitting medications: unrecognized hazards.

    Science.gov (United States)

    Gill, Donna; Spain, Margaret; Edlund, Barbara J

    2012-01-01

    Given the high use and the cost of medications in the current economy, one way older adults may save money on prescription costs is to split some of their medications in half. However, not all oral medications can be split. Splitting inappropriate medications such as extended-release tablets can be harmful and in some instances very dangerous. In addition to splitting medications, older adults who have difficulty swallowing pills may resort to crushing the medication for ease of administration. This option is also problematic and potentially harmful if the medication is not intended to be crushed. Clinicians managing the care of older adults need to discuss medication administration, clarify the dosing schedule, and clearly indicate the route of administration. Patients should be cautioned not to split or crush a medication without checking with the health care provider or pharmacist.

  11. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    Science.gov (United States)

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches.

  12. Segmented holographic spectrum splitting concentrator

    Science.gov (United States)

    Ayala, Silvana P.; Vorndran, Shelby; Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.

    2016-09-01

    This paper presents a segmented parabolic concentrator employing holographic spectral filters that provide focusing and spectral bandwidth separation capability to the system. Strips of low band gap silicon photovoltaic (PV) cells are formed into a parabolic surface as shown by Holman et. al. [1]. The surface of the PV segments is covered with holographic elements formed in dichromated gelatin. The holographic elements are designed to transmit longer wavelengths to silicon cells, and to reflect short wavelength light towards a secondary collector where high-bandgap PV cells are mounted. The system can be optimized for different combinations of diffuse and direct solar illumination conditions for particular geographical locations by controlling the concentration ratio and filtering properties of the holographic elements. In addition, the reflectivity of the back contact of the silicon cells is used to increase the optical path length and light trapping. This potentially allows the use of thin film silicon for the low bandgap PV cell material. The optical design combines the focusing properties of the parabolic concentrator and the holographic element to control the concentration ratio and uniformity of the spectral distribution at the high bandgap cell location. The presentation concludes with a comparison of different spectrum splitting holographic filter materials for this application.

  13. Innovative solar thermochemical water splitting.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  14. A 3D printed beam splitter for polar neutral molecules

    CERN Document Server

    Gordon, Sean D S

    2016-01-01

    We describe a beam splitter for polar neutral molecules. An electrostatic hexapole initially confines and guides a supersonic expansion of ammonia, and it then smoothly transforms into two bent quadrupole guides, thus splitting the molecular beam in two correlated fractions. This paves the way towards molecular beam experiments wherein one beam is modified through interactions with, e.g. a laser beam or another molecular beam, while the other one remains unmodified and serves as a reference. Because both beams originate from the same parent beam, such differential experiments can dramatically enhance the sensitivity. The highly complex electrode structure required for the beam splitter would be very difficult to build by traditional means. Instead, we introduce a new method of production: 3D printing of a plastic piece, followed by electroplating. The 3D printed piece can take any desired shape and, since the entire structure can be printed as a single piece, provides inherently precise alignment. Electroplat...

  15. Semi-strong split domination in graphs

    Directory of Open Access Journals (Sweden)

    Anwar Alwardi

    2014-06-01

    Full Text Available Given a graph $G = (V,E$, a dominating set $D subseteq V$ is called a semi-strong split dominating set of $G$ if $|V setminus D| geq 1$ and the maximum degree of the subgraph induced by $V setminus D$ is 1. The minimum cardinality of a semi-strong split dominating set (SSSDS of G is the semi-strong split domination number of G, denoted $gamma_{sss}(G$. In this work, we introduce the concept and prove several results regarding it.

  16. Communication: Tunnelling splitting in the phosphine molecule

    Science.gov (United States)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N.

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2.

  17. Tunnelling splitting in the phosphine molecule

    CERN Document Server

    Sousa-Silva, Clara; Yurchenko, Sergey N

    2016-01-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the $\

  18. 2S Hyperfine splitting of muonic hydrogen

    CERN Document Server

    Martynenko, A P

    2004-01-01

    Corrections of orders alpha^5, alpha^6 are calculated in the hyperfine splitting of the 2S state in the muonic hydrogen. The nuclear structure effects are taken into account in the one- and two-loop Feynman amplitudes by means of the proton electromagnetic form factors. Total numerical value of the 2S state hyperfine splitting 22.8148 meV in the (\\mu p) can be considered as reliable estimation for the corresponding experiment with the accuracy 10^{-5}. The value of the Sternheim's hyperfine splitting interval [8\\Delta E^{HFS}(2S)-\\Delta E^{HFS}(1S)] is obtained with the accuracy 10^{-6}.

  19. Interactions of incoherent localized beams in a photorefractive medium

    CERN Document Server

    Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Xu, Jianeng; Zhang, Yanpeng

    2014-01-01

    We investigate numerically interactions between two bright or dark incoherent localized beams in an strontium barium niobate photorefractive crystal in one dimension, using the coherent density method. For the case of bright beams, if the interacting beams are in-phase, they attract each other during propagation and form bound breathers; if out-of-phase, the beams repel each other and fly away. The bright incoherent beams do not radiate much and form long-lived well-defined breathers or quasi-stable solitons. If the phase difference is $\\pi/2$, the interacting beams may both attract or repel each other, depending on the interval between the two beams, the beam widths, and the degree of coherence. For the case of dark incoherent beams, in addition to the above the interactions also depend on the symmetry of the incident beams. As already known, an even-symmetric incident beam tends to split into a doublet, whereas an odd-symmetric incident beam tends to split into a triplet. When launched in pairs, the dark be...

  20. Fisher information vs. signal-to-noise ratio for a split detector

    CERN Document Server

    Knee, George C

    2015-01-01

    We study the problem of estimating the magnitude of a Gaussian beam displacement using a two pixel or 'split' detector. We calculate the maximum likelihood estimator, and compute its asymptotic mean-squared-error via the Fisher information. Although the signal-to-noise ratio is known to be simply related to the Fisher information under idealised detection, we find the two measures of precision differ markedly for a split detector. We show that a greater signal-to-noise ratio 'before' the detector leads to a greater information penalty, unless adaptive realignment is used. We find that with an initially balanced split detector, tuning the normalised difference in counts to 0.884753... gives the highest posterior Fisher information, and that this provides an improvement by at least a factor of about 2.5 over operating in the usual linear regime. We discuss the implications for weak-value amplification, a popular probabilistic signal amplification technique.

  1. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  2. Electroweak Splitting Functions and High Energy Showering

    CERN Document Server

    Chen, Junmou; Tweedie, Brock

    2016-01-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2)xU(1) and discuss their general features in the collinear and soft-collinear regimes. We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in the VEV. We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching...

  3. Supramolecular Control over Split-Luciferase Complementation.

    Science.gov (United States)

    Bosmans, Ralph P G; Briels, Jeroen M; Milroy, Lech-Gustav; de Greef, Tom F A; Merkx, Maarten; Brunsveld, Luc

    2016-07-25

    Supramolecular split-enzyme complementation restores enzymatic activity and allows for on-off switching. Split-luciferase fragment pairs were provided with an N-terminal FGG sequence and screened for complementation through host-guest binding to cucurbit[8]uril (Q8). Split-luciferase heterocomplex formation was induced in a Q8 concentration dependent manner, resulting in a 20-fold upregulation of luciferase activity. Supramolecular split-luciferase complementation was fully reversible, as revealed by using two types of Q8 inhibitors. Competition studies with the weak-binding FGG peptide revealed a 300-fold enhanced stability for the formation of the ternary heterocomplex compared to binding of two of the same fragments to Q8. Stochiometric binding by the potent inhibitor memantine could be used for repeated cycling of luciferase activation and deactivation in conjunction with Q8, providing a versatile module for in vitro supramolecular signaling networks.

  4. Irrational beliefs, attitudes about competition, and splitting.

    Science.gov (United States)

    Watson, P J; Morris, R J; Miller, L

    2001-03-01

    Rational-Emotive Behavior Therapy (REBT) theoretically promotes actualization of both individualistic and social-oriented potentials. In a test of this assumption, the Belief Scale and subscales from the Survey of Personal Beliefs served as measures of what REBT presumes to be pathogenic irrationalities. These measures were correlated with the Hypercompetitive Attitude Scale (HCAS), the Personal Development Competitive Attitude Scale (PDCAS), factors from the Splitting Index, and self-esteem. Results for the HCAS and Self-Splitting supported the REBT claim about individualistic self-actualization. Mostly nonsignificant and a few counterintuitive linkages were observed for irrational beliefs with the PDCAS, Family-Splitting, and Other-Splitting, and these data suggested that REBT may be less successful in capturing the "rationality" of a social-oriented self-actualization.

  5. Split Brain Theory: Implications for Nurse Educators.

    Science.gov (United States)

    de Meneses, Mary

    1980-01-01

    Discusses incorporating nontraditional concepts of learning in nursing education. Elements explored include the split brain theory, school design, teaching styles, teacher's role, teaching strategies, adding variety to the curriculum, and modular learning. (CT)

  6. Experimental demonstration of a controllable electrostatic molecular beam splitter.

    Science.gov (United States)

    Deng, Lianzhong; Liang, Yan; Gu, Zhenxing; Hou, Shunyong; Li, Shengqiang; Xia, Yong; Yin, Jianping

    2011-04-01

    We experimentally demonstrate a controllable electrostatic beam splitter for guided ND3 molecules with a single Y-shaped charged wire and a homogeneous bias field generated by a charged metallic parallel-plate capacitor. We study the dependences of the splitting ratio R of the guided ND3 beam and its relative guiding efficiency η on the voltage difference between two output arms of the splitter. The influences of the molecular velocity v and the cutting position L on the splitting ratio R are investigated as well, and the guiding and splitting dynamic processes of cold molecules are simulated. Our study shows that the splitting ratio R of our splitter can be conveniently adjusted from 10% to 90% by changing ΔU from -6  kV to +6  kV, and the simulated results are consistent with our experimental ones.

  7. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John

    2016-01-01

    at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  8. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  9. Antenna Splitting Functions for Massive Particles

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2011-06-22

    An antenna shower is a parton shower in which the basic move is a color-coherent 2 {yields} 3 parton splitting process. In this paper, we give compact forms for the spin-dependent antenna splitting functions involving massive partons of spin 0 and spin 1/2. We hope that this formalism we have presented will be useful in describing the QCD dynamics of the top quark and other heavy particles at LHC.

  10. Atom-interferometric measurement of Stark level splittings

    CERN Document Server

    Wang, Limei; Zhang, Linjie; Raithel, Georg; Zhao, Jianming; Jia, Suotang

    2015-01-01

    Multiple adiabatic/diabatic passages through avoided crossings in the Stark map of cesium Rydberg atoms are employed as beam splitters and recombiners in an atom-interferometric measurement of energy-level splittings. We subject cold cesium atoms to laser-excitation, electric-field and detection sequences that constitute an (internal-state) atom interferometer. For the read-out of the interferometer we utilize state-dependent collisions, which selectively remove atoms of one kind from the detected signal. We investigate the dependence of the interferometric signal on timing and field parameters, and find good agreement with time-dependent quantum simulations of the interferometer. Fourier analysis of the interferometric signals yield coherence frequencies that agree with corresponding energy-level differences in calculated Stark maps. The method enables spectroscopy of states that are inaccessible to direct laser-spectroscopic observation, due to selection rules, and has applications in field metrology.

  11. Beam splitter for guided polar molecules with a Y-shaped charged wire.

    Science.gov (United States)

    Deng, Lianzhong; Yin, Jianping

    2007-06-15

    We propose a beam splitter for cold polar molecules in weak-field-seeking states that uses a Y-shaped charged wire half embedded in a substrate and sandwiched by a charged metallic parallel-plate capacitor. We demonstrate our molecular-beam splitter and study its dynamic beam-splitting process for the guided cold molecules by using Monte Carlo simulation. Our study shows that cold polar molecules from a supersonic beam source with a mean velocity of a few hundred meters per second can be split with a fixed 0.5/0.5 splitting ratio, and an adjustable splitting ratio of about 0.03-0.97 can be realized by introducing a small alteration to the scheme.

  12. Chaotic ray dynamics in an optical cavity with a beam splitter

    CERN Document Server

    Puentes, G; Woerdman, J P

    2003-01-01

    We investigate the ray dynamics in an optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. Using Hamiltonian optics, we show that such a simple device presents a surprisingly rich chaotic ray dynamics.

  13. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang

    2013-11-01

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  14. Technical Skills Required in Split Liver Transplantation.

    Science.gov (United States)

    Liu, Huanqiu; Li, Ruijun; Fu, Jinling; He, Qianyan; Li, Ji

    2016-07-01

    The number of liver grafts obtained from a cadaver can be greatly increased with the application of split liver transplantation. In the last 10 years, pediatric waiting list mortality has been reduced significantly with the use of this form of liver transplantation, which has 2 major forms. In its most commonly used form, the liver can be transplanted into 1 adult and 1 child by splitting it into a right extended and a left lateral graft. For adult and pediatric recipients, the results of this procedure are comparable to those of whole-organ techniques. In another form, 2 hemi-grafts are obtained by splitting the liver, which can be transplanted into a medium-sized adult (the right side) and a large child/small adult (the left side). The adult liver graft pool is expanded through the process of full right/full left splitting; but it is also a critical technique when one considers the knowledge required of the potential anatomic variations and the high technical skill level needed. In this review, we provide some basic insights into the technical and anatomical aspects of these 2 forms of split liver transplantation and present an updated summary of both forms.

  15. Controllable valley splitting in silicon quantum devices

    Science.gov (United States)

    Goswami, Srijit; Slinker, K. A.; Friesen, Mark; McGuire, L. M.; Truitt, J. L.; Tahan, Charles; Klein, L. J.; Chu, J. O.; Mooney, P. M.; van der Weide, D. W.; Joynt, Robert; Coppersmith, S. N.; Eriksson, Mark A.

    2007-01-01

    Silicon has many attractive properties for quantum computing, and the quantum-dot architecture is appealing because of its controllability and scalability. However, the multiple valleys in the silicon conduction band are potentially a serious source of decoherence for spin-based quantum-dot qubits. Only when a large energy splits these valleys do we obtain well-defined and long-lived spin states appropriate for quantum computing. Here, we show that the small valley splittings observed in previous experiments on Si-SiGe heterostructures result from atomic steps at the quantum-well interface. Lateral confinement in a quantum point contact limits the electron wavefunctions to several steps, and enhances the valley splitting substantially, up to 1.5meV. The combination of electrostatic and magnetic confinement produces a valley splitting larger than the spin splitting, which is controllable over a wide range. These results improve the outlook for realizing spin qubits with long coherence times in silicon-based devices.

  16. Spin splitting in 2D monochalcogenide semiconductors

    Science.gov (United States)

    Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei

    2015-11-01

    We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed.

  17. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  18. Multiple spectral splits of supernova neutrinos.

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol; Raffelt, Georg G; Smirnov, Alexei Yu

    2009-07-31

    Collective oscillations of supernova neutrinos swap the spectra f(nu(e))(E) and f(nu[over ](e))(E) with those of another flavor in certain energy intervals bounded by sharp spectral splits. This phenomenon is far more general than previously appreciated: typically one finds one or more swaps and accompanying splits in the nu and nu[over ] channels for both inverted and normal neutrino mass hierarchies. Depending on an instability condition, swaps develop around spectral crossings (energies where f(nu(e))=f(nu(x)), f(nu[over ](e))=f(nu[over ](x)) as well as E-->infinity where all fluxes vanish), and the widths of swaps are determined by the spectra and fluxes. Washout by multiangle decoherence varies across the spectrum and splits can survive as sharp spectral features.

  19. Inorganic photocatalysts for overall water splitting.

    Science.gov (United States)

    Xing, Jun; Fang, Wen Qi; Zhao, Hui Jun; Yang, Hua Gui

    2012-04-01

    Photocatalytic water splitting using semiconductor photocatalysts has been considered as a "green" process for converting solar energy into hydrogen. The pioneering work on electrochemical photolysis of water at TiO(2) electrode, reported by Fujishima and Honda in 1972, ushered in the area of solar fuel. As the real ultimate solution for solar fuel-generation, overall water splitting has attracted interest from researchers for some time, and a variety of inorganic photocatalysts have been developed to meet the challenge of this dream reaction. To date, high-efficiency hydrogen production from pure water without the assistance of sacrificial reagents remains an open challenge. In this Focus Review, we aim to provide a whole picture of overall water splitting and give an outlook for future research.

  20. Hyperfine splitting in lithium-like bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Lochmann, Matthias; Froemmgen, Nadja; Hammen, Michael; Will, Elisa [Universitaet Mainz (Germany); Andelkovic, Zoran; Kuehl, Thomas; Litvinov, Yuri; Winters, Danyal; Sanchez, Rodolfo [GSI Helmholtzzentrum, Darmstadt (Germany); Botermann, Benjamin; Noertershaeuser, Wilfried [Technische Universitaet Darmstadt (Germany); Bussmann, Michael [Helmholtzzentrum Dresden-Rossendorf (Germany); Dax, Andreas [CERN, Genf (Switzerland); Hannen, Volker; Joehren, Raphael; Vollbrecht, Jonas; Weinheimer, Christian [Universitaet Muenster (Germany); Geppert, Christopher [Universitaet Mainz (Germany); GSI Helmholtzzentrum, Darmstadt (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum, Darmstadt (Germany); Universitaet Heidelberg (Germany); Thompson, Richard [Imperial College, London (United Kingdom); Volotka, Andrey [Technische Universitaet Dresden (Germany); Wen, Weiqiang [IMP Lanzhou (China)

    2013-07-01

    High-precision measurements of the hyperfine splitting values on Li- and H-like bismuth ions, combined with precise atomic structure calculations allow us to test QED-effects in the regime of the strongest magnetic fields that are available in the laboratory. Performing laser spectroscopy at the experimental storage ring (ESR) at GSI Darmstadt, we have now succeeded in measuring the hyperfine splitting in Li-like bismuth. Probing this transition has not been easy because of its extremely low fluorescence rate. Details about this challenging experiment will be given and the achieved experimental accuracy are presented.

  1. Recognition of Unipolar and Generalised Split Graphs

    Directory of Open Access Journals (Sweden)

    Colin McDiarmid

    2015-02-01

    Full Text Available A graph is unipolar if it can be partitioned into a clique and a disjoint union of cliques, and a graph is a generalised split graph if it or its complement is unipolar. A unipolar partition of a graph can be used to find efficiently the clique number, the stability number, the chromatic number, and to solve other problems that are hard for general graphs. We present an O(n2-time algorithm for recognition of n-vertex generalised split graphs, improving on previous O(n3-time algorithms.

  2. Split-octonion Lie 3-algebra

    CERN Document Server

    Jardino, Sergio

    2010-01-01

    We extend the concept of a generalized Lie 3-algebra, known to octonions $\\mathbb{O}$, to split-octonions $\\mathbb{SO}$. In order to do that, we introduce a notational device that unifies the two elements product of both of the algebras. We have also proved that $\\mathbb{SO}$ is a Malcev algebra and have recalculated known relations for the structure constants in terms of the introduced structure tensor. An application of the split Lie $3-$algebra to a Bagger and Lambert gauge theory is also discussed.

  3. The transversely split gracilis twin free flaps

    Directory of Open Access Journals (Sweden)

    Upadhyaya Divya

    2010-01-01

    Full Text Available The gracilis muscle is a Class II muscle that is often used in free tissue transfer. The muscle has multiple secondary pedicles, of which the first one is the most consistent in terms of position and calibre. Each pedicle can support a segment of the muscle thus yielding multiple small flaps from a single, long muscle. Although it has often been split longitudinally along the fascicles of its nerve for functional transfer, it has rarely been split transversely to yield multiple muscle flaps that can be used to cover multiple wounds in one patient without subjecting him/her to the morbidity of multiple donor areas .

  4. Beam Dynamics Studies in Recirculating Machines

    CERN Document Server

    Pellegrini, Dario; Latina, A

    The LHeC and the CLIC Drive Beam share not only the high-current beams that make them prone to show instabilities, but also unconventional lattice topologies and operational schemes in which the time sequence of the bunches varies along the machine. In order to asses the feasibility of these projects, realistic simulations taking into account the most worrisome effects and their interplays, are crucial. These include linear and non-linear optics with time dependent elements, incoherent and coherent synchrotron radiation, short and long-range wakefields, beam-beam effect and ion cloud. In order to investigate multi-bunch effects in recirculating machines, a new version of the tracking code PLACET has been developed from scratch. PLACET2, already integrates most of the effects mentioned before and can easily receive additional physics. Its innovative design allows to describe complex lattices and track one or more bunches accordingly to the machine operation, reproducing the bunch train splitting and recombinat...

  5. Split exponential track length estimator for Monte-Carlo simulations of small-animal radiation therapy

    Science.gov (United States)

    Smekens, F.; Létang, J. M.; Noblet, C.; Chiavassa, S.; Delpon, G.; Freud, N.; Rit, S.; Sarrut, D.

    2014-12-01

    We propose the split exponential track length estimator (seTLE), a new kerma-based method combining the exponential variant of the TLE and a splitting strategy to speed up Monte Carlo (MC) dose computation for low energy photon beams. The splitting strategy is applied to both the primary and the secondary emitted photons, triggered by either the MC events generator for primaries or the photon interactions generator for secondaries. Split photons are replaced by virtual particles for fast dose calculation using the exponential TLE. Virtual particles are propagated by ray-tracing in voxelized volumes and by conventional MC navigation elsewhere. Hence, the contribution of volumes such as collimators, treatment couch and holding devices can be taken into account in the dose calculation. We evaluated and analysed the seTLE method for two realistic small animal radiotherapy treatment plans. The effect of the kerma approximation, i.e. the complete deactivation of electron transport, was investigated. The efficiency of seTLE against splitting multiplicities was also studied. A benchmark with analog MC and TLE was carried out in terms of dose convergence and efficiency. The results showed that the deactivation of electrons impacts the dose at the water/bone interface in high dose regions. The maximum and mean dose differences normalized to the dose at the isocenter were, respectively of 14% and 2% . Optimal splitting multiplicities were found to be around 300. In all situations, discrepancies in integral dose were below 0.5% and 99.8% of the voxels fulfilled a 1%/0.3 mm gamma index criterion. Efficiency gains of seTLE varied from 3.2 × 105 to 7.7 × 105 compared to analog MC and from 13 to 15 compared to conventional TLE. In conclusion, seTLE provides results similar to the TLE while increasing the efficiency by a factor between 13 and 15, which makes it particularly well-suited to typical small animal radiation therapy applications.

  6. Czech, Slovak science ten years after split

    CERN Multimedia

    2003-01-01

    Ten years after the split of Czechoslovakia Czech and Slovak science are facing the same difficulties: shortage of money for research, poor salaries, obsolete equipment and brain drain, especially of the young, according to a feature in the Daily Lidove Noviny (1 page).

  7. Three-Rainbow Coloring of Split Graphs

    Institute of Scientific and Technical Information of China (English)

    胡玉梅; 刘婷婷

    2015-01-01

    After a necessary condition is given, 3-rainbow coloring of split graphs with time complexity O(m) is obtained by constructive method. The number of corresponding colors is at most 2 or 3 more than the minimum num-ber of colors needed in a 3-rainbow coloring.

  8. Comparing Electrochemical and Biological Water Splitting

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Dimitrievski, Kristian; Siegbahn, P.

    2007-01-01

    On the basis of density functional theory calculations, we compare the free energies of key intermediates in the water splitting reaction over transition metal oxide surfaces to those of the Mn cluster in photo system II. In spite of the very different environments in the enzyme system and on the...

  9. Split brain: divided perception but undivided consciousness.

    Science.gov (United States)

    Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara

    2017-01-24

    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain.

  10. Doublet-Triplet Splitting and Fat Branes

    CERN Document Server

    Maru, N

    2001-01-01

    We consider the doublet-triplet splitting problem in supersymmetric SU(5) grand unified theory in five dimensions where the fifth dimension is non-compact. We point out that an unnatural fine-tuning of parameters in order to obtain the light Higgs doublets is not required due to the exponential suppression of the overlap of the wave functions.

  11. On Split Lie Triple Systems II

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín; M Forero Piulestán

    2010-04-01

    In [4] it is studied that the structure of split Lie triple systems with a coherent 0-root space, that is, satisfying $[T_0,T_0,T]=0$ and $[T_0,T_,T_0]≠ 0$ for any nonzero root and where $T_0$ denotes the 0-root space and $T_$ the -root space, by showing that any of such triple systems with a symmetric root system is of the form $T=\\mathcal{U}+\\sum_j I_j$ with $\\mathcal{U}$ a subspace of the 0-root space $T_0$ and any $I_j$ a well described ideal of , satisfying $[I_j,T,I_k]=0$ if $j≠ k$. It is also shown in [4] that under certain conditions, a split Lie triple system with a coherent 0-root space is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of is characterized. In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces.

  12. Geometrical splitting and reduction of Feynman diagrams

    Science.gov (United States)

    Davydychev, Andrei I.

    2016-10-01

    A geometrical approach to the calculation of N-point Feynman diagrams is reviewed. It is shown that the geometrical splitting yields useful connections between Feynman integrals with different momenta and masses. It is demonstrated how these results can be used to reduce the number of variables in the occurring functions.

  13. Helioseismic Solar Cycle Changes and Splitting Coefficients

    Indian Academy of Sciences (India)

    S. C. Tripathy; Kiran Jain; A. Bhatnagar

    2000-09-01

    Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change significantly with rising phase of the solar cycle. We also find temporal variations in the rotation rate near the solar surface.

  14. SPLITTING MODULUS FINITE ELEMENT METHOD FOR ORTHOGONAL ANISOTROPIC PLATE BENGING

    Institute of Scientific and Technical Information of China (English)

    党发宁; 荣廷玉; 孙训方

    2001-01-01

    Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors,so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some illconditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.

  15. Magnetic impurities in spin-split superconductors

    Science.gov (United States)

    van Gerven Oei, W.-V.; Tanasković, D.; Žitko, R.

    2017-02-01

    Hybrid semiconductor-superconductor quantum dot devices are tunable physical realizations of quantum impurity models for a magnetic impurity in a superconducting host. The binding energy of the localized subgap Shiba states is set by the gate voltages and external magnetic field. In this work we discuss the effects of the Zeeman spin splitting, which is generically present both in the quantum dot and in the (thin-film) superconductor. The unequal g factors in semiconductor and superconductor materials result in respective Zeeman splittings of different magnitude. We consider both classical and quantum impurities. In the first case we analytically study the spectral function and the subgap states. The energy of bound states depends on the spin-splitting of the Bogoliubov quasiparticle bands as a simple rigid shift. For the case of collinear magnetization of impurity and host, the Shiba resonance of a given spin polarization remains unperturbed when it overlaps with the branch of the quasiparticle excitations of the opposite spin polarization. In the quantum case, we employ numerical renormalization group calculations to study the effect of the Zeeman field for different values of the g factors of the impurity and of the superconductor. We find that in general the critical magnetic field for the singlet-doublet transition changes nonmonotonically as a function of the superconducting gap, demonstrating the existence of two different transition mechanisms: Zeeman splitting of Shiba states or gap closure due to Zeeman splitting of Bogoliubov states. We also study how in the presence of spin-orbit coupling, modeled as an additional noncollinear component of the magnetic field at the impurity site, the Shiba resonance overlapping with the quasiparticle continuum of the opposite spin gradually broadens and then merges with the continuum.

  16. Recent improvements of the JET lithium beam diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Brix, M.; Morgan, P.; Stamp, M.; Zastrow, K.-D. [EURATOM/CCFE Fusion Association, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Dodt, D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Dunai, D.; Meszaros, B.; Petravich, G.; Refy, D. I.; Szabolics, T.; Zoletnik, S. [Wigner RCP, Association EURATOM, Pf. 49, H-1525 Budapest (Hungary); Lupelli, I. [Associazione EURATOM-ENEA - University of Rome ' Tor Vergata' , Roma (Italy); Marsen, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Ass., D-17491 Greifswald (Germany); Melson, T. F. [Max-Planck-Institut fuer Astrophysik, Garching (Germany); Silva, C. [EURATOM/IST, Inst. de Plasma e Fusao Nuclear, Inst. Superior Tecnico, Lisboa (Portugal); Collaboration: JET-EFDA Contributors

    2012-10-15

    A 60 kV neutral lithium diagnostic beam probes the edge plasma of JET for the measurement of electron density profiles. This paper describes recent enhancements of the diagnostic setup, new procedures for calibration and protection measures for the lithium ion gun during massive gas puffs for disruption mitigation. New light splitting optics allow in parallel beam emission measurements with a new double entrance slit CCD spectrometer (spectrally resolved) and a new interference filter avalanche photodiode camera (fast density and fluctuation studies).

