WorldWideScience

Sample records for beam production

  1. Radioactive beam production at the Bevalac

    International Nuclear Information System (INIS)

    At the Bevalac radioactive beams are routinely produced by the fragmentation process. The effectiveness of this process with respect to the secondary beam' emittance, intensity and energy spread depends critically on the nuclear reaction kinematics and the magnitude of the incident beam energy. When this beam energy significantly exceeds the energies of the nuclear reaction process, many of the qualities of the incident beam can be passed on the secondary beam. Factors affecting secondary beam quality are discussed along with techniques for isolating and purifying a specific reaction product. The on-going radioactive beam program at the Bevalac is used as an example with applications, present performance and plans for the future

  2. Atomic and molecular beams production and collimation

    CERN Document Server

    Lucas, Cyril Bernard

    2013-01-01

    Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens.The book not only provides the basic expressions essential to beam design but also offers

  3. Equipment for ion beam production

    International Nuclear Information System (INIS)

    An equipment has been designed to extend the scope of control of ion beam flux for an intensive ion beam source used for plasma injection in magnetic vessels. The control equipment is connected to the electromagnet power supply. A consumption regulator is fitted in the operating gas supply to the hollow cathode of the ion source. A circuit is also included for discharge voltage maintenance consisting of a control element and a discharge voltage pick-up. (M.D.). 1 fig

  4. Industrial Products for Beam Instrumentation

    CERN Document Server

    Schmickler, Hermann

    2001-01-01

    In various branches of high technology industry there has been considerable progress in the past years which could be used for beam instrumentation. The subject will be introduced by two short demonstrations: a demonstration of modern audio electronics with 24bit-96kHz ADC, digital signal electronics and application programs under windows on a PC, which allow to change the parameters of the signal treatment. Potential applications are data monitoring at constant sampling frequency, orbit feedbacks (including high power audio amplifiers), noise reduction on beam current transformers... digital treatment of video signals webcams, frame grabbers, CCD-data via USB, all one needs for image acquisitions, in particular interesting for profile measurements. These introductory demonstrations will not last longer than 30 minutes. The remaining time will be used to pass through the audience collecting information into a two dimensional table, which shall contain as row index the accelerator and as column index the t...

  5. Production and scattering of a positronium beam

    International Nuclear Information System (INIS)

    Progress in the field of positronium beam-production and scattering is reviewed. A useful beam of positronium is obtained in the energy range 10-250 eV by scattering positrons from H2 and N2. With such a beam, total positronium - atom/molecule scattering cross-sections and integrated and differential fragmentation cross-sections have been measured. Results are presented and compared with recent theoretical determinations. First results for the absolute differential positronium formation cross-sections are also presented

  6. Neutral beam production using negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B. Jr.

    1978-06-14

    Techniques for producing intense negative ion beams are discussed. These beams are required for intense neutral beam development at energies greater than 150 keV. Handling, acceleration, and stripping of negative ion beams are described.

  7. Energy Production Demonstrator for Megawatt Proton Beams

    CERN Document Server

    Pronskikh, Vitaly S; Novitski, Igor; Tyutyunnikov, Sergey I

    2014-01-01

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however...

  8. Efficient laser production of energetic neutral beams

    Science.gov (United States)

    Mollica, F.; Antonelli, L.; Flacco, A.; Braenzel, J.; Vauzour, B.; Folpini, G.; Birindelli, G.; Schnuerer, M.; Batani, D.; Malka, V.

    2016-03-01

    Laser-driven ion acceleration by intense, ultra-short, laser pulse has received increasing attention in recent years, and the availability of much compact and versatile ions sources motivates the study of laser-driven sources of energetic neutral atoms. We demonstrate the production of a neutral and directional beam of hydrogen and carbon atoms up to 200 keV per nucleon, with a peak flow of 2.7× {{10}13} atom s-1. Laser accelerated ions are neutralized in a pulsed, supersonic argon jet with tunable density between 1.5× {{10}17} cm-3and 6× {{10}18} cm-3. The neutralization efficiency has been measured by a time-of-flight detector for different argon densities. An optimum is found, for which complete neutralization occurs. The neutralization rate can be explained only at high areal densities (>1× {{10}17} cm-2) by single electron charge transfer processes. These results suggest a new perspective for the study of neutral production by laser and open discussion of neutralization at a lower density.

  9. Neutron production by neutral beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, K.H.; Massoletti, D.J.; McCaslin, J.B.; Pyle, R.V.; Ruby, L.

    1979-11-01

    Neutron yields, from interactions of multiampere 40- to 120-keV deuterium beams with deuterium atoms implanted in copper targets, have been measured in order to provide input data for shielding of neutral-deuterium beam facilities for magnetic fusion experiments.

