WorldWideScience

Sample records for beam profiles

  1. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu;

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  2. Smartphone laser beam spatial profiler.

    Science.gov (United States)

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-11-15

    A simple, low-cost, portable, smartphone-based laser beam profiler for characterizing laser beam profiles is reported. The beam profiler utilizes a phosphor silica glass plate to convert UV light into visible (green) light that can be directly imaged onto an existing smartphone CMOS chip and analyzed using a customized app. 3D printing enables the ready fabrication of the instrument package. The beam's diameter, shape, divergence, beam quality factor, and output power are measured for two UV lasers: a CW 244 nm frequency-doubled Ar ion laser and a pulsed 193 nm ArF exciplex laser. The availability of specialized phosphor converters can extend the instrument from the UV to the near infrared and beyond, and the smartphone platform extends the Internet of Things to map laser beam profiles simultaneously in different locations. PMID:26565823

  3. Monitor of SC beam profiles

    CERN Multimedia

    1977-01-01

    A high-resolution secondary emission grid for the measurement of SC beam profiles. Modern techniques of metal-ceramic bonding, developed for micro-electronics, have been used in its construction. (See Annual Report 1977 p. 105 Fig. 12.)

  4. Multi channel beam profile digitizer

    International Nuclear Information System (INIS)

    Beam of ions in an accelerator are focussed with the help of focussing magnets to achieve very narrow circular beam. To verify the beam profile along its length, Beam Profile Monitors (BPM) are installed at number of points. The signal generated from these units convey information about the shape and axial error of the beam. Presently BPM signals are monitored on oscilloscope. One oscilloscope is required per BPM channel to be monitored and normally 2 oscilloscopes are kept for viewing beam at two successive points along with one channel selector to select the channel to be monitored. The 8 channel beam profile digitizer being developed is a low cost intelligent PC-add on card, built around Intel's 8751 microcontroller, which can be easily integrated with PC based data acquisition and control system for accelerators. Microcontroller digitizes the signal and stores information on FIFO for PC to read and graphically display the profile. User can select up to 8 profiles to view simultaneously on the screen. (author). 1 ref., 2 figs

  5. Acquisition and display of beam profilers

    Energy Technology Data Exchange (ETDEWEB)

    David, L.; Duneau, P.; Lecorche, E.; Lermine, P.; Vila, J.; Maugeais, C.; Ulrich, M.

    1995-12-31

    The ion beam adjustment requires the knowledge of its shape (its profile). A new electronic interface has been developed for the older multiwire profiles, while an other electronic equipment has been developed for the gas profiles and the microchannel plates. The data from these interfaces are computed to get numerical values and profile shapes, then transmitted by the network to the main control room to be displayed (shapes and data) on every workstation, by different beam tuning programs. (author). 4 refs.

  6. Acquisition and display of beam profilers

    International Nuclear Information System (INIS)

    The ion beam adjustment requires the knowledge of its shape (its profile). A new electronic interface has been developed for the older multiwire profiles, while an other electronic equipment has been developed for the gas profiles and the microchannel plates. The data from these interfaces are computed to get numerical values and profile shapes, then transmitted by the network to the main control room to be displayed (shapes and data) on every workstation, by different beam tuning programs. (author)

  7. Correction of unevenness in recycler beam profile

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.; Hu, M.; Ng, K.Y.; /Fermilab

    2006-05-01

    A beam confined between two rf barriers in the Fermilab Recycler Ring exhibits very uneven longitudinal profile. This leads to the consequence that the momentum-mined antiproton bunches will have an intolerable variation in bunch intensity. The observed profile unevenness is the result of a tiny amount of rf imperfection and rf beam-loading. The profile unevenness can be flattened by feeding back the uneven rf fan-back gap voltage to the low-level rf.

  8. Beam Profile Monitors in the Nlcta

    OpenAIRE

    Nantista, C.; Adolphsen, C.; Brown, R L; Fuller, R.; Rifkin, J.

    2000-01-01

    The transverse current profile in the Next Linear Collider Test Accelerator (NLCTA) electron beam can be monitored at several locations along the beam line by means of profile monitors. These consist of insertable phosphor screens, light collection and transport systems, CID cameras, a frame-grabber, and PC and VAX based image analysis software. In addition to their usefulness in tuning and steering the accelerator, the profile monitors are utilized for emittance measurement. A description of...

  9. Beam profile effects on NPB [neutral particle beam] performance

    International Nuclear Information System (INIS)

    A comparison of neutral particle beam brightness for various neutral beam profiles indicates that the widely used assumption of a Gaussian profile may be misleading for collisional neutralizers. An analysis of available experimental evidence shows that lower peaks and higher tails, compared to a Gaussian beam profile, are observed out of collisional neutralizers, which implies that peak brightness is over estimated, and for a given NPB platform-to-target range, the beam current (power), dwell time or some combination of such engagement parameters would have to be altered to maintain a fixed dose on target. Based on the present analysis, this factor is nominally about 2.4 but may actually be as low as 1.8 or as high as 8. This is an important consideration in estimating NPB constellation performance in SDI engagement contexts. 2 refs., 6 figs

  10. Beam profile for Malaysian electron accelerator

    International Nuclear Information System (INIS)

    This paper comprises of two calculations that require in designing a dose profile for an electron accelerator machine before its fabrication. The first is to calculate the beam deflection due to changes of high voltage (HV) supply as well as the deflection coil currents so that the electron beam will only scan at the window foil of 18 cm length and 6 cm width. Secondly, we also require to calculate the beam profile at 50 mm underneath the window foil. The electron gun that produces a beam of 10 mm diameter has to be oscillated in a sawtooth wave for the prescribed window size at frequencies of 50 Hz and 400 Hz along the length and width directions respectively. For the beam deflection, we apply a basic formula from Lorentz force law to obtain a set of HV supply and the coil current that is suitable for both deflections and this result can assist in designing the coil current against HV changes via an electronic controller. The dose profile was calculated using the RMS current formulation along the length direction. We found that the measured and the calculated RMS currents are in comparable for the case of 1 MeV, 50 mA accelerator facility that is going to be installed at Nuclear Malaysia complex. A similar measurement will be carried out for our locally designed accelerator of 150 KeV, 10 mA after fabrication and installation of the machine are completed. (Author)

  11. Vibrating Wire for Beam Profile Scanning

    CERN Document Server

    Arutunian, S G; Mailian, M R; Sinenko, I G; Vasiniuk, I E

    1999-01-01

    The method for measurement of transverse profile (emittance) of the bunch by detecting of radiation arising scattering at of the bunch on the scanning wire is wide-spread. In this work the information about scattering bunch is proposed to measure using the oscillation frequency of the tightened scanning wire. In such way the system of radiation (or secondary particles) extraction and measurement can be removed. Dependence of oscillations frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam, influence of beam self field. Preliminary calculations show that influence caused by wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, niobium zirconium alloys). A scheme of self oscillations generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. Special method of wire fixation and elimination of trans...

  12. Neutron collimator with rectangular beam profile

    Energy Technology Data Exchange (ETDEWEB)

    Cussen, L.D. E-mail: leo.cussen@vu.edu.au; Hoeghoj, P.; Anderson, I.S

    2001-03-21

    Several Soller slit-type neutron collimators which give rectangular profiles of transmission as a function of angular divergence have been constructed. The collimators accept a beam of realistic dimensions - greater than 12x22 mm{sup 2} in all cases. The blades of the collimators are 280 {mu}m thick wafers of single-crystal silicon each coated with a Ni-Gd-Ni multilayer on one side. Tests at a neutron wavelength of 7.5 A confirm that the transmission profiles are rectangular. Tests at a wavelength of 4.2 A show that two such collimators rocked against each other give dramatically enhanced transmission and resolution by comparison with conventional collimators. This is the first such demonstration of increased counting rates in a scan on an instrument from rectangular profile collimators, an effect expected but not produced for over 40 years.

  13. Neutron collimator with rectangular beam profile

    CERN Document Server

    Cussen, L D; Anderson, I S

    2001-01-01

    Several Soller slit-type neutron collimators which give rectangular profiles of transmission as a function of angular divergence have been constructed. The collimators accept a beam of realistic dimensions - greater than 12x22 mm sup 2 in all cases. The blades of the collimators are 280 mu m thick wafers of single-crystal silicon each coated with a Ni-Gd-Ni multilayer on one side. Tests at a neutron wavelength of 7.5 A confirm that the transmission profiles are rectangular. Tests at a wavelength of 4.2 A show that two such collimators rocked against each other give dramatically enhanced transmission and resolution by comparison with conventional collimators. This is the first such demonstration of increased counting rates in a scan on an instrument from rectangular profile collimators, an effect expected but not produced for over 40 years.

  14. Neutron collimator with rectangular beam profile

    International Nuclear Information System (INIS)

    Several Soller slit-type neutron collimators which give rectangular profiles of transmission as a function of angular divergence have been constructed. The collimators accept a beam of realistic dimensions - greater than 12x22 mm2 in all cases. The blades of the collimators are 280 μm thick wafers of single-crystal silicon each coated with a Ni-Gd-Ni multilayer on one side. Tests at a neutron wavelength of 7.5 A confirm that the transmission profiles are rectangular. Tests at a wavelength of 4.2 A show that two such collimators rocked against each other give dramatically enhanced transmission and resolution by comparison with conventional collimators. This is the first such demonstration of increased counting rates in a scan on an instrument from rectangular profile collimators, an effect expected but not produced for over 40 years

  15. Time profile of the slowly extracted beam

    CERN Document Server

    Pullia, M

    1997-01-01

    An important spin-off from accelerators is the use of synchrotrons for cancer therapy. For this application a precise control of the slow extraction is needed to satisfy the medical specifications for the online measurement and control of the delivered dose. This has led to a renewed interest in the basic theory of third-order resonance extraction. In the present paper, an analytic study of the time profile of the extracted beam is made by first considering the time profile of an elementary strip of monoenergetic particles from the side of the shrinking stable triangle. This basic result is then used to predict the characteristics of the spills for the most common extraction configurations. The influence of ripples whose period is comparable to the transit time of a particle in the resonance is also analyzed. Simulations of the extraction process that confirm the analytic study are included.

  16. Transverse profile imager for ultrabright electron beams

    Science.gov (United States)

    Ischebeck, Rasmus; Prat, Eduard; Thominet, Vincent; Ozkan Loch, Cigdem

    2015-08-01

    A transverse profile imager for ultrabright electron beams is presented, which overcomes resolution issues in present designs by observing the Scheimpflug imaging condition as well as the Snell-Descartes law of refraction in the scintillating crystal. Coherent optical transition radiation emitted by highly compressed electron bunches on the surface of the crystal is directed away from the camera, allowing to use the monitor for profile measurements of electron bunches suitable for X-ray free electron lasers. The optical design has been verified by ray tracing simulations, and the angular dependency of the resolution has been verified experimentally. An instrument according to the presented design principles has been used in the SwissFEL Injector Test Facility, and different scintillator materials have been tested. Measurements in conjunction with a transverse deflecting radiofrequency structure and an array of quadrupole magnets demonstrate a normalized slice emittance of 25 nm in the core of a 30 fC electron beam at a pulse length of 10 ps and a particle energy of 230 MeV.

  17. Beam profiling at focus: the search for the Holy Grail

    Science.gov (United States)

    Green, Lawrence I.

    2007-02-01

    Electronic laser beam profiling is now a widely accepted method to measure the mode quality and spatial profile of a laser beam. For the most part, profiling has been limited to the unfocused or 'raw' beam, because the energy density or irradiance in the vicinity of focus is high enough to destroy almost any measurement device. Recent developments in measuring technology now enable users to make beam profiling measurements at and near the focus of many lasers. We discuss two new designs and show examples of how they function.

  18. New fast beam profile monitor for electron-positron colliders.

    Science.gov (United States)

    Bogomyagkov, A V; Gurko, V F; Zhuravlev, A N; Zubarev, P V; Kiselev, V A; Meshkov, O I; Muchnoi, N Yu; Selivanov, A N; Smaluk, V V; Khilchenko, A D

    2007-04-01

    A new fast beam profile monitor has been developed at the Budker Institute of Nuclear Physics. This monitor is based on the Hamamatsu multianode photomultiplier with 16 anode strips and provides turn-by-turn measurement of the transverse beam profile. The device is equipped with an internal memory, which has enough capacity to store 131,072 samples of the beam profile. The dynamic range of the beam profile monitor allows us to study turn-by-turn beam dynamics within the bunch charge range from 1 pC up to 10 nC. Using this instrument, we have investigated at the VEPP-4M electron-positron collider a number of beam dynamics effects which cannot be observed by other beam diagnostics tools. PMID:17477653

  19. Full cycle beam diagnostics with an ionization profile monitor

    International Nuclear Information System (INIS)

    The Alternating Gradient Synchrotron Booster at Brookhaven National Laboratory uses an ionization profile monitor to generate profiles of proton and heavy-ion beams. The profile monitor can acquire hundreds of profiles during an acceleration cycle, and then display and store them for analysis. Profiles appear in real time on an oscilloscope-type display, but other visualizations are available as well, namely mountain range and emittance displays. File storage of profile data is simple, as is the storage of moments and emittances

  20. Beam profile shaping for laser radars that use detector arrays.

    Science.gov (United States)

    Veldkamp, W B; Kastner, C J

    1982-01-15

    The beam shaper we developed shapes the transmit beam of a CO(2) laser radar that uses a linear detector array. It consists of a diffraction grating and an anamorphic prism beam compressor and produces a stretched profile that efficiently and uniformly illuminates the far-field footprint of the detector array. The diffraction grating phase modulates the near field or the laser beam to generate a far-field flattop intensity profile, whereas the compressor produces the necessary profile eccentricity. We have achieved conversion efficiencies in the 70-90% range. PMID:20372453

  1. A beam profile monitor using the ionization of residual gas in the beam pipe

    International Nuclear Information System (INIS)

    A beam profile monitor for high energy beams, which has no intercepting parts in the beam pipe, is described. It makes use of the ionization of the residual gas, which is still present in the vacuum chamber of the beam guiding system. The detection of the ionization products is performed with microchannel plates. (orig.)

  2. A new luminescence beam profile monitor for intense proton and heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  3. Beam-profile monitor using a sodium-vapour

    CERN Multimedia

    1972-01-01

    Beam-profile monitor using a sodium-vapour curtain at 45 degrees to the ISR beam in Ring I (sodium generator is in white cylinder just left of centre). Electrons produced by ionization of the sodium vapour give an image of the beam on a fluorescent screen that is observed by a TV camera (at upper right).

  4. Characterization of X-ray generator beam profiles.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

    2013-07-01

    T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

  5. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  6. Status of multi-beam long trace-profiler development

    Science.gov (United States)

    Gubarev, Mikhail V.; Merthe, Daniel J.; Kilaru, Kiranmayee; Kester, Thomas; Ramsey, Brian; McKinney, Wayne R.; Takacs, Peter Z.; Dahir, A.; Yashchuk, Valeriy V.

    2013-09-01

    The multi-beam long trace profiler (MB-LTP) is under development at NASA's Marshall Space Flight Center. The traditional LTPs scans the surface under the test by a single laser beam directly measuring the surface figure slope errors. While capable of exceptional surface slope accuracy, the LTP single beam scanning has slow measuring speed. Metrology efficiency can be increased by replacing the single laser beam with multiple beams that can scan a section of the test surface at a single instance. The increase in speed with such a system would be almost proportional to the number of laser beams. The progress for a multi-beam long trace profiler development is presented.

  7. Techniques for intense-proton-beam profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, J.D.

    1998-12-31

    In a collaborative effort with industry and several national laboratories, the Accelerator Production of Tritium (APT) facility and the Spallation Neutron Source (SNS) linac are presently being designed and developed at Los Alamos National Laboratory (LANL). The APT facility is planned to accelerate a 100-mA H{sup +} cw beam to 1.7 GeV and the SNS linac is planned to accelerate a 1- to 4-mA-average, H{sup {minus}}, pulsed-beam to 1 GeV. With typical rms beam widths of 1- to 3-mm throughout much of these accelerators, the maximum average-power densities of these beams are expected to be approximately 30- and 1-MW-per-square millimeter, respectively. Such power densities are too large to use standard interceptive techniques typically used for acquisition of beam profile information. This paper summarizes the specific requirements for the beam profile measurements to be used in the APT, SNS, and the Low Energy Development Accelerator (LEDA)--a facility to verify the operation of the first 20-MeV section of APT. This paper also discusses the variety of profile measurement choices discussed at a recent high-average-current beam profile workshop held in Santa Fe, NM, and will present the present state of the design for the beam profile measurements planned for APT, SNS, and LEDA.

  8. Beam profile monitor using alumina screen and CCD camera

    International Nuclear Information System (INIS)

    A pair of beam profile monitors using alumina ceramic screens (Al2O3) and CCD cameras has been developed for diagnosis of a linac beam at the 1.3 GeV electron synchrotron of the Institute for Nuclear Study, the University of Tokyo (INS-ES). Since both the light decay-time of the screen and a shutter speed of the camera are relatively short, about 10 msec or less and 1 msec, respectively, this system is able to measure the beam profile for each pulse of the linac beam operated at a repetition rate of 21.5 Hz. Detailed analysis of the beam profile is made using the stored data on the personal computer. On the other hand, a light spot on the screen is displayed directly on a monitor display. (author)

  9. Development of a Laser Wire Beam Profile Monitor, 1

    CERN Document Server

    Sakamura, Y; Matsuo, H; Sakai, H; Sasao, N; Higashi, Y; Korhonen, T T; Taniguchi, T; Urakawa, J; Sakamura, Yutaka; Hemmi, Yasuo; Matsuo, Hiroaki; Sakai, Hiroshi; Sasao, Noboru; Higashi, Yasuo; Korhonen, Timo; Taniguchi, Takashi; Urakawa, Junji

    1999-01-01

    A conceptual design work and a basic experimental study of a new beam profile monitor have been performed. The monitor will be used to measure emittance of an electron beam in the ATF damping ring at KEK, in which the transverse beam size of about 10 micron is expected. It utilizes a CW laser and an optical cavity, instead of a material wire, to minimize interference with an electron beam. A laser beam with a very thin waist is realized by employing the cavity of nearly concentric mirror configuration while the intensity is amplified by adjusting the cavity length to a Fabry-Perot resonance condition. We built a test cavity to establish a method to measure important parameters such as a laser beam waist and a power enhancement factor. Three independent methods were examined for the measurement of the beam waist. It was found that the cavity realized the beam waist of 20 micron with the power enhancement factor of 50.

  10. Beam profile shape of a parallel plane electrodes focusing system

    International Nuclear Information System (INIS)

    The present work investigates the potential distribution in a five electrodes lens to be used in an electrostatic ion source . The beam profile shape has been investigated using different gases The radii of the beam profile along the axial distance using nitrogen gas are calculated for different perveance, different initial beam radii, different ion charges and different ratios of the magnitude of voltage difference between the central electrode and the outer electrodes , Va , to the voltage corresponding to ion energy Vi . It has been found that a minimum beam radius of 0.22 mm can be obtained for initial beam radius equal 2.5 mm using nitrogen gas. The present lens constitutes a convergent lens. It gives a beam more focused than in case of two hemispherical electrodes and an intermediate flat electrode

  11. IFMIF-LIPAc Beam Diagnostics. Profiling and Loss Monitoring Systems

    International Nuclear Information System (INIS)

    The IFMIF accelerator will accelerate two 125 mA continuous wave (cw) deuteron beams up to 40 MeV and blasts them onto a liquid lithium target to release neutrons. The very high beam power of 10 MW pose unprecedented challenges for the accelerator development. Therefore, it was decided to build a prototype accelerator, the Linear IFMIF Prototype Accelerator (LIPAc), which has the very same beam characteristic, but is limited to 9 MeV only. In the frame of this thesis, diagnostics devices for IFMIF and LIPAc have been developed. The diagnostics devices consist of beam loss monitors and interceptive as well as non-interceptive profile monitors. For the beam loss monitoring system, ionization chambers and diamond detectors have been tested and calibrated for neutron and γ radiation in the energy range expected at LIPAc. During these tests, for the first time, diamond detectors were successfully operated at cryogenic temperatures. For the interceptive profilers, thermal simulations were performed to ensure safe operation. For the non-interceptive profiler, Ionization Profile Monitors (IPMs) were developed. A prototype has been built and tested, and based on the findings, the final IPMs were designed and built. To overcome the space charge of accelerator beam, a software algorithm was written to reconstruct the actual beam profile. (author)

  12. Electron beam diagnostic for profiling high power beams

    Science.gov (United States)

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  13. Quantitative high dynamic range beam profiling for fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D. [Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  14. Feedback control of optical beam spatial profiles using thermal lensing

    CERN Document Server

    Liu, Zhanwei; Arain, Muzammil A; Williams, Luke; Mueller, Guido; Tanner, David B; Reitze, David H

    2013-01-01

    A method for active control of the spatial profile of a laser beam using adaptive thermal lensing is described. A segmented electrical heater was used to generate thermal gradients across a transmissive optical element, resulting in a controllable thermal lens. The segmented heater also allows the generation of cylindrical lenses, and provides the capability to steer the beam in both horizontal and vertical planes. Using this device as an actuator, a feedback control loop was developed to stabilize the beam size and position.

  15. A study on beam profile at an industrial electron beam accelerator

    International Nuclear Information System (INIS)

    An industrial type electron beam accelerator located at BARC-BRIT complex, Vashi, Navi Mumbai is operational for development of applications and technology demonstration to the Indian industry in the field of polymer modifications and for processing of various other products. Recently the accelerator has been upgraded from 2 MeV to 5 MeV to process thick polymers, packaged products and for waste water treatment. This accelerator is capable of delivering powered electron beams up to 15 kW average beam power in the energy range 3 to 5 MeV. In the facility, product is irradiated either in static or conveyor mode of operation under the scanning- type beam. In the present work, we have performed beam profile measurement at different distances from the beam extraction window under conveyor and static mode of operation. We have used cellulose triacetate (CTA) strip dosimeters for the beam profile measurement. Dose profile measured along the scan direction (beam width) in conveyor mode and beam length profile in static mode of operation at different distances below accelerator beam exit window is shown. In the conveyor mode of operation, as the distance increases from the beam window the uniformity of the dose distribution improves but dose decreases linearly with distance. For a scanned beam, the beam width defines the dimension of the beam sweep. For static mode of operation, the dose from the exit window of the accelerator follows inverse relation with distance (i.e. l/r). This shows that the system is a line-type directional radiation source. Beam length is critical for processes where product is stationary under the beam and also for setting speed of the conveyor depending on pulse frequency in conveyor mode of operation. The present paper describes optimization of operational parameters to maximize the efficiency of the irradiation process based on these measurements. (author)

  16. A computer code for computing the beam profiles in the NBI beam line 'BEMPROF'

    International Nuclear Information System (INIS)

    A computer code was developed which can compute the beam profiles and the percentage heat loadings on the various components in the NBI beam line such as the beam target, the beam limiters and the calorimeter. The geometrical injection efficiency of NBI and the heat input pattern on the counter surface of the injection port of the torus can also be computed. The major feature of this code is that the effects of the beamlet intensity distribution, the beamlet deflection, the beam screening by the upstream limiters and also the plasma density distribution and the divergence angle distribution over the beam extraction area can be taken into account. (author)

  17. High resolution beam profile monitors in the SLC

    International Nuclear Information System (INIS)

    In the SLC linac, low emittance beams with typical transverse dimensions less than 0.2 mm must be accelerated without effective emittance growth. In order to monitor this we have installed a high resolution beam profile monitor system which consists of an aluminum target covered with a fine-grained phosphor, a magnifying optical system, a television camera and video signal recording electronics. The image formed when the beam strikes the phosphor screen is viewed on a CRT monitor at the console and selected horizontal and vertical slices of the beam spot intensity are recorded. A 20 MHz transient waveform recorder is used to sample and digitize the raw video signal along the selected slice. The beam width is determined by fitting the background subtracted data to a Gaussian. Beam spots less than 6 x 3 mm can be viewed. Beam spot sizes sigma/sub x,y/ < 80 μm have been measured. 9 refs., 4 figs

  18. Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements

    CERN Document Server

    Rihl, Mariana; Baglin, Vincent; Barschel, Colin; Bay, Aurelio; Blanc, Frederic; Bravin, Enrico; Bregliozzi, Giuseppe; Chritin, Nicolas; Dehning, Bernd; Ferro-Luzzi, Massimiliano; Gaspar, Clara; Gianì, Sebastiana; Giovannozzi, Massimo; Greim, Roman; Haefeli, Guido; Hopchev, Plamen; Jacobsson, Richard; Jensen, Lars; Jones, Owain Rhodri; Jurado, Nicolas; Kain, Verena; Karpinski, Waclaw; Kirn, Thomas; Kuhn, Maria; Luthi, Berengere; Magagnin, Paolo; Matev, Rosen; Nakada, Tatsuya; Neufeld, Niko; Panman, Jaap; Rakotomiaramanana, Barinjaka; Salustino Guimaraes, Valdir; Salvant, Benoit; Schael, Stefan; Schneider, Olivier; Schwering, Georg; Tobin, Mark; Veness, Raymond; Veyrat, Quentin; Vlachos, Sotiris; Wlochal, Michael; Xu, Zhirui; von Dratzig, Arndt

    2016-01-01

    Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.

  19. Laser Beam Profile Influence on LIBS Analytical Capabilities: Single vs. Multimode Beam

    CERN Document Server

    Lednev, Vasily N; Bunkin, Alexey F

    2013-01-01

    Single vs. multimode laser beams have been compared for laser ablation on steel samples. Laser plasma properties and analytical capabilities (precision, limit of detection) were used as key parameters for comparison. Peak fluence at focal spot has been observed to be higher for Gaussian beam despite ~14-fold lower pulse energy. A comparison of Gaussian and multimode beams with equal energy was carried out in order to estimate influence of beam profile only. Single mode lasing (Gaussian beam) results in better reproducibility of analytical signals compared to multimode lasing while laser energy reproducibility was the same for both cases. Precision improvements were attributed to more stable laser ablation due to better reproducibility of beam profile fluence at laser spot. Plasma temperature and electron density were higher for Gaussian laser beam. Calibration curves were obtained for four elements under study (Cr, Mn, Si, Cu). Two sampling (drilling and scanning procedures) and two optical detection schemes ...

  20. An Electron Beam Profile Instrument Based on FBGs

    Directory of Open Access Journals (Sweden)

    Dan Sporea

    2014-08-01

    Full Text Available Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application.

  1. Beam Studies Made with the SPS Ionization Profile Monitor

    CERN Document Server

    Ferioli, G; Koopman, J; Roncarolo, F

    2003-01-01

    During the last two years of SPS operation, investigations were pursued on the ability of the SPS ionization profile monitor prototype to fulfill different tasks. It is now established that the instrument can be used for injection matching tuning, by turn to turn recording of the beam size after the injection. Other applications concern beam size measurements on beams ranging from an individual bunch to a nominal SPS batch foreseen for injection into the LHC (288 bunches). By continuously tracking throughout the SPS acceleration cycle from 26 GeV to 450 GeV the evolution of parameters associated to the beam size, it is possible to explain certain beam behaviour. Comparisons are also made at different beam currents and monitor gains with measurements made with the wire scanners. Data are presented and discussed, and the possible implementation of new features is suggested in order to further improve the consistency of the measurements.

  2. Large Dynamic Range Beam Profile Measurements with Low Current Electron Beams

    International Nuclear Information System (INIS)

    Large dynamic range [Peak/Noise > 105] beam profile measurements are routinely performed in the Hall-B beamline at Jefferson Lab. These measurements are made with a 1 to 10nA electron beam current with energies between 1 to 6 GeV. The electron beam scatters off of a thin [25 mu-m] W or Fe wire and the scattered particle/shower is detected via scintillation or Cerenkov light several meters downstream of the wire. This light is converted to an electrical pulse via photomultiplier tubes [PMT]. The PMT readout and wire motion are controlled and synchronized by VME electronics. This report describes results on increasing the dynamic range by using multiple wires of varying diameters. Profile measurements with this large dynamic range can be of use for machines with very large beam currents (ERL) where any FR-actional beam loss represents a significant amount of beam power [1,2

  3. Measurement of neutral beam power and beam profile distribution on DNB

    International Nuclear Information System (INIS)

    The injection power of a diagnostic neutral beam (DNB) can be obtained with the thermocouple probe measurement system on the Hefei superconducting Tokamak-7 (HT-7). With the 49 kv, 6 A, 100 ms pulse charge of an acceleration electrode, a thermocouple probe measurement system with 13 thermocouples crossly distributed on a coppery heat target was used to measure the temperature rise of the target, and the maximum measured temperature rise was 14 degree C. And the neutral beam power of 160 kW and beam profile distribution was obtained by calculation. The total neutral beam power of 130 kW was also obtained by integral calculation with the temperature rise on the heat section board. The difference between the two means was analyzed. The experiment results shows that the method of heat section board with thermocouple probe is one of the effective ways to measure the beam power and beam profile distribution. (authors)

  4. Laser beam deflection in nonlinearly steepened flow profiles

    International Nuclear Information System (INIS)

    A simple model is presented for laser beam deflection by nonlinear induced profile changes near the sonic point in an expanding plasma. The deflection angle scales as a weak power of the laser intensity, since the flow is resonantly perturbed. A significant deflection can occur even in the absence of filamentation which, however, can further enhance the deflection angle. Improved calculations of filamentation in flowing plasmas require consideration of these self-consistent modifications of the zeroth-order state, which can act to stabilize the instability. LASNEX calculations are used to illustrate the self-consistent profile changes and beam deflection. (Author)

  5. Beam profile indicator for swift heavy ions using phosphor afterglow

    Directory of Open Access Journals (Sweden)

    T. Z. Zhan

    2012-09-01

    Full Text Available In this letter, we report a beam profile indicator for swift heavy ions (SHIs which utilizes the afterglow of phosphors. Clear marks are left on SrAl2O4:Eu2+ and CaSrAl2Si2O8:Eu2+ samples by SHI irradiation through a permanent change of their afterglow intensity. The afterglow intensity of the SHI-irradiated areas has a Gaussian distribution. Moreover, afterglow intensity and irradiation fluence are linearly related, indicating that this type of indicator has good dose linearity. The results suggest that long-lasting phosphors are promising SHI beam profile indicators with high spatial resolution.

  6. The characterization of beam profile by modification of electrode shape

    International Nuclear Information System (INIS)

    Ion sources have been used for variety of industrial application over the past few decades and our research group has been studied about high current and large dimension ion source to meet the requirement from beam user. For a mass production in industry, a wide beam divergence and a beam profile of a broadly Gaussian shape is very needed. Generally, the production process like roll-to-roll or in-line system is need one-meter in diameter, ±5% in uniformity. Therefore it is difficult to apply with present system like 0.3-meter in diameter, ±20% in uniformity and needed new type ion source. In this study, it is approached with modification of electrode grid shape without fabrication of new type ion source. We modified from parallel type to hemispherical type electrode grid to secure large dimension ion beam and were discussed with respect to beam profile calculated with IGUN code simulation. Also, we identified beam profile before and after modification of electrode grid system(cathode, Acelldecel grid) with measurement of faraday cup

  7. Evolution of the THz Beam Profile from a Two-Color Air Plasma Through a Beam Waist

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2013-01-01

    We experimentally measure the profile of a THz beam generated by a two-color air plasma as it passes through a beam waist, and show that it can be approximated as a Bessel-Gauss beam.......We experimentally measure the profile of a THz beam generated by a two-color air plasma as it passes through a beam waist, and show that it can be approximated as a Bessel-Gauss beam....

  8. Adaptive robust control of longitudinal and transverse electron beam profiles

    Science.gov (United States)

    Rezaeizadeh, Amin; Schilcher, Thomas; Smith, Roy S.

    2016-05-01

    Feedback control of the longitudinal and transverse electron beam profiles are considered to be critical for beam control in accelerators. In the feedback scheme, the longitudinal or transverse beam profile is measured and compared to a desired profile to give an error estimate. The error is then used to act on the appropriate actuators to correct the profile. The role of the transverse feedback is to steer the beam in a particular trajectory, known as the "orbit." The common approach for orbit correction is based on approximately inverting the response matrix, and in the best case, involves regulating or filtering the singular values. In the current contribution, a more systematic and structured way of handling orbit correction is introduced giving robustness against uncertainties in the response matrix. Moreover, the input bounds are treated to avoid violating the limits of the corrector currents. The concept of the robust orbit correction has been successfully tested at the SwissFEL injector test facility. In the SwissFEL machine, a photo-injector laser system extracts electrons from a cathode and a similar robust control method is developed for the longitudinal feedback control of the current profile of the electron bunch. The method manipulates the angles of the crystals in the laser system to produce a desired charge distribution over the electron bunch length. This approach paves the way towards automation of laser pulse stacking.

  9. Position Sensitive Detector Used to Detect Beam Profile

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Non-destructive diagnostic methods are very important for beam adjustments and monitors,especially when the beam intensity is less than 10~8 pps during the heavy-ion treatment of cancer.Now the diagnostic devices of HIFRL can’t satisfy the requests,so we decide to construct a detecting system of the residual-gas beam profile~([1,2]).The system uses the Position Sensitive Detector(PSD)~([3,4])based on microchannel plate(MCP)to

  10. Temperature profiles of evaporation surface heated by electron beam

    International Nuclear Information System (INIS)

    The evaporation surface was imaged by a lens through a band pass filter of 562 ± 5 nm on the CCD (Charge-Coupled Device) sensor. Temperature profiles were obtained from radiation intensity profiles measured by the CCD sensor using Planck's law of radiation. At an electron beam power of 4.5 kW, maximum temperature was 2040K. Deposition rates measured by a quartz crystal sensor agreed with those estimated from the measured temperature profiles using the data of saturated vapor pressure of copper. (author)

  11. LASER-BASED PROFILE MONITOR FOR ELECTRON BEAMS

    International Nuclear Information System (INIS)

    High performance TeV energy electron / positron colliders (LC) are the first machines to require online, non-invasive beam size monitors for micron and sub-micron for beam phase space optimization. Typical beam densities in the LC are well beyond the threshold density for single pulse melting and vaporization of any material, making conventional wire scanners ineffective. Using a finely focused, diffraction limited high power laser, it is possible to devise a sampling profile monitor that, in operation, resembles a wire scanner. Very high resolution laser-based profile monitors have been developed and tested, first at FFTB (SLAC) and later at SLC and ATF. The monitor has broad applicability and we review here the technology, application and status of ongoing research programs

  12. Dose rate and beam profile measurement of proton beam using a flat panel detector

    Science.gov (United States)

    Park, Jeong-Min

    2015-10-01

    A 20-MeV or 100-MeV proton beam is provided to users for their proton beam irradiation experiments at KOrea Multi-Purpose Accelerator Complex. Radiochromic film (Gafchromic / HDV2) has been used to measure the dose rate and the profile of an incident proton beam during irradiation experiments. However, such measurements using radiochromic film have some inconveniences because an additional scanning process of is required to quantify the film's image. Therefore, we tried to measure the dose rate and beam profile by using a flat panel detector (FPD), which was developed for X-ray radiography as a substitute for radiochromic film because the FPD can measure the beam profile and the dose rate directly through a digitized image with a high spatial resolution. In this work, we investigated the feasibility of using a FPD as a substitute for radiochromic film. The preliminary results for the beam profile and the dose rate measured by using the flat panel detector are reported in the paper.

  13. High-resolution phosphor screen beam profile monitor

    International Nuclear Information System (INIS)

    A high-resolution luminescent screen beam profile monitor was developed to allow viewing of both conventional large diameter SLAC e+/e- beams, and also collider rf-bunches having small transverse spatial extent, with one instrument. The principal features of the monitor are described. They include the two-power magnification system offering magnifications of 12 and 78X, respectively; the reticle grid which is optically superimposed on the screen image by a cube beam splitter; selection of a suitable camera; and the Al2O3(Cr) phosphor screen. A simplified version of the monitor for viewing of only micron-sized beams for applications in the collider arcs and final focus regions and achieving a magnification of approx. 40X, coupled with a resolution of approx. 20μm is also presented. 4 refs., 4 figs

  14. An online, energy-resolving beam profile detector for laser-driven proton beams.

    Science.gov (United States)

    Metzkes, J; Zeil, K; Kraft, S D; Karsch, L; Sobiella, M; Rehwald, M; Obst, L; Schlenvoigt, H-P; Schramm, U

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source. PMID:27587116

  15. Mitigating the relativistic laser beam filamentation via an elliptical beam profile.

    Science.gov (United States)

    Huang, T W; Zhou, C T; Robinson, A P L; Qiao, B; Zhang, H; Wu, S Z; Zhuo, H B; Norreys, P A; He, X T

    2015-11-01

    It is shown that the filamentation instability of relativistically intense laser pulses in plasmas can be mitigated in the case where the laser beam has an elliptically distributed beam profile. A high-power elliptical Gaussian laser beam would break up into a regular filamentation pattern-in contrast to the randomly distributed filaments of a circularly distributed laser beam-and much more laser power would be concentrated in the central region. A highly elliptically distributed laser beam experiences anisotropic self-focusing and diffraction processes in the plasma channel ensuring that the unstable diffractive rings of the circular case cannot be produced. The azimuthal modulational instability is thereby suppressed. These findings are verified by three-dimensional particle-in-cell simulations. PMID:26651801

  16. A high resolution, single bunch, beam profile monitor

    International Nuclear Information System (INIS)

    Efficient linear colliders require very small beam spots to produce high luminosities with reasonable input power, which limits the number of electrons which can be accelerated to high energies. The small beams, in turn, require high precision and stability in all accelerator components. Producing, monitoring and maintaining beams of the required quality has been, and will continue to be, difficult. A beam monitoring system which could be used to measure beam profile, size and stability at the final focus of a beamline or collider has been developed and is described here. The system uses nonimaging bremsstrahlung optics. The immediate use for this system would be examining the final focus spot at the SLAC/FFTB. The primary alternatives to this technique are those proposed by P. Chen / J. Buon, which analyses the energy and angular distributions of ion recoils to determine the aspect ratio of the electron bunch, and a method proposed by Shintake, which measures intensity variation of compton backscattered photons as the beam is moved across a pattern of standing waves produced by a laser

  17. Profile distortion by beam space-charge in Ionization Profile Monitors

    CERN Document Server

    Vilsmeier, D; Wettig, T

    Measuring the transverse beam size in the Large Hadron Collider by using Ionization Profile Monitors is a difficult task for energies above injection during the energy ramp from 450 GeV to 6.5TeV. The beam size decreases from around 1mm to 200um and the brightness of the beam is high enough to destroy the structure of any form of interacting matter. While the electron trajectories are confined by an external electro-magnetic field which forces the electrons accordingly on helix paths with certain gyroradii, this gyration is heavily increased under the influence of the electric field of the beam. Smaller beam sizes, which go hand in hand with increased bunch electric fields, lead to larger gyroradii of the ionized electrons, which results in strongly distorted profiles. In addition, this distortion becomes more visible for smaller beam sizes as the extent of gyration grows compared to the actual beam size. Depending on the initial momentum distribution of the electrons, emerging from the ionization process wit...

  18. Measurements of temperature profiles in gases by laser beam deflection

    OpenAIRE

    Lin Zhang; Petit, Jean-Pierre; Taine, J.

    1989-01-01

    The determination of temperature profiles in gases is based on the light beam deflection due to the refractive index gradient induced by a temperature gradient at constant pressure. The geometry considered for the system is a cylinder of arbitrary section characterized by isothermal generative lines. A parameter estimation method and a parabolical trajectory method are considered to treat experimental data. The measurement technique is then applied to laminar natural convection flow along a v...

  19. Profile Monitors for Wide Multiplicity Range Electron Beams

    CERN Document Server

    Buonomo, B; Quintieri, L

    2005-01-01

    The DAFNE Beam Test Facility (BTF) provides electron and positron beams in a wide range of intensity, from single particle up to 1010 particles per pulse, and energy, from a few tens of MeV up to 800 MeV. The pulse time width can be adjusted between 1 and 10 ns and the maximum repetition rate is 50 Hz. The large range of operation of the facility requires the implementation of different beam profile and multiplicity monitors. In the single particle operation mode the beam spot profile and position are measured by a x-y scintillating fiber system with millimetric resolution and multi-anode PMT readout. From a few tens up to 106-107 particles per pulse, a silicon chamber made of two 9.5x9.5 cm2 wide 400μm thick silicon strip detectors organized in a x-y configuration with a pitch of 121μm has been developed. Once calibrated, the system can be used also as an intensity monitor. The description of the devices and the results obtained during the data taking periods of several experiments at the...

  20. Development of Multi-Beam Long Trace Profiler

    Science.gov (United States)

    Kilaru, Kiranmayee; Merthe, Daniel J.; Ali, Zulfiqar; Gubarev, Mikhail V.; Kester, Thomas; McKinney, Wayne R.; Takacs, Peter Z.; Yashchuk, Valeriy V.

    2011-01-01

    In order to fulfill the angular resolution requirements and make the performance goals for future NASA missions feasible, it is crucial to develop instruments capable of fast and precise figure metrology of x-ray optical elements for further correction of the surface errors. The Long Trace Profilometer (LTP) is an instrument widely used for measuring the surface figure of grazing incidence X-ray mirrors. In the case of replicated optics designed for x-ray astronomy applications, such as mirrors and the corresponding mandrels have a cylindrical shape and their tangential profile is parabolic or hyperbolic. Modern LTPs have sub-microradian accuracy, but the measuring speed is very low, because the profilometer measures surface figure point by point using a single laser beam. The measurement rate can be significantly improved by replacing the single optical beam with multiple beams. The goal of this study is to demonstrate the viability of multi-beam metrology as a way of significantly improving the quality and affordability of replicated x-ray optics. The multi-beam LTP would allow one- and two-dimensional scanning with sub-microradian resolution and a measurement rate of about ten times faster compared to the current LTP. The design details of the instrument's optical layout and the status of optical tests will be presented.

  1. Flying wire beam profile monitor at the J-PARC MR

    International Nuclear Information System (INIS)

    A flying wire beam profile monitor has been assembled and installed at the main ring of the Japan Proton Accelerator Research Complex. The monitor is to measure the horizontal beam profile using a carbon fiber of 7 μmφ. The fiber crosses the beam with the speed of 10 m/s. Secondary particles from the beam-wire scattering is detected using a scintillation counter. The scintillator signal as a function of the wire position is to be reconstructed as a beam profile. The high scanning speed and the minimum material are necessary for the accurate beam profile measurement. The monitor has been operated in the beam commissioning run of the main ring. The beam profile data have been successfully acquired after the reduction of the beam background. (author)

  2. Shaping the beam profile of an elliptical Gaussian beam by an elliptical phase aperture

    Science.gov (United States)

    Wen, Wei; Wu, Gaofeng; Song, Kehui; Dong, Yiming

    2013-03-01

    Based on the generalized Collins integral formula, an analytical paraxial propagation formula for an elliptical Gaussian beam (EGB) passing through an astigmatic ABCD optical system with an elliptical phase aperture is derived by use of a tensor method. As an application example, we study the propagation properties of an EGB passing through an elliptical aperture in free space. It is found that the elliptical phase aperture can be used for shaping the beam profile of an EGB, which is useful in many applications, such as free space optical communication and material thermal processing. The elliptical phase aperture induced changes of the propagation factors of an EGB are also analyzed.

  3. Construction of a high resolution electron beam profile monitor

    International Nuclear Information System (INIS)

    Bremsstrahlung from an electron beam on a heavy target can be used to image the beam profile using collimators and slits. The limiting resolution using this system is determined by Fresnel diffraction, and is ∼ √(λd/2), where λ is the photon wavelength and d is determined by the linear dimensions of the system. For linear colliders this resolution could be a few nm. The highest resolution requires detectors which see only high energy, (small λ), photons, and this is accomplished by converting photons to pairs, and detecting Cherenkov light in a nearly forward angle with a CCD detector or streak camera. Tests are planned at the Argonne APS and SLAC FFTB

  4. Electron beam based transversal profile measurements of intense ion beams; Elektronenstrahl-Diagnostik zur Bestimmung vom transversalen Profil intensiver Ionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    El Moussati, Said

    2014-11-03

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  5. High-speed screen beam-profile-monitor system for high-energy beam-transport line at the HIMAC

    International Nuclear Information System (INIS)

    A screen monitor system was developed for beam profile monitors at the new High-Energy Beam-Transport (HEBT) section out the HIMAC. This monitor consists of the very thin fluorescent screen and the high-speed CCD camera. In addition to perform high-speed and high-resolution, this monitor does not almost destroy the beam. (author)

  6. Analysis of the Influence of Fibre Diameter on Wirescanner Beam Profile Measurements

    CERN Document Server

    King, Quentin

    1988-01-01

    It is often important to be able to measure beam profiles in regions where the beam size is very small. Following concern that the profile measurement might be affected by having a beam size of the same order as the diameter of the wirescanner fibre, the effect was analysed numerically, and the results are presented.

  7. Beam profile measurement using flying wire at the J-PARC MR

    International Nuclear Information System (INIS)

    Beam profiles have been measured using flying wire monitor at the main ring (MR) of the Japan Proton Accelerator Research Complex (J-PARC). The flying wire is a beam profile monitor using a thin carbon fiber as a target. The beam is scanned with the wire target at the maximum speed of 5 m/s. The secondary particles from the beam-wire scattering are detected using a scintillation counter as a function of the wire position. The measured beam profiles indicated the effect of the injection mismatch, linear coupling resonance and adiabatic damping. (author)

  8. Effects on doppler profiles in beam-heated plasmas

    International Nuclear Information System (INIS)

    We analyze various effects that can influence ion temperature measurements based on Doppler broadening of impurity lines. Macroscopic effects such as inhomogeneities, plasma rotation and temporal modulations are distinguished from microscopic ones leading to species-dependent temperatures and anisotropy in the impurity distribution functions. There are turbulent effects related to the latter that can also cause deviations from thermodynamic equilibrium among light and heavy impurities. It is found that under neutral-beam-heated JET conditions, all effects should be small and influence the measured ion temperature by less than ∼ 10%. Larger influences could be expected from strongly peaked rotation profiles - for which, however, no indications are found - and high-level turbulence, which appears rather unrealistic, too. (author)

  9. Beam profile analysis using the CCD camera with cameralink in the SPring-8 booster ring and beam transport line

    International Nuclear Information System (INIS)

    We had measured a beam position and beam size by the analog video camera system with the fluorescence plate in the SPring-8 booster ring and beam transport line. It was difficult to estimate the seasonal change of the beam position and size quantitatively. We started building up the digital beam profile acquisition system which used a digital CCD camera with the external trigger synchronous capturing function in 2007. In the accelerator parameter tuning between operation cycles, it is necessary to understand the change of a beam orbit and shape from latest cycle quickly in limited tuning time. Thus, we need both information of real-time picture images for visual confirmation and computing real-time analysis results of beam position and size. In this case, the LED light for reading the scale on the fluorescence plate becomes a background noise for a calculation of the beam profile analysis. We improved the analysis program of beam position and size in order to separates the LED light and beam light from a captured image. By this improvement, the reproducibility and adjustment accuracy of orbital steering have been improved. We will report the program flow and the details from an image capture to a beam profile analysis. (author)

  10. A two-dimensional beam profile monitor with high dynamic-range using multi-screen for intense proton beams

    International Nuclear Information System (INIS)

    An instrument for beam shape measurement including the halo is strongly required in intense proton accelerators such as the J-PARC. For diagnosing of the beam halo and halo cut at the injection beam line (3-50 BT) which connects the rapid cycling synchrotron (RCS) and the main ring (MR) in the J-PARC, we have developed a high sensitive two-dimensional profile monitor with screens. The beam core was observed with OTR from titanium foil screen, and the beam halo whose density were less almost three orders than it of the beam core was observed with fluorescence (FL) from chromium doped alumina screens placed in the four directions around the beam space. These alumina screens and remote movable system were installed in this spring, and they can be used with existing OTR screens simultaneously. These OTR and FL are focused in the same optical system having large opening angle of 30 degree, and these are observed by a camera with an image intensifier (II). By these method, two-dimensional beam profile contained the beam halo of high-intensity proton beam of 1.5 × 1013 was measured successfully with a dynamic range of more than six orders in magnitude. Two typical measured results as below are discussed mainly in this paper: (1) halo cut by the beam collimators, (2) simultaneous measurement of the beam halo of the minus 4th order with the beam core. These high-sensitive two-dimensional data give powerful information for beam diagnosing. As further topics, increasing the sensitivity of the beam halo measurement and simultaneous measurement of beam halo with beam core with wider dynamic range, their studies are planned this autumn, are also described. (author)

  11. Laser-induced retinal damage thresholds for annular retinal beam profiles

    Science.gov (United States)

    Kennedy, Paul K.; Zuclich, Joseph A.; Lund, David J.; Edsall, Peter R.; Till, Stephen; Stuck, Bruce E.; Hollins, Richard C.