  17. A novel strategy to increase heating efficiency in a split-focus ultrasound phased array.

    Science.gov (United States)

    Liu, Hao-Li; Shih, Tzu-Ching; Chen, Wen-Shiang; Ju, Kuen-Cheng

    2007-07-01

    Focus splitting using sector-based phased arrays increases the necrosed volume in a single sonication and reduces the total treatment time in the treatment of large tumors. However, split-focus sonication results in a lower energy density and worse focal-beam distortion, which limits its usefulness in practical treatments. Here, we propose a new heating strategy involving consecutive strongly focused and split-focus sonications to improve the heating efficiency. Theoretical predictions including linear and thermal-dose-dependent attenuation change were employed to investigate potential factors of this strategy, and ex vivo tissue experiments were conducted to confirm its effectiveness. Results showed that the thermal lesions produced by the proposed strategy could be increased when comparing with the previous reported strategies. The proposed heating strategy also induces a thermal lesion more rapidly, and exhibits higher robustness to various blood perfusion conditions, higher robustness to various power/heating time combinations, and superiority to generate deep-seated lesions through tissues with complex interfaces. Possible mechanisms include the optimization of the thermal conduction created by the strongly focused sonication and the temperature buildup gained from thermally induced tissue attenuation change based on the theoretical analysis. This may represent a useful technique for increasing the applicability of split-focus and multiple-focus sonication techniques, and solve the obstacles encountered when attempting to use these methods to shorten the total clinical treatment time.

  18. Model Experiment on Integral Seismic Behavior of Reinforced Concrete Frame with Split Columns

    Institute of Scientific and Technical Information of China (English)

    LI Zhongxian; JING Meng; HAO Yongchang; KANG Guyi

    2005-01-01

    Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.

  19. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng

    2013-10-24

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  20. Splitting, splitting and splitting again: A brief history of the development of regional government in Indonesia since independence

    Directory of Open Access Journals (Sweden)

    Anne Booth

    2011-04-01

    Full Text Available The paper reviews the changes in the structure and role of provincial and sub-provincial governments in Indonesia since independence. Particular attention is paid to the process of splitting both provinces and districts (kabupaten and kota into smaller units. The paper points out that this process has been going on since the 1950s, but has accelerated in the post-Soeharto era. The paper examines why the splitting of government units has occurred in some parts of the Outer Islands to a much greater extent than in Java, and also examines the implications of developments since 1999 for the capacity of local government units to deliver basic services such as health and education.

  1. Checking the split beam technique (SPLIT) for dynamic IMRT using EPID dosimetry; Verificacion de la tecnica de haz dividido (SPLIT) para IMRT dinamica

    Energy Technology Data Exchange (ETDEWEB)

    Richart, J.; Perez-Calatayud, J.; Granero, D.; Ballester, F.; Santos, M.; Rodriguez, S.; Navarro, M. A.; Pujades, M. C.; Camacho, C.

    2011-07-01

    The purpose of our work is to develop a tool to: 1) to analyze the correct connection between the two fields, 2) study the effect of gravity and analyze the impact of possible mismatches and 3) to show that the gamma evaluation to do with the lump sum for each flow field instead of the individual sub creep.

  2. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, S.

    2015-01-01

    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  3. A Regularized Algorithm for the Proximal Split Feasibility Problem

    Directory of Open Access Journals (Sweden)

    Zhangsong Yao

    2014-01-01

    Full Text Available The proximal split feasibility problem has been studied. A regularized method has been presented for solving the proximal split feasibility problem. Strong convergence theorem is given.

  4. Evaluation of Certain Pharmaceutical Quality Attributes of Lisinopril Split Tablets

    OpenAIRE

    Khairi M.S. Fahelelbom; Moawia M. M. Al-Tabakha; Nermin A. M. Eissa; Jeevani Javadi

    2016-01-01

    Tablet splitting is an accepted practice for the administration of drugs for a variety of reasons, including dose adjustment, ease of swallowing and cost savings. The purpose of this study was to evaluate the physical properties of lisinopril tablets as a result of splitting the tablets either by hand or with a splitting device. The impact of the splitting technique of lisinopril (Zestril® tablets, 20 mg) on certain physical parameters such as weight variation, friability, disintegration, dis...

  5. Spectrum splitting for fast polarization switching of undulator radiation.

    Science.gov (United States)

    Kinjo, Ryota; Tanaka, Takashi

    2016-05-01

    A simple scheme to quickly switch the polarity of circular radiation is proposed, which is based on spectrum splitting of undulator radiation. In this scheme, two helical undulators with opposite helicities are placed tandem in one straight section, both of which are divided into several segments. The optical phases between segments are tuned so that light waves from one of the two undulators are out of phase, while those from the other are in phase. Then the radiation spectrum of the former is split and the intensity at the fundamental photon energy vanishes. As a consequence, the monochromated photon beam at the fundamental energy is circularly polarized with the helicity specified by the in-phase undulator, which can be quickly flipped by tuning the optical phase. Numerical calculations carried out to demonstrate the feasibility of the proposed scheme show that a relatively high degree of circular polarization is expected if the angular acceptance of the beamline is not too large.

  6. State-space-split method for some generalized Fokker-Planck-Kolmogorov equations in high dimensions.

    Science.gov (United States)

    Er, Guo-Kang; Iu, Vai Pan

    2012-06-01

    The state-space-split method for solving the Fokker-Planck-Kolmogorov equations in high dimensions is extended to solving the generalized Fokker-Planck-Kolmogorov equations in high dimensions for stochastic dynamical systems with a polynomial type of nonlinearity and excited by Poissonian white noise. The probabilistic solution of the motion of the stretched Euler-Bernoulli beam with cubic nonlinearity and excited by uniformly distributed Poissonian white noise is analyzed with the presented solution procedure. The numerical analysis shows that the results obtained with the state-space-split method together with the exponential polynomial closure method are close to those obtained with the Monte Carlo simulation when the relative value of the basic system relaxation time and the mean arrival time of the Poissonian impulse is in some limited range.

  7. Dental Cone Beam Computed Tomography Analyses of Resorption of Labial Bone in Maxillary Anterior Implant by Bone Splitting Technique%CBCT技术研究前牙区骨劈开术种植修复的骨吸收特点

    Institute of Scientific and Technical Information of China (English)

    王文君; 马敏

    2015-01-01

    目的:采用CBCT技术分析骨劈开手术后种植体唇侧骨板垂直骨吸收特点及与水平向厚度的关系.方法:选取19例上前牙种植患者,共26个种植牙位,牙槽嵴宽度均在3~5 mm之间,采用骨劈开手术联合引导骨组织再生术(GBR)种植Ankylos种植体,患者种植修复完成时和2年后复诊时均拍摄锥形束CT,观察唇侧骨板吸收特点,并根据统计学分析唇侧垂直骨吸收与牙龈退缩的相关性,及与骨板水平向厚度的相关性.结果:种植体唇侧骨板垂直骨吸收与牙龈的退缩有明显的相关性,与唇侧骨板颈部水平向厚度也有相关性.结论:种植治疗时骨劈开技术能够有效增宽牙槽嵴宽度,种植体颈部唇侧骨板水平向厚度是唇侧骨板垂直骨吸收与牙龈退缩的一个重要影响因素.%Objective:To evaluate the vertical bone resorption of labial bone in anterior maxillary implant by bone splitting technique.Methods:19 patients (8 men,11 women) whose ages ranged from 22 to 65 years,were included in this study.The labial-lingual thickness of alveolar was from 3.0 to 5.0mm for everybody,26 Ankylos implants (3.5mm)were placed after splitting the bone immediately and constructed with the operation of guided bone regeneration,CBCT were taken after crown setted immediately and two years later to observe the labial bone resorption.The value of the labial bone resorption and gingival recession were calculated and analysed and the correlation between these changes were detected in SPSS 11.0.Results:Both vertical bone resorption and gingival recession showed a significant negative correlation to cervical width.As expected,vertical bone resorption and gingival recession showed a significant positive correlation.Conclusion:It is suggested that alveolar bone thickness after implant placement in the anterior region could be negatively associated with the level of alveolar bone resorption at the labial aspect as well as gingival recession.

  8. Timelike single-logarithm-resummed splitting functions

    Energy Technology Data Exchange (ETDEWEB)

    Albino, S.; Bolzoni, P.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, A.V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2011-08-15

    We calculate the single logarithmic contributions to the quark singlet and gluon matrix of timelike splitting functions at all orders in the modified minimal-subtraction (MS) scheme. We fix two of the degrees of freedom of this matrix from the analogous results in the massive-gluon regularization scheme by using the relation between that scheme and the MS scheme. We determine this scheme transformation from the double logarithmic contributions to the timelike splitting functions and the coefficient functions of inclusive particle production in e{sup +}e{sup -} annihilation now available in both schemes. The remaining two degrees of freedom are fixed by reasonable physical assumptions. The results agree with the fixed-order results at next-to-next-to-leading order in the literature. (orig.)

  9. Solar Water Splitting Using Semiconductor Photocatalyst Powders

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-01

    Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water splitting using heterogeneous photocatalysts with a single semiconductor enables the direct generation of H from photoreactors and is one of the most economical technologies for large-scale production of solar fuels. Efficient photocatalyst materials are essential to make this process feasible for future technologies. To achieve efficient photocatalysis for overall water splitting, all of the parameters involved at different time scales should be improved because the overall efficiency is obtained by the multiplication of all these fundamental efficiencies. Accumulation of knowledge ranging from solid-state physics to electrochemistry and a multidisciplinary approach to conduct various measurements are inevitable to be able to understand photocatalysis fully and to improve its efficiency.

  10. Meshed split skin graft for extensive vitiligo

    Directory of Open Access Journals (Sweden)

    Srinivas C

    2004-05-01

    Full Text Available A 30 year old female presented with generalized stable vitiligo involving large areas of the body. Since large areas were to be treated it was decided to do meshed split skin graft. A phototoxic blister over recipient site was induced by applying 8 MOP solution followed by exposure to UVA. The split skin graft was harvested from donor area by Padgett dermatome which was meshed by an ampligreffe to increase the size of the graft by 4 times. Significant pigmentation of the depigmented skin was seen after 5 months. This procedure helps to cover large recipient areas, when pigmented donor skin is limited with minimal risk of scarring. Phototoxic blister enables easy separation of epidermis thus saving time required for dermabrasion from recipient site.

  11. Solitary waves of the splitted RLW equation

    Science.gov (United States)

    Zaki, S. I.

    2001-07-01

    A combination of the splitting method and the cubic B-spline finite elements is used to solve the non-linear regularized long wave (RLW) equation. This approach involves a Bubnov-Galerkin method with cubic B-spline finite elements so that there is continuity of the dependent variable and its first derivative throughout the solution region. Time integration of the resulting systems is effected using a Crank-Nicholson approximation. In simulations of the migration of a single solitary wave this algorithm is shown to have higher accuracy and better conservation than a recent splitting difference scheme based on cubic spline interpolation functions, for different amplitudes ranging from a very small ( ⩾0.03) to a considerably high amplitudes ( ⩽0.3). The development of an undular bore is modeled.

  12. Embryo splitting: a role in infertility?

    Science.gov (United States)

    Wood, C

    2001-01-01

    Embryo splitting may be used to increase the potential fertility of couples requiring IVF. Using cattle as a model, it is possible to increase pregnancy rates from 70% per transfer of good quality in-vivo-produced embryos, to 110% by transferring the two demi-embryos resulting from the bisection of one embryo. The 30-40% greater chance of conception would reduce costs for the government, health authorities and patients, and reduce stress, time and complications for women having IVF treatment. Embryo splitting may also provide donor embryos for infertile couples that cannot conceive naturally or with IVF. The shortage of children for adoption and donor embryos may be overcome by the production of demi-embryos.

  13. Height in Splittings of Hyperbolic Groups

    Indian Academy of Sciences (India)

    Mahan Mitra

    2004-02-01

    Suppose is a hyperbolic subgroup of a hyperbolic group . Assume there exists > 0 such that the intersection of essentially distinct conjugates of is always finite. Further assume splits over with hyperbolic vertex and edge groups and the two inclusions of are quasi-isometric embeddings. Then is quasiconvex in . This answers a question of Swarup and provides a partial converse to the main theorem of [23].

  14. Continuously tunable, split-cavity gyrotrons

    Science.gov (United States)

    Brand, G. F.; Gross, M.

    1985-12-01

    Attention is given to a gyrotron cavity configuration which is split in halves longitudinally, to allow any frequency lying between the fixed cavity resonance to be assessed by mechanically changing the separation of the two halves. Experimental results are presented which demonstrate that the rate-of-change in resonant frequency with separation is greatest if the minor axis of the cavity cross section is the one undergoing change. Excellent agreement with theory is noted for these results.

  15. 7 CFR 51.2731 - U.S. Spanish Splits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Spanish Splits. 51.2731 Section 51.2731... STANDARDS) United States Standards for Grades of Shelled Spanish Type Peanuts Grades § 51.2731 U.S. Spanish Splits. “U.S. Spanish Splits” consists of shelled Spanish type peanut kernels which are split or...

  16. Bunch Splitting Simulations for the JLEIC Ion Collider Ring

    Energy Technology Data Exchange (ETDEWEB)

    Satogata, Todd J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Gamage, Randika [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.

  17. 16 CFR 802.10 - Stock dividends and splits; reorganizations.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Stock dividends and splits; reorganizations... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 EXEMPTION RULES § 802.10 Stock dividends and splits; reorganizations. (a) The acquisition of voting securities pursuant to a stock split...

  18. Evaluating efficiency of split VMAT plan for prostate cancer radiotherapy involving pelvic lymph nodes

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Jun Ki; Son, Sang Jun; Kim, Dae Ho; Seo, Seok Jin [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-12-15

    The purpose of this study is to evaluate the efficiency of Split VMAT planning(Contouring rectum divided into an upper and a lower for reduce rectum dose) compare to Conventional VMAT planning(Contouring whole rectum) for prostate cancer radiotherapy involving pelvic lymph nodes. A total of 9 cases were enrolled. Each case received radiotherapy with Split VMAT planning to the prostate involving pelvic lymph nodes. Treatment was delivered using TrueBeam STX(Varian Medical Systems, USA) and planned on Eclipse(Ver. 10.0.42, Varian, USA), PRO3(Progressive Resolution Optimizer 10.0.28), AAA(Anisotropic Analytic Algorithm Ver. 10.0.28). Lower rectum contour was defined as starting 1 cm superior and ending 1 cm inferior to the prostate PTV, upper rectum is a part, except lower rectum from the whole rectum. Split VMAT plan parameters consisted of 10 MV coplanar 360° arcs. Each arc had 30° and 30° collimator angle, respectively. An SIB(Simultaneous Integrated Boost) treatment prescription was employed delivering 50.4 Gy to pelvic lymph nodes and 63- 70 Gy to the prostate in 28 fractions. D{sub mean} of whole rectum on Split VMAT plan was applied for DVC(Dose Volume Constraint) of the whole rectum for Conventional VMAT plan. In addition, all parameters were set to be the same of existing treatment plans. To minimize the dose difference that shows up randomly on optimizing, all plans were optimized and calculated twice respectively using a 0.2 cm grid. All plans were normalized to the prostate PTV{sub 100%} = 90% or 95%. A comparison of D{sub mean} of whole rectum, upperr ectum, lower rectum, and bladder, V{sub 50%} of upper rectum, total MU and H.I.(Homogeneity Index) and C.I.(Conformity Index) of the PTV was used for technique evaluation. All Split VMAT plans were verified by gamma test with portal dosimetry using EPID. Using DVH analysis, a difference between the Conventional and the Split VMAT plans was demonstrated. The Split VMAT plan demonstrated better in the D

  19. Splitting neutrino masses and showering into Sky

    CERN Document Server

    Fargion, D; Iacovelli, M; Lanciano, O; Oliva, P; De Lucentini, P G S; Grossi, M; De Santis, M

    2006-01-01

    Neutrino masses might be as light as a few time the atmospheric neutrino mass splitting. High Energy ZeV cosmic neutrinos (in Z-Showering model) might hit relic ones at each mass in different resonance energies in our nearby Universe. This non-degenerated density and energy must split UHE Z-boson secondaries (in Z-Burst model) leading to multi injection of UHECR nucleons within future extreme AUGER energy. Secondaries of Z-Burst as neutral gamma, below a few tens EeV are better surviving local GZK cut-off and they might explain recent Hires BL-Lac UHECR correlations at small angles. A different high energy resonance must lead to Glashow's anti-neutrino showers while hitting electrons in matter. In air, Glashow's anti-neutrino showers lead to collimated and directional air-showers offering a new Neutrino Astronomy. At greater energy around PeV, Tau escaping mountains and Earth and decaying in flight are effectively showering in air sky. These Horizontal showering is splitting by geomagnetic field in forked sha...

  20. Streamlined expressed protein ligation using split inteins.

    Science.gov (United States)

    Vila-Perelló, Miquel; Liu, Zhihua; Shah, Neel H; Willis, John A; Idoyaga, Juliana; Muir, Tom W

    2013-01-09

    Chemically modified proteins are invaluable tools for studying the molecular details of biological processes, and they also hold great potential as new therapeutic agents. Several methods have been developed for the site-specific modification of proteins, one of the most widely used being expressed protein ligation (EPL) in which a recombinant α-thioester is ligated to an N-terminal Cys-containing peptide. Despite the widespread use of EPL, the generation and isolation of the required recombinant protein α-thioesters remain challenging. We describe here a new method for the preparation and purification of recombinant protein α-thioesters using engineered versions of naturally split DnaE inteins. This family of autoprocessing enzymes is closely related to the inteins currently used for protein α-thioester generation, but they feature faster kinetics and are split into two inactive polypeptides that need to associate to become active. Taking advantage of the strong affinity between the two split intein fragments, we devised a streamlined procedure for the purification and generation of protein α-thioesters from cell lysates and applied this strategy for the semisynthesis of a variety of proteins including an acetylated histone and a site-specifically modified monoclonal antibody.

  1. Dynamics of a split torque helicopter transmission. M.S. Thesis - Cleveland State Univ.

    Science.gov (United States)

    Krantz, Timothy L.

    1994-01-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  2. The structure of split regular BiHom-Lie algebras

    Science.gov (United States)

    Calderón, Antonio J.; Sánchez, José M.

    2016-12-01

    We introduce the class of split regular BiHom-Lie algebras as the natural extension of the one of split Hom-Lie algebras and so of split Lie algebras. We show that an arbitrary split regular BiHom-Lie algebra L is of the form L = U +∑jIj with U a linear subspace of a fixed maximal abelian subalgebra H and any Ij a well described (split) ideal of L, satisfying [Ij ,Ik ] = 0 if j ≠ k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its simple ideals.

  3. High performance patch antenna using circular split ring resonators and thin wires employing electromagnetic coupling improvement

    Science.gov (United States)

    Abdelrehim, Adel A. A.; Ghafouri-Shiraz, H.

    2016-09-01

    In this paper, three dimensional periodic structure composed of circular split ring resonators and thin wires is used to improve the performance of a microstrip patch antenna. The three dimensional periodic structure is placed at the top of the patch within a specific separation distance to construct the proposed antenna. The radiated electromagnetic waves intensity of the proposed antenna is improved compared with the conventional patch antenna due to the electric and magnetic coupling enhancements. These enhancements occur between the patch and the periodic structure resonators and between the different resonator pairs of the periodic structure. As a result, the electric and the magnetic fields at the top of the patch are improved, the radiated electromagnetic beam size reduces which results in a highly focused beam and hence the antenna directivity and gain are improved, while the beam are is reduced. The proposed antenna has been designed and simulated using CST microwave studio at 10 GHz. An infinite two dimensional periodicity unit cell of circular split ring resonator and thin wire is designed to resonate at a 10 GHz and simulated in CST software, the scattering parameters are extracted, the results showed that the infinite periodicity two dimensional structure has a pass band frequency response of good transmission and reflection characteristics around 10 GHz. The infinite periodicity of the two dimensional periodic structure is then truncated and multi layers of such truncated structure is used to construct a three dimensional periodic structure. A parametric analysis has been performed on the proposed antenna incorporated with the three dimensional periodic structure. The impacts of the separation distance between the patch and three dimensional periodic structures and the size of the three dimensional periodic structure on the radiation and impedance matching parameters of the proposed antenna are studied. For experimental verification, the proposed

  4. Signature splitting inversion and backbending in 80Rb

    CERN Document Server

    He, Chuangye; Wen, Shuxian; Zhu, Lihua; Wu, Xiaoguang; Li, Guangsheng; Zhao, Yue; Yan, Yupeng; Bai, Zhijun; Wu, Yican; Li, Yazhou; Li, Gui; Yan, Shiwei; Oshima, M; Toh, Y; Osa, A; Koizumi, M; Hatsukawa, Y; Matsuda, M; Hagakawa, T

    2012-01-01

    High spin states of 80Rb are studied via the fusion-evaporation reactions 65Cu+19F, 66Zn+18O and 68Zn+16O with the beam energies of 75 MeV, 76 MeV and 80 MeV, respectively. Twenty-three new states with twenty-eight new \\gamma transitions were added to the previously proposed level scheme, where the second negative-parity band is significantly pushed up to spins of 22^{-} and 15^{-} and two new sidebands are built on the known first negative-parity band. Two successive band crossings with frequencies 0.51 MeV and 0.61 MeV in the \\alpha=0 branch as well as another one in the \\alpha=1 branch of the second negative-parity band are observed for the first time. Signature inversions occur in the positive- and first negative-parity bands at the spins of 11\\hbar and 15\\hbar, respectively. The signature splitting is seen obviously in the second negative-parity band, but the signature inversion is not observed. It is also found that the structure of the two negative-parity bands is similar to that of its isotone ^{82}Y....

  5. Atomic population distribution in the output ports of cold-atom interferometers with optical splitting and recombination

    CERN Document Server

    Ilo-Okeke, Ebubechukwu O

    2010-01-01

    Cold-atom interferometers with optical splitting and recombination use off-resonant laser beams to split a cloud of Bose-Einstein condensate (BEC) into two clouds that travel along different paths and are then recombined again using optical beams. After the recombination, the BEC in general populates both the cloud at rest and the moving clouds. Measuring relative number of atoms in each of these clouds yields information about the relative phase shift accumulated by the atoms in the two moving clouds during the interferometric cycle. We derive the expression for the probability of finding any given number of atoms in each of the clouds, discuss features of the probability density distribution, analyze its dependence on the relative accumulated phase shift as a function of the strength of the interatomic interactions, and compare our results with experiment.

  6. Spatial calibration of a tokamak neutral beam diagnostic using in situ neutral beam emission

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C. [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831 (United States); Burrell, K. H.; Pace, D. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2015-10-15

    Neutral beam injection is used in tokamaks to heat, apply torque, drive non-inductive current, and diagnose plasmas. Neutral beam diagnostics need accurate spatial calibrations to benefit from the measurement localization provided by the neutral beam. A new technique has been developed that uses in situ measurements of neutral beam emission to determine the spatial location of the beam and the associated diagnostic views. This technique was developed to improve the charge exchange recombination (CER) diagnostic at the DIII-D tokamak and uses measurements of the Doppler shift and Stark splitting of neutral beam emission made by that diagnostic. These measurements contain information about the geometric relation between the diagnostic views and the neutral beams when they are injecting power. This information is combined with standard spatial calibration measurements to create an integrated spatial calibration that provides a more complete description of the neutral beam-CER system. The integrated spatial calibration results are very similar to the standard calibration results and derived quantities from CER measurements are unchanged within their measurement errors. The methods developed to perform the integrated spatial calibration could be useful for tokamaks with limited physical access.

  7. Control of secondary electrons from ion beam impact using a positive potential electrode

    Science.gov (United States)

    Crowley, T. P.; Demers, D. R.; Fimognari, P. J.

    2016-11-01

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  8. Thin-film superconducting resonator tunable to the ground-state hyperfine splitting of $^{87}$Rb

    CERN Document Server

    Kim, Z; Hoffman, J E; Grover, J A; Voigt, K D; Cooper, B K; Ballard, C J; Palmer, B S; Hafezi, M; Taylor, J M; Anderson, J R; Dragt, A J; Lobb, C J; Orozco, L A; Rolston, S L; Wellstood, F C

    2011-01-01

    We describe a thin-film superconducting Nb microwave resonator, tunable to within 0.3 ppm of the hyperfine splitting of $^{87}$Rb at $f_{Rb}=6.834683$ GHz. We coarsely tuned the resonator using electron-beam lithography, decreasing the resonance frequency from 6.8637 GHz to 6.8278 GHz. For \\emph{in situ} fine tuning at 15 mK, the resonator inductance was varied using a piezoelectric stage to move a superconducting pin above the resonator. We found a maximum frequency shift of about 8.7 kHz per 60-nm piezoelectric step and a tuning range of 18 MHz.

  9. SplitRFLab: A MATLAB GUI toolbox for receiver function analysis based on SplitLab

    Science.gov (United States)

    Xu, Mijian; Huang, Hui; Huang, Zhouchuan; Wang, Liangshu

    2016-02-01

    We add new modules for receiver function (RF) analysis in SplitLab toolbox, which includes the manual RF analysis module, automatic RF analysis and related quality control modules, and H- k stacking module. The updated toolbox (named SplitRFLab toolbox), especially its automatic RF analysis module, could calculate the RFs quickly and efficiently, which is very useful in RF analysis with huge amount of seismic data. China is now conducting the ChinArray project that plans to deploy thousands of portable stations across Chinese mainland. Our SplitRFLab toolbox may obtain reliable RF results quickly at the first time, which provide essentially new constraint to the crustal and mantle structures.

  10. Transverse momentum dependent splitting functions at work: quark-to-gluon splitting

    CERN Document Server

    Hentschinski, M; Kutak, K

    2016-01-01

    Using the recently obtained Pgq splitting function we extend the low x evolution equation for gluons to account for contributions originating from quark-to-gluon splitting. In order to write down a consistent equation we resum virtual corrections coming from the gluon channel and demonstrate that this implies a suitable regularization of the Pgq singularity, corresponding to a soft emitted quark. We also note that the obtained equation is in a straightforward manner generalized to a nonlinear evolution equation which takes into account effects due to the presence of high gluon densities.

  11. Hyperfine splitting in hydrogen with form factors

    CERN Document Server

    Daza, F Garcia; Nowakowski, M

    2010-01-01

    Proton structure corrections to the hyperfine splittings in hydrogen are evaluated using the Breit potential with electromagnetic form factors. In contrast to other methods, several new features emerge: the Breit potential with $q^2$-dependent form factors is just an extension of the standard Breit equation which gives the hyperfine Hamiltonian. Order $\\alpha^5$ corrections are obtained from a one-photon exchange amplitude and time-independent perturbation theory. Structure corrections to $D_{21} = 8 E^{2S}_{hfs} - E^{1S}_{hfs}$ start at order $\\alpha^6$. QED corrections are comparable to structure corrections which must be evaluated ab initio.

  12. A splitting-free vorticity redistribution method

    Science.gov (United States)

    Kirchhart, M.; Obi, S.

    2017-02-01

    We present a splitting-free variant of the vorticity redistribution method. Spatial consistency and stability when combined with a time-stepping scheme are proven. We propose a new strategy preventing excessive growth in the number of particles while retaining the order of consistency. The novel concept of small neighbourhoods significantly reduces the method's computational cost. In numerical experiments the method showed second order convergence, one order higher than predicted by the analysis. Compared to the fast multipole code used in the velocity computation, the method is about three times faster.

  13. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    water splitting devices having tandem design. The increase of the photovoltage produced by GaP under illumination was the main goal of this work. GaP has a bandgap of 2.25 eV and could in theory produce a photovoltage of approximately 1.7 V. Instead, the photovoltage produced by the semiconductor...... density generated by GaP was increased by more than 60% by electrochemical etching of the surface. The etching process produces a rough microstructured surface that increases the optical path length of the incident photons and the collection of photogenerated electrons.Furthermore, the synthesis of BiVO4...

  14. Beam screens for the LHC beam pipes

    CERN Multimedia

    Patrice Loïez

    1997-01-01

    Cross-section of LHC prototype beam pipes showing the beam screens. Slits in the screens allow residual gas molecules to be pumped out and become frozen to the walls of the ultra-cold beam pipe. Beam screens like these have been designed to line the beam pipes, absorbing radiation before it can hit the magnets and warm them up, an effect that would greatly reduce the magnetic field and cause serious damage.