  10. Production of ion micro-beams

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yasuyuki; Isoya, Akira; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Tanaka, Ryuichi [Ion Beam Irradiation Service Limited Company, Takasaki, Gunma (Japan)

    2001-02-01

    This is a short summary on the test fabrication and performance testing. Here micro-beams are understood as beams in diameter smaller than 0.01 {mu} m. We had made a choice of the combination, of the focusing action with a single hole lens, and of the focusing and acceleration actions with a uniform electrostatic field between the electrodes. Measurements has been repeated of the beam radius with a moving knifedge. The spatial resolution now reaches 0.05 {mu} m. (M. Tanaka)

  11. Production of epithermal neutron beams for BNCT

    CERN Document Server

    Bisceglie, E; Colonna, N; Paticchio, V; Santorelli, P; Variale, V

    2002-01-01

    The use of boron neutron capture therapy (BNCT) for the treatment of deep-seated tumors requires neutron beams of suitable energy and intensity. Simulations indicate the optimal energy to reside in the epithermal region, in particular between 1 and 10 keV. Therapeutic neutron beams with high spectral purity in this energy range could be produced with accelerator-based neutron sources through a suitable neutron-producing reaction. Herein, we report on different solutions that have been investigated as possible sources of epithermal neutron beams for BNCT. The potential use of such sources for a hospital-based therapeutic facility is discussed.

  12. Dependence of exotic nuclides production on target and beam features

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, M.V. E-mail: valentina.ricciardi@pg.infn.it; Barone-Tonghi, L.; Cuttone, G.; Ciavola, G.; Di Bartolo, G.; Menna, M.; Fortuna, G.; Monti, S.; Tecchio, L

    1999-12-01

    With regard to the ISOL technique, the dependence of intermediate mass (80-160A) production on target and proton beam features has been investigated by means of hadronic transport Monte Carlo codes. The analysis of the target material (mechanism of production), dimensions (length and width) and composition as well as the proton beam energy has shown that in principle, regardless of technological difficulties, the production of neutron-rich isotopes of intermediate mass (80-160 A) can be successfully achieved with proton beams of low-medium energy into uranium thick targets. The power density in uranium targets bombarded by low-medium energy protons has been analyzed too.

  13. Dependence of exotic nuclides production on target and beam features

    International Nuclear Information System (INIS)

    With regard to the ISOL technique, the dependence of intermediate mass (80-160A) production on target and proton beam features has been investigated by means of hadronic transport Monte Carlo codes. The analysis of the target material (mechanism of production), dimensions (length and width) and composition as well as the proton beam energy has shown that in principle, regardless of technological difficulties, the production of neutron-rich isotopes of intermediate mass (80-160 A) can be successfully achieved with proton beams of low-medium energy into uranium thick targets. The power density in uranium targets bombarded by low-medium energy protons has been analyzed too

  14. Positron beam production with a deuteron accelerator

    International Nuclear Information System (INIS)

    A graphite target was bombarded with 1.5 MeV deuterons, producing the isotope 13N, which is a positron emitter. Using the activated material a slow positron beam with an intensity of 0.7 (0.14)x105 s-1 was produced. A (saturated) 13N yield of 63 (11) MBq/μA was observed, with 1.5 MeV deuterons, which is consistent with previous calculations and experiments. Our results show that, with the method we outline, positron beams with an average intensity of up to 1x108 s-1 may be produced

  15. Colliding beam physics at Fermilab: interaction regions, beam storage, antiproton cooling, production, and colliding

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.K. (ed.)

    1977-01-01

    The purpose of the colliding beams experment department at Fermilab was to bring about collisions of the stored beams in the energy doubler/saver and main ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the main ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part one is on interaction regions, beam storage, antiproton cooling, production, and colliding. 40 papers from this part are included in the data base. (GHT)

  16. Electron Beam Production by Pyroelectric Crystals

    CERN Document Server

    Brownridge, J D; Brownridge, James D.; Shafroth, Stephen M.

    2002-01-01

    Pyroelectric crystals are used to produce self-focused electron beams with energies greater than 170 keV. No high voltage power supply or electron gun is needed. The system works by simply changing the temperature of a crystal of LiNbO3 or LiTaO3 by about 100oC in dilute gas. Electron beam energy spectra as well as positive-ion-beam energy spectra and profiles are shown. A change in the crystal temperature of 100oC will cause a spontaneous change in polarization. The change in polarization will be manifested by a change in charge on the surface of the crystal. It is this uncompensated charge that produces the electric field, which accelerates the electrons, or the positive ions and gives rise to the plasma, which in turn focuses them. The source of the accelerated electrons or positive ions is gas molecules ionized near the crystal surface. When the crystal surface is negative electrons are accelerated away from it and positive ions are attracted to the surface. These positive ions reduce the net negative cha...