    2004-07-01

    The dependence of retinal damage thresholds on laser spot size, for annular retinal beam profiles, was measured in vivo for 3 μs, 590 nm pulses from a flashlamp-pumped dye laser. Minimum Visible Lesion (MVL)ED50 thresholds in rhesus were measured for annular retinal beam profiles covering 5, 10, and 20 mrad of visual field; which correspond to outer beam diameters of roughly 70, 160, and 300 μm, respectively, on the primate retina. Annular beam profiles at the retinal plane were achieved using a telescopic imaging system, with the focal properties of the eye represented as an equivalent thin lens, and all annular beam profiles had a 37% central obscuration. As a check on experimental data, theoretical MVL-ED50 thresholds for annular beam exposures were calculated using the Thompson-Gerstman granular model of laser-induced thermal damage to the retina. Threshold calculations were performed for the three experimental beam diameters and for an intermediate case with an outer beam diameter of 230 μm. Results indicate that the threshold vs. spot size trends, for annular beams, are similar to the trends for top hat beams determined in a previous study; i.e., the threshold dose varies with the retinal image area for larger image sizes. The model correctly predicts the threshold vs. spot size trends seen in the biological data, for both annular and top hat retinal beam profiles.

  12. A Scintillating-fiber Beam Profile Monitor for the DAFNE BTF

    CERN Document Server

    Anelli, M; Mazzitelli, G; Valente, P

    2004-01-01

    A scintillating-fiber beam profile detector has been designed, built and tested, for the monitoring of the position and size of the electron beam of the DAFNE, the recently commissioned electron beam-test facility at the Frascati LNF. A description of the detector construction and assembly, together with the results achieved during the 2003-2004 run, are here reported.

  13. A New Doppler Shift Spectroscopy for Measurement of Neutral Beam Profile

    Institute of Scientific and Technical Information of China (English)

    SHI Yue-Jiang; GAO Xiang; WAN Bao-Nian; WANG Guang-Qi; FU Jia; WU Zhen-Wei; CHANG Jia-Feng; SUN Dan-Peng; GAO Wei; HUANG Juan; ZHOU Qian

    2007-01-01

    A new diagnostic based on Doppler shift is designed to measure the power profile of a hydrogen or deuterium neutral beam on the magnetic confined fusion machines. The interference niters and multi-channel photon detector array (PDA) are the main components of this diagnosis. The multi-channel PDA measures the line integrated Doppler Ha signal emitted by the neutral beam at one section in two directions. The local intensity of neutral beam can be obtained with the tomography technique. Compared to the conventional calorimeter diagnoses, this diagnosis can provide the beam profile without blocking the injection of neutral beam.

  14. Installation Status of the Electron Beam Profiler for the Fermilab Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, R.; Alvarez, M.; Fitzgerald, J.; Lundberg, C.; Prieto, P.; Roberts, M.; Zagel, J.; Blokland, W.

    2015-11-06

    The planned neutrino program at Fermilab requires large proton beam intensities in excess of 2 MW. Measuring the transverse profiles of these high intensity beams is challenging and often depends on non-invasive techniques. One such technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. A device such as this is already in use at the Spallation Neutron Source at ORNL and the installation of a similar device is underway in the Main Injector at Fermilab. The present installation status of the electron beam profiler for the Main Injector will be discussed together with some simulations and test stand results.

  15. Simultaneous determination of electron beam profile and material response using self-consistent iterative method

    Science.gov (United States)

    Kandel, Yudhishthir; Denbeaux, Gregory

    2016-08-01

    We develop a novel iterative method to accurately measure electron beam shape (current density distribution) and monotonic material response as a function of position. A common method is to scan an electron beam across a knife edge along many angles to give an approximate measure of the beam profile, however such scans are not easy to obtain in all systems. The present work uses only an electron beam and multiple exposed regions of a thin film of photoresist to measure the complete beam profile for any beam shape, where the material response is characterized externally. This simplifies the setup of new experimental tools. We solve for self-consistent photoresist thickness loss response to dose and the electron beam profile simultaneously by optimizing a novel functional iteratively. We also show the successful implementation of the method in a real world data set corrupted by noise and other experimental variabilities.

  16. Beam profile and emittance measurement in the CUTE-FEL setup

    International Nuclear Information System (INIS)

    Measurement of the size and profile of the electron beam in the CUTE-FEL setup has been performed in order to quantify the beam parameters. Since the CUTE-FEL employs a high charge beam, an optimization of beam parameters was performed to minimize the phosphor and CCD camera saturation. Neutral Density (ND) filters were employed to avoid CCD camera saturation. Measurement of beam emittance has also been performed by the pepper-pot technique using a new diagnostic chamber fabricated and installed in the beamline for the purpose. This paper discusses these beam characterization experiments. (author)

  17. Measurement of beam power and profile for DNB on HT-7 tokamak

    International Nuclear Information System (INIS)

    In normal experimental operation, a diagnostic neutral beam (DNB) can produce 6 A of extracted beam current in hydrogen at an energy of 49 keV with a pulse length of 100 ms. Hydrogen and deuterium beams can be produced as well. The diagnostic neutral beam has been added to the diagnostic set so that charge-exchange recombination spectroscopy (CXRS) can be used to acquire ion temperature and rotation. The beam power and beam profile distribution of the DNB injection can be obtained with a thermocouple probe measurement system on the HT-7 superconducting tokamak. The thermocouple probe measurement system with 13 thermocouples crossly distributed on the probe plate was used to measure the temperature rise of each coppery target, so the profile distribution of the ion/neutral beam was obtained by calculation. In this paper, the structure of the probe plate on the DNB for HT-7 tokamak and some measurement results are presented

  18. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Rodriguez, M.A. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave, Edmonton, AB T6G 1Z2 (Canada); Unidad PET/CT-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (Mexico)], E-mail: avilarod@uwalumni.com; Wilson, J.S.; McQuarrie, S.A. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave, Edmonton, AB T6G 1Z2 (Canada)

    2009-11-15

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8 MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired.

  19. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators.

    Science.gov (United States)

    Avila-Rodriguez, M A; Wilson, J S; McQuarrie, S A

    2009-11-01

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired. PMID:19054679

  20. Using optical processing to find the beam profile of a laser pulse theory

    International Nuclear Information System (INIS)

    This paper reviews a particular form of optical processing, namely a form of cross-correlation, and demonstrates how the method measures certain beam profile features of a laser pulse. Beam profile is defined to mean a description of the electromagnetic field of a laser pulse in space and time. The author represents the laser pulse as a complete set of orthogonal modes and show that an appropriate spatial filter and a measurement system can provide information about the beam profile of the laser in terms of the individual eigenfunctions of this representation. He reviews at the TEMOO laser beam pulse with beam tilt, beam curvature, beam width, and beam shift to show that these effects produce higher order Hermite modes in the measurement system. The spatial filter modifies the electric field distribution in the focal plane such that at known spatial locations, the magnitude of the intensity is proportional to the pulse power or energy in particular Hermite modes. Since the size of these locations is infinitesimal (without getting errors from the electromagnetic fields from other modes), he demonstrates the effect and errors associated with using finite size detectors for measuring the magnitude of the intensity at these locations. The purpose of this paper is to demonstrate the concept of using optical processing to measure laser beam profile. Hermite modes are used because they are similar to many actual laser beam profiles and because they can be simply expressed in analytical form which is convenient for a theoretical presentation. In practice it is probably desirable to choose a set of modes for a basis which more closely represents the actual characteristics of the laser beam. This choice of course determines the properties of the spatial filter

  1. Gas dynamics considerations in a non-invasive profile monitor for charged particle beams

    CERN Document Server

    Tzoganis, Vasilis; Welsch, Carsten P

    2014-01-01

    A non-invasive, gas jet-based, beam profile monitor has been developed in the QUASAR Group at the Cockcroft Institute, UK. This allows on-line measurement of the 2-dimensional transverse profile of particle beams with negligible disturbance to either primary beam or accelerator vacuum. The monitor is suitable for use with beams across a wide range of energies and intensities. In this setup a nozzle-skimmer system shapes a thin supersonic gas jet into a curtain. However, the small dimensions of the gas inlet nozzle and subsequent skimmers were shown to be the cause of many operational problems. In this paper, the dynamics of gas jet formation transport and shaping is discussed before an image-processing based alignment technique is introduced. Furthermore, experimental results obtained with a 5 keV electron beam are discussed and the effects of gas stagnation pressure on the acquired beam are presented.

  2. Spatial profile of laser beam in antiresonant ring cavity: experimental study

    Science.gov (United States)

    Grabovski, Vitaly V.; Prokhorenko, Valentin I.; Yatskiv, Dmytro Y.

    1996-03-01

    This paper presents results of experimental studies of the spatial profile of the beam in lasers with an antiresonant ring. The near-field profile of the beam was measured by the pin-hole technique. In case of the active crystal placed into the ring, the beam profile was found to be Gaussian within a wide range of the pumping power. Variation of the width of the Gaussian profile is caused by the thermal lens in the active crystal. Measurements of the FWHM of the Gaussian profile demonstrated that it is proportional to the one-fourth power of the focal length of the thermal lens, as in the case of a stable cavity.

  3. Beam Profile Monitor Tests at the SLAC FFTB^1

    Science.gov (United States)

    Norem, J.; Dawson, J.; Haberichter, W.; Reed, L.; Yang, X.-F.; Spencer, J.; Saleski, M.

    1996-05-01

    The next generation linear colliders require beam sizes as small as 5 nm for efficient collisions between electron and positron beams. The difficulty of producing and maintaining such beams in stable collision means that bunch-to-bunch measurements need to be made quickly and precisely. We are developing a new technique using non-imaging gamma optics having good time resolution and sensitivity to correlations when the expected resolution is a few nm. Apparatus has been set up and made operational in the Final Focus Test Beam at SLAC and we have begun to tune and test components. We will describe this setup and our initial measurements together with Monte Carlo simulations based on using foils and wires (bremsstrahlung) and laser backscattering (Compton) as gamma sources to measure the beam size at IP1 of experiment E144. For the NLC we could also use beamsstrahlung generated by the strong beam-beam interaction at the IP to provide a comparable nonintercepting monitor. \\overline ^1Funded by the US Department of Energy under contracts W-31-109-ENG-38 and DE-AC03-76SF00515.

  4. Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles

    DEFF Research Database (Denmark)

    García Ortíz, César Eduardo; Coello, Victor; Han, Zhanghua;

    2013-01-01

    We demonstrate experimentally generation of diffraction-free plasmonic beams with zeroth- and first-order Bessel intensity profiles using axicon-like structures fabricated on gold film surfaces and designed to operate at a wavelength of 700nm. The central beam features a very low divergence (∼8π...

  5. Fluorescent beam profile measurement and control system in HIRFL-CSR

    International Nuclear Information System (INIS)

    The paper introduced the development of fluorescent driving controller and video signal for switching controller based on micro-computer technology in improvement of the beam diagnostic system at HIRFL-CSR. The design structure of the distributed beam profile measurement system based on Web control technique was depicted. (authors)

  6. Iterative method for determination of the laser beam profile and τV-T

    Directory of Open Access Journals (Sweden)

    Rabasović Mihailo D.

    2008-01-01

    Full Text Available Measuring the vibrational-to-translational relaxation time τV-T in gases is one of the first applications of the photoacoustic effect. The spatial profile of the laser beam is crucial in these measurements because the multiphoton excitation is investigated. The multiphoton absorption is a non-linear process. Because of this, the top hat profile is preferable. It allows one to deal with nonlinearity in a simple manner. In order to reveal the real laser beam profile, we have slightly changed the theoretical profiles in such a manner that the best matching is obtained between theoretical and experimental photoacoustic signals. Still, there was a question: Is it possible to deduce the laser beam profile directly from the photoacoustic signal, thus avoiding manual changing of the laser beam profile? According to this paper, it is possible. The appropriate method has been found in another photoacoustics application: photoacoustic tomography. Thus, the method for the simultaneous determination of the spatial profile of the laser beam and vibrational-to-translational relaxation time is presented in this paper. It employs pulsed photoacoustics and an algorithm developed for photoacoustic tomography.

  7. Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Iwaszczuk, Krzysztof;

    2013-01-01

    shift in the focal region, and the transition from the donut profile to a central peak is consistent with propagation of a Bessel–Gauss beam, as shown by simulations based on a recent transient photocurrent model (You et al 2012 Phys. Rev. Lett. 109 183902). We combine our measurements to the first full...

  8. Two-dimensional beam-profile monitor using the Reticon MC510A array camera

    International Nuclear Information System (INIS)

    A quantitative two-dimensional beam profile may be obtained from a scintillator viewed by a Reticon camera which uses a 32 x 32 array of photodiodes as its sensing element. In this note, CAMAC-oriented data acquisition electronics which allow one either to transmit the profile to a computer, or to use the monitor in a stand-alone mode are described

  9. Absolute density-profile tomography of molecular beams using multiphoton ionization

    International Nuclear Information System (INIS)

    We describe an approach for the absolute density measurement of rotationally symmetric molecular beams via multiphoton ionization. This simple single-projection tomographic technique requires only knowledge of the spatial intensity profile and ionization characteristics of the focused laser beam that probes the pulsed molecular jet. Multiphoton ionization (MPI) of a xenon beam allowed tomographic reconstruction of a two-dimensional density profile with a peak density of (4.2±0.4)x1018 m-3, which was compared with the theoretical predictions of the sudden freeze model. An analytic solution to the Abel transform is derived for Gaussian projected density profiles which greatly simplifies the reconstruction of the absolute radial density. MPI is sufficiently general that this technique can be readily applied to atomic beams with a broad range of chemistries.

  10. Role of Density Profiles for the Nonlinear Propagation of Intense Laser Beam through Plasma Channel

    OpenAIRE

    Sonu Sen; Meenu Asthana Varshney; Dinesh Varshney

    2014-01-01

    In this work role of density profiles for the nonlinear propagation of intense laser beam through plasma channel is analyzed. By employing the expression for the dielectric function of different density profile plasma, a differential equation for beamwidth parameter is derived under WKB and paraxial approximation. The laser induces modifications of the dielectric function through nonlinearities. It is found that density profiles play vital role in laser-plasma interaction studies. To have num...

  11. Measurement of inner and/or outer profiles of pipes using ring beam devices

    Science.gov (United States)

    Wakayama, T.; Yoshizawa, T.

    2009-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and industry. Here we propose a measurement method for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without any contact probe. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In the hitherto-tried experimental works, the availability of this instrument has been highly evaluated and usability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disklike light beam sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument. Both the ring beam device and a miniaturized CCD camera are fabricated in a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose an improved method for measuring the external profile in addition to the internal profile. In our arrangement, one pair of concaved conical mirrors is used for the external profile measurement. In combination with the inner profile measurement technique, simultaneous measurement of the inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of newly proposed principle. Now we are aiming to realize simultaneous measurement of the internal

  12. Beam Matching to a Plasma Wakefield Accelerator Using a Ramped Density Profile at the Plasma Boundary

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, K.A.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Mori, W.B.; Zhou, M.; /UCLA; Barnes, C.D.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; Krejcik, P.; O' Connell, C.L.; Siemann, R.; Walz, D.R.; /SLAC; Deng, S.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2006-02-17

    An important aspect of plasma wake field accelerators (PWFA) is stable propagation of the drive beam. In the under dense plasma regime, the drive beam creates an ion channel which acts on the beam as a strong thick focusing lens. The ion channel causes the beam to undergo multiple betatron oscillations along the length of the plasma. There are several advantages if the beam size can be matched to a constant radius. First, simulations have shown that instabilities such as hosing are reduced when the beam is matched [1]. Second, synchrotron radiation losses are minimized when the beam is matched. Third, an initially matched beam will propagate with no significant change in beam size in spite of large energy loss or gain. Coupling to the plasma with a matched radius can be difficult in some cases. This paper shows how an appropriate density ramp at the plasma entrance can be useful for achieving a matched beam. Additionally, the density ramp is helpful in bringing a misaligned trailing beam onto the drive beam axis. A plasma source with boundary profiles useful for matching has been created for the E-164X PWFA experiments at SLAC.

  13. Study of an intense proton beam profiler based on laser absorption

    International Nuclear Information System (INIS)

    Among the challenges of high current proton accelerators, the development of new beam diagnostics is of major importance. The main difficulty for these instruments, is the beam power which deteriorates any instruments used to catch it. The chosen detectors are therefore 'non-interceptive systems. After an introduction concerning characteristics of the used accelerator (chapter I), parameters defining a beam of particles are presented (chapter II). Among these ones, the profile is an important beam characteristic for its transport. After the description of the different types of beam profilers, their problematic application to intense beams is discussed. New physical phenomena have to be used for profilers. Thus, we have prospected optical luminescence phenomena. The light produced during the interaction of protons with the residual gas and/or locally injected is a source of informations on beam characteristics. In chapters III and IV, there is an experimental and theoretical analysis of the luminescence. Chapter V is a direct application of spectroscopic measurements to estimate the output of protons with a non-interceptive technique. With the spectral analysis, the idea of a profiler based on laser absorption is developed. This presentation is both theoretical and experimental (chapters 6 and 7). The laser absorption needs the use of metastable states we define in the chapter 6. The evolution of the metastable states, with time and space, has been rigorously studied to discuss the concept of an optical profiler. Chapter VII presents all the necessary instrumentation for the use of a laser and the first measurements with the beam. At the thesis end, the first recorded profile is presented. An experimental critic is presented with a description of the different sources of errors and the proposed cures. (author)

  14. A Gas-Jet Profile Monitor for the CLIC Drive Beam

    CERN Document Server

    Jeff, A; Lefevre, T; Tzoganis, V; Welsch, C P

    2013-01-01

    The Compact Linear Collider (CLIC) will use a novel acceleration scheme in which energy extracted from a very intense beam of relatively low-energy electrons (the Drive Beam) is used to accelerate a lower intensity Main Beam to very high energy. The high intensity of the Drive Beam, with pulses of more than 1015 electrons, poses a challenge for conventional profile measurements such as wire scanners. Thus, new non-invasive profile measurements are being investigated. Profile monitors using gas ionisation or fluorescence have been used at a number of accelerators. Typically, extra gas must be injected at the monitor and the rise in pressure spreads for some distance down the beam pipe. In contrast, a gas jet can be fired across the beam into a receiving chamber, with little gas escaping into the rest of the beam pipe. In addition, a gas jet shaped into a thin plane can be used like a screen on which the beam crosssectionis imaged. In this paper we present some arrangements for the generation of such a jet. In ...

  15. Beam profile measurement of ES-200 using secondary electron emission monitor

    Directory of Open Access Journals (Sweden)

    E Ebrahimi Basabi

    2015-09-01

    Full Text Available Up to now, different designs have been introduced for measurement beam profile accelerators. Secondary electron emission monitors (SEM are one of these devices which have been used for this purpose. In this work, a SEM has been constructed to measure beam profile of ES-200 accelerator, a proton electrostatic accelerator which is installed at SBU. Profile grid for both planes designed with 16 wires which are insulated relative to each other. The particles with maximum energy of 200 keV and maximum current of 400 μA are stopped in copper wires. Each of the wires has an individual current-to-voltage amplifier. With a multiplexer, the analogue values are transported to an ADC. The ADCs are read out by a microcontroller and finally profile of beam shows by a user interface program

  16. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging.

    Science.gov (United States)

    Meng, Congsen; Janssen, Maurice H M

    2015-02-01

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude. PMID:25725826

  17. A secondary emission type beam profile monitor with carbon graphite ribbons

    International Nuclear Information System (INIS)

    We developed a secondary emission type beam profile monitor with carbon graphite ribbons as a beam target. The carbon graphite is excellent in endurance against heat load, and that they are thin as 1.6-3.0 micron and low z (=6) are advantage for reducing beam loss. Furthermore, since ribbons emits larger amount of electrons than ordinal metal wires because of larger surface, the monitor has higher sensitivity. The monitors were installed in the end of 3-50 BT and injection point of MR in J-PARC, in order to measure injection beam profiles by single passing. Normal size target has 32ch ribbons with 2 or 3 mm in width and their length is 200 mm each. In this paper, basic characteristics of the carbon graphite target and results of beam measurement are reported. (author)

  18. SU-E-T-220: Investigation of Intrafraction Changes to Photon Beam Profiles

    International Nuclear Information System (INIS)

    Purpose: Treatment Planning Systems model beam profiles to be static and independent of gantry angle. This work investigates how beam profiles change over time, with varying gantry angle. Methods: 200 cGy was delivered to ICProfiler (Sun Nuclear) on 2 Elekta Synergys and 1 Varian 21EX linacs at 8 gantry angles and 1 clockwise arc. Measurements were recorded 8 times per second. To investigate the initial portion of the beams, single-shot and multi-control-point beams were measured. The differences in beam profiles were analyzed as well as the length of time for the beam to stabilize. Symmetry was calculated 5cm from the central axis at 100cm SSD. Field sizes ranged from 30×30 cm2 to 40×40 cm2. Results: The beam profiles changed over time and were dependent on gantry angle. The composite profile for each beam met 1% tolerance described in TG-142. It took up to 14.7, 3.7 and 11.3 cGy for the two Elektas and Varian respectively to satisfy the tolerance. All linacs had the most flat, symmetric, and stable beam profile with the gantry at 0 degrees, where the symmetry was 100.5%±0.55, 101.0%±0.52 and 101.1%±0.44 respectively. The symmetry was 100.7%±1.06, 101.1%±1.05 and 101.2%±0.64 at the gantry angle with the biggest discrepancy (90, 180 and 180 degrees respectively). Symmetry was better in the X direction for the Elektas and the Y for the Varian. Fluctuations in beam profiles corresponded to changes in dose rate. Conclusion: Flatness and symmetry changed over time and with gantry angle. Because Treatment Planning Systems do not account for these changes, it may be necessary to limit certain beams from clinical use, for example, beams with low MU. It may also be necessary to add additional QA procedures beyond those suggested in TG-142 to account for these changes

  19. Non-uniformly polarized beams across their transverse profiles: an introductory study for undergraduate optics courses

    Science.gov (United States)

    Piquero, Gemma; Vargas-Balbuena, Javier

    2004-11-01

    We provide a simple theoretical study of beams non-uniformly polarized across their transverse sections which can be introduced in undergraduate optics courses. In order to generate such beams we propose to use a slightly convergent (or divergent) linearly and uniformly polarized beam impinging on an anisotropic uniaxial material with the beam propagation direction along the optic axis. Analytical expressions for the Jones vector, Stokes parameters, ellipticity and azimuth at each point of the transverse section, perpendicular to the propagation direction, are obtained at the output of this system. By means of these parameters a detailed description of the state of polarization across the transverse profile is given.

  20. Non-uniformly polarized beams across their transverse profiles: an introductory study for undergraduate optics courses

    Energy Technology Data Exchange (ETDEWEB)

    Piquero, Gemma; Vargas-Balbuena, Javier [Departamento de Optica, Facultad de Ciencias FIsicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2004-11-12

    We provide a simple theoretical study of beams non-uniformly polarized across their transverse sections which can be introduced in undergraduate optics courses. In order to generate such beams we propose to use a slightly convergent (or divergent) linearly and uniformly polarized beam impinging on an anisotropic uniaxial material with the beam propagation direction along the optic axis. Analytical expressions for the Jones vector, Stokes parameters, ellipticity and azimuth at each point of the transverse section, perpendicular to the propagation direction, are obtained at the output of this system. By means of these parameters a detailed description of the state of polarization across the transverse profile is given.

  1. Maximum entropy algorithm and its implementation for the neutral beam profile measurement

    International Nuclear Information System (INIS)

    A tomography algorithm to maximize the entropy of image using Lagrangian multiplier technique and conjugate gradient method has been designed for the measurement of 2D spatial distribution of intense neutral beams of KSTAR NBI (Korea Superconducting Tokamak Advanced Research Neutral Beam Injector), which is now being designed. A possbile detection system was assumed and a numerical simulation has been implemented to test the reconstruction quality of given beam profiles. This algorithm has the good apllicability for sparse projection data and thus, can be used for the neutral beam tomograpy

  2. Maximum entropy algorithm and its implementation for the neutral beam profile measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Wook; Cho, Gyu Seong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cho, Yong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A tomography algorithm to maximize the entropy of image using Lagrangian multiplier technique and conjugate gradient method has been designed for the measurement of 2D spatial distribution of intense neutral beams of KSTAR NBI (Korea Superconducting Tokamak Advanced Research Neutral Beam Injector), which is now being designed. A possible detection system was assumed and a numerical simulation has been implemented to test the reconstruction quality of given beam profiles. This algorithm has the good applicability for sparse projection data and thus, can be used for the neutral beam tomography. 8 refs., 3 figs. (Author)

  3. Optical beam profile monitor and residual gas fluorescence at the relativistic heavy ion collider polarized hydrogen jet.

    Science.gov (United States)

    Tsang, T; Bellavia, S; Connolly, R; Gassner, D; Makdisi, Y; Russo, T; Thieberger, P; Trbojevic, D; Zelenski, A

    2008-10-01

    A gas fluorescence beam profile monitor has been implemented at the relativistic heavy ion collider (RHIC) using the polarized atomic hydrogen gas jet, which is part of the polarized proton polarimeter. RHIC proton beam profiles in the vertical plane of the accelerator are obtained as well as measurements of the width of the gas jet in the beam direction. For gold ion beams, the fluorescence cross section is sufficiently large so that profiles can be obtained from the residual gas alone, albeit with long light integration times. We estimate the fluorescence cross sections that were not known in this ultrarelativistic regime and calculate the beam emittance to provide an independent measurement of the RHIC beam. This optical beam diagnostic technique, utilizing the beam induced fluorescence from injected or residual gas, offers a noninvasive particle beam characterization and provides visual observation of proton and heavy ion beams. PMID:19044742

  4. Modernization of the ionization detector of beam profile for the fragment-separator KOMBAS

    International Nuclear Information System (INIS)

    Results of the development of an ionization detector for beam profile measurements are presented. Analyzing capacitors were used in the design of the detector besides a traditional extraction capacitor. The aim of the development was to create a detector with a constant space resolution. For this purpose additional voltages were applied among all the capacitors. Variation of the voltages was used for space scanning whereas the electric field strength inside all the capacitors was held permanent. A detector for operational monitoring of the beam profile was created. This detector allows measuring the vertical and horizontal distribution of the beam in a beam transport system every second over the area 8x8 cm with a constant resolution of 1 mm. A detector for monitoring the beam profile in detail with a constant space resolution of 1x1 mm was constructed. It was experimentally shown that the proposed method of scanning provides excellent results of beam profile measurements if the ion component of the ionized residual gas is extracted. The method does not work well for the electron component

  5. Beam profile of laser pointer (VFL-350) after launching in telecommunication fiber optic

    Science.gov (United States)

    Sarollahi, Mir Saeed

    2009-11-01

    VFL-350 (Visual Fault Locator) Light Source is used to check single-mode and multimode optical fiber cables and components for faults or to locate individual fibers in a bundle. Loss as intrinsic loss (absorbsion and scattering), mechanical loss (splices and connections) are important to estimate the amount of errors in data transmission process (both in single as well as multimode fibers). That is one of the most important parameter of change intensity profile of laser beam. Standard light source that used in this project is an optical pen that have semi guassian beam with out put power 1 mw(class 1) & λ=635 nm that make follow result: Beam propagated from this light source have semi guassian shape and result of some transverse mode. Beam intensity profile of this light source after launching in multimode fiber optics (length=2m & connector: have 20% loss compared by beam intensity profile of optical pen.(connector loss). Situating a filter in path of multi mode fiber optic, don't any change in beam intensity profile of multi mode fiber optics.

  6. Mitigation of coherent-OTR light effect for the beam profile monitor of SACLA

    International Nuclear Information System (INIS)

    A screen monitor (SCM) system for SACLA has been developed and was installed in order to obtain a direct image of a transverse beam profile. The taken image has a spatial resolution of about 10 μm, which is required to investigate electron-beam properties, such as a beam emittance. The SCM takes an image of the beam profile by a CCD camera with a customized optical system through an OTR radiation from a stainless steel screen. At the beginning of SACLA operation, strong coherent OTR (COTR), which made an incorrect beam profile, was observed. In COTR light, light intensity and an imaging with a speckle widely fluctuate in every shot. In order to suppress the COTR on the SCM, the stainless steel target was replaced to a Ce:YAG scintillation target. Since the COTR was still generated from the Ce:YAG target, a spatial mask was employed. The mask was mounted on the center of an optical axis of the SCM, because the COTR light is emitted forward within ∼1/γ radian from the screen to the CCD, while scintillation light does not have angular dependence. Hence the mask obstructs the COTR light to the CCD. Clear beam profiles with a diameter of a few tens of micro-meter are observed by means of the SCMs with this simple improvement. This fact indirectly testifies the SCM has a spatial resolution of about 10 μm. (author)

  7. Two-dimensional beam profile monitor having high dynamic range by using multi-screen

    International Nuclear Information System (INIS)

    A two-dimensional beam profile monitor with a high dynamic range for 3-50 BT at J-PARC has been developed. For measuring the beam core and the halo alternatively, the monitor has three kinds of screens. The first one is titanium foil OTR screen (thickness of 10 μm) to measure a beam core, the second one is aluminum foil OTR screen (thickness of 100 μm) having a hole (50 mm diameter) in the center, and the last one is a pair of alumina fluorescent screen with a separation of 80 mm in horizontal to observe the beam halo in surroundings. We designed an optical system based on the Offner optics for the observation of fluorescence and OTR lights. This optical system has an entrance aperture of 300 mm and it can cover the large opening angle (+/- 13.5 degree) of the OTR from 3 GeV protons. A CID camera with an image intensifier (I.I.) was use to observe the profile. We have succeeded to observe a profile of beam halo to 10-6 order to the peak of beam core by using proton beams of 3 GeV, 9.6 x 1012 protons/2bunch by this multi-screen scheme. (author)

  8. Fluorescence-based knife-edge beam diameter measurement to characterize X-ray beam profiles in reflection geometry

    Science.gov (United States)

    Bassel, Léna; Tauzin, Xavier; Queffelec, Alain; Ferrier, Catherine; Lacanette, Delphine; Chapoulie, Rémy; Bousquet, Bruno

    2016-04-01

    The diameter of an X-ray beam was determined, using the knife-edge technique, widely applied for beam profiling, by taking advantage of the fluorescence emission generated by the X-ray beam. The knife-edge has to be appropriate to the configuration of the device, in our case a double-material target made of plastic and cardboard was scanned in a transversal plane compared to the beam propagation direction. Along the scanning axis, for each position, the intensity of the Kα line of chlorine was recorded. The first derivative of the intensity evolution as a function of the edge position, fitted by a Gaussian function, makes it possible to obtain the beam diameter along the scan direction. We measured a slightly elliptic diameter close to 3 mm. In this note we underline the significance of the knife-edge technique which represents a useful tool, easy to be set up, to control X-ray beam dimensions in portable devices often routinely used by non-specialists.

  9. A beam-profile diagnosis algorithm using a thin foil and a thermographic camera

    International Nuclear Information System (INIS)

    A new algorithm for digital image processing apparatuses is developed to evaluate profiles of high-intensity DC beams from temperature images of irradiated thin foils. Numerical analyses are performed to examine the reliability of the algorithm. To simulate the temperature images acquired by a thermographic camera, temperature distributions are numerically calculated for various beam parameters. Noise in the temperature images which is added by the camera sensor is also simulated to account for its effect. Using the algorithm, beam profiles are evaluated from the simulated temperature images and compared with exact solutions. We confirm that the algorithm is adaptable over a wide beam current range of approximately 0.1 - μA, even when employing a general-purpose thermographic camera with rather high noise (ΔTNETD ≈ 0.3 K; NETD: noise equivalent temperature difference). (author)

  10. The principles of a new method of determining ion beam profile density distribution

    International Nuclear Information System (INIS)

    The theoretical basis of a technique to determine the spatial density flux distribution in non-uniform ion beams is described. The technique relies on the mapping of the flux distribution into fluence collected distributions when the flux is translated at variable prescribed velocity relative to a series of ion collectors. The method determines the spatial moments of the flux distribution and does not require collector dimensions to be small with respect to the ion beam profile dimensions. (author)

  11. Modulation of hard x-ray beam profiles by Borrmann pyramid

    International Nuclear Information System (INIS)

    Spatial modulation of hard x-ray beam profiles is reported, using the 'Borrmann pyramid' formed in dual Bragg diffraction of a single crystal, where a small angular change of the incident beam is magnified to span the entire pyramid base. As an attempt, it is demonstrated using hard x rays by (1) the linear shift of a micrometer sized mask; (2) the partial blockade of a two micron beam; and (3) the millimeter shadow of a nanoscale gold strip, which shows the potential application of Borrmann pyramids in the form of an enlarged x-ray image

  12. A simple method for generating unidirectional surface plasmon polariton beams with arbitrary profiles.

    Science.gov (United States)

    You, Oubo; Bai, Benfeng; Wu, Xiaoyu; Zhu, Zhendong; Wang, Qixia

    2015-12-01

    The efficient steering of surface plasmon polariton (SPP) fields is a vital issue in various plasmonic applications, such as plasmonic circuitry. We present a straightforward and efficient method for generating unidirectionally propagating SPP beams with arbitrary amplitude and phase profiles by manipulating Δ-shaped nanoantennas. As an example, a second-order Hermite-Gauss SPP beam is generated with this method. The near-field distribution of the generated SPP beam is experimentally characterized to validate the effectiveness of the method. PMID:26625032

  13. Uniform longitudinal beam profiles in the Fermilab Recycler using adaptive rf correction

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Martin; Broemmelsiek, Daniel Robert; Chase, Brian; Crisp, James L.; Eddy, Nathan; Joireman, Paul W.; Ng, King Yuen; /Fermilab

    2007-06-01

    The Fermilab Recycler Ring is a permanent magnet based 8 GeV anti-proton storage ring. A wideband RF system, driven with ARB's (ARBitrary waveform generators), allows the system to produce programmable barrier waveforms. Beam current profile distortion was observed, its origin verified both experimentally and theoretically, and an FPGA-based correction system was designed, tested and implemented to level the bunch profile.

  14. Beam profile investigation of the new collimator system for the J-PET detector

    OpenAIRE

    Kubicz, E.; Silarski, M.; Wieczorek, A.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.(Institute of Physics, Jagiellonian University, Cracow, Poland); A. Gajos; Głowacz, B.; Jasińska, B.; Kamińska, D.(Institute of Physics, Jagiellonian University, Cracow, Poland); Korcyl, G.; Kowalski, P; Kozik, T.; Krzemień, W.

    2016-01-01

    Jagiellonian Positron Emission Tomograph (J-PET) is a multi-purpose detector which will be used for search for discrete symmetries violations in the decays of positronium atoms and for investigations with positronium atoms in life-sciences and medical diagnostics. In this article we present three methods for determination of the beam profile of collimated annihilation gamma quanta. Precise monitoring of this profile is essential for time and energy calibration of the J-PET detector and for th...

  15. The Study of a Beam Profile Monitor based on Faraday Cup Array

    International Nuclear Information System (INIS)

    The metal can then be discharged to measure a small current equivalent to the number of impinging ions. The beam current can be measured and used to determine the number of ions or electrons hitting the cup. Recently, beam profile monitor (BPM) based on Faraday cup array (FCA), which represented beam position through the spatial and temporal distribution of the beam current, has been studied due to advantages of measure of wide-range ion beam current. FCA system is divided into a FC, an electrical circuit and display parts. We have studied FCA to monitor beam profile on an electrostatic accelerator with wide-range ion current. In this paper, we represented basic characteristics and designs for the fabricated FCA. FCA system, which consisted of FC system, electronic readout system, and output display, was suggested to measure ion beam current, efficiently. FC system consisted of a collimator, suppressor, tiny FC, insulator frame, and circuit board divided into elec PCB, cap PCB, and con PCB. FC size was 4 mm diameters and FCA system was considered as 8 x 8 array and whole size of 8 x 8 mm''2. FCA system was set-up in vacuum chamber and an integrator and output display parts were formed out of chamber to minimize number of feed-through

  16. The Study of a Beam Profile Monitor based on Faraday Cup Array

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. M.; Park, S. H.; Kim, S. G.; Kwon, H. J.; Cho, Y. S. [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The metal can then be discharged to measure a small current equivalent to the number of impinging ions. The beam current can be measured and used to determine the number of ions or electrons hitting the cup. Recently, beam profile monitor (BPM) based on Faraday cup array (FCA), which represented beam position through the spatial and temporal distribution of the beam current, has been studied due to advantages of measure of wide-range ion beam current. FCA system is divided into a FC, an electrical circuit and display parts. We have studied FCA to monitor beam profile on an electrostatic accelerator with wide-range ion current. In this paper, we represented basic characteristics and designs for the fabricated FCA. FCA system, which consisted of FC system, electronic readout system, and output display, was suggested to measure ion beam current, efficiently. FC system consisted of a collimator, suppressor, tiny FC, insulator frame, and circuit board divided into elec PCB, cap PCB, and con PCB. FC size was 4 mm diameters and FCA system was considered as 8 x 8 array and whole size of 8 x 8 mm''2. FCA system was set-up in vacuum chamber and an integrator and output display parts were formed out of chamber to minimize number of feed-through.

  17. SYSTEMATIC ERROR REDUCTION: NON-TILTED REFERENCE BEAM METHOD FOR LONG TRACE PROFILER.

    Energy Technology Data Exchange (ETDEWEB)

    QIAN,S.; QIAN, K.; HONG, Y.; SENG, L.; HO, T.; TAKACS, P.

    2007-08-25

    Systematic error in the Long Trace Profiler (LTP) has become the major error source as measurement accuracy enters the nanoradian and nanometer regime. Great efforts have been made to reduce the systematic error at a number of synchrotron radiation laboratories around the world. Generally, the LTP reference beam has to be tilted away from the optical axis in order to avoid fringe overlap between the sample and reference beams. However, a tilted reference beam will result in considerable systematic error due to optical system imperfections, which is difficult to correct. Six methods of implementing a non-tilted reference beam in the LTP are introduced: (1) application of an external precision angle device to measure and remove slide pitch error without a reference beam, (2) independent slide pitch test by use of not tilted reference beam, (3) non-tilted reference test combined with tilted sample, (4) penta-prism scanning mode without a reference beam correction, (5) non-tilted reference using a second optical head, and (6) alternate switching of data acquisition between the sample and reference beams. With a non-tilted reference method, the measurement accuracy can be improved significantly. Some measurement results are presented. Systematic error in the sample beam arm is not addressed in this paper and should be treated separately.

  18. Bessel spatial profile of a soft x-ray laser beam

    Science.gov (United States)

    Tissandier, F.; Sebban, S.; Ribière, M.; Gautier, J.; Zeitoun, Ph.; Lambert, G.; Goddet, J.-Ph.; Burgy, F.; Valentin, C.; Rousse, A.; Nejdl, J.; Mocek, T.; Maynard, G.

    2010-12-01

    We report far-field profile measurements of an optical-field-ionized high-order harmonic-seeded soft x-ray laser. We show that the beam transverse profile can be controlled between a regular Gaussian shape and a Bessel profile exhibiting several rings via the infrared laser pump intensity. These experimental data are supported by a complete numerical modeling including a two-dimensional plasma amplifier simulation and a two-level soft x-ray amplification using a Maxwell-Bloch treatment. This model takes into account the experimental high-order harmonic wavefront and intensity before it is numerically amplified.

  19. Inverse planning for IMRT with nonuniform beam profiles using total-variation regularization (TVR)

    International Nuclear Information System (INIS)

    Purpose: Radiation therapy with high dose rate and flattening filter-free (FFF) beams has the potential advantage of greatly reduced treatment time and out-of-field dose. Current inverse planning algorithms are, however, not customized for beams with nonuniform incident profiles and the resultant IMRT plans are often inefficient in delivery. The authors propose a total-variation regularization (TVR)-based formalism by taking the inherent shapes of incident beam profiles into account. Methods: A novel TVR-based inverse planning formalism is established for IMRT with nonuniform beam profiles. The authors introduce a TVR term into the objective function, which encourages piecewise constant fluence in the nonuniform FFF fluence domain. The proposed algorithm is applied to lung and prostate and head and neck cases and its performance is evaluated by comparing the resulting plans to those obtained using a conventional beamlet-based optimization (BBO). Results: For the prostate case, the authors' algorithm produces acceptable dose distributions with only 21 segments, while the conventional BBO requires 114 segments. For the lung case and the head and neck case, the proposed method generates similar coverage of target volume and sparing of the organs-at-risk as compared to BBO, but with a markedly reduced segment number. Conclusions: TVR-based optimization in nonflat beam domain provides an effective way to maximally leverage the technical capacity of radiation therapy with FFF fields. The technique can generate effective IMRT plans with improved dose delivery efficiency without significant deterioration of the dose distribution.

  20. Role of Density Profiles for the Nonlinear Propagation of Intense Laser Beam through Plasma Channel

    Directory of Open Access Journals (Sweden)

    Sonu Sen

    2014-01-01

    Full Text Available In this work role of density profiles for the nonlinear propagation of intense laser beam through plasma channel is analyzed. By employing the expression for the dielectric function of different density profile plasma, a differential equation for beamwidth parameter is derived under WKB and paraxial approximation. The laser induces modifications of the dielectric function through nonlinearities. It is found that density profiles play vital role in laser-plasma interaction studies. To have numerical appreciation of the results the propagation equation for plasma is solved using the fourth order Runge-Kutta method for the initial plane wave front of the beam, using boundary conditions. The spot size of the laser beam decreases as the beam penetrates into the plasma and significantly adds self-focusing in plasma. This causes the laser beam to become more focused by reduction of diffraction effect, which is an important phenomenon in inertial confinement fusion and also for the understanding of self-focusing of laser pulses. Numerical computations are presented and discussed in the form of graphs for typical parameters of laser-plasma interaction.

  1. Establishment of the method for profile evaluation in matter using the therapeutic carbon pencil beam

    International Nuclear Information System (INIS)

    The scanning irradiation of the pencil beam is superior in comparison to the conventional extended-field irradiation in dose concentration. The carbon pencil beam spreads its profile in matter. The factors that cause the profile change are the nuclear fragmentation reactions and the multiple Coulomb scatterings. The fragmentation reaction is a type of nuclear reactions, where the high-energy incident particles interact with target nuclei and fragment the incident particles themselves or the target nucleus. In order to improve the accuracy of the treatment planning for the carbon beam, it is necessary to evaluate quantitatively the effect of the nuclear fragmentation reactions. The objective of this study is to establish the evaluation method for the carbon pencil beam profile in matter by selectively acquiring the nuclear fragmentation reactions and the multiple Coulomb scattering. This experiment was proposed to carry out in three years. Events with the nuclear fragmentation reactions and the multiple Coulomb scatterings were separately identified by a dedicated detector devised by our group. Profiles of these events were successfully measured. (author)

  2. Assessment of beam intensity profiles in an iodine laser using optical fibers

    Science.gov (United States)

    Raffo, C. A.; Rebollo, M. A.; Doti, R.

    1985-05-01

    A method has been developed for measuring the spatial profile of the output beam of an iodine laser at 1.315 μm, which requires only using two optical fibers, one for collecting a reference signal and the other for detecting the laser intensity at a given point of the wavefront. The precision is sufficient for laser engineering purposes.

  3. Diamond pixel detector for beam profile monitoring in COMET experiment at J-PARC

    CERN Document Server

    Cerv, M; Pernegger, H; Vageesvaran, P; Griesmayer, E

    2015-01-01

    We present the design and initial prototype results of a pixellized proton beam profile monitor for the COMET experiment at J-PARC. The goal of COMET is to look for charged lepton flavor violation by direct muon to electron conversion at a sensitivity of $0^{-19}$. An 8 GeV proton beam pulsed at 100 ns with $10^{10}$ protons/s will be used to create muons through pion production and decay. In the final experiment, the proton flux will be raised to $10^{14}$ protons/sec to increase the sensitivity. These requirements of harsh radiation tolerance and fast readout make diamond a good choice for constructing a beam profile monitor in COMET. We present first results of the characterization of single crystal diamond (scCVD) sourced from a new company, 2a systems Singapore. Our measurements indicate excellent charge collection efficiency and high carrier mobility down to cryogenic temperatures.

  4. Fabrication of Faraday Cup Array for the Measurement of 2-Dimensional Proton Beam Profile

    International Nuclear Information System (INIS)

    It has an advantage of easy-to-use and possible to visually check, immediately; on the other hand, the measurement range is very limited. Another method is using the CCD camera-scintillator device such as p43 phosphor screen or chromox. A variety of faraday cup detectors have been recently introduced. The faraday cup is one of the powerful and popular tools for the measurement of beam current. By using several faraday cups in array geometry, it is possible to observe current distribution. In this study, we developed an external faraday cup array for the measure the beam current and profile at a KOMAC (Korea Multi-purpose Accelerator Complex) beam utilization facility. To measure the beam profile, before fabrication of faraday cup array, we use gafchromic film. By making the faraday cup array we were able to reduce the consumption of Gafchromic film and a more accurate diagnosis of the proton beam is possible. The use of faraday cup array, experiment using the proton beam is more reliable and confident

  5. Fabrication of Faraday Cup Array for the Measurement of 2-Dimensional Proton Beam Profile

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myunghwan; Kim, Bom Sok; Kim, Kyeryung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    It has an advantage of easy-to-use and possible to visually check, immediately; on the other hand, the measurement range is very limited. Another method is using the CCD camera-scintillator device such as p43 phosphor screen or chromox. A variety of faraday cup detectors have been recently introduced. The faraday cup is one of the powerful and popular tools for the measurement of beam current. By using several faraday cups in array geometry, it is possible to observe current distribution. In this study, we developed an external faraday cup array for the measure the beam current and profile at a KOMAC (Korea Multi-purpose Accelerator Complex) beam utilization facility. To measure the beam profile, before fabrication of faraday cup array, we use gafchromic film. By making the faraday cup array we were able to reduce the consumption of Gafchromic film and a more accurate diagnosis of the proton beam is possible. The use of faraday cup array, experiment using the proton beam is more reliable and confident.

  6. Fine-tuning the etch depth profile via dynamic shielding of ion beam

    Science.gov (United States)

    Wu, Lixiang; Qiu, Keqiang; Fu, Shaojun

    2016-08-01

    We introduce a method for finely adjusting the etch depth profile by dynamic shielding in the course of ion beam etching (IBE), which is crucial for the ultra-precision fabrication of large optics. We study the physical process of dynamic shielding and propose a parametric modeling method to quantitatively analyze the shielding effect on etch depths, or rather the shielding rate, where a piecewise Gaussian model is adopted to fit the shielding rate profile. Two experiments were conducted. The experimental result of parametric modeling of shielding rate profiles shows that the shielding rate profile is significantly influenced by the rotary angle of the leaf. The result of the experiment on fine-tuning the etch depth profile shows good agreement with the simulated result, which preliminarily verifies the feasibility of our method.

  7. Fine-tuning the etch depth profile via dynamic shielding of ion beam

    CERN Document Server

    Wu, Lixiang; Fu, Shaojun

    2016-01-01

    We introduce a method for finely adjusting the etch depth profile by dynamic shielding in the course of ion beam etching (IBE), which is crucial for the ultra-precision fabrication of large optics. We study the physical process of dynamic shielding and propose a parametric modeling method to quantitatively analyze the shielding effect on etch depths, or rather the shielding rate, where a piecewise Gaussian model is adopted to fit the shielding rate profile. We have conducted two experiments. In the experiment on parametric modeling of shielding rate profiles, its result shows that the shielding rate profile is significantly influenced by the rotary angle of the leaf. And the experimental result of fine-tuning the etch depth profile shows good agreement with the simulated result, which preliminarily verifies the feasibility of our method.