  15. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  16. Modification of Leather Split by In Situ Polymerization of Acrylates

    Directory of Open Access Journals (Sweden)

    Weixing Xu

    2016-01-01

    Full Text Available Leather split, the byproduct of leather manufacture, possesses low utility value because it has loose weave of collagen fibers and weak mechanical strengths. Herein, a practical and convenient method for increasing strengths of leather split was developed by one-step in situ polymerization. The structures and properties of polyacrylate/leather split composites were systematically investigated. The results suggested the monomers with an α-methyl and a proper straight-chain ester group, such as nBMA, can effectively modify the leather split. For leather split with a thickness of 1.6 mm, the rational processes for preparation of polyacrylate/leather split composite are that monomer and split were stirred in a drum for 4 hours for full permeation and then the split was heated in anaerobic condition at 45°C for 30 min. The tensile strength, tear strength, and elongation at break of the optimized PnBMA/split composite were 18.72 MPa, 62.73 N/mm, and 46.02%, respectively. With these mechanical properties, the split after modification can be well used as leather for making shoes, bags, gloves, and clothing.

  17. Spin rotators and split Siberian Snakes

    Energy Technology Data Exchange (ETDEWEB)

    Roser, Thomas

    1994-03-01

    The study of spin effects in the collision of polarized high energy beams requires flexible and compact spin rotators to manipulate the beam polarization direction. Design criteria and specific examples are presented for high energy, orbit transparent spin rotators ranging from small angle rotators to be used for the excitation of spin resonances to large angle rotators to be used as Siberian Snakes. It is shown that all the requirements for spin rotators can be met with a simple 6-magnet spin rotator design, for which a complete continuous solution is presented.

  18. Spin rotators and split Siberian Snakes

    Energy Technology Data Exchange (ETDEWEB)

    Roser, T. (Brookhaven National Lab., Upton, NY (United States))

    1994-03-22

    The study of spin effects in the collision of polarized high energy beams requires flexible and compact spin rotators to manipulate the beam polarization direction. Design criteria and specific examples are presented for high energy, orbit transparent spin rotators ranging from small angle rotators to be used for the excitation of spin resonances to large angle rotators to be used as Siberian Snakes. It is shown that all the requirements for spin rotators can be met with a simple 6-magnet spin rotator design, for which a complete continuous solution is presented. (orig.)

  19. Mild-split SUSY with flavor

    CERN Document Server

    Eliaz, Latif; Gudnason, Sven Bjarke; Tsuk, Eitan

    2013-01-01

    In the framework of a gauge mediated quiver-like model, the standard model flavor texture can be naturally generated. The model - like the MSSM - has furthermore a region in parameter space where the lightest Higgs mass is fed by heavy stop loops, which in turn sets the average squark mass scale near 10-20 TeV. We perform a careful flavor analysis to check whether this type of mild-split SUSY passes all flavor constraints as easily as envisioned in the original type of split SUSY. Interestingly, it turns out to be on the border of several constraints, in particular, the branching ratio of mu -> e gamma and, if order one complex phases are assumed, also epsilon_K neutron and electron EDM. Furthermore, we consider unification as well as dark matter candidates, especially the gravitino. Finally, we provide a closed-form formula for the soft masses of matter in arbitrary representations of any of the gauge groups in a generic quiver-like model with a general messenger sector.

  20. Design of a Cocoa Pod Splitting Machine

    Directory of Open Access Journals (Sweden)

    Adetunde, I.A

    2010-10-01

    Full Text Available This study outlines the design of a very efficient, highly productive, cost- effective, ergonomic and environmentally friendly cocoa splitting machine that will be used by cocoa Farmers world - wide to increase and boost productivity and enhance the quality of coca products to the highest possible level devoid of any hazards, dangers or perils. This machine can be manufactured from locally available scraps and assembled and maintained at a relatively low cost. The knives which do the splitting are actuated by simple hydraulic mechanisms devoid any major stresses, forces or moments acting on them. These mechanisms are powered by simple low - powered lobe positive displacement or hydrostatic hydraulic pumps of power rating of 87.5 kW (65.625 Hp. The machine can be assembled and/or disassembled easily and quickly, and, therefore can be owned patronized by a group of cocoa farmers who can easily bear the low cost of maintenance of the already relative cheap machine.

  1. Non-split and split deformations of AdS_5

    CERN Document Server

    Hoare, Ben

    2016-01-01

    The eta-deformation of the AdS_5 x S^5 superstring depends on a non-split r matrix for the superalgebra psu(2,2|4). Much of the investigation into this model has considered one particular choice, however there are a number of inequivalent alternatives. This is also true for the bosonic sector of the theory with su(2,2), the isometry algebra of AdS_5, admitting one split and three non-split r matrices. In this article we explore these r matrices and the corresponding geometries. We investigate their contraction limits, comment on supergravity backgrounds and demonstrate their relation to gauged-WZW deformations. We then extend the three non-split cases to AdS_5 x S^5 and compute four separate bosonic two-particle tree-level S-matrices based on inequivalent BMN-type light-cone gauges. The resulting S-matrices, while different, are related by momentum-dependent one-particle changes of basis.

  2. An Iterative Algorithm for the Split Equality and Multiple-Sets Split Equality Problem

    Directory of Open Access Journals (Sweden)

    Luoyi Shi

    2014-01-01

    Full Text Available The multiple-sets split equality problem (MSSEP requires finding a point x∈∩i=1NCi, y∈∩j=1MQj such that Ax=By, where N and M are positive integers, {C1,C2,…,CN} and {Q1,Q2,…,QM} are closed convex subsets of Hilbert spaces H1, H2, respectively, and A:H1→H3, B:H2→H3 are two bounded linear operators. When N=M=1, the MSSEP is called the split equality problem (SEP. If  B=I, then the MSSEP and SEP reduce to the well-known multiple-sets split feasibility problem (MSSFP and split feasibility problem (SFP, respectively. One of the purposes of this paper is to introduce an iterative algorithm to solve the SEP and MSSEP in the framework of infinite-dimensional Hilbert spaces under some more mild conditions for the iterative coefficient.

  3. A Novel Controllable Beam Splitter for Guided Atoms

    Institute of Scientific and Technical Information of China (English)

    刘南春; 高伟建; 印建平

    2003-01-01

    We propose a novel atomic beamsplitter for guided atoms composed of a U-shaped current carrying conductor and an additional bias magnetic field, and study the dynamic process of atomic beam splitting in the beamsplitter by Monte Carlo simulations. Our study shows that the splitting ratio of the beamsplitter can be continuously adjusted from 0 to 1by changing the additional bias field. In addition, the transverse temperature of guided atoms at the outlets of the beamsplitter are also estimated and explained qualitatively.

  4. Spin-polarizing interferometric beam splitter for free electrons

    CERN Document Server

    Dellweg, Matthias M

    2016-01-01

    A spin-polarizing electron beam splitter is described which relies on an arrangement of linearly polarized laser waves of nonrelativistic intensity. An incident electron beam is first coherently scattered off a bichromatic laser field, splitting the beam into two portions, with electron spin and momentum being entangled. Afterwards, the partial beams are coherently superposed in an interferometric setup formed by standing laser waves. As a result, the outgoing electron beam is separated into its spin components along the laser magnetic field, which is shown by both analytical and numerical solutions of Pauli's equation. The proposed laser field configuration thus exerts the same effect on free electrons like an ordinary Stern-Gerlach magnet does on atoms.

  5. Solar hydrogen production on some water splitting photocatalysts

    Science.gov (United States)

    Takata, Tsuyoshi; Hisatomi, Takashi; Domen, Kazunari

    2016-09-01

    Photocatalytic overall water splitting into H2 and O2 is expected to be a promising method for the efficient utilization of solar energy. The design of optimal photocatalyst structures is a key to efficient overall water splitting, and the development of photocatalysts which can efficiently convert large portion of visible light spectrum has been required. Recently, a series of complex perovskite type transition metal oxynitrides, LaMgxT 1-xO1+3xN2-3x, was developed as photocatalysts for direct water splitting operable at wide wavelength of visible light. In addition two-step excitation water splitting via a novel photocatalytic device termed as photocatalyst sheet was developed. This consists of two types of semiconductors (hydrogen evolution photocatalyst and oxygen evolution photocatalyst) particles embedded in a conductive layer, and showed high efficiency for overall water splitting. These recent advances in photocatalytic water splitting were introduced.

  6. Split renal function measured by triphasic helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, Nils [Radiologische Gemeinschaftspraxis am Evangelischen Krankenhaus, Paul-Zipp-Str. 171, 35398 Giessen (Germany)]. E-mail: nils.hackstein@radiol.med.uni-giessen.de; Buch, Thomas [Department of Diagnostic Radiology, Klinikstr. 36, Justus-Liebig University Giessen, 35385 Giessen (Germany)]. E-mail: thomas.buch@radiol.med.uni-giessen.de; Rau, Wigbert S. [Department of Diagnostic Radiology, Klinikstr. 36, Justus-Liebig University Giessen, 35385 Giessen (Germany)]. E-mail: wigbert.rau@uniklinikum-giessen.de; Weimer, Rolf [Department of Internal Medicine, Klinikstr. 36, Justus-Liebig University Giessen, 35385 Giessen (Germany)]. E-mail: Rolf.Weimer@innere.med.uni-giessen.de; Klett, Rigobert [Clinic of Nuclear Medicine, Friedrichstr. 25, Justus-Liebig University Giessen, 35385 Giessen (Germany)]. E-mail: rigobert.klett@radiol.med.uni-giessen.de

    2007-02-15

    Purpose: To present a method for calculating split renal function solely from routine triphasic helical computed tomography (CT). Subjects and methods: We retrospectively included 26 adult patients who received renal scintigraphy and triphasic CT within 4 weeks in the years 2003 and 2004. All scans were performed using a standard abdominal protocol. Split renal function was calculated as relative single-kidney glomerular filtration rate (GFR) using a simplified 'two-point Patlak plot' technique. As a reference method, split renal function was determined from renal scintigraphy using the standard technique. Results: Linear correlation between the two methods was r = 0.91, split renal function (CT) = 0.0266 + 0.9573 x split renal function (scintigraphy). Conclusion: Split renal function can be measured accurately by minimally extended triphasic CT.

  7. Split Treatment: A Measurement of Coordination Between Psychiatrists

    OpenAIRE

    LoPiccolo, Charles J.; Eldon Taylor, C.; Clemence, Cheryl; Eisdorfer, Carl

    2005-01-01

    The objective of this study was to examine the adherence rates of psychiatrists with APA standards for coordination of care in split treatment. Coordination of care in split treatment is monitored from claims paid data in an academic MBHO as an ongoing quality improvement activity. For an 18-month period, 93 psychiatrists were identified with 559 patients in split treatment and were mailed a survey. Surveys were controlled for change of providers. Self-report survey results were obtained from...

  8. Quantum tunneling splittings from path-integral molecular dynamics

    Science.gov (United States)

    Mátyus, Edit; Wales, David J.; Althorpe, Stuart C.

    2016-03-01

    We illustrate how path-integral molecular dynamics can be used to calculate ground-state tunnelling splittings in molecules or clusters. The method obtains the splittings from ratios of density matrix elements between the degenerate wells connected by the tunnelling. We propose a simple thermodynamic integration scheme for evaluating these elements. Numerical tests on fully dimensional malonaldehyde yield tunnelling splittings in good overall agreement with the results of diffusion Monte Carlo calculations.

  9. Photon splitting in a strongly magnetized, charge-asymmetric plasma

    Directory of Open Access Journals (Sweden)

    Chistyakov M.V.

    2016-01-01

    Full Text Available The process of the photon splitting, γ → γγ, is investigated in the presence of strongly magnetized charge-asymmetric cold plasma. The dispersion properties of photons and the new polarization selection rules are obtained in such plasma. The absorption rate of the leading photon splitting channel are calculated with taking account of the photon dispersion and wave function renormalization. In addition, a comparison of the photon splitting and the Compton scattering processes is performed.

  10. Double-peak Splitting in High-order Harmonics Generation

    Institute of Scientific and Technical Information of China (English)

    WANG Yingsong; LIU Yaqing; YANG Xiaodong; XU Zhizhan

    2000-01-01

    When the intensity of the driving pulse is much higher than the saturation intensity of the media involved, the double-peak splitting in frequency domain emerges in the generated high-order harmonic spectra. The possible origins of this splitting are carefully investigated. The ionization of the gas media and the propagation effect of harmonic field are the main reason for the double-peak splitting observed.

  11. Splitting methods in communication, imaging, science, and engineering

    CERN Document Server

    Osher, Stanley; Yin, Wotao

    2016-01-01

    This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas. .

  12. The Practice of Splitting Tablets: Cost and Therapeutic Aspects

    OpenAIRE

    John Bachynsky; Cheryl Wiens; Krystal Melnychuk

    2002-01-01

    Background: Tablet splitting is used in pharmacy practice to adjust the dose to be administered. It is also being advocated as a method of reducing prescription drug costs. Methods: The potential for using this practice as a cost-saving method was examined. The top 200 prescription products in Canada were evaluated for their potential for tablet splitting to reduce costs. The assessment was based on the dosage form (only tablets could be split), availability of dosages in multiples, whether t...

  13. One-loop triple collinear splitting amplitudes in QCD

    CERN Document Server

    Badger, Simon; Peraro, Tiziano

    2015-01-01

    We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. The universality of the collinear factorisation is checked numerically against the full colour six parton squared matrix elements.

  14. Neutron guide-split: A high performance guide bundle concept for elliptical guides

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Sonja L.; Rasmussen, Nina; Høpfner, Louise [Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark); ESS Design Update Program (Denmark); Bertelsen, Mads [Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark); ESS Design Update Program (Denmark); European Spallation Source ESS AB, 22100 Lund (Sweden); Voigt, Jörg [Jülich Centre for Neutron Science JCNS, 52425 Jülich (Germany); Andersen, Ken H. [European Spallation Source ESS AB, 22100 Lund (Sweden); Lefmann, Kim [Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark); ESS Design Update Program (Denmark)

    2015-05-11

    We present a new guide-split concept for transporting cold and thermal neutrons to multiple instruments from a single beam port at a neutron facility without compromising the useful neutron brilliance notably for any of the instruments. Elliptical guides are capable of transporting an almost completely filled phase space within a large divergence (±2° for cold neutrons). It is therefore possible to place several secondary guides side by side pointing in slightly different directions using the end of a primary guide as a virtual source. The instruments placed at the secondary guides hence exploit different parts of the phase space transported by the primary guide. In addition, the resulting kink between the primary and secondary guide eliminates line of sight. Using ray-tracing simulations of three different set-ups (with two, four, and eight secondary guides) we show that it is possible to illuminate at least eight sample positions from one beam port with a brilliance transfer above 90% on each sample on a 150 m long instrument. This has been done for a phase space volume comprised of an area of 1×1 cm{sup 2} and a maximum divergence of±0.5° within a wavelength band of 4.25–5.75 Å. We show, by a full virtual experiment, an example of applying the guide-split concept to an instrument proposed for the European Spallation Source, namely a magnetism diffractometer.

  15. On Integrable Roots in Split Lie Triple Systems

    Institute of Scientific and Technical Information of China (English)

    A.J.CALDER(O)N MART(I)N

    2009-01-01

    We focus on the notion of an integrable root in the framework of split Lie triple systems T with a coherent 0-root space. As a main result, it is shown that if T has all its nonzero roots integrable, then its standard embedding is a split Lie algebra having all its nonzero roots integrable. As a consequence, a local finiteness theorem for split Lie triple systems, saying that whenever all nonzero roots of T are integrable then T is locally finite, is stated. Finally, a classification theorem for split simple Lie triple systems having all its nonzero roots integrable is given.

  16. AP stars with resolved Zeeman split lines

    Science.gov (United States)

    Mathys, G.

    1990-06-01

    High-resolution, high SNR observations of a sample of sharp-lined A stars and of Ap stars showing resolved Zeeman split lines are presented. The Fe II lines 6147.7 A and 6149.2 A unexpectedly appear to be asymmetric in all stars where they are resolved. The blue component of the 6149.2 line, which is a Zeeman doublet, is deeper and narrower than its red component. For line 6147.7, whose Zeeman pattern does not differ much from a quadruplet, the red components are deeper than the blue ones. It is shown that a partial Paschen-Back effect can account for these properties. The potential implications of this finding for studies of magnetic Ap stars are discussed.

  17. A SPLITTING METHOD FOR QUADRATIC PROGRAMMING PROBLEM

    Institute of Scientific and Technical Information of China (English)

    魏紫銮

    2001-01-01

    A matrix splitting method is presented for minimizing a quadratic programming (QP)problem, and a general algorithm is designed to solve the QP problem and generates a sequence of iterative points. We prove that the sequence generated by the algorithm converges to the optimal solution and has an R-linear rate of convergence if the QP problem is strictly convex and nondegenerate, and that every accumulation point of the sequence generated by the general algorithm is a KKT point of the original problem under the hypothesis that the value of the objective function is bounded below on the constrained region, and that the sequence converges to a KKT point if the problem is nondegenerate and the constrained region is bounded.

  18. Gauge Unification from Split Supersymmetric String Models

    CERN Document Server

    Kokorelis, Christos

    2016-01-01

    We discuss the unification of gauge coupling constants in non-supersymmetric open string vacua that possess the properties of Split Supersymmetry, namely the Standard Model with Higgsinos at low energies and where the Standard model spectrum is always accompanied by right handed neutrinos. These vacua achieve partial unification of two out of three (namely SU(3)$_c$, SU(2), U(1)) running gauge couplings, possess massive gauginos and light Higgsinos at low energies and also satisfy $sin^2\\theta_w (M_s) = 3/8$. These vacua are based on four dimensional orbifold $Z_3 \\times Z_3$ compactifications of string IIA orientifolds with D6-branes intersecting at angles, where the (four dimensional) chiral fermions of the Standard Model appear as opens strings streching between the intersections of seven dimensional objects the so called D6-branes.

  19. A Frequency Splitting Method For CFM Imaging

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    The performance of conventional CFM imaging will often be degraded due to the relatively low number of pulses (4-10) used for each velocity estimate. To circumvent this problem we propose a new method using frequency splitting (FS). The FS method uses broad band chirps as excitation pulses instead...... of narrow band pulses as in conventional CFM imaging. By appropriate filtration, the returned signals are divided into a number of narrow band signals which are approximately disjoint. After clutter filtering the velocities are found from each frequency band using a conventional autocorrelation estimator....... Finally the velocity estimates from each frequency band are averaged to obtain an improved velocity estimate. The FS method has been evaluated in simulations using the Field II program and in flow phantom experiments using the experimental ultrasound scanner RASMUS. In both simulations and experiments...

  20. Non-Uniformity and Generalised Sacks Splitting

    Institute of Scientific and Technical Information of China (English)

    COOPER S.Barry; LI Ang Sheng

    2002-01-01

    We show that there do not exist computable functions f1(e, i), f2 (e, i), g1(e, i), g2(e, i) such that for all e, i ∈ω,(1) (Wf1(e,i) - Wf2(e,i)) ≤T (We - Wi);(2) (Wg1(e,i) - Wg2(e,i))≤T (We - Wi);(3) (We - Wi) ≤T (Wf1(e,i) - Wf2(e,i)) (Wg1(e,i) - Wg2(e,i));(4) (We - Wi) T (Wf1(e,i) - Wf2(e,i)) unless (We - Wi) ≤T ; and (5) (We - Wi) T (Wg1(e,i) - Wg2(e,i)) unless (We - Wi) ≤T .It follows that the splitting theorems of Sacks and Cooper cannot be combined uniformly.

  1. [Splitting of tablets: small pieces a risk].

    Science.gov (United States)

    Picksak, Gesine; Stichtenoth, Dirk O

    2007-09-01

    For economic reasons physicians prescribe more and more multiunit tablets. Splitting of multiunit tablets depends on the physical-chemical properties of the agents, the galenic of the dosage form, the size and contour of the tablet and the shape of the score. Tablets with one or more scores are prepared to be divided for a single/multiple dose. How easily and exact a tablet can be divided depends heavily on the physical shape, its size and the outfit of the score. The fragments have to fulfil the requirements according to the European Pharmacopoeia: Uniformity of multiunit tablets. Since exact dosing is guaranteed only if tablets are divided properly, information and guidance of the patients by the physician and pharmacist is of critical importance.

  2. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions...... a essentially determined by the SRR, while by varying the dipole arm length the input resistance is changed in a wide range, thus matching the antenna to a feed line and compensating for simulation and manufacturing inaccuracies. No additional matching network is required. Theoretically, there is no limit...... on how small this antenna can be. In practice, the lower bound is set by losses in utilized materials and manufacturing inaccuracies. As an example, an antenna of ka=0.09 was designed, fabricated and tested. Although the initially fabricated antenna prototype had the input impedance of 43 ohms...

  3. Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica.

    Science.gov (United States)

    Fernandes, Luís A; Grenier, Jason R; Herman, Peter R; Aitchison, J Stewart; Marques, Paulo V S

    2011-06-20

    Integrated polarization beam splitters based on birefringent directional couplers are demonstrated. The devices are fabricated in bulk fused silica glass by femtosecond laser writing (300 fs, 150 nJ at 500 kHz, 522 nm). The birefringence was measured from the spectral splitting of the Bragg grating resonances associated with the vertically and horizontally polarized modes. Polarization splitting directional couplers were designed and demonstrated with 0.5 dB/cm propagation losses and -19 dB and -24 dB extinction ratios for the polarization splitting.

  4. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  5. Bad splits in bilateral sagittal split osteotomy: systematic review and meta-analysis of reported risk factors.

    Science.gov (United States)

    Steenen, S A; van Wijk, A J; Becking, A G

    2016-08-01

    An unfavourable and unanticipated pattern of the bilateral sagittal split osteotomy (BSSO) is generally referred to as a 'bad split'. Patient factors predictive of a bad split reported in the literature are controversial. Suggested risk factors are reviewed in this article. A systematic review was undertaken, yielding a total of 30 studies published between 1971 and 2015 reporting the incidence of bad split and patient age, and/or surgical technique employed, and/or the presence of third molars. These included 22 retrospective cohort studies, six prospective cohort studies, one matched-pair analysis, and one case series. Spearman's rank correlation showed a statistically significant but weak correlation between increasing average age and increasing occurrence of bad splits in 18 studies (ρ=0.229; Pbad split among the different splitting techniques. A meta-analysis pooling the effect sizes of seven cohort studies showed no significant difference in the incidence of bad split between cohorts of patients with third molars present and concomitantly removed during surgery, and patients in whom third molars were removed at least 6 months preoperatively (odds ratio 1.16, 95% confidence interval 0.73-1.85, Z=0.64, P=0.52). In summary, there is no robust evidence to date to show that any risk factor influences the incidence of bad split.

  6. Bad split during bilateral sagittal split osteotomy of the mandible with separators: a retrospective study of 427 patients.

    Science.gov (United States)

    Mensink, Gertjan; Verweij, Jop P; Frank, Michael D; Eelco Bergsma, J; Richard van Merkesteyn, J P

    2013-09-01

    An unfavourable fracture, known as a bad split, is a common operative complication in bilateral sagittal split osteotomy (BSSO). The reported incidence ranges from 0.5 to 5.5%/site. Since 1994 we have used sagittal splitters and separators instead of chisels for BSSO in our clinic in an attempt to prevent postoperative hypoaesthesia. Theoretically an increased percentage of bad splits could be expected with this technique. In this retrospective study we aimed to find out the incidence of bad splits associated with BSSO done with splitters and separators. We also assessed the risk factors for bad splits. The study group comprised 427 consecutive patients among whom the incidence of bad splits was 2.0%/site, which is well within the reported range. The only predictive factor for a bad split was the removal of third molars at the same time as BSSO. There was no significant association between bad splits and age, sex, class of occlusion, or the experience of the surgeon. We think that doing a BSSO with splitters and separators instead of chisels does not increase the risk of a bad split, and is therefore safe with predictable results.

  7. Circular permutation prediction reveals a viable backbone disconnection for split proteins: an approach in identifying a new functional split intein.

    Directory of Open Access Journals (Sweden)

    Yun-Tzai Lee

    Full Text Available Split-protein systems have emerged as a powerful tool for detecting biomolecular interactions and reporting biological reactions. However, reliable methods for identifying viable split sites are still unavailable. In this study, we demonstrated the feasibility that valid circular permutation (CP sites in proteins have the potential to act as split sites and that CP prediction can be used to search for internal permissive sites for creating new split proteins. Using a protein ligase, intein, as a model, CP predictor facilitated the creation of circular permutants in which backbone opening imposes the least detrimental effects on intein folding. We screened a series of predicted intein CPs and identified stable and native-fold CPs. When the valid CP sites were introduced as split sites, there was a reduction in folding enthalpy caused by the new backbone opening; however, the coincident loss in entropy was sufficient to be compensated, yielding a favorable free energy for self-association. Since split intein is exploited in protein semi-synthesis, we tested the related protein trans-splicing (PTS activities of the corresponding split inteins. Notably, a novel functional split intein composed of the N-terminal 36 residues combined with the remaining C-terminal fragment was identified. Its PTS activity was shown to be better than current reported two-piece intein with a short N-terminal segment. Thus, the incorporation of in silico CP prediction facilitated the design of split intein as well as circular permutants.

  8. Ultracold ordered electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  9. Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Y., E-mail: stslyl@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wang, B., E-mail: wangbiao@mail.sysu.edu.cn [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2014-03-15

    The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter.

  10. Maverick Comet Splits during Dramatic Outburst

    Science.gov (United States)

    1996-01-01

    New ESO Observations of P/Schwassmann-Wachmann 3 A few months ago, Periodic Comet Schwassmann-Wachmann 3 underwent a dramatic and completely unexpected, thousand-fold brightening. At that time, the cause for this interesting event was unknown. However, observations with the two largest ESO telescopes have now shown that the ``dirty snowball'' nucleus of this comet has recently split into at least four individual pieces [1]. There is little doubt that the outburst and the splitting event(s) are closely related and that the greatly increased dust and gas production is due to ``fresh'' material of the icy cometary nucleus becoming exposed to the surrounding space for the first time. A Comet with a Troubled History Comet Schwassmann-Wachmann 3 was discovered on May 2, 1930, on a photographic plate obtained at the Hamburg Observatory (Germany) by two astronomers at this institution, Arnold Schwassmann and Arthur Arno Wachmann. The subsequent observations showed that the comet moved in an elliptical orbit with a revolution period of somewhat more than 5 years. Great efforts were expended to observe the comet during the next returns, but it was not recovered until nearly 50 years and eight revolutions later, when its faint image was found of a plate obtained in August 1979 with a telescope at the Perth Observatory in Western Australia. It was missed in 1984, but was sighted again in 1989 and most recently in 1994. Thus this comet has only been observed during four out of thirteen approaches since 1930. While this may be partly due to a less advantageous location in the sky at some returns, it is also a strong indication that the comet behaves unpredictably and must have a quite variable brightness. For the sake of convenience this comet is often referred to as ``SW-3'' by professional astronomers. Recent orbital calculations have shown that it was inserted into the present, short-period orbit by the strong gravitational pull of Jupiter during several, relatively close

  11. [Split-course neutron and photon irradiation of experimental tumors: the importance of the sequence and interval lengths].

    Science.gov (United States)

    Carl, U M; Bahnsen, J

    1989-09-01

    In a split course mixed beam experiment we have investigated the influence of the interval and beam-quality on tumour growth delay. Fast growing sarcomas (SaF) in grey CBA-mice were irradiated with different sequences of neutrons (N) and photons (X) varying the length of time interval from 0 up to 300 minutes between two doses. The tumours were treated with isoeffective doses of X-rays and/or neutrons (XX, NN, NX, XN). In order to achieve a homogeneous radiosensitive cell population, tumours were reversibly made hypoxic by clamping ten minutes prior and during irradiation. Tumour growth delay is dependent on the sequence and on the interval. As expected the growth delay in tumours treated with neutrons only was less dependent on the interval than after pure photon irradiation. Beyond an interval of 30 minutes in the mixed beam schedules the one giving neutrons first was more effective than the one giving photons first.

  12. Polarization Beam Splitter Based on Self-Collimation Effect in Two-Dimensional Photonics Crystal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; ZHAO De-Yin; ZHOU Chnan-Hong; JIANG Xun-Ya

    2007-01-01

    A photonic crystal polarization beam splitter based on the self-collimation effect is proposed. By means of the plane wave expansion method and the finite-difference time-domain method, we analyse the splitting mechanism in two alternative ways: performing a band gap structure analysis and simulating the field distribution. The results indicate that two beams of different polarizations can be split with an extinction ratio of nearly 20 dB in a wavelength range of 90nm. The splitter may have practical applications in integrated photonic circuits.

  13. Towards Highly Efficient Bias-Free Solar Water Splitting

    NARCIS (Netherlands)

    Abdi, F.F.