  17. Shielding calculations for a production target for secondary beams

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Back, B.B.; Jiang, C.L. [and others

    1995-08-01

    In order to estimate the amount of shielding required for a radioactive beam facility dose rate were performed. The calculations for production targets with different geometries were performed. The calculations were performed with the MSU shielding code assuming a 500-p{mu}A 200-MeV deuteron beam stopped in a thick Al target. The target and the ion-optical elements for beam extraction are located in a 2 m{sup 3} large volume at the center of the production cell. These dose rate calculations show that with a combination of Fe and concrete it is possible to reduce the dose rate expected at the surface of a 7-m-wide cube housing the production target to less than 2 mrem/hr.

  18. Production, Characterization, and Measurement of H(D) Beams on the ORNL Merged-Beams Experiment

    International Nuclear Information System (INIS)

    Total cross section measurements of electron capture processes are being studied for low-energy, Aq++H(D) collisions using the Ion-Atom Merged-Beams apparatus at the Multicharged Ion Research Facility (MIRF) at Oak Ridge National Laboratory (ORNL). On this apparatus, a modified Faraday cup detector is used to measure the intensity of the neutral beam. The conversion of the measured electrical current to the true neutral particle beam current is necessary to accurately determine the true cross section values. Inherent in this conversion process is the number of secondary electrons (γ) emitted from the surface of the detector upon impact of an atom. The method employed to determine γ and its role in the absolute electron capture measurements at ORNL-MIRF are presented. With a recent upgrade to the apparatus, the neutral beam H(D) production technique has been improved and is discussed in detail in this paper.

  19. Production, Characterization, and Measurement of H(D) Beams on the ORNL Merged-Beams Experiment

    International Nuclear Information System (INIS)

    Total cross section measurements of electron capture processes are being studied for low-energy, Aq++H(D) collisions using the Ion-Atom Merged-Beams apparatus at the Multicharged Ion Research Facility (MIRF) at Oak Ridge National Laboratory (ORNL). On this apparatus, a modified Faraday cup detector is used to measure the intensity of the neutral beam. The conversion of the measured electrical current to the true neutral particle beam current is necessary to accurately determine the true cross section values. Inherent in this conversion process is the number of secondary electrons (gamma) emitted from the surface of the detector upon impact of an atom. The method employed to determine gamma and its role in the absolute electron capture measurements at ORNL-MIRF are presented. With a recent upgrade to the apparatus, the neutral beam H(D) production technique has been improved and is discussed in detail in this paper

  20. Production of highly charged ion beams with SECRAL.

    Science.gov (United States)

    Sun, L T; Zhao, H W; Lu, W; Zhang, X Z; Feng, Y C; Li, J Y; Cao, Y; Guo, X H; Ma, H Y; Zhao, H Y; Shang, Y; Ma, B H; Wang, H; Li, X X; Jin, T; Xie, D Z

    2010-02-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e microA of Xe(37+), 1 e microA of Xe(43+), and 0.16 e microA of Ne-like Xe(44+). To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi(31+) beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e microA of Bi(31+), 22 e microA of Bi(41+), and 1.5 e microA of Bi(50+) have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL. PMID:20192339

  1. Production of highly charged ion beams with SECRAL

    International Nuclear Information System (INIS)

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e μA of Xe37+, 1 e μA of Xe43+, and 0.16 e μA of Ne-like Xe44+. To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e μA of Bi31+, 22 e μA of Bi41+, and 1.5 e μA of Bi50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  2. ALPtraum: ALP production in proton beam dump experiments

    CERN Document Server

    Döbrich, Babette; Kahlhoefer, Felix; Ringwald, Andreas; Schmidt-Hoberg, Kai

    2016-01-01

    With their high beam energy and intensity, existing and near-future proton beam dumps provide an excellent opportunity to search for new very weakly coupled particles in the MeV to GeV mass range. One particularly interesting example is a so-called axion-like particle (ALP), i.e. a pseudoscalar coupled to two photons. The challenge in proton beam dumps is to reliably calculate the production of the new particles from the interactions of two composite objects, the proton and the target atoms. In this work we argue that Primakoff production of ALPs proceeds in a momentum range where production rates and angular distributions can be determined to sufficient precision using simple electromagnetic form factors. Reanalysing past proton beam dump experiments for this production channel, we derive novel constraints on the parameter space for ALPs. We show that the NA62 experiment at CERN could probe unexplored parameter space by running in 'dump mode' for a few days and discuss opportunities for future experiments su...

  3. Production of {sup 6}He by bremsstrahlung of electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Zagrebaev, V.I., E-mail: zagrebaev@jinr.ru; Teterev, Yu.G.; Mishinsky, G.V.; Zhemenik, V.I.; Bogomolov, S.L.; Belov, A.G.; Mitrofanov, S.V.; Dmitriev, S.N.