  8. The influence of lateral beam profile modifications in scanned proton and carbon ion therapy: a Monte Carlo study

    CERN Document Server

    Parodi, K; Kraemer, M; Sommerer, F; Naumann, J; Mairani, A; Brons, S

    2010-01-01

    Scanned ion beam delivery promises superior flexibility and accuracy for highly conformal tumour therapy in comparison to the usage of passive beam shaping systems. The attainable precision demands correct overlapping of the pencil-like beams which build up the entire dose distribution in the treatment field. In particular, improper dose application due to deviations of the lateral beam profiles from the nominal planning conditions must be prevented via appropriate beam monitoring in the beamline, prior to the entrance in the patient. To assess the necessary tolerance thresholds of the beam monitoring system at the Heidelberg Ion Beam Therapy Center, Germany, this study has investigated several worst-case scenarios for a sensitive treatment plan, namely scanned proton and carbon ion delivery to a small target volume at a shallow depth. Deviations from the nominal lateral beam profiles were simulated, which may occur because of misaligned elements or changes of the beam optic in the beamline. Data have been an...

  9. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    Energy Technology Data Exchange (ETDEWEB)

    Golian, Y.; Dorranian, D., E-mail: d.dorranian@gmail.com [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Aslaninejad, M., E-mail: m.aslaninejad@ipm.ir [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-01-15

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch.

  10. Time-resolved beam-profile measurements on the Experimental Test Accelerator (ETA)

    International Nuclear Information System (INIS)

    Examples are given of time-resolved beam profiles measured on ETA using several techniques. One method uses a Faraday cup that is remotely movable in two-transverse dimensions (x, y). In another method a small diameter wire or pellet target is moved across the beam and the bremsstrahlung x-ray intensity is plotted. Data for these methods are recorded using a Tektronix 7912 digitizer at 16 equally spaced times during 50 ns. Three other methods use a time gated (4 ns) microchannel plate television camera to record a two-dimensional image of the beam intensity on a single pulse. The light sources used for imaging are: Cherenkov light from a Kapton foil, prompt visible light from a titanium foil and radiated light from gas molecules excited by the beam. We are also testing an x-ray pinhole camera using K/sub α/ x-rays from tungsten

  11. Technique using axicons for generating flat-top laser-beam profiles

    International Nuclear Information System (INIS)

    In certain fusion experiments using CO2 lasers, like Helios, it is desired to produce a focal spot several times larger than the nominal focal spot, with a flat beam profile. The typical focal spot in Helios is roughly 70 μm and just defocussing the beam produces beam breakup, with several hot spots with roughly the original diameter, and a gaussian distribution. A number of schemes were tried to achieve a large spot with desired characteristics. These are described in the article. Axicons were found to produce spots with desired characteristics. Axicons are lenses or mirrors having a cone-shaped surface. The various schemes are described, as well as an experiment in Helios which confirmed that axicons produced the spots with desirable characteristics. Helios is an 8-beam CO2 laser which produces 10 kJ at power in excess of 20 TW. It is currently being used for Laser Fusion studies at the Los Alamos National Laboratory

  12. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    International Nuclear Information System (INIS)

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch

  13. Experimental demonstration of tomographic slit technique for measurement of arbitrary intensity profiles of light beams

    Science.gov (United States)

    Soto, José; Rendón, Manuel; Martín, Manuel

    1997-10-01

    We demonstrate experimentally an optical imaging method that makes use of a slit to collect tomographic projection data of arbitrarily shaped light beams; a tomographic backprojection algorithm is then used to reconstruct the intensity profiles of these beams. Two different implementations of the method are presented. In one, a single slit is scanned and rotated in front of the laser beam. In the other, the sides of a polygonal slit, which is linearly displaced in a x-y plane perpendicular to the beam, are used to collect the data. This latter version is more suitable than the other for adaptation at micrometer-size scale. A mathematical justification is given here for the superior performance against laser-power fluctuations of the tomographic slit technique compared with the better-known tomographic knife-edge technique.

  14. Monte Carlo calculation of synchrotron x-ray beam dose profiles in a lung phantom

    International Nuclear Information System (INIS)

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate permit investigation of the application of an array of closely spaced, parallel or converging microplanar beams in radiotherapy. The proposed technique takes advantage of the hypothesized repair mechanism of capillary cells between alternate microbeam zones, which regenerates the lethally irradiated endothelial cells. The lateral and depth doses of 100 keV microplanar beams are investigated for different beam dimensions and spacings in a tissue, lung and tissue/lung/tissue phantom. The EGS4 Monte Carlo code is used to calculate dose profiles at different depth and bundles of beams (up to 20x20 cm square cross section). The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different depths, bundles, heights, widths and beam spacings. Relatively high peak to valley ratios are observed in the lung region, suggesting an ideal environment for microbeam radiotherapy. For a single field, the ratio at the tissue/lung interface will set the maximum dose to the target volume. However, in clinical application, several fields would be involved allowing much greater doses to be applied for the elimination of cancer cells. We conclude therefore that multifield microbeam therapy has the potential to achieve useful therapeutic ratios for the treatment of lung cancer

  15. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target

    Science.gov (United States)

    Margarone, D.; Kim, I. J.; Psikal, J.; Kaufman, J.; Mocek, T.; Choi, I. W.; Stolcova, L.; Proska, J.; Choukourov, A.; Melnichuk, I.; Klimo, O.; Limpouch, J.; Sung, J. H.; Lee, S. K.; Korn, G.; Jeong, T. M.

    2015-07-01

    A high-energy, high-yield proton beam with a good homogeneous profile has been generated from a nanosphere target irradiated by a short (30-fs), intense (7 ×1020 W /cm2 ) laser pulse. A maximum proton energy of 30 MeV has been observed with a high proton number of 7 ×1010 in the energy range 5-30 MeV. A homogeneous spatial profile with a uniformity (standard deviation from an average value within 85% beam area) of 15% is observed with the nanosphere dielectric target. Particle-in-cell simulations show the enhancement of proton cutoff energy and proton number with the nanosphere target and reveal that the homogeneous beam profile is related with a broadened angular distribution of hot electrons, which is initiated by the nanosphere structure. The homogeneous spatial properties obtained with the nanosphere target will be advantageous in developing laser-driven proton sources for practical applications in which high-quality beams are required.

  16. RESIDUAL GAS IONIZATION BEAM PROFILE MONITOR ON 40MeV H— BEAM TRANSPORT LINE

    Institute of Scientific and Technical Information of China (English)

    徐伟鹏; E.Takasaki

    1995-01-01

    The monitor is composed of a pair of electrodes,a single stage of microchannel plate,a phosphor screen,a CCD camera and a PC computer,To obtain a good uniform collecting field,forming electrodes system is used instead of that with a resistive divider,The readout system is performed by the phosphor screen and the CCD camera because the spatial resolution is not limited by the mechanical structure like the anode strip type and such video display system is very useful for beam studies and operation of the 40MeV linac,Besides,the design and test results are described in detail.

  17. Beam profile investigation of the new collimator system for the J-PET detector

    CERN Document Server

    Kubicz, E; Wieczorek, A; Alfs, D; Bednarski, T; Białas, P; Czerwiński, E; Gajos, A; Głowacz, B; Jasińska, B; Kamińska, D; Korcyl, G; Kowalski, P; Kozik, T; Krzemień, W; Mohammed, M; Moskal, I; Niedźwiecki, S; Pawlik-Niedźwiecka, M; Raczyński, L; Rudy, Z; Strzelecki, A; Wiślicki, W; Zieliński, M; Zgardzińska, B; Moskal, P

    2016-01-01

    Jagiellonian Positron Emission Tomograph (J-PET) is a multi-purpose detector which will be used for search for discrete symmetries violations in the decays of positronium atoms and for investigations with positronium atoms in life-sciences and medical diagnostics. In this article we present three methods for determination of the beam profile of collimated annihilation gamma quanta. Precise monitoring of this profile is essential for time and energy calibration of the J-PET detector and for the determination of the library of model signals used in the hit-time and hit-position reconstruction. We have we have shown that usage of two lead bricks with dimensions of 5x10x20 cm^3 enables to form a beam of annihilation quanta with Gaussian profile characterized by 1 mm FWHM. Determination of this characteristic is essential for designing and construction the collimator system for the 24-module J-PET prototype. Simulations of the beam profile for different collimator dimensions were performed. This allowed us to choo...

  18. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    International Nuclear Information System (INIS)

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 μm Au) is only modified due to multiple small angle scattering. Thin targets (10 μm) show large source sizes of over 100 μm diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons

  19. 8 and 10 MeV electron beam small field profiles through Fricke xylenol gel dosimeter

    International Nuclear Information System (INIS)

    The dose distribution evaluation along of an ionizing radiation field central axis is one of the factors that contribute to the absorbed dose accuracy in the target volume. This distribution can show specific characteristics of an electron beam as the parameters penumbra, symmetry and homogeneity (flatness), which can be depicted from beam profiles. In this work was evaluated the behavior of these parameters as a function of the electron beam energy and the field size. The Fricke Xylenol Gel (FXG) is a chemical dosimeter that has an effective atomic number of 7.75 and density of 1.05 g/cm3, near to those of soft tissue. For beam profile analysis were used: the dosimeters FXG and the ionization chamber (IC), source skin distance of 100 cm, square and circular small field sizes configurations and 8 and 10 MeV electron energies. From the obtained results one could verify that the penumbra values were higher for the higher energy and larger field sizes, while the symmetry and flatness presented variation only with the energy, being this variation for flatness almost insignificant. The parameter results for both dosimeters, present similar behaviors and values in agreement with the established tolerances. Through these results one can conclude that the FXG can be applied as dosimeter in the evaluation of parameters that characterizes clinical electron beams for small field sizes. (author)

  20. Construction of the beam profile monitor system with CameraLink in the SPring-8 booster ring and beam transport line

    International Nuclear Information System (INIS)

    We had measured the beam position and size in the SPring-8 booster ring and beam transport line by the monitor system that consists of analog video camera and fluorescent plate. It was difficult to estimate the seasonal change of the beam position and beam size between user operation cycles. In order to keep the high injection efficiency to SPring-8 storage ring, we need to achieve the tuning reproducibility of the accelerator parameter in the booster ring and beam transport line by using the quantitative data. The newly constructed beam profile monitor system consists of the digital CCD camera with external trigger synchronous capturing function, camera selectors, and server computers. Each camera system placed on the booster ring and beam transport line are managed by the UNIX server computer setup for each area. This system is connected by the cameralink configuration devices with cameralink cables or optical fiber cables. It became possible to capture image of beam profile synchronous with a beam trigger with a high resolution and a fast capturing time as same as it by using the analog video system. We will report the detail of beam profile monitor system with cameralink and the system operation. (author)

  1. Beam Profile Disturbances from Implantable Pacemakers or Implantable Cardioverter-Defibrillator Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gossman, Michael S., E-mail: mgossman@tsrcc.com [Tri-State Regional Cancer Center, Medical Physics Section, Ashland, KY (United States); Comprehensive Heart and Vascular Associates, Heart and Vascular Center, Ashland, KY (United States); Medtronic, Inc., External Research Program, Mounds View, MN (United States); Nagra, Bipinpreet; Graves-Calhoun, Alison; Wilkinson, Jeffrey [Tri-State Regional Cancer Center, Medical Physics Section, Ashland, KY (United States); Comprehensive Heart and Vascular Associates, Heart and Vascular Center, Ashland, KY (United States); Medtronic, Inc., External Research Program, Mounds View, MN (United States)

    2011-01-01

    The medical community is advocating for progressive improvement in the design of implantable cardioverter-defibrillators and implantable pacemakers to accommodate elevations in dose limitation criteria. With advancement already made for magnetic resonance imaging compatibility in some, a greater need is present to inform the radiation oncologist and medical physicist regarding treatment planning beam profile changes when such devices are in the field of a therapeutic radiation beam. Treatment plan modeling was conducted to simulate effects induced by Medtronic, Inc.-manufactured devices on therapeutic radiation beams. As a continuation of grant-supported research, we show that radial and transverse open beam profiles of a medical accelerator were altered when compared with profiles resulting when implantable pacemakers and cardioverter-defibrillators are placed directly in the beam. Results are markedly different between the 2 devices in the axial plane and the sagittal planes. Vast differences are also presented for the therapeutic beams at 6-MV and 18-MV x-ray energies. Maximum changes in percentage depth dose are observed for the implantable cardioverter-defibrillator as 9.3% at 6 MV and 10.1% at 18 MV, with worst distance to agreement of isodose lines at 2.3 cm and 1.3 cm, respectively. For the implantable pacemaker, the maximum changes in percentage depth dose were observed as 10.7% at 6 MV and 6.9% at 18 MV, with worst distance to agreement of isodose lines at 2.5 cm and 1.9 cm, respectively. No differences were discernible for the defibrillation leads and the pacing lead.

  2. Development of an inner profile measurement instrument using a ring beam device

    Science.gov (United States)

    Yoshizawa, T.; Wakayama, T.

    2010-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and other industrial applications. Here we describe recent development of our measurement principle for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without using any contact type stylus. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In our hitherto trial experimental works, the availability of this instrument has been evaluated in many cases and availability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disk-like light sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument at this point. Both the ring beam device and a miniaturized CCD camera are fabricated into a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose potentially possible method for measurement of external profile at the same time with internal profile. If one pair of concave mirrors are used in our arrangement, external profile is captured. In combination with inner profile measurement technique, simultaneous measurement of inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of here proposed

  3. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    Energy Technology Data Exchange (ETDEWEB)

    Sellar, Brian [Univ. of Edinburgh, Scotland (United Kingdom); Harding, Samuel F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-16

    An array of convergent acoustic Doppler velocimeters has been developed and tested for the high resolution measurement of three-dimensional tidal flow velocities in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use diverging acoustic beams emanating from a single instrument. This is achieved using converging acoustic beams with a sample volume at the focal point of 0.03 m3. The array is also able to simultaneously measure three-dimensional velocity components in a profile throughout the water column, and as such is referred to herein as a converging-beam acoustic Doppler profiler (CADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational Alstom 1MW DeepGen-IV Tidal Turbine. This proof-of-concept paper outlines system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of CADP to standard ADP velocity measurements reveals a mean difference of 8 mm/s, standard deviation of 18 mm/s, and order-of-magnitude reduction in realizable length-scale. CADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the CADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved turbulence, resource and structural loading quantification and validation of numerical simulations. Alternative modes of operation have been implemented including noise-reducing bi-static sampling. Since waves are simultaneously measured it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.

  4. Ultrashort high quality electron beam from laser wakefield accelerator using two-step plasma density profile

    International Nuclear Information System (INIS)

    In this paper, we first use the rf linac injector mechanism to generate ultrashort high quality electron beam from laser wakefield accelerator (LWFA) with two-step plasma density profile successfully. We incorporate the physics principle in the conventional rf linac injector into the LWFA by using two-step plasma density to decrease the wavelength of the wakefield in plasma. Using this mechanism, we observe a ultrashort high quality electron beam (the rms energy spread is 1.9%, and the rms bunch length is 2 fs) in the simulation. The ultrashort intense terahertz coherent radiation (200 MW, 2 fs) can be generated with the proposed laser wakefield accelerator.

  5. Energy confinement and profile characteristics during the initial neutral beam heating in JT-60

    International Nuclear Information System (INIS)

    Confinement results are reported during the 3 months initial operation of JT-60 tokamak with Ip of 1 - 2 MA, n-bare of 1.5 - 7 x 1019 m-3 and Pabs up to 20 MW. The plasma stored energy follows an offset linear relation with the absorbed power and the incremental energy confinement time τEinc (= dWs/dPabs) for thermal components is almost independent of Ip and n-bare and is 60 msec. A remarkable difference in the density profile has been observed between limiter and divertor discharges. The electron temperature profile shape is rather tight compared with the density profile although broader profiles have been observed in high density beam heated discharges. (author)

  6. Modification of NUR II neutron beam profile of MINT TRIGA MARK II research reactor for digital neutron radiography

    International Nuclear Information System (INIS)

    A cone neutron beam collimated by a 5.4 cm aperture produced in the Neutron Radiography II (NUR II) via a step divergence collimator had to be modified to fulfill 5 cm x 6 cm dimension of the scintillation screen placed in the charge couple device (ccd) camera. The required convergence neutron beam was obtained by a simple collimator-beam plug plugged in front of the NUR II beam port. The calculations involved in designing the collimator-beam plug had to take into account not only the neutron beam profiling but also the neutron and gamma shielding and are discussed in this article. (Author)

  7. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    International Nuclear Information System (INIS)

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed

  8. Initial beam-profiling tests with the NML prototype station at the Fermilab A0 Photoinjector

    CERN Document Server

    Lumpkin, A; Johnson, A S; Ruan, J; Santucci, J; Scarpine, V; Sun, Y -E; Thurman-Keup, R; Church, M; Wendt, M

    2012-01-01

    The beam-profile diagnostics station prototype for the superconducting rf electron linac being constructed at Fermilab at the New Muon Lab has been tested. The station uses intercepting radiation converter screens for the low-power beam mode: either a 100-\\mu m thick YAG:Ce single crystal scintillator or a 1-\\mu m thin Al optical transition radiation (OTR) foil. The screens are oriented with the surface perpendicular to the beam direction. A downstream mirror with its surface at 45 degrees to the beam direction is used to direct the radiation into the optical transport. The optical system has better than 20 (10) \\mu m rms spatial resolution when covering a vertical field of view of 18 (5) mm. The initial tests were performed at the A0 Photoinjector at a beam energy of ~15 MeV and with micropulse charges from 25 to 500 pC for beam sizes of 45 to 250 microns. Example results will be presented.

  9. Effect of Triangular Web Profile on the Shear Behaviour of Steel I-Beam

    Directory of Open Access Journals (Sweden)

    Fatimah De’nan

    2013-01-01

    Full Text Available Shear buckling occurred in the instability modes of steel beams when it slender. This paper developsa three-dimensional finite element model using LUSAS 14.3 to study on the effect ofthe triangularsteel beamwebprofile (T WP inshearbuckling behaviourof differentthicknesscompared RI to that of thenormalflatbeam (FW.All specimens are cantilever beam which are fixedat one ends. The flange is constant with variable webthickness. Eigenvalue buckling analysis was used in analysing the buckling load of the flat plate model andtriangular web profile (TRIWP. Results showed that the web thickness gave a significant impact on the shearbuckling of the TRIWP. In addition, the corrugation thickness of web was also effective in increasing the shearbuckling capacity of the profile.

  10. A LVDT conditioner for the beam profile monitors of the AmPS

    International Nuclear Information System (INIS)

    A LVDT (Linear Variable Differential Transformer) is a transducer for localization. Because of its applied materials, its construction and the absence of bearings etc. the instrument is suitable to be applied in locations where radioactive radiation is present. In order to obtain information about the position of the iron core in the transducer, a conditioner is needed. In 1977 by Digel a conditioner has been developed for the beam profile monitors (moving wire) of MEA because the 'market' could not meet the requirements then. Nowadays the 'market' offers i.c.'s which can take over the work of the Eurocard developed then. Digel has investigated them in order to see if they are applicable for the beam profile monitors of AmPS. (author). 5 refs.; 7 figs.; 13 tabs

  11. Parallel plate chambers for monitoring the profiles of high-intensity pulsed antiproton beams

    CERN Document Server

    Hori, Masaki

    2004-01-01

    Two types of beam profile monitor with thin parallel-plate electrodes have been used in experiments carried out at the Low Energy Antiproton Ring (LEAR) and Antiproton Decelerator (AD) of CERN. The detectors were used to measure non-destructively the spatial profiles, absolute intensities, and time structures of 100-300-ns- long beam pulses containing between 10**7 and 10**9 antiprotons. The first of these monitors was a parallel plate ionization chamber operated at gas pressure P=65 mbar. The other was a secondary electron emission detector, and was operated in the ultra-high vacuum of the AD. Both designs may be useful in medical and commercial applications. The position-sensitive electrodes in these detectors were manufactured by a novel method in which a laser trimmer was used to cut strip patterns on metallized polyester foils.

  12. Thin chamber for profile measuring intensive beams of high-energy charged particles

    International Nuclear Information System (INIS)

    A two-coordinate profile meter developed on the basis of the multichnnel chamber of secondary emission (MCSE) for operation in intense (1010-3x1012 cm-2s-1) 70 GeV proton beams is described. MCSE electrodes are produced by spraying metal at thickness equal to several hundreds angstrem on 10-micron polyamide film. Resource tests have revealed high workability of MCSE when passing 6.5x1017 protons through it

  13. Performance evaluation of a beam profile monitor using Fresnel Zone Plates

    International Nuclear Information System (INIS)

    We have developed a high resolution beam profile monitor using two Fresnel Zone Plates (FZPs). To evaluate the resolution of this monitor, we computed 'Fresnel-Kirchhoff diffraction integral' to the detector position from the source point using Monte Carlo methods. From this calculation, the spatial resolution of this monitor is less than 1 μm. We also computed the effect of the inclined first FZP. And we compared with experimental result of the FZP inclination effect. (author)

  14. LUMINESCENCE BEAM PROFILE MONITOR FOR THE RHIC POLARIZED HYDROGEN JET POLARIMETER.

    Energy Technology Data Exchange (ETDEWEB)

    LUCIANO, N.; NASS, A.; MAKDISI, Y.; THIEBERGER, P.; TRBOJEVIC, D.; ZELENSKI, A.

    2005-05-16

    A new polarized hydrogen jet target was used to provide improved beam polarization measurements during the second polarized proton m in the Relativistic Heavy Ion Collider (RHIC). The luminescence produced by beam-hydrogen excitations was also used to test the feasibility of a new beam profile monitor for RFPIC based on the detection of the emitted light. Lenses, a view-port and a sensitive CCD camera were added to the system to record the optical signals from the interaction chamber. The first very promising results are reported here. The same system with an additional optical spectrometer or optical filter system may be used in the future to detect impurities in the jet, such as oxygen molecules, which affect the accuracy of the polarization measurements.

  15. Ribbon target assembly using carbon graphite for secondary emission type beam profile monitor

    International Nuclear Information System (INIS)

    We developed a secondary emission type beam profile monitor with graphite ribbons as a beam target. The graphite is excellent in endurance against heat load, and that they are thin as 1.6-2.0 micron and low z (=6) is advantage for reducing beam loss. Furthermore, since ribbons emits larger amount of electrons than ordinal metal wires because of larger surface, the monitor has higher sensitivity. On the other hands, in case of multi-ribbon type, uniformity of secondary electron emission is required for accurate measurement. For the uniform emission, not only surface homogeneity, but also evenness for each ribbon width is needed. A suitable manufacturing method to make ribbon target from graphite-foil, and emission uniformity has been studied. (author)

  16. Beam profile measurement on HITU transducers using a thermal intensity sensor technique

    International Nuclear Information System (INIS)

    Thermal intensity sensors based on the transformation of the incident ultrasonic energy into heat inside a small cylindrical absorber have been developed at PTB in the past, in particular to determine the acoustic output of medical diagnostic ultrasound equipment. Currently, this sensor technique is being expanded to match the measurement challenges of high intensity therapeutic ultrasound (HITU) fields. At the high acoustic power levels as utilized in the clinical application of HITU transducers, beam characterization using hydrophones is critical due to the possible damage of the sensitive and expensive measurement devices. Therefore, the low-cost and robust thermal sensors developed offer a promising alternative for the determination of high intensity output beam profiles. A sensor prototype with a spatial resolution of 0.5 mm was applied to the beam characterization of an HITU transducer operated at several driving amplitude levels. Axial beam plots and lateral profiles at focus were acquired. The absolute continuous wave output power was, in addition, determined using a radiation force balance.

  17. XPS depth profile analysis of ArF immersion resists by using C60 ion beam

    International Nuclear Information System (INIS)

    Argon ion sputtering is one of the most accepted techniques for depth profiling in practical X-ray photoelectron spectroscopy (XPS) analysis, while this technique is known to cause severe degradation especially with organic materials. Sputtering system using buckminsterfullerene (C60) ion beam has recently been introduced to XPS apparatus as a new sputtering tool for depth profiling. It enables the XPS depth analysis of organic materials such as photoresists without chemical damages. In this paper, the XPS analysis using the C60 ion sputtering was applied to examine the depth distributions of a fluoropolymer in ArF immersion resists to clarify the mechanism of the water-repellency change between the co-polymer and blend polymer. In addition, the depth profiling of the resist is compared to those observed with other techniques such as angle resolved XPS analysis and XPS analysis on the gradient shaved surfaces. (author)

  18. Improved density profile measurements in the C-2U advanced beam-driven FRC plasmas

    Science.gov (United States)

    Beall, Michael; Deng, B. H.; Schroeder, Jon; Settles, Greg; Kinley, John; Gota, Hiroshi; Thompson, Matt; the TAE Team

    2015-11-01

    The goal of Tri Alpha Energy's C-2U experiment is to demonstrate FRC sustainment via neutral beam injection. Accurate equilibrium profiles are essential for determining optimum operating regimes and studying physics phenomena. Electron density profiles in C-2 were measured by a CO2/HeNe laser interferometer. All C-2 chords were located below the machine axis causing difficulties due to spatial under-sampling in case of vertical plasma motion. As part of C-2U, additional chords were added above the axis and a complimentary 4-chord far-infrared (FIR) interferometer was developed. The FIR system is based on 2 HCOOH lasers optically pumped by a CO2 laser. This upgrade allowed for higher density resolution and broad spectral bandwidth. Results of improved density profile measurement will be presented, including fast ion effects. Plasma wobble is also characterized via density centroid measurements.

  19. A Quantum Gas Jet for Non-Invasive Beam Profile Measurement

    CERN Document Server

    Holzer, EB; Lefevre, T; Tzoganis, V; Welsch, C; Zhang, H

    2014-01-01

    A novel instrument for accelerator beam diagnostics is being developed by using De Broglie-wave focusing to create an ultra-thin neutral gas jet. Scanning the gas jet across a particle beam while measuring the interaction products, the beam profile can be measured. Such a jet scanner will provide an invaluable diagnostic tool in beams which are too intense for the use of wire scanners, such as the proposed CLIC Drive Beam. In order to create a sufficiently thin jet, a focusing element working on the de Broglie wavelength of the Helium atom has been designed. Following the principles of the Photon Sieve, we have constructed an Atomic Sieve consisting of 5230 nano-holes etched into a thin film of silicon nitride. When a quasi-monochromatic Helium jet is incident on the sieve, an interference pattern with a single central maximum is created. The stream of Helium atoms passing through this central maximum is much narrower than a conventional gas jet. The first experiences with this device are presented here, alon...

  20. Elemental thin film depth profiles by ion beam analysis using simulated annealing - a new tool

    International Nuclear Information System (INIS)

    Rutherford backscattering spectrometry (RBS) and related techniques have long been used to determine the elemental depth profiles in films a few nanometres to a few microns thick. However, although obtaining spectra is very easy, solving the inverse problem of extracting the depth profiles from the spectra is not possible analytically except for special cases. It is because these special cases include important classes of samples, and because skilled analysts are adept at extracting useful qualitative information from the data, that ion beam analysis is still an important technique. We have recently solved this inverse problem using the simulated annealing algorithm. We have implemented the solution in the 'IBA DataFurnace' code, which has been developed into a very versatile and general new software tool that analysts can now use to rapidly extract quantitative accurate depth profiles from real samples on an industrial scale. We review the features, applicability and validation of this new code together with other approaches to handling IBA (ion beam analysis) data, with particular attention being given to determining both the absolute accuracy of the depth profiles and statistically accurate error estimates. We include examples of analyses using RBS, non-Rutherford elastic scattering, elastic recoil detection and non-resonant nuclear reactions. High depth resolution and the use of multiple techniques simultaneously are both discussed. There is usually systematic ambiguity in IBA data and Butler's example of ambiguity (1990 Nucl. Instrum. Methods B 45 160-5) is reanalysed. Analyses are shown: of evaporated, sputtered, oxidized, ion implanted, ion beam mixed and annealed materials; of semiconductors, optical and magnetic multilayers, superconductors, tribological films and metals; and of oxides on Si, mixed metal silicides, boron nitride, GaN, SiC, mixed metal oxides, YBCO and polymers. (topical review)

  1. K-band EPR dosimetry: small-field beam profile determination with miniature alanine dosimeter

    International Nuclear Information System (INIS)

    The use of small-size alanine dosimeters presents a challenge because the signal intensity is less than the spectrometer sensitivity. K-band (24 GHz) EPR spectrometer seems to be a good compromise between size and sensitivity of the sample. Miniature alanine pellets were evaluated for small-field radiation dosimetry. Dosimeters of DL-alanine/PVC with dimensions of 1.5 mm diameter and 2.5 mm length with 5 mg mass were developed. These dosimeters were irradiated with 10 MV X-rays in the dose range 0.05-60 Gy and the first harmonic (1 h) spectra were recorded. Microwave power, frequency and amplitude of modulation were optimized to obtain the best signal-to-noise ratio (S/N). For beam profile determination, a group of 25 dosimeters were placed in an acrylic device with dimensions of (7.5x2.5x1) cm3 and irradiated with a (3x3) cm2 10 MV X-rays beam field size. The dose at the central region of the beam was 20 Gy at a depth of 2.2 cm (build up for acrylic). The acrylic device was oriented perpendicular to the beam axis and to the gantry rotation axis. For the purposes of comparison of the spatial resolution, the beam profile was also determined with a radiographic film and 2 mm aperture optical densitometer; in this case the dose was 1 cGy. The results showed a similar spatial resolution for both types of dosimeters. The dispersion in dose reading was larger for alanine in comparison with the film, but alanine dosimeters can be read faster and more directly than film over a wide dose range

  2. 2D Self-Similar Profile for Laser Beam Propagation in Medium with Saturating Multi-Photon Absorption

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Lysak, Tatiana M.; Zakharova, Irina G.

    2016-02-01

    We study a self-similar mode of 2D laser beam propagation in media with multiphoton absorption (MA) taking into account a resonant nonlinearity and nonlinear absorption saturating. An analytical solution of the corresponding equations describing the problems under consideration is derived using an eigenvalue problem method generalization for soliton- like solution finding. The developed solution is used as incident beam profile and phase front for computer simulation of the 2D laser beam propagation. In particular, we demonstrate numerically that the laser beam propagation in a self-similar mode occurs within a certain distance, which depends on medium properties. Under certain relations between the nonlinear absorption and resonant nonlinearity, and cubic nonlinear response, we observe the super long distance of the beam propagation without any beam profile distributions.

  3. On the online monitor for longitudinal beam profile measurements at FLASH

    International Nuclear Information System (INIS)

    The Free-Electron Laser in Hamburg (FLASH) is equipped with a tranverse deflecting structure (TDS) for longitudinal beam profile measurements. As FLASH is a multi-bunch machine, an online monitor for these measurements would facilitate the analysis of single bunches within the bunch train. The setup of the TDS as an online monitor requires to apply a special accelerator optics inside its section. Phase advances and beta-functions need to be set in order to allow an effective kicking of a single bunch to the diagnosis screen, as well as to allow an adequate time resolution for the beam profile measurements. Furthermore a matching into the adjacent undulator section is crucial. Simulations have been performed using MAD to optimise the optics for this application. A bunch which is kicked for the measurement, will hit a copper absorber and cause electromagnetic cascade showers. These showers have been observed to be a threat to the machine protection system, as they cause alarms at beam loss monitors, which are distributed along the undulators. Simulations have been performed in order to study the benefit of additional shielding.

  4. Evaluation of the 3-GeV proton beam profile at the spallation target of the JSNS

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro [Japan Atomic Energy Research Institute, Tokai, Naka-gun, Ibaraki 319-1195 (Japan)]. E-mail: meigo.shinichiro@jaea.go.jp; Noda, Fumiaki [Japan Atomic Energy Research Institute, Tokai, Naka-gun, Ibaraki 319-1195 (Japan); Ishikura, Syuichi [Japan Atomic Energy Research Institute, Tokai, Naka-gun, Ibaraki 319-1195 (Japan); Futakawa, Masatoshi [Japan Atomic Energy Research Institute, Tokai, Naka-gun, Ibaraki 319-1195 (Japan); Sakamoto, Shinichi [Japan Atomic Energy Research Institute, Tokai, Naka-gun, Ibaraki 319-1195 (Japan); Ikeda, Yujiro [Japan Atomic Energy Research Institute, Tokai, Naka-gun, Ibaraki 319-1195 (Japan)

    2006-06-23

    At JSNS, 3-GeV protons beam is delivered from rapid cycling synchrotron (RCS) to the spallation neutron target. In order to reduce the damage of pitting on the target container, the peak current density should be kept as small as possible. In this study, the beam profile at spallation neutron target is evaluated. The phase-space distribution, including the space-charge effect, is calculated with SIMPSONS code. The beam profile on the target is obtained with the transfer matrix from exit of RCS to the target. As for injection to RCS, two methods of correlated and anti-correlated painting are considered. By using anti-correlated painting for injection of beam at RCS, it is found the shape of beam becomes flatter than the distribution by using correlated painting. As other aspect for the study of target, in order to carry out target performance test especially for the study of pitting issue, it is better to have the beam profile variety from the beginning of facility. The adjustable range for the beam profile at the beginning is also studied. Although the beam shape is narrow and the duty is very low, the strong enough peak density is achievable equivalent as 1 MW.

  5. Application of ps-streak camera in accelerator study. Measurement of longitudinal profile of electron-beam bunch

    International Nuclear Information System (INIS)

    The system for measurement of longitudinal profile of electron-beam bunch of electron accelerator with ps-streak camera has been constructed. Using this system, the length of electron-beam bunch have measured at Beijing Free Electron Laser Facility (BFEL) and Beijing Electron Positron Collider (BEPC) in Inst. of High Energy Physics of China Academy of Sciences, and Electron-Beam Injector for L-Band RF-Linac (LBINJ) in China Institute of Atomic Energy

  6. Application of PIGE, BS and NRA techniques to oxygen profiling in steel joints using deuteron beam

    International Nuclear Information System (INIS)

    In order to study the oxygen content and to characterize the oxygen depth profile on the surface of welded steel joints in the function of the applied shielding gases, particle induced gamma-ray emission (PIGE), backscattering spectrometry (BS) and nuclear reaction analysis (NRA) methods were used. The measurements were carried out at 1.0, 1.4 and 1.8 MeV deuteron energies. From the PIGE oxygen and carbon elemental maps (1000 × 1000 μm2) taken with a beam of 2 × 2 μm2 beam size, oxygen rich regions were chosen for the depth profile analysis. The investigated depth was ∼6 μm using particle detection (BS, NRA), which was extended to ∼11 μm with the application of the differential-PIGE method, using the numerical integration of experimental cross-section data. The oxygen depth profiles show systematic discrepancy in the oxide layer thickness and composition between the two different kind of shielding gases

  7. Application of PIGE, BS and NRA techniques to oxygen profiling in steel joints using deuteron beam

    Energy Technology Data Exchange (ETDEWEB)

    Csedreki, L., E-mail: csedreki@atomki.mta.hu; Huszank, R.

    2015-04-01

    In order to study the oxygen content and to characterize the oxygen depth profile on the surface of welded steel joints in the function of the applied shielding gases, particle induced gamma-ray emission (PIGE), backscattering spectrometry (BS) and nuclear reaction analysis (NRA) methods were used. The measurements were carried out at 1.0, 1.4 and 1.8 MeV deuteron energies. From the PIGE oxygen and carbon elemental maps (1000 × 1000 μm{sup 2}) taken with a beam of 2 × 2 μm{sup 2} beam size, oxygen rich regions were chosen for the depth profile analysis. The investigated depth was ∼6 μm using particle detection (BS, NRA), which was extended to ∼11 μm with the application of the differential-PIGE method, using the numerical integration of experimental cross-section data. The oxygen depth profiles show systematic discrepancy in the oxide layer thickness and composition between the two different kind of shielding gases.

  8. Overview of laserwire beam profile and emittance measurements for high power proton accelerators

    CERN Document Server

    Gibson, S M; Bosco, A; Gabor, C; Pozimski, J; Savage, P; Hofmann, T

    2013-01-01

    Laserwires were originally developed to measure micron-sized electron beams via Compton scattering, where traditional wire scanners are at the limit of their resolution. Laserwires have since been applied to larger beamsize, high power H$^-$ ion beams, where the non-invasive method can probe beam densities that would damage traditional diagnostics. While photo-detachment of H$^-$ ions is now routine to measure beam profiles, extending the technique to transverse and longitudinal emittance measurements is a key aim of the laserwire emittance scanner under construction at the Front End Test Stand (FETS) at the RAL. A pulsed, 30 kHz, 8kW peak power laser is fibrecoupled to motorized collimating optics, which controls the position and thickness of the laserwire delivered to the H- interaction chamber. The laserwire slices out a beamlet of neutralized particles, which propagate to a downstream scintillator and camera. The emittance is reconstructed from 2D images as the laserwire position is scanned. Results from ...

  9. AIR CONVECTION NOISE OF PENCIL-BEAM INTERFERMETER FOR LONG TRACE PROFILER.

    Energy Technology Data Exchange (ETDEWEB)

    YASHCHUK, V.V.; IRICK, S.C.; MACDOWELL, A.A.; MCKINNEY, W.R.; TAKACS, P.Z.

    2006-08-14

    In this work, we investigate the effect of air convection on laser-beam pointing noise essential for the long trace profiler (LTP). We describe this pointing error with noise power density (NPD) frequency distributions. It is shown that the NPD spectra due to air convection have a very characteristic form. In the range of frequencies from {approx}0.05 Hz to {approx}0.5 Hz, the spectra can be modeled with an inverse-power-law function. Depending on the intensity of air convection that is controlled with a resistive heater of 100 to 150 mW along a one-meter-long optical path, the power index lies between 2 and 3 at an overall rms noise of {approx}0.5 to 1 microradian. The efficiency of suppression of the convection noise by blowing air across the beam optical path is also discussed. Air-blowing leads to a white-noise-like spectrum. Air blowing was applied to the reference channel of an LTP allowing demonstration of the contribution of air convection noise to the LTP reference beam. The ability to change (with the blowing technique presented) the spectral characteristics of the beam pointing noise due to air convection allows one to investigate the contribution of the convection effect, and thus make corrections to the power spectral density spectra measured with the LTP.

  10. Minimal interference beam size/profile measurement techniques applicable to the Collider

    International Nuclear Information System (INIS)

    The imaging of synchrotron radiation (SR) has been suggested as a technique for providing a continuous, non-interfering monitor of the beam profile in the Collider rings at the Superconducting Super Collider. A closer examination has raised questions concerning the applicability of SR imaging in this case because of the diffraction broadening of the image, the requirements for axial space and location in the lattice, and the complexity of the system. We have surveyed the known, alternative, minimal interference techniques for measuring beam size and have evaluated them for possible Collider usage. We conclude that of the approaches that appear feasible, all require at least some development for our usage and that the development of an electron beam probe offers the best promise. We recommend that flying wires be used for cross-checking and calibrating the electron beam probe diagnostic and for luminosity measurements when the highest accuracy is required, but flying wires should not be used as the primary diagnostic because of their limited lifetime

  11. Minimal interference beam size/profile measurement techniques applicable to the Collider

    Energy Technology Data Exchange (ETDEWEB)

    Nexsen, W.; Dutt, S.; Kauffmann, S.; Lebedev, V.; Maschke, A.; Mokhov, N.; Richardson, R.; Tsyganov, E.; Zinchenko, A.

    1993-05-01

    The imaging of synchrotron radiation (SR) has been suggested as a technique for providing a continuous, non-interfering monitor of the beam profile in the Collider rings at the Superconducting Super Collider. A closer examination has raised questions concerning the applicability of SR imaging in this case because of the diffraction broadening of the image, the requirements for axial space and location in the lattice, and the complexity of the system. We have surveyed the known, alternative, minimal interference techniques for measuring beam size and have evaluated them for possible Collider usage. We conclude that of the approaches that appear feasible, all require at least some development for our usage and that the development of an electron beam probe offers the best promise. We recommend that flying wires be used for cross-checking and calibrating the electron beam probe diagnostic and for luminosity measurements when the highest accuracy is required, but flying wires should not be used as the primary diagnostic because of their limited lifetime.

  12. Measurement of the nTOF beam profile with a micromegas detector

    CERN Document Server

    Pancin, J; Aerts, G; Alvarez, H; Andriamonje, Samuel A; Angelopoulos, Angelos; Assimakopoulos, P A; Bacri, C O; Badurek, G; Baumann, P; Becvar, F; Beer, H; Benlliure, J; Berthier, B; Berthoumieux, E; Boffi, S; Borcea, C; Boscolo-Marchi, E; Bustreo, N; Calviño, F; Cano-Ott, D; Capote, R; Carlson, Per J; Cennini, P; Chepel, V Yu; Chiaveri, Enrico; Colonna, N; Cortés, G; Cortina-Gil, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Delbart, A; Derré, J; Dolfini, R; Domingo, C; Duran-Escribano, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Lourenço, L; Ferreira-Marques, R; Frais-Kölbl, H; Furman, W; Giomataris, Ioanis; Gonçalves, I; González-Romero, E M; Goverdovski, A A; Gramegna, F; Griesmayer, E; Gunsing, F; Haight, R; Heil, M; Herrera-Martínez, A; Ioannides, K G; Janeva, N; Jeanneau, F; Jericha, E; Käppeler, F K; Kadi, Y; Karamanis, D; Kelic, A; Ketlerov, V; Kitis, G; Köhler, P; Konovalov, V; Kossionides, E; Lacoste, V; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Markov, S; Marrone, S; Martínez-Val, J M; Mastinu, P; Mengoni, A; Milazzo, P; Minguez, E; Molina-Coballes, A; Moreau, C; Neves, F; Oberhummer, Heinz; O'Brien, S; Papadopoulos, I M; Papavengelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Pérez-Parra, A; Perlado, J; Perrot, L; Peskov, Vladimir; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, Armando; Pretel, C; Quesada, J; Radici, M; Raman, S; Rapp, W; Reifarth, R; Rejmund, F; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Savvidis, E; Stéphan, C; Tagliente, G; Taín, J L; Tapia, C; Tassan-Got, L; Tavora, L; Terlizzi, R; Terrani, M; Tsangas, N; Vannini, G; Vaz, P; Ventura, A; Villamarín-Fernández, D; Vincente-Vincente, M; Vlachoudis, V; Vlastou, R; Voss, F; Wendler, H; Wiescher, M; Wisshak, K; Zanini, L

    2004-01-01

    A Micromegas detector was used in the neutron Time-Of-Flight (n_TOF) facility at CERN to evaluate the spatial distribution of the neutron beam as a function of its kinetic energy. This was achieved over a large range of neutron energies by using two complementary processes: at low energy by capture of a neutron via the **6Li(n, alpha)t reaction, and at high energy by elastic scattering of neutrons on gas nuclei (argon+isobutane or helium+isobutane). Data are compared to Monte Carlo simulations and an analytic function fitting the beam profile has been calculated with a sufficient precision to use in neutron capture experiments at the n_TOF facility.

  13. Measurement of the n{sub T}OF beam profile with a micromegas detector

    Energy Technology Data Exchange (ETDEWEB)

    Pancin, J. E-mail: jpancin@cea.fr; Abbondanno, U.; Aerts, G.; Alvarez, H.; Andriamonje, S.; Angelopoulos, A.; Assimakopoulos, P.; Bacri, C.; Badurek, G.; Baumann, P.; Becvar, F.; Beer, H.; Benlliure, J.; Berthier, B.; Berthoumieux, E.; Boffi, S.; Borcea, C.; Boscolo-Marchi, E.; Bustreo, N.; Calvino, F.; Cano-ott, D.; Capote, R.; Carlson, P.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Cortina, D.; Couture, A.; Cox, J.; Dababneh, S.; Dahlfors, M.; David, S.; Delbart, A.; Derre, J.; Dolfini, R.; Domingo, C.; Duran-Escribano, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Lourenco, L.; Ferreiramarques, R.; Frais-Koelbl, H.; Furman, W.; Giomataris, Y.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Ioannides, K.; Janeva, N.; Jeanneau, F.; Jericha, E.; Kaeppeler, F.; Kadi, Y.; Karamanis, D.; Kelic, A.; Ketlerov, V.; Kitis, G.; Koehler, P.; Konovalov, V.; Kossionides, E.; Lacoste, V.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Markov, S.; Marrone, S.; Martinez-Val, J.; Mastinu, P.; Mengoni, A.; Milazzo, P.; Minguez, E.; Molina-Coballes, A.; Moreau, C.; Neves, F.; Oberhummer, H.; O' brien, S.; Papadopoulos, I.; Papavengelou, T.; Paradela, C.; Pavlik, A.; Pavlopoulos, P.; Perez-Parra, A.; Perlado, J.; Peskov, V.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Policarpo, A.; Pretel, C.; Quesada, J.; Radici, M.; Raman, S.; Rapp, W.; Reifarth, R.; Rejmund, F.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Savvidis, E.; Stephan, C.; Tagliente, G.; Tain, J.; Tapia, C.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Terrani, M.; Tsangas, N.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin-Fernandez, D.; Vincente-Vincente, M.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.; Zanini, L

    2004-05-21

    A Micromegas detector was used in the neutron Time-Of-Flight (n{sub T}OF) facility at CERN to evaluate the spatial distribution of the neutron beam as a function of its kinetic energy. This was achieved over a large range of neutron energies by using two complementary processes: at low energy by capture of a neutron via the {sup 6}Li(n,{alpha})t reaction, and at high energy by elastic scattering of neutrons on gas nuclei (argon+isobutane or helium+isobutane). Data are compared to Monte Carlo simulations and an analytic function fitting the beam profile has been calculated with a sufficient precision to use in neutron capture experiments at the n{sub T}OF facility.

  14. Factorial analysis of cluster-SIMS depth profiling using metal-cluster-complex ion beams

    International Nuclear Information System (INIS)

    A Ir4(CO)7+ primary ion beam, at energies from 2.5 keV to 10 keV, was used to profile boron-delta layers in Si to investigate the influences of atomic mixing and surface roughness on the degradation of depth resolution. Factorial analyses using the mixing-roughness-information (MRI) model indicated that the influence of the mixing increased as beam energy was reduced below 5 keV in the case of oxygen flooding. It was confirmed that the magnitude of the MRI surface roughness was different from that of the AFM surface roughness. The discrepancy in the magnitude of roughness was examined by considering the difference in sputtering depth as well as the definition of the MRI surface roughness

  15. A fast profile monitor with scintillating fiber hodoscopes for high-intensity photon beams

    Science.gov (United States)

    Ishikawa, T.; Fujimura, H.; Hamano, H.; Hashimoto, R.; Honda, Y.; Ishida, T.; Kaida, S.; Kanda, H.; Kido, S.; Matsumura, Y.; Miyabe, M.; Mizutani, K.; Nagasawa, I.; Nakamura, A.; Nanbu, K.; Nawa, K.; Ogushi, S.; Shibasaki, Y.; Shimizu, H.; Sugai, H.; Suzuki, K.; Takahashi, K.; Takahashi, S.; Taniguchi, Y.; Tokiyasu, A. O.; Tsuchikawa, Y.; Yamazaki, H.

    2016-03-01

    A fast beam-profile monitor has been developed for high-energy photon beamlines at the Research Center for Electron Photon Science, Tohoku University. The position of the photon converted into an electron-positron pair in a 0.5 mm-thick aluminum plate is measured with two hodoscopes made of scintillating fibers with cross-sections of 3 × 3mm2. Events in which charged particles are produced upstream are rejected with a charge veto plastic scintillator placed in front of the plate, and pair-production events are identified with a trigger plastic scintillator placed behind the plate. The position is determined by a developed logic module with a field-programmable gate array. The dead time for processing an event is 35 ns, and a high data acquisition efficiency (~ 100 %) can be achieved with this monitor for high-intensity photon beams corresponding to 20 MHz tagging signals.

  16. Inversion for sound speed profile in shallow water using matched-beam processing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhongbing; MA Yuanliang; YANG Kunde; YAN Shefeng

    2004-01-01

    To quickly obtain the sound speed profile (SSP) in shallow water by inversion methods, an inversion scheme for SSP in shallow water using matched-beam processing (MBI) is developed. The cost function of MBI is based on matched-beam concept. It is verified experimentally that MBI is feasible and superior in comparison to conventional matched-field inversion (MFI) by using the East China Sea Experiment data. The SSP inverted by MBI using the wide-band explosion signals is in good agreement with the results measured based on conductivity, temperature and depth (CTD) in the experiment. And the root of mean square error of the inverted SSP is less than 2 m/s. Research results have shown that MBI is robust with respect to the sediment parameters mismatch. And SSP in shallow water can be more quickly obtained by MBI than by MFI.