    2013-01-01

    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  14. The Almost Split Sequences for Trivial Extensions of Hereditary Algebras

    Institute of Scientific and Technical Information of China (English)

    Zhang Yu-lin; Yao Hai-lou

    2014-01-01

    Let A be a basic hereditary artin algebra and R=AnQ be the trivial extension of A by its minimal injective cogenerator Q. We construct some right (left) almost split morphisms and irreducible morphisms in modR through the correspond-ing morphisms in modA. Furthermore, we can determine its almost split sequences in modR.

  15. Evaluation of Certain Pharmaceutical Quality Attributes of Lisinopril Split Tablets

    Directory of Open Access Journals (Sweden)

    Khairi M. S. Fahelelbom

    2016-10-01

    Full Text Available Tablet splitting is an accepted practice for the administration of drugs for a variety of reasons, including dose adjustment, ease of swallowing and cost savings. The purpose of this study was to evaluate the physical properties of lisinopril tablets as a result of splitting the tablets either by hand or with a splitting device. The impact of the splitting technique of lisinopril (Zestril® tablets, 20 mg on certain physical parameters such as weight variation, friability, disintegration, dissolution and drug content were studied. Splitting the tablets either by hand or with a splitter resulted in a minute but statistically significant average weight loss of <0.25% of the tablet to the surrounding environment. The variability in the weight of the hand-split tablet halves was more pronounced (37 out of 40 tablet halves varied by more than 10% from the mean weight than when using the tablet splitter (3 out of 40 tablet halves. The dissolution and drug content of the hand-split tablets were therefore affected because of weight differences. However, the pharmacopoeia requirements for friability and disintegration time were met. Hand splitting of tablets can result in an inaccurate dose and may present clinical safety issues, especially for drugs with a narrow therapeutic window in which large fluctuations in drug concentrations are undesirable. It is recommended to use tablets with the exact desired dose, but if this is not an option, then a tablet splitter could be used.

  16. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    KAUST Repository

    Hisatomi, Takashi

    2014-10-16

    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical processes in particulate semiconductors. This review article presents a brief introduction to photocatalysis, followed by kinetic aspects of the photocatalytic water-splitting reaction.Graphical Abstract: [Figure not available: see fulltext.

  17. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.

    Science.gov (United States)

    Hisatomi, Takashi; Kubota, Jun; Domen, Kazunari

    2014-11-21

    Photocatalytic and photoelectrochemical water splitting under irradiation by sunlight has received much attention for production of renewable hydrogen from water on a large scale. Many challenges still remain in improving energy conversion efficiency, such as utilizing longer-wavelength photons for hydrogen production, enhancing the reaction efficiency at any given wavelength, and increasing the lifetime of the semiconductor materials. This introductory review covers the fundamental aspects of photocatalytic and photoelectrochemical water splitting. Controlling the semiconducting properties of photocatalysts and photoelectrode materials is the primary concern in developing materials for solar water splitting, because they determine how much photoexcitation occurs in a semiconductor under solar illumination and how many photoexcited carriers reach the surface where water splitting takes place. Given a specific semiconductor material, surface modifications are important not only to activate the semiconductor for water splitting but also to facilitate charge separation and to upgrade the stability of the material under photoexcitation. In addition, reducing resistance loss and forming p-n junction have a significant impact on the efficiency of photoelectrochemical water splitting. Correct evaluation of the photocatalytic and photoelectrochemical activity for water splitting is becoming more important in enabling an accurate comparison of a number of studies based on different systems. In the latter part, recent advances in the water splitting reaction under visible light will be presented with a focus on non-oxide semiconductor materials to give an overview of the various problems and solutions.

  18. Split-liver transplantation : An underused resource in liver transplantation

    NARCIS (Netherlands)

    Rogiers, Xavier; Sieders, Egbert

    2008-01-01

    Split-liver transplantation is an efficient tool to increase the number of liver grafts available for transplantation. More than 15 years after its introduction only the classical splitting technique has reached broad application. Consequently children are benefiting most from this possibility. Full

  19. Pulse splitting in nonlinear media with anisotropic dispersion properties

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.; Schmidt, M.R.

    1998-01-01

    to a singularity in the transverse plane. Instead, the pulse spreads out along the direction of negative dispersion and splits up into small-scale cells, which may undergo further splitting events. The analytical results are supported by direct numerical solutions of the three dimensional cubic Schrodinger...

  20. Time bucket length and lot-splitting approach

    NARCIS (Netherlands)

    Riezebos, J

    2004-01-01

    The effect of time bucket length on the choice of a lot-splitting approach is studied. Due to the continuing pressure to reduce throughput times and increase efficiency, managers apply various measures, such as lot splitting and cycle time reduction programmes, that change the length of the time buc

  1. Operator splitting for two-dimensional incompressible fluid equations

    CERN Document Server

    Holden, Helge; Karper, Trygve K

    2011-01-01

    We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.

  2. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  3. A study on springback of bending linear flow split profiles

    Science.gov (United States)

    Mahajan, P.; Taplick, C.; Özel, M.; Groche, P.

    2016-11-01

    The bending of linear flow split profiles made up of high strength materials involves high bending loads leading to high springback and geometrical defects. In addition, the linear flow split profiles are made stronger due to the high plastic deformation applied by the process itself. The bending method proposed in this paper combines the linear flow splitting process with a movable bending tool. The aim of the research was to investigate the effect of superimposed stresses exerted by the linear flow splitting process on bending load and springback of the profile by using a finite element model. The latter was validated by means of experimental results. The results show that the bending loads and the springback were reduced by increasing the superposition of stress applied by the linear flow splitting process. The reduction in the bending loads leads to a reduction in the cross-sectional distortion. Furthermore, the springback was compensated by controlling the amount of superimposed stress.

  4. Efficient numerical simulation of ocean hydrodynamics by a splitting procedure

    Directory of Open Access Journals (Sweden)

    Hans Berntsen

    1981-10-01

    Full Text Available A splitting algorithm for fast and slow modes of ocean hydrodynamics is presented. The purpose of the splitting is to reduce the large amount of computational work needed for simulating long real-time periods. The essential point of the splitting is that the external gravity wave terms are extracted from the fully three-dimensional equations of horizontal motion, allowing the reduced equations to be integrated with a larger time step than the original model. The fast external gravity waves are traced by a depth integrated system which is weakly coupled to the reduced three-dimensional momentum equations. The split model shows a radical decrease in computational time and the accuracy is of the same order as in the non-split case.

  5. Split-plot fractional designs: Is minimum aberration enough?

    DEFF Research Database (Denmark)

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy

    2006-01-01

    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  6. Split-plot designs for robotic serial dilution assays.

    Science.gov (United States)

    Buzas, Jeffrey S; Wager, Carrie G; Lansky, David M

    2011-12-01

    This article explores effective implementation of split-plot designs in serial dilution bioassay using robots. We show that the shortest path for a robot to fill plate wells for a split-plot design is equivalent to the shortest common supersequence problem in combinatorics. We develop an algorithm for finding the shortest common supersequence, provide an R implementation, and explore the distribution of the number of steps required to implement split-plot designs for bioassay through simulation. We also show how to construct collections of split plots that can be filled in a minimal number of steps, thereby demonstrating that split-plot designs can be implemented with nearly the same effort as strip-plot designs. Finally, we provide guidelines for modeling data that result from these designs.

  7. Beam stabilization in the two-dimensional nonlinear Schrodinger equation with an attractive potential by beam splitting and radiation

    DEFF Research Database (Denmark)

    leMesurier, B.J.; Christiansen, Peter Leth; Gaididei, Yuri Borisovich

    2004-01-01

    The effect of attractive linear potentials on self-focusing in-waves modeled by a nonlinear Schrodinger equation is considered. It is shown that the attractive potential can prevent both singular collapse and dispersion that are generic in the cubic Schrodinger equation in the critical dimension 2...

  8. ISR beam scrapers

    CERN Multimedia

    1972-01-01

    Beam scrapers seen in the direction of the beam. The two horizontal scraper foils are near the centre of the beam pipe andthe two scrapers for protection of the vacuum chamber are further outside. In the lower part of the beam pipe is the vertical halo scraping blade.

  9. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  10. An infrared light polarized beam splitter based on graphene array

    Science.gov (United States)

    Chen, Dingbo; Yang, Junbo; Zhang, Jingjing; Wu, Wenjun; Huang, Jie; Zhang, Feifei; Wang, Hongqing

    2016-10-01

    Metamaterials have attracted a lot of attention in the past decade, because of its remarkable properties in electronics and photonics. Recently, a new kind of two-dimensional metamaterial named metasurface have led the research front. Metasurfaces show up excellent optical properties by patterning planar nanostructures. Novel optical phenomena based on graphene include ultra-thin focusing, anomalous reflection or refraction strong spin-orbit and so on. In this work, we have designed a novel infrared light polarized beam splitter by combining the 2D array of graphene with a subwavelength-thickness optical cavity, which demonstrated great splitting effect in infrared wavelength. Our demonstration pave a novel way for the infrared light polarized beam splitting.

  11. Ultracold Ordered Electron Beam

    Science.gov (United States)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  12. Image Segmentation Using Two Step Splitting Function

    Directory of Open Access Journals (Sweden)

    Gopal Kumar Jha

    2013-12-01

    Full Text Available Image processing and computer vision is widely using Level Set Method (LSM. In conventional level set formulation, irregularities are developed during evolution of level set function, which cause numerical errors and eventually destroy the stability of the evolution. Therefore a numerical remedy called re-initialization is typically applied periodically to replace the degraded level set function. However re –initialization raises serious problem that is when and how it should be performed and also affects numerical accuracy in an undesirable way. To overcome this drawback of re-initialization process, a new variation level set formulation called Distance regularization level set evolution (DRLSE is introduced in which the regularity of the level set function is internally maintained during the level set evolution. DRLSE allows more general and effective initialization of the level set function. But DRLSE uses relatively large number of steps to ensure efficient numerical accuracy. Here in this thesis we are implementing faster and equally efficient computation technique called two step splitting method (TSSM. TSSM is physio-chemical reaction diffusion equation in which firstly LSE equation get iterated and then regularize the level set function from the first step to ensure the stability and hence re-initialization is completely eliminated from LSE which also satisfy DRLSE.

  13. Magnetic Splitting of Molecular Lines in Sunspot

    Science.gov (United States)

    Berdyugina, S. V.; Frutiger, C.; Solanki, S. K.

    A study of molecular lines in sunspots is of particular interest because of their high temperature and pressure sensitivity. Many of them are also magnetically sensitive, but this was not yet widely investigated. With high-resolution, high signal-to-noise Fourier spectroscopy in four Stokes parameters now available, the use of molecular lines for studying the structure of sunspots brings real gains. One is the extension of spot models, including magnetic field, up to layers, where atomic lines suffer from NLTE effects but molecules can still be treated in the LTE approximation. Equally important is the fact that since molecular lines are extremely temperature sensitive they can be used to probe the thermal and magnetic structure of the coolest parts of sunspots. We present calculations of splitting and the Stokes parameters for a number of molecular lines in the visible and near-infrared regions. Our first selections are the green system of MgH A2Π-X2σ and the TiO triplet α, γ' and γ systems as the most studied band systems in the sunspot spectrum. The calculations involve different regimes of the molecular Zeeman effect, up to the complete Paschen-Back effect for individual lines. We look for molecular lines which can be used along with atomic lines to derive magnetic, thermal and dynamic properties of the umbra.

  14. Markov branching in the vertex splitting model

    CERN Document Server

    Stefansson, Sigurdur Orn

    2011-01-01

    We study a special case of the vertex splitting model which is a recent model of randomly growing trees. For any finite maximum vertex degree $D$, we find a one parameter model, with parameter $\\alpha \\in [0,1]$ which has a so--called Markov branching property. When $D=\\infty$ we find a two parameter model with an additional parameter $\\gamma \\in [0,1]$ which also has this feature. In the case $D = 3$, the model bears resemblance to Ford's $\\alpha$--model of phylogenetic trees and when $D=\\infty$ it is similar to its generalization, the $\\alpha\\gamma$--model. For $\\alpha = 0$, the model reduces to the well known model of preferential attachment. In the case $\\alpha > 0$, we prove convergence of the finite volume probability measures, generated by the growth rules, to a measure on infinite trees which is concentrated on the set of trees with a single spine. We show that the annealed Hausdorff dimension with respect to the infinite volume measure is $1/\\alpha$. When $\\gamma = 0$ the model reduces to a model of ...

  15. Total Variation Deconvolution using Split Bregman

    Directory of Open Access Journals (Sweden)

    Pascal Getreuer

    2012-07-01

    Full Text Available Deblurring is the inverse problem of restoring an image that has been blurred and possibly corrupted with noise. Deconvolution refers to the case where the blur to be removed is linear and shift-invariant so it may be expressed as a convolution of the image with a point spread function. Convolution corresponds in the Fourier domain to multiplication, and deconvolution is essentially Fourier division. The challenge is that since the multipliers are often small for high frequencies, direct division is unstable and plagued by noise present in the input image. Effective deconvolution requires a balance between frequency recovery and noise suppression. Total variation (TV regularization is a successful technique for achieving this balance in deblurring problems. It was originally developed for image denoising by Rudin, Osher, and Fatemi and then applied to deconvolution by Rudin and Osher. In this article, we discuss TV-regularized deconvolution with Gaussian noise and its efficient solution using the split Bregman algorithm of Goldstein and Osher. We show a straightforward extension for Laplace or Poisson noise and develop empirical estimates for the optimal value of the regularization parameter λ.

  16. Field-Split Preconditioned Inexact Newton Algorithms

    KAUST Repository

    Liu, Lulu

    2015-06-02

    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.

  17. Touching Syllable Segmentation using Split Profile Algorithm

    Directory of Open Access Journals (Sweden)

    L.Pratap Reddy

    2010-05-01

    Full Text Available The most challenging task of a character recognition system is associated with segmentation of individual components of the script with maximum efficiency. This process is relatively easy with regard to stroke based and standard scripts. Cursive scripts are more complex possessing a large number of overlapping and touching objects, where in the statistical behavior of the topological properties are to be studied extensively for achieving highest accuracy. Certain amount of similarity exists between unconstrained hand written text as well as South Indian scripts in terms of topology, component combinations, overlapping and merging characteristics. The concept of syllables and their formulations is an additive complexity with regard to Indian scripts. In this paper the statistical behavior of the cursive script, Telugu, is presented. The topological properties in terms of zones, component combinations, behavioural aspects of syllables are studied and adopted in the segmentation process. The statistical behaviour of cursive components are evaluated. Split Profile Algorithm is proposed while handling touching components. The proposed algorithm is evaluated on different fonts and sizes. The performance of the proposed algorithm is compared with two approaches methods viz aspect ratio and syllable width approaches.

  18. Descent Assisted Split Habitat Lunar Lander Concept

    Science.gov (United States)

    Mazanek, Daniel D.; Goodliff, Kandyce; Cornelius, David M.

    2008-01-01

    The Descent Assisted Split Habitat (DASH) lunar lander concept utilizes a disposable braking stage for descent and a minimally sized pressurized volume for crew transport to and from the lunar surface. The lander can also be configured to perform autonomous cargo missions. Although a braking-stage approach represents a significantly different operational concept compared with a traditional two-stage lander, the DASH lander offers many important benefits. These benefits include improved crew egress/ingress and large-cargo unloading; excellent surface visibility during landing; elimination of the need for deep-throttling descent engines; potentially reduced plume-surface interactions and lower vertical touchdown velocity; and reduced lander gross mass through efficient mass staging and volume segmentation. This paper documents the conceptual study on various aspects of the design, including development of sortie and outpost lander configurations and a mission concept of operations; the initial descent trajectory design; the initial spacecraft sizing estimates and subsystem design; and the identification of technology needs

  19. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  20. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  1. Propagation of Gaussian beams family through a Kerr-type left-handed metamaterial

    Institute of Scientific and Technical Information of China (English)

    A. Keshavarz; M. Naseri

    2015-01-01

    In this paper the propagation of elegant Hermite-cosh-Gaussian, elegant Laguerre Gaussian, and Bessel Gaussian beams through a Kerr left-handed metamaterial (LHM) slab have been studied. A split-step Fourier method is used to investigate the propagation of laser beams through this media. Numerical simulation shows that Gaussian beams have different focusing behaviors in a Kerr LHM slab with positive or negative nonlinearity. Beam focusing happens in slabs with positive nonlinearity and not in slabs with negative nonlinearity;however, negative nonlinearity is required for a Kerr LHM slab to act like a lens. Additionally, the focusing properties of beams can be controlled by controlling the thickness of the slab or the input power of the incident beam. A multilayer structure is also proposed to have beam focusing by thinner slabs and passing longer distances.

  2. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.

    Science.gov (United States)

    Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan

    2016-06-27

    We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.

  3. RF Manipulations for Higher Brightness LHC-Type Beams

    CERN Document Server

    Damerau, H; Gilardoni, S; Hancock, S

    2013-01-01

    In order to increase the transverse brightness of beams for the LHC, ever more complicated RF manipulations have been proposed in the PS machine to reduce the intensity demands per PS batch on the upstream PS Booster. Several schemes based on cascades of batch compression, bunch merging, as well as the more routine bunch splitting have been successfully commissioned and higher brightness beams have been delivered to the downstream accelerators for measurement. Despite all this complexity, longitudinal and transverse beam quality are well preserved. In addition, to profit fully from the brightness of all four PS Booster rings, the injection of twice 4 bunches into harmonic 9 buckets in the PS has been made operational as an alternative to the usual double-batch transfer of 4 + 2 bunches into harmonic 7. This paper summarizes the new beam production schemes, their implementation in the PS low-level RF system and the experimental results..

  4. SPLinac Computer Simulations of SC Linac RF Systems with Beam

    CERN Document Server

    Tückmantel, Joachim

    2001-01-01

    The beam in a proton linac is very sensitive to field perturbations in the cavities. Therefore a simulation program was written modeling longitudinal beam dynamics in a realistic composite linac RF system. Fast RF vector sum feedback loops control several cavities with b-dependent transit time factors driven by one transmitter. Modeling of feedback loops covers limited transmitter power and bandwidth and possible loop-delay. Vector sum calibration errors, power splitting errors and scatter in the coupling strength to the cavities are optional as well as beam loading of the pulsing beam. Different modes of mechanical cavity perturbations including Lorentz force detuning can be chosen. A multitude of phase-space representation of bunches as well as RF quantity plots are available, most of them can be assembled as a movie, showing the system dynamics in 'real time'.

  5. Driver beam-led EURISOL target design constraints

    CERN Document Server

    Noah, Etam; Catherall, Richard; Kadi, Yacine; Kharoua, Cyril; Lettry, Jacques

    2008-01-01

    The EURISOL (European Isotope Separation Online) Design Study is addressing new high power target design challenges. A three-step method [1] was proposed to split the high power linac proton driver beam into one $H^{-}$ branch for the 4 $MW_{b}$ [2] mercury target that produces radioactive ion beams (RIB) via spallation neutroninduced fission in a secondary actinide target and three 100 $kW_{b}$ $H^{+}$ branches for the direct targets producing RIBs via fragmentation and spallation reactions. This scheme minimises transient thermo-mechanical stresses on targets and preserves the cw nature of the driver beam in the four branches. The heat load for oxides, carbides, refractory metal foils and liquid metals is driven by the incident proton driver beam while for actinides, exothermic fission reactions are an additional contribution. This paper discusses the constraints that are specific to each class of material and the target design strategies.

  6. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    WU Di; GONG Ye; LIU Jin-Yuan; WANG Xiao-Gang; LIU Yue; MA Teng-Cai

    2006-01-01

    @@ Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ion-beam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133 mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.

  7. Inverse design engineering of all-silicon polarization beam splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Sigmund, Ole

    2016-01-01

    Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as compact as similar to 2 µm2 while performing experimentally...... with a polarization splitting loss lower than similar to 0.82 dB and an extinction ratio larger than similar to 15 dB in the C-band. We investigate the device performance as a function of the device length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature...

  8. Photonic Crystal Polarizing and Non-Polarizing Beam Splitters

    Institute of Scientific and Technical Information of China (English)

    GUAN Chun-Ying; SHI Jin-Hui; YUAN Li-Bo

    2008-01-01

    A polarizing beam splitter(PBS)and a non-polarizing beam splitter(NPBS)based on a photonic crystal(PC)directional coupler are demonstrated.The photonic crystal directional coupler consists of a hexagonal lattice of dielectric pillars in air and has a complete photonic band gap.The photonic band structure and the band gap map are calculated using the plane wave expansion(PWE)method.The splitting properties of the splitter are investigated numerically using the finite difference time domain(FDTD)method.

  9. Studies of polarized beam acceleration and Siberian Snakes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1992-12-31

    We studied depolarization mechanisms of polarized proton acceleration in high energy accelerators with snakes and found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune of imperfection resonances, each snake resonance splits into two. Thus the available betatron tune space becomes smaller. Some constraints on polarized beam colliders were also examined.

  10. Enhanced Valley Splitting for Quantum Electronics in Silicon

    Science.gov (United States)

    Saraiva, Andre

    2014-03-01

    Silicon is a placid environment for quantum degrees of freedom with long spin and valley coherence times. A natural drawback is that the same features that protect the quantum state from its environment also hamper its control with external fields. Indeed, engineered nanostructures typically lead to sub-meV splittings between valley states, hindering the implementation of both spin and valley based quantum devices. We will discuss the microscopic theory of valley splitting, presenting three schemes to control valleys on a scale higher than 1 meV: a) in a quantum well, the adoption of a barrier constituted of a layered heterostructure might lead to constructive reflection if the layer thicknesses match the electron wavelength, in analogy with a Bragg mirror; b) the disparity between the high valley splitting in a impurity donor potential and the low splitting in a Si/Insulator interface may be harnessed controlling the tunneling between these two states, so that the valley splitting may be controlled digitally; c) intrinsic Tamm/Shockley interface states might strongly hybridize with conduction states, leading to a much enhanced valley splitting, and its contribution to the 2DEG ground state may be experimentally identified. We argue that this effect is responsible for the enhanced splitting in Si/BOX interfaces.

  11. The difference in noise property between the Autler-Townes splitting medium and the electromagnetically induced transparent medium

    Institute of Scientific and Technical Information of China (English)

    Li Zhong-Hua; Li Yuan; Dou Ya-Fang; Zhang Jun-Xiang

    2012-01-01

    The quantum noise of squeezed probe light passing through an atomic system with different electromagnetically induced transparency and Autler-Townes splitting effects is investigated theoretically. It is found that the optimal squeezing preservation of the outgoing probe beam occurs in the strong-coupling-field regime rather than in the weakcoupling-field regime. In the weak-coupling-field regime,which was recently recognized as the electromagnetically induced transparency regime (Abi-Salloum T Y 2010 Phys.Rev.A 81 053836),the output amnplitude noise is affected mainly by the atomic noise originating from the random decay process of atoms.While in the strong-coupling-field regime,defined as the Autler-Townes splitting regime,the output amplitude noise is affected mainly by the phase-toamplitude conversion noise.This is useful in improving the quality of the experiment for efficient quantum memory,and hence has an application in quantum information processing.

  12. To Split or Not to Split, That Is the Question in Some Shallow Water Equations

    CERN Document Server

    Martínez, Vicente

    2012-01-01

    In this paper we analyze the use of time splitting techniques for solving shallow water equation. We discuss some properties that these schemes should satisfy so that interactions between the source term and the shock waves are controlled. This paper shows that these schemes must be well balanced in the meaning expressed by Greenberg and Leroux [5]. More speci?cally, we analyze in what cases it is enough to verify an Approximate C-property and in which cases it is required to verify an Exact C-property (see [1], [2]). We also include some numerical tests in order to justify our reasoning.

  13. GY SAMPLING THEORY IN ENVIRONMENTAL STUDIES 1: ASSESSING SOIL SPLITTING PROTOCOLS

    Science.gov (United States)

    Five soil sample splitting methods (riffle splitting, paper cone riffle splitting, fractional shoveling, coning and quartering, and grab sampling) were evaluated with synthetic samples to verify Pierre Gy sampling theory expectations. Individually prepared samples consisting of l...

  14. Mounting an ISR intersection chamber in the Split Field Magnet(SFM)

    CERN Multimedia

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton.Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In the course of the years different types of vacu...

  15. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2009-11-12

    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  16. Split-Plot Designs with Mirror Image Pairs as Subplots

    DEFF Research Database (Denmark)

    Tyssedal, John; Kulahci, Murat; Bisgaard, Soren

    2011-01-01

    In this article we investigate two-level split-plot designs where the sub-plots consist of only two mirror image trials. Assuming third and higher order interactions negligible, we show that these designs divide the estimated effects into two orthogonal sub-spaces, separating sub-plot main effects...... and sub-plot by whole-plot interactions from the rest. Further we show how to construct split-plot designs of projectivity P≥3. We also introduce a new class of split-plot designs with mirror image pairs constructed from non-geometric Plackett–Burman designs. The design properties of such designs are very...

  17. Hollow core anti-resonant fibres with split cladding

    Science.gov (United States)

    Huang, Xiaosheng; Qi, Wenliang; Ho, Daryl; Luan, Feng; Yong, Ken-Tye; Yoo, Seongwoo

    2016-03-01

    A split cladding fibers (SCF) is proposed as an additional design to the anti-resonant type fiber. The introduced split cladding helps to reduce the fabrication distortion. We use numerical simulations to compare the Kagome fibers (KFs) and the proposed split cladding fibers (SCFs) over two normalized transmission bands. It reveals that SCFs are able to maintain the desired round shape of silica cladding walls, hence improving the confinement loss (CL) compared to the KF. Fabrication of the SCF is demonstrated by the stack-and-draw technique. The near filed mode patterns are measured to prove the feasibility of this fiber design.

  18. Degeneracy and Split of Defect States in Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    黄晓琴; 崔一平

    2003-01-01

    One-dimensional photonic crystals with two or more structural defects are studied. We observed an interesting characteristic of transmission band structure of photonic crystals with defects using the transmission-matrixmethod simulation. The transmission states in the wide photonic band gap caused by defects revealdegeneracy and split in certain conditions. Every split state is contributed by coupling of all defects in a photonic crystal.Using the tight-binding method, we obtain an approximate analytic expression for the split frequency of photonic crystals with two structural defects.

  19. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-Gao; HUANG Xin-Fan; CHEN Kun-Ji; QIAN Bo; CHEN San; DING Hong-Lin; LIU Sui; WANG Xiang; XU Jun; LI Wei

    2008-01-01

    Hydrogenated amorphous silicon nitride based coupled optical microcavity is investigated theoretically and experimentally. The theoretical calculation of the transmittance spectra of optical microcavity with one cavity and coupled microcavity with two-cavity is performed.The optical eigenmode splitting for coupled microcavity is found due to the interaction between the neighbouring localized cavities.Experimentally,the coupled cavity samples are prepared by plasma enhanced chemical vapour deposition and characterized by photoluminescence measurements.It is found that the photoluminescence peak wavelength agrees well with the cavity mode in the calculated transmittance spectra.This eigenmode splitting is analogous to the electron state energy splitting in diatom molecules.

  20. Information Theoretic Authentication and Secrecy Codes in the Splitting Model

    CERN Document Server

    Huber, Michael

    2011-01-01

    In the splitting model, information theoretic authentication codes allow non-deterministic encoding, that is, several messages can be used to communicate a particular plaintext. Certain applications require that the aspect of secrecy should hold simultaneously. Ogata-Kurosawa-Stinson-Saido (2004) have constructed optimal splitting authentication codes achieving perfect secrecy for the special case when the number of keys equals the number of messages. In this paper, we establish a construction method for optimal splitting authentication codes with perfect secrecy in the more general case when the number of keys may differ from the number of messages. To the best knowledge, this is the first result of this type.

  1. SiC MOSFETs based split output half bridge inverter

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon

    2014-01-01

    Body diode of SiC MOSFETs has a relatively high forward voltage drop and still experiences reverse recovery phenomenon. Half bridge with split output aims to decouple both the body diode and junction capacitance of SiC MOSFETs, therefore achieving a reduced switching loss in a bridge configuration....... This paper makes the current commutation mechanism and efficiency analysis of half bridge with split output based on SiC MOSFETs. Current commutation process analysis is illustrated together with LTspice simulation and afterwards, verified by the experimental results of a double pulse test circuit with split...

  2. Thermoelectric-induced unitary Cooper pair splitting efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhan; Fang, Tie-Feng [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Li, Lin [Department of Physics, Southern University of Science and Technology of China, Shenzhen 518005 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)

    2015-11-23

    Thermoelectric effect is exploited to optimize the Cooper pair splitting efficiency in a Y-shaped junction, which consists of two normal leads coupled to an s-wave superconductor via double noninteracting quantum dots. Here, utilizing temperature difference rather than bias voltage between the two normal leads, and tuning the two dot levels such that the transmittance of elastic cotunneling process is particle-hole symmetric, we find current flowing through the normal leads are totally contributed from the splitting of Cooper pairs emitted from the superconductor. Such a unitary splitting efficiency is significantly better than the efficiencies obtained in experiments so far.

  3. Nano-architecture and material designs for water splitting photoelectrodes.

    Science.gov (United States)

    Chen, Hao Ming; Chen, Chih Kai; Liu, Ru-Shi; Zhang, Lei; Zhang, Jiujun; Wilkinson, David P

    2012-09-07

    This review concerns the efficient conversion of sunlight into chemical fuels through the photoelectrochemical splitting of water, which has the potential to generate sustainable hydrogen fuel. In this review, we discuss various photoelectrode materials and relative design strategies with their associated fabrication for solar water splitting. Factors affecting photoelectrochemical performance of these materials and designs are also described. The most recent progress in the research and development of new materials as well as their corresponding photoelectrodes is also summarized in this review. Finally, the research strategies and future directions for water splitting are discussed with recommendations to facilitate the further exploration of new photoelectrode materials and their associated technologies.

  4. 700-W diffusion-cooled large-area 40.68-MHz excited CO2 laser employing split-wave hybrid confocal resonator

    Science.gov (United States)

    Vitruk, Peter; Schemmer, James; Byron, Stan

    1998-09-01

    A novel non-waveguide, non-free-space CO2 laser resonator cavity, referred to as the split-wave hybrid (SWH) resonator, is described. Traditional resonator mirrors combined with two specially designed light reflecting electrode walls, which enclose the active medium, form the SWH resonator cavity. Light reflecting walls in the split-wave resonator act as wave-front-splitting mirrors in an interferometer, similar to a Fresnel double mirror or Lloyd mirror interferometer. Wave- front of the intra-cavity laser beam is significantly tilted with respect to the resonator walls, which facilitates lowest order mode selection in this resonator. Additionally, electrode wall surfaces contain discontinuities, which further enhances non-waveguide mode discrimination in the SWH resonator.

  5. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  6. A guiding oblique osteotomy cut to prevent bad split in sagittal split ramus osteotomy: a technical note

    Directory of Open Access Journals (Sweden)

    Gururaj Arakeri

    2015-06-01

    Full Text Available Aim: To present a simple technical modification of a medial osteotomy cut which prevents its misdirection and overcomes various anatomical variations as well as technical problems. Methods: The medial osteotomy cut is modified in the posterior half at an angle of 15°-20° following novel landmarks. Results: The proposed cut exclusively directs the splitting forces downwards to create a favorable lingual fracture, preventing the possibility of an upwards split which would cause a coronoid or condylar fracture. Conclusion: This modification has proven to be successful to date without encountering the complications of a bad split or nerve damage.

  7. Opportunistic splitting for scheduling using a score-based approach

    KAUST Repository

    Rashid, Faraan

    2012-06-01

    We consider the problem of scheduling a user in a multi-user wireless environment in a distributed manner. The opportunistic splitting algorithm is applied to find the best group of users without reporting the channel state information to the centralized scheduler. The users find the best among themselves while requiring just a ternary feedback from the common receiver at the end of each mini-slot. The original splitting algorithm is modified to handle users with asymmetric channel conditions. We use a score-based approach with the splitting algorithm to introduce time and throughput fairness while exploiting the multi-user diversity of the network. Analytical and simulation results are given to show that the modified score-based splitting algorithm works well as a fair scheduling scheme with good spectral efficiency and reduced feedback. © 2012 IEEE.

  8. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Podorson, D.; Varshney, K.

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  9. Field Monitoring Protocol. Mini-Split Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomerlin, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, E. [Mountain Energy Partnership, Longmont, CO (United States)

    2011-03-01

    This Building America program report provides a detailed method for accurately measuring and monitoring performance of a residential mini-split heat pump, which will be used in high-performance retrofit applications.

  10. The Unstabilized Amalgamation of Heegaard Splittings along Disconnected Surfaces

    Institute of Scientific and Technical Information of China (English)

    Xutao GAO; Qilong GUO

    2013-01-01

    Let M be a 3-manifold,F={F1,F2,…,Fn} be a collection of essential closed surfaces in M (for any i,j ∈ {1,…,n},ifi≠ j,Fi is not parallel to Fj and Fi∩Fj =(O)) and (O)0M be a collection of components of (O)M.Suppose M-∪Fi∈F Fi × (-1,1) contains k components M1,M2,…,Mk.If each Mi has a Heegaard splitting Vi∪si Wi with d(Si) > 4(g(M1) +… + g(Mk)),then any minimal Heegaard splitting of M relative to (O)0M is obtained by doing amalgamations and self-amalgamations from minimal Heegaard splittings or (O)-stabilization of minimal Heegaard splittings of M1,M2,…,Mk.

  11. Helicopter transmission arrangements with split-torque gear trains

    Science.gov (United States)

    White, G.

    1983-01-01

    As an alternative to component development, the case for improved drive-train configuration is argued. In particular, the use of torque-splitting gear trains is proposed as a practicable means of improving the effectiveness of helicopter main gearboxes.

  12. Geometrical tuning of nanoscale split-ring resonators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Kristensen, Anders; Xiao, Sanshui;

    2010-01-01

    We investigate the capacitance tuning of nanoscale split-ring resonators. An LC-model predicts a simple dependence of resonance frequency on slit aspect ratio. Experimental and numerical data follow the predictions of the LC-model....

  13. Fat Branes, Orbifolds and Doublet-Triplet Splitting

    CERN Document Server

    Haba, N; Haba, Naoyuki; Maru, Nobuhito

    2003-01-01

    A simple higher dimensional mechanism of the doublet-triplet splitting is presented in a five dimensional supersymmetric SU(5) GUT on S^1/Z_2. The splitting of multiplets is realized by a VEV of the adjoint chiral superfield which breaks SU(5) gauge symmetry. Depending on the sign of the VEV, zero mode Higgs doublets and triplets are localized on the either side of the fixed points. The mass splitting is realized due to the difference of magnitudes of the overlap with a brane localized or a bulk singlet field. No unnatural fine-tuning of parameters is needed. The proton stability is ensured by locality {em without symmetries}. As well as a conventional mass splitting solution, it is shown that the weak scale Higgs triplet is consistent with the proton stability. This result might provide an alternative signature of GUT in future collider experiments.

  14. Klein and Conformal Superspaces, Split Algebras and Spinor Orbits

    CERN Document Server

    Fioresi, Rita; Marrani, Alessio

    2016-01-01

    We discuss $\\mathcal{N}=1$ Klein and Klein-Conformal superspaces in $D=(2,2)$ space-time dimensions, realizing them in terms of their functor of points over the split composition algebra $\\mathbb{C}_{s}$. We exploit the observation that certain split form of orthogonal groups can be realized in terms of matrix groups over split composition algebras; this leads to a natural interpretation of the the sections of the spinor bundle in the critical split dimensions $D=4$, $6$ and $10$ as $\\mathbb{C}_{s}^{2}$, $\\mathbb{H}_{s}^{2}$ and $\\mathbb{O}_{s}^{2}$, respectively. Within this approach, we also analyze the non-trivial spinor orbit stratification that is relevant in our construction since it affects the Klein-Conformal superspace structure.

  15. Point-splitting regularization of composite operators and anomalies

    CERN Document Server

    Novotny, J

    2000-01-01

    The point-splitting regularization technique for composite operators is discussed in connection with anomaly calculation. We present a pedagogical and self-contained review of the topic with an emphasis on the technical details. We also develop simple algebraic tools to handle the path ordered exponential insertions used within the covariant and non-covariant version of the point-splitting method. The method is then applied to the calculation of the chiral, vector, trace, translation and Lorentz anomalies within diverse versions of the point-splitting regularization and a connection between the results is described. As an alternative to the standard approach we use the idea of deformed point-split transformation and corresponding Ward-Takahashi identities rather than an application of the equation of motion, which seems to save the complexity of the calculations.

  16. Poincaré Map Based on Splitting Methods

    Institute of Scientific and Technical Information of China (English)

    GANG Tie-Qiang; CHEN Li-Jie; MEI Feng-Xiang

    2008-01-01

    Firstly, by using the Liouville formula, we prove that the Jacobian matrix determinants of splitting methods are equal to that of the exact flow. However, for the explicit Runge-Kutta methods, there is an error term of order p + 1 for the Jacobian matrix determinants. Then, the volume evolution law of a given region in phase space is discussed for different algorithms. It is proved that splitting methods can exactly preserve the sum of Lyapunov exponents invariable. Finally, a Poincaré map and its energy distribution of the Duffing equation are computed by using the second-order splitting method and the Heun method (a second-order Runge-Kutta method). Computation illustrates that the results by splitting methods can properly represent systems' chaotic phenomena.

  17. Higgs, Binos and Gluinos: Split Susy Within Reach

    CERN Document Server

    Alves, Daniele S M; Wacker, Jay G

    2011-01-01

    Recent evidence from the LHC for the Higgs boson with mass between 142 GeV < m_h < 147GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 microns to 10 years range, are its imminent smoking gun signature. The 7 TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m_chi = 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.

  18. Vacuum Photon Splitting in Lorentz-Violating Quantum Electrodynamics

    CERN Document Server

    Kostelecky, V A; Kostelecky, Alan; Pickering, Austin

    2003-01-01

    Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even and CPT-odd contributions forbidden in conventional electrodynamics.

  19. RSW Node Centered Coarse Grid w/ Split Walls

    Data.gov (United States)

    National Aeronautics and Space Administration — This tarball contains a AFLR3 stream grid (b8.ugrid), surface grid, info file, mapbc file, as well as 2 images showing the way the walls were split Grids made by...

  20. Performance Models for Split-execution Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL; McCaskey, Alex [ORNL; Schrock, Jonathan [ORNL; Seddiqi, Hadayat [ORNL; Britt, Keith A [ORNL; Imam, Neena [ORNL

    2016-01-01

    Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardware limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior.

  1. Effect of Repeated Food Morsel Splitting on Jaw Muscle Control

    DEFF Research Database (Denmark)

    A, Kumar; Svensson, Krister G; Baad-Hansen, Lene

    2014-01-01

    Mastication is a complex motor task often initiated by splitting of the food morsel between the anterior teeth. Training of complex motor tasks has consistently been shown to trigger neuroplastic changes in corticomotor control and optimization of muscle function. It is not known if training...... and repeated food morsel splitting lead to changes in jaw muscle function. Objective: To investigate if repeated splitting of food morsels in participants with natural dentition changes the force and jaw muscle electromyographic (EMG) activity. Methods: Twenty healthy volunteers (mean age = 26.2 ± 3.9 years......) participated in a single one-hour session divided into six series. Each series consisted of ten trials of a standardized behavioral task (total of 60 trials). The behavioral task was to hold and split a food morsel (8 mm, 180 mg placebo tablet) placed on a bite force transducer with the anterior teeth...

  2. About the splitting field for rational valued characters

    Directory of Open Access Journals (Sweden)

    Ion Armeanu

    1994-05-01

    Full Text Available The problem of finding the splitting field for group characters is very old and important (see [4], Chapter 9. The most part of the papers on this subject are concerned with all irreducible characters of a group under certain conditions. It seems more difficult to obtain minimal splitting fields for only one character without strong conditions about the group. In this case, naturally,the number theoretical methods play an essential role. This paper concerns to prove that under certain circumstances if a rational character of a group has Q(21/2,i as splitting field, then Q(i or even Q(21/2 are splitting fields too.

  3. A compact T-branch beam splitter based on anomalous reflection in two-dimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    Yifeng Shen; Jian Sun; Xiaopeng Shen; Juan Wang; Lulu Sun; Kui Han; Guozhong Wang

    2008-01-01

    @@ We project a compact T-branch beam splitter with a micron scale using a two-dimensional (2D) photonic crystal (PC). For TE polarization, one light beam can be split into two sub-beams along opposite directions. The propagating directions of the two splitting beams remain unchanged when the incident angle varies in a certain range. Coupled-mode theory is used to analyze the truncating interface structure in order to investigate the energy loss of the splitter. Simulation results and theoretical analysis show that choosing an appropriate location of the truncating interface (PC-air interface) is very important for obtaining high efficiency due to the effect of defect modes. The most advantage of this kind of beam splitter is being fabricated and integrated easily.

  4. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  5. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  6. A Modified Halpern's Iterative Scheme for Solving Split Feasibility Problems

    Directory of Open Access Journals (Sweden)

    Jitsupa Deepho

    2012-01-01

    Full Text Available The purpose of this paper is to introduce and study a modified Halpern’s iterative scheme for solving the split feasibility problem (SFP in the setting of infinite-dimensional Hilbert spaces. Under suitable conditions a strong convergence theorem is established. The main result presented in this paper improves and extends some recent results done by Xu (Iterative methods for the split feasibility problem in infinite-dimensional Hilbert space, Inverse Problem 26 (2010 105018 and some others.

  7. Exploring various flux vector splittings for the magnetohydrodynamic system

    Science.gov (United States)

    Balsara, Dinshaw S.; Montecinos, Gino I.; Toro, Eleuterio F.

    2016-04-01

    In this paper we explore flux vector splittings for the MHD system of equations. Our approach follows the strategy that was initially put forward in Toro and Vázquez-Cendón (2012) [55]. We split the flux vector into an advected sub-system and a pressure sub-system. The eigenvalues and eigenvectors of the split sub-systems are then studied for physical suitability. Not all flux vector splittings for MHD yield physically meaningful results. We find one that is completely useless, another that is only marginally useful and one that should work well in all regimes where the MHD equations are used. Unfortunately, this successful flux vector splitting turns out to be different from the Zha-Bilgen flux vector splitting. The eigenvalues and eigenvectors of this favorable FVS are explored in great detail in this paper. The pressure sub-system holds the key to finding a successful flux vector splitting. The eigenstructure of the successful flux vector splitting for MHD is thoroughly explored and orthonormalized left and right eigenvectors are explicitly catalogued. We present a novel approach to the solution of the Riemann problem formed by the pressure sub-system for the MHD equations. Once the pressure sub-system is solved, the advection sub-system follows naturally. Our method also works very well for the Euler system. Our FVS successfully captures isolated, stationary contact discontinuities in MHD. However, we explain why any FVS for MHD is not adept at capturing isolated, stationary Alfvenic discontinuities. Several stringent one-dimensional Riemann problems are presented to show that the method works successfully and can effectively capture the full panoply of wave structures that arise in MHD. This includes compound waves and switch-on and switch-off shocks that arise because of the non-convex nature of the MHD system.

  8. Compensation of Dipolar-Exciton Spin Splitting in Magnetic Field

    OpenAIRE

    Gorbunov, A. V.; Timofeev, V. B.

    2012-01-01

    Magnetoluminescence of spatially indirect dipolar excitons collected in 25 nm GaAs/AlGaAs single quantum well within a lateral potential trap has been studied in perpendicular magnetic field in Faraday geometry. The paramagnetic spin splitting of the luminescence line of the heavy-hole excitons in the trap centre is completely compensated at magnetic fields below critical value, around 2 Tesla. The effect of spin-splitting compensation is caused by the exchange interaction in dense exciton Bo...

  9. QED corrections to the Altarelli-Parisi splitting functions

    Energy Technology Data Exchange (ETDEWEB)

    Florian, Daniel de [Universidad de Buenos Aires, Departamento de Fisica and IFIBA, FCEyN, Capital Federal (Argentina); UNSAM, International Center for Advanced Studies (ICAS), Buenos Aires (Argentina); Sborlini, German F.R.; Rodrigo, German [Universitat de Valencia - Consejo Superior de Investigaciones Cientificas, Instituto de Fisica Corpuscular, Paterna, Valencia (Spain)

    2016-05-15

    We discuss the combined effect of QED and QCD corrections to the evolution of parton distributions. We extend the available knowledge of the Altarelli-Parisi splitting functions to one order higher in QED, and we provide explicit expressions for the splitting kernels up to O(α α{sub S}). The results presented in this article allow one to perform a parton distribution function analysis reaching full NLO QCD-QED combined precision. (orig.)

  10. Key Issues in Vowel Based Splitting of Telugu Bigrams

    OpenAIRE

    Kameswara Rao; Prasad, Dr. T. V

    2014-01-01

    Splitting of compound Telugu words into its components or root words is one of the important, tedious and yet inaccurate tasks of Natural Language Processing (NLP). Except in few special cases, at least one vowel is necessarily involved in Telugu conjunctions. In the result, vowels are often repeated as they are or are converted into other vowels or consonants. This paper describes issues involved in vowel based splitting of a Telugu bigram into proper root words using Telugu grammar conjunct...

  11. Endoscopic classification of representations of quasi-split unitary groups

    CERN Document Server

    Mok, Chung Pang

    2015-01-01

    In this paper the author establishes the endoscopic classification of tempered representations of quasi-split unitary groups over local fields, and the endoscopic classification of the discrete automorphic spectrum of quasi-split unitary groups over global number fields. The method is analogous to the work of Arthur on orthogonal and symplectic groups, based on the theory of endoscopy and the comparison of trace formulas on unitary groups and general linear groups.

  12. Complex split-cord malformation associated with situs inversus totalis

    Directory of Open Access Journals (Sweden)

    Deepak Agrawal

    2007-01-01

    Full Text Available Although meningoceles are known to be associated with split cord malformations, the association of dextrocardia is extremely rare. The authors report a case of a 15 day male child who had an atretic meningocele in the lumbosacral region along with dextrocardia and a split cord malformation with a posterior spur. This importance of preoperative MRI for proper management of such patients is highlighted in this report.

  13. Visualization of the sequence of a couple splitting outside shop

    DEFF Research Database (Denmark)

    2015-01-01

    Visualization of tracks of couple walking together before splitting and one goes into shop the other waits outside. The visualization represents the sequence described in figure 7 in the publication 'Taking the temperature of pedestrian movement in public spaces'......Visualization of tracks of couple walking together before splitting and one goes into shop the other waits outside. The visualization represents the sequence described in figure 7 in the publication 'Taking the temperature of pedestrian movement in public spaces'...

  14. Isoscalar-isovector mass splittings in excited mesons

    CERN Document Server

    Geiger, P

    1994-01-01

    Mass splittings between the isovector and isoscalar members of meson nonets arise in part from hadronic loop diagrams which violate the Okubo-Zweig-Iizuka rule. Using a model for these loop processes which works qualitatively well in the established nonets, I tabulate predictions for the splittings and associated isoscalar mixing angles in the remaining nonets below about 2.5 GeV, and explain some of their systematic features. The results for excited vector mesons compare favorably with experiment.

  15. Operator splitting for the KdV equation

    CERN Document Server

    Holden, Helge; Risebro, Nils Henrik; Tao, Terence

    2009-01-01

    We provide a new analytical approach to operator splitting for equations of the type $u_t=Au+B(u)$ where $A$ is a linear operator and $B$ is quadratic. A particular example is the Korteweg-de Vries (KdV) equation $u_t-u u_x+u_{xxx}=0$. We show that the Godunov and Strang splitting methods converge with the expected rates if the initial data are sufficiently regular.

  16. On Invariant Decompositions, Dominated Splittings and Sectional-Hyperbolicity

    CERN Document Server

    Araujo, Vitor; Salgado, Luciana

    2011-01-01

    We obtain sufficient conditions for an invariant splitting over a compact invariant subset of a $C^1$ flow $X_t$ to be dominated. For a $C^1$ flow $X_t$ on a compact manifold $M$ and a compact invariant subset $\\Lambda$, with a continuous and $DX_t$-invariant splitting $E\\oplus F$ of the tangent bundle $T_\\Lambda M$ over $\\Lambda$, we consider the relation between weak forms of hyperbolicity along each subbundle and domination.

  17. Circadian Regulation of Cortisol Release in Behaviorally Split Golden Hamsters

    OpenAIRE

    2011-01-01

    The master circadian clock located within the hypothalamic suprachiasmatic nucleus (SCN) is necessary for the circadian rhythm of glucocorticoid (GC) release. The pathways by which the SCN sustains rhythmic GC release remain unclear. We studied the circadian regulation of cortisol release in the behaviorally split golden hamster, in which the single bout of circadian locomotor activity splits into two bouts approximately12 h apart after exposing the animals to constant light conditions. We sh...

  18. NUMERICAL STUDY ON TUNNELING SPLITTING IN BIAIXAL SPIN SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    CHEN ZHI-DE; ZHANG SHU-QUN

    2000-01-01

    Numerical study on tunneling splitting in biaxial spin systems is done by performing diagonalization of the Hamilton operator.It is found that the calculated energy splitting agrees quantitatively with theoretical prediction of instanton method.Our result shows that both the instanton method and the large spin limit work well for the total spin around 10.By including the fourth-order term in Hamiltonian,experimental observation can be re-covered quantitatively.

  19. Energy splitting of the ground-state doublet in the nucleus 229Th.

    Science.gov (United States)

    Beck, B R; Becker, J A; Beiersdorfer, P; Brown, G V; Moody, K J; Wilhelmy, J B; Porter, F S; Kilbourne, C A; Kelley, R L

    2007-04-01

    The energy splitting of the 229Th ground-state doublet is measured to be 7.6+/-0.5 eV, significantly greater than earlier measurements. Gamma rays produced following the alpha decay of 233U (105 muCi) were counted in the NASA/electron beam ion trap x-ray microcalorimeter spectrometer with an experimental energy resolution of 26 eV (FWHM). A difference technique was applied to the gamma-ray decay of the 71.82 keV level that populates both members of the doublet. A positive correction amounting to 0.6 eV was made for the unobserved interband decay of the 29.19 keV state (29.19-->0 keV).

  20. Energy Splitting of the Ground-State Doublet in the Nucleus Th229

    Science.gov (United States)

    Beck, B. R.; Becker, J. A.; Beiersdorfer, P.; Brown, G. V.; Moody, K. J.; Wilhelmy, J. B.; Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.

    2007-04-01

    The energy splitting of the Th229 ground-state doublet is measured to be 7.6±0.5eV, significantly greater than earlier measurements. Gamma rays produced following the alpha decay of U233 (105μCi) were counted in the NASA/electron beam ion trap x-ray microcalorimeter spectrometer with an experimental energy resolution of 26 eV (FWHM). A difference technique was applied to the gamma-ray decay of the 71.82 keV level that populates both members of the doublet. A positive correction amounting to 0.6 eV was made for the unobserved interband decay of the 29.19 keV state (29.19→0keV).

  1. Measurement of the neutrino mass splitting and flavor mixing by MINOS

    CERN Document Server

    Adamson, P; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cavanaugh, S; Cherdack, D; Childress, S; Choudhary, B C; Coelho, J A B; Coleman, S J; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grant, N; Grzelak, K; Habig, A; Harris, D; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Ilic, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Morfín, J; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Oliver, W P; Orchanian, M; Ospanov, R; Paley, J; Patterson, R B; Pawloski, G; Pearce, G F; Petyt, D A; Phan-Budd, S; Plunkett, R K; Qiu, X; Ratchford, J; Raufer, T M; Rebel, B; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreiner, P; Shanahan, P; Smith, C; Sousa, A; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Yang, T; Zwaska, R

    2011-01-01

    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of $7.25 \\times 10^{20}$ protons on target. A fit to neutrino oscillations yields values of $|\\Delta m^2| = (2.32^{+0.12}_{-0.08})\\times10^{-3}$\\,eV$^2$ for the atmospheric mass splitting and $\\rm \\sin^2\\!(2\\theta) > 0.90$ (90%\\,C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively.

  2. Measurement of the neutrino mass splitting and flavor mixing by MINOS.

    Science.gov (United States)

    Adamson, P; Andreopoulos, C; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cavanaugh, S; Cherdack, D; Childress, S; Choudhary, B C; Coelho, J A B; Coleman, S J; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grant, N; Grzelak, K; Habig, A; Harris, D; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Ilic, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Morfín, J; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Oliver, W P; Orchanian, M; Ospanov, R; Paley, J; Patterson, R B; Pawloski, G; Pearce, G F; Petyt, D A; Phan-Budd, S; Plunkett, R K; Qiu, X; Ratchford, J; Raufer, T M; Rebel, B; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreiner, P; Shanahan, P; Smith, C; Sousa, A; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Yang, T; Zwaska, R

    2011-05-01

    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25×10(20) protons on target. A fit to neutrino oscillations yields values of |Δm(2)|=(2.32(-0.08)(+0.12))×10(-3) eV(2) for the atmospheric mass splitting and sin(2)(2θ)>0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively.

  3. Quantitative analysis of HOLZ line splitting in CBED patterns of epitaxially strained layers

    Energy Technology Data Exchange (ETDEWEB)

    Houdellier, F. [Centre d' Elaboration de Materiaux et d' Etudes Structurales, C.N.R.S., 29, Rue Jeanne Marvig, BP 94347 31055 Toulouse Cedex 4 (France)]. E-mail: florent@cemes.fr; Roucau, C. [Centre d' Elaboration de Materiaux et d' Etudes Structurales, C.N.R.S., 29, Rue Jeanne Marvig, BP 94347 31055 Toulouse Cedex 4 (France); Clement, L. [CEA, Departement de Recherche Fondamentale sur la Matiere Condensee, SP2M, 17, Rue des Martyrs, 38054 Grenoble (France); Rouviere, J.L. [CEA, Departement de Recherche Fondamentale sur la Matiere Condensee, SP2M, 17, Rue des Martyrs, 38054 Grenoble (France); Casanove, M.J. [Centre d' Elaboration de Materiaux et d' Etudes Structurales, C.N.R.S., 29, Rue Jeanne Marvig, BP 94347 31055 Toulouse Cedex 4 (France)

    2006-08-15

    A SiGe layer epitaxially grown on a silicon substrate is experimentally studied by convergent beam electron diffraction (CBED) experiments and used as a test sample to analyse the higher-order Laue zones (HOLZ) line splitting. The influence of surface strain relaxation on the broadening of HOLZ lines is confirmed. The quantitative fit of the observed HOLZ line profiles is successfully achieved using a formalism particularly well-adapted to the case of a z-dependent crystal potential (z being the zone axis). This formalism, based on a time-dependent perturbation theory approach, proves to be much more efficient than a classical Howie-Whelan approach, to reproduce the complex HOLZ lines profile in this heavily strained test sample.

  4. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  5. Steering far-field spin-dependent splitting of light by inhomogeneous anisotropic media

    CERN Document Server

    Ling, Xiaohui; Luo, Hailu; Wen, Shuangchun

    2012-01-01

    An inhomogeneous anisotropic medium with specific structure geometry can apply tunable spin-dependent geometrical phase to the light passing through the medium, and thus can be used to steer the spin-dependent splitting (SDS) of light. In this paper, we exemplify this inference by the $q$-plate, an inhomogeneous anisotropic medium. It is demonstrated that when a linearly polarized light beam normally passes through a $q$-plate, $k$-space SDS first occurs, and then the real-space SDS in the far-field focal plane of a converging lens is distinguishable. Interestingly, the SDS, described by the normalized Stokes parameter $S_3$, shows a multi-lobe and rotatable splitting pattern with rotational symmetry. Further, by tailoring the structure geometry of $q$-plate or/and incident polarization angle of light, the lobe number and the rotation angle both are tunable. Our result suggests that the $q$-plate can serve as potential devices for manipulating the photon spin states and enable applications such as in nano-opt...

  6. A Novel X-ray Diffractometer for the Florida Split Coil 25 Tesla Magnet

    Science.gov (United States)

    Wang, Shengyu; Kovalev, Alexey; Suslov, Alexey; Siegrist, Theo

    2014-03-01

    At National High Magnetic Field Laboratory (NHMFL), we are developing a unique X-ray diffractometer for the 25 Tesla Florida Split Coil Magnet for scattering experiments under extremely high static magnetic fields. The X-ray source is a sealed tube (copper or molybdenum anode), connected to the magnet by an evacuated beam tunnel. The detectors are either an image plate or a silicon drift detector, with the data acquisition system based on LabVIEW. Our preliminary experimental results showed that the performance of the detector electronics and the X-ray generator is reliable in the fringe magnetic fields produced at the highest field of 25 T. Using this diffractometer, we will make measurements on standard samples, such as LaB6, Al2O3 and Si, to calibrate the diffraction system. Magnetic samples, such as single crystal HoMnO3 and stainless steel 301 alloys will be measured subsequently. The addition of X-ray diffraction to the unique split coil magnet will significantly expand the NHMFL experimental capabilities. Therefore, external users will be able to probe spin - lattice interactions at static magnetic fields up to 25T. This project is supported by NSF-DMR Award No.1257649. NHMFL is supported by NSF Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. DoE.