  17. Peculiarities of profile formation for orifices fabricated by electron beam drilling at gun pulsed supply with trapezoidal voltage

    International Nuclear Information System (INIS)

    Peculiarities of substance removal from the surface of a solid body under effect of a pulse beam with beam diameter varying during the pulse and distribution of power density by its cross section taking place at electron gun pulsed supply with trapezoidal voltage are considered. Conical holes with different configuration of the profile envelope can be obtained with variation of pulse duration. Photos of hole profiles obtained by pulsed beam at gun pulsed supply with different pulse duration are presented. Experiments have been conducted with various materials including quartz and nickel

  18. Intense laser beam propagating in a plasma channel with flat-bottom leaky density profile

    International Nuclear Information System (INIS)

    The propagation characteristics of an intense laser beam in a preformed plasma channel with the flat-bottom leaky density profile are investigated in detail. The evolution equation of the laser spot size is derived by employing variational technique. Seven propagation modes of the laser spot size are identified and some numerical results are presented. By comparison, we find that the results in this Letter may be more realistic since the flat-bottom leaky plasma channel comes closer to the practical plasma channel.

  19. Longitudinal beam profiles affected by the current ripples of bending magnets in HIMAC synchrotron

    International Nuclear Information System (INIS)

    The relation between the longitudinal-emittance growth and the noise profiles of the power supply for the bending-magnets was studied to avoid the particle losses from the bucket during the several-minutes circulation. In order to investigate the effect of the actual noise ripples of the power supply, as well as monochromatic noise near to the synchrotron-oscillation frequency, on the temporal evolution of the longitudinal emittance, the beam distribution on the longitudinal phase space was simulated using the tracking method. We found that the longitudinal emittance was increasing with time owing to the series of the noise spectrum, not to the monochromatic noise. (author)

  20. Vectorial detection of sub-microscale capillary curvature by laser beam profile

    Science.gov (United States)

    Verma, Gopal; Singh, Kamal P.

    2015-10-01

    We demonstrate a simple and non-invasive optical technique to detect direction and magnitude of long-range, sub-microscale capillary curvature of fluid interfaces in various situations. By analyzing magnitude and direction of the distorted spatial profile of the laser beam, following its weak Fresnel's reflection from the air-water interface, ultra-low curvature of 0.1 μm-1 caused by dipped slides, glass tubes, and microscopic twisted silk fibers was measured up to six capillary lengths away from the object. The flexibility of this technique allows us to measure curvature of remotely placed fluid-fluid interfaces and interaction between capillary curves of multiple objects. The high sensitivity of our technique is demonstrated in measuring magnetic susceptibility of water and the full spatial profile of deformation under weak magnetic field. This technique might find applications in precision measurements in optofluidics and interface physics.

  1. New x-ray pink-beam profile monitor system for the SPring-8 beamline front-end.

    Science.gov (United States)

    Takahashi, Sunao; Kudo, Togo; Sano, Mutsumi; Watanabe, Atsuo; Tajiri, Hiroo

    2016-08-01

    A new beam profile monitoring system for the small X-ray beam exiting from the SPring-8 front-end was developed and tested at BL13XU. This system is intended as a screen monitor and also as a position monitor even at beam currents of 100 mA by using photoluminescence of a chemical vapor deposition-grown diamond film. To cope with the challenge that the spatial distribution of the photoluminescence in the vertical direction is too flat to detect the beam centroid within a limited narrow aperture, a filter was installed that absorbs the fundamental harmonic concentrated in the beam center, which resulted in "de-flattening" of the vertical distribution. For the measurement, the filter crossed the photon beam vertically at high speed to withstand the intense heat flux of the undulator pink-beam. A transient thermal analysis, which can simulate the movement of the irradiation position with time, was conducted to determine the appropriate configuration and the required moving speed of the filter to avoid accidental melting. In a demonstration experiment, the vertically separated beam profile could be successfully observed for a 0.8 × 0.8 mm(2) beam shaped by an XY slit and with a fundamental energy of 18.48 keV. The vertical beam centroid could be detected with a resolution of less than 0.1 mm. PMID:27587104

  2. Monitoring transverse beam profiles of a Penning ion source using a position-sensitive Multi Array Faraday Cup

    International Nuclear Information System (INIS)

    In this paper, we describe the design and construction of a Multi Array Faraday Cup for both beam profiling and current measurements in a Penning ion source. This diagnostic system includes an array configured from multiple cups electrically isolated from each other to collect charged particles incident on the respective cups. Each cup in the array produces a specific signal corresponding to the collected charges due to the incident charged particles. Collected charges signals are amplified and processed by using an electronic beam monitoring system. A testing set-up has been designed for testing and calibration of the system. Experiments have been set up for evaluation of proper functioning of the MAFC in measurement of different beam profiles produced by using the testing set-up. Additionally, total extracted ion current and transverse beam profile has been measured for a Penning ion source

  3. System for measuring temporal profiles of scintillation at high and different linear energy transfers by using pulsed ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Koshimizu, Masanori, E-mail: koshi@qpc.che.tohoku.ac.jp; Asai, Keisuke [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Kurashima, Satoshi [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Taguchi, Mitsumasa; Kimura, Atsushi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Iwamatsu, Kazuhiro [Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-01-15

    We have developed a system for measuring the temporal profiles of scintillation at high linear energy transfer (LET) by using pulsed ion beams from a cyclotron. The half width at half maximum time resolution was estimated to be 1.5–2.2 ns, which we attributed mainly to the duration of the pulsed ion beam and timing jitter between the trigger signal and the arrival of the ion pulse. The temporal profiles of scintillation of BaF{sub 2} at different LETs were successfully observed. These results indicate that the proposed system is a powerful tool for analyzing the LET effects in temporal profiles of scintillation.

  4. Performance of wire scanner beam profile monitors to determine the emittance and position of high power CW electron beams of the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    The NBS-LANL Race Track Microtron (RTM) injector produces a sub-millimeter diameter, 600 μA, 5 MeV CW electron beam. In order to steer and focus this electron beam and to measure its emittance and energy spread, a system of wire scanner beam profile monitors has been developed. Three wire scanners are mounted in a straight line with approximately one meter spacing for emittance measurements. The fourth wire scanner is positioned after a 450 bending magnet for energy spread measurements

  5. Determination of reversed plasma current profile from the experiments of magnetic compression of a microsecond relativistic electron beam

    International Nuclear Information System (INIS)

    Measuring technique for distribution of reversed plasma current in relativistic electron beam crosssection which is based on velocity measurement of azimutj rotation of the beam spreading within the external magnetic field is realized experimentally. Measurements of reversed current profile are carried out during the experiments on magnetic compression of powerful microsecond relativistic electron beam (1 MV, 75 kA, 4μs, 100kj, 5 kA/cm2). Data on the level of beam charged neutralization at gas lowpressure in drift chamber are obtained

  6. Gene Expression Profile of Proton Beam Irradiated Breast Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Park, Jeong Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Cancer stem cells (CSCs) possess characteristics associated with normal stem cells. The mechanisms regulating CSC radio-resistance, including to proton beam, remain unclear. They showed that a subset of cells expressing CD44 with weak or no CD24 expression could establish new tumors in xenograft mice. Recently, BCSC-targeting therapies have been evaluated by numerous groups. Strategies include targeting BCSC self-renewal, indirectly targeting the microenvironment, and directly killing BCSCs by chemical agents that induce differentiation, immunotherapy, and oncolytic viruses. However, the mechanisms regulating CSC radio-resistance, particularly proton beam resistance, remain unclear. The identification of CSC-related gene expression patterns would make up offer data for better understanding CSCs properties. In this study we investigated the gene expression profile of BCSCs isolation from MCF-7 cell line. Reducing BCSC resistance to pulsed proton beams is essential to improve therapeutic efficacy and decrease the 5-year recurrence rate. In this respect, the information of the level of gene expression patterns in BCSCs is attractive for understanding molecular mechanisms of radio-resistance of BCSCs.

  7. Gene Expression Profile of Proton Beam Irradiated Breast Cancer Stem Cells

    International Nuclear Information System (INIS)

    Cancer stem cells (CSCs) possess characteristics associated with normal stem cells. The mechanisms regulating CSC radio-resistance, including to proton beam, remain unclear. They showed that a subset of cells expressing CD44 with weak or no CD24 expression could establish new tumors in xenograft mice. Recently, BCSC-targeting therapies have been evaluated by numerous groups. Strategies include targeting BCSC self-renewal, indirectly targeting the microenvironment, and directly killing BCSCs by chemical agents that induce differentiation, immunotherapy, and oncolytic viruses. However, the mechanisms regulating CSC radio-resistance, particularly proton beam resistance, remain unclear. The identification of CSC-related gene expression patterns would make up offer data for better understanding CSCs properties. In this study we investigated the gene expression profile of BCSCs isolation from MCF-7 cell line. Reducing BCSC resistance to pulsed proton beams is essential to improve therapeutic efficacy and decrease the 5-year recurrence rate. In this respect, the information of the level of gene expression patterns in BCSCs is attractive for understanding molecular mechanisms of radio-resistance of BCSCs

  8. A study on the output beam profile of a ring resonator type diplexer

    Directory of Open Access Journals (Sweden)

    Sakamoto K.

    2012-09-01

    Full Text Available A ring resonator type diplexer was tested for fast switching device for ECCD system. The ring resonator was composed by circular corrugated waveguides with 63.5 mm diameter. Four in/output ports were separated from the resonator by half mirrors. The resonance frequency and its interval were designed as 170 GHz and 460 MHz, respectively. The mock-up diplexer which utilizes slotted planes with 2 mm period or sapphire disk with 1 mm thickness as half mirrors were examined at using 170 GHz-band low power oscillator. RF beam with 95% of the fundamental mode (LP01 mode was provided into the input port of the diplexer using a mode generator. Beam profiles from output ports were measured and mode contents in output ports were deduced. When the slotted mirrors were utilized, the LP01 mode purity was decreased as 85% at the resonance frequency, 170 GHz. This was because higher order modes were induced by the higher order diffraction beams from the slotted half mirror. On the other hand, mode purity was increased higher than 98% at 170 GHz when sapphire mirrors were utilized.

  9. Studying wedge factors and beam profiles for physical and enhanced dynamic wedges

    Directory of Open Access Journals (Sweden)

    Ahmad Misbah

    2010-01-01

    Full Text Available This study was designed to investigate variation in Varian′s Physical and Enhanced Dynamic Wedge Factors (WF as a function of depth and field size. The profiles for physical wedges (PWs and enhanced dynamic wedges (EDWs were also measured using LDA-99 array and compared for confirmation of EDW angles at different depths and field sizes. WF measurements were performed in water phantom using cylindrical 0.66 cc ionization chamber. WF was measured by taking the ratio of wedge and open field ionization data. A normalized wedge factor (NWF was introduced to circumvent large differences between wedge factors for different wedge angles. A strong linear dependence of PW Factor (PWF with depth was observed. Maximum variation of 8.9% and 4.1% was observed for 60° PW with depth at 6 and 15 MV beams respectively. The variation in EDW Factor (EDWF with depth was almost negligible and less than two per cent. The highest variation in PWF as a function of field size was 4.1% and 3.4% for thicker wedge (60° at 6 and 15 MV beams respectively and decreases with decreasing wedge angle. EDWF shows strong field size dependence and significant variation was observed for all wedges at both photon energies. Differences in profiles between PW and EDW were observed on toe and heel sides. These differences were dominant for larger fields, shallow depths, thicker wedges and low energy beam. The study indicated that ignoring depth and field size dependence of WF may result in under/over dose to the patient especially doing manual point dose calculation.

  10. An investigation of dose and beam profile dosimetry with an amorphous silicon epid

    International Nuclear Information System (INIS)

    Full text: There is much current interest in the use of electronic portal imaging devices (EPIDs) for dosimetric applications such as accelerator quality assurance, in-vivo dosimetry, and verification of IMRT. However, the use of EPID for these purposes requires that the images can be used to obtain accurate dose measurements. The aim of this work is to investigate the accuracy and reproducibility of dose and beam profile measurements with an amorphous silicon EPID. The Varian aS500 detector produces a 'frame-averaged' image that is the image pixel values are the average of all acquired frames. By averaging frames throughout the delivery and then multiplying the result by the number of frames, an integrated pixel value can be obtained. The reproducibility of EPID response to the same incident dose was assessed by weekly measurement of the mean value of a 9x9 pixel region at the central axis, for a 100 monitor unit irradiation of a 10x10 cm field under the same set-up conditions. At each session, three images were acquired. The EPID dose response was obtained by multiplying the pixel value by the number of acquired frames. Images were acquired for both 6 MV and 18 MV at 105 cm to the EPID detector surface with 4 cm added solid water build-up. The linearity of the EPID response with linear change in dose was measured. Images were acquired for MLJ settings of 5, 10, 25, 50, 100, 200 and 300 MU for both 6 and 18 MV. Three images were acquired for each MU setting and the pixel values multiplied by the number of frames acquired. The reproducibility of open field profiles measured with the EPID with dose (MU) settings of 20, 50, 100, 200 and 300 MU was investigated. Additional solid water build-up of 0.5 cm and 2 cm was used for 6 and 18 MV to give dmax build-up. The field size was 30x30 cm. Open field profiles were compared to water-tank measurements with and without flood-field corrections to the EPID image. A correction image was developed to convert EPlD profiles to

  11. Overlapping laser profiles used to mitigate the negative effects of beam uncertainties in direct-drive LMJ configurations

    International Nuclear Information System (INIS)

    A direct-drive shock ignition scheme in the context of the Laser Mega Joule facility has been considered. The irradiation uniformity provided by two laser beam configurations using a total of 10 or 20 quads to drive the first compression phase has been analyzed. Firstly, a numerical method is used to optimize the laser intensity profiles in the context of the illumination approximation model; then these profiles are used to calculate the irradiation non-uniformity of a spherical target of radius r0 = 1000 μm assuming the beam uncertainties: power imbalance 5%, pointing error 50 μm and target positioning 20 μm. These uncertainties deteriorate the quality of the irradiation increasing considerably the irradiation non-uniformity; moreover, it is found that the pointing error provides the major contribution to the degradation of the irradiation. A strategy to mitigate the negative effect induced by the beam uncertainties is proposed. It consists in using a composite profile in each beam: a first large and flat intensity profile provides a background that reduces pointing error and target positioning effects, whilst a second overlapping profile optimizes the illumination irradiation. It is found that the introduction of the flat background with an intensity of 55% with respect to the maximum intensity reduces by about 40% the non-uniformity of the irradiation due to beam uncertainties. (authors)

  12. Influence of the substrate material on the knife-edge based profiling of tightly focused light beams

    CERN Document Server

    Huber, C; Banzer, P; Leuchs, G

    2016-01-01

    The performance of the knife-edge method as a beam profiling technique for tightly focused light beams depends on several parameters, such as the material and height of the knife-pad as well as the polarization and wavelength of the focused light beam under study. Here we demonstrate that the choice of the substrate the knife-pads are fabricated on has a crucial influence on the reconstructed beam projections as well. We employ an analytical model for the interaction of the knife-pad with the beam and report good agreement between our numerical and experimental results. Moreover, we simplify the analytical model and demonstrate, in which way the underlying physical effects lead to the apparent polarization dependent beam shifts and changes of the beamwidth for different substrate materials and heights of the knife-pad.

  13. New Proposal for Flexural Strengthening of Reinforced Concrete Beams Using CFRP T-Shaped Profiles

    Directory of Open Access Journals (Sweden)

    Renata Kotynia

    2015-11-01

    Full Text Available The purpose of this study was to evaluate the performance of a novel strengthening system using T-shaped carbon fiber reinforced polymer (CFRP profiles. The proposed system successfully combines the advantages of two established strengthening techniques, namely the near surface mounted (NSM and externally bonded (EB methods. The paper presents the experimental results of structural tests carried out on seven flexurally-strengthened and two non-strengthened full-scale reinforced concrete (RC members. Two T-shaped profiles having heights of 15 and 30 mm were applied. The main parameters of concrete strength and composite strengthening ratio were investigated to evaluate the efficiency of the proposed flexural strengthening system. All specimens were tested under a quasi-static six-point bending configuration. The test results showed a significant increase in the load bearing capacity and the stiffness of the RC beams with strengthening and also a notable reduction in maximum deflections. The high tensile strength utilization of the CFRP profiles places this strengthening technique as a promising alternative to other, less structurally-efficient systems.

  14. Experimental characterization of two-dimensional spot profiles for two proton pencil beam scanning nozzles.

    Science.gov (United States)

    Lin, Liyong; Ainsley, Christopher G; Solberg, Timothy D; McDonough, James E

    2014-01-20

    Dose calculation for pencil beam scanning proton therapy requires accurate measurement of the broad tails of the proton spot profiles for every nozzle in clinical use. By applying a pair/magnification method and merging film data, 200 mm × 240 mm dose kernels extending to 10(-4) of the central spot dose are generated for six selected energies of the IBA dedicated and universal nozzles (DN and UN). One-dimensional, circular profiles up to 100 mm in radius are generated from the asymmetric profiles to facilitate spot profile comparison. For the highest energy, 225 MeV, the output of both the DN and the UN for field sizes from 40 to 200 mm increases in parallel, slowest at the surface (∼1%) and fastest at a depth of 150 mm (∼9%). In contrast, at the lowest energy, 100 MeV, the output of the DN across the same range of field sizes increases 3-4% versus 6-7% for the UN throughout all the depths. The charge deficits in the measured depth-dose of Bragg peaks are similar between the UN and the DN. At 100 MeV, the field size factor difference at the surface between two orientations of a rectangular 40 mm × 200 mm field is 1.4% at isocentre for the DN versus 2% for the UN. Though the one-dimensional distributions are similar for the primary and tail components at different positions, the primary components of the DN spots are more elliptical 270 mm upstream than at isocentre. PMID:24374943

  15. Fast Thermal Helium Beam diagnostic for measurements of edge electron profiles and fluctuations

    Science.gov (United States)

    Agostini, M.; Scarin, P.; Cavazzana, R.; Carraro, L.; Grando, L.; Taliercio, C.; Franchin, L.; Tiso, A.

    2015-12-01

    The edge of fusion experiments is a region where strong gradients develop, together with the presence of strong fluctuations due to turbulence. The thermal helium beam diagnostic developed for the RFX-mod experiment allows the measurements with a single diagnostic of both low frequency time evolution of the edge radial profiles of electron density and temperature (tens of hertz), and the high frequency fluctuations (hundreds of kHz). To maximize the collected light, the three HeI lines necessary to be measured for the evaluation of ne and Te are separated with a spectrograph, and multianode photomultipliers are used as light detectors. The paper describes the diagnostic setup, with the interface hardware with the machine and the optical layout, and the characterization of its performances.

  16. Fast Thermal Helium Beam diagnostic for measurements of edge electron profiles and fluctuations

    International Nuclear Information System (INIS)

    The edge of fusion experiments is a region where strong gradients develop, together with the presence of strong fluctuations due to turbulence. The thermal helium beam diagnostic developed for the RFX-mod experiment allows the measurements with a single diagnostic of both low frequency time evolution of the edge radial profiles of electron density and temperature (tens of hertz), and the high frequency fluctuations (hundreds of kHz). To maximize the collected light, the three HeI lines necessary to be measured for the evaluation of ne and Te are separated with a spectrograph, and multianode photomultipliers are used as light detectors. The paper describes the diagnostic setup, with the interface hardware with the machine and the optical layout, and the characterization of its performances

  17. Basic research for development of the beam profile monitor based on a Faraday cup array system

    Science.gov (United States)

    Park, Mook-Kwang

    2015-10-01

    The basic design used to develop a beam profile monitor based on a Faraday cup array (FCA), which has the advantages of high robustness, reliability, and long-term stability, along with the ability to measure the ion current over a wide dynamic range, was developed. The total system is divided into three parts: i.e., a faraday cup, measuring electronics, and a display program part. The FCA was considered to consist of a collimator, suppressor, insulator frame, and 64 (8 × 8 array) tiny Faraday cups (FC). An electronic circuit using a multiplexer was applied to effectively address many signal lines and the printed circuit board (PCB) was designed to be divided into three parts, i.e., an electrode PCB (ELEC PCB), capacitance PCB (CAP PCB), and control PCB (CON PCB).

  18. Fast Thermal Helium Beam diagnostic for measurements of edge electron profiles and fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M., E-mail: matteo.agostini@igi.cnr.it; Scarin, P.; Cavazzana, R.; Carraro, L.; Grando, L.; Taliercio, C.; Franchin, L.; Tiso, A. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy)

    2015-12-15

    The edge of fusion experiments is a region where strong gradients develop, together with the presence of strong fluctuations due to turbulence. The thermal helium beam diagnostic developed for the RFX-mod experiment allows the measurements with a single diagnostic of both low frequency time evolution of the edge radial profiles of electron density and temperature (tens of hertz), and the high frequency fluctuations (hundreds of kHz). To maximize the collected light, the three HeI lines necessary to be measured for the evaluation of n{sub e} and T{sub e} are separated with a spectrograph, and multianode photomultipliers are used as light detectors. The paper describes the diagnostic setup, with the interface hardware with the machine and the optical layout, and the characterization of its performances.

  19. A webcam in Bayer-mode as a light beam profiler for the near infra-red

    Science.gov (United States)

    Langer, Gregor; Hochreiner, Armin; Burgholzer, Peter; Berer, Thomas

    2013-05-01

    Beam profiles are commonly measured with complementary metal oxide semiconductors (CMOS) or charge coupled devices (CCD). The devices are fast and reliable but expensive. By making use of the fact that the Bayer-filter in commercial webcams is transparent in the near infra-red (>800 nm) and their CCD chips are sensitive up to about 1100 nm, we demonstrate a cheap and simple way to measure laser beam profiles with a resolution down to around ±1 μm, which is close to the resolution of the knife-edge technique.

  20. Micro-strip Metal Foil Detectors for the Beam Profile Monitoring

    CERN Document Server

    Pugatch, V M; Fedorovitch, O A; Mikhailenko, A V; Prystupa, S V; Pylypchenko, Y

    2005-01-01

    The Micro-strip Metal Foil Detectors (MMFD) designed and used for the Beam Profile Monitoring (BPM) are discussed. Fast particles hitting a metal strip initiate Secondary Electron Emission (SEE) which occurs at 10 - 50 nm surface layers of a strip. The SEE yield is measured by a sensitive Charge Integrator with built-in current-to-frequency converter (1 Hz per 1 fA). The MMFD (deposited onto the 20 μm thick Si-wafer) with 32 Al strips (10 μm wide, 32 μm pitch) has been used for the BPM of the 32 MeV alpha-particle beam at the MPIfK (Heidelberg) Tandem generator for Single-Event-Upset studies of the BEETLE micro-chip. Similar MMFD (0.5 μm thick Ni-strips) with totally removed Si-wafer (by plasma-chemistry, at the working area of 8 x 10 mm2) has been applied for the on-line X-ray BPM at the HASYLAB (DESY). The number of photons (11.3 GeV, mean X-ray energy 18 keV) producing out of a strip a single SEE was evaluated as (1.5 ±0.5)* 104. MMFD has demonstrated stable...

  1. SU-E-T-149: Electron Beam Profile Differences Between Elekta MLCi2 and Elekta Agility Treatment Heads

    International Nuclear Information System (INIS)

    Purpose: To report and investigate observed differences in electron beam profiles at various energies/applicators between Elekta MLCi2 and Agility treatment head on Elekta Infinity LINAC Methods: When we upgraded from MLCi2 to Agility on one of our Elekta Infinity LINAC's, electron beam PDDs and profiles were acquired for comparison purpose. All clinical electron energies (6/9/12/15/12/18 MeV) and electron applicators (6/10/14/20/25 square) were included in measurement. PDDs were acquired at 100 SSD in water (PTW MP3 water tank) with a plane-parallel ion chamber (PTW Roos). X and Y Profiles were acquired using IC Profiler (Sun Nuclear Corp.) at 1cm and maximum PDD depths (water equivalent). Results: All PDD curves match very well between MLCi2 and Agility treatment head. However, some significant differences on electron profiles were found. On Agility, even after increasing the default auto-tracking offset values for backup diaphragms in Y and MLC in X by 2.8 cm (the maximum allowed change is 3.0 cm), electron profiles still have rounder shoulders comparing to corresponding MLCi2 profiles. This difference is significantly more pronounced at larger applicators (20 and 25 square), for all electron energies. Conclusion: The significant design change between MLCi2 and Agility beam limiting device seems to affect exit electron beam profiles. In IEC1217 X direction, the main change on Agility is the removal of the original MLCi2 X backup diaphragms and replacing it with MLC leaves; In Y direction, the main change is the radius and materials on Y backup diaphragms

  2. Experimental characterization of two-dimensional pencil beam scanning proton spot profiles.

    Science.gov (United States)

    Lin, Liyong; Ainsley, Christopher G; McDonough, James E

    2013-09-01

    Dose calculations of pencil beam scanning treatment plans rely on the accuracy of proton spot profiles; not only the primary component but also the broad tail components. Four films are placed at several locations in air and multiple depths in Solidwater® for six selected energies. The films used for the primary components are exposed to 50-200 MU to avoid saturation; the films used for the tail components are exposed to 800, 8000 and 80,000 MU. By applying a pair/magnification method and merging these data, dose kernels down to 10(-4) of the central spot dose can be generated. From these kernels one can calculate the dose-per-MU for different field sizes and shapes. Measurements agree within 1% of dose-kernel-based calculations for output versus field size comparisons. Asymmetric, comet-shaped profile tails have a bigger impact at superficial depths and low energies: the output difference between two orientations at the surface of a rectangular field of 40 mm×200 mm is about 2% at the isocentre at 100 MeV. Integration of these dose kernels from 0 to 40 mm radius shows that the charge deficit in the Bragg peak chamber varies <2% from entrance to the end of range for energies <180 MeV, but exceeds 5% at 225 MeV. PMID:23948730

  3. iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Sebastiaan; Storchi, Pascal R. M.; Voet, Peter W. J.; Heijmen, Ben J. M. [Department of Radiation Oncology, Erasmus MC Rotterdam, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2012-02-15

    Purpose: To introduce iCycle, a novel algorithm for integrated, multicriterial optimization of beam angles, and intensity modulated radiotherapy (IMRT) profiles. Methods: A multicriterial plan optimization with iCycle is based on a prescription called wish-list, containing hard constraints and objectives with ascribed priorities. Priorities are ordinal parameters used for relative importance ranking of the objectives. The higher an objective priority is, the higher the probability that the corresponding objective will be met. Beam directions are selected from an input set of candidate directions. Input sets can be restricted, e.g., to allow only generation of coplanar plans, or to avoid collisions between patient/couch and the gantry in a noncoplanar setup. Obtaining clinically feasible calculation times was an important design criterium for development of iCycle. This could be realized by sequentially adding beams to the treatment plan in an iterative procedure. Each iteration loop starts with selection of the optimal direction to be added. Then, a Pareto-optimal IMRT plan is generated for the (fixed) beam setup that includes all so far selected directions, using a previously published algorithm for multicriterial optimization of fluence profiles for a fixed beam arrangement Breedveld et al.[Phys. Med. Biol. 54, 7199-7209 (2009)]. To select the next direction, each not yet selected candidate direction is temporarily added to the plan and an optimization problem, derived from the Lagrangian obtained from the just performed optimization for establishing the Pareto-optimal plan, is solved. For each patient, a single one-beam, two-beam, three-beam, etc. Pareto-optimal plan is generated until addition of beams does no longer result in significant plan quality improvement. Plan generation with iCycle is fully automated. Results: Performance and characteristics of iCycle are demonstrated by generating plans for a maxillary sinus case, a cervical cancer patient, and a

  4. Effect of Scanning Beam Profile to Fabricate Fused Fiber Tapers by CO_2 Laser Irradiation Method

    Institute of Scientific and Technical Information of China (English)

    Bayle; Fabien; Luo; Aiping; Marin; Emmanuel; Meunier; Jean-Pierre

    2003-01-01

    Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.

  5. Effect of Scanning Beam Profile to Fabricate Fused Fiber Tapers by CO2 Laser Irradiation Method

    Institute of Scientific and Technical Information of China (English)

    Bayle Fabien; Luo Aiping; Marin Emmanuel; Meunier Jean-Pierre

    2003-01-01

    Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.

  6. The profile of the electron beam in the PTB synchrotron, and its influence on radiometric measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    A simple method is described to determine the beam profile in an electron synchrotron; the measured results are compared with calculated values. Moreover, the influence of synchrotron- and betatron-oscillations on synchrotron radiation measurements is discussed, and a method is given to correct this. (orig.)

  7. Direct high-resolution ion beam-profile imaging using a position-sensitive Faraday cup array

    International Nuclear Information System (INIS)

    Ion sources have wide-spread use in a multitude of applications. For many, an accurate knowledge, or better, an accurate imaging, of the beam profile and intensity is an important criterion. We are developing an ion source to calibrate instruments for space-based measurements of solar wind and suprathermal particles in the energy range from below 1 keV/nuc to above 200 keV/nuc. In order to establish accurate beam profiles for calibration purposes, we have developed a new method based on an array of very small (diameter = 0.3 mm) Faraday cups. Here, we describe the experimental setup and discuss how to achieve several requirements such as a large thermal load due to the ∼40W of beam power.

  8. Fabrication summary on the equipment of an OTR beam profile monitor for the J-PARC 3-50BT

    International Nuclear Information System (INIS)

    A two-dimensional beam profile monitor for 3-50 beam transport line in J-PARC was fabricated and installed in 2012. Then beam profile measurement by using OTR lights has been started in the beginning of 2013. Adding a measurement using fluorescence light has been run from May in 2013, the equipment has worked all right. In this manuscript, designing and fabrication on this equipment which has relatively large inner volume of about 550 litters for employing precise optical system built-in, are summarized and discussed as below: (1) construction design for chamber having built-in OFFNER optical system, (2) a sliding triple-target, (3) applying thin metal foil to a target frame, (4) an in-situ optical system and glass view, (5) optical devise alignment in the chamber, and (6) vacuum evacuation characteristics. (author)

  9. Probing the Relationship Between Detected Ion Intensity, Laser Fluence, and Beam Profile in Thin Film and Tissue in MALDI MSI

    Science.gov (United States)

    Steven, Rory T.; Race, Alan M.; Bunch, Josephine

    2016-08-01

    Matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) is increasingly widely used to provide information regarding molecular location within tissue samples. The nature of the photon distribution within the irradiated region, the laser beam profile, and fluence, will significantly affect the form and abundance of the detected ions. Previous studies into these phenomena have focused on circular-core optic fibers or Gaussian beam profiles irradiating dried droplet preparations, where peptides were employed as the analyte of interest. Within this work, we use both round and novel square core optic fibers of 100 and 50 μm diameter to deliver the laser photons to the sample. The laser beam profiles were recorded and analyzed to quantify aspects of the photon distributions and their relation to the spectral data obtained with each optic fiber. Beam profiles with a relatively small number of large beam profile features were found to give rise to the lowest threshold fluence. The detected ion intensity versus fluence relationship was investigated, for the first time, in both thin films of α-cyano-4-hydroxycinnamic acid (CHCA) with phosphatidylcholine (PC) 34:1 lipid standard and in CHCA coated murine tissue sections for both the square and round optic fibers in continuous raster imaging mode. The fluence threshold of ion detection was found to occur at between ~14 and ~64 J/m2 higher in tissue compared with thin film for the same lipid, depending upon the optic fiber employed. The image quality is also observed to depend upon the fluence employed during image acquisition.

  10. Probing the Relationship Between Detected Ion Intensity, Laser Fluence, and Beam Profile in Thin Film and Tissue in MALDI MSI.

    Science.gov (United States)

    Steven, Rory T; Race, Alan M; Bunch, Josephine

    2016-08-01

    Matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) is increasingly widely used to provide information regarding molecular location within tissue samples. The nature of the photon distribution within the irradiated region, the laser beam profile, and fluence, will significantly affect the form and abundance of the detected ions. Previous studies into these phenomena have focused on circular-core optic fibers or Gaussian beam profiles irradiating dried droplet preparations, where peptides were employed as the analyte of interest. Within this work, we use both round and novel square core optic fibers of 100 and 50 μm diameter to deliver the laser photons to the sample. The laser beam profiles were recorded and analyzed to quantify aspects of the photon distributions and their relation to the spectral data obtained with each optic fiber. Beam profiles with a relatively small number of large beam profile features were found to give rise to the lowest threshold fluence. The detected ion intensity versus fluence relationship was investigated, for the first time, in both thin films of α-cyano-4-hydroxycinnamic acid (CHCA) with phosphatidylcholine (PC) 34:1 lipid standard and in CHCA coated murine tissue sections for both the square and round optic fibers in continuous raster imaging mode. The fluence threshold of ion detection was found to occur at between ~14 and ~64 J/m(2) higher in tissue compared with thin film for the same lipid, depending upon the optic fiber employed. The image quality is also observed to depend upon the fluence employed during image acquisition. Graphical Abstract ᅟ. PMID:27206508

  11. Low-energy and secondary (radioactive) ion-beam profile measurements and optimization using modified Gafchromic EBT film

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Becchetti, F.D., E-mail: fdb@umich.ed [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Ojaruega, M.; Torres-Isea, R.; Raymond, R.S. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Villano, A.N. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Kolata, J.J.; Roberts, A. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2010-08-21

    A modified version of Gafchromic EBT radiochromic medical imaging film, which is light insensitive and requires no special development or processing, is shown to be useful for imaging low-energy (few MeV) ion beams and radioactive sources. It appears especially well suited for use with low-intensity short-lived (radioactive) secondary beams (RNB). The film can assist in optimizing the collimation needed to minimize unwanted background ions, and to accurately determine the ion-optical alignment of RNB production and transport systems. It allows for effective imaging of beam profiles and relative intensities throughout the beam-transport system and especially at locations not readily accessible to electronic imaging detectors. The special advantages of using the film for RNBs, which often are spatially extended and contaminated with unwanted ions, are demonstrated.

  12. Spatial and temporal beam profile monitor with nanosecond resolution for CERN's Linac4 and Superconducting Proton Linac

    CERN Document Server

    Hori, M

    2008-01-01

    The Linac4, now being developed at CERN, will provide 160-MeV H- beams of high intensity . Before this beam can be injected into the CERN Proton Synchrotron Booster or future Superconducting Proton Linac for further acceleration, some sequences of 500-ps-long micro-bunches must be removed from it, using a beam chopper. These bunches, if left in the beam, would fall outside the longitudinal acceptance of the accelerators and make them radioactive. We developed a monitor to measure the time structure and spatial profile of this chopped beam, with respective resolutions and . Its large active area and dynamic range also allows investigations of beam halos. The ion beam first struck a carbon foil, and secondary electrons emerging from the foil were accelerated by a series of parallel grid electrodes. These electrons struck a phosphor screen, and the resulting image of the scintillation light was guided to a thermoelectrically cooled, charge-coupled device camera. The time resolution was attained by applying high-...

  13. Scattering and beam profile measurements of plastic, silica, and metal radiation waveguides

    Science.gov (United States)

    Croitoru, Nathan I.; Inberg, A.; Dahan, Reuben; Moshe, Ben

    1997-04-01

    Hollow waveguides (WG) made of plastic, silica, and metals have been developed for mid-IR spectrum transmission and are already being used, mainly in medical applications, in laser surgery and treatments. Characterization of these fibers is one of the important steps that enables further understanding of newly developed methods of preparation or applications. Scattering and beam profile measurements are discussed which have provided new data that may be used for future improvement or applications of these types of waveguides. Data on the roughness of the tube walls of WGs were obtained from backscattering measurements before and after deposition of the guiding layers. This is important for developing WGs for the shorter wavelengths in the mid- IR range. Measurements under various bending radii have made it possible to calculate the contribution of scattering as well as absorption and changes in modes of propagation, and the dependence of delivered energy to a target at a distance on the coupled value of energy. The conditions under which a whisper gallery mode of propagation appears as a function of the radius of bending and the angle of incidence to the normal of the inner wall, were found.

  14. Using narrow beam profiles to quantify focal spot size, for accurate Monte Carlo simulations of SRS/SRT systems

    Science.gov (United States)

    Kairn, T.; Crowe, S. B.; Charles, P. H.; Trapp, J. V.

    2014-03-01

    This study investigates the variation of photon field penumbra shape with initial electron beam diameter, for very narrow beams. A Varian Millenium MLC (Varian Medical Systems, Palo Alto, USA) and a Brainlab m3 microMLC (Brainlab AB. Feldkirchen, Germany) were used, with one Varian iX linear accelerator, to produce fields that were (nominally) 0.20 cm across. Dose profiles for these fields were measured using radiochromic film and compared with the results of simulations completed using BEAMnrc and DOSXYZnrc, where the initial electron beam was set to FWHM = 0.02, 0.10, 0.12, 0.15, 0.20 and 0.50 cm. Increasing the electron-beam FWHM produced increasing occlusion of the photon source by the closely spaced collimator leaves and resulted in blurring of the simulated profile widths from 0.24 to 0.58 cm, for the MLC, from 0.11 to 0.40 cm, for the microMLC. Comparison with measurement data suggested that the electron spot size in the clinical linear accelerator was between FWHM = 0.10 and 0.15 cm, encompassing the result of our previous output-factor based work, which identified a FWHM of 0.12 cm. Investigation of narrow-beam penumbra variation has been found to be a useful procedure, with results varying noticeably with linear accelerator spot size and allowing FWHM estimates obtained using other methods to be verified.

  15. Beam profile measurement with CR-39 track detector for low-energy ions

    CERN Document Server

    Sato, F; Tanaka, T; Iida, T; Yamauchi, T; Oda, K

    1999-01-01

    A CR-39 track detector was successfully used to measure the outline of thin low-energy ion beams. After the etching, the surface of the detector was examined with an observation system composed of a Normarski microscope, a CCD camera and a digital image processing computer. Beam images obtained with the system were in good agreement on the outline of the beam formed with a beam aperture. Also, the resolving power in the beam outline measurement was roughly explained from the consideration of the ion range and the etch-pit growth in the chemical etching for the CR-39 detector.

  16. Development of a Millimeter-Wave Beam Position and Profile Monitor for Transmission Efficiency Improvement in an ECRH System

    Directory of Open Access Journals (Sweden)

    Shimozuma T.

    2015-01-01

    Full Text Available In a high power Electron Cyclotron Resonance Heating (ECRH system, a long-distance and low-loss transmission system is required to realize effective heating of nuclear fusion-relevant plasmas. A millimeter-wave beam position and profile monitor, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam monitor consists of a reflector, Peltier-device array and a heat-sink. It was tested using simulated electric heater power or gyrotron output power. The data obtained from the monitor were well agreed with the heat source position and profile. The methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated wave-guide are proposed.

  17. Device for information readout from multielectrode emission and ionization chambers used for particle beam profile measuring on a phasotron

    International Nuclear Information System (INIS)

    Apparatus for the space particle beam profile measuring with the help of two-coordinate chambers (16 electrodes on each coordinate). The working range of the currents is -(10-9-10-6) A on each electrode. The current integrator is connected to each electrode. After the completion of the measuring cycle the charges, accumulated in integrators are converted to the digital code and transferred to the PC. 5 refs.; 5 figs

  18. Status and test report on the LANL-Boeing APLE/HPO flying-wire beam-profile monitor

    International Nuclear Information System (INIS)

    The High-Power Oscillator (HPO) demonstration of the Average Power Laser Experiment (APLE) is a collaboration by Los Alamos National Laboratory and Boeing to demonstrate a 10 kW average power, 10 μm free electron laser (FEL). As part of the collaboration, Los Alamos National Laboratory (LANL) is responsible for many of the electron beam diagnostics in the linac, transport, and laser sections. Because of the high duty factor and power of the electron beam, special diagnostics are required. This report describes the flying wire diagnostic required to monitor the beam profile during high-power, high-duty operation. The authors describe the diagnostic and prototype tests on the Los Alamos APLE Prototype Experiment (APEX) FEL. They also describe the current status of the flying wires being built for APLE

  19. Optimizing the e-beam profile of a single carbon nanotube field emission device for electric propulsion systems

    Directory of Open Access Journals (Sweden)

    Juliano Fujioka Mologni

    2010-04-01

    Full Text Available Preliminary studies on field emission (FE arrays comprised of carbon nanotubes (CNT as an electron source for electric propulsion system show remarkably promising results. Design parameters for a carbon nanotube (CNT field-emission device operating on triode configuration were numerically simulated and optimized in order to enhance the e-beam focusing quality. An additional focus gate (FG was integrated to the device to control the profile of the emitted e-beam. An axisymmetric finite element model was developed to calculate the electric field distribution on the vacuum region and a modified Fowler-Nordheim (FN equation was used to evaluate the current density emission and the effective emitter area. Afterward, a FE simulation was employed in order to calculate the trajectory of the emitted electrons and define the electron-optical properties of the e-beam. The integration of the FG was fully investigated via computational intelligence techniques. The best performance device according to our simulations presents a collimated e-beam profile that suits well for field emission displays, magnetic field detection and electron microscopy. The automated computational design tool presented in this study strongly benefits the robust design of integrated electron-optical systems for vacuum field emission applications, including electrodynamic tethering and electric propulsion systems.

  20. Preliminary results concerning the simulation of beam profiles from extracted ion current distributions for mini-STRIKE

    Science.gov (United States)

    Agostinetti, P.; Giacomin, M.; Serianni, G.; Veltri, P.; Bonomo, F.; Schiesko, L.

    2016-02-01

    The Radio Frequency (RF) negative hydrogen ion source prototype has been chosen for the ITER neutral beam injectors due to its optimal performances and easier maintenance demonstrated at Max-Planck-Institut für Plasmaphysik, Garching in hydrogen and deuterium. One of the key information to better understand the operating behavior of the RF ion sources is the extracted negative ion current density distribution. This distribution—influenced by several factors like source geometry, particle drifts inside the source, cesium distribution, and layout of cesium ovens—is not straightforward to be evaluated. The main outcome of the present contribution is the development of a minimization method to estimate the extracted current distribution using the footprint of the beam recorded with mini-STRIKE (Short-Time Retractable Instrumented Kalorimeter). To accomplish this, a series of four computational models have been set up, where the output of a model is the input of the following one. These models compute the optics of the ion beam, evaluate the distribution of the heat deposited on the mini-STRIKE diagnostic calorimeter, and finally give an estimate of the temperature distribution on the back of mini-STRIKE. Several iterations with different extracted current profiles are necessary to give an estimate of the profile most compatible with the experimental data. A first test of the application of the method to the BAvarian Test Machine for Negative ions beam is given.

  1. Beam Profile Measurement of 300 kV Ion Source Test Stand for 1 MV Electrostatic Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Gyeonju (Korea, Republic of); Kim, Dae-Il; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-10-15

    In this paper, RF ion source, test stand of the ion source and its test results are presented. Beam profile was measured at the downstream from the accelerating tube and at the beam dump by using BPM and wire scanner. The RF ion source of the test stand is verified by measuring the total beam current with a faraday cup in the chamber. The KOMAC (KOrea Multi-purpose Accelerator Complex) has been developing a 300 kV ion source test stand for a 1 MV electrostatic accelerator. An ion source and accelerating tube will be installed in a high pressure vessel. The ion source in a high pressure vessel requires high reliability. To confirm the stable operation of the ion source, a test stand was proposed and developed. The ion source will be tested at the test stand to verify its long-term operation conditions. The test stand consists of a 300 kV high voltage terminal, a battery for the ion source power, a 60 Hz inverter, a 200 MHz RF power, a 5 kV extraction power supply, a 300 kV accelerating tube, and a vacuum system. The beam profile monitor was installed at the downstream from the accelerating tube. Wire scanner and faraday-cup was installed at the end of the chamber.

  2. Preliminary results concerning the simulation of beam profiles from extracted ion current distributions for mini-STRIKE

    Energy Technology Data Exchange (ETDEWEB)

    Agostinetti, P., E-mail: piero.agostinetti@igi.cnr.it; Serianni, G.; Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Giacomin, M. [Physics Department, Università di Padova, via F. Marzolo 8, 35131 Padova (Italy); Bonomo, F.; Schiesko, L. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2016-02-15

    The Radio Frequency (RF) negative hydrogen ion source prototype has been chosen for the ITER neutral beam injectors due to its optimal performances and easier maintenance demonstrated at Max-Planck-Institut für Plasmaphysik, Garching in hydrogen and deuterium. One of the key information to better understand the operating behavior of the RF ion sources is the extracted negative ion current density distribution. This distribution—influenced by several factors like source geometry, particle drifts inside the source, cesium distribution, and layout of cesium ovens—is not straightforward to be evaluated. The main outcome of the present contribution is the development of a minimization method to estimate the extracted current distribution using the footprint of the beam recorded with mini-STRIKE (Short-Time Retractable Instrumented Kalorimeter). To accomplish this, a series of four computational models have been set up, where the output of a model is the input of the following one. These models compute the optics of the ion beam, evaluate the distribution of the heat deposited on the mini-STRIKE diagnostic calorimeter, and finally give an estimate of the temperature distribution on the back of mini-STRIKE. Several iterations with different extracted current profiles are necessary to give an estimate of the profile most compatible with the experimental data. A first test of the application of the method to the BAvarian Test Machine for Negative ions beam is given.

  3. Automated pinhole-aperture diagnostic for the current profiling of TWT electron beams

    International Nuclear Information System (INIS)

    The measurement system reported here is intended for use in determining the current density distribution of electron beams from Pierce guns for use in TWTs. The system was designed to automatically scan the cross section of the electron beam and collect the high-resolution data with a Faraday cup probe mounted on a multistage manipulator using the LabVIEW program. A 0.06 mm thick molybdenum plate with a pinhole and a Faraday cup mounted as a probe assembly was employed to sample the electron beam current with 0.5 µm space resolution. The thermal analysis of the probe with pulse beam heating was discussed. A 0.45 µP electron gun with the expected minimum beam radius 0.42 mm was measured and the three-dimensional current density distribution, beam envelope and phase space were presented. (paper)

  4. Cancellation of thermal deformation effect of the initial mirror on the beam profile monitor line

    International Nuclear Information System (INIS)

    The electron storage ring NewSUBARU has a visible light beam monitor line SR5. The two dimensional beam image obtained on this line is used in various beam diagnostics, such as a streak camera and a gated ICCD camera. One problem of this line was a stored current dependence of its imaging property. This was due to the mirror deformation produced by a heat load of synchrotron radiation. The effect of this deformation is approximated by a defocusing function in the lowest order. A simple defocusing can be handled by an adjustment of the assumed beam image position. However, the deformation was different for the horizontal and vertical directions. We installed a weak cylindrical lens to eliminate this difference. The current dependent imbalance of the deformation was cancelled by changing location of the lens according to the prediction. We succeeded to obtain a good two dimensional beam image at any electron beam energy and stored current. (author)

  5. Electron-optical monitoring of beam profile of a pulse accelerator

    International Nuclear Information System (INIS)

    Electron-optical methods of studying spatial-time characteristics of high-current electron beams on the basis of their bremsstrahlung are described. Data on dynamics of compression of electron beams of ORION-1 electrostatic accelerator, obtained under photochronographic monitoring at electron-optical converter, are presented. It is shown that in radial compression phase the rate of the beam inner boundary attains the value of ∼1.5x108 cm/s

  6. Profiling of back-scattered electrons in opposed magnetic field of a Twin Electron Beam Gun

    International Nuclear Information System (INIS)

    Electron gun is extensively used in material processing, physical vapour deposition and atomic vapour based laser processes. In these processes where the electron beam is incident on the substrate, a significant fraction of electron beam gets back-scattered from the target surface. The trajectory of this back scattered electron beam depends on the magnetic field in the vicinity. The fraction of back-scattered depends on the atomic number of the target metal and can be as high as ∼40% of the incident beam current. These back-scattered electrons can cause undesired hot spots and also affect the overall process. Hence, the study of the trajectory of these back-scattered electrons is important. This paper provides the details of experimentally mapped back-scattered electrons of a 2×20kW Twin Electron Beam Gun (TEBG) in opposed magnetic field i.e. with these guns placed at 180° to each other.

  7. Laser Beam Propagation Through Inhomogeneous Media with Shock-Like Profiles: Modeling and Computing

    Science.gov (United States)

    Adamovsky, Grigory; Ida, Nathan

    1997-01-01

    Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows. Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and spreading. The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media. Numerical techniques are presented to compute the beam through such media. The results of computation are presented, discussed, and compared with experimental data.

  8. Beam emittance investigation in high brightness injector using different driver laser profiles

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Beam emittance plays an important role in any accelerator, and it is a main parameter to judge the performance of an accelerator. Emittance optimization is an indispensable part in conditioning and operation of the facility. For a laser-driven high brightness injector, different time structure of the laser pulse has different effects on transverse emittance. In order to compare Gaussian and flat-top laser pulse, systematic simulations of 500 pC have been done. From the simulation results, one can see that flat-top pulse laser will yield smaller minimal transverse beam size and transverse beam emittance than Gaussian pulse laser.

  9. Influence of pulsed Nd3+ : YAG laser beam profile and wavelength on microscribing of copper and aluminum thin films

    Science.gov (United States)

    Nammi, Srinagalakshmi; Vasa, Nilesh J.; Balaganesan, G.; Gupta, Sanjay; Mathur, Anil C.

    2015-10-01

    Evenly spaced conductive grids of copper and aluminum thin films on polyimide substrate are used for parabolic reflector antennas aboard telecommunications satellites. Laser microscribing of thin films using a flat-top and Gaussian laser beam profile is analyzed with 95% overlapping of the diameter of the laser spot. Laser scribing is performed using the Q-switched Nd3+: YAG (355, 532 nm) laser. The influence of laser irradiation and beam shape on the scribed microchannel width, depth, and surface characteristics is experimentally analyzed using a noncontact optical profilometer and scanning electron microscope (SEM). Laser scribing using a flat-top profile produced near rectangular microchannels in copper thin films. Using the Gaussian profile, the probability of melting is greater than vaporization as observed using SEM images; this melt pool plays a prominent role in resolidification at the edges. The depth of the scribe channel is observed to be 20% higher for the 532-nm wavelength compared to the 355-nm wavelength. The effect of different environments such as air, water, and vacuum on the channel depth and quality is reported. The response of aluminum and copper thin films for high fluences is also studied. Thermal modeling of the laser-material interaction has been attempted by assuming the plasma electron temperature as the laser ablation temperature for modeling the recession rate and depth for a single laser pulse. Model results agree with experimental data showing greater depth for 532 nm compared to 355 nm.

  10. Slit x-ray beam primary dose profiles determined by analytical transport of Compton recoil electrons

    NARCIS (Netherlands)

    van't Veld, AA; van Luijk, P; Praamstra, F; van der Hulst, PC

    2000-01-01

    Accurate measurement of radiation beam penumbras is essential for conformal radiotherapy. For this purpose a detailed knowledge of the dosimeter's spatial response is required. However, experimental determination of detector spatial response is cumbersome and restricted to the specific detector type

  11. Generation of 3D ellipsoidal laser beams by means of a profiled volume chirped Bragg grating

    Science.gov (United States)

    Mironov, S. Yu; Poteomkin, A. K.; Gacheva, E. I.; Andrianov, A. V.; Zelenogorskii, V. V.; Vasiliev, R.; Smirnov, V.; Krasilnikov, M.; Stephan, F.; Khazanov, E. A.

    2016-05-01

    A method for shaping photocathode laser driver pulses into 3D ellipsoidal form has been proposed and implemented. The key idea of the method is to use a chirped Bragg grating recorded within the ellipsoid volume and absent outside it. If a beam with a constant (within the grating reflection band) spectral density and uniform (within the grating aperture) cross-section is incident on such a grating, the reflected beam will be a 3D ellipsoid in space and time. 3D ellipsoidal beams were obtained in experiment for the first time. It is expected that such laser beams will allow the electron bunch emittance to be reduced when applied at R± photo injectors.

  12. Electron beam annealing of zinc implanted GaAs to control profile broadening

    International Nuclear Information System (INIS)

    Highly doped P+ layers have been obtained by using multiply scanned electron beam annealing. The diffusion of the zinc was controllable at temperatures above 900 deg C if anneal times were less than 3 s. (author)

  13. Initial measurements of the beam ion profile in NSTX with the Solid State Neutral Particle Analyzer array

    International Nuclear Information System (INIS)

    The Solid State Neutral Particle Analyzer (SSNPA) array on the National Spherical Torus Experiment (NSTX) utilizes silicon diodes coupled to fast digitizers to measure the energy distribution of charge exchange fast neutral particles (35∼100 keV) at four fixed tangency radii (60, 90, 100, and 120 cm) to obtain the corresponding beam ion profile. Noise reduction techniques required to operate in the tokamak environment and post-shot pulse height analysis (PHA) methods are described. The results have been compared with those on the scanning E//B type Neutral Particle Analyzer (NPA) and good agreement was achieved. The redistribution and loss of beam ions during MHD activity including sawteeth events and internal reconnection events have been observed. (author)

  14. Target manufacturing and evaluation of the optical system for the J-PARC OTR beam profile monitor

    International Nuclear Information System (INIS)

    Next January, an OTR (Optical Transition Radiation)-beam profile monitor will be installed at the 3-50 GeV beam transport in J-PARC. Targets for OTR generation are made with thin metal foils, such as aluminum and titanium. Uniformly foil applying method was studied, and then un-flatness of a tested 10-micron titanium foil was within 30 micron, covering circle area of 90 mm diameter. Optics for OTR light observation employs an Offner type relay-optics consists of two 300 mm-diameter concave mirrors and a 200 mm-diameter convex mirror. On it, focal property and some aberration were investigated for comparing design, and then fine alignment brought large uniformly viewing field of 200H and 90V in mm on each center line. These technics for target manufacturing, and for fine optics measurement and its devices alignment are discussed in this paper mainly. (author)

  15. SU-E-T-232: Micro Diamonds - Determination of Their Lateral Response Function Via Gap-Beam Dose Profiles

    International Nuclear Information System (INIS)

    Purpose: The aim of this study is the measurement of the lateral response function of microDiamonds by comparison with radiochromic film dose measurement. In this study a TM60019 microDiamond (PTW Freiburg, Germany) and a prototype synthetic diamond detector with smaller sensitive volume were investigated. Methods: Two lead blocks were positioned below the gantry head of an Elekta Synergy accelerator using a gantry mount. Between the blocks two sheets of paper were fixed. The water phantom was positioned below the gantry mount, so that the block to water distance was 20 cm. The gap beam profile was measured at 5 cm water depth by radiochromic EBT3 film and diamond detectors. The film was fixed on a RW3 plate, moved by the step motor system of the phantom and digitized by an Epson 10000XL scanner using the red color channel. Results: The lateral response of the prototype diamond detector is comparable to that of film measurements, i.e. has negligible width. This corresponds to the small detector volume of the prototype detector. In contrast to this the FWHM values of the gap-beam dose profiles measured with the TM60019 detector are somewhat larger, which corresponds to the larger sensitive detector volume. Conclusion: This study has illustrated the high spatial resolution of the diamond detectors. In comparison with filmmeasured narrow-beam dose profiles, the TM60019 has a spatial resolution function of about 2 mm FWHM, whereas the FWHM for the prototype is practically negligible. However due to the low signal caused by the small sensitive volume, measurements with the prototype in clinical routine are a challenge. On the other hand the TM60019 is a good compromise between detector volume and signal output and thus a well suited detector for most clinically relevant small field situations

  16. Remote control of turn-by-turn photon beam profile monitor at the SPring-8 diagnostics beamline II

    International Nuclear Information System (INIS)

    The turn-by-turn beam profile monitor (TTPM) using undulator radiation is installed in the diagnostic beamline II (BL05SS) of the SPring-8 storage ring to observe stored beam oscillation, instabilities of a high current single bunch and so on. The TTPM system employs a high-speed CCD camera (ProEM 512BK by Princeton Instruments) with a special function to record turn-by-turn images both of horizontal and vertical spatial profiles in a single picture by vertically shifting electric charge stored in the CCD elements in microseconds. The CCD camera can be controlled by using WinSpec32 software (Prinston Instruments) running on a local Windows PC at BL05SS via a gigabit Ethernet interface. We have built a TTPM remote control system to realize continuous and automatic observation of stored beam stability during the user time operation at the SPring-8 central control room. The TTPM remote control system consists of the following three parts; control software of WinSpec32 by through COM (Component Object Model) on the local Windows PC, remote application software on Linux operator consoles and communication software using ZeroMQ between the WinSpec32 control software and the remote application software. As the remote application software, two kinds of GUIs are prepared. One is for the measurement of the stored beam oscillation at the top-up injection, and the other is for the instability observation of a high current single bunch. These GUIs provide functions of display of the captured image, fitting calculation of the image, display the result and record it into the DB and so on. The remote control system has been utilized for the stability observation by operators in the central control room since December 2012 and worked well. (author)

  17. Untangling the contributions of image charge and laser profile for optimal photoemission of high-brightness electron beams

    Science.gov (United States)

    Portman, J.; Zhang, H.; Makino, K.; Ruan, C. Y.; Berz, M.; Duxbury, P. M.

    2014-11-01

    Using our model for the simulation of photoemission of high brightness electron beams, we investigate the virtual cathode physics and the limits to spatio-temporal and spectroscopic resolution originating from the image charge on the surface and from the profile of the exciting laser pulse. By contrasting the effect of varying surface properties (leading to expanding or pinned image charge), laser profiles (Gaussian, uniform, and elliptical), and aspect ratios (pancake- and cigar-like) under different extraction field strengths and numbers of generated electrons, we quantify the effect of these experimental parameters on macroscopic pulse properties such as emittance, brightness (4D and 6D), coherence length, and energy spread. Based on our results, we outline optimal conditions of pulse generation for ultrafast electron microscope systems that take into account constraints on the number of generated electrons and on the required time resolution.

  18. X—ray reflectivity measurement of δ—doped erbium profile in silicon molecular—beam epitaxial layer

    Institute of Scientific and Technical Information of China (English)

    JunWan; Q.J.Jia; 等

    1999-01-01

    Synchrontron radiation x-ray reflectivity measurement is used to study the concentration profile of a δ-doped Er layer in Si epitaxial film grown by molecular-beam epitaxy.The oscillation of the reflectivity amplitude as a function of reflection angle is observed in the experiment.By doing a theoretical simulation.the concentration profile of Er atoms could be deried.It is shown that the originally grown δ-doped Er layer changes into an expionentially decayed function due to the Er segregation.The temperature dependence of the 1/e decay length indicates that the segregation is a kinetically limited process.The activation energy is determined to be 0.044±0.005eV.

  19. Development of a Heavy Ion Beam Probe for Measuring Electrostatic Potential Profile and Its Fluctuation in LHD

    Science.gov (United States)

    Takeshi, Ido; Akihiro, Shimizu; Masaki, Nishiura; Haruhisa, Nakano; Shinji, Kato; Shinsuke, Ohshima; Yasuo, Yoshimura; Shin, Kubo; Takashi, Shimozuma; Hiroe, Igami; Hiromi, Takahashi; Kazuo, Toi; Fumitake, Watanabe; Kazumichi, Narihara; Ichihiro, Yamada

    2009-08-01

    A heavy ion beam probe (HIBP) using a 3-MV tandem accelerator has been installed on large helical device (LHD). Electrostatic potential in core plasma can be measured under the toroidal magnetic field strength of up to 3 T. By using the HIBP, the transition of potential profiles from electron-root to ion-root is observed in core plasmas during ramp-up of the electron density. Potential fluctuations are also measured electron cyclotron current drive (ECCD). Two kind of characteristic fluctuations are observed. One is a reversed-shear-induced Alfvén eigenmode (RSAE), whose frequency varies during the evolution of the rotational transform profile, and the other is with a constant geodeisc acoustic mode (GAM) frequency.

  20. Simulation of Fine Resist Profile Formation by Electron Beam Drawing and Development with Solubility Rate Based on Energy Deposition Distribution

    Science.gov (United States)

    Zhang, Hui; Komori, Takuya; Zhang, Yulong; Yin, You; Hosaka, Sumio

    2013-12-01

    We proposed a model for calculating the resist profile in electron beam drawing. The model predicts the solubility rate on the basis of the energy deposition distribution (EDD) for the development of latent patterns in the resist. By unifying the exposure dose D (via experiments) and EDDs (via calculations), we roughly determined solubility rates for three-dimensional EDDs, and established the proposed model. The development simulation was achieved by the sequential calculation method for solubility rates based on EDD which was calculated by Monte Carlo simulation. By determining a suitable EDD region to achieve good patterning, we obtained a sharp nanodot pattern of the resist. This simulation results are in good agreement with the experimental results obtained using a combination of 2.3 wt % tetramethylammonium hydroxide (TMAH) and 4 wt % NaCl as the developer. The model was demonstrated to be useful for predicting resist profiles with different experimental solubility rates of developers.

  1. A beam profiler and emittance meter for the SPES project at INFN-LNL

    International Nuclear Information System (INIS)

    SPES is a new facility under construction at LNL (Legnaro National Laboratory - Italy) whose aim is the production of radioactive ion beams that will be injected into the Linac ALPI. New beam diagnostics tools have been developed for the SPES project in the perspective of reusing them to upgrade the system currently in operation at LNL in the superconducting Linac ALPI. The goal is providing the SPES facility with an homogenous set of tools and a common user interface to support beam transport over the future accelerators complex. The emittance meter designed for SPES is based on 2 identical moveable slits (collimators) placed in front of a couple of horizontal and vertical grids. The slits have an aperture of 0.3 mm and the distance from the grids is 300 mm. By moving the collimators up and down (or right to left) it is possible to scan the whole beam area and evaluate the beam divergence by measuring the grid currents for different collimator's positions. A control software has been developed using EPICS as general framework

  2. Optical transition radiation from a thin carbon foil: a beam profile monitor for the SLC

    International Nuclear Information System (INIS)

    This memo considers placement of an ultra thin carbon foil into the SLC beam. Transition radiation light would be emitted from the surface of the foil. The optical spot from the foil could be viewed with a microscope objective lens and registered with an image detector. Multiple scattering for the foil thicknesses necessary will not affect the beam emittance. Calculations show that a thin carbon foil can withstand the electron beam if the electron beam is larger than 10 μm in size. There are many possible radiation mechanisms from a foil - bremsstrahlung, black body temperature radiation, Cerenkov light, scintillation light, and transition radiation. Transition radiation is apparently dominant. It is proposed to use thin carbon foils, 75 to 150 A thick. Calculations indicate that 5 x 1010 beam electrons will radiate a useable number of optical photons. Specifically with 150 A foils the fractional yield of useful optical photons is 10-3 photons per incident electron 5 x 10+7 optical photons imaged upon an image plane. Spread these photons over a 32 x 32 pixel CCD and one has the readout system of a monitor

  3. Laser profile changes due to photon–axion induced beam splitting

    International Nuclear Information System (INIS)

    This paper looks at a potentially unique measurable due to photon–axion coupling in an external magnetic field. Traditionally, detection of such a coupling has focused on observation of an optical rotation of the beam's polarization due to either a birefringence or a path length difference (p.l.d.) between two polarization states. Such experiments, utilizing mirror cavities, have been significantly limited in sensitivity; approaching coupling strengths of ∼ga=10−7 GeV−1. Here the bifurcation of a beam in a cavity is explored along with the possibility of measuring its influence on the photon density. Simulations indicate that coupling to levels ga∼10–12 are, with an appropriate choice of cavity, within measurable limits. This is due to a rapid growth of a signal defined by the energy loss from the center accompanying an increase in the region beyond the beam waist. Finally, the influence of a non-zero axion mass is explored

  4. Neural Networks-Based Real-Time Determination of the Laser Beam Spatial Profile and Vibrational-to-Translational Relaxation Time Within Pulsed Photoacoustics

    Science.gov (United States)

    Lukić, M.; Ćojbašić, Ž.; Rabasović, M. D.; Markushev, D. D.; Todorović, D. M.

    2013-09-01

    This paper concerns with the possibilities of computational intelligence application for simultaneous determination of the laser beam spatial profile and vibrational-to-translational relaxation time of the polyatomic molecules in gases by pulsed photoacoustics. Results regarding the application of neural computing through the use of feed-forward multilayer perception networks are presented. Feed-forward multilayer perception networks are trained in an offline batch training regime to estimate simultaneously, and in real-time, the laser beam spatial profile (profile shape class) and the vibrational-to-translational relaxation time from given (theoretical) photoacoustic signals. The proposed method significantly shortens the time required for the simultaneous determination of the laser beam spatial profile and relaxation time and has the advantage of accurately calculating the aforementioned quantities.

  5. Production of electron cyclotron resonance plasma by using multifrequencies microwaves and active beam profile control on a large bore electron cyclotron resonance ion source with permanent magnets

    International Nuclear Information System (INIS)

    A new concept on magnetic field with all magnets on plasma production and confinement has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure. The magnetic field configuration is constructed by a pair of magnets assembly, i.e., comb-shaped magnet which cylindrically surrounds the plasma chamber. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequencies are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds. It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequencies microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.

  6. Depth profiling using total reflection X-ray fluorescence spectrometry alone and in combination with ion beam sputtering

    Science.gov (United States)

    Schwenke, H.; Knoth, J.; Günther, R.; Wiener, G.; Bormann, R.

    1997-07-01

    The capability of total reflection X-ray fluorescence spectrometry (TXRF) for depth profiling is examined by means of selected examples including organometallic layers, an implantation profile of arsenic in silicon and a layered nickel/cobalt structure. For structures without density differences that are deeper than 20 nm or so, and also for buried layers and for the examination of sharp interfaces, which require the highest resolution, two different combinations of ion beam sputtering with TXRF have been employed. A microsectioning technique was investigated in which samples were etched to a bevel shape and subsequently scanned by TXRF. A depth resolution of 2.5 nm was obtained. Alternatively, the so called "transfer technique" was investigated. This involves surface atoms being sputtered by an ion beam and immediately deposited on a silicon wafer rotated behind a slit which is moved in step with the sputter progress. Subsequently, the wafer is scanned by TXRF. Using this technique, the width of a coherent Ti/Al interface within a layered structure was measured to be 1.4 nm. The depth resolutions of the "microsectioning" and the "transfer" techniques are compared with data from RBS, XPS, SIMS and SNMS.

  7. Edge electron density profiles and fluctuations measured by two-dimensional beam emission spectroscopy in the KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Y. U., E-mail: yunam@nfri.re.kr; Wi, H. M. [National Fusion Research Institute, Daejeon (Korea, Republic of); Zoletnik, S.; Lampert, M. [Wigner RCP Institute for Particle and Nuclear Physics, Budapest (Hungary); Kovácsik, Ákos [Institute of Nuclear Techniques, Budapest Technical University, Budapest (Hungary)

    2014-11-15

    Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels.

  8. Operating results for the beam profile monitor system currently in use at Bevalac Facility

    International Nuclear Information System (INIS)

    Three stations of a soon to be completed multi-station, multi-wire beam monitoring system have been installed in the Bevalac transfer line. The following article will provide a cursory analysis of the electronic circuitry, discuss new design additions and summarize the operating results obtained over the last year

  9. On the possibility of measuring the q-profile in dense plasmas by means of molecular beams

    International Nuclear Information System (INIS)

    A method of measuring the q-profile (slightly off the centre) in a plasma is described in detail. Radially injected molecular neutrals are ionized in the plasma and rotate according to the local magnetic field. After dissociation the neutral atom carries the information on the velocity of the molecular ion at the time of dissociation to a neutral particle analyzer. In this paper it is shown how this information can be used to calculate the local field. The production and penetration of molecular beams are discussed as well as the requirements to be met by the beam and analyzer. Also discussed are the possibility and influence of neutral atom beams and their possible relevance to the same type of measurement. It is shown that the Shafranov shift can be determined by suitable choices of the injection and detection geometries. The method seems to be especially suited to measuring the time variation of local q-values with a time resolution of about 1 ms. Although the penetration of the particles depends on the plasma conditions, the quantity measured by the method discussed only depends on the local field ratio. It is shown that the method could also be applied in large plasma experiments the size of JET, and that an accuracy in measuring q of better than or about 10% may be achieved. (orig.)

  10. Optimizing laser beam profiles using micro-lens arrays for efficient material processing: applications to solar cells

    Science.gov (United States)

    Hauschild, Dirk; Homburg, Oliver; Mitra, Thomas; Ivanenko, Mikhail; Jarczynski, Manfred; Meinschien, Jens; Bayer, Andreas; Lissotschenko, Vitalij

    2009-02-01

    High power laser sources are used in various production tools for microelectronic products and solar cells, including the applications annealing, lithography, edge isolation as well as dicing and patterning. Besides the right choice of the laser source suitable high performance optics for generating the appropriate beam profile and intensity distribution are of high importance for the right processing speed, quality and yield. For industrial applications equally important is an adequate understanding of the physics of the light-matter interaction behind the process. In advance simulations of the tool performance can minimize technical and financial risk as well as lead times for prototyping and introduction into series production. LIMO has developed its own software founded on the Maxwell equations taking into account all important physical aspects of the laser based process: the light source, the beam shaping optical system and the light-matter interaction. Based on this knowledge together with a unique free-form micro-lens array production technology and patented micro-optics beam shaping designs a number of novel solar cell production tool sub-systems have been built. The basic functionalities, design principles and performance results are presented with a special emphasis on resilience, cost reduction and process reliability.

  11. Job profiles and responsibilities of cone-beam CT in dentistry

    International Nuclear Information System (INIS)

    The first applications of Cone Beam CT (CBTC) were within the angiographic and radiotherapy. In recent years the CBTC has found its greatest field of application in the dental and maxillofacial surgery and is expected to be used more and more frequently in clinical practice. Wider use of CBTC and reducing costs of equipment purchase was made possible by the development of specific software for 3D reconstruction and hardware that can handle the amount of data to be processed. The technique TC volumetric 'Cone Beam', thanks to the higher resolution capability of the detectors used and the high intrinsic contrast of the bony structures, you can get good quality images with patient doses lower than those usually administered with conventional parameters, from equipment TC traditional (at equal volume irradiated from 5 to 20 times lower).

  12. Modeling of energy transfer between two crossing smoothed laser beams in a plasma with flow profile

    Science.gov (United States)

    Colaitis, A.; Hüller, S.; Tikhonchuk, V. T.; Pesme, D.; Duchateau, G.; Porzio, A.

    2016-05-01

    We study the crossed beam energy transfer (CBET) between laser fields generated by optical smoothing methods. The energy transfer, as well as the angular distribution of the outgoing light fields are investigated for two incident smoothed laser beams in a plasma with a flow gradient, allowing for resonant transfer close to the sonic point. Simulations with the code HARMONY based on time-dependent paraxial light propagation are compared to simulations using a new approach based on paraxial complex geometrical optics (PCGO). Both approaches show good agreement for the average energy transfer past a short transient period, which is a promising result for the use of the PCGO method as a module within a hydrodynamics code to efficiently compute CBET in mm-scale plasma configurations. Statistical aspects related to role of laser speckles in CBET are considered via an ensemble of different phase plate realizations.

  13. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation

    Science.gov (United States)

    Ishii, Kotaro; Kazama, Yusuke; Morita, Ryouhei; Hirano, Tomonari; Ikeda, Tokihiro; Usuda, Sachiko; Hayashi, Yoriko; Ohbu, Sumie; Motoyama, Ritsuko; Nagamura, Yoshiaki; Abe, Tomoko

    2016-01-01

    A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET–dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice. PMID:27462908

  14. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target

    Czech Academy of Sciences Publication Activity Database

    Bulanov, S.S.; Esarey, E.; Schroeder, C.B.; Leemans, W.P.; Bulanov, S.V.; Margarone, Daniele; Korn, Georg; Haberer, T.

    2015-01-01

    Roč. 18, č. 6 (2015), "061302-1"-"061302-6". ISSN 1098-4402 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant ostatní: ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : ion accelerators * tumor-therapy * proton * beams * plasmas Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.661, year: 2014

  15. Submicron-scale depth profiling of residual stress in amorphous materials by incremental focused ion beam slotting

    International Nuclear Information System (INIS)

    This paper reports a new technique, namely the incremental micro-slotting cutting method, for the investigation of residual stress profiles as a function of depth on a micron scale. The residual-stresses in a peened bulk-metallic glass (BMG) (Zr50Cu40Al10, in atomic per cent) are estimated using finite-element analysis of the surface relaxations, as measured by digital image correlation analysis from field-emission gun scanning electron microscopy images, which occur when a micro-slot is stepwise micro-machined by focused ion beam. The calculation algorithm, which solves this inverse problem of residual-stress estimation, is based on the unit pulses method and is stabilized by a Tikhonov regularization scheme. It is demonstrated on a peened BMG that the new technique allows residual-stress profiles in amorphous materials to be inferred with high spatial definition (∼400 nm). Observations point to the scalability of this method to study residual-stress profiles in volumes as small as 1 × 1 × 0.2 μm3 or less, and is particularly well suited to glasses, but can also be applied to crystalline materials.

  16. Sensibility of different Bragg curve profile in output energies of proton beams in heterogeneous targets

    International Nuclear Information System (INIS)

    Full text. In the recent years, the use of proton beams in radiotherapy has been an outstanding progress. Up to now, the CT is a requirement for treatment planning in this kind of therapy because it provides the electron density distribution required for dose and range calculations. However, the use of CT images for proton treatment planning ignores fundamental differences in physical interaction processes between photons and protons and is, therefore, potentially inaccurate. Proton CT (pCT) can in principle directly measure the density distribution needed in a patient for the dose distribution. One important problem that should be solved is the implementation of image reconstruction algorithms. In this sense, it is necessary to know how the presence of materials with different density and composition interfere in the energy deposition by ionization and coulomb excitation, during its trajectory. The study was conducted in two stages, in both SRIM and MCNPX codes were used to perform all simulations of the interaction of proton beams with pencil beam shape, for energies in the range from 100 to 250 MeV. The first part was used a target of 50 mm with a 6 mm layer of cortical bone (ICRP) and the rest of water. The bone's position was being varied in step of 5 mm. The second part the layer of bone was divided into two equal parts, placed at the ends of the target and were being approached in the same step of the first part. The obtained data were energy, position (X,Y,Z) for each axis that was used to obtain the averages, histograms and Gaussian such data for each position of heterogeneity. From these data, we have aimed at making a comparative analysis to study how the position of the heterogeneity influences on the energy and the feasibility of computer code for simulations more realistic.

  17. Effects of thermal conduction and convection on temperature profile in a water calorimeter for proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Gargioni, E.; Manfredotti, C. [Torino Univ. (Italy). Dipt. di Fisica; Laitano, R.F.; Guerra, A.S. [Ist. Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA, Roma (Italy)

    1997-09-01

    In water calorimetry, in addition to the temperature increase due to beam energy deposition in water, unwanted thermal effects occur during and after calorimeter irradiation. This should be accounted for by applying proper corrections to the experimental results. In order to determine such corrections heat flow calculations were performed using the `finite element` method. This method applies even to complex 3D geometries with not necessarily symmetric conditions. Some preliminary results of these calculations are presented together with a description of the analytical method for the evaluation of the correction factors that should be applied to the experimental results to account for the above thermal effects. (orig.)

  18. THE ATACAMA COSMOLOGY TELESCOPE (ACT): BEAM PROFILES AND FIRST SZ CLUSTER MAPS

    International Nuclear Information System (INIS)

    The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz. In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions. This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect and show five clusters previously detected with X-ray or SZ observations. We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.

  19. The Atacama Cosmology Telescope (ACT): Beam Profiles and First SZ Cluster Maps

    Science.gov (United States)

    Hincks, A. D.; Acquaviva, V.; Ade, P. A.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; Bond, J. R.; Brown, B.; Burger, B.; Chervenak, J.; Das, S.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dunkley, J.; Duenner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hajian, A.; Halpern, M.; Hasselfield, M.; Wollack, Ed

    2010-01-01

    The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz, In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions, This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Ze1'dovich (SZ) effect, and show five clusters previously detected with X-ray or SZ observations, We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.

  20. Computer based software applications developed to support LEHIPA commissioning activities and beam profile measurements at LEHIPA and FOTIA

    International Nuclear Information System (INIS)

    During integration of LEHlPA some systems required quick development of computer based software for monitoring, logging and precise controlling of their components. VB.NET tool was used for number of such applications. Some of these are: Precise control of adjustable tuners for LEHIPA RFQ tuning, Automated control and data acquisition of Linear Scanner of LEHIPA LEBT for beam profile measurement, Automated control and data acquisition of Slit and Linear Scanner based emittance measurement at LEHIPA LEBT, Automated control and data acquisition of Slit and Linear Scanner based emittance measurement at FOTIA, Real time plotting and monitoring of Vacuum gauges and thermal sensors. This paper discusses the development, integration and testing experiences of these applications. (author)

  1. Coupling quantum dots to optical fiber: Low pump threshold laser in the red with a near top hat beam profile

    International Nuclear Information System (INIS)

    Direct coupling of the optical field in a ∼244 nm thick, CdSe/ZnS quantum dot film to an optical fiber has yielded lasing in the red (λ ∼ 644 nm) with a threshold pump energy density < 2.6 mJ cm−2. Comprising 28–31 layers of ∼8 nm diameter quantum dots deposited onto the exterior surface of a 125 μm diameter coreless silica fiber, this free-running oscillator produces 134 nJ in 3.6 ns FWHM pulses which correspond to 37 W of peak power from an estimated gain volume of ∼4.5 × 10−7 cm3. Lasing was confirmed by narrowing of the output optical radiation in both the spectral and temporal domains, and the laser beam intensity profile approximates a top hat

  2. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering

    International Nuclear Information System (INIS)

    A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO4 oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality over a pulsing sequence

  3. CONTROL OF LASER RADIATION PARAMETERS: Experimental investigation of the spatial structure of the beam profile of a laser with a Sagnac interferometer

    Science.gov (United States)

    Grabovskii, V. V.; Prokhorenko, V. I.; Yatskiv, D. Ya

    1996-04-01

    An experimental investigation was made of the spatial structure of the output beam profile of an Nd3+:YAG laser with a cavity based on a Sagnac interferometer. In a wide range of pulse repetition frequencies, the output beam profile could be described by a Gaussian curve with a confidence probability of at least 99%. This corresponded to the emission of the TEM00 mode from a stable cavity. The diameter of the radiation spot was inversely proportional to the shift of a thermo-optical lens from the centre of the Sagnac interferometer.

  4. Experimental Profiling of a Non-truncated Focused Gaussian Beam and Fine-tuning of the Quadratic Phase in the Fresnel Gaussian Shape Invariant

    Energy Technology Data Exchange (ETDEWEB)

    S., Juan Manuel Franco [Center of Investigation (CIO) (Mexico); Cywiak, Moises [Center of Investigation (CIO) (Mexico); Cywiak, David [National Metrology Center (Mexico); Mourad, Idir [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-06-24

    A homodyne profiler is used for recording the intensity distribution of focused non-truncated Gaussian beams. The spatial distributions are obtained at planes in the vicinity of the back-focal plane of a focusing lens placed at different distances from a He–Ne laser beam with a Gaussian intensity profile. Comparisons of the experimental data with those obtained from the analytical equations for an ideal focusing lens allow us to propose formulae to fine-tune the quadratic term in the Fresnel Gaussian shape invariant at each interface of the propagated field. Furthermore, we give analytical expressions to calculate adequately the propagation of the field through an optical system.

  5. Experimental profiling of a non-truncated focused Gaussian beam and fine-tuning of the quadratic phase in the Fresnel Gaussian shape invariant

    Science.gov (United States)

    Franco S, Juan Manuel; Cywiak, Moisés; Cywiak, David; Mourad, Idir

    2015-11-01

    An especially dedicated homodyne profiler is used for recording the intensity distribution of focused non-truncated Gaussian beams. The spatial distributions are obtained at planes in the vicinity of the back-focal plane of a focusing lens placed at different distances from a He-Ne laser beam with a Gaussian intensity profile. Comparisons of the experimental data with those obtained from the analytical equations for an ideal focusing lens allow us to propose formulae to fine-tune the quadratic term in the Fresnel Gaussian shape invariant at each interface of the propagated field. We give analytical expressions to calculate adequately the propagation of the field through an optical system.

  6. Stern Gerlach interferometry with metastable argon atoms: an immaterial mask modulating the profile of a supersonic beam

    CERN Document Server

    Viaris De Lesegno, B; Perales, F; Mainos, C; Reinhardt, J; Baudon, J; Grancharova, D; Durt, T; Robert, J; Boustimi, M; Bocvarski, V; Dos Santos, F P; Durt, T; Haberland, H

    2003-01-01

    A new Stern Gerlach interferometer operating with a nozzle beam of metastable argon atoms Ar* (3p sup 5 4s, sup 3 P sub 2) is described. The selection of incoming (polarisation) and outgoing (analysis) Zeeman sublevels is achieved by use of laser induced transitions at two wavelengths, 811.5 nm (closed J 2 -> J = 3 transition) and 801.5 nm (open J = 2 -> J = 2 transition). Linear superpositions of Zeeman sublevels, just beyond the polarizer and just before the analyser, are prepared by means of two zones where Majorana transitions take place. In between, a controlled magnetic field configuration (the phase object) is produced within a triple mu-metal shielding. Standard interference patterns are obtained by scanning the field and detecting the atoms by secondary electron emission from a Faraday cup. When a static radial magnetic gradient is used, the beam profile is modulated by interference. The transverse pattern. which can be translated at will by adding a homogeneous field, is observed for the first time ...

  7. Stern Gerlach interferometry with metastable argon atoms: an immaterial mask modulating the profile of a supersonic beam

    Energy Technology Data Exchange (ETDEWEB)

    Viaris de Lesegno, B. [Toulouse-3 Univ., LCAR-IRSAMC, 31 (France); Karam, J.C.; Perales, F.; Mainos, C.; Reinhardt, J.; Baudon, J.; Grancharova, D.; Durt, T.; Robert, J. [Paris-13 Univ., Lab. de Physique des Lasers, 93 - Villetaneuse (France); Boustimi, M. [ENSSAT, Lab. d' Optronique, 22 - Lannion (France); Bocvarski, V. [Institute of Physics, Zumun (Yugoslavia); Dos Santos, F.P. [Laboratoire Kastler-Brossel, 75 - Paris (France); Durt, T. [Brussel Vrije Universiteit, Tena-Tona, Brussel (Belgium); Haberland, H. [Freiburg Univ. (Germany)

    2003-04-01

    A new Stern Gerlach interferometer operating with a nozzle beam of metastable argon atoms Ar* (3p{sup 5} 4s, {sup 3}P{sub 2}) is described. The selection of incoming (polarisation) and outgoing (analysis) Zeeman sublevels is achieved by use of laser induced transitions at two wavelengths, 811.5 nm (closed J 2 {yields} J = 3 transition) and 801.5 nm (open J = 2 {yields} J = 2 transition). Linear superpositions of Zeeman sublevels, just beyond the polarizer and just before the analyser, are prepared by means of two zones where Majorana transitions take place. In between, a controlled magnetic field configuration (the phase object) is produced within a triple {mu}-metal shielding. Standard interference patterns are obtained by scanning the field and detecting the atoms by secondary electron emission from a Faraday cup. When a static radial magnetic gradient is used, the beam profile is modulated by interference. The transverse pattern. which can be translated at will by adding a homogeneous field, is observed for the first time using a multi-channel electron multiplier followed by a phosphor screen and a CCD camera. The results satisfactorily agree with all theoretical predictions. (authors)

  8. Stern Gerlach interferometry with metastable argon atoms: an immaterial mask modulating the profile of a supersonic beam

    International Nuclear Information System (INIS)

    A new Stern Gerlach interferometer operating with a nozzle beam of metastable argon atoms Ar* (3p5 4s, 3P2) is described. The selection of incoming (polarisation) and outgoing (analysis) Zeeman sublevels is achieved by use of laser induced transitions at two wavelengths, 811.5 nm (closed J 2 → J = 3 transition) and 801.5 nm (open J = 2 → J = 2 transition). Linear superpositions of Zeeman sublevels, just beyond the polarizer and just before the analyser, are prepared by means of two zones where Majorana transitions take place. In between, a controlled magnetic field configuration (the phase object) is produced within a triple μ-metal shielding. Standard interference patterns are obtained by scanning the field and detecting the atoms by secondary electron emission from a Faraday cup. When a static radial magnetic gradient is used, the beam profile is modulated by interference. The transverse pattern. which can be translated at will by adding a homogeneous field, is observed for the first time using a multi-channel electron multiplier followed by a phosphor screen and a CCD camera. The results satisfactorily agree with all theoretical predictions. (authors)

  9. Depth profiling of taxol-loaded poly(styrene-b-isobutylene-b-styrene) using Ga+ and C60+ ion beams

    International Nuclear Information System (INIS)

    The surface of a triblock copolymer, containing a solid-phase drug, was investigated using 15 keV Ga+ and 20 keV C60+ ion beams. Overall, the results illustrate the successful use of a cluster ion beam for greatly enhancing the molecular ion and high-mass fragment ion intensities from the surface and bulk of the polymer system. The use of C60+ also established the ability to see through common overlayers like poly(dimethyl siloxane) which was not possible using atomic ion sources. Moreover, the use of C60+ allowed depth profiles to be obtained using primary ion dose densities in excess of 6 x 1014 C60+/cm2. Resulting sputter craters possess relatively flat bottoms without the need for sample rotation and reached depths of ca. 2 μm. AFM results illustrate the more gentile removal of surface species using cluster ions. Specifically, phase contrast and topographic images suggest the relatively high ion doses do not significantly alter the phase distribution or surface topography of the polymer. However, a slight increase in rms roughness was noticed

  10. Stern Gerlach interferometry with metastable argon atoms: an immaterial mask modulating the profile of a supersonic beam

    Science.gov (United States)

    Viaris de Lesegno, B.; Karam, J. C.; Boustimi, M.; Perales, F.; Mainos, C.; Reinhardt, J.; Baudon, J.; Bocvarski, V.; Grancharova, D.; Pereira Dos Santos, F.; Durt, T.; Haberland, H.; Robert, J.

    2003-04-01

    A new Stern Gerlach interferometer operating with a nozzle beam of metastable argon atoms Ar* (3p5 4s, 3P2) is described. The selection of incoming (polarisation) and outgoing (analysis) Zeeman sublevels is achieved by use of laser induced transitions at two wavelengths, 811.5 nm (closed J = 2 --> J = 3 transition) and 801.5 nm (open J = 2 --> J = 2 transition). Linear superpositions of Zeeman sublevels, just beyond the polariser and just before the analyser, are prepared by means of two zones where Majorana transitions take place. In between, a controlled magnetic field configuration (the phase object) is produced within a triple μ-metal shielding. Standard interference patterns are obtained by scanning the field and detecting the atoms by secondary electron emission from a Faraday cup. When a static radial magnetic gradient is used, the beam profile is modulated by interference. The transverse pattern, which can be translated at will by adding a homogeneous field, is observed for the first time using a multi-channel electron multiplier followed by a phosphor screen and a CCD camera. The results satisfactorily agree with all theoretical predictions.

  11. Performance test and evaluation of multilevel Fresnel zone plate with three-step profile fabricated with electron-beam lithography

    International Nuclear Information System (INIS)

    A multilevel Fresnel zone plate (FZP) designed as an approximation of a kinoform profile has been developed. The FZP is made by electron-beam lithography and reactive ion etching. The zone structure consists of three levels made from tantalum with a total thickness of 4 μm. The half pitch of the outermost zone structure is 0.6 μm. The theoretical efficiency of the 1st-order diffraction is 0.49 at an X-ray energy of 9.85 keV. A performance test is carried out at the beamline 20XU of SPring-8. The focused beam width is measured to be 0.6 μm. The measured efficiency of the 1st-order diffraction is 0.39 at 9.85 keV. Although the measured efficiency is less than the theoretical value, it is superior to the efficiency of an optimized tantalum binary FZP. The diffraction efficiencies of the 0th, -1st, and ±2nd orders are also measured. Using the measured data, the structure of the fabricated zone is evaluated. (author)

  12. Pengukuran Daya Laser CO2 Dan Laser DPSS Serta Pengamatan Beam Profiler Sinar Laser DPSS dan Laser He-Ne Menggunakan CCD

    OpenAIRE

    Manurung, Helen Martina

    2015-01-01

    This research has done measuring the power by varying the current of laser CO2 and laser DPSS, observation the beam profiler of laser beam DPSS and laser beam He-Ne and observation the spectrum wavelength of laser DPSS and laser He-Ne. In this case of measuring the power by varying the current of laser CO2 and laser DPSS, the measuring has done more than once in order to concluded how the stability of the power that produced by each of the laser. The result of this measuring is laser DPSS ...

  13. Damage profile of ion-implanted polycarbonate studied using a variable-energy positron beam

    International Nuclear Information System (INIS)

    Damage in polycarbonate (PC) irradiated with B+, C+, Si+, Cu+, and Au+ ions at energies between 0.19 and 2.4 MeV was studied using a variable-energy positron beam by measuring the Doppler broadening of positron annihilation γ-rays as a function of incident positron energy. Positron data were plotted, instead of incident positron energy E, as a function of average positron implantation depth normalized to average ion implantation depth. Such plots enable damage distributions produced by ions with different implantation ranges to be compared directly. We found that normalized damage distributions in ion-irradiated PC vary systematically with dimensionless reduced energy proposed by Lindhard et al. (K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 36 (1968) 10)

  14. Current density profile and electron beam localization measurements using carbon pellets on T-10

    International Nuclear Information System (INIS)

    The letter presents experimental evidence and an analysis of two phenomena arising during carbon pellet ablation - a toroidal trajectory deflection and enhanced localized ablation in the electron cyclotron resonance (ECR) current drive regime. A model developed for describing the toroidal deflection of a carbon pellet in a tokamak shows that the trajectory curvature is sensitive to the current density. Photography of the pellet trajectory is used as a diagnostic for the determination of the local current density in an ohmically heated plasma. Directly measured current profiles using pellets are in reasonable agreement with that obtained using the Spitzer conductivity, and current density fluctuations have been observed that are probably associated with magnetic islands. It is shown that in the ECR current drive regime on T-10, energetic electrons probably stimulated by the microwave power are located in a narrow zone (2 cm thickness in the radial direction) with sharp boundaries. (author). Letter-to-the-editor. 7 refs, 5 figs

  15. LETTER: Current density profile and electron beam localization measurements using carbon pellets on T-10

    Science.gov (United States)

    Egorov, S. M.; Kuteev, B. V.; Miroshnikov, I. V.; Mikhailenko, A. A.; Sergeev, V. Yu.; Ushakov, S. N.; Bagdasarov, A. A.; Chistyakov, V. V.; Elizavetin, D. Yu.; Vasin, N. L.

    1992-11-01

    The authors present experimental evidence and an analysis of two phenomena arising during carbon pellet ablation-a toroidal trajectory deflection and enhanced localized ablation in the electron cyclotron resonance (ECR) current drive regime. A model developed for describing the toroidal deflection of a carbon pellet in a tokamak shows that the trajectory curvature is sensitive to the current density. Photography of the pellet trajectory is used as a diagnostic for the determination of the local current density in an ohmically heated plasma. Directly measured current profiles using pellets are in reasonable agreement with that obtained using the Spitzer conductivity, and current density fluctuations have been observed that are probably associated with magnetic islands. It is shown that in the ECR current drive regime on T-10, energetic electrons probably stimulated by the microwave power are located in a narrow zone (2 cm thickness in the radial direction) with sharp boundaries

  16. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    International Nuclear Information System (INIS)

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam

  17. A preliminary study on using the radiochromic film for 2D beam profile QC/QA at the THOR BNCT facility

    International Nuclear Information System (INIS)

    The GAFCHROMIC EBT2 dosimetry film has been studied as a rapid QC/QA tool for 2D dose profile mapping in the BNCT beam at THOR. The pixel values of the EBT2 film image were converted to the 2D dose profile using a dose calibration curve obtained by 6-MV X-ray. The reproducibility of the 2D dose profile measured using the EBT2 film in the PMMA phantom was preliminarily found to be acceptable with uncertainties within about ±2 to ±3.5%. It is found that the EBT2 measured dose profile consisted of both gamma-ray components and neutron contributions. Therefore, the dose profile measured using the EBT2 film is significantly different from the neutron flux profile measured using the indirect neutron radiography method. Further study of the influence of neutrons to the response of the EBT2 film is indispensible for the absolute dose profile determination in a BNCT beam.

  18. Development of a Propagating Millimeter-Wave Beam Position and Profile Monitor in the Oversize Corrugated Waveguide Used in an ECRH System

    Science.gov (United States)

    Shimozuma, Takashi; Kobayashi, Sakuji; Ito, Satoshi; Ito, Yasuhiko; Kubo, Shin; Yoshimura, Yasuo; Nishiura, Masaki; Igami, Hiroe; Takahashi, Hiromi; Mizuno, Yoshinori; Okada, Kohta; Mutoh, Takashi

    2016-01-01

    In a high-power electron cyclotron resonance heating (ECRH) system for plasma heating, a long-distance and low-loss transmission system of the millimeter wave is required. A real-time monitor of the millimeter-wave beam position and its intensity profile, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam-position and profile monitor (BPM) consists of a reflector, Peltier-device array, and a heat-sink, which is installed in the reflector-plate of a miterbend. The BPM was tested using both simulated electric heater power and high-power gyrotron output power. The profile obtained from the monitor using the gyrotron output was well agreed with the burn patter on a thermal sensitive paper. Methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated waveguide are proposed.

  19. Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of Monte Carlo simulations for a Varian 2100EX accelerator

    International Nuclear Information System (INIS)

    The purpose of this study is to provide detailed characteristics of incident photon beams for different field sizes and beam energies. This information is critical to the future development of accurate treatment planning systems. It also enhances our knowledge of radiotherapy photon beams. The EGS4 Monte Carlo code, BEAM, has been used to simulate 6 and 18 MV photon beams from a Varian Clinac-2100EX accelerator. A simulated realistic beam is stored in a phase space data file, which contains details of each particle's complete history including where it has been and where it has interacted. The phase space files are analysed to obtain energy spectra, angular distribution, fluence profile and mean energy profiles at the phantom surface for particles separated according to their charge and history. The accuracy of a simulated beam is validated by the excellent agreement between the Monte Carlo calculated and measured dose distributions. Measured depth-dose curves are obtained from depth-ionization curves by accounting for newly introduced chamber fluence corrections and the stopping-power ratios for realistic beams. The study presents calculated depth-dose components from different particles as well as calculated surface dose and contribution from different particles to surface dose across the field. It is shown that the increase of surface dose with the increase of the field size is mainly due to the increase of incident contaminant charged particles. At 6 MV, the incident charged particles contribute 7% to 21% of maximum dose at the surface when the field size increases from 10x10 to 40x40 cm2. At 18 MV, their contributions are up to 11% and 29% of maximum dose at the surface for 10x10 cm2 and 40x40 cm2 fields respectively. However, the fluence of these incident charged particles is less than 1% of incident photon fluence in all cases. (author)

  20. The role of the neutral beam fueling profile in the performance of the Tokamak Fusion Test Reactor and other tokamak plasmas

    International Nuclear Information System (INIS)

    Scalings for the stored energy and neutron yield, determined from experimental data are applied to both deuterium-only and deuterium-tritium plasmas in different neutral beam heated operational domains in Tokamak Fusion Test Reactor. The domain of the data considered includes the Supershot, High poloidal beta, Low-mode, and limiter High-mode operational regimes, as well as discharges with a reversed magnetic shear configuration. The new important parameter in the present scaling is the peakedness of the heating beam fueling profile shape. Ion energy confinement and neutron production are relatively insensitive to other plasma parameters compared to the beam fueling peakedness parameter and the heating beam power when considering plasmas that are stable to magnetohydrodynamic modes. However, the stored energy of the electrons is independent of the beam fueling peakedness. The implication of the scalings based on this parameter is related to theoretical transport models such as radial electric field shear and Ion Temperature Gradient marginality models. Similar physics interpretation is provided for beam heated discharges on other major tokamaks

  1. In situ spatial-profile monitoring of beam flux of neutral free radicals produced by photo-deionization of negative ion beams

    International Nuclear Information System (INIS)

    Ion-current difference measurement by light intensity modulation (ICD) is introduced as a convenient method to characterize a purified beam of momentum-controlled neutral free radicals produced by photo-deionization of a negative ion beam for the purpose of surface-reaction-selective device processing. The ICD setup developed in this study to estimate the number flux of the photo-deionized neutral particles exhibited the high precision, sensitivity, and spatial resolution.