  7. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Directory of Open Access Journals (Sweden)

    Jeffrey C. S. Wu

    2012-10-01

    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  8. Recent developments in solar H2 generation from water splitting

    Indian Academy of Sciences (India)

    Sivaraman Rajaambal; Kumarsrinivasan Sivaranjani; Chinnakonda S Gopinath

    2015-01-01

    Hydrogen production from water and sunlight through photocatalysis could become one of the channels, in the not-so-distant future, to meet a part of ever growing energy demands. However, accomplishing solar water splitting through semiconductor particulate photocatalysis seems to be the ‘Holy Grail’ problem of science. In the present mini-review, some of the critical strategies of semiconductor photocatalysis are focused with the aim of enumerating underlying critical factors such as visible light harvesting, charge carrier separation, conduction and their utilization that determine the quantum efficiency. We attempted to bring out the essential requirements expected in a material for facile water splitting by explaining important and new designs contributed in the last decade. The newly emerged designs in semiconductor architecture employing nanoscience towards meeting the critical factors of facile photocatalysis are elucidated. The importance of band gap engineering is emphasized to utilize potential wide band gap semiconductors. Assistance of metal nanostructures and quantum dots to semiconductors attains vital importance as they are exuberant visible light harvesters and charge carrier amplifiers. Benevolent use of quantum dots in solar water splitting and photoelectrochemical water splitting provides scope to revolutionize the quantum efficiency by its multiple exciton generation features. A list of drawbacks and issues that hamper the much needed breakthrough in photocatalysis of water splitting is provided to invite attention to address them and move towards sustainable water splitting.

  9. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  10. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  11. Large-scale patterned ZnO nanorod arrays for efficient photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yaping [School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004 (China); Yan, Xiaoqin; Gu, Yousong; Chen, Xiang; Bai, Zhiming; Kang, Zhuo [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 10083 (China); Long, Fei, E-mail: longf@glite.edu.cn [School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004 (China); Zhang, Yue, E-mail: yuezhang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 10083 (China); Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 10083 (China)

    2015-06-01

    Highlights: • Large-scale patterned ZnO NRAs are designed and fabricated via two-beam laser interference lithography and hydrothermal synthesis. • The ZnO NRA photoanodes with square pattern achieved a maximum efficiency of 0.18%, which is improved 135% compared to the control group with no patterned ZnO NRAs. • FDTD simulation data demonstrated that the square patterned ZnO NRAs with periodic architecture have superior light harvesting efficiency. • The patterned ZnO NRAs have enhanced light-harvesting ability. The enlarged surface area accelerated the charge transfer at the photoanode/electrolyte interface. - Abstract: Nowadays, the fabrication of photoanodes with high light-harvesting capability and charge transfer efficiency is a key challenge for photoelectrochemical (PEC) water splitting. In this paper, large-scale patterned ZnO nanorod arrays (NRAs) were designed and fabricated via two-beam laser interference lithography and hydrothermal synthesis, which were further applied as PEC photoanodes for the first time. By adopting the ZnO NRA photoanodes with square pattern, the PEC cells achieved a maximum efficiency of 0.18%, which was improved 135% compared to the control group with no patterned ZnO NRAs. The large-scale highly ordered ZnO NRAs have enhanced light-harvesting ability due to the light-scattering effect. In addition, the enlarged surface area of the patterned ZnO NRAs accelerated the charge transfer at the photoanode/electrolyte interface. This research demonstrates an effective mean to realize the efficient solar water splitting, and the results suggest that large-scale highly ordered nanostructures are promising candidates in the field of energy harvesting.

  12. Empirical model for controlling beam-beam effects in ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    Parzen, G

    1980-01-01

    The beam-beam interaction may limit the beam intensity in ISABELLE. Although considerable progress has been made in understanding the beam-beam interaction, there appears to be no reliable method at present for computing the effects of the beam-beam interaction. The steps taken at ISABELLE to limit beam-beam effects are based largely on the experience accumulated at the ISR. At the ISR, the beam-beam effects do not appear to be large, and the beam intensity at the ISR does not appear to be limited by beam-beam effects. The beam-beam effects may be much stronger in ISABELLE because of factors like higher intensity and stronger non-linearities.

  13. Beam Dynamics for ARIA

    CERN Document Server

    Ekdahl, Carl

    2015-01-01

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  14. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  15. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  16. Electron Beam Ion Sources

    OpenAIRE

    Zschornacka, G.; Schmidt, M.; Thorn, A.

    2014-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviole...

  17. Studies of beam dynamics in relativistic klystron two-beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka band (~ 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also

  18. Beam injection into RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  19. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  20. Splitting parameter yield (SPY): A program for semiautomatic analysis of shear-wave splitting

    Science.gov (United States)

    Zaccarelli, Lucia; Bianco, Francesca; Zaccarelli, Riccardo

    2012-03-01

    SPY is a Matlab algorithm that analyzes seismic waveforms in a semiautomatic way, providing estimates of the two observables of the anisotropy: the shear-wave splitting parameters. We chose to exploit those computational processes that require less intervention by the user, gaining objectivity and reliability as a result. The algorithm joins the covariance matrix and the cross-correlation techniques, and all the computation steps are interspersed by several automatic checks intended to verify the reliability of the yields. The resulting semiautomation generates two new advantages in the field of anisotropy studies: handling a huge amount of data at the same time, and comparing different yields. From this perspective, SPY has been developed in the Matlab environment, which is widespread, versatile, and user-friendly. Our intention is to provide the scientific community with a new monitoring tool for tracking the temporal variations of the crustal stress field.

  1. A study into lowering beam trajectories in P01

    Energy Technology Data Exchange (ETDEWEB)

    Sondgeroth, A.

    1995-09-01

    This document describes what changes would be needed to lower the primary beams coming from switchyard into enclosure P01 without changing trajectories in the downstream enclosures. There is a 680 foot pipe buried in the ground between Enclosure E and P01 which allows primary beam to travel from the switchyard area to the research division area. This pipe is approximately 25 years old and has started to leak. The effects of the leaky pipe can be catastrophic to the transportation of the proton area beams. The vacuum group has devised an ingenious way of repairing a leak from the inside using remotely controlled grinders, patchers, welders and cameras mounted on carts that can be pulled into the pipe. A typical patch adds approximately one half of an inch of material which, in turn, restricts the aperture of the pipe. This pipe has three separate beams running through it split in the vertical plane. Pwest is the highest beam in the pipe and, in at least one location, the center of the beam clears the top of the pipe by one and one half inches. If a leak were to develop at a low spot in the pipe the patch to fix the leak might create an obstruction for the beam. Hence, the request from the Research Division Head.

  2. The research of propagation characteristic and formation of double half-Gaussian hollow beams

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new kind of hollow beams, double half-Gaussian hollow beams,was put forward. With the help of the Collins formula, the analytical equation of propagation and transformation of the hollow laser beams in free space was deduced. The simulation shows that the intensity exhibits the three-dimensional trap distribution in the near-field, while the double half-Gaussian hollow beams turn into solid laser beams when propagating a certain distance, which shows the characteristics of self-focus. The double half-Gaussian hollow beams were obtained by means of the dual-reflecting splitting optical system. The intensity of the vertical loop in different distances was tested, which shows that the analytical equation of propagation and transformation is in agreement with the result.

  3. The research of propagation characteristic and formation of double half-Gaussian hollow beams

    Institute of Scientific and Technical Information of China (English)

    DONG Yuan; ZHANG XiHe; NING GuoBin; JIN GuangYong; LIANG Wei; L(U) YanFei; ZHANG Kai

    2009-01-01

    A new kind of hollow beams, double half-Gaussian hollow beams, was put forward. With the help of the Collins formula, the analytical equation of propagation and transformation of the hollow laser beams in free space was deduced. The simulation shows that the intensity exhibits the three-dimensional trap distribution in the near-field, while the double half-Gaussian hollow beams turn into solid laser beams when propagating a certain distance, which shows the characteristics of self-focus. The double half-Gaussian hollow beams were obtained by means of the dual-reflecting splitting optical system. The intensity of the vertical loop in different distances was tested, which shows that the analytical equation of propagation and transformation is in agreement with the result.

  4. Generation of Vortex Beams with Strong Longitudinally Polarized Magnetic Field by Using a Metasurface

    CERN Document Server

    Veysi, Mehdi; Capolino, Filippo

    2014-01-01

    A novel method of generation and synthesis of azimuthally E-polarized vortex beams is presented. Along the axis of propagation such beams have a strong longitudinally polarized magnetic field where ideally there is no electric field. We show how these beams can be constructed through the interference of Laguerre-Gaussian beams carrying orbital angular momentum. As an example, we present a metasurface made of double-split ring slot pairs and report a good agreement between simulated and analytical results. Both a high magnetic-to-electric-field contrast ratio and a magnetic field enhancement are achieved. We also investigate the metasurface physical constraints to convert a linearly polarized beam into an azimuthally E- polarized beam and characterize the performance of magnetic field enhancement and electric field suppression of a realistic metasurface. These findings are potentially useful for novel optical spectroscopy related to magnetic dipolar transitions and for optical manipulation of particles with sp...

  5. 高对称型声子晶体自准直弯曲及分束∗%Bending and splitting of self-collimated b eams in high symmetry sonic crystal

    Institute of Scientific and Technical Information of China (English)

    宋宗根; 邓科; 何兆剑; 赵鹤平

    2016-01-01

    Self-collimation, a peculiar effect that allows acoustic signals to propagate in sonic crystals (SCs) along a definite direction with almost no diffraction, possesses a promising prospect in integrated acoustics as it provides an effective way to transmit acoustic signals between on-chip functionalities. There exists, however, the intrinsic inability of self-collimation to efficiently bend and split acoustic signals. Most of existing schemes for bending and splitting of self-collimated acoustic beams are based on SC of square lattice, thus their bending and splitting angles are restricted to 90◦. In this paper, the finite element method is used to investigate self-collimation of acoustic beams in an SC of hexagonal lattice. It is shown that 60◦ and 120◦ bending of self-collimated acoustic waves can be simultaneously realized by simply truncating the two-dimensional hexagonal SC. Bended imaging for a point source with a subwavelength resolution of 0.38λ0 can also be realized by truncating the SC structure. In addition, a scheme for 60◦ and 120◦ splitting of self-collimated acoustic waves is also proposed by introducing line-defects into the hexagonal SC. It is demonstrated that an incoming self-collimated beam can be split into a 60◦ (or 120◦ bended one and a transmitted one, with the power ratio adjusted by the value of defect size. We believe that this hexagonal-SC-based bending and splitting mechanism will offer more flexibilities to the beam control in the design of acoustic devices and will be useful in integrated acoustic applications.

  6. Halo formation from mismatched beam-beam interactions

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2003-05-23

    In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.

  7. Torque Splitting by a Concentric Face Gear Transmission

    Science.gov (United States)

    Filler, Robert R.; Heath, Gregory F.; Slaughter, Stephen C.; Lewicki, David G.

    2002-01-01

    Tests of a 167 Kilowatt (224 Horsepower) split torque face gearbox were performed by the Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP). This paper provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA. Design, manufacture and testing of the scaled-power TRP proof-of-concept (POC) split torque gearbox followed preliminary evaluations of the concept performed early in the program. The split torque tests were run using 200 N-m (1767 in-lbs) torque input to each side of the transmission. During tests, two input pinions were slow rolled while in mesh with the two face gears. Two idler gears were also used in the configuration to recombine torque near the output. Resistance was applied at the output face gear to create the required loading conditions in the gear teeth. A system of weights, pulleys and cables were used in the test rig to provide both the input and output loading. Strain gages applied in the tooth root fillets provided strain indication used to determine torque splitting conditions at the input pinions. The final two pinion-two idler tests indicated 52% to 48% average torque split capabilities for the two pinions. During the same tests, a 57% to 43% average distribution of the torque being recombined to the upper face gear from the lower face gear was measured between the two idlers. The POC split torque tests demonstrated that face gears can be applied effectively in split torque rotorcraft transmissions, yielding good potential for significant weight, cost and reliability improvements over existing equipment using spiral bevel gearing.

  8. Effect of incident angles on splitting ratio of YVO4 polarizing splitting prisms%钒酸钇偏光分束棱镜光强分束比的入射角效应

    Institute of Scientific and Technical Information of China (English)

    李华; 李国华; 邵俊平

    2009-01-01

    In order to analyze the variation relation between light intensity splitting ratio and incident angle with He-Ne laser obliquely incident on YVO4 polarizing splitting prism,the mathematical formula of the light beam were deduced according to the geometric relationship,Fresnel formula and phase matching conditions.Through experimental verification,theoretical value accorded with experimental value,then the error was analyzed.It provides important reference information for the development of YVO4 polarizing splitting prisms as polarizing devices.%为了分析He-Ne激光斜入射钒酸钇偏光分束棱镜时光强分束比随入射角度的变化关系,根据几何关系、菲涅耳公式及相位匹配条件从理论上推导出光强分束比的数学表达式,通过实验验证,发现理论值和实验值相符合,并对存在的误差进行了分析.这为钒酸钇棱镜在偏光器件中的应用提供了重要的参考价值.

  9. Refractive beam shapers for focused laser beams

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2016-09-01

    Focusing of laser radiation is most often used approach in various industrial micromachining applications like scribing, PCB drilling, and is important in scientific researches like laser heating in geophysics experiments with diamond anvil cells (DAC). Control of intensity distribution in focal spot is important task since optimum intensity profiles are rather flat-top, doughnut or "inverse-Gauss" than typical for lasers Gaussian profile. Because of high intensity of modern CW and pulsed lasers it is advisable to use refractive beam shaping optics with smooth optical surfaces providing high radiation resistance. Workable optical solutions can be built on the base of diffraction theory conclusion that flat-top intensity profile in focal plane of a lens is created when input beam has Airy-disk intensity distribution. It is suggested to apply refractive beam shapers converting, with minimum wavefront deformation, Gaussian profile of TEM00 beam to a beam with Airy disk intensity distribution, thereby optimizing conditions of interference near the focal plane of a lens after the beam shaper and providing flat-top, doughnut, "inverse-Gauss" profiles. This approach allows operation with CW and ultra-short pulse lasers, using F-theta lenses and objectives, mirror scanners, provides extended depth of field similar to Rayleigh length of comparable TEM00 beam, easy integration in industrial equipment, simple adjustment procedure and switching between profiles, telescope and collimator implementations. There will be considered design basics of beam shapers, analysis of profile behaviour near focal plane, examples of implementations in micromachining systems and experimental DAC setups, results of profile measurements and material processing.

  10. An Examination Of Fracture Splitting Parameters Of Crackable Connecting Rods

    Directory of Open Access Journals (Sweden)

    Zafer Özdemir

    2000-06-01

    Full Text Available Fracture splitting method is an innovative processing technique in the field of automobile engine connecting rod (con/rod manufacturing. Compared with traditional method, this technique has remarkable advantages. Manufacturing procedures, equipment and tools investment can be decreased and energy consumption reduced remarkably. Furthermore, product quality and bearing capability can also be improved. It provides a high quality, high accuracy and low cost route for producing connecting rods (con/rods. With the many advantages mentioned above, this method has attracted manufacturers attention and has been utilized in many types of con/rod manufacturing. In this article, the method and the advantages it provides, such as materials, notches for fracture splitting, fracture splitting conditions and fracture splitting equipment are discussed in detail. The paper describes an analysis of examination of fracture splitting parameters and optik-SEM fractography of C70S6 crackable connectıng rod. Force and velocity parameters are investigated. That uniform impact force distrubition starting from the starting notch causes brittle and cleavage failure mode is obtained as a result. This induces to decrease the toughness.

  11. Effects on Text Simplification: Evaluation of Splitting Up Noun Phrases.

    Science.gov (United States)

    Leroy, Gondy; Kauchak, David; Hogue, Alan

    2016-01-01

    To help increase health literacy, we are developing a text simplification tool that creates more accessible patient education materials. Tool development is guided by a data-driven feature analysis comparing simple and difficult text. In the present study, we focus on the common advice to split long noun phrases. Our previous corpus analysis showed that easier texts contained shorter noun phrases. Subsequently, we conducted a user study to measure the difficulty of sentences containing noun phrases of different lengths (2-gram, 3-gram, and 4-gram); noun phrases of different conditions (split or not); and, to simulate unknown terms, pseudowords (present or not). We gathered 35 evaluations for 30 sentences in each condition (3 × 2 × 2 conditions) on Amazon's Mechanical Turk (N = 12,600). We conducted a 3-way analysis of variance for perceived and actual difficulty. Splitting noun phrases had a positive effect on perceived difficulty but a negative effect on actual difficulty. The presence of pseudowords increased perceived and actual difficulty. Without pseudowords, longer noun phrases led to increased perceived and actual difficulty. A follow-up study using the phrases (N = 1,350) showed that measuring awkwardness may indicate when to split noun phrases. We conclude that splitting noun phrases benefits perceived difficulty but hurts actual difficulty when the phrasing becomes less natural.

  12. Polymer integrated waveguide optical biosensor by using spectral splitting effect

    Science.gov (United States)

    Han, Xiaonan; Han, Xiuyou; Shao, Yuchen; Wu, Zhenlin; Liang, Yuxin; Teng, Jie; Bo, Shuhui; Morthier, Geert; Zhao, Mingshan

    2017-02-01

    The polymer waveguide optical biosensor based on the Mach-Zehnder interferometer (MZI) by using spectral splitting effect is investigated. The MZI based biosensor has two unequal width sensing arms. With the different mode dispersion responses of the two-arm waveguides to the cladding refractive index change, the spectral splitting effect of the output interference spectrum is obtained, inducing a very high sensitivity. The influence of the different mode dispersions between the two-arm waveguides on the spectral splitting characteristic is analyzed. By choosing different lengths of the two unequal width sensing arms, the initial dip wavelength of the interference spectrum and the spectral splitting range can be controlled flexibly. The polymer waveguide optical biosensor is designed, and its sensing property is analyzed. The results show that the sensitivity of the polymer waveguide optical biosensor by using spectral splitting effect is as high as 104 nm/RIU, with an improvement of 2-3 orders of magnitude compared with the slot waveguide based microring biosensor.

  13. Experimental study on dynamic splitting of recycled concrete using SHPB

    Directory of Open Access Journals (Sweden)

    Lu Yubin

    2015-01-01

    Full Text Available To study the recycled concrete splitting tensile properties and fracture state with various recycled coarse aggregate replacement percentage (i.e. 0%, 25%, 50%, 75% and 100%, the dynamic splitting test of recycled concrete was carried out using large diameter (75 mm split Hopkinson pressure bar (SHPB. The results show that the recycled concrete splitting tensile strength increases with the increase of loading rate, and the loading rate also affects the recycled concrete fracture state, which indicates that the recycled concrete has obvious rate sensitivity. The damage state of the recycled concrete is not only the destruction of the interface between coarse aggregate and cement mortar, but also associates with the fracture damage of aggregates. Under the same water cement ratio, when the replacement percentage of coarse aggregates is around 50%–75%, the gradation of natural and recycled coarse aggregate is optimal, and thus the splitting tensile strength is the largest. This study offers theoretical basis for the engineering applications of recycled concrete.

  14. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips

    Science.gov (United States)

    Moro, Alessandro; Foresta, Enrico; Falchi, Marco; De Angelis, Paolo; D'Amato, Giuseppe; Pelo, Sandro

    2017-01-01

    The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  15. Circadian regulation of cortisol release in behaviorally split golden hamsters.

    Science.gov (United States)

    Lilley, Travis R; Wotus, Cheryl; Taylor, Daniel; Lee, Jennifer M; de la Iglesia, Horacio O

    2012-02-01

    The master circadian clock located within the hypothalamic suprachiasmatic nucleus (SCN) is necessary for the circadian rhythm of glucocorticoid (GC) release. The pathways by which the SCN sustains rhythmic GC release remain unclear. We studied the circadian regulation of cortisol release in the behaviorally split golden hamster, in which the single bout of circadian locomotor activity splits into two bouts approximately 12 h apart after exposing the animals to constant light conditions. We show that unsplit control hamsters present a single peak of cortisol release that is concomitant with a single peak of ACTH release. In contrast, split hamsters show two peaks of cortisol release that are approximately 12 h appart and are appropriately phased to each locomotor activity bout but surprisingly do not rely on rhythmic release of ACTH. Our results are consistent with a model in which the circadian pacemaker within the SCN regulates the circadian release of GC via input to the hypothalamo-pituitary-adrenal axis and via a second regulatory pathway, which likely involves sympathetic innervation of the adrenal and can operate even in the absence of ACTH circadian rhythmic release. Furthermore, we show that although the overall 24-h cortisol output in split hamsters is lower than in unsplit controls, split hamsters release constant low levels of ACTH. This result suggests that the timing, rather than the absolute amount, of cortisol release is more critical for the induction of negative feedback effects that regulate the hypothalamo-pituitary-adrenal axis.

  16. Wavelength-tunable split-and-delay optical system for hard X-ray free-electron lasers.

    Science.gov (United States)

    Osaka, Taito; Hirano, Takashi; Sano, Yasuhisa; Inubushi, Yuichi; Matsuyama, Satoshi; Tono, Kensuke; Ishikawa, Tetsuya; Yamauchi, Kazuto; Yabashi, Makina

    2016-05-02

    We developed a hard X-ray split-and-delay optical (SDO) system based on Bragg diffraction in crystal optics for generating two split pulses with a variable temporal separation. To achieve both high stability and operational flexibility, the SDO system was designed to include variable-delay and fixed-delay branches. As key optical elements, we fabricated high quality thin crystals and channel-cut crystals by applying the plasma chemical vaporization machining technique. The SDO system using Si(220) crystals covered a photon energy range of 6.5-11.5keV and a delay time range from a negative value to > 45 ps over the photon energy range (up to 220 ps at 6.5 keV). A simple alignment method for realizing a spatial overlap between the split pulses was developed. The SDO system was tested at a SPring-8 beamline in combination with a focusing system. We achieved an excellent overlap with an accuracy of 30 nm for ∼ 200 nm focused beams in both the horizontal and vertical directions. This achievement is an important progress towards the realization of time-resolved studies using multiple X-ray pulses with a time range from femtosecond to subnanosecond scales at X-ray free-electron laser facilities.

  17. Online monitor detector for the protontherapy beam at the INFN Laboratori Nazionali del Sud-Catania

    Energy Technology Data Exchange (ETDEWEB)

    Givehchi, N. [Dipt. di Fisica Sperimentale, Univ. di Torino, via P.Giuria 1, Turin 10125 (Italy)]|[INFN, via P.Giuria 1, Turin 10125 (Italy); Marchetto, F. [INFN, via P.Giuria 1, Turin 10125 (Italy)]. E-mail: marchetto@to.infn.it; Boriano, A. [Dipt. di Fisica Sperimentale, Univ. di Torino, via P.Giuria 1, Turin 10125 (Italy)]|[INFN, via P.Giuria 1, Turin 10125 (Italy); Attili, A. [INFN, via P.Giuria 1, Turin 10125 (Italy); Bourhaleb, F. [Dipt. di Fisica Sperimentale, Univ. di Torino, via P.Giuria 1, Turin 10125 (Italy); Cirio, R. [INFN, via P.Giuria 1, Turin 10125 (Italy); Cirrone, G.A.P.; Cuttone, G.; Di Rosa, F. [INFN Lab. Nazionali del Sud, via S. Sofia 44, Catania 95123 (Italy); Donetti, M. [INFN, via P.Giuria 1, Torino 10125 (Italy)]|[Fondazione CNAO, via Caminadella 16, Milan 20123 (Italy); Garella, M.A.; Giordanengo, S.; Iliescu, S. [INFN, via P.Giuria 1, Turin 10125 (Italy); La Rosa, A. [Dipt. di Fisica Sperimentale, Univ. di Torino, via P.Giuria 1, Turin 10125 (Italy)]|[INFN, via P.Giuria 1, Turin 10125 (Italy); Lojacono, P.A.; Russo, G. [INFN Lab. Nazionali del Sud, via S. Sofia 44, Catania 95123 (Italy); Nicotra, P. [Si.a.tel s.r.l., via G. Marconi 94, Tremestieri Etneo (Ct) 95030 (Italy); Peroni, C. [Dipt. di Fisica Sperimentale, Univ. di Torino, via P.Giuria 1, Turin 10125 (Italy)]|[INFN, via P.Giuria 1, Torino 10125 (Italy); Pecka, A. [Dipt. di Fisica Sperimentale, Univ. di Torino, via P.Giuria 1, Torino 10125 (Italy)]|[INFN, via P.Giuria 1, Turin 10125 (Italy); Pitta, G. [Fondazione TERA, via Puccini 1, Novara 28100 (Italy); Raffaele, L. [INFN Lab. Nazionali del Sud, via S. Sofia 44, Catania 95123 (Italy)]|[U.O.Radiologia e Radioterapia, Azienda Ospedaliero-Univ. Policlinico dell' Univ. di Catania, via S. Sofia 44, Catania 95123 (Italy); Sabini, M.G. [INFN Lab. Nazionali del Sud, via S. Sofia 44, Catania 95123 (Italy)]|[A.O. Cannizzaro, via Messina 829, Catania 95126 (Italy); Valastro, L.M.

    2007-03-21

    A detector to monitor online the protontherapy beam at the Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS) has been built and characterized. The detector is made of two ionization chambers: each chamber has the anode splitted into 256 0.5 mm strips with vertical and horizontal orientation. The chambers are part of the beam line: signals can be processed online at a speed up to 100 Hz and results are promptly available. Thus the beam geometry can be controlled continuously during patient treatment, and in case of deviation from the required conditions, the treatment can be directly concluded.

  18. Laser Beam Propagation Through Inhomogeneous Media with Shock-Like Profiles: Modeling and Computing

    Science.gov (United States)

    Adamovsky, Grigory; Ida, Nathan

    1997-01-01

    Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows. Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and spreading. The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media. Numerical techniques are presented to compute the beam through such media. The results of computation are presented, discussed, and compared with experimental data.

  19. Online monitor detector for the protontherapy beam at the INFN Laboratori Nazionali del Sud-Catania

    Science.gov (United States)

    Givehchi, N.; Marchetto, F.; Boriano, A.; Attili, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Donetti, M.; Garella, M. A.; Giordanengo, S.; Iliescu, S.; La Rosa, A.; Lojacono, P. A.; Nicotra, P.; Peroni, C.; Pecka, A.; Pitta, G.; Raffaele, L.; Russo, G.; Sabini, M. G.; Valastro, L. M.

    2007-03-01

    A detector to monitor online the protontherapy beam at the Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS) has been built and characterized. The detector is made of two ionization chambers: each chamber has the anode splitted into 256 0.5 mm strips with vertical and horizontal orientation. The chambers are part of the beam line: signals can be processed online at a speed up to 100 Hz and results are promptly available. Thus the beam geometry can be controlled continuously during patient treatment, and in case of deviation from the required conditions, the treatment can be directly concluded.

  20. Study on Mechanical Features of Brazilian Splitting Fatigue Tests of Salt Rock

    OpenAIRE

    Weichao Wang; Mengmeng Wang; Xiliang Liu

    2016-01-01

    The microtest, SEM, was carried out to study the fracture surface of salt rock after the Brazilian splitting test and splitting fatigue test were carried out with a servo-controlled test machine RMT-150B. The results indicate that the deviation of using the tablet splitting method is larger than that of using steel wire splitting method, in Brazilian splitting test of salt rock, when the conventional data processing method is adopted. There are similar deformation features in both the convent...

  1. Focal plane internal energy flows of singular beams in astigmatically aberrated low numerical aperture systems.

    Science.gov (United States)

    Bahl, Monika; Senthilkumaran, P

    2014-09-01

    Singular beams have circulating energy components. When such beams are focused by low numerical aperture systems suffering from astigmatic aberration, these circulating energy components get modified. The phase gradient introduced by this type of aberration splits the higher charge vortices. The dependence of the charge, the aberration coefficient, and the size of the aperture on the nature of the splitting process are reported in this paper. The transverse components of the Poynting vector fields that can be derived from the phase gradient vector field distributions are further decomposed into solenoidal and irrotational components using the Helmholtz-Hodge decomposition method. The solenoidal components relate to the orbital angular momentum of the beams, and the irrotational components are useful in the transport of intensity equations for phase retrieval.