  2. Master slave topology based, remotely operated, precision X-ray beam profiler and placement system for high pressure physics experiment at Indus-2 beam line

    International Nuclear Information System (INIS)

    RRCAT has commissioned a beam-line on Indus-2 synchrotron facility for carrying out Angle Dispersive X-ray Diffraction measurement. A typical high pressure measurement is carried out by placing the sample in the Diamond Anvil Cell (DAC) with the sample located in a region of beam diameter within 50-100μm. The X-Ray beam has to pass through the DAC to ensure maximum illumination of the sample with the X-Rays. An X-Y beam scanner/locater cum placement system is developed, which scans an area of 10 x 10 mm2 with resolution of 10 to 100 μm in rough scan mode and fine scans selected area with programmable resolution of 2.5 to 25 μm. The scanner acts as slave to the PC in which master GUI grabs the data on serial port and plots the image of X-ray beam. It also analyses and detects the coordinate with maximum intensity. Thus the DAC can be placed at the desired location with an accuracy of 2.5μm anywhere within 10x10 mm2, for performing experiment. Developed system takes only ∼5 minutes to search the beam and a few seconds to place DAC at any the desired location within the scanned area. (author)

  3. Stripe pattern in the intensity profile of collimated soft x-ray beams caused by surface corrugation of the refocusing mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, D., E-mail: schmitz@helmholtz-berlin.de; Siewert, F.; Zeschke, T.

    2015-02-21

    The effect of progress in surface finishing of optical components on the collimated-beam properties of soft x-ray beamlines at synchrotron radiation facilities is demonstrated: a stripe pattern, experimentally observed in the 2D intensity profile of beamlines with optical components manufactured 10–15 years ago, would be strongly attenuated if the existing refocusing mirror was replaced by an ultra-precise mirror manufactured with state-of-the-art of today surface finishing techniques. The observed stripe pattern is not caused by diffraction because its period length did not change with photon energy. Instead it can be explained with geometrical optics and is due to the height profile of the refocusing mirror which has been independently measured with a long trace profiler and used as an input in our raytracing simulations.

  4. Stripe pattern in the intensity profile of collimated soft x-ray beams caused by surface corrugation of the refocusing mirrors

    International Nuclear Information System (INIS)

    The effect of progress in surface finishing of optical components on the collimated-beam properties of soft x-ray beamlines at synchrotron radiation facilities is demonstrated: a stripe pattern, experimentally observed in the 2D intensity profile of beamlines with optical components manufactured 10–15 years ago, would be strongly attenuated if the existing refocusing mirror was replaced by an ultra-precise mirror manufactured with state-of-the-art of today surface finishing techniques. The observed stripe pattern is not caused by diffraction because its period length did not change with photon energy. Instead it can be explained with geometrical optics and is due to the height profile of the refocusing mirror which has been independently measured with a long trace profiler and used as an input in our raytracing simulations

  5. Stripe pattern in the intensity profile of collimated soft x-ray beams caused by surface corrugation of the refocusing mirrors

    Science.gov (United States)

    Schmitz, D.; Siewert, F.; Zeschke, T.

    2015-02-01

    The effect of progress in surface finishing of optical components on the collimated-beam properties of soft x-ray beamlines at synchrotron radiation facilities is demonstrated: a stripe pattern, experimentally observed in the 2D intensity profile of beamlines with optical components manufactured 10-15 years ago, would be strongly attenuated if the existing refocusing mirror was replaced by an ultra-precise mirror manufactured with state-of-the-art of today surface finishing techniques. The observed stripe pattern is not caused by diffraction because its period length did not change with photon energy. Instead it can be explained with geometrical optics and is due to the height profile of the refocusing mirror which has been independently measured with a long trace profiler and used as an input in our raytracing simulations.

  6. Radiation environment simulations at the Tevatron, studies of the beam profile and measurement of the Bc meson mass

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, Ludovic Y.

    2005-09-01

    The description of a computer simulation of the CDF detector at Fermilab and the adjacent accelerator parts is detailed, with MARS calculations of the radiation background in various elements of the model due to the collision of beams and machine-related losses. Three components of beam halo formation are simulated for the determination of the principal source of radiation background in CDF due to beam losses. The effect of a collimator as a protection for the detector is studied. The simulation results are compared with data taken by a CDF group. Studies of a 150 GeV Tevatron proton beam are performed to investigate the transverse diffusion growth and distribution. A technique of collimator scan is used to scrape the beam under various experimental conditions, and computer programs are written for the beam reconstruction. An average beam halo growth speed is given and the potential of beam tail reconstruction using the collimator scan is evaluated. A particle physics analysis is conducted in order to detect the B{sub c} {yields} J/{psi}{pi} decay signal with the CDF Run II detector in 360 pb{sup -1} of data. The cut variables and an optimization method to determine their values are presented along with a criterion for the detection threshold of the signal. The mass of the B{sub c} meson is measured with an evaluation of the significance of the signal.

  7. Experimental determination of the lateral dose response functions of detectors to be applied in the measurement of narrow photon-beam dose profiles

    Science.gov (United States)

    Poppinga, D.; Meyners, J.; Delfs, B.; Muru, A.; Harder, D.; Poppe, B.; Looe, HK

    2015-12-01

    This study aims at the experimental determination of the detector-specific 1D lateral dose response function K(x) and of its associated rotational symmetric counterpart K(r) for a set of high-resolution detectors presently used in narrow-beam photon dosimetry. A combination of slit-beam, radiochromic film, and deconvolution techniques served to accomplish this task for four detectors with diameters of their sensitive volumes ranging from 1 to 2.2 mm. The particular aim of the experiment was to examine the existence of significant negative portions of some of these response functions predicted by a recent Monte-Carlo-simulation (Looe et al 2015 Phys. Med. Biol. 60 6585-607). In a 6 MV photon slit beam formed by the Siemens Artiste collimation system and a 0.5 mm wide slit between 10 cm thick lead blocks serving as the tertiary collimator, the true cross-beam dose profile D(x) at 3 cm depth in a large water phantom was measured with radiochromic film EBT3, and the detector-affected cross-beam signal profiles M(x) were recorded with a silicon diode, a synthetic diamond detector, a miniaturized scintillation detector, and a small ionization chamber. For each detector, the deconvolution of the convolution integral M(x)  =  K(x)  ∗  D(x) served to obtain its specific 1D lateral dose response function K(x), and K(r) was calculated from it. Fourier transformations and back transformations were performed using function approximations by weighted sums of Gaussian functions and their analytical transformation. The 1D lateral dose response functions K(x) of the four types of detectors and their associated rotational symmetric counterparts K(r) were obtained. Significant negative curve portions of K(x) and K(r) were observed in the case of the silicon diode and the diamond detector, confirming the Monte-Carlo-based prediction (Looe et al 2015 Phys. Med. Biol. 60 6585-607). They are typical for the perturbation of the secondary electron field by a detector with

  8. Experimental determination of the lateral dose response functions of detectors to be applied in the measurement of narrow photon-beam dose profiles

    International Nuclear Information System (INIS)

    This study aims at the experimental determination of the detector-specific 1D lateral dose response function K(x) and of its associated rotational symmetric counterpart K(r) for a set of high-resolution detectors presently used in narrow-beam photon dosimetry. A combination of slit-beam, radiochromic film, and deconvolution techniques served to accomplish this task for four detectors with diameters of their sensitive volumes ranging from 1 to 2.2 mm. The particular aim of the experiment was to examine the existence of significant negative portions of some of these response functions predicted by a recent Monte-Carlo-simulation (Looe et al 2015 Phys. Med. Biol. 60 6585–607).In a 6 MV photon slit beam formed by the Siemens Artiste collimation system and a 0.5 mm wide slit between 10 cm thick lead blocks serving as the tertiary collimator, the true cross-beam dose profile D(x) at 3 cm depth in a large water phantom was measured with radiochromic film EBT3, and the detector-affected cross-beam signal profiles M(x) were recorded with a silicon diode, a synthetic diamond detector, a miniaturized scintillation detector, and a small ionization chamber. For each detector, the deconvolution of the convolution integral M(x)  =  K(x)  ∗  D(x) served to obtain its specific 1D lateral dose response function K(x), and K(r) was calculated from it. Fourier transformations and back transformations were performed using function approximations by weighted sums of Gaussian functions and their analytical transformation.The 1D lateral dose response functions K(x) of the four types of detectors and their associated rotational symmetric counterparts K(r) were obtained. Significant negative curve portions of K(x) and K(r) were observed in the case of the silicon diode and the diamond detector, confirming the Monte-Carlo-based prediction (Looe et al 2015 Phys. Med. Biol. 60 6585–607). They are typical for the perturbation of the secondary electron field by a detector

  9. Improvement of the gas cluster ion beam-(GCIB)-based molecular secondary ion mass spectroscopy (SIMS) depth profile with O2(+) cosputtering.

    Science.gov (United States)

    Chu, Yi-Hsuan; Liao, Hua-Yang; Lin, Kang-Yi; Chang, Hsun-Yun; Kao, Wei-Lun; Kuo, Ding-Yuan; You, Yun-Wen; Chu, Kuo-Jui; Wu, Chen-Yi; Shyue, Jing-Jong

    2016-04-21

    Over the last decade, cluster ion beams have displayed their capability to analyze organic materials and biological specimens. Compared with atomic ion beams, cluster ion beams non-linearly enhance the sputter yield, suppress damage accumulation and generate high mass fragments during sputtering. These properties allow successful Secondary Ion Mass Spectroscopy (SIMS) analysis of soft materials beyond the static limit. Because the intensity of high mass molecular ions is intrinsically low, enhancing the intensity of these secondary ions while preserving the sample in its original state is the key to highly sensitive molecular depth profiles. In this work, bulk poly(ethylene terephthalate) (PET) was used as a model material and analyzed using Time-of-Flight SIMS (ToF-SIMS) with a pulsed Bi3(2+) primary ion. The optimized hardware of a 10 kV Ar2500(+) Gas Cluster Ion Beam (GCIB) with a low kinetic energy (200-500 V) oxygen ion (O2(+)) as a cosputter beam was employed for generating depth profiles and for examining the effect of beam parameters. The results were then quantitatively analyzed using an established erosion model. It was found that the ion intensity of the PET monomer ([M + H](+)) and its large molecular fragment ([M - C2H4O + H](+)) steadily declined during single GCIB sputtering, with distortion of the distribution information. However, under an optimized GCIB-O2(+) cosputter, the secondary ion intensity quickly reached a steady state and retained >95% intensity with respect to the pristine surface, although the damage cross-section was larger than that of single GCIB sputtering. This improvement was due to the oxidation of molecules and the formation of -OH groups that serve as proton donors to particles emitted from the surface. As a result, the ionization yield was enhanced and damage to the chemical structure was masked. Although O2(+) is known to alter the chemical structure and cause damage accumulation, the concurrently used GCIB could

  10. Critical assessment of the determination of residual stress profiles in thin films by means of the ion beam layer removal method

    International Nuclear Information System (INIS)

    Residual stresses and their distribution within individual layers are a general concern in thin film technology. Here we use a recently developed ion beam layer removal method to determine the stress profile in a thin film system. The system consists of a thin tungsten and titanium nitride film deposited on a silicon substrate. The stresses are calculated from the deflection of a focused ion beam machined cantilever by means of Euler–Bernoulli beam theory and finite element simulations coupled with optimizing algorithms, and the results of the two methods are critically compared. Case studies taking into account manufacturing related variations in the cantilever geometry, different boundary conditions and relaxation during cantilever fabrication are performed. We find that the stress distribution in the thin film system is strongly influenced by the boundary conditions and the cantilever fabrication, while manufacturing related variations in the cantilever geometry only slightly influence the stress distribution. - Highlights: • Determination of residual stress profiles in thin film systems in sub-micro scale • Manufacturing related variations of the sample geometry are negligible. • The cantilever fixation has a significant influence on the determined stresses. • The relaxation during sample fabrication highly influences the determined stresses

  11. Comparative measurement of electron density and temperature profiles in low-temperature ECR discharges by a lithium atom beam and Thomson scattering

    International Nuclear Information System (INIS)

    In this paper a method to determine spatially-resolved profiles of the electron temperature T e and density n e in an electron-cyclotron-resonance (ECR) discharge is presented. This technique is based on the observation of line emission from a neutral Li atom beam, which is injected into the plasma and excited by electron collisions. A collisional-radiative model valid for the injected Li atoms is used to predict the emission intensities as function of n e and T e for several lines theoretically. In contrast to the electron temperature regime representative for the edge of tokamak discharges (T e >5 eV), the ECR discharge offers a T e range where selected line intensity ratios strongly depend on the electron temperature. Therefore, a comparison of the measured ratios with the calculated ones yields T e profiles for the first time. The n e measurement is performed as in tokamaks by observing the attenuation of the beam due to ionization in the plasma. We present radial profiles of T e and n e for discharges in argon and xenon under different operating conditions. These results are compared with results obtained by Thomson scattering. Our measurements give evidence for a satisfying agreement between the two methods. (author)

  12. Ion beam diagnosis

    International Nuclear Information System (INIS)

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  13. A model based on the Fermi-Dirac distribution to determine the dose profile of a photon beam

    International Nuclear Information System (INIS)

    The objective of this work is to propose a new model based in the Fermi-Dirac distribution, in which it is considered that the photon beams possess a particles behavior when they interact with the matter. (Author)

  14. Direct observation of potential profiles with a 200 keV heavy ion beam probe and evaluation of loss cone structure in toroidal helical plasmas on the Compact Helical System

    International Nuclear Information System (INIS)

    This paper presents direct experimental observations of potential profiles of a toroidal helical plasma in the Compact Helical System, using a 200 keV heavy ion beam probe. Electron cyclotron heated plasmas show a positive potential profile in a low density regime (n-bare = 3x1012 cm-3), while neutral beam injection heated plasmas (n-bare = 8x1012 cm-3) exhibit a negative potential profile. A loss cone structure evaluated from the observed potential is discussed to understand the behavior of high energy particle in a toroidal helical plasma. (author)

  15. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development of the...

  16. On symmetric X-ray beam splitting with high efficiency by use of reflection gratings with rectangular profile in the extreme off-plane configuration.

    Science.gov (United States)

    Jark, Werner; Eichert, Diane

    2015-08-24

    In order to be reflected or diffracted off a surface structure soft X-rays and hard X-rays need to impinge at grazing angles of incidence onto the surface. In case of a reflection grating of highly symmetric structure with rectangular groove profile these grooves can be oriented parallel to the beam trajectory. In such a symmetric situation the distribution of the diffracted intensity with respect to the plane of incidence is then expected to be symmetric. This is indeed observed with symmetrically oriented diffraction peaks. It can be predicted that for appropriate structure parameters the intensity can be contained mostly in two symmetrically oriented diffraction peaks. This will also be the case for hard X-rays. The diffraction efficiency will be particularly high, when the angle of grazing incidence is chosen in the total reflection regime below the critical angle of the grating coating. These predictions were experimentally verified in this work for hard X-rays with photon energies between 4 keV and 12.4 keV. In the experiment of the order of 30% of the incident intensity was diffracted into the two first orders. This is to be compared to reflectivities of the order of 50% measured at the same coating in an unruled area of the substrate. Consequently the relative structural diffraction efficiency for each first order was about 30%, while ideally it could have been 40%. The presented grating structure will thus be a rather efficient amplitude beam splitter for hard X-rays, e.g. in the coherent beam from a free electron laser. In addition such object could then be used as the first component in Michelson interferometers for the beam characterisation or for introducing a time delay between two coherent beams. PMID:26368244

  17. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    Science.gov (United States)

    Kurebayashi, Y.; Sakurai, H.; Takahashi, Y.; Doshita, N.; Kikuchi, S.; Tokanai, F.; Horiuchi, K.; Tajima, Y.; Oe, T.; Sato, T.; Gunji, S.; Inui, E.; Kondo, K.; Iwata, N.; Sasaki, N.; Matsuzaki, H.; Kunieda, S.

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10-9 PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×1013 was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  18. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    Energy Technology Data Exchange (ETDEWEB)

    Kurebayashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Sakurai, H., E-mail: sakurail@sci.kj.yamagata-u.ac.jp [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Takahashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Doshita, N. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kikuchi, S. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Tokanai, F. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Horiuchi, K. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Tajima, Y. [Institute of Arts and Sciences, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Oe, T. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sato, T. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Gunji, S. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Inui, E. [Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kondo, K. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Iwata, N. [Dept. of Earth and Environmental Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sasaki, N. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Matsuzaki, H. [Micro Analysis Laboratory, Tandem accelerator (MALT), The University Museum, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kunieda, S. [Nuclear Data Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun 319-1195, Ibaraki (Japan)

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10{sup –9} PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×10{sup 13} was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  19. Specific Features of Destabilization of the Wave Profile During Reflection of an Intense Acoustic Beam from a Soft Boundary

    Science.gov (United States)

    Deryabin, M. S.; Kasyanov, D. A.; Kurin, V. V.; Garasyov, M. A.

    2016-05-01

    We show that a significant energy redistribution occurs in the spectrum of reflected nonlinear waves, when an intense acoustic beam is reflected from an acoustically soft boundary, which manifests itself at short wave distances from a reflecting boundary. This effect leads to the appearance of extrema in the distributions of the amplitude and intensity of the field of the reflected acoustic beam near the reflecting boundary. The results of physical experiments are confirmed by numerical modeling of the process of transformation of nonlinear waves reflected from an acoustically soft boundary. Numerical modeling was performed by means of the Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation.

  20. Measurement of profile and intensity of proton beam by an integrating current transformer and a segmented parallel-plate ion chamber for the AGS-spallation target experiment (ASTE)

    International Nuclear Information System (INIS)

    Profile and intensity of proton beams incident to a mercury target were measured for the experiments under AGS-spallation Target Experiment (ASTE) collaboration. Protons of 1.94, 12 and 24 GeV energy were measured for a temperature, pressure wave and neutronics in the mercury target. For the beam profile measurement, segmented parallel-plate ion chamber (CHIDORI) was used as the online detector. Imaging plates (IP) were also used for the profile measurement with aluminum activation foils as the image converter. An integrating current transformer (ICT) and activation method by Cu foil were used for the measurement of beam intensity. The beam profile obtained by CHIDORI gives a good agreement with the results with the IP. The beam intensity obtained by ICT agrees with the data obtained by the activation technique within ±3% for 12 and 24 GeV cases. Furthermore, these results show in good agreement with those obtained by the monitor of segmented wire ionization chamber (SWIC) and secondary emission chamber (SEC) installed by the AGS team. Therefore, a reliable beam monitor technique was established, so that the analysis of the experiment such as temperature and pressure wave can be normalized by the number of incident protons. (author)

  1. Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti; Wani, Manzoor Ahmad [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)

    2013-11-15

    The early and strong self-focusing of a Hermite-cosh-Gaussian laser beam in magnetoplasma in the presence of density ramp has been observed. Focusing and de-focusing nature of the Hermite-cosh-Gaussian laser beam with decentered parameter and magnetic field has been studied, and strong self-focusing is reported. It is investigated that decentered parameter 'b' plays a significant role for the self-focusing of the laser beam and is very sensitive as in case of extraordinary mode. For mode indices, m = 0, 1, 2, and b = 4.00, 3.14, and 2.05, strong self-focusing is observed. Similarly in case of ordinary mode, for m = 0, 1, 2 and b = 4.00, 3.14, 2.049, respectively, strong self-focusing is reported. Further, it is seen that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For mode indices m = 0, 1, and 2, diffraction term becomes more dominant over nonlinear term for decentered parameter b=0. For selective higher values of decentered parameter in case of mode indices m=0, 1, and 2, self-focusing effect becomes strong for extraordinary mode. Also increase in the value of magnetic field enhances the self-focusing ability of the laser beam, which is very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers.

  2. Metamaterial-based Fabry-Pérot leaky wave antennas: low profile, high directivity, frequency agility and beam steering

    International Nuclear Information System (INIS)

    The analysis and design of subwavelength metamaterial-based Fabry-Pérot (FP) leaky wave antennas (LWAs) are presented. The antennas under investigation are formed by embedding a feeding source in a cavity composed of a Perfect Electrical Conductor (PEC) surface and a metasurface reflector. Several configurations of such antennas are presented to achieve different desired performances such as: high directivity, frequency agility and beam steering.

  3. Analytical optimization of the ablation efficiency at normal and non-normal incidence for generic super Gaussian beam profiles

    OpenAIRE

    Arba-Mosquera, Samuel; Verma, Shwetabh

    2013-01-01

    We suggest a general method to determine the optimum laser parameters for maximizing the ablation efficiency for different materials (in particular human cornea) at different incidence angles. The model is comprehensive and incorporates laser beam characteristics and ablative spot properties. The model further provides a method to convert energy fluctuations during ablation to equivalent ablation deviations in the cornea. The proposed model can be used for calibration, verification and valida...

  4. Beam quality measure for vector beams.

    Science.gov (United States)

    Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2016-08-01

    Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580

  5. WE-D-17A-02: Evaluation of a Two-Dimensional Optical Dosimeter On Measuring Lateral Profiles of Proton Pencil Beams

    International Nuclear Information System (INIS)

    Purpose: To evaluate the accuracy of a two-dimensional optical dosimeter on measuring lateral profiles for spots and scanned fields of proton pencil beams. Methods: A digital camera with a color image senor was utilized to image proton-induced scintillations on Gadolinium-oxysulfide phosphor reflected by a stainless-steel mirror. Intensities of three colors were summed for each pixel with proper spatial-resolution calibration. To benchmark this dosimeter, the field size and penumbra for 100mm square fields of singleenergy pencil-scan protons were measured and compared between this optical dosimeter and an ionization-chamber profiler. Sigma widths of proton spots in air were measured and compared between this dosimeter and a commercial optical dosimeter. Clinical proton beams with ranges between 80 mm and 300 mm at CDH proton center were used for this benchmark. Results: Pixel resolutions vary 1.5% between two perpendicular axes. For a pencil-scan field with 302 mm range, measured field sizes and penumbras between two detection systems agreed to 0.5 mm and 0.3 mm, respectively. Sigma widths agree to 0.3 mm between two optical dosimeters for a proton spot with 158 mm range; having widths of 5.76 mm and 5.92 mm for X and Y axes, respectively. Similar agreements were obtained for others beam ranges. This dosimeter was successfully utilizing on mapping the shapes and sizes of proton spots at the technical acceptance of McLaren proton therapy system. Snow-flake spots seen on images indicated the image sensor having pixels damaged by radiations. Minor variations in intensity between different colors were observed. Conclusions: The accuracy of our dosimeter was in good agreement with other established devices in measuring lateral profiles of pencil-scan fields and proton spots. A precise docking mechanism for camera was designed to keep aligned optical path while replacing damaged image senor. Causes for minor variations between emitted color lights will be investigated

  6. WE-D-17A-02: Evaluation of a Two-Dimensional Optical Dosimeter On Measuring Lateral Profiles of Proton Pencil Beams

    Energy Technology Data Exchange (ETDEWEB)

    Hsi, W; Lee, T; Schultz, T; Arjomandy, B; Park, S [McLaren Cancer Institute, Flint, MI (United States); Gao, M; Pankuch, M [ProCure Treatment Centers, Warrenville, IL (United States); Boyer, S; Mah, D [Procure Treatment Center, Somerset, NJ (United States); Pillainayagam, M [Wayne State University, Detroit, Michigan (United States); Schreuder, A [Provision Healthcare Partners, Knoxville, TN (United States)

    2014-06-15

    Purpose: To evaluate the accuracy of a two-dimensional optical dosimeter on measuring lateral profiles for spots and scanned fields of proton pencil beams. Methods: A digital camera with a color image senor was utilized to image proton-induced scintillations on Gadolinium-oxysulfide phosphor reflected by a stainless-steel mirror. Intensities of three colors were summed for each pixel with proper spatial-resolution calibration. To benchmark this dosimeter, the field size and penumbra for 100mm square fields of singleenergy pencil-scan protons were measured and compared between this optical dosimeter and an ionization-chamber profiler. Sigma widths of proton spots in air were measured and compared between this dosimeter and a commercial optical dosimeter. Clinical proton beams with ranges between 80 mm and 300 mm at CDH proton center were used for this benchmark. Results: Pixel resolutions vary 1.5% between two perpendicular axes. For a pencil-scan field with 302 mm range, measured field sizes and penumbras between two detection systems agreed to 0.5 mm and 0.3 mm, respectively. Sigma widths agree to 0.3 mm between two optical dosimeters for a proton spot with 158 mm range; having widths of 5.76 mm and 5.92 mm for X and Y axes, respectively. Similar agreements were obtained for others beam ranges. This dosimeter was successfully utilizing on mapping the shapes and sizes of proton spots at the technical acceptance of McLaren proton therapy system. Snow-flake spots seen on images indicated the image sensor having pixels damaged by radiations. Minor variations in intensity between different colors were observed. Conclusions: The accuracy of our dosimeter was in good agreement with other established devices in measuring lateral profiles of pencil-scan fields and proton spots. A precise docking mechanism for camera was designed to keep aligned optical path while replacing damaged image senor. Causes for minor variations between emitted color lights will be investigated.

  7. Synthesis of dynamic phase profile by the correlation technique for spatial control of optical beams in multiplexing and switching

    Science.gov (United States)

    Bugaychuk, Svitlana A.; Gnatovskyy, Vladimir O.; Sidorenko, Andrey V.; Pryadko, Igor I.; Negriyko, Anatoliy M.

    2015-11-01

    New approach for the correlation technique, which is based on multiple periodic structures to create a controllable angular spectrum, is proposed and investigated both theoretically and experimentally. The transformation of an initial laser beam occurs due to the actions of consecutive phase periodic structures, which may differ by their parameters. Then, after the Fourier transformation of a complex diffraction field, the output diffraction orders will be changed both by their intensities and by their spatial position. The controllable change of output angular spectrum is carried out by a simple control of the parameters of the periodic structures. We investigate several simple examples of such management.

  8. DESIGNING A DIFFRACTIVE OPTICAL ELEMENT FOR CONTROLLING THE BEAM PROFILE IN A THREE-DIMENSIONAL SPACE USING THE SIMULATED ANNEALING ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    LIANG WEN-XI; ZHANG JING-JUAN; L(U) JUN-FENG; LIAO RUI

    2001-01-01

    We have designed a spatially quantized diffractive optical element (DOE) for controlling the beam profile in a three-dimensional space with the help of the simulated annealing (SA) algorithm. In this paper, we investigate the annealing schedule and the neighbourhood which are the deterministic parameters of the process that warrant the quality of the SA algorithm. The algorithm is employed to solve the discrete stochastic optimization problem of the design of a DOE. The objective function which constrains the optimization is also studied. The computed results demonstrate that the procedure of the algorithm converges stably to an optimal solution close to the global optimum with an acceptable computing time. The results meet the design requirement well and are applicable.

  9. Changes on lipid profile in beef burgers prepared with Rosemary extract and submitted to e-beam processing

    International Nuclear Information System (INIS)

    Radiation processing has been employed in some countries as a mean of treatment to assure microbiological safety of meat and meat products. Use of antioxidants for preventing lipid oxidation has been applied in those products. The present study aimed at evaluating the protecting effects of rosemary extract on the lipid profile of irradiated beef burgers. The samples were prepared with 400 ppm of rosemary extract, irradiated at doses 0, 3.5 and 7 kGy, stored at - 20 deg C for 45 days and after this time, evaluated in regard to the oxidative stability of lipids (TBARS values) and lipid profile in a GC (Gas chromatography). Non-irradiated and non-rosemary extract samples were used as a control. TBARS values were of 0.3 and 1.1 mgTBARS/kg of sample for rosemary extract and control samples (without extract) irradiated at 3.5 kGy, respectively. At 7 kGy, TBARS values were of 0.6 and 1.3 mgTBARS/kg of samples for rosemary extract and control samples (without extract), respectively. Total saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) did not change in beef burgers, although they showed small differences between the batches, this differences were not significant (P<0.05). The amounts of Trans fatty acid increased significantly (P<0.05) only when used irradiation dose of 7 kGy (0.86 g/100 g of sample). These results showed that the rosemary extract can avoid the developing of lipid oxidation and the irradiation processing did not change lipid profile in beef burgers. (author)

  10. Changes on lipid profile in beef burgers prepared with Rosemary extract and submitted to e-beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, Reginaldo A.; Sabundjian, Ingrid T.; Nunes, Thaise C.F.; Rogovschi, Vladimir D.; Villavicencio, Anna Lucia C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: villavic@ipen.br; Mancini-Filho, Jorge [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Lab. de Lipides]. E-mail: jmancini@usp.br

    2007-07-01

    Radiation processing has been employed in some countries as a mean of treatment to assure microbiological safety of meat and meat products. Use of antioxidants for preventing lipid oxidation has been applied in those products. The present study aimed at evaluating the protecting effects of rosemary extract on the lipid profile of irradiated beef burgers. The samples were prepared with 400 ppm of rosemary extract, irradiated at doses 0, 3.5 and 7 kGy, stored at - 20 deg C for 45 days and after this time, evaluated in regard to the oxidative stability of lipids (TBARS values) and lipid profile in a GC (Gas chromatography). Non-irradiated and non-rosemary extract samples were used as a control. TBARS values were of 0.3 and 1.1 mgTBARS/kg of sample for rosemary extract and control samples (without extract) irradiated at 3.5 kGy, respectively. At 7 kGy, TBARS values were of 0.6 and 1.3 mgTBARS/kg of samples for rosemary extract and control samples (without extract), respectively. Total saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) did not change in beef burgers, although they showed small differences between the batches, this differences were not significant (P<0.05). The amounts of Trans fatty acid increased significantly (P<0.05) only when used irradiation dose of 7 kGy (0.86 g/100 g of sample). These results showed that the rosemary extract can avoid the developing of lipid oxidation and the irradiation processing did not change lipid profile in beef burgers. (author)

  11. Development of an x-ray Talbot-Lau moire deflectometer for fast density profile measurements of dense plasmas generated by beam-target interactions

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dan [National Security Technol., LLC, Los Alamos, NM (United States); Berninger, M; Meidinger, A; Stutman, Dan; Valdivia, Maria Pia

    2015-05-01

    For the first time an x-ray Talbot-Lau moire deflectometer is being developed that will use a flash tube source and fast detector for dynamic density gradient measurements. In Talbot-Lau moire deflectometry, an x-ray grating makes an image of itself on a second grating (the Talbot effect) to produce a moire pattern on a detector. The test object is placed between these gratings, with variations in index of refraction changing the pattern. A third grating in front of an incoherent x-ray source produces an array of coherent sources. With a 150 kV x-ray flash tube as the source, the gratings are placed in a glancing angle setup for performance at ~60 keV. The detector is a gated CCD with a fast scintillator for x-ray conversion. This diagnostic, designed for the Dual-Axis Radiographic Hydrodynamic Test facility (DARHT) at Los Alamos National Laboratory, measures the density profile of dense plasma plumes ejected from beam-target interactions. DARHT has two high-current, pulsed, inductive linear electron accelerators with bremsstrahlung targets at the end of each beam line to create 2-D radiographic images of hydrodynamic tests. One multi-pulse accelerator has up to four beam pulses striking the same target within 2 μs. Computer simulations that model target evolution and ejected material between pulses are used to design these targets for optimal radiographic performance; the x-ray deflectometer will directly measure density gradients in the ejected plumes and provide the first experimental constraints to these models. During the first year, currently underway, the diagnostic systems are being designed. In year two, the flash tube and fast detector will be deployed at DARHT for radiographic imaging while the deflectometer is built and tested on the bench with a continuous source. Finally, in year three, the fast deflectometer will be installed on DARHT and density measurements will be performed.

  12. Examination of beam profile measurement using an imaging plate by the light exposure fading method for quality assurance of external radiation therapy

    International Nuclear Information System (INIS)

    High-resolution film dosimetry has been used for several decades to check and to measure two-dimensional dose distributions. However, in recent years, the automatic processor has been replaced by the spread of computed radiography, or has been little used hospitals. In this study, we measured the off-center ratio (OCR) of the open field, after an irradiating radiation beam was delivered to the imaging plate (IP) under conditions in which the IP was exposed to a fixed amount of light with fading, and compared these data with the OCR measured by an ionization-chamber dosimeter, which is the standard method used for measuring radiation dose. Profile measurement using IP could be achieved by performing light fading, even at a range of more than 100 MU. Further, by using a metallic filter, we succeeded in demonstrating that the profile measurement of IP in an open irradiation field could approximate the values of those obtained by an ionization chamber dosimeter. This method can serve as a simple, easy-to-use method for evaluating the quality assurance (QA) of dose distribution in radiation therapy. (author)

  13. Beam-Beam Effects

    OpenAIRE

    Herr, W; Pieloni, T.

    2016-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  14. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  15. Improved beam profile of a 266 nm deep ultraviolet laser employing a multi-mirror-reflected cavity

    Science.gov (United States)

    Yang, Houwen; Cheng, Wenyong; Wang, Junhua; Zhang, Yaguang; Wang, Xiaoqian; Zhang, Lijie

    2016-04-01

    A 266 nm deep ultraviolet (DUV) laser with a good Gaussian profile is reported employing a multi-mirror-reflected cavity. A type-I LiB3O5 (LBO) crystal is used to double the fundamental-light (1064 nm) wavelength generated by an actively Q-switched Nd:YVO4 laser with an intra-cavity configuration. A fourth harmonic generation (FHG) wavelength is obtained by a type-I β-BaB2O4 (BBO) crystal. The output power as high as 440 mW at 266 nm is generated under an incident power of 2.26 W at 532 nm, corresponding to the conversion efficiency of 532 nm-266 nm up to 19.5% with a repetition rate of 15 kHz and the pulse duration of 266 nm is 10.7 ns.

  16. Uniform beam distributions using octupoles

    International Nuclear Information System (INIS)

    The Gaussian beam profile of the BNL 200 MeV H- Linac beam at the Radiation Effects Facility target location was transformed into a rectangular profile with almost uniform distribution by placing two octupole magnetic elements at particular locations along the beam line. Experimental results of the beam profile projection in the horizontal and vertical planes, with and without octupoles, are presented and compared with third order calculations. 7 refs., 3 figs

  17. Quantitative plasma-fuel and impurity profiling in thick plasma-deposited layers by means of micro ion beam analysis and SIMS

    International Nuclear Information System (INIS)

    The operation of the Joint European Torus (JET) with full-carbon wall during the last decades has proven the importance of material re-deposition processes in remote areas of the tokamak. The thickness of the deposits in shadowed areas can reach 1 mm. The main constituent is carbon, with little inclusion of Inconel components. Atomic fractions Be/C and D/C can locally reach 1. Three methods were used to study thick deposits on JET divertor surfaces: (i) NRA analysis with a 15 μm wide, 3 MeV 3He ion microbeam on a polished cross section of the layer to determine the concentration distribution of D, Be and C and the distribution of Ni by particle induced X-ray emission; (ii) elastic proton scattering (EPS) from the top of the layers with a broad proton beam at 3.5 and 4.6 MeV. These methods were absolutely calibrated using thick elemental targets. (iii) Depth profiling of D, Be and Ni was done with secondary ion mass spectrometry (SIMS), sputtering the layers from the surface. The three methods are complementary. The thickest layers are accessible only by microbeam mapping of the cross sections, albeit with limited spatial resolution. The SIMS has the best depth resolution, but is difficult for absolute quantification and is limited in accessible depth. The probed depth with proton backscattering is limited to about 30 μm. The combination of all three methods provided a coherent picture of the layer composition. It was possible to correlate the SIMS profiling results to quantitative data obtained by the microbeam method

  18. Quantitative plasma-fuel and impurity profiling in thick plasma-deposited layers by means of micro ion beam analysis and SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, Igor, E-mail: igor.bykov@ee.kth.se [Fusion Pasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, Stockholm 10044 (Sweden); Bergsåker, Henric; Petersson, Per [Fusion Pasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, Stockholm 10044 (Sweden); Likonen, Jari [VTT, Association EURATOM-TEKES, P.O. Box 1000, Otaniemi 02044 (Finland); Possnert, Göran [Tandem Laboratory (Association EURATOM-VR), Uppsala Universitet, Box 256, Uppsala 75105 (Sweden)

    2014-08-01

    The operation of the Joint European Torus (JET) with full-carbon wall during the last decades has proven the importance of material re-deposition processes in remote areas of the tokamak. The thickness of the deposits in shadowed areas can reach 1 mm. The main constituent is carbon, with little inclusion of Inconel components. Atomic fractions Be/C and D/C can locally reach 1. Three methods were used to study thick deposits on JET divertor surfaces: (i) NRA analysis with a 15 μm wide, 3 MeV {sup 3}He ion microbeam on a polished cross section of the layer to determine the concentration distribution of D, Be and C and the distribution of Ni by particle induced X-ray emission; (ii) elastic proton scattering (EPS) from the top of the layers with a broad proton beam at 3.5 and 4.6 MeV. These methods were absolutely calibrated using thick elemental targets. (iii) Depth profiling of D, Be and Ni was done with secondary ion mass spectrometry (SIMS), sputtering the layers from the surface. The three methods are complementary. The thickest layers are accessible only by microbeam mapping of the cross sections, albeit with limited spatial resolution. The SIMS has the best depth resolution, but is difficult for absolute quantification and is limited in accessible depth. The probed depth with proton backscattering is limited to about 30 μm. The combination of all three methods provided a coherent picture of the layer composition. It was possible to correlate the SIMS profiling results to quantitative data obtained by the microbeam method.

  19. Muon Beam at the Fermilab Test Beam Area

    OpenAIRE

    Denisov, Dmitri; Evdokimov, Valery; Lukić, Strahinja; Ujić, Predrag

    2016-01-01

    The intensities and profiles of the muon beam behind the beam dump of the Fermilab test beam area when the facility is running in the "pion" beam mode are measured and summarized in this note. This muon beam with momenta in the range 10 - 50 GeV/c provides an opportunity to perform various measurements in parallel with other users of the test beam area.

  20. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  1. Review of nondiffracting Bessel beams

    Science.gov (United States)

    Lapointe, Michael R.

    1991-01-01

    The theory of nondiffracting beam propagation and experimental evidence for nearly-nondiffractive Bessel beam propagation are reviewed. The experimental results are reinterpreted using simple optics formulas, which show that the observed propagation distances are characteristic of the optical systems used to generate the beams and do not depend upon the initial beam profiles. A set of simple experiments are described which support this interpretation. It is concluded that nondiffracting Bessel beam propagation has not yet been experimentally demonstrated.

  2. Measurement and modelling of electron beam profiles and calculation of graphite calorimeter gap corrections and ion chamber wall perturbation factors for the NPL Elekta Synergy linear accelerator

    International Nuclear Information System (INIS)

    In addition to the seven x-ray beam qualities available on the Elekta Synergy Digital Linear Accelerator recently installed at NPL, there are ten available electron beam qualities. Up to nine of these will be in common use enabling NPL to provide absorbed dose calibrations for the full range of electron beam qualities currently in therapeutic use in the UK. This will largely remove the need for the extrapolations required for calibrations carried out on NPL's aging research linac facility. During commissioning exercises, depth-ionisation measurements were made using a Scanditronix NACP-02 parallel-plate ionisation chamber, and validated Monte Carlo models of the electron beam source are required for each electron beam quality, for the calculation of gap corrections for primary standard graphite calorimetry and wall perturbation factors for hospital ionisation chamber calibration services

  3. Transverse beam shape measurements of intense proton beams using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  4. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    OpenAIRE

    Stancari, Giulio

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for b...

  5. Profile detectors of GANIL

    International Nuclear Information System (INIS)

    In the design phase of GANIL, which started in 1977, one of the priorities of the project management was equipping the beam lines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The profile detectors are unavoidable tools in displaying the GANIL beams for adaptation and adjustment of the beam line optics. The installed detector assembly (about 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beams extracted from SISSI, very high intensity beams (VHIB), secondary ion beams emitted by LISE and SPEG spectrometers targets, different lines of SPIRAL project (HE, BE, ME): This detector assembly must meet the following standard requirements: flange diameter (DN 160) with a standard booster for all the sensors; identical analog electronics for all the detectors with networking; unique visualization system. The new micro-channel plate non-interceptive detectors (the beam profile and ion packet length allow an in-line control of the beam quality and accelerator stability

  6. Emittance measurements of low-energy beam line at KVI

    NARCIS (Netherlands)

    Toprek, D; Formanoy, [No Value

    2006-01-01

    In this paper is represented the results of beam profile measurements of He-3(+) beam delivered from ECR ion source at KVI. The beam emittance is estimated by varying quadrupole method. The estimated values for the beam emittance at the different profile grid locations along the transport beam line

  7. Beam Trail Tracking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J. [Fermilab; Carmichael, Linden Ralph [Fermilab; Neswold, Richard [Fermilab; Yuan, Zongwei [Fermilab

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trends in the performance of the accelerators

  8. Dose profile for electron beams obtained with CaSO{sub 4}:Ce,Eu thermoluminescent dosimeters; Perfil de dose de feixes de eletrons obtidos com dosimetros termoluminescentes de CaSO{sub 4}:Ce,Eu

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Maira G.; Rodrigues, Leticia L.C., E-mail: mgnunes@ipen.br [Instituto de Pesquisas Energerticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-12-15

    The calcium sulphate activated with cerium and europium (CaSO{sub 4}:Ce,Eu) thermoluminescent dosimeters (TLD) recently developed at Nuclear and Energy Research Institute as well as the calcium sulphate activated with dysprosium (CaSO{sub 4}: Dy) and lithium fluoride activated with magnesium and titanium, (LiF:Mg,Ti; TLD-100) TLDs, with long term applications in dosimetry and considered as standards, were used to obtain the dose profile for 3.43, 5.48, 8.27 and 11.67 MeV electron beams generated by a linear accelerator Clinac 2100-C (Varian) in the reference conditions defined by the TRS-398 code of practice. The routine dosimetry of the electron beams, performed with a calibrated ionization chamber, ensures that the electron beams fulfill the requirements of flatness and symmetry established in this code of practice. Thus, as the TRS-398 Code of Practice requirements are fulfilled by the measurements performed with the new TLD type, CaSO{sub 4}:Ce,Eu may be applied in clinical dosimetry of high energy electron beams. (author)

  9. Gene expression profiles in promoted-growth rice seedlings that germinated from the seeds implanted by low-energy N+ beam

    International Nuclear Information System (INIS)

    The stimulation effect that some beneficial agronomic qualities have exhibited in present-generation plants have also been observed due to ion implantation on plants. However, there is relatively little knowledge regarding the molecular mechanism of the stimulation effects of ion-beam implantation. In order to extend our current knowledge about the functional genes related to this stimulation effect, we have reported a comprehensive microarray analysis of the transcriptome features of the promoted-growth rice seedlings germinating from seeds implanted by a low-energy N+ beam. The results showed that 351 up-regulated transcripts and 470 down-regulated transcripts, including signaling proteins, kinases, plant hormones, transposable elements, transcription factors, non-coding protein RNA (including miRNA), secondary metabolites, resistance proteins, peroxidase and chromatin modification, are all involved in the stimulating effects of ion-beam implantation. The divergences of the functional catalog between the vacuum and ion implantation suggest that ion implantation is the principle cause of the ion-beam implantation biological effects, and revealed the complex molecular networks required to adapt to ion-beam implantation stress in plants, including enhanced transposition of transposable elements, promoted ABA biosynthesis and changes in chromatin modification. Our data will extend the current understanding of the molecular mechanisms and gene regulation of stimulation effects. Further research on the candidates reported in this study should provide new insights into the molecular mechanisms of biological effects induced by ion-beam implantation. (author)

  10. Accelerating nondiffracting beams

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shaohui; Li, Manman; Yao, Baoli, E-mail: yaobl@opt.ac.cn; Yu, Xianghua; Lei, Ming; Dan, Dan; Yang, Yanlong; Min, Junwei; Peng, Tong

    2015-06-05

    We present a set of beams which combine the properties of accelerating beams and (conventional) diffraction-free beams. These beams can travel along a desired trajectory while keeping an approximately invariant transverse profile, which may be (higher-order) Bessel-, Mathieu- or parabolic-nondiffracting-like beams, depending on the initial complex amplitude distribution. A possible application of these beams presented here may be found in optical trapping field. For example, a higher-order Bessel-like beam, which has a hollow (transverse) pattern, is suitable for guiding low-refractive-index or metal particles along a curve. - Highlights: • A set of beams having arbitrary trajectories of accelerating and nondiffracting behaviors are generalized and presented. • Bessel-like accelerating beams are generalized to the higher-order (hollow) version. • Mathieu-like accelerating beams and parabolic-nondiffracting-like accelerating beams are presented. • A possible application of these beams may be found in optical trapping and guiding of particles.

  11. Nonlinear Bessel beams

    CERN Document Server

    Johannisson, P; Lisak, M; Marklund, M; Johannisson, Pontus; Anderson, Dan; Lisak, Mietek; Marklund, Mattias

    2003-01-01

    The effect of the Kerr nonlinearity on linear non-diffractive Bessel beams is investigated analytically and numerically using the nonlinear Schr\\"odinger equation. The nonlinearity is shown to primarily affect the central parts of the Bessel beam, giving rise to radial compression or decompression depending on whether the nonlinearity is focusing or defocusing, respectively. The dynamical properties of Gaussian-truncated Bessel beams are also analysed in the presence of a Kerr nonlinearity. It is found that although a condition for width balance in the root-mean-square sense exists, the beam profile becomes strongly deformed during propagation and may exhibit the phenomena of global and partial collapse.

  12. Dopant profiling of focused ion beam milled semiconductors using off-axis electron holography; reducing artifacts, extending detection limits and reducing the effects of gallium implantation

    DEFF Research Database (Denmark)

    Cooper, David; Ailliot, Cyril; Barnes, Jean-Paul;

    2010-01-01

    Focused ion beam (FIB) milling is one of the few specimen preparation techniques that can be used to prepare parallel-sided specimens with nm-scale site specificity for examination using off-axis electron holography in the transmission electron microscope (TEM). However, FIB milling results...... thickness is dependent on both the operating voltage and type of ion used during FIB milling....

  13. Effects of the temperature and beam parameters on depth profiles in X-ray photoelectron spectrometry and secondary ion mass spectrometry under C60+–Ar+ cosputtering

    International Nuclear Information System (INIS)

    Highlights: • XPS and SIMS depth profiles of PMMA were acquired concurrently with C60+–Ar+ cosputtering. • Artificial signal enhancement at the interface was observed in SIMS when using C60+ sputtering. • Optimized cosputtering yielded higher SIMS intensities and removed the artificial enhancement. • Increasing or decreasing the temperature further improved the resulting depth profile. - Abstract: Polymethylmethacrylate (PMMA) is widely used in various fields, including the semiconductor, biomaterial and microelectronic fields. Obtaining the correct depth profiles of PMMA is essential, especially when it is used as a thin-film. There have been many studies that have used earlier generation of cluster ion (SF5+) as the sputtering source to profile PMMA films, but few reports have discussed the use of the more recently developed C60+ in the PMMA sputtering process. In this study, X-ray photoelectron spectroscopy (XPS) and dynamic secondary ion mass spectroscopy (D-SIMS) were used concurrently to monitor the depth profiles of PMMA under C60+ bombardment. Additionally, the cosputtering technique (C60+ sputtering with auxiliary, low-kinetic-energy Ar+) was introduced to improve the analytical results. The proper cosputtering conditions could eliminate the signal enhancement near the interface that occurred with C60+ sputtering and enhance the sputtering yield of the characteristic signals. Atomic force microscopy (AFM) was also used to measure the ion-induced topography. Furthermore, the effect of the specimen temperature on the PMMA depth profile was also examined. At higher temperatures (+120 °C), the depolymerization reaction that corresponded to main-chain scission dominated the sputtering process. At lower temperatures (−120 °C), the cross-linking mechanism was retarded significantly due to the immobilization of free radicals. Both the higher and lower sample temperatures were found to further improve the resulting depth profiles

  14. Beam diagnostics at Ganil in 1986

    International Nuclear Information System (INIS)

    Position and profile monitors are considered in the beam lines and in the separated sector cyclotron; beam current monitors are presented such as interceptive and non interceptive probes; then bunch length monitors with electron emission probes and x ray emission probes are reviewed; the knowledge of the beam central phase is essential for tuning and controlling the beam, so are beam central phase monitors. The use of these central phase measurements is presented. Counting system of beam turns is considered

  15. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove;

    2007-01-01

    The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  16. Implementation of a Novel Low-Cost Low-Profile Ku-Band Antenna Array for Single Beam Steering from Space

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2013-01-01

    Phased array antennas afford many advantages over traditional reflector antennas due to their conformality, high aperture efficiency, and unfettered beam steering capability at the price of increased cost and complexity. This paper eliminates the complex and costly array backend via the implementation of a series fed array employing a propagation constant reconfigurable transmission line connecting each element in series. Scanning can then be accomplished through one small (less than or equal to 100mil) linear motion that controls propagation constant. Specifically, each element is fed via a reconfigurable coplanar stripline transmission line with a tapered dielectric insert positioned between the transmission line traces. The dielectric insert is allowed to move up and down to control propagation constant and therefore induce scanning. We present a 20 element patch array design, scanning from -25 deg. less than or equal to theta less than or equal to 21 deg. at 13GHz. Measurements achieve only10.5 deg. less than or equal to theta less than or equal to 22 deg. scanning due to a faulty, yet correctable, manufacturing process. Beam squint is measured to be plus or minus 3 deg. for a 600MHz bandwidth. This prototype was improved to give scanning of 3.5 deg. less than or equal to theta less than or equal to 22 deg. Cross-pol patterns were shown to be -15dB below the main beam. Simulations accounting for fabrication errors match measured patterns, thus validating the designs.