  2. Wedge Splitting Test and Fracture Energy on Particulate Reinforced Composites

    Energy Technology Data Exchange (ETDEWEB)

    Na, Seong Hyeon; Kim, Jae Hoon; Choi, Hoon Seok [Chungnam National Univ., Daejeon (Korea, Republic of); Park, Jae Beom; Kim, Shin Hoe; Jung, Gyoo Dong [Agency for Defense Developmen, Daejeon (Korea, Republic of)

    2016-03-15

    The effect of temperature on the fracture energy, crack propagation, and crack tip opening displacement(CTOD) was determined for particulate reinforced composites using the wedge splitting test. The materials that were used consisted of a polymer binder, an oxidizing agent, and aluminum particles. The test rate of the wedge splitting specimen was 50 mm/min, the temperature conditions were 50℃, room temperature, -40℃, and -60℃. The fracture energy, calculated from splitting load-crack mouth opening displacement(CMOD) curves, increased with decreasing temperature from 50℃ to -40℃. In addition, the strength of the particulate reinforced composites increased sharply at -60℃, and the composites evidenced brittle fracture due to the glass transition temperature. The strain fields near the crack tip were analyzed using digital image correlation.

  3. Split-plot Experiments with Unusual Numbers of Subplot Runs

    DEFF Research Database (Denmark)

    Kulahci, Murat

    2007-01-01

    In many experimental situations, it may not be feasible or even possible to run experiments in a completely randomized fashion as usually recommended. Under these circumstances, split-plot experiments in which certain factors are changed less frequently than the others are often used. Most...... of the literature on split-plot designs is based on 2-level factorials. For those designs, the number of subplots is a power of 2. There may however be some situations where for cost purposes or physical constraints, we may need to have unusual number of subplots such as 3, 5, 6, etc. In this article, we explore...... this issue and provide some examples based on the Plackett and Burman designs. Also algorithmically constructed D-optimal split-plot designs are compared to those based on Plackett and Burman designs....

  4. High Order Three Part Split Symplectic Integration Schemes

    CERN Document Server

    Gerlach, Enrico; Skokos, Charalampos; Bodyfelt, Joshua D; Papamikos, Georgios

    2013-01-01

    Symplectic integration methods based on operator splitting are well established in many branches of science. For Hamiltonian systems which split in more than two parts, symplectic methods of higher order have been studied in detail only for a few special cases. In this work, we present and compare different ways to construct high order symplectic schemes for general Hamiltonian systems that can be split in three integrable parts. We use these techniques to numerically solve the equations of motion for a simple toy model, as well as the disordered discrete nonlinear Schr\\"odinger equation. We thereby compare the efficiency of symplectic and non-symplectic integration methods. Our results show that the new symplectic schemes are superior to the other tested methods, with respect to both long term energy conservation and computational time requirements.

  5. Enabling unassisted solar water splitting by iron oxide and silicon

    Science.gov (United States)

    Jang, Ji-Wook; Du, Chun; Ye, Yifan; Lin, Yongjing; Yao, Xiahui; Thorne, James; Liu, Erik; McMahon, Gregory; Zhu, Junfa; Javey, Ali; Guo, Jinghua; Wang, Dunwei

    2015-06-01

    Photoelectrochemical (PEC) water splitting promises a solution to the problem of large-scale solar energy storage. However, its development has been impeded by the poor performance of photoanodes, particularly in their capability for photovoltage generation. Many examples employing photovoltaic modules to correct the deficiency for unassisted solar water splitting have been reported to-date. Here we show that, by using the prototypical photoanode material of haematite as a study tool, structural disorders on or near the surfaces are important causes of the low photovoltages. We develop a facile re-growth strategy to reduce surface disorders and as a consequence, a turn-on voltage of 0.45 V (versus reversible hydrogen electrode) is achieved. This result permits us to construct a photoelectrochemical device with a haematite photoanode and Si photocathode to split water at an overall efficiency of 0.91%, with NiFeOx and TiO2/Pt overlayers, respectively.

  6. Quark splitting in non-trivial \\theta-vacuum

    CERN Document Server

    Xing, Hongxi; Yuan, Feng

    2010-01-01

    Quark splitting in non-trivial $\\theta$-vacuum with a given helicity is investigated in pQCD with a modified quark propagator. We found that the quark splitting functions were modified by the presence of a topologically non-trivial QCD background field, though there is no explicit helicity flip associated with the radiative processes. The interaction with the topological non-trivial field leads to the degeneracy of the quark splitting functions for left- and right-handed quarks. Such degeneracy can lead to imbalance of left- and right-handed quarks in quark jet showers. We also discuss phenomenological consequences of such imbalance if there exists non-trivial topological gluon field configuration in heavy-ion collisions.

  7. 'Split posterior tooth': conservative clinical re-attachment.

    Science.gov (United States)

    Abraham, Sathish; Chacko, Lisa Neelathil

    2014-07-30

    Trauma is the prime causative factor for fracture of teeth/dentition. Many procedural management options are followed successfully in relation to the anterior teeth. However, most posterior cases where the tooth is fractured have only limited options to pursue to save the tooth. Fractured teeth, whether they are vital/non-vital, are predominantly managed with surgical options. This paper discusses a conservative approach to reattaching a split posterior tooth. A split tooth situation is mostly an absolute indication for extraction, but the clinician may go in for extensive surgical procedures if he/she wishes to save it. The reattachment of the tooth can be successfully done and it can be put to function. This paper discusses how a split posterior tooth can be treated successfully, although depending on multiple factors. A full crown cemented after successful reattachment and root canal therapy would provide sufficient support in order for the tooth to heal.

  8. Active split-ring metamaterial slabs for magnetic resonance imaging

    CERN Document Server

    Lopez, Marcos A; Freire, Manuel J; Behr, Volker C; Jakob, Peter M; Marques, Ricardo

    2011-01-01

    In this work, it is analyzed the ability of split-ring metamaterial slabs with zero/high permeability to reject/confine the radiofrequency magnetic field in magnetic resonance imaging systems. Using an homogenization procedure, split-ring slabs have been designed and fabricated to work in a 1.5T system. Active elements consisting of pairs of crossed diodes are inserted in the split-rings. With these elements, the permeability of the slabs can be automatically switched between a unity value when interacting with the strong excitation field of the transmitting body coil, and zero or high values when interacting with the weak field produced by protons in tissue. Experiments are shown for different configurations where these slabs can help to locally increase the signal-to-noise-ratio.

  9. Giant Rashba spin splitting in Bi2Se3: Tl

    KAUST Repository

    Singh, Nirpendra

    2014-07-25

    First-principles calculations are employed to demonstrate a giant Rashba spin splitting in Bi2Se3:Tl. Biaxial tensile and compressive strain is used to tune the splitting by modifying the potential gradient. The band gap is found to increase under compression and decreases under tension, whereas the dependence of the Rashba spin splitting on the strain is the opposite. Large values of αR = 1.57 eV Å at the bottom of the conduction band (electrons) and αR = 3.34 eV Å at the top of the valence band (holes) are obtained without strain. These values can be further enhanced to αR = 1.83 eV Å and αR = 3.64 eV Å, respectively, by 2% tensile strain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. ALLOPHONIC SPLITS IN L2 PHONOLOGY: THE QUESTION OF LEARNABILITY

    Directory of Open Access Journals (Sweden)

    Gregory K . Iverson

    2001-06-01

    Full Text Available The research reported in this paper is intended as a contribution to the understanding of several wellknown problems relating to the leaming of phonemic contrasts in second language (L2 phonology. The paper describes a series of ongoing studies examining what Lado (1957 hypothesized to represent maximum diffículty in second language pronunciation, narnely, a phonemic split. This is the process involved when an L2 learner must split native language (NL allophones into separate target language (TL phonemes. Two core principles of phonological theory are described and evaluated for their relevante in explaining the series of well-defined, implicationally-related stages involved in a phonemic split. Finally, the paper reports the results of an empirical study designed to test the explanatory adequacy of these principles, and concludes with a discussion of the implications of these studies for second language phonology in general.

  11. Advanced split-illumination electron holography without Fresnel fringes

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki, E-mail: tanigaki-toshiaki@riken.jp [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Aizawa, Shinji; Park, Hyun Soon [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Harada, Ken [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Shindo, Daisuke [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan)

    2014-02-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible.

  12. Tantalum nitride for photocatalytic water splitting: concept and applications

    KAUST Repository

    Nurlaela, Ela

    2016-10-12

    Along with many other solar energy conversion processes, research on photocatalytic water splitting to generate hydrogen and oxygen has experienced rapid major development over the past years. Developing an efficient visible-light-responsive photocatalyst has been one of the targets of such research efforts. In this regard, nitride materials, particularly Ta3N5, have been the subject of investigation due to their promising properties. This review focuses on the fundamental parameters involved in the photocatalytic processes targeting overall water splitting using Ta3N5 as a model photocatalyst. The discussion primarily focuses on relevant parameters that are involved in photon absorption, exciton separation, carrier diffusion, carrier transport, catalytic efficiency, and mass transfer of the reactants. An overview of collaborative experimental and theoretical approaches to achieve efficient photocatalytic water splitting using Ta3N5 is discussed.

  13. Guidelines to Develop Efficient Photocatalysts for Water Splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2016-04-03

    Photocatalytic overall water splitting is the only viable solar-to-fuel conversion technology. The research discloses an investigation process wherein by dissecting the photocatalytic water splitting device, electrocatalysts, and semiconductor photocatalysts can be independently studied, developed and optimized. The assumption of perfect catalysts leads to the realization that semiconductors are the limiting factor in photocatalysis. This dissertation presents a guideline for efficient photocatalysis using semiconductor particles developed from idealized theoretical simulations. No perfect catalysts exist; then the discussion focus on the development of efficient non-noble metal electrocatalysts for hydrogen evolution from water reduction. Tungsten carbide (WC) is selective for the catalysis of hydrogen without the introduction of the reverse reaction of water formation, which is critical to achieving photocatalytic overall water splitting as demonstrated in this work. Finally, photoelectrochemistry is used to characterize thoroughly Cu-based p-type semiconductors with potential for large-scale manufacture. Artificial photosynthesis may be achieved by following the recommendations herein presented.

  14. Split and delay photon correlation spectroscopy with a visible light

    Energy Technology Data Exchange (ETDEWEB)

    Rasch, Marten

    2016-04-15

    The development and performance of a setup constructed with the aim for the split pulse photon correlation spectroscopy is presented in this thesis. The double pulse time structure is accomplished with help of an Acusto-Optic Modulator (AOM) crystal, which mimics the splitting and delaying of photon pulses. The setup provides double pulses and allows to control the pulse width and delay and to synchronize them into one camera exposure window. The performance of the setup was successfully verified in a proof of principle experiment with a model system of polystyrene particles following Brownian motion. The measured radius of particles obtained with from the split pulse experiment (R{sub h}=(2.567±0.097) μm) is in agreement with the particle size provided by the manufacturer (R=(2.26±0.08) μm). The achieved results show higher statistics compared to a standard Dynamic Light Scattering (DLS) measurement.

  15. Measurement and interpretation of transverse beam instabilities in the CERN large hadron collider (LHC) and extrapolations to HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2067185; Arduini, Gianluigi; Barranco Navarro, Laura; Buffat, Xavier; Carver, Lee Robert; Iadarola, Giovanni; Li, Kevin Shing Bruce; Pieloni, Tatiana; Romano, Annalisa; Rumolo, Giovanni; Salvant, Benoit; Schenk, Michael; Tambasco, Claudia; Biancacci, Nicolo

    2016-01-01

    Since the first transverse instability observed in 2010, many studies have been performed on both measurement and simulation sides and several lessons have been learned. In a machine like the LHC, not only all the mechanisms have to be understood separately, but the possible interplays between the different phenomena need to be analysed in detail, including the beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities for HL-LHC), linear and nonlinear chromaticity, Landau octupoles (and other intrinsic nonlinearities), transverse damper, space charge, beam-beam (long-range and head-on), electron cloud, linear coupling strength, tune separation between the transverse planes, tune split between the two beams, transverse beam separation between the two beams, etc. This paper reviews all the transverse beam instabilities observed and simulated so far, the mitigation measures which have been put in place, the remaining questions an...

  16. The effects of split keyboard geometry on upper body postures.

    Science.gov (United States)

    Rempel, David; Nathan-Roberts, Dan; Chen, Bing Yune; Odell, Dan

    2009-01-01

    Split, gabled keyboard designs can prevent or improve upper extremity pain among computer users; the mechanism appears to involve the reduction of awkward wrist and forearm postures. This study evaluated the effects of changes in opening angle, slope and height (independent variables) of a gabled (14 degrees) keyboard on typing performance and upper extremity postures. Twenty-four experienced touch typists typed on seven keyboard conditions while typing speed and right and left wrist extension, ulnar deviation, forearm pronation and elbow position were measured using a motion tracking system. The lower keyboard height led to a lower elbow height (i.e. less shoulder elevation) and less wrist ulnar deviation and forearm pronation. Keyboard slope and opening angle had mixed effects on wrist extension and ulnar deviation, forearm pronation and elbow height and separation. The findings suggest that in order to optimise wrist, forearm and upper arm postures on a split, gabled keyboard, the keyboard should be set to the lowest height of the two heights tested. Keyboard slopes in the mid-range of those tested, 0 degrees to -4 degrees, provided the least wrist extension, forearm pronation and the lowest elbow height. A keyboard opening angle in the mid-range of those tested, 15 degrees, may provide the best balance between reducing ulnar deviation while not increasing forearm pronation or elbow separation. These findings may be useful in the design of computer workstations and split keyboards. The geometry of a split keyboard can influence wrist and forearm postures. The findings of this study are relevant to the positioning and adjustment of split keyboards. The findings will also be useful for engineers who design split keyboards.

  17. Tantalum-based semiconductors for solar water splitting.

    Science.gov (United States)

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  18. Mandibular nerve schwannoma resection using sagittal split ramus osteotomy.

    Science.gov (United States)

    Mahmood, Laith; Demian, Nagi; Weinstock, Yitzchak E; Weissferdt, Annikka

    2013-11-01

    A case is presented of a unique presentation and treatment of a mandibular nerve schwannoma. Its uniqueness stems from the fact that it consisted of 2 distinct tumors along the same nerve: one within the body of the mandible and the other within the ipsilateral pterygomandibular space. Rather than the standard approach of lip split and hemimandibulectomy, a unique approach of a sagittal split ramus osteotomy was used that allowed access to the 2 lesions and avoided the added morbidity of the former approach. The 2 portions of the lesion were successfully removed and the patient was satisfied with the result. Recurrence has not been detected after 6 months.

  19. Trellis plots as visual aids for analyzing split plot experiments

    DEFF Research Database (Denmark)

    Kulahci, Murat; Menon, Anil

    2017-01-01

    The analysis of split plot experiments can be challenging due to a complicated error structure resulting from restrictions on complete randomization. Similarly, standard visualization methods do not provide the insight practitioners desire to understand the data, think of explanations, generate...... hypotheses, build models, or decide on next steps. This article demonstrates the effective use of trellis plots in the preliminary data analysis for split plot experiments to address this problem. Trellis displays help to visualize multivariate data by allowing for conditioning in a general way. They can...

  20. Crystal Splitting in the Growth of Bi2S3

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Alivisatos, A. Paul

    2006-06-15

    Novel Bi{sub 2}S{sub 3} nanostructures with a sheaf-like morphology are obtained via reaction of bismuth acetate-oleic acid complex with elemental sulfur in 1-octadecence. We propose these structures form by the splitting crystal growth mechanism, which is known to account for the morphology some mineral crystals assume in nature. By controlling the synthetic parameters, different forms of splitting, analogous to observed in minerals, are obtained in our case of Bi{sub 2}S{sub 3}. These new and complex Bi{sub 2}S{sub 3} nanostructures are characterized by TEM, SEM, XRD and ED.

  1. Ground state hyperfine splitting of high Z hydrogenlike ions

    CERN Document Server

    Shabaev, V M; Kühl, T; Artemiev, A N; Yerokhin, V A

    1997-01-01

    The ground state hyperfine splitting values of high Z hydrogenlike ions are calculated. The relativistic, nuclear and QED corrections are taken into account. The nuclear magnetization distribution correction (the Bohr-Weisskopf effect) is evaluated within the single particle model with the g_{S}-factor chosen to yield the observed nuclear moment. An additional contribution caused by the nuclear spin-orbit interaction is included in the calculation of the Bohr-Weisskopf effect. It is found that the theoretical value of the wavelength of the transition between the hyperfine splitting components in ^{165}Ho^{66+} is in good agreement with experiment.

  2. Geometric doppler effect: spin-split dispersion of thermal radiation.

    Science.gov (United States)

    Dahan, Nir; Gorodetski, Yuri; Frischwasser, Kobi; Kleiner, Vladimir; Hasman, Erez

    2010-09-24

    A geometric Doppler effect manifested by a spin-split dispersion relation of thermal radiation is observed. A spin-dependent dispersion splitting was obtained in a structure consisting of a coupled thermal antenna array. The effect is due to a spin-orbit interaction resulting from the dynamics of the surface waves propagating along the structure whose local anisotropy axis is rotated in space. The observation of the spin-symmetry breaking in thermal radiation may be utilized for manipulation of spontaneous or stimulated emission.

  3. Accelerating the Fourier split operator method via graphics processing units

    CERN Document Server

    Bauke, Heiko

    2010-01-01

    Current generations of graphics processing units have turned into highly parallel devices with general computing capabilities. Thus, graphics processing units may be utilized, for example, to solve time dependent partial differential equations by the Fourier split operator method. In this contribution, we demonstrate that graphics processing units are capable to calculate fast Fourier transforms much more efficiently than traditional central processing units. Thus, graphics processing units render efficient implementations of the Fourier split operator method possible. Performance gains of more than an order of magnitude as compared to implementations for traditional central processing units are reached in the solution of the time dependent Schr\\"odinger equation and the time dependent Dirac equation.

  4. Stabilizing and destabilizing Heegaard splittings of sufficiently complicated 3-manifolds

    CERN Document Server

    Bachman, David

    2012-01-01

    Let M_1 and M_2 be compact, orientable 3-manifolds with incompressible boundary, and M the manifold obtained by gluing with a homeomorphism $\\phi:\\bdy M_1 \\to \\bdy M_2$. We analyze the relationship between the sets of low genus Heegaard splittings of M_1, M_2, and M, assuming the map \\phi is "sufficiently complicated." This analysis yields counter-examples to the Stabilization Conjecture, a resolution of the higher genus analogue of a conjecture of Gordon, and a result about the uniqueness of expressions of Heegaard splittings as amalgamations.

  5. Giant dynamical Zeeman split in inverse spin valves

    OpenAIRE

    Wang, X. R.

    2008-01-01

    The inversion of a spin valve device is proposed. Opposite to a conventional spin valve of a non-magnetic spacer sandwiched between two ferromagnetic metals, an inverse spin valve is a ferromagnet sandwiched between two non-magnetic metals. It is predicted that, under a bias, the chemical potentials of spin-up and spin-down electrons in the metals split at metal-ferromagnet interfaces, a dynamical Zeeman effect. This split is of the order of an applied bias. Thus, there should be no problem o...

  6. Thermochemical production of hydrogen via multistage water splitting processes

    Science.gov (United States)

    Funk, J. E.

    1975-01-01

    This paper presents and reviews the fundamental thermodynamic principles underlying thermochemical water splitting processes. The overall system is considered first and the temperature limitation in process thermal efficiency is developed. The relationship to an ideal water electrolysis cell is described and the nature of efficient multistage reaction processes is discussed. The importance of the reaction entropy change and the relation of the reaction free energy change to the work of separation is described. A procedure for analyzing thermochemical water splitting processes is presented and its use to calculate individual stage efficiency is demonstrated. A number of processes are used to illustrate the concepts and procedures.

  7. On Split Lie Algebras with Symmetric Root Systems

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín

    2008-08-01

    We develop techniques of connections of roots for split Lie algebras with symmetric root systems. We show that any of such algebras is of the form $L=\\mathcal{U}+\\sum_j I_j$ with $\\mathcal{U}$ a subspace of the abelian Lie algebra and any $I_j$ a well described ideal of , satisfying $[I_j,I_k]=0$ if $j≠ k$. Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected.

  8. Key Issues in Vowel Based Splitting of Telugu Bigrams

    Directory of Open Access Journals (Sweden)

    Kameswara Rao

    2014-01-01

    Full Text Available Splitting of compound Telugu words into its components or root words is one of the important, tedious and yet inaccurate tasks of Natural Language Processing (NLP. Except in few special cases, at least one vowel is necessarily involved in Telugu conjunctions. In the result, vowels are often repeated as they are or are converted into other vowels or consonants. This paper describes issues involved in vowel based splitting of a Telugu bigram into proper root words using Telugu grammar conjunction (‘sandhi’ rules for MT.

  9. A splitting approach for the Kadomtsev--Petviashvili equation

    CERN Document Server

    Einkemmer, Lukas

    2014-01-01

    We consider a splitting approach for the Kadomtsev--Petviashvili equation with periodic boundary conditions and show that the necessary interpolation procedure can be efficiently implemented. The error made by this numerical scheme is compared to exponential integrators which have been shown in Klein and Roidot (SIAM J. Sci. Comput., 2011) to perform best for stiff solutions of the Kadomtsev--Petviashvili equation. Since splitting methods are limited to order two in this case, we propose a stable extrapolation method in order to construct a numerical scheme of order four. In addition, the conservation properties of the numerical schemes under consideration are investigated.

  10. Poly 3-Hexylthiophene as a photocathode for solar water splitting

    OpenAIRE

    Suppes, Graeme McCallum

    2015-01-01

    The focus of this research is to determine the extent to which poly 3-hexylthiophene (P3HT) can be used as a photoelectrode for solar water splitting. Research in the area of solar water splitting mostly focuses on inorganic materials but conjugated polymers, such as P3HT, offer several advantages. Most metal oxides used as photoelectrodes are only able to carry out water oxidation, require thick films to absorb significant amounts of light, and absorb light mainly in the ultraviolet part of ...

  11. Optimizing TCP Performance over UMTS with Split TCP Proxy

    DEFF Research Database (Denmark)

    Hu, Liang; Dittmann, Lars

    2009-01-01

    Abstract: The TCP performance over UMTS network is challenged by the large delay bandwidth product. Large delay bandwidth product is mainly caused by the latency from the link layer ARQ retransmissions and diversity technique at physical layer which are used to cope with radio transmission errors....... To cope with large delay bandwidth product, we propose a novel concept of split TCP proxy which is placed at GGSN between UNITS network and Internet. The split proxy divides the bandwidth delay product into two parts, resulting in two TCP connections with smaller bandwidth delay products which can...

  12. Operator splitting for well-posed active scalar equations

    CERN Document Server

    Holden, Helge; Karper, Trygve K

    2012-01-01

    We analyze operator splitting methods applied to scalar equations with a nonlinear advection operator, and a linear (local or nonlocal) diffusion operator or a linear dispersion operator. The advection velocity is determined from the scalar unknown itself and hence the equations are so-called active scalar equations. Examples are provided by the surface quasi-geostrophic and aggregation equations. In addition, Burgers-type equations with fractional diffusion as well as the KdV and Kawahara equations are covered. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data is sufficiently regular.

  13. Operator splitting for partial differential equations with Burgers nonlinearity

    CERN Document Server

    Holden, Helge; Risebro, Nils Henrik

    2011-01-01

    We provide a new analytical approach to operator splitting for equations of the type $u_t=Au+u u_x$ where $A$ is a linear differential operator such that the equation is well-posed. Particular examples include the viscous Burgers' equation, the Korteweg-de Vries (KdV) equation, the Benney-Lin equation, and the Kawahara equation. We show that the Strang splitting method converges with the expected rate if the initial data are sufficiently regular. In particular, for the KdV equation we obtain second-order convergence in $H^r$ for initial data in $H^{r+5}$ with arbitrary $r\\ge 1$.

  14. Splitting extrapolation based on domain decomposition for finite element approximations

    Institute of Scientific and Technical Information of China (English)

    吕涛; 冯勇

    1997-01-01

    Splitting extrapolation based on domain decomposition for finite element approximations is a new technique for solving large scale scientific and engineering problems in parallel. By means of domain decomposition, a large scale multidimensional problem is turned to many discrete problems involving several grid parameters The multi-variate asymptotic expansions of finite element errors on independent grid parameters are proved for linear and nonlin ear second order elliptic equations as well as eigenvalue problems. Therefore after solving smaller problems with similar sizes in parallel, a global fine grid approximation with higher accuracy is computed by the splitting extrapolation method.

  15. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  16. KEKB beam instrumentation systems

    Science.gov (United States)

    Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.

    2003-02-01

    For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.

  17. Hyperon beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P.S.

    1996-03-01

    This report reviews the present status and recent results in hyperon physics concentrating on results from high energy hyperon beam experiments performed at Fermilab over the past several years. The report focuses on hyperon production polarization, precision hyperon magnetic moment measurements and radiative decay studies. Modern charged hyperon beam experiments are characterized by {approx}100m long apparatus and hyperon beams with {gamma}{sub Y}{approx}100 and hyperon fluxes in the 1-100 kHz range.

  18. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  19. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... the mechanical behavior of the beam is explained. Finally, some design criterions for reinforced glass beams are discussed....

  20. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    Science.gov (United States)

    Kurennoy, Sergey

    2002-04-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two transversely separated beams in a common beam pipe in the splitter sections imposes certain requirements on beam diagnostics for these sections. We explore a two-beam system in a generic beam monitor and study the feasibility of resolving the transverse positions of the two beams with one diagnostics device. Effects of unequal beam currents and of finite transverse sizes of the beams are explored analytically for both the ultra relativistic case and the long-wavelength limit.

  1. Beam cavity interaction

    CERN Document Server

    Gamp, A

    2011-01-01

    We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  2. ALFA beam halo

    CERN Document Server

    Komarek, Tomas

    2014-01-01

    This note serves as a final report about CERN Summer Student Programme 2014 project. The beam halo is an undesired phenomenon for physics analyses on particle accelerators. It surrounds the beam core and constitutes an important part of background for signal measurements on some detectors, eg. in the forward region. In this study, the data from the ALFA detector were used, specifically from the run 191373 ($\\beta^*=90\\unit{m}$) and the run 213268 ($\\beta^*=1\\unit{km}$). Using the ROOT framework, a software for beam halo events selection was created and beam halo properties were examined. In the run 213268, excessive beam halo is suspected to be the reason for multiple beam scrapings that occurred. A kinematic reconstruction of beam halo particles is attempted in order to understand beam halo properties in the interaction point. Some further simulations are employed to find constraints for beam halo particles in order to survive in the accelerator for a longer time/many revolutions. This work represents a st...

  3. Plasma Beam Measurements

    Science.gov (United States)

    1991-08-01

    GUN PLASMA BEAM / ,I 21 cm diameter = 0 GLASS DRIFT TUBE 50 cm diameter MCP CAMERA CLASS CROSSES (a) Gun muzzle /"- PLASA BEAM / TAROT z = 10 m MCP...discusses some of the hydrodynamic issues related to the calcula- tions. The reader may well wonder why hydrodynamics should be an issue in a 116 WL-TR-90...answer is yes for the slow beam cases and no for the fast beam cases. This is explained further. 118 WL-TR-90-83 The reader will recall the

  4. (Pulsed electron beam precharger)

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    This report discusses the following topics on electron beam guns: Precharger Modification; Installation of Charge vs. Radius Apparatus; High Concentration Aerosol Generation; and Data Acquisition and Analysis System.

  5. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  6. Efficiency of incomplete split-plot designs – a compromise between traditional split-plot designs and randomised complete block design

    OpenAIRE

    Kristensen, Kristian; Bigongiali, Federica; Østergård, Hanne

    2008-01-01

    The paper shows, how incomplete split-plot designs can be constructed from -designs and how they can be analysed. The incomplete split-plot design can be regarded as both a practical and statistical compromise between traditional split-plot design and randomised complete block design. The efficiency of the design is compared to traditional split-plot design and randomised complete block design using data from 5 trials carried out using incomplete split-plot designs in Denmark through 2004-20...

  7. Exactly solving the Split Pickup and Split Delivery Vehicle Routing Problem on a bike-sharing system

    OpenAIRE

    Casazza, Marco

    2016-01-01

    We propose an exact methodology to solve the Split Pickup and Split Delivery Vehicle Routing Problem arising in bike-sharing systems: a bike-sharing system is a public service in which bicycles are stored in rack stations and made available for shared use to individuals on a short term basis. However, during peak hours, flows along particular direction are registered, leading to high risk of empty racks in departure stations, and full racks at destination. One of the solutions chosen by many ...

  8. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    CERN Document Server

    Kurennoy, S S

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters [1]. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device.

  9. Split-resonator integrated-post MEMS gyroscope

    Science.gov (United States)

    Bae, Youngsam (Inventor); Hayworth, Ken J. (Inventor); Shcheglov, Kirill V. (Inventor)

    2004-01-01

    A split-resonator integrated-post vibratory microgyroscope may be fabricated using micro electrical mechanical systems (MEMS) fabrication techniques. The microgyroscope may include two gyroscope sections bonded together, each gyroscope section including resonator petals, electrodes, and an integrated half post. The half posts are aligned and bonded to act as a single post.