  17. Characterization of Laser Beam Shaping Optics Based on Their Ablation Geometry of Thin Films

    OpenAIRE

    Stefan Rung; Johannes Barth; Ralf Hellmann

    2014-01-01

    Thin film ablation with pulsed nanosecond lasers can benefit from the use of beam shaping optics to transform the Gaussian beam profile with a circular footprint into a Top-Hat beam profile with a rectangular footprint. In general, the quality of the transformed beam profile depends strongly on the beam alignment of the entire laser system. In particular, the adjustment of the beam shaping element is of upmost importance. For an appropriate alignment of the beam shaper, it is generally necess...

  18. MIG (metal inert gas) and laser beam welding of aluminium die castings with wrought aluminium profiles; Soudage MIG et soudage laser de pieces moulees sous pression avec des profils corroyes en alliages d'aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, S.; Rethmeier, M.; Wohlfart, H. [Universite Technique de Brunswick, Institut de Soudure (Germany)

    2003-10-01

    The applicability of different welding techniques to the welding of aluminium die castings, particularly used in automobile engineering, is discussed and experimental results from welding trials of some of these processes are reported. The advantages and disadvantages of using pressure welding, beam welding and gas shielded arc welding techniques to weld aluminium die castings are discussed. Results from welding trials carried out on a number of ductile AlSi and AlMg alloys using MIG and laser welding techniques are reported. Laser-TIG welding was also investigated as an alternative to laser welding with its inherent problems. (authors)

  19. Nonlinear beam-beam resonances

    International Nuclear Information System (INIS)

    Head-on collisions of bunched beams are considered, assuming the two colliding beams have opposite charges. A few experimental observations are described. The single resonance analysis is developed that is applicable to the strong-weak case of the beam-beam interaction. In this case, the strong beam is unperturbed by the beam-beam interaction; motions of the weak beam particles are then analyzed in the presence of the nonlinear electromagnetic force produced by the strong beam at the collision points. The coherent motions of the two coupled strong beams are shown to exhibit distinct nonlinear resonance behavior. 16 refs., 22 figs

  20. Modification of the Charlesby law. Pt. 1. Calculated profile of the scission density created in a polymer layer by particle beams

    International Nuclear Information System (INIS)

    For positive resists, the scission density profile versus irradiated depth is based on the development curve. If the value, G for scission yield is known, the profile of the effective energy absorbed in the depth can be calculated - and inversely. The effective energy is taken as the absorbed energy required to actually modify the polymer. In this paper, Charlesby's law, which links the particle dose to the average molecular weight, is used to analyse two cases taken from the litterature: electrons bombarded at 20 keV on PMMA and protons bombarded at 50 keV on PMMA. Charlesby's law proves to be a local law. When the absorbed energy remains constant along the irradiated depth, the law is assumed to yield the same molecular weight as that obtained from GPC analysis of the entire layer. Charlesby's relations is proved to be linear, but is not in agreement with the extrapolated zero-dose value

  1. Center for Beam Physics, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report contains the following information on the center for beam physics: Facilities; Organizational Chart; Roster; Profiles of Staff; Affiliates; Center Publications (1991--1993); and 1992 Summary of Activities.

  2. Center for Beam Physics, 1992

    International Nuclear Information System (INIS)

    This report contains the following information on the center for beam physics: Facilities; Organizational Chart; Roster; Profiles of Staff; Affiliates; Center Publications (1991--1993); and 1992 Summary of Activities

  3. Upgrading of the beam diagnostic system of U-70 beam transfer lines

    CERN Document Server

    Kovaltsov, V I; Matyushin, A T; Milyutkin, V; Romanov, I; Seleznev, V; Sytin, A N; Clausen, M

    2001-01-01

    The beam diagnostic system of U-70 beam transfer lines (beam profiles, intensity and beam losses measurements) was designed in the beginning of 80-th on the base of 8-bit microprocessor, SUMMA hardware and home made serial communication link. Because of the maintenance problems the decision was taken to upgrade the hardware and software parts of the system.

  4. Optimal beam focusing through turbulence.

    Science.gov (United States)

    Charnotskii, Mikhail

    2015-11-01

    Beam spread and beam wandering are the most perceptible effects of atmospheric turbulence on propagating laser beams. The width of the mean irradiance profile is typically used to characterize the beam spread. This so-called long-term (LT) statistic allows for a relatively simple theoretical description. However, the LT beam size is not a very practical measure of the beam spread because its measurements are sensitive to the movements of the source and detector, and to the large-scale variations of the refractive index that are not associated with turbulence. The short-term (ST) beam spread is measured relative to the instantaneous position of the beam center and is free of these drawbacks, but has not been studied as thoroughly as the LT spread. We present a theoretical model for the ST beam irradiance that is based on the parabolic equation for the beam wave propagation in random media, and the Markov approximation for calculation of the statistics of the optical field, and discuss an approximation that allows introduction of the isoplanatic ST point spread function (PSF). Unlike the LT PSF, the ST PSF depends on the overall beam geometry. This allows optimization of the initial beam field in terms of minimizing the ST beam size at the observation plane. Calculations supporting this conjecture are presented for the simple case of the coherent Gaussian beam, and Kolmogorov turbulence. PMID:26560908

  5. Generation of a hollow laser beam by a multimode fiber

    Institute of Scientific and Technical Information of China (English)

    Hongyu Ma; Huadong Cheng; Wenzhuo Zhang; Liang Liu; Yuzhu Wang

    2007-01-01

    A simple method to generate a hollow laser beam by multimode fiber is reported. A dark hollow laser beam is generated from a multimode fiber and the dependence of the output beam profile on the incident angle of laser beam is analyzed. The results show that this hollow laser beam can be used to trap and guide cold atoms.

  6. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore

  7. Beam tests of phosphorescent screens

    International Nuclear Information System (INIS)

    Twelve phosphorescent screens were beam tested for linearity, uniformity, low radiation damage and a suitable emitted wavelength for use with television cameras. One screen was chosen for the construction of several intercepting profile monitors which were used during the SLC Ten Sector Tests to measure the emittance and wakefield effects of a damped electron beam

  8. Beam emittance measurements at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  9. Depth profiles of the interfacial strains of Si0.7Ge0.3/Si using three-beam Bragg-surface diffraction.

    Science.gov (United States)

    Zheng, Yan-Zong; Soo, Yun-Liang; Chang, Shih-Lin

    2016-01-01

    Interfacial strains are important factors affecting the structural and physical properties of crystalline multilayers and heterojunctions, and the performance of the devices made of multilayers used, for example, in nanowires, optoelectronic components, and many other applications. Currently existing strain measurement methods, such as grazing incidence X-ray diffraction (GIXD), cross-section transmission electron microscope, TEM, and coherent diffractive imaging, CDI, are limited by either the nanometer spatial resolution, penetration depth, or a destructive nature. Here we report a new non-destructive method of direct mapping the interfacial strain of [001] Si0.7Ge0.3/Si along the depth up to ~287 nm below the interface using three-beam Bragg-surface X-ray diffraction (BSD), where one wide-angle symmetric Bragg reflection and a surface reflection are simultaneously involved. Our method combining with the dynamical diffraction theory simulation can uniquely provide unit cell dimensions layer by layer, and is applicable to thicker samples. PMID:27156699

  10. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  11. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Science.gov (United States)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  12. Beam emittance measurements in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski,A.; Bazilevsky, A.; Bunce, G.; Gill, R.; Huang, H.; Makdisi, Y.; Morozov, B.; Nemesure, S.; Russo, t.; Steski, D.; Sivertz, M.

    2009-05-04

    The RHIC proton polarimeters can operate in scanning mode, giving polarization profiles and transverse beam intensity profile (beam emittance) measurements. The polarimeters function as wire scanners, providing a very good signal/noise ratio and high counting rate. This allows accurate bunch-by-bunch emittance measurements during fast target sweeps (<1 s) through the beam. Very thin carbon strip targets make these measurements practically non-destructive. Bunch by bunch emittance measurements are a powerful tool for machine set-up; in RHIC, individual proton beam transverse emittances can only be measured by CNI polarimeter scans. We discuss the consistency of these measurements with Ionization Profile Monitors (IPMs) and vernier scan luminosity measurements. Absolute accuracy limitations and cross-calibration of different techniques are also discussed.

  13. Study on the beam transport from the Bio-Nano ECRIS

    International Nuclear Information System (INIS)

    The beam transport of N+ ion and C60+ ion in the Bio-Nano ECRIS with min-B configuration was investigated based on the ion beam profiles. The N+ beam could be focused under the low-beam current conditions. Also the C60+ beam could be focused in spite of the large space-charge effect which will lead the divergence of the beam. We confirmed that our beam transport system works well even for the C60+ ion beam. We estimated the highest C60+ beam current with the focused beam profile by comparing the N+ ion beam.

  14. RHIC Polarization Decay in FY15 pp Run due to Polarization Profile Development

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Adams, P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2016-05-23

    The decay over time of ratio between polarization profile and beam profile has been analyzed previously. A follow up question is if we can get the decay of polarization profile and beam profile separately. With the beam profiles obtained from Ion Profile Monitor (IPM), this analysis was done and the results are analyzed. The results show that the contribution from polarization profile and beam profile is similar for yellow ring, but the contribution from polarization profile is much stronger in blue ring, which is consistent with lower polarization Blue ring.

  15. RHIC Polarization Decay in FY15 pp Run due to Polarization Profile Development

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Adams, P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2016-05-23

    The decay over time of ratio between polarization profile and beam profile has been analyzed in Ref.[1]. A follow up question is if we can get the decay of polarization profile and beam profile separately. With the beam profiles obtained from Ion Profile Monitor (IPM), this analysis was done and the results are analyzed. The results show that the contribution from polarization profile and beam profile is similar for yellow ring, but the contribution from polarization profile is much stronger in blue ring, which is consistent with lower polarization Blue ring.

  16. Beam moments and angular momentum in non-uniformly polarized beams

    Science.gov (United States)

    Serna, Julio; Piquero, Gemma

    2009-05-01

    The angular momentum of non-uniformly totally polarized beams is investigated using methods from the beam characterization approach. The relationship between the elements of the beam matrix for the two components of the field and the angular momentum is given. The unconventional distribution of the polarization across the beam profile could result in contributions to both the spin and orbital terms of the angular momentum. To illustrate this, a particular example with a vortex beam is considered.

  17. Tevatron ionization profile monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, A.; Bowie, K.; Fitzpatrick, T.; Kwarciany, R.; Lundberg, C.; Slimmer, D.; Valerio, L.; Zagel, J.; /Fermilab

    2006-06-01

    Ionization Profile monitors have been used in almost all machines at Fermilab. However, the Tevatron presents some particular challenges with its two counter-rotating, small beams, and stringent vacuum requirements. In order to obtain adequate beam size accuracy with the small signals available, custom made electronics from particle physics experiments was employed. This provides a fast (single bunch) and dead-timeless charge integration with a sensitivity in the femto-Coulomb range, bringing the system close to the single ionization electron detection threshold. The detector itself is based on a previous Main Injector prototype, albeit with many modifications and improvements. The first detector was installed at the end of 2005, and the second detector during the spring shutdown. The ultimate goal is to continuously monitor beam size oscillations at injection, as well as the beam size evolution during ramp and squeeze. Initial results are very encouraging.

  18. Development of beam flattening system using non-linear beam optics at J-PARC/JSNS

    International Nuclear Information System (INIS)

    As increasing in the beam power, the damage of the target becomes serious. Especially for a target for high power short pulse spallation neutron source, the damage due to the proton beam on the target vessel for liquid metal target such as mercury is reported to be proportional of 4th power of the peak intensity of the proton beam. Reduction of the peak intensity is important for the beam injection system. At the JSNS, beam profile can be described by the clear Gaussian functions. To reduce peak intensity, we have developed a beam transport system by non-linear beam optics using octupole magnets. (author)

  19. Self-bending symmetric cusp beams

    Science.gov (United States)

    Gong, Lei; Liu, Wei-Wei; Ren, Yu-Xuan; Lu, Yao; Li, Yin-Mei

    2015-12-01

    A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.

  20. Self-bending symmetric cusp beams

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Lei; Liu, Wei-Wei; Lu, Yao; Li, Yin-Mei, E-mail: liyinmei@ustc.edu.cn [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Ren, Yu-Xuan [Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132 (United States)

    2015-12-07

    A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.

  1. Super-Gaussian conical refraction beam

    CERN Document Server

    Turpin, A; Kalkandkiev, T K; Tomizawa, H; Mompart, J

    2014-01-01

    We demonstrate the transformation of Gaussian input beams into super-Gaussian beams with a quasi flat-top transverse profile by means of the conical refraction phenomenon by adjusting the ratio between the ring radius and the waist radius of the input beam to 0.445. We discuss the beam propagation of the super-Gaussian beam and show that it has a confocal parameter three times larger than the one that would be obtained from a Gaussian beam. The experiments performed with a KGd(WO4)2 biaxial crystal are in good agreement with the theoretical predictions.

  2. Progress with Tevatron Electron Lens Head-On Beam-Beam Compensation

    International Nuclear Information System (INIS)

    Tevatron electron lenses have been successfully used to mitigate bunch-to-bunch differences caused by longrange beam-beam interactions. For this purpose, the electron beam with uniform transverse density distribution was used. Another planned application of the electron lens is the suppression of tune spread due to head-on beam-beam collisions. For this purpose, the transverse distribution of the E- beam must be matched to that of the antiproton beam. In 2009, the Gaussian profile electron gun was installed in one of the Tevatron electron lenses. We report on the first experiments with non-linear beam-beam compensation. Discussed topics include measurement and control of the betatron tune spread, importance of the beam alignment and stability, and effect of electron lens on the antiproton beam lifetime.

  3. Beam - cavity interaction beam loading

    International Nuclear Information System (INIS)

    The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)

  4. Frozen Beams

    CERN Document Server

    Okamoto, Hiromi

    2005-01-01

    In general, the temperature of a charged particle beam traveling in an accelerator is very high. Seen from the rest frame of the beam, individual particles randomly oscillate about the reference orbit at high speed. This internal kinetic energy can, however, be removed by introducing dissipative interactions into the system. As a dissipative process advances, the beam becomes denser in phase space or, in other words, the emittance is more diminished. Ideally, it is possible to reach a "zero-emittance" state where the beam is Coulomb crystallized. The space-charge repulsion of a crystalline beam just balances the external restoring force provided by artificial electromagnetic elements. In this talk, general discussion is made of coasting and bunched crystalline beams circulating in a storage ring. Results of molecular dynamics simulations are presented to demonstrate the dynamic nature of various crystalline states. A possible method to approach such an ultimate state of matter is also discussed.

  5. A fluor and wire-shadow diagnostic for low-energy ion beams

    International Nuclear Information System (INIS)

    A video diagnostic technique utilizing a fluorescent screen and a video camera has been developed to monitor the two-dimensional beam-intensity profile and angular divergence of low-energy (25-35 keV) ion beams. Detailed off-line analysis is used to compare and augment standard beam emittance data. Experimental results on 2-D beam profiles are presented

  6. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    International Nuclear Information System (INIS)

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region

  7. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Bonomo, F., E-mail: federica.bonomo@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Istituto Gas Ionizzati - CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Barbisan, M.; Pasqualotto, R.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Cristofaro, S. [Universitá degli Studi di Padova, Via 8 Febbraio 2, 35122 Padova (Italy)

    2015-04-08

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H{sub α} light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H{sub α} spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  8. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  9. Experimental study of proton beam halo in mismatched beams

    International Nuclear Information System (INIS)

    We report measurements of transverse beam-halo formation in mismatched proton beams in a 52-quadrupole FODO-transport channel following the 6.7 MeV RFQ at the Low-Energy Demonstration Accelerator (LEDA) at Los Alamos. Beam profiles in both transverse planes were measured using a new diagnostic device that consists of a movable carbon filament for measurement of the beam core, and scraper plates for measurement of the outer part of the distributions. The initial results indicate a surprisingly strong growth rate of the rms emittance even for the modest space-charge tune depressions of the experiment. Our results are consistent with the complete transfer of free energy of the mismatched beams into emittance growth within 10 envelope oscillations for both the breathing and the quadrupole modes.

  10. Beam shaping in high-power laser systems with using refractive beam shapers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2012-06-01

    Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications

  11. A prototype ionization profile monitor for RHIC

    International Nuclear Information System (INIS)

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM's). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests

  12. A prototype ionization profile monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Cameron, P.; Ryan, W. [and others

    1997-07-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  13. Standard beam PWC for Fermilab

    International Nuclear Information System (INIS)

    As one of its projects the Fermilab Experimental Areas Department has been designed and tested a relatively small proportional wire chamber for use in the secondary beam lines. It is intended to supplement the variety of detectors known in the vernacular as SWICS that are used to obtain profiles for beam tuning. The new detector, described in this report, operates in the limited proportional mode and allows experimenters to use a standard, lab supported device for associating trajectories of individual beam particles with events triggering their own experiment's apparatus. A completed triple plane module is shown

  14. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  15. Electronic beam steering of semiconductor injection lasers

    Science.gov (United States)

    Katz, J.

    1982-01-01

    A theoretical analysis of the problem of beam steering is presented. The required modifications of the dielectric constant profile of the laser structure were derived. A practical method for implementing the needed modifications is outlined.

  16. Space-variant polarized Airy beam

    CERN Document Server

    Chen, Hao

    2015-01-01

    We experimentally generate an Airy beam with polarization structure while keeping its original amplitude and phase profile intact. This class of Airy beam preserves the acceleration properties. By monitoring their initial polarization structure we have provided insight concerning the self-healing mechanism of Airy beams. We investigate both theoretically and experimentally the self-healing polarization properties of the space-variant polarized Airy beams. Amplitude as well as the polarization structure tends to reform during propagation in spite of the severe truncation of the beam by finite apertures.

  17. Self-reconstruction of diffraction-free and accelerating laser beams in scattering media

    International Nuclear Information System (INIS)

    We experimentally investigate propagation of laser beams with different intensity profiles in highly scattering media. We generate transverse laser amplitude profiles with Gaussian, Bessel and Airy function envelopes. We then propagate these beams through optical phantoms formed with variable density intralipid solutions. At the sample exit, we compare change in maximum intensities, as well as beam profile reconstruction. We show that self-reconstruction properties of Bessel and Airy beams bring about slower decrease in maximum intensity with increasing scatterer density. On the other hand, the beam profiles deteriorate faster, as compared to reference Gaussian beams. Slower decrease in the intensity can be attributed to the wavevector spectra providing a continuous flow of energy to the beam center, while beam deterioration is linked to total beam volume in the scattering medium. These results show that beam shaping methods can significantly enhance delivery of intense light deeper into turbid media, but this enhancement is compromised by stronger speckling of beam profiles. -- Highlights: ► We experimentally investigate propagation of shaped laser beams in turbid media. ► Peak intensity of Bessel and Airy beams decrease slower with increasing scatterer. ► Shaped beam profiles deteriorate faster, as compared to reference Gaussian beams. ► Shaped beam profiles can enhance applications of lasers inscattering media.

  18. Lipid Profile

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Lipid Profile Share this page: Was this page helpful? Also ... as: Lipid Panel; Coronary Risk Panel Formal name: Lipid Profile Related tests: Cholesterol ; HDL Cholesterol ; LDL Cholesterol ; Triglycerides ; ...

  19. Development of proton beam monitoring devices

    International Nuclear Information System (INIS)

    We develop an 1 channel ionization chamber for beam monitoring system of KOMAC 20/100 MeV proton accelerator with a crystal scintillator, and try to make Multi Functional detectors, which can cover wide range of proton current. After the development, it is possible to provide the beam information to KOMAC beam users. We also develop a fast neutron detector system to detect the proton recoil by the neutron in the beam line. This system can provide the neutron dose information to beam user for safety. The followings are our major study 1) Beam profile and energy monitoring by using scintillators 2) Development of 32 channel Charge integration Embedded DAQ board 3) 1 channel gas scintillation detector for pulse beam monitoring 4) Development of fast neutron detector. Results Our major achievements are as follows ; 1) XY distribution scanning of proton beam by using LYSO crystal scintillator, 2) Development of a 32 channel Charge integration Embedded DAQ board and test it on beam line, 3) Development of 1 channel gas scintillation detector for pulse beam monitoring and test at KOMAC beam line. 4) Development of fast neutron detectors such as liquid scintillator and stilbene and measured neutron at beam line. The most important achievements of this research are ; 1) We measured the timing structure of proton beam by using 1 ch gas scintillation detector, and 2) it was possible to scanning the XY distribution of proton beam at real time

  20. Quantitative comparison of self-healing ability between Bessel–Gaussian beam and Airy beam

    International Nuclear Information System (INIS)

    The self-healing ability during propagation process is one of the most important properties of non-diffracting beams. This ability has crucial advantages to light sheet-based microscopy to reduce scattering artefacts, increase the quality of the image and enhance the resolution of microscopy. Based on similarity between two infinite-dimensional complex vectors in Hilbert space, the ability to a Bessel–Gaussian beam and an Airy beam have been studied and compared. Comparing the evolution of the similarity of Bessel–Gaussian beam with Airy beam under the same conditions, we find that Bessel–Gaussian beam has stronger self-healing ability and is more stable than that of Airy beam. To confirm this result, the intensity profiles of Bessel–Gaussian beam and Airy beam with different similarities are numerically calculated and compared

  1. Quantitative comparison of self-healing ability between Bessel–Gaussian beam and Airy beam

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wei [Department of Physics and Information Engineering, Huaihua University, Huaihua 418008 (China); Chu, Xiuxiang, E-mail: xiuxiangchu@yahoo.com [School of Sciences, Zhejiang Agriculture and Forestry University, Lin’an 311300 (China)

    2015-09-15

    The self-healing ability during propagation process is one of the most important properties of non-diffracting beams. This ability has crucial advantages to light sheet-based microscopy to reduce scattering artefacts, increase the quality of the image and enhance the resolution of microscopy. Based on similarity between two infinite-dimensional complex vectors in Hilbert space, the ability to a Bessel–Gaussian beam and an Airy beam have been studied and compared. Comparing the evolution of the similarity of Bessel–Gaussian beam with Airy beam under the same conditions, we find that Bessel–Gaussian beam has stronger self-healing ability and is more stable than that of Airy beam. To confirm this result, the intensity profiles of Bessel–Gaussian beam and Airy beam with different similarities are numerically calculated and compared.

  2. Active Beam Spectroscopy

    Science.gov (United States)

    von Hellermann, M. G.; Delabie, E.; Jaspers, R. J. E.; Biel, W.; Marchuk, O.; Summers, H. P.; Whiteford, A.; Giroud, C.; Hawkes, N. C.; Zastrow, K. D.

    2008-03-01

    Charge eXchange Recombination Spectroscopy (CXRS) plays a pivotal role in the diagnostics of hot fusion plasmas and is implemented currently in most of the operating devices. In the present report the main features of CXRS are summarized and supporting software packages encompassing "Spectral Analysis Code CXSFIT", "Charge Exchange Analysis Package CHEAP", and finally "Forward Prediction of Spectral Features" are described. Beam Emission Spectroscopy (BES) is proposed as indispensable cross-calibration tool for absolute local impurity density measurements and also for the continuous monitoring of the neutral beam power deposition profile. Finally, a full exploitation of the `Motional Stark Effect' pattern is proposed to deduce local pitch angles, total magnetic fields and possibly radial electric fields. For the proposed active beam spectroscopy diagnostic on ITER comprehensive performance studies have been carried out. Estimates of expected spectral signal-to-noise ratios are based on atomic modelling of neutral beam stopping and emissivities for CXRS, BES and background continuum radiation as well as extrapolations from present CXRS diagnostic systems on JET, Tore Supra, TEXTOR and ASDEX-UG. Supplementary to thermal features a further promising application of CXRS has been proposed recently for ITER, that is a study of slowing-down alpha particles in the energy range up to 2 MeV making use of the 100 keV/amu DNB (Diagnostic Neutral Beam) and the 500 keV/amu HNB (Heating Neutral Beam). Synthetic Fast Ion Slowing-Down spectra are evaluated in terms of source rates and slowing-down parameters

  3. Creation of matter wave Bessel beams

    OpenAIRE

    Ryu, C.; Henderson, K. C.; Boshier, M. G.

    2013-01-01

    Bessel beams are plane waves with amplitude profiles described by Bessel functions. They are important because of their property of limited diffraction and their capacity to carry orbital angular momentum. Here we report the creation of a Bessel beam of de Broglie matter waves. The Bessel beam is produced by the free evolution of a thin toroidal atomic Bose-Einstein condensate (BEC) which has been set into rotational motion. By attempting to stir it at different rotation rates, we show that t...

  4. Molecular beams

    International Nuclear Information System (INIS)

    This book is a timeless and rather complete theoretical and experimental treatment of electric and magnetic resonance molecular-beam experiments for studying the radio frequency spectra of atoms and molecules. The theory of interactions of the nucleus with atomic and molecular fields is extensively presented. Measurements of atomic and nuclear magnetic moments, electric multipole moments, and atomic fine and hyperfine structure are detailed. Useful but somewhat outdated chapters on gas kinetics, molecular beam design, and experimental techniques are also included

  5. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    CERN Document Server

    Stancari, Giulio

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compens...

  6. Karolinske psychodynamic profile (KAPP)

    DEFF Research Database (Denmark)

    Mathiesen, Birgit Bork; Søgaard, Ulf

    psykologiske testmetoder, assesment, Karolinska psychodynamic profile (KAPP), psykodynamisk profil......psykologiske testmetoder, assesment, Karolinska psychodynamic profile (KAPP), psykodynamisk profil...

  7. Controlling nanowire emission profile using conical taper

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper;

    2008-01-01

    The influence of a conical taper on nanowire light emission is studied. For nanowires with divergent output beams, the introduction of tapers improves the emission profile and increase the collection efficiency of the detection optics.......The influence of a conical taper on nanowire light emission is studied. For nanowires with divergent output beams, the introduction of tapers improves the emission profile and increase the collection efficiency of the detection optics....

  8. Laser beam shaping theory and techniques, second edition

    CERN Document Server

    Dickey, Fred M

    2014-01-01

    Laser Beam Shaping: Theory and Techniques addresses the theory and practice of every important technique for lossless beam shaping. Complete with experimental results as well as guidance on when beam shaping is practical and when each technique is appropriate, the Second Edition is updated to reflect significant developments in the field. This authoritative text:Features new chapters on axicon light ring generation systems, laser-beam-splitting (fan-out) gratings, vortex beams, and microlens diffusersDescribes the latest advances in beam profile measurement technology and laser beam shaping using diffractive diffusersContains new material on wavelength dependence, channel integrators, geometrical optics, and optical softwareLaser Beam Shaping: Theory and Techniques, Second Edition not only provides a working understanding of the fundamentals, but also offers insight into the potential application of laser-beam-profile shaping in laser system design.

  9. Beam emittance and beam disruption

    International Nuclear Information System (INIS)

    Beam disruption during the collision of intense relativistic bunches has been studied by R. Hollebeek. In the case of oppositely charged bunches, focussing effects occur causing a decrease in the effective bunch cross section, and thereby an increase of luminosity by an enhancement factor H. The term disruption derives from the fact that the beam emittance changes markedly during the collision. 1 ref., 1 fig., 1 tab

  10. Hard and software registration for ionizing beams parameters

    International Nuclear Information System (INIS)

    TV-registration of the optical images of ionizing beams cross sections is used. Ionization detectors are used for visualization of the cross-section image. Commercial hardware for TV beam image digitizing is used for input information into computer. The codes for TV image processing give the possibility for numerical estimation of the size of the beam, the width of it's horizontal and vertical profiles, position of the gravity center of the beam. Statistical processing of the values of the beam gravity center using big amount of TV frames gives the error in the beam position of about some microns, while the width of the beam is about two millimeters

  11. A model based on the Fermi-Dirac distribution to determine the dose profile of a photon beam; Un modelo basado en la distribucion de Fermi-Dirac para determinar el perfil de dosis de un haz de fotones

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, R.; Silva, P.; Gutt, F.; Diaz, J. [Instituto Venezolano de Investigaciones Cientificas (IVIC), Laboratorio Secundario de Calibracion Dosimetrica (LSCD), Apartado 21827, Caracas 1020 A (Venezuela)

    1998-12-31

    The objective of this work is to propose a new model based in the Fermi-Dirac distribution, in which it is considered that the photon beams possess a particles behavior when they interact with the matter. (Author)

  12. Precise formation of geometrically focused ion beams

    International Nuclear Information System (INIS)

    Geometrically focused intense neutral beams for plasma diagnostic consist of many elementary beams formed by a multiaperture ion-optical system and aimed at the focal point. In real conditions, some of the elementary beams may have increased angular divergence and/or deviate from the intended direction, thus diminishing the neutral beam density at the focus. Several improvements to the geometrical focusing are considered in the article including flattening of the plasma profile across the emission surface, using of quasi-Pierce electrodes at the beam periphery, and minimizing the deviation of the electrodes from the spherical form. Application of these measures to the neutral beam Russian diagnostic injector developed in Budker Institute of Nuclear Physics allows an increase of neutral beam current density in the focus by ∼50%

  13. Intensity transformation of vector Bessel beams using a multilayer system

    OpenAIRE

    Novitsky, Andrey V.

    2008-01-01

    We theoretically investigate the generation of vector Bessel beams of the order m using a phase shifted superposition of TE and TM electromagnetic Bessel beams. Such Bessel beams are characterized by the intensity profile described by the superposition of squared Bessel functions of the orders m-1 and m+1.

  14. Generation of perfect vectorial vortex beams.

    Science.gov (United States)

    Li, Peng; Zhang, Yi; Liu, Sheng; Ma, Chaojie; Han, Lei; Cheng, Huachao; Zhao, Jianlin

    2016-05-15

    We propose the concept of perfect vectorial vortex beams (VVBs), which not merely have intensity profile independent of the polarization order and the topological charge of spiral phase, but also have stable intensity profile and state of polarization (SoP) upon propagation. Utilizing a Sagnac interferometer, we approximately generate perfect VVBs with locally linear and elliptical polarizations, and demonstrate that such beams can keep their intensity profile and SoP at a certain propagation distance. These proposed VVBs can be expanded to encode information and quantum cryptography, as well as to enrich the conversion of spin and orbital angular momenta. PMID:27176963

  15. Beam structure and transverse emittance studies of high-energy ion beams

    International Nuclear Information System (INIS)

    A visual diagnostic technique has been developed to monitor and study ion-beam structure, shape, and size along a transport line. In this technique, a commercially available fluorescent screen is used in conjunction with a video camera. The visual representation of the beam structure is digitized enhanced through false-color coding, and displayed on a TV monitor for on-line viewing. The digitized information is stored for further off-line processing (e.g.,extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of measuring transverse emittance (or angular spread). This technique allows real-time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position)

  16. Strip profile gauge

    International Nuclear Information System (INIS)

    An improved radiation gauge is described for measuring the thickness profile of strip. The system is such that the measurement is made more nearly across the width of the strip substantially at right angles to the direction of motion of the strip than is usual in such gauges. The system consists of an X-ray source on the side of the strip which produces a fan shaped beam, a number of detectors placed on the other side and data transmission and display devices. (UK)

  17. Fast-ion transport and neutral beam current drive in ASDEX upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Jacobsen, Asger Schou;

    2015-01-01

    The neutral beam current drive efficiency has been investigated in the ASDEX Upgrade tokamak by replacing on-axis neutral beams with tangential off-axis beams. A clear modification of the radial fast-ion profiles is observed with a fast-ion D-alpha diagnostic that measures centrally peaked profil...

  18. Restoring Aperture Profile At Sample Plane

    International Nuclear Information System (INIS)

    Off-line conditioning of full-size optics for the National Ignition Facility required a beam delivery system to allow conditioning lasers to rapidly raster scan samples while achieving several technical goals. The main purpose of the optical system designed was to reconstruct at the sample plane the flat beam profile found at the laser aperture with significant reductions in beam wander to improve scan times. Another design goal was the ability to vary the beam size at the sample to scan at different fluences while utilizing all of the laser power and minimizing processing time. An optical solution was developed using commercial off-the-shelf lenses. The system incorporates a six meter relay telescope and two sets of focusing optics. The spacing of the focusing optics is changed to allow the fluence on the sample to vary from 2 to 14 Joules per square centimeter in discrete steps. More importantly, these optics use the special properties of image relaying to image the aperture plane onto the sample to form a pupil relay with a beam profile corresponding almost exactly to the flat profile found at the aperture. A flat beam profile speeds scanning by providing a uniform intensity across a larger area on the sample. The relayed pupil plane is more stable with regards to jitter and beam wander. Image relaying also reduces other perturbations from diffraction, scatter, and focus conditions. Image relaying, laser conditioning, and the optical system designed to accomplish the stated goals are discussed

  19. High energy ion beam mixing

    International Nuclear Information System (INIS)

    Experimental investigations have been made on the parameters which can be used to control the mixing profiles, and the width of intermixed layers in film-substrate systems being irradiated by high energy heavy ion beams. The samples were irradiated by ion beams of Au, Cu, and Si with energies of 1.5 to 3 MeV. Typical examples of the RBS spectra are presented and discussions are made on the extent of contribution of binary collisions on the interfacial mixing. The experimental and simulation results show that the interfacial mixing is dominated by the binary collisions. (author)

  20. Beam-smoothing investigation on Heaven I

    Science.gov (United States)

    Xiang, Yi-huai; Gao, Zhi-xing; Tong, Xiao-hui; Dai, Hui; Tang, Xiu-zhang; Shan, Yu-sheng

    2007-01-01

    Directly driven targets for inertial confinement fusion (ICF) require laser beams with extremely smooth irradiance profiles to prevent hydrodynamic instabilities that destroy the spherical symmetry of the target during implosion. Such instabilities can break up and mix together the target's wall and fuel material, preventing it from reaching the density and temperature required for fusion ignition. 1,2 Measurements in the equation of state (EOS) experiments require laser beams with flat-roofed profiles to generate uniform shockwave 3. Some method for beam smooth, is thus needed. A technique called echelon-free induced spatial incoherence (EFISI) is proposed for producing smooth target beam profiles with large KrF lasers. The idea is basically an image projection technique that projects the desired time-averaged spatial profile onto the target via the laser system, using partially coherent broadband lighe. Utilize the technique, we developing beam- smoothing investigation on "Heaven I". At China Institute of Atomic Energy , a new angular multiplexing providing with beam-smoothing function has been developed, the total energy is 158J, the stability of energy is 4%, the pulse duration is 25ns, the effective diameter of focusing spot is 400um, and the ununiformity is about 1.6%, the power density on the target is about 3.7×10 12W/cm2. At present, the system have provided steady and smooth laser irradiation for EOS experiments.

  1. Beam transport

    International Nuclear Information System (INIS)

    The beam diagnostic components for both the transfer and the high-energy beamlines perform well except for some of the scanners whose noise pick-up has become a problem, especially at low beam intensities. This noise pick-up is primarily due to deterioration of the bearings in the scanner. At some locations in the high-energy beamlines, scanners were replaced by harps as the scanners proved to be practically useless for the low-intensity beams required in the experimental areas. The slits in the low-energy beamline, which are not water-cooled, have to be repaired at regular intervals because of vacuum leaks. Overheating causes the ceramic feedthroughs to deteriorate resulting in the vacuum leaks. Water-cooled slits have been ordered to replace the existing slits which will later be used in the beamlines associated with the second injector cyclotron SPC2. The current-measurement system will be slightly modified and should then be much more reliable. 3 figs

  2. Profiling cancer

    DEFF Research Database (Denmark)

    Ciro, Marco; Bracken, Adrian P; Helin, Kristian

    2003-01-01

    In the past couple of years, several very exciting studies have demonstrated the enormous power of gene-expression profiling for cancer classification and prediction of patient survival. In addition to promising a more accurate classification of cancer and therefore better treatment of patients......, gene-expression profiling can result in the identification of novel potential targets for cancer therapy and a better understanding of the molecular mechanisms leading to cancer....

  3. Simulation of Electron-Beam Generating Plasma at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    OUYANG Liang; LI Hong; LI Benben; ZHOU Junqing; YAN Hong; SU Tie; WANG Huihui; LIUWandong

    2007-01-01

    As electron-beam generating plasma is widely applied,the software tool EGS4(Electron-Gamma Shower) was used to simulate the transmission and energy deposition of electron-beam in air.The simulation results indicated that the range of the electron-beam was inversely proportional to the gas pressure in a wide range of gas pressure,and the electron-beam of 200 keV could generate a plasma with a density 1011 cm-3 in air of latm.In addition,the energy distribution of the beam-electron and plasma density profile produced by the beam were achieved.

  4. Proposal for the LHC beam dump upstream diagnostics monitor.

    CERN Document Server

    Variola, A

    2000-01-01

    A diagnostic system is proposed to monitor the beam dilution profile at the entrance of the LHC main beam dump. The monitor exploits two different types of optical photon emission: (a) luminescence on an alumina screen in the case of normal or partial beam dilution; (b) optical transition radiation by a carbon plate in case of a total dilution failure. Based on the analyses, this system is able to resolve with sufficient accuracy the beam location and to resist the beam load under any operating condition. An effective optical set-up of the beam imaging system is also proposed, providing a preliminary design of the diagnostic station.

  5. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  6. Airy beam optical parametric oscillator

    Science.gov (United States)

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  7. Airy beam optical parametric oscillator.

    Science.gov (United States)

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  8. Airy beam optical parametric oscillator

    Science.gov (United States)

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-05-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  9. Beam Instrumentation Global Network [BIGNET]: a common web portal for Beam instrumentalists

    CERN Document Server

    Gras, J-J

    2012-01-01

    This document will present an initiative launched during the International Particle Accelerator Conference (IPAC11) to define and produce a common web portal for Beam Instrumentation, with the aim of allowing any beam instrumentalist to easily and efficiently: - find the laboratories with machines using beams of similar characteristics (particle type, total beam intensity, bunch intensity, frequency, energy) - find the person who is working there on the beam observable concerned (i.e. beam position, loss, intensity, transverse or longitudinal profile, tune) and how to contact him/her - create discussion forums with the right audience on hot beam instrumentation topics or issues - advertise topical events and workshop - provide links towards documents describing system designs and performance assessments... This document will cover the status and prospects of the project with the aim to invite and welcome new laboratories to join the adventure.

  10. Beam-beam compensation studies in the Tevatron with electron lenses

    CERN Document Server

    Stancari, Giulio

    2013-01-01

    At the Fermilab Tevatron collider, we studied the feasibility of suppressing the antiproton head-on beam-beam tune spread using a magnetically confined 5-keV electron beam with Gaussian transverse profile overlapping with the circulating beam. When electron cooling of antiprotons was applied in regular Tevatron operations, the nonlinear head-on beam-beam effect on antiprotons was small. Therefore, we first focused on the operational aspects, such as beam alignment and stability, and on fundamental observations of tune shifts, tune spreads, lifetimes, and emittances. We also attempted two special collider stores with only 3 proton bunches colliding with 3 antiproton bunches, to suppress long-range forces and enhance head-on effects. We present here the results of this study and a comparison between numerical simulations and observations. These results contributed to the application of this compensation concept to RHIC at Brookhaven.

  11. Characterization of Laser Beam Shaping Optics Based on Their Ablation Geometry of Thin Films

    Directory of Open Access Journals (Sweden)

    Stefan Rung

    2014-10-01

    Full Text Available Thin film ablation with pulsed nanosecond lasers can benefit from the use of beam shaping optics to transform the Gaussian beam profile with a circular footprint into a Top-Hat beam profile with a rectangular footprint. In general, the quality of the transformed beam profile depends strongly on the beam alignment of the entire laser system. In particular, the adjustment of the beam shaping element is of upmost importance. For an appropriate alignment of the beam shaper, it is generally necessary to observe the intensity distribution near the focal position of the applied focusing optics. Systems with a low numerical aperture (NA can commonly be qualified by means of laser beam profilers, such as a charge-coupled device (CCD camera. However, laser systems for micromachining typically employ focus lenses with a high NA, which generate focal spot sizes of only several microns in diameter. This turns out to be a challenge for common beam profiling measurement systems and complicates the adjustment of the beam shaper strongly. In this contribution, we evaluate the quality of a Top-Hat beam profiling element and its alignment in the working area based on the ablated geometry of single pulse ablation of thin transparent conductive oxides. To determine the best achievable adjustment, we develop a quality index for rectangular laser ablation spots and investigate the influences of different alignment parameters, which can affect the intensity distribution of a Top-Hat laser beam profile.

  12. Experimental characterization of beam quality of a Yb:YAG thin disk laser

    Science.gov (United States)

    Kazemi, S.; Mahdieh, M. H.

    2015-02-01

    In this paper we investigate the effects of cooling water temperature and pumping diode laser beam profile on the disk laser beam quality. The results show that both issues are important and can influence the beam quality but at the conditions of our experiment these issues do not affect the beam quality significantly.

  13. Seconday-emission profile monitors at LEAR injection

    CERN Multimedia

    1982-01-01

    This is a view against the direction of the beams. Through the right, smaller, opening the beams (protons, antiprotons, H-, later Pb-ions) entered and, after being put on central orbit with septum and kicker, reappeared as circulating beam through the left, larger, opening. Horizontal and vertical position and density profile of the incoming beam were measured with secondary emission grids. The same measurements were made on the beam after it had completed the first turn in the machine. For this purpose it was prevented from circulating with a beam stopper, mounted through the port at left (not mounted at the time the picture was taken).

  14. Beam-induced tensor pressure tokamak equilibria

    International Nuclear Information System (INIS)

    D-shaped tensor pressure tokamak equilibria induced by neutral-beam injection are computed. The beam pressure components are evaluated from the moments of a distribution function that is a solution of the Fokker-Planck equation in which the pitch-angle scattering operator is ignored. The level-psub(perpendicular) contours undergo a significant shift away from the outer edge of the device with respect to the flux surfaces for perpendicular beam injection into broad-pressure-profile equilibria. The psub(parallel) contours undergo a somewhat smaller inward shift with respect to the flux surfaces for both parallel and perpendicular injection into broad-pressure-profile equilibria. For peaked-pressure-profile equilibria, the level pressure contours nearly co-incide with the flux surfaces. (author)

  15. Study on the beam transport from the Bio-Nano ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Oshima, K. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Racz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Asaji, T. [Tateyama Machine Co., Ltd., 30 Shimonoban, Toyama-shi, Toyama 930-1305 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2012-02-15

    The beam transport of N{sup +} ion and C{sub 60}{sup +} ion in the Bio-Nano ECRIS with min-B configuration was investigated based on the ion beam profiles. The N{sup +} beam could be focused under the low-beam current conditions. Also the C{sub 60}{sup +} beam could be focused in spite of the large space-charge effect which will lead the divergence of the beam. We confirmed that our beam transport system works well even for the C{sub 60}{sup +} ion beam. We estimated the highest C{sub 60}{sup +} beam current with the focused beam profile by comparing the N{sup +} ion beam.

  16. Optics of electron beam in the Recycler

    International Nuclear Information System (INIS)

    Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of ∼0.2 A or higher DC electron beam have to be parallel in the cooling section, within ∼0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as ∼0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analyzed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved

  17. Silicon nitride layers on tool steel produced by ion beam mixing and ion beam assisted deposition

    International Nuclear Information System (INIS)

    Silicon nitride layers on tool steel are produced both, by Kr+ implantation into reactively sputtered Si3N4 on steel (ion beam mixing) and N2+ implantation into evaporated Si on steel (ion beam assisted deposition). Atomic concentration profiles of Fe and Si measured by RBS and XPS show interface mixing. After ion beam assisted deposition complete Si-N compound formation takes place as shown by XPS. Ion beam mixing of Si3N4/steel decreases the etch rate in hydrochloric acid by 50% with respect to uncovered steel. After flash lamp annealing the ion irradiated silicon nitride layer becomes stable against the aggressive acid used. (author)

  18. Helico-conical beams for generating optical twisters

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Daria, Vincent Ricardo Mancao

    2010-01-01

    We describe a diffracting beam with orbital angular momentum (DAM) but with a helical profile in both phase and amplitude of the beam. This is different from Laguerre-Gaussian (LG) beams where only the phase component has a helical profile. The beam we describe here is initially characterized with...... an apodized helical phase front at the outskirts and linearly scaled towards no phase singularity at the centre of the beam. At the focal volume, we show that our beam fonms an intensity distribution that can be accurately described as an "optical twister" as it propagates along the optical axis....... Unlike LG beams, an optical twister can have minimal changes in radius but with a scalable DAM. Furthenmore, we characterize the DAM in tenms of its capacity to introduce spiral motion on particles trapped along its orbit. We also show that our "optical twister" maintains a high concentration of photons...

  19. Ion-optically driven depth compensation for ion beam tracking

    International Nuclear Information System (INIS)

    The beam delivery system for scanned carbon ion beam radiotherapy at GSI has been extended in research mode to irradiate moving targets. For beam tracking, the ion beam is adapted laterally as well as in range corresponding to the target's three dimensional (3D) motion. A beam tracking system with a motorized double wedge system for fast and accurate range adaptation has been developed. In addition to the current range adaptation system a much faster method for online energy modulation is being investigated where a fine focused ion beam is dynamically positioned, controlled by fast dipole magnets, on a small static wedge shaped absorber within the beam line. Experiments were performed at the therapy beam line to study the beam shift from central axis by the first dipole magnet up to the maximum limit where the beam can be deflected back to central axis by the second dipole magnet. Beam profiles were measured at different locations of the beam delivery system. The particle transmission was measured as well at the target position. Experiments were supported by Monte Carlo simulations for energy variation studies and for assessing the influence on beam profiles using MOCADI code

  20. Profile video

    Science.gov (United States)

    Voglewede, Paul E.; Zampieron, Jeffrey

    2009-05-01

    For unattended persistent surveillance there is a need for a system which provides the following information: target classification, target quantity estimate, cargo presence and characterization, direction of travel, and action. Over highly bandwidth restricted links, such as Iridium, SATCOM or HF, the data rates of common techniques are too high, even after aggressive compression, to deliver the required intelligence in a timely, low power manner. We propose the following solution to this data rate problem: Profile Video. Profile video is a new technique which provides all of the required information in a very low data-rate package.

  1. Beam propagation

    International Nuclear Information System (INIS)

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  2. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  3. Wide HI profile galaxies

    CERN Document Server

    Brosch, Noah; Zitrin, Adi

    2011-01-01

    We investigate the nature of objects in a complete sample of 28 galaxies selected from the first sky area fully covered by ALFALFA, being well-detected and having HI profiles wider than 550 km/s. The selection does not use brightness, morphology, or any other property derived from optical or other spectral bands. We investigate the degree of isolation, the morphology, and other properties gathered or derived from open data bases and show that some objects have wide HI profiles probably because they are disturbed or are interacting, or might be confused in the ALFALFA beam. We identify a sub-sample of 14 galaxies lacking immediate interacting neighbours and showing regular, symmetric, two-horned HI profiles that we propose as candidate high-mass disk systems (CHMDs). We measure the net-Halpha emission from the CHMDs and combine this with public multispectral data to model the global star formation (SF) properties of each galaxy. The Halpha observations show SFRs not higher than a few solar masses per year. Sim...

  4. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  5. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  6. 2D potential measurements by applying automatic beam adjustment system to heavy ion beam probe diagnostic on the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, A., E-mail: akihiro@nifs.ac.jp; Ido, T.; Kato, S.; Hamada, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kurachi, M.; Makino, R. [Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nishiura, M. [Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561 (Japan); Nishizawa, A. [Pesco Corporation Limited, Toki, Gifu 509-5123 (Japan)

    2014-11-15

    Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (∼20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.

  7. Transverse Beam Matching Application for SNS

    CERN Document Server

    Chu, Chungming; Jeon Dong Oh; Plum, Michael

    2005-01-01

    An automated transverse beam matching application has been developed for the Spallation Neutron Source (SNS) beam transport lines. The application is written within the XAL Java framework and the matching algorithm is based on the simplex optimization method. Other functionalities, such as emittance calculated from profile monitor measurements (adopted from a LANL Fortran code), profile monitor display, and XAL on-line model calculation, are also provided by the application. Test results obtained during the SNS warm linac commissioning will be reported. A comparison between the emittances obtained from this application and an independent Trace-3D routine will also be shown.

  8. Profile counting

    International Nuclear Information System (INIS)

    In ''profile counting'', a counter is moved progressively along the whole length of the body, and is so collimated that, at each position, it records the radioisotope content of the whole width of the body, but of only a short section of its length. If the counting rate at each position is plotted against the distance of the counter from the vertex of the head, the ''profile'' so obtained gives a rapid and quantitative measure of the radioisotope distribution throughout the body. When a suitable isotope is selectively concentrated in certain organs or tissues of the body, the profile will show peaks indicative of the sites and extent of such concentration, the organs concerned being identified by two-dimensional mapping, and profile counts continued to follow the turnover or changes of concentration in these organs. This technique has been used in the study of I131 concentration and metabolism in thyroid carcinomata, and its value in the management of the radioiodine treatment of such tumours will be discussed. It has also been used in examining the distribution of labelled thyroxine and triiodothyronine after intravenous administration, and of yttrium-90 oxide particles after intrapulmonary artery injection; and of other isotopes by gamma radiation or bremsstrahlung. The method gives a clinically convenient simplification of whole body mapping which lends itself particularly to the quantitative comparison of isotope distribution at different intervals after a radioisotope dose, or after successive doses. (author)

  9. 15N nuclear reaction analysis for hydrogen profiling at TIT 4.75 MV Van de Graaff

    International Nuclear Information System (INIS)

    A 15N beam line has been upgraded by installing a new analyzing magnet and by controlling beam parameters with a computer. An improved beam intensity of ∼ 20 pnA has realized a detection sensitivity of 1020 H · cm-3 in the hydrogen profilling. The hydrogen profiles have been measured by the 15N nuclear reaction for TiHx and TiHx-Au samples. These profiles are compared with the profiles obtained by SIMS. (author)

  10. ITER Neutral Beam Injection System

    International Nuclear Information System (INIS)

    A Japanese design proposal of the ITER Neutral Beam Injection System (NBS) which is consistent with the ITER common design requirements is described. The injection system is required to deliver a neutral deuterium beam of 75MW at 1.3MeV to the reactor plasma and utilized not only for plasma heating but also for current drive and current profile control. The injection system is composed of 9 modules, each of which is designed so as to inject a 1.3MeV, 10MW neutral beam. The most important point in the design is that the injection system is based on the utilization of a cesium-seeded volume negative ion source which can produce an intense negative ion beam with high current density at a low source operating pressure. The design value of the source is based on the experimental values achieved at JAERI. The utilization of the cesium-seeded volume source is essential to the design of an efficient and compact neutral beam injection system which satisfies the ITER common design requirements. The critical components to realize this design are the 1.3MeV, 17A electrostatic accelerator and the high voltage DC acceleration power supply, whose performances must be demonstrated prior to the construction of ITER NBI system. (author)

  11. Triple ion beam irradiation facility

    International Nuclear Information System (INIS)

    A unique ion irradiation facility consisting of three accelerators is described. The accelerators can be operated simultaneously to deliver three ion beams on one target sample. The energy ranges of the ions are 50 to 400 keV, 200 keV to 2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the appropriate mass range can be simultaneously implanted to the same depth in a target specimen as large as 100 mm2 in area. Typical depth ranges are 0.1 to 1.0 μm. The X-Y profiles of all three ion beams are measured by a system of miniature Faraday cups. The low-voltage accelerator can periodically ramp the ion beam energy during the implantation. Three different types of target chambers are in use at this facility. The triple-beam high-vacuum chamber can hold nine transmission electron microscopy specimens at elevated temperature during a irradiation by the three simultaneous beams. A second high-vacuum chamber on the medium-voltage accelerator beamline houses a low- and high-temperature translator and a two-axis goniometer for ion channeling measurements. The third chamber on the high-energy beamline can be gas-filled for special stressed specimen irradiations. Special applications for the surface modification of materials with this facility are described. Appendixes containing operating procedures are also included. 18 refs., 27 figs., 1 tab

  12. Photon collider beam simulation with CAIN

    Indian Academy of Sciences (India)

    Aleksander Filip Żarnecki

    2007-11-01

    The CAIN simulation program was used to study the outgoing beam profile for the photon collider at ILC. The main aim of the analysis was to verify the feasibility of the photon linear collider running with 20 mrad electron beam crossing angle. The main problem is the distorted electron beam, which has to be removed from the interaction region. It is shown that with a new design of the final dipole, it should be possible to avoid large energy losses at the face of the magnet.

  13. Beam steering using quadrupoles as position monitors

    International Nuclear Information System (INIS)

    An algorithm is proposed to center the beam in the quadrupoles of a transfer line, by changing the focusing strength of a quadrupole and observing the resulting position shift on a monitor downstream. The observed position shift depends linearly on the beam position offset in the quadrupole, provided the phase advance between the quadrupole and the monitor is not a multiple of π. The same monitor may thus be used to center the beam in several places of the beam line. The centering accuracy depends on the resolution of the monitor and on the quadrupole current increment which can be set in such a way that the beam profile remains sufficiently peaked to determine its mean position

  14. Plasma heating by a relativistic electron beam

    International Nuclear Information System (INIS)

    This thesis is devoted to the interaction of a Relativistic Electron Beam (REB) with a plasma. The goal of the experiment described herein is to study in detail the mechanism of energy transfer from the beam to the plasma. The beam particles have an energy of 800 keV, a current of 6 kA, a diameter of 3 cm and an adjustable pulse length of 50-150 ns. This beam is injected into cold hydrogen and helium plasmas with densities ranging from 1018 to 1020 m-3. First, the technical aspects of the experiment are described. Then measurements on the hf fields excited by the REB-plasma are presented (optical line profiles and spectra of beam electrons). The final section is devoted to plasma heating. (Auth.)

  15. Measuring emittance using beam position monitors

    International Nuclear Information System (INIS)

    The Los Alamos Advanced Free Electron Laser uses a high charge (greater than InC), low emittance (normalized rams emittance less than 5π mm mrad) photoinjector driven accelerator. The high brightness achieved is due, in large part, to the rapid acceleration of the electrons to relativistic velocities. As a result, the beam does not have time to thermalize its distribution and its universe profile is, in general, non-Gaussian. This, coupled with the very high brightness, makes it difficult to measure the transverse emittance. Techniques used must be able to withstand the rigors of very intense electron beams, and not be reliant on Gaussian assumptions. Beam position monitors are ideal for this. They are not susceptible to beam damage, and it has been shown previously that they can be used to measure the transverse emittance of a beam with a Gaussian profile. However, this Gaussian restriction is not necessary and, in fact, a transverse emittance measurement using beam position monitors is independent of the beam's distribution

  16. Limits to the resolution of beam size measurement from fluorescent screens due to the thickness of the phosphor

    International Nuclear Information System (INIS)

    This paper discusses the use of fluorescent screens for the measurement of beam profiles on non-circulating particle beams. An expression for the intensity of the beam profile as a function of phosphor thickness is given. 3 refs., 8 figs

  17. Beam characterization at the Neutron Radiography Reactor

    International Nuclear Information System (INIS)

    Highlights: • The project characterized the beam at the Neutron Radiography Reactor. • Experiments indicate that the neutron energy spectrum model may not be accurate. • The facility is a category I radiography facility. • The beam divergence and effective collimation ratio are 0.3 ± 0.1° and >125. • The predicted total neutron flux at the image plane is 5.54 × 106 n/cm2 s. -- Abstract: The quality of a neutron-imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, potential image quality, and beam divergence, is vital for producing quality radiographic images. This paper provides a characterization of the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and potential image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. The NRAD has an effective collimation ratio greater than 125, a beam divergence of 0.3 ± 0.1°, and a gold foil cadmium ratio of 2.7. The flux profile has been quantified and the facility is an ASTM Category 1 radiographic facility. Based on bare and cadmium covered foil activation results, the neutron energy spectrum used in the current MCNP model of the radiography beamline over-samples the thermal region of the neutron energy spectrum

  18. Multiple-beam Propagation in an Anderson Localized Optical Fiber

    CERN Document Server

    Karbasi, Salman; Mafi, Arash

    2012-01-01

    We investigate the simultaneous propagation of multiple beams in a disordered Anderson localized optical fiber. The profiles of each beam fall off exponentially, enabling multiple channels at high-density. We examine the influence of fiber bends on the movement of the beam positions, which we refer to as drift. We investigate the extent of the drift of localized beams induced by macro-bending and show that it is possible to design Anderson localized optical fibers which can be used for practical beam-multiplexing applications.

  19. Beam-driven and bootstrap currents in JT-60 upgrade

    International Nuclear Information System (INIS)

    We recently performed beam-driven current-drive experiments with a low fraction of bootstrap currents in a wide range of plasma parameters in JT-60 upgrade. The evidence of current profile modification by the beam-driven current with tangential neutral beam injectors. A high βN, high βp and ELMy H-mode plasma with possibly fully non-inductive current-drive by beam-driven and bootstrap currents was maintained for a considerably long duration with the combined injection of quasi-perpendicular and co-tangential beams. (author) 4 refs., 7 figs

  20. n_TOF New target commissioning and beam characterization

    CERN Multimedia

    Igashira, M

    A full characterization of the neutron beam and experimental conditions for measurement with the new spallation target installed at the n_TOF facility is proposed. In a first step, the behavior the target assembly under the proton beam irradiation will be investigated, in order to complete the target commissioning. Subsequently the neutron beam parameters required to analyze the physics measurements, i.e. neutron fluence, beam profile, energy resolution function and beam related backgrounds as a function of the neutron energy, will be determined.

  1. Propagation of Gauss-Bessel beams in turbulent atmosphere

    Institute of Scientific and Technical Information of China (English)

    Chen Bao-Suan; Pu Ji-Xiong

    2009-01-01

    This paper studies the propagation properties of Gauss鈥擝essel beams in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle, it derives the intensity distribution expression for such beams propagating in a turbulent atmosphere. Then the influence of turbulence and source beam parameters on the beam propagation is studied in great detail. It finds that the intensity distribution of Gauss-Bessel beams will change into Gaussian profile in a turbulent atmosphere, and that stronger turbulence and smaller topological charges will lead to a faster changing.

  2. Lithium beam characterization of cylindrical PBFA II hohlraum experiments

    International Nuclear Information System (INIS)

    Sandia National Laboratories is actively engaged in exploring indirect-drive inertial confinement fusion on the Particle Beam Fusion Accelerator (PBFA II) with pulsed-power accelerated lithium ions as the driver. Experiments utilizing cylindrical hohlraum targets were conducted in 1994. Using the incoming ion beam-induced line radiation from titanium wires surrounding these hohlraums, beam profiles during these experiments have been measured and characterized. These data, their comparison/cross-correlation with particle-based beam diagnostics, and an analysis of the beam parameters that most significantly influence target temperature are presented

  3. First measurements with the test stand for optical beam tomography

    OpenAIRE

    Wagner, Christopher; Meusel, Oliver; Ulrich, Ratzinger; Reichau, Hermine

    2011-01-01

    A test stand for optical beam tomography was developed. As a new non-destructive beam-diagnostic system for high current ion beams, the test stand will be installed in the low energy beam transport section (LEBT) of the Frankfurt Neutron Source (FRANZ) behind the chopper system. The test stand consists of a rotatable vacuum chamber with a mounted CCD camera. The maximum rotation angle amounts to 270°. In a first phase the optical beam profile measurement and 3D density reconstruction is teste...

  4. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  5. Micro computer aided beam transport for the SF cyclotron

    International Nuclear Information System (INIS)

    An improvement of the beam transport system for the SF cyclotron is described. The system was designed to handle on-line alignment of the beam extracted from the SF cyclotron onto the optical axis of the transport line. It also enables to measure the beam emittance. The measurement of the emittance parameters is in particular necessary to calculate the beam optics. The calculation has been modified to become easy to handle. With the help of the computer-aided on-line beam profile measurement system, the operation of the beam transport system is very subservient to shorten the beam-tuning time and to improve the beam-transmission efficiency and the quality. (author)

  6. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  7. Analytical Solutions for Beams Passing Apertures with Sharp Boundaries

    CERN Document Server

    Luz, Eitam; Malomed, Boris A

    2016-01-01

    An approximation is elaborated for the paraxial propagation of diffracted beams, with both one- and two-dimensional cross sections, which are released from apertures with sharp boundaries. The approximation applies to any beam under the condition that the thickness of its edges is much smaller than any other length scale in the beam's initial profile. The approximation can be easily generalized for any beam whose initial profile has several sharp features. Therefore, this method can be used as a tool to investigate the diffraction of beams on complex obstacles. The analytical results are compared to numerical solutions and experimental findings, which demonstrates high accuracy of the approximation. For an initially uniform field confined by sharp boundaries, this solution becomes exact for any propagation distance and any sharpness of the edges. Thus, it can be used as an efficient tool to represent the beams, produced by series of slits with a complex structure, by a simple but exact analytical solution.

  8. Customised Mode Profiles Using Functional Materials

    CERN Document Server

    Gratus, Jonathan; Letizia, Rosa; Boyd, Taylor

    2016-01-01

    We show how to control the field profile on a sub-wavelength scale using a customised permittivity variation in a functional medium, thus avoiding the need to e.g. synthesize the shape from its Fourier harmonics. For applications such as beam dynamics, requiring field profile shaping in free space, we show that it is possible to achieve this despite using a slot in the medium.

  9. Spatial properties of a terahertz beam generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Wang, Tianwu; Buron, Jonas Christian Due;

    2013-01-01

    We present a spatial characterization of terahertz (THz) beams generated from a two-color air plasma under different conditions by measuring full 3D beam profiles using a commercial THz camera. We compare two THz beam profiles emitted from plasmas generated by 35 fs and 100 fs laser pulses, and...... reduces the beam waist, and that the beam spot shape changes from Lorentzian to Gaussian. Finally, we observe a forward-propagating Gaussian THz beam by spatially filtering away the conical off-axis radiation with a 1 cm aperture....... show that the spatial properties of the two THz beams do not change significantly. For the THz beam profile generated by the 35 fs pulse, the spatial effect of eliminating the lower frequencies is investigated by implementing two crossed polarizers working as a high-pass filter. We show that this...

  10. Influence of injection beam emittance on beam transmission efficiency in a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Kashiwagi, Hirotsugu; Miyawaki, Nobumasa; Yoshida, Ken-Ichi; Okumura, Susumu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    The JAEA AVF cyclotron accelerates various kinds of high-energy ion beams for research in biotechnology and materials science. Beam intensities of an ion species of the order of 10{sup −9}–10{sup −6} ampere are often required for various experiments performed sequentially over a day. To provide ion beams with sufficient intensity and stability, an operator has to retune an ion source in a short time. However, the beam intensity downstream of the cyclotron rarely increases in proportion to the intensity at the ion source. To understand the cause of this beam behavior, transmission efficiencies of a {sup 12}C{sup 5+} beam from an electron cyclotron resonance ion source to the cyclotron were measured for various conditions of the ion source. Moreover, a feasible region for acceleration in the emittance of the injection beam was clarified using a transverse-acceptance measuring system. We confirmed that the beam emittance and profile were changed depending on the condition of the ion source and that matching between the beam emittance and the acceptance of the cyclotron was degraded. However, after fine-tuning to improve the matching, beam intensity downstream of the cyclotron increased.

  11. MPI Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Han, D K; Jones, T R

    2005-02-11

    The Message Passing Interface (MPI) is the de facto message-passing standard for massively parallel programs. It is often the case that application performance is a crucial factor, especially for solving grand challenge problems. While there have been many studies on the scalability of applications, there have not been many focusing on the specific types of MPI calls being made and their impact on application performance. Using a profiling tool called mpiP, a large spectrum of parallel scientific applications were surveyed and their performance results analyzed.

  12. Numerical investigation of hose instability of a Bennet beam

    International Nuclear Information System (INIS)

    The hose instability is examined numerically for an unmodulated beam with the Bennett current profile J(r) α (1 + r2/a2)-2. Channel conductivity sigma(r) is also of this form. The dispersion relation of Lee shows excellent agreement with numerical results. Transient behavior of beam is studied and found consistent with Lee's work

  13. Compact Measurement Station for Low Energy Proton Beams

    CERN Document Server

    Yildiz, H; Oz, S; Yasatekin, B; Turemen, G; Ogur, S; Sunar, E; Aydin, Y A; Dimov, V A; Unel, G; Alacakir, A

    2016-01-01

    A compact, remote controlled, cost efficient diagnostic station has been developed to measure the charge, the profile and the emittance for low energy proton beams. It has been installed and tested in the proton beam line of the Project Prometheus at SANAEM of the Turkish Atomic Energy Authority.

  14. Arbitrary laser beam propagation in free space

    Science.gov (United States)

    Arpali, Çağlar; Baykal, Yahya; Nakiboğlu, Cem

    2009-08-01

    The propagation of arbitrary laser beams in free space is examined. For this purpose, starting with an incident field of arbitrary field distribution, the intensity at the receiver plane is formulated via Huygens Fresnel diffraction integral. Arbitrary source field profile is produced by decomposing the source into incremental areas (pixels). The received field through the propagation in free space is found by superposing the contributions from all source incremental areas. The proposed method enables us to evaluate the received intensity originating from any type of source field. Using the arbitrary beam excitation, intensity of various laser beams such as cos-Gaussian, cosh-Gaussian, general type beams are checked to be consistent with the already existing results in literature, and the received intensity distributions are obtained for some original arbitrary beam field profiles. Our received intensity formulation for the arbitrary source field profiles presented in this paper can find application in optics communication links, reflection from rough surfaces, optical cryptography and optical imaging systems.

  15. Applications of cylindrical vector beams for optical micromanipulation

    OpenAIRE

    Skelton, S. E.

    2013-01-01

    Cylindrical vector beams (CVBs) are the class of laser beams which exhibit azimuthal symmetry in their polarisation structure. These beams exhibit a `donut' intensity profile due to an on-axis polarisation vortex. CVBs have received significant recent interest due to their similarities to the modes of an optical fibre and their interesting focusing properties in the limit of high numerical aperture. This thesis contains an investigation into the properties of CVBs and their applications for o...

  16. High Density Pulsed Molecular Beam for Cold Ion Chemistry

    OpenAIRE

    Kokish, M. G.; V.Rajagopal; Marler, J. P.; Odom, B. C.

    2014-01-01

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this manuscript, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions ...

  17. Gaussian Content as a Laser Beam Quality Parameter

    OpenAIRE

    Ruschin, Shlomo; Yaakobi, Elad; Shekel, Eyal

    2011-01-01

    We propose the Gaussian Content as an optional quality parameter for the characterization of laser beams. It is defined as the overlap integral of a given field with an optimally defined Gaussian. The definition is specially suited for applications where coherence properties are targeted. Mathematical definitions and basic calculation procedures are given along with results for basic beam profiles. The coherent combination of an array of laser beams and the optimal coupling between a diode la...

  18. Sharpness changes of gaussian beams induced by spherically aberrated lenses

    Science.gov (United States)

    Piquero, G.; Mejías, P. M.; Martínez-Herrero, R.

    1994-04-01

    Sharpness changes of the spatial profile of a gaussian beam induced by spherically aberrated lenses are investigated in terms of the so-called kurtosis parameter. It is shown both theoretically and experimentally that, after a single aberrated lens, it is possible to get flatter and sharper beam intensity distributions than the input gaussian beam depending on the plane where the field is observed. Agreement between analytical and experimental results is discussed.

  19. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  20. Profile analysis of microparticles

    International Nuclear Information System (INIS)

    Depth resolved analyses of several types of microparticles are presented. Particles for secondary ion mass spectrometry (SIMS) depth profile analysis were collected in the working environment of glass plant, steelworks and welding station using eight-stage cascade impactor with particle size range of 0.3 μm to 15 μm. Ion beam sputtering and sample rotation technique allowed to describe morphology i.e. the elemental structure of collected sub-micrometer particles. Also model particles Iriodin 221 (Merck) were depth profiled. The core-shell structure is found for all types of investigated particles. Steelworks particles consist mainly of iron and manganese cores. At the shells of these microparticles: lead, chlorine and fluorine are found. The particles collected in the glass-works consist mainly of lead-zirconium glass cores covered by carbon and copper. Stainless-steel welding particles compose of iron, manganese and chromium cores covered by a shell rich in carbon, chlorine and fluorine. Sample rotation technique applied in SIMS appears to be an effective tool for environmental microparticle morphology studies

  1. A symplectic coherent beam-beam model

    International Nuclear Information System (INIS)

    We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs

  2. Literature in Focus Beta Beams: Neutrino Beams

    CERN Document Server

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  3. Diffraction analysis of beams for barcode scanning

    Science.gov (United States)

    Eastman, Jay M.; Quinn, Anna M.

    1991-02-01

    Laser based bar code scanners utilize large f/# beams to attain a large depth of focus. The intensity cross-section of the laser beam is generally not uniform but is frequently approximated by a Gaussian intensity profile. In the case of laser diodes the beam cross-section is a two dimensional distribution. It is well known that the focusing properties of large f/# Gaussian beams differ from the predictions of ray tracing techniques. Consequently analytic modeling of laser based bar code scanning systems requires techniques based on diffraction rather than on ray tracing in order to obtain agreement between theory and practice. The line spread function of the focused laser beam is generally the parameter of interest due to the one-dimensional nature of the bar code symbol. Some bar code scanners utilize an anamorphic optical system to produce a beam that that maintains an elliptical cross-section over an extended depth of focus. This elliptical beam shape is used to average over voids and other printing defects that occur in real world symbols. Since the scanner must operate over the maximum possible depth of field the beam emergent from the scanner must be analyzed in both its near field and far field regions in order to properly model the performance of the scanner.

  4. Industrial Products for Beam Instrumentation

    CERN Document Server

    Schmickler, Hermann

    2001-01-01

    In various branches of high technology industry there has been considerable progress in the past years which could be used for beam instrumentation. The subject will be introduced by two short demonstrations: a demonstration of modern audio electronics with 24bit-96kHz ADC, digital signal electronics and application programs under windows on a PC, which allow to change the parameters of the signal treatment. Potential applications are data monitoring at constant sampling frequency, orbit feedbacks (including high power audio amplifiers), noise reduction on beam current transformers... digital treatment of video signals webcams, frame grabbers, CCD-data via USB, all one needs for image acquisitions, in particular interesting for profile measurements. These introductory demonstrations will not last longer than 30 minutes. The remaining time will be used to pass through the audience collecting information into a two dimensional table, which shall contain as row index the accelerator and as column index the t...

  5. Beam emittance reconstructions at the KFUPM 350 keV ion accelerator

    International Nuclear Information System (INIS)

    We successfully reconstructed the horizontal and vertical beam emittances of a 160 keV low-intensity deuteron ion beam from the Energy Research Laboratory's low intensity duoplasmatron deuteron ion source. Reconstructions were made from horizontal and vertical beam width measurements. These measurements were done using only one quadrupole triplet and a beam profile monitor situated towards the end of the 45 beam line of the 350 kV ion accelerator. The deuteron beam emittances were εh = 67 π mm-mrad and εv = 4π mm-mrad at 90% of the beam. (orig.)

  6. Beam-beam interaction in high energy linear electron-positron colliders

    International Nuclear Information System (INIS)

    The interaction of high energy electron and positron beams in a linear collider has been investigated using a macroparticle Monte Carlo method based on a Cloud-In-Cells plasma simulation scheme. Density evolutions, luminosities, energy and angular distributions for electrons (positrons) and synchrotron photons are calculated. Beside beams with a symmetric transverse profile also flat beams are considered. A reasonably good agreement to alternative computer calculations as well as to an analytical approximation for the energy spectrum of synchrotron photons has been obtained. (author)

  7. Beam diagnostics using transition radiation produced by a 100 Mev electron beam

    International Nuclear Information System (INIS)

    We report on several experiments using the optical transition radiation (OTR) produced by a 100 MeV electron beam. In using a sensitive video camera coupled with a digital image processing system an accurate and simple beam profile monitor has been devised. In measuring with a photo-multiplier the radiation emitted in a small solid angle around the direction of the OTR emission, a signal very sensitive to beam energy variations has been obtained. These experiments have been carried out on the Saclay ALS linac

  8. Comparing TARA endplugs with deuterium and hydrogen neutral beams

    International Nuclear Information System (INIS)

    A radial Fokker-Planck code is used to examine neutral beam injection into the endplugs of the TARA tandem mirror experiment. The radial code developed by Futch is used to study the time-dependent density profiles in a plug. The location of the neutral beam footprint with respect to the plasma axis is seen to effect importantly the radial plasma profile. We vary the beam current, energy and assumed time-dependent edge neutral pressure. The electron temperature which is fixed by the central cell energy balance is held constant. Due to its larger gyro-radius deuterium is seen to produce a broader plasma which takes longer to build up

  9. Multiple view fan beam polarimetry on Tokamak devices

    International Nuclear Information System (INIS)

    A polarimeter diagnostic is under development which utilizes several fan beams to accumulate line integrated Faraday rotation data in a Tokamak plasma. The utilization of a fan beam configuration over that of conventional vertical view polarimeter systems significantly reduces access requirements. The high angular separation inherent in a fan beam implementation increases plasma coverage and eliminates the necessity of assumed plasma symmetries to generate high quality current density profiles. Codes have been developed to generate these high-resolution two-dimensional images of the plasma current profile from data collected at arbitrary positions and viewing angles. copyright 1997 American Institute of Physics

  10. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  11. Synthesis and characterization of partially coherent beams with propagation-invariant transverse polarization pattern

    Science.gov (United States)

    Ramírez-Sánchez, Victoria; Piquero, Gemma; Santarsiero, Massimo

    2010-11-01

    Partially coherent beams, whose transverse polarization pattern remains invariant upon paraxial propagation, are synthesized and characterized. Synthesis is performed by imposing a spiral-like polarization profile to a rotationally symmetric partially coherent light source. Irradiance and polarization profiles of the propagated beam are detected at different transverse planes, both in the near and in the far zone, and are compared to the theoretical ones. Furthermore, overall parameters, measuring the circular, radial and azimuthal polarization contents across the beam profile, are used to characterize the generated beam from a global point of view.

  12. Beam diagnostics measurements at 3 MeV of the LINAC4 H- beam at CERN

    CERN Document Server

    Zocca, F; Duraffourg, M; Focker, G J; Gerard, D; Kolad, B; Lenardon, F; Ludwig, M; Raich, U; Roncarolo, F; Sordet, M; Tan, J; Tassan-Viol, J; Vuitton, C; Feshenko, A

    2014-01-01

    As part of the CERN LHC injector chain upgrade, LINAC4 [1, 2] will accelerate H- ions to 160 MeV, replacing the old 50 MeV proton linac. The ion source, the Low Energy Beam Transfer (LEBT) line, the 3 MeV Radio Frequency Quadrupole and the Medium Energy Beam Transfer (MEBT) line hosting a chopper, have been commissioned in the LINAC4 tunnel. Diagnostic devices are installed in the LEBT and MEBT line and in a movable diagnostics test bench which is temporarily added to the MEBT exit. The paper gives an overview of all the instruments used, including beam current transformers, beam position monitors, wire scanners and wire grids for transverse profile measurements, a longitudinal bunch shape monitor and a slit-and-grid emittance meter. The instrumentation performance is discussed and the measurement results that allowed characterizing the 3 MeV beam in the LINAC4 tunnel are summarized.

  13. Study of neutral beam attenuation of 5 MW hydrogen beam in SST-1 Tokomak

    International Nuclear Information System (INIS)

    The neutral beam injector (NBI) system at IPR is capable of injecting ∼1 MW of neutral beam (H°, 30-50 keV) power to the Tokamak (SST-1) plasma for performing heating and current drive experiments. Currently, preparations are underway for integrating the NBI injector with the SST-1 Tokamak. For understanding the power transmission into the tokomak and power delivered to the NB shine-through, knowledge on the neutral beam attenuation profile for different impurity composition and in various operating scenarios of SST-1 operation is necessary. A comprehensive Charge Exchange Recombination and Beam emission analysis package is being developed under JET-IPR collaboration, for analysing the CX and Beam emissions from Tokamaks. A neutral beam attenuation package for SST-1 is being developed to suit the SST-1 NBI geometries and plasma, which is expected to have Carbon and Oxygen as the main impurity species. The main features of the package and the computed neutral beam attenuation profiles, for various operation scenarios of SST1 have been presented here

  14. Uniform irradiation system using beam scanning method for cyclotron

    International Nuclear Information System (INIS)

    JAERI AVF-cyclotron is equipped with an ion beam scanner for large area irradiation. The two-dimensional fluence distribution of ion beam obtained using cellulose triacetate film dosimeter was not uniform. This is resulted from the distortion of excitation current for electromagnet of the scanner. So, the beam scanning condition, i.e., the relation between the ion species, the beam profile and the scanning width, was extremely limited to make a good uniformity. We have developed a beam scanning simulator to get fluence distributions by calculation and then compared the simulated distributions with the measured ones. It was revealed that the both of them are in good agreement and the beam scanning condition to get good uniformity was led by using this simulator. On the basis of these results, the power supply of scanner was improved. A good uniformity of beam distribution was available. (author)

  15. Numerical determination of injector design for high beam quality

    International Nuclear Information System (INIS)

    The performance of a free electron laser strongly depends on the electron beam quality or brightness. The electron beam is transported into the free electron laser after it has been accelerated to the desired energy. Typically the maximum beam brightness produced by an accelerator is constrained by the beam brightness deliverd by the accelerator injector. Thus it is important to design the accelerator injector to yield the required electron beam brightness. The DPC (Darwin Particle Code) computer code has been written to numerically model accelerator injectors. DPC solves for the transport of a beam from emission through acceleration up to the full energy of the injector. The relativistic force equation is solved to determine particle orbits. Field equations are solved for self consistent electric and magnetic fields in the Darwin approximation. DPC has been used to investigate the beam quality consequences of A-K gap, accelerating stress, electrode configuration and axial magnetic field profile

  16. Beam diagnostics at high-intensity storage rings

    International Nuclear Information System (INIS)

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics. Issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. The author discusses in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of the discussion is inspired by the problems that were encountered and the useful things learned while commissioning and developing the PSR. Another inspiration is the work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR)

  17. Diffractive beam shaping for enhanced laser polymer welding

    Science.gov (United States)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  18. High-Order Bessel-Gaussian Beam and its Propagation Properties

    Institute of Scientific and Technical Information of China (English)

    陆璇辉; 陈许敏; 张蕾; 薛大建

    2003-01-01

    A high-order Bessel-Gaussian mode is introduced to describe hollow beams. The results for high-order BesselGaussian beams propagating through lens focusing system and free space are derived in terms of Collins integral formula. The diffraction patterns and profile for high-order Bessel-Gaussian beams propagating through the above-mentioned optical systems are illustrated.

  19. Space-charged-induced emittance growth in the transport of high-brightness electron beams

    International Nuclear Information System (INIS)

    The emittance induced by space charge in a drifting beam of finite length has been investigated, and a scaling law has been obtained from simple considerations of the different rates of expansion of different portions of the beam. The scaling law predicts the initial rate of emittance growth, before the beam shape has distorted significantly, and thus represents an upper bound on the rate of emittance increase. This scaling law has been substantiated by particle-in-cell simulation and the dependence on geometric factors evaluated for specific choices of the beam profile. For long, axially nonuniform beams, the geometric factors have been evaluated explicitly for Gaussian profiles, and other shapes

  20. Special diffractive elements for optical trapping fabricated on optical fiber tips using the focused ion beam

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Guerreiro, A.; Viegas, J.; Jorge, P. A. S.

    2016-05-01

    In this work, spiral phase lenses and Fresnel zone lenses for beam tailoring, fabricated on the tip of optical fibers, are reported. The spiral phase lenses allow tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. Whereas, the Fresnel lenses are used as focusing systems. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The output optical intensity profiles matching the numerical simulations are presented and analyzed.

  1. The Atacama Cosmology Telescope: Beam Measurements and the Microwave Brightness Temperatures of Uranus and Saturn

    OpenAIRE

    Hasselfield, Matthew; Moodley, Kavilan; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dünner, Rolando; Fowler, Joseph W.; Gallardo, Patricio; Gralla, Megan B.; Hajian, Amir; Halpern, Mark; Hincks, Adam D.; Marriage, Tobias A.; Marsden, Danica

    2013-01-01

    We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilo-pixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty, to derive window functions relevant for angular power spect...

  2. Intense positron beams: linacs

    International Nuclear Information System (INIS)

    Beams of monoenergetic positrons with energies of a few eV to many keV have been used in experiments in atomic physics, solid-state physics and materials science. The production of positron beams from a new source, an electron linac, is described. Intense, pulsed beams of low-energy positrons were produced by a high-energy beam from an electron linac. The production efficiency, moderator geometry, beam spot size and other positron beam parameters were determined for electrons with energies from 60 to 120 MeV. Low-energy positron beams produced with a high-energy electron linac can be of much higher intensity than those beams currently derived from radioactive sources. These higher intensity beams will make possible positron experiments previously infeasible. 10 references, 1 figure

  3. Highly polarized components of integrated pulse profiles

    CERN Document Server

    Wang, P F

    2016-01-01

    Highly polarized components of pulse profiles are investigated by analyzing observational data and simulating the emission processes. The highly polarized components appear at the leading or trailing part of a pulse profile, which preferably have a flat spectrum and a flat polarization angle curve compared with the low polarized components. By considering the emission processes and propagation effects, we simulate the distributions of wave modes and fractional linear polarization within the entire pulsar emission beam. We show that the highly polarized components can appear at the leading, central, and/or trailing parts of pulse profiles in the models, depending on pulsar geometry. The depolarization is caused by orthogonal modes or scattering. When a sight line cuts across pulsar emission beam with a small impact angle, the detected highly polarized component will be of the O mode, and have a flat polarization angle curve and/or a flat spectrum as observed. Otherwise, the highly polarized component will be o...

  4. Performance test results of ion beam transport for SST-1 neutral beam injector

    International Nuclear Information System (INIS)

    problem, we have validated and scaled our design calculations with performance parameters of the Neutral Beam Injector at IPP, Julich, Germany. The performance test of the SST-1 PINI ion source was done at MARION Test Stand at IPP, Julich. Analyses of these results indicate that the measured power profile and the optical parameters of the beam are in good agreement with the simulation results. These parameters are stable over the beam pulse of 14s with extracted beam energy of 31 MJ at 41 kV. This paper presents these results and details out future work need to be done in order to assess the steady state stability of the beam parameters.

  5. Transverse beam emittance measurement using quadrupole variation at KIRAMS-430

    Science.gov (United States)

    An, Dong Hyun; Hahn, Garam; Park, Chawon

    2015-02-01

    In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.

  6. Simulations of proton beam depth-dose distributions

    International Nuclear Information System (INIS)

    Proton beams are successfully used in radiotherapy. A correct modification of beam parameters allows one to spare normal surrounding tissues from radiation action. Our work is focused on passive beam-shaping techniques, which are used to modify the proton beam properties. The beam passes through the scattering system, which consists of scattering materials, energy degraders, drift spaces and collimators. In order to model the proton beam transport through the scattering system, the new Monte Carlo (MC) computer code Track has been developed. The code Track can predict output proton beam parameters modulated by various system adjustments and helps to optimize them. It calculates a beam profile, creates beam emittance diagram at a specified position of the system and predicts proton beam depth-dose distribution in a water phantom. In addition it calculates beam losses on individual components. We present a physical model of the beam transport calculations and algorithm implemented in a code Track. We compared the Track code calculations of depth-dose distributions in water phantom with experimental data and with a set of MC calculations in the FLUKA code. The accuracy of simulation results and calculation time in Track code are observed

  7. Second-harmonic generation with Bessel beams

    Science.gov (United States)

    Shatrovoy, Oleg

    We present the results of a numerical simulation tool for modeling the second-harmonic generation (SHG) interaction experienced by a diffracting beam. This code is used to study the simultaneous frequency and spatial profile conversion of a truncated Bessel beam that closely resembles a higher-order mode (HOM) of an optical fiber. SHG with Bessel beams has been investigated in the past and was determined have limited value because it is less efficient than SHG with a Gaussian beam in the undepleted pump regime. This thesis considers, for the first time to the best of our knowledge, whether most of the power from a Bessel-like beam could be converted into a second-harmonic beam (full depletion), as is the case with a Gaussian beam. We study this problem because using HOMs for fiber lasers and amplifiers allows reduced optical intensities, which mitigates nonlinearities, and is one possible way to increase the available output powers of fiber laser systems. The chief disadvantage of using HOM fiber amplifiers is the spatial profile of the output, but this can be transformed as part of the SHG interaction, most notably to a quasi-Gaussian profile when the phase mismatch meets the noncollinear criteria. We predict, based on numerical simulation, that noncollinear SHG (NC-SHG) can simultaneously perform highly efficient (90%) wavelength conversion from 1064 nm to 532 nm, as well as concurrent mode transformation from a truncated Bessel beam to a Gaussian-like beam (94% overlap with a Gaussian) at modest input powers (250 W, peak power or continuous-wave operation). These simulated results reveal two attractive features -- the feasibility of efficiently converting HOMs of fibers into Gaussian-like beams, and the ability to simultaneously perform frequency conversion. Combining the high powers that are possible with HOM fiber amplifiers with access to non-traditional wavelengths may offer significant advantages over the state of the art for many important applications

  8. Reconstruction of negative hydrogen ion beam properties from beamline diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Benjamin

    2014-09-25

    (BES). BES measures the beam divergence and beam power losses from heavy-particle collisions by evaluating the spectrum of the Balmer H{sub α} light of the beam. The light is emitted since beam particles are excited by collisions with the hydrogen background gas. For ITER, BES will be the main beam diagnostic tool for beam quality measurements. The main results are, that first of all, the evaluation of the beam divergence from a BES spectrum was improved with the parametrisation method. Furthermore it turned out that the evaluation of stripping losses and beam inhomogeneity in large negative hydrogen ion sources cannot be performed by backward calculations from a BES spectra, i.e. by the analysis of the spectra. This means forward modeling has to be done, which does also include the simulation of other beam diagnostic tools, like the power density profile measured by the calorimeter. Combining all beam diagnostic tools and reconstructing their outcome with a BBC-NI Advanced simulation, gives the possibility to determine the beam parameters by extracting them from the BBC-NI code protocols. This requires a lot of effort and is not well suited for a routine analysis. For ITER this means that solely a BES system for the determination of the beam parameters (i.e. stripping losses and beam inhomogeneity), as it is presently foreseen, is not sufficient. Several beam diagnostic tools, e.g. the calorimeter which can determine the power density profile of the beam, and a code like BBC-NI are necessary. Additionally for the application of BBC-NI Advanced, a beam optic code is needed, which is able to generate a realistic electric field map in the extraction system. Such an optic code is not available so far.

  9. Polar POLICRYPS diffractive structures generate cylindrical vector beams

    International Nuclear Information System (INIS)

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams

  10. Polar POLICRYPS Diffractive Structures Generate Cylindrical Vector Beams

    CERN Document Server

    Alj, Domenico; Volpe, Giovanni; Caputo, Roberto; Umeton, Cesare

    2015-01-01

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such device that permits one to convert a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  11. Polar POLICRYPS diffractive structures generate cylindrical vector beams

    Energy Technology Data Exchange (ETDEWEB)

    Alj, Domenico; Caputo, Roberto, E-mail: roberto.caputo@fis.unical.it; Umeton, Cesare [Department of Physics and CNR-NANOTEC University of Calabria, I-87036 Rende (CS) (Italy); Paladugu, Sathyanarayana [Soft Matter Lab, Department of Physics, Bilkent University, Ankara 06800 (Turkey); Volpe, Giovanni [Soft Matter Lab, Department of Physics, Bilkent University, Ankara 06800 (Turkey); UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey)

    2015-11-16

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  12. Orbital angular momentum of superposition of identical shifted vortex beams.

    Science.gov (United States)

    Kovalev, A A; Kotlyar, V V

    2015-10-01

    We have formulated and proven the following theorem: the superposition of an arbitrary number of arbitrarily off-axis, identical nonparaxial optical vortex beams of arbitrary radially symmetric shape, integer topological charge n, and arbitrary real weight coefficients has the normalized orbital angular momentum (OAM) equal to that of individual constituent identical beams. This theorem enables generating vortex laser beams with different (not necessarily radially symmetric) intensity profiles but identical OAM. Superpositions of Bessel, Hankel-Bessel, Bessel-Gaussian, and Laguerre-Gaussian beams with the same OAM are discussed. PMID:26479934

  13. Upgrade of the Nuclotron extracted beam diagnostic subsystem

    International Nuclear Information System (INIS)

    The subsystem is intended for the Nuclotron extracted beam parameters measurements. Multiwire proportional chambers are used for transversal beam profiles measurements in four points of the beam transfer line. Gas amplification values are tuned by high voltage power supplies adjustments. The extracted beam intensity is measured by means of ionization chamber, variable gain current amplifier DDPCA-300 and voltage-to-frequency converter. The data is processed by industrial PC with National Instruments DAQ modules. The client-server distributed application written in LabView environment allows operators to control hardware and obtain measurement results over TCP/IP network. (authors)

  14. Design and construction of a prototype of a flat top beam interferometer and initial tests

    Energy Technology Data Exchange (ETDEWEB)

    Agresti, J [University of Pisa, Largo Pontecorvo 3, Pisa (Italy); D' Ambrosio, E [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); DeSalvo, R [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Forest, D [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Lagrange, B [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Mackowski, J M [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Michel, C [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Montorio, J L [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Morgado, N [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Pinard, L [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Remillieux, A [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Simoni, B [University of Pisa, Largo Pontecorvo 3, Pisa (Italy); Tarallo, M [University of Pisa, Largo Pontecorvo 3, Pisa (Italy); Willems, P [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2006-03-02

    A non-Gaussian, flat-top laser beam profile, also called Mesa Beam Profile, supported by non spherical mirrors known as Mexican Hat (MH) mirrors, has been proposed as a way to depress the mirror thermal noise and thus improve the sensitivity of future interferometric Gravitational Wave detectors, including Advanced LIGO. Non-Gaussian beam configurations have never been tested before hence the main motivation of this project is to demonstrate the feasibility of this new concept. A 7m rigid suspended Fabry-Perot (FP) cavity which can support a scaled version of a Mesa beam applicable to the LIGO interferometers has been developed. The FP cavity prototype is being designed to prove the feasibility of actual MH mirror profiles, determine whether a MH mirror cavity is capable of transforming an incoming Gaussian beam into a flat top beam profile, study the effects of unavoidable mirror imperfections on the resulting beam profile and gauge the difficulties associated with locking and maintaining the alignment of such an optical cavity. We present the design of the experimental apparatus and simulations comparing Gaussian and Mesa beams performed both with ideal and current (measured) mirror profiles. An overview of the technique used to manufacture this kind of mirror and initial results showing Mesa beam properties are presented.

  15. EQUAL OPTICAL PATH BEAM SPLITTERS BY USE OF AMPLITUDE-SPLITTING AND WAVEFRONT-SPLITTING METHODS FOR PENCIL BEAM INTERFEROMETER.

    Energy Technology Data Exchange (ETDEWEB)

    QIAN,S.TAKACS,P.

    2003-08-03

    A beam splitter to create two separated parallel beams is a critical unit of a pencil beam interferometer, for example the long trace profiler (LTP). The operating principle of the beam splitter can be based upon either amplitude-splitting (AS) or wavefront-splitting (WS). For precision measurements with the LTP, an equal optical path system with two parallel beams is desired. Frequency drift of the light source in a non-equal optical path system will cause the interference fringes to drift. An equal optical path prism beam splitter with an amplitude-splitting (AS-EBS) beam splitter and a phase shift beam splitter with a wavefront-splitting (WS-PSBS) are introduced. These beam splitters are well suited to the stability requirement for a pencil beam interferometer due to the characteristics of monolithic structure and equal optical path. Several techniques to produce WS-PSBS by hand are presented. In addition, the WS-PSBS using double thin plates, made from microscope cover plates, has great advantages of economy, convenience, availability and ease of adjustment over other beam splitting methods. Comparison of stability measurements made with the AS-EBS, WS-PSBS, and other beam splitters is presented.

  16. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  17. Electron beam instabilities in gyrotron beam tunnels

    International Nuclear Information System (INIS)

    Electron beam instabilities occurring in a gyrotron electron beam can induce an energy spread which might significantly deteriorate the gyrotron efficiency. Three types of instabilities are considered to explain the important discrepancy found between the theoretical and experimental efficiency in the case of quasi-optical gyrotrons (QOG): the electron cyclotron maser instability, the Bernstein instability and the Langmuir instability. The low magnetic field gradient in drift tubes of QOG makes that the electron cyclotron maser instability can develop in the drift tube at very low electron beam currents. Experimental measurements show that with a proper choice of absorbing structures in the beam tunnel, this instability can be suppressed. At high beam currents, the electrostatic Bernstein instability can induce a significant energy spread at the entrance of the interaction region. The induced energy spread scales approximately linearly with the electron beam density and for QOG one observes that the beam density is significantly higher than the beam density of an equivalent cylindrical cavity gyrotron. (author) figs., tabs., refs

  18. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  19. Nonparaxial propagation of Hermite-Laguerre-Gaussian beams in uniaxial crystal orthogonal to the optical axis

    Institute of Scientific and Technical Information of China (English)

    Xu Yi-Qing; Zhou Guo-Quan; Wang Xiao-Gang

    2013-01-01

    Analytical expressions for the three components of the nonparaxial propagation of a Hermite-Laguerre-Gaussian (HLG) beam in uniaxial crystal orthogonal to the optical axis are derived.The intensity distribution of an HLG beam and its three components propagating in a uniaxial crystal orthogonal to the optical axis are demonstrated by numerical examples.Although the y and z components of an HLG beam in the incident plane are both equal to zero,they emerge upon propagation inside the uniaxial crystal.Moreover,the beam profile of the x component is relatively stable and the beam profiles of the y and z components have the same evolution law.If the ratio of the extraordinary refractive index to the ordinary refractive index is larger than unity,the beam profile of the HLG beam is elongated in the x direction and generally rotates clockwise.Otherwise,the beam profile of the HLG beam is elongated in the y direction and generally rotates anticlockwise.This research is beneficial to the optical trapping and nonlinear optics involved in the rotation of a beam profile.

  20. Application of a modular multi-Gaussian beam model to wave propagation in anisotropic materials

    International Nuclear Information System (INIS)

    A modular multi-Gaussian beam model is used to study the effect of material anisotropy on ultrasonic beam propagation. It is shown that the characteristics of the beam as it propagates are, controlled by two properties of the slowness surface. The slopes of the slowness surface affect the beam direction (beam skewing) and the curvatures of the slowness surface affect the overall beam profile. It is shown that the slowness curvature pulls or pushes the overall beam profile without changing the amplitude and this behavior is different from the effect of interface curvature, An austenite stainless steel is considered. The least squares method are used to extract the local properties of the slowness parameters. Some simulation results are given to illustrate the effects these parameters on ultrasonic beam propagation.