  10. Verifying Mutual Exclusion and Liveness Properties with Split Preconditions

    Institute of Scientific and Technical Information of China (English)

    Awadhesh Kumar Singh; Anup Kumar Bandyopadhyay

    2004-01-01

    This work is focused on presenting a split precondition approach for the modeling and proving the correctness of distributed algorithms. Formal specification and precise analysis of Peterson's distributed mutual exclusion algorithm for two process has been considered. The proof of properties like, mutual exclusion, liveness, and lockout-freedom have also been presented.

  11. Studies of Pediatric Liver Transplantation (SPLIT) : Year 2000 outcomes

    NARCIS (Netherlands)

    Kane, R; Solomon, H; Friedman, B; Heffron, T; DePaolo, J; Sokol, RJ; Karrer, F; Narkewicz, MR; Orban-Eller, K; Maller, ES; Higuchi, N; Mazariegos, G; Smith, A; Atkison, P; Bucuvalas, J; Balistreri, WF; Ryckman, F; Klekamp, C; Roden, J; D'Amico, L; Alonso, EM; Superina, R; Whitington, PF; Mladucky, P; Lokar, J; Andrews, WS; Daniel, J; Fioravante, [No Value; Lindblad, AS; Anand, R; Brown, D; Inman, P; Covington, L; Brock, K; Mekki, Q; Fecteau, A; DeLuca, E; Scheimann, A; Colombani, P; Alford, MK; Wise, B; Shokouh-Amiri, H; Grewal, HP; Powell, SL; Freese, DK; Greseth, J; Fisher, R; Akyeampong, M; Behnke, M; Baliga, P; Johnson, T; Emre, S; Shneider, B; Novak, R; Alvarez, F; Viau, C; Shepherd, R; Nadler, M; Cox, K; So, S; Bush, L; Goss, JA; Karpen, S; Doster, S; McDiarmid, S; Phillips, H; Smith, LJ; Jones, AB; Kneteman, N; Lavine, J; Hall, K; Rosenthal, P; Stritzel, S; Millis, JM; Kelly, S; Gonzalez-Peralta, RP; Langham, M; Mackay, E; Tzakis, AG; Romero, R; Miller, B; Weppler, D; Bunchman, T; Holmes, R; Shieck, [No Value; Horslen, S; Shaw, BW; Andersen, D; Lichtman, S; Kassmann, B; Mieles, L; Quiros, R; Irish-Feltner, J; Kalayoglu, M; D'Alessandro, A; Knechtle, S; Spaith, E

    2001-01-01

    Background. Initiated in 1995, the Studies of Pediatric Liver Transplantation (SPLIT) registry database is a cooperative research network of pediatric transplantation centers in the United States and Canada. The primary objectives are to characterize and follow trends in transplant indications, tran

  12. Field Monitoring Protocol: Mini-Split Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, D.; Fang, X.; Tomerlin, J.; Winkler, J.; Hancock, E.

    2011-03-01

    The report provides a detailed method for accurately measuring and monitoring performance of a residential Mini-Split Heat Pump. It will be used in high-performance retrofit applications, and as part of DOE's Building America residential research program.

  13. 12 CFR 7.2023 - Reverse stock splits.

    Science.gov (United States)

    2010-01-01

    ... and provides adequate dissenting shareholders' rights. (b) Legitimate corporate purpose. Examples of legitimate corporate purposes include a reverse stock split to: (1) Reduce the number of shareholders in order to qualify as a Subchapter S corporation; and (2) Reduce costs associated with...

  14. Forced splitting of human sleep in free-running rhythms.

    Science.gov (United States)

    Zulley; Carr

    1992-06-01

    The assumption of polyphasic sleep/wake regulation is based on the occurrence of nap-sleep at specific phase positions in the circadian cycle. Further support would be the split of the normal long major sleep episode into shorter components. Evidence for this hypothesis comes from the discovery of bimodal distribution in sleep duration. An experimental approach to test this hypothesis has been carried out by restricting sleep duration in free-running rhythms. The outcome was a biphasic distribution of sleep within a circadian cycle with sections of dissociation and synchronization of the two sleep blocks. The results show similarities with 'splitting', a phenomenon which has been found in animal studies. The relatively short duration of the different sections as well as the asymmetric distribution of the two sleep blocks in the circadian cycle leads to the assumption of a splitting of the major sleep episode and not of the circadian rhythm. Sleep split into two, relatively short sleep episodes of comparable duration contrasts with napping, which is characterized by an extra sleep episode in addition to the long major sleep.

  15. 26 CFR 1.482-6 - Profit split method.

    Science.gov (United States)

    2010-04-01

    ... product sales in 1995. (vii) XYZ-Europe's expenditures on Nulon research and development and marketing... in marketing and research and development, the district director capitalizes and amortizes XYZ-Europe... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Profit split method. 1.482-6 Section...

  16. Visible-light-induced water splitting on a chip

    NARCIS (Netherlands)

    Zoontjes, Michel Gerardus Cornelis

    2015-01-01

    In this thesis, a photoelectrochemical water splitting cell concept is discussed, based on a combination of semiconductors comprising a Z-scheme. The motivation for the development of the cell is that in the future a transition will take place from a fossil fuel-based economy, to an economy based on

  17. Fixed Scan Area Tracking with Track Splitting Filtering Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2006-01-01

    to develop procedures that would enable a more general performance assessment. Therefore, a non-deterministic scenario is adopted, which basically provide a more appropriate approach for the evaluation of a tracking system based on track splitting filter algorithm.  The objects are generated within a fixed...

  18. REGENERATION OF FULL-THICKNESS WOUNDS USING COLLAGEN SPLIT GRAFTS

    NARCIS (Netherlands)

    VANLUYN, MJA; VERHEUL, J; VANWACHEM, PB

    1995-01-01

    Collagen-based skin substitutes are among the most promising materials to improve regeneration of full-thickness wounds. However, additional meshed grafts or cultured epidermal grafts are still required to create epidermal regeneration. To avoid this, we substituted collagen-based split grafts, i.e.

  19. The Geometric Invariants of Group Extensions Part II: Split Extensions

    CERN Document Server

    Koban, Nic

    2011-01-01

    We compute the {\\Omega}^1(G) invariant when 1 {\\to} H {\\to} G {\\to} K {\\to} 1 is a split short exact sequence. We use this result to compute the invariant for pure and full braid groups on compact surfaces. Applications to twisted conjugacy classes and to finite generation of commutator subgroups are also discussed.

  20. Development of new flux splitting schemes. [computational fluid dynamics algorithms

    Science.gov (United States)

    Liou, Meng-Sing; Steffen, Christopher J., Jr.

    1992-01-01

    Maximizing both accuracy and efficiency has been the primary objective in designing a numerical algorithm for computational fluid dynamics (CFD). This is especially important for solutions of complex three dimensional systems of Navier-Stokes equations which often include turbulence modeling and chemistry effects. Recently, upwind schemes have been well received for their capability in resolving discontinuities. With this in mind, presented are two new flux splitting techniques for upwind differencing. The first method is based on High-Order Polynomial Expansions (HOPE) of the mass flux vector. The second new flux splitting is based on the Advection Upwind Splitting Method (AUSM). The calculation of the hypersonic conical flow demonstrates the accuracy of the splitting in resolving the flow in the presence of strong gradients. A second series of tests involving the two dimensional inviscid flow over a NACA 0012 airfoil demonstrates the ability of the AUSM to resolve the shock discontinuity at transonic speed. A third case calculates a series of supersonic flows over a circular cylinder. Finally, the fourth case deals with tests of a two dimensional shock wave/boundary layer interaction.

  1. Capacitance tuning of nanoscale split-ring resonators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Xiao, Sanshui; Mortensen, Niels Asger;

    2010-01-01

    In this paper, we investigate the capacitance tuning of nanoscale split-ring resonators. Based on a simple LC circuit model (LC-model), we derive an expression where the inductance is proportional to the area while the capacitance reflects the aspect ratio of the slit. The resonance frequency may...

  2. Capacitance tuning of nanoscale split-ring resonators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Mortensen, Asger; Kristensen, Anders

    2009-01-01

    We investigate the capacitance tuning of nanoscale split-ring resonators. Based on a simple inductor-capacitor circuit model, we derive an expression, where the inductance is proportional to the area while the capacitance reflects the aspect ratio of the slit. The resonance frequency may thus be ...

  3. An almost symmetric Strang splitting scheme for nonlinear evolution equations.

    Science.gov (United States)

    Einkemmer, Lukas; Ostermann, Alexander

    2014-07-01

    In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation.

  4. A Splitting Algorithm for Directional Regularization and Sparsification

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Nielsen, Mads

    2012-01-01

    be computed pointwise and are easily implemented on massively parallel processors. Furthermore the splitting method allows for the computation of solutions to a large number of more advanced directional regularization problems. In particular we are able to handle robust, non-convex data terms, and to define...... a 0-harmonic regularization energy where we sparsify directions by means of an L0 norm....

  5. Iterative group splitting algorithm for opportunistic scheduling systems

    KAUST Repository

    Nam, Haewoon

    2014-05-01

    An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold during a guard period if no user sends a feedback. However, when a feedback collision occurs at any point of time, the proposed algorithm no longer updates the threshold but narrows down the user search space by dividing the users into multiple groups iteratively, whereas the opportunistic splitting algorithm keeps adjusting the threshold until a single user is found. Since the threshold is only updated when no user sends a feedback, it is shown that the proposed algorithm significantly alleviates the signaling overhead for the threshold distribution to the users by the scheduler. More importantly, the proposed algorithm requires a less number of mini-slots than the opportunistic splitting algorithm to make a user selection with a given level of scheduling outage probability or provides a higher ergodic capacity given a certain number of mini-slots. © 2013 IEEE.

  6. Relativistic Symmetry Suppresses Quark Spin-Orbit Splitting

    CERN Document Server

    Page, P R; Ginocchio, J N; Page, Philip R.; Goldman, Terry; Ginocchio, Joseph. N.

    2001-01-01

    Experimental data indicate small spin-orbit splittings in hadrons. Forheavy-light mesons we identify a relativistic symmetry that suppresses thesesplittings. We suggest an experimental test in electron-positron annihilation.Furthermore, we argue that the dynamics necessary for this symmetry arepossible in QCD.

  7. Analytical Model of Planar Double Split Ring Resonator

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor

    2007-01-01

    This paper focuses on accurate modelling of microstrip double split ring resonators. The impedance matrix representation for coupled lines is applied for the first time to model the SRR, resulting in excellent model accuracy over a wide frequency range. Phase compensation is implemented to take...

  8. HUMAN NEURONAL INTERLIMB COORDINATION DURING SPLIT-BELT LOCOMOTION

    NARCIS (Netherlands)

    DIETZ, [No Value; ZIJLSTRA, W; DUYSENS, J

    1994-01-01

    Human interlimb coordination and the adaptations in leg muscle activity were studied during walking on a treadmill with split belts. Four different belt speeds (0.5, 1.0, 1.5, 2.0 m/s) were offered in all possible combinations for the left and right leg. Subjects adapted automatically to a differenc

  9. Human neuronal interlimb coordination during split-belt locomotion

    NARCIS (Netherlands)

    Dietz, V.; Zijlstra, W.G.; Duysens, J.E.J.

    1994-01-01

    Human interlimb coordination and the adaptations in leg muscle activity were studied during walking on a treadmill with split belts. Four different belt speeds (0.5, 1.0, 1.5, 2.0 m/s) were offered in all possible combinations for the left and right leg. Subjects adapted automatically to a differenc

  10. Transient Splitting of Conoscopic Isogyres of a Uniaxial Nematic

    Science.gov (United States)

    Kim, Young-Ki; Senuk, Bohdan; Tortora, Luana; Sprunt, Samuel; Lehmann, Matthias; Lavrentovich, Oleg D.

    2012-02-01

    The phase identification is often based on conoscopic observations of homeotropic cells: A uniaxial nematic produces a pattern with crossed isogyres, while the biaxial nematic shows a split of isogyres. We demonstrate that the splitting of isogyres occurs even when the material remains in the uniaxial nematic phase. In particular, in the bent core material J35, splitting of isogyres is caused by change of the temperature. The effect is transient and the isogyres return to a uniaxial (crossed) configuration after a certain time that depends on sample thickness, temperature, and rate of temperature change; the time varies from a few seconds to tens of hours. The transient splitting is caused by the temperature-induced material flow that triggers a (uniaxial) director tilt in the cell. The flows and the director tilt are demonstrated by the CARS microscopy and fluorescent confocal polarizing microscopy (FCPM). This transient effect is general and can be observed even in E7 and 5CB. The effect should be considered in textural identifications of potential biaxial nematic materials.

  11. Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Patrick J. [Fermilab; Kribs, Graham D. [Oregon U.; Martin, Adam [Notre Dame U.

    2014-10-07

    Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale Dirac masses of $\\sim 10^{8-11}$ GeV. Scalar masses arise from one-loop finite contributions as well as direct gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint multiplets), though with a somewhat higher unification scale $\\gtrsim 10^{17}$ GeV. The $\\mu$-term is naturally at the weak scale, and provides an opportunity for experimental verification. We present two manifestations of Split Dirac Supersymmetry. In the "Pure Dirac" model, the lightest Higgsino must decay through R-parity violating couplings, leading to an array of interesting signals in colliders. In the "Hypercharge Impure" model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting between the neutral components, is naturally generated from the same UV dynamics. We outline the challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection experiments.

  12. The split hand syndrome in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Eisen, Andrew; Kuwabara, Satoshi

    2012-04-01

    In amyotrophic lateral sclerosis (ALS), hand muscle wasting preferentially affects the 'thenar (lateral) hand', including the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) muscles, with relative sparing of the hypothenar muscles (the abductor digiti minimi (ADM)). This peculiar pattern of dissociated atrophy of the intrinsic hand muscles is termed the 'split hand' and is rarely seen in diseases other than ALS. The muscles involved in the split hand are innervated through the same spinal segments (C8 and T1), and FDI and ADM, which are differentially affected, are both ulnar nerve innervated. The physiological mechanisms underlying the split hand in ALS are incompletely understood but both cortical and spinal/peripheral mechanisms are probably involved. Motor potentials evoked by magnetic stimulation are significantly smaller when recorded from the thenar complex, compared with the hypothenar muscles, supporting a cortical mechanism. But peripheral axonal excitability studies have suggested that APB/FDI motor axons have more prominent persistent sodium currents than ADM axons, leading to higher axonal excitability and thereby more ready degeneration. Pincer or precision grip is vital to human hand function, and frequent use of thenar complex muscles may lead to greater oxidative stress and metabolic demands at both upper and lower motoneurons innervating the APB and FDI. The split hand is a useful diagnostic sign in early ALS, and recent objective studies indicate that the sign has a high degree of specificity.

  13. Constructing General Orthogonal Fractional Factorial Split-Plot Designs

    NARCIS (Netherlands)

    Sartono, B.; Goos, P.; Schoen, E.

    2015-01-01

    While the orthogonal design of split-plot fractional factorial experiments has received much attention already, there are still major voids in the literature. First, designs with one or more factors acting at more than two levels have not yet been considered. Second, published work on nonregular fra

  14. Implementation of splitting methods for air pollution modeling

    Directory of Open Access Journals (Sweden)

    M. Schlegel

    2011-11-01

    Full Text Available Explicit time integration methods are characterized by a small numerical effort per time step. In the application to multiscale problems in atmospheric modeling, this benefit is often more than compensated by stability problems and step size restrictions resulting from stiff chemical reaction terms and from a locally varying Courant-Friedrichs-Lewy (CFL condition for the advection terms. Splitting methods may be applied to efficiently combine implicit and explicit methods (IMEX splitting. Complementarily multirate time integration schemes allow for a local adaptation of the time step size to the grid size. In combination these approaches lead to schemes which are efficient in terms of evaluations of the right hand side. Special challenges arise when these methods are to be implemented. For an efficient implementation it is crucial to locate and exploit redundancies. Furthermore the more complex program flow may lead to computational overhead which in the worst case more than compensates the theoretical gain in efficiency. We present a general splitting approach which allows both for IMEX splittings and for local time step adaptation. The main focus is on an efficient implementation of this approach for parallel computation on computer clusters.

  15. Evaluation of selected information on splitting devices for water samples

    Science.gov (United States)

    Capel, P.D.; Larson, S.J.

    1996-01-01

    Four devices for splitting water samples into representative aliquots are used by the U.S. Geological Survey's Water Resources Division. A thorough evaluation of these devices (14-liter churn, 8-liter churn, plastic cone, and Teflon cone) encompasses a wide variety of concerns, based on both chemical and physical considerations. This report surveys the existing data (as of April 1994) on cleaning efficiency and splitting capability of these devices and presents the data in a systematic framework for evaluation. From the existing data, some of these concerns are adequately or partially addressed, but the majority of concerns could not be addressed because of the lack of data. In general, the existing cleaning and transport protocols are adequate at the milligram per liter level, but the adequacy is largely unknown for trace elements and organic chemicals at lower concen- trations. The existing data indicate that better results are obtained when the splitters are cleaned in the laboratory rather than in the field. Two conclusions that can be reached on the splitting capability of solids are that more work must be done with all four devices to characterize and quantify their limitations and range of usefulness, and that the 14-liter churn (and by association, the 8-liter churn) is not useful in obtaining representative splits of sand-sized particles.

  16. Higgs, Binos and Gluinos: Split Susy within Reach

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele S.M.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2012-09-14

    Recent results from the LHC for the Higgs boson with mass between 142 GeV {approx}< m{sub h{sup 0}} {approx}< 147 GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 {micro}m to 10 yr range, are its imminent smoking gun signature. The 7TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m{sub {chi}{sub 1}{sup 0}} {approx_equal} 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.

  17. Split String Formalism and the Closed String Vacuum

    CERN Document Server

    Erler, T

    2007-01-01

    The split string formalism offers a simple template apon which we can build many generalizations of Schnabl's analytic solution of open string field theory. In this paper we explore two such generalizations: one which replaces the wedge state by an arbitrary function of wedge states, and another which generalizes the solution to conformal frames other than the sliver.

  18. Ultrafast reduction of exchange splitting in ferromagnetic nickel

    Science.gov (United States)

    Zhang, G. P.; Bai, Y. H.; George, Thomas F.

    2016-06-01

    A decade ago Rhie et al (2003 Phys. Rev. Lett. 90 247201) reported that when ferromagnetic nickel is subject to an intense ultrashort laser pulse, its exchange splitting is reduced quickly. But to simulate such reduction remains a big challenge. The popular rigid band approximation (RBA), where both the band structure and the exchange splitting are held fixed before and after laser excitation, is unsuitable for this purpose, while the time-dependent density functional theory could be time-consuming. To overcome these difficulties, we propose a time-dependent Liouville and density functional theory (TDLDFT) that integrates the time-dependent Liouville equation into the density functional theory. As a result, the excited charge density is reiterated back into the Kohn-Sham equation, and the band structure is allowed to change dynamically. Even with the ground-state density functional, a larger demagnetization than RBA is found; after we expand Ortenzi’s spin scaling method into an excited-state (laser) density functional, we find that the exchange splitting is indeed strongly reduced, as seen in the experiment. Both the majority and minority bands are shifted toward the Fermi level, but the majority shifts a lot more. The ultrafast reduction in exchange splitting occurs concomitantly with demagnetization. While our current theory is still unable to yield the same percentage loss in the spin moment as observed in the experiment, it predicts a correct trend that agrees with the experiments. With a better functional, we believe that our results can be further improved.

  19. Controlling Split Attention and Redundancy in Physical Therapy Instruction

    Science.gov (United States)

    Pociask, Fredrick D.; Morrison, Gary R.

    2008-01-01

    In this study, we examined the effectiveness of instructional materials designed to control redundancy and split attention in the teaching of complex orthopedic physical therapy skills. Participants included 41 first-year physical therapy students. The modified instruction group received a modified unit of instruction designed to reduce cognitive…

  20. Splitting and Projection: Drawing on Psychodynamics in Educational Psychology Practice

    Science.gov (United States)

    Pellegrini, Dario W.

    2010-01-01

    This paper reflects the author's journey into an area of psychology which is not dominant in Educational Psychology discourse, namely psychodynamic psychology. Two psychodynamic mechanisms, namely splitting and projection are explained, and then the author describes and critiques how these mechanisms have proved useful in his practice. Two case…

  1. A magnetic 4π goniometer for Zeeman-split NQR

    Science.gov (United States)

    Nagarajan, V.; Weiden, Norbert; Wendel, Richard; Weiss, Alarich

    With the aid of three mutually perpendicular Helmholtz coils a 4π Zeeman goniometer is constructed for application in NQR spectroscopy. Details of the construction are given. The spectrometer is cheked by measuring the zero splitting cone of 35Cl NQR in a single crystal of NaClO 3 at room temperature. The precision of the goniometer is evaluated.

  2. State vector splitting for the Euler equations of gasdynamics

    NARCIS (Netherlands)

    Öksüzoglu, H.

    2001-01-01

    A new upwind scheme is introduced for the Euler equations of gasdynamics in multi- dimensions. Its relation to Steger-Warming Flux Vector Splitting is discussed. Imple- mentation of the conservative boundary condi- tions on solid walls is also given. The method is intuitive, easy to implement and do

  3. A Quantitative Analysis of Children's Splitting Operations and Fraction Schemes

    Science.gov (United States)

    Norton, Anderson; Wilkins, Jesse L. M.

    2009-01-01

    Teaching experiments with pairs of children have generated several hypotheses about students' construction of fractions. For example, Steffe (2004) hypothesized that robust conceptions of improper fractions depends on the development of a splitting operation. Results from teaching experiments that rely on scheme theory and Steffe's hierarchy of…

  4. Split-Framework in Mandibular Implant-Supported Prosthesis

    Directory of Open Access Journals (Sweden)

    Danny Omar Mendoza Marin

    2015-01-01

    Full Text Available During oral rehabilitation of an edentulous patient with an implant-supported prosthesis, mandibular flexure must be considered an important biomechanical factor when planning the metal framework design, especially if implants are installed posterior to the interforaminal region. When an edentulous mandible is restored with a fixed implant-supported prosthesis connected by a fixed full-arch framework, mandibular flexure may cause needless stress in the overall restorative system and lead to screw loosening, poor fit of prosthesis, loss of the posterior implant, and patient’s discomfort due to deformation properties of the mandible during functional movements. The use of a split-framework could decrease the stress with a precise and passive fit on the implants and restore a more natural functional condition of the mandible, helping in the longevity of the prosthesis. Therefore, the present clinical report describes the oral rehabilitation of an edentulous patient by a mandibular fixed implant-supported prosthesis with a split-framework to compensate for mandibular flexure. Clinical Significance. The present clinical report shows that the use of a split-framework reduced the risk of loss of the posterior implants or screws loosening with acceptable patient comfort over the period of a year. The split-framework might have compensated for the mandibular flexure during functional activities.

  5. Long segment composite split cord malformation with double bony spur

    Directory of Open Access Journals (Sweden)

    Sharma Anand

    2015-09-01

    Full Text Available A composite type of SCM is very rare and only a few cases have been reported until today. The frequency of composite- type SCM is lower than 1% in the literature. In this report, we presented an unusual case of long segment composite type split cord malformation with double level bony spur with multiple associated bony anomalies.

  6. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    Science.gov (United States)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  7. A tunable electronic beam splitter realized with crossed graphene nanoribbons

    Science.gov (United States)

    Brandimarte, Pedro; Engelund, Mads; Papior, Nick; Garcia-Lekue, Aran; Frederiksen, Thomas; Sánchez-Portal, Daniel

    2017-03-01

    Graphene nanoribbons (GNRs) are promising components in future nanoelectronics due to the large mobility of graphene electrons and their tunable electronic band gap in combination with recent experimental developments of on-surface chemistry strategies for their growth. Here, we explore a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, GNR width, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at θ =60° , electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50% and with almost negligible back-reflection. The split electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy with an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. We rationalize our findings with a simple model suggesting that electronic beam splitters can generally be realized with crossed GNRs.

  8. Beam distribution reconstruction simulation for electron beam probe

    CERN Document Server

    Feng, Yongchun; Li, Peng; Kang, Xincai; Yin, Yan; Liu, Tong; You, Yaoyao; Chen, Yucong; Zhao, Tiecheng; Xu, Zhiguo; Wang, Yanyu; Yuan, Youjin

    2016-01-01

    Electron beam probe (EBP) is a new principle detector, which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain parallel electron beam is introduced and a simulation code is developed. And then, EBP as a profile monitor for dense beam is simulated using fast scan method under various target beam profile, such as KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory...

  9. Beaming teaching application

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Olesen, Søren Krarup;

    2012-01-01

    BEAMING is a telepresence research project aiming at providing a multimodal interaction between two or more participants located at distant locations. One of the BEAMING applications allows a distant teacher to give a xylophone playing lecture to the students. Therefore, rendering of the xylophon...

  10. Ionization beam scanner

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  11. Advanced ion beam calorimetry for the test facility ELISE

    Science.gov (United States)

    Nocentini, R.; Bonomo, F.; Pimazzoni, A.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Pasqualotto, R.; Riedl, R.; Ruf, B.; Wünderlich, D.

    2015-04-01

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m2 in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m2, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and correlates

  12. Entangled vector vortex beams

    Science.gov (United States)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio

    2016-09-01

    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  13. Beam director design report

    Energy Technology Data Exchange (ETDEWEB)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  14. Muon Beam at the Fermilab Test Beam Area

    CERN Document Server

    Denisov, Dmitri; Lukić, Strahinja; Ujić, Predrag

    2016-01-01

    The intensities and profiles of the muon beam behind the beam dump of the Fermilab test beam area when the facility is running in the "pion" beam mode are measured and summarized in this note. This muon beam with momenta in the range 10 - 50 GeV/c provides an opportunity to perform various measurements in parallel with other users of the test beam area.

  15. BEAMS3D Neutral Beam Injection Model

    Science.gov (United States)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  16. Comparison of Step Tip Type and Split Tip Type Hemodialysis Catheter: HemoGlide Versus the HemoSplit

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi Hyun [Dankook University Hospital, Cheonan (Korea, Republic of); Shin, Byung Seok [Chungnam National University, Daejeon (Korea, Republic of)

    2009-08-15

    To evaluate the results and complications of the step tip type and split tip type tunneled hemodialysis catheters. Between March 2008 and December 2008, a total of 147 tunneled hemodialysis catheters of step tip (n=89) and split tip (n=58) type were placed in 126 patients to perform hemodialysis. We evaluated the number of catheterization days, as well as complications with respect to catheter tip types. A tunneled hemodialysis catheter was placed successfully in all cases. The duration of catheterization ranged from 7 to 180 days (mean 68, total catheter days: 10,504 days). A significantly higher complication rate was observed in the step tip type (n=23) as compared to the split tip type (n=4) (p=0.004), especially due to catheter dysfunction and catheter laceration. Five cases of catheter-related infection (3.4%, 0.48/1000 catheter days) were observed. Placement of the tunneled hemodialysis catheter of step tip type and spit tip type were performed safely. However, the split tip type is more useful because of the greater rate of complication in step tip type

  17. Twisted intramolecular charge transfer states : rotationally resolved fluorescence excitation spectra of 4,4 '-dimethylaminobenzonitrile in a molecular beam

    NARCIS (Netherlands)

    Nikolaev, A.E.; Myszkiewicz, G.; Berden, G.; Meerts, W.L.; Pfanstiel, J.F.; Pratt, D.W.

    2005-01-01

    We report the observation at high resolution of seven vibronic bands that appear within similar to200 cm(-1) of the electronic origin in the S-1-S-0 fluorescence excitation spectrum of 4,4(')-dimethylaminobenzonitrile (DMABN) in a molecular beam. Surprisingly, each band is found to be split into two

  18. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    CHEN Xi-Yao; LIN Gui-Min; LI Jun-Jun; XU Xiao-Fu; JIANG Jun-Zhen; QIANG Ze-Xuan; QIU Yi-Shen; LI Hui

    2012-01-01

    A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated.Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method,the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure.Based on its novel polarization beam splitting mechanics,the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB,respectively.Since its dimensions are only several operating wavelengths,the PBS may have practical applications in photonic integrated circuits.%A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits.

  19. Multi-Beam Optical Tweezers

    OpenAIRE

    Glückstad, Jesper; Eriksen, Rene Lynge; Hanson, Steen Grüner

    2003-01-01

    A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having an individually controlled polarization whereby the position and/or angular orientation of a plurality of micro-objects may be individually controlled.A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of ...

  20. Beam Imaging and Luminosity Calibration

    CERN Document Server

    Klute, Markus; Salfeld-Nebgen, Jakob

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The $x$-$y$ correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1\\%.