    2014-10-01

    The possibility for the production of exotic {sup 6}He nuclei in the {sup 7}Li(γ, p){sup 6}He reaction with the use of the 22 MeV electron beam provided by the MT-25 microtron was studied. This method was found to be quite effective tool for the production of the short-lived {sup 6}He ions. Two species of lithium salt, Li{sub 2}CO{sub 3} and LiF, were tested as target material. Maximal yield of {sup 6}He atoms was obtained at irradiation of the fine-dispersed LiF salt loaded into cylindrical vessel. At the temperature of 800 °C the yield of {sup 6}He was found to be (1.7±0.2)×10{sup 7}atoms/s per 1 μA of electron beam current. The use of the ECR source (with efficiency of about 8%) gave a possibility to obtain the beam of {sup 6}He ions with intensity of (1.4±0.2)×10{sup 6}ions/s per 1 μA of electron beam current. The application of this approach for the further production of a monochromatic beam of accelerated {sup 6}He ions with an intensity higher than 10{sup 8} pps (which can be easily reached already at 100 μA electron beam current) would make feasible a large number of experiments on investigating the structure of this nucleus and the mechanisms of nuclear reactions with its participation. This method for obtaining {sup 6}He nuclei may turn out to be one of the most optimal and inexpensive as compared with other methods using accelerated heavy ion projectiles.

  4. Production of radioactive molecular beams for CERN-ISOLDE

    CERN Document Server

    AUTHOR|(SzGeCERN)703149; Kröll, Thorsten

    SOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10^11 ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computanional techniques have been used.

  5. Production of radioactive molecular beams for CERN-ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Seiffert, Christoph

    2015-06-15

    ISOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10{sup 11} ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computational techniques have been used.

  6. A windowless gas target for secondary beam production

    International Nuclear Information System (INIS)

    A windowless gas target was developed for the production of secondary high-spin isomer beams (HSIB). An 16O target in the compound form of CO2 gas was used to produce a 145mSm beam by using an 16O(136Xe, 7n)145mSm reaction. The target gas pressure was kept constant at 50 Torr. A target thickness of about 1 mg/cm2 was achieved with a 10 cm target length. Gas was recirculated and the consumption was very little

  7. A windowless gas target for secondary beam production

    CERN Document Server

    Kishida, T; Shibata, M; Watanabe, H; Tsutsumi, T; Motomura, S; Ideguchi, E; Zhou, X H; Morikawa, T; Kubo, T; Ishihara, M

    1999-01-01

    A windowless gas target was developed for the production of secondary high-spin isomer beams (HSIB). An sup 1 sup 6 O target in the compound form of CO sub 2 gas was used to produce a sup 1 sup 4 sup 5 sup m Sm beam by using an sup 1 sup 6 O( sup 1 sup 3 sup 6 Xe, 7n) sup 1 sup 4 sup 5 sup m Sm reaction. The target gas pressure was kept constant at 50 Torr. A target thickness of about 1 mg/cm sup 2 was achieved with a 10 cm target length. Gas was recirculated and the consumption was very little.

  8. Production of radioactive molecular beams for CERN-ISOLDE

    International Nuclear Information System (INIS)

    ISOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 1011 ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computational techniques have been used.

  9. Charge breeding simulations for radioactive ion beam production

    International Nuclear Information System (INIS)

    The charge breeding technique is used for radioactive ion beam (RIB) production in order of optimizing the re-acceleration of the radioactive element ions produced by a primary beam in a thick target. Charge breeding is achieved by means of a device capable of increasing the ion charge state from 1+ to a desired value n+. In order to get high intensity RIB, experiments with charge breeding of very high efficiency could be required. To reach this goal, the charge breeding simulation could help to optimize the high charge state production efficiency by finding more proper parameters for the radioactive 1+ ions. In this paper a device based on an electron beam ion source (EBIS) is considered. In order to study that problem, a code already developed for studying the ion selective containment in an EBIS with RF quadrupoles, BRICTEST, has been modified to simulate the ion charge state breeding rate for different 1+ ion injection conditions. Particularly, the charge breeding simulations for an EBIS with a hollow electron beam have been studied.

  10. Positron production in crossed beams of bare uranium nuclei

    OpenAIRE

    U. Müller; Reus, T.; Reinhardt, J.; Müller, B.; Greiner, Walter

    2006-01-01

    Positron creation in crossed-beam collisions of high-energy, fully stripped heavy ions is investigated within the coupled-channel formalism. In comparison with fixed-target collisions of highly stripped heavy-ion projectiles positron production probabilities are enhanced by more than one order of magnitude. The increase results from the possibility to excite electrons from the negative energy continuum into all bound states. The positron spectrum is shifted towards higher energies because of ...

  11. Production rate calculations for a secondary beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.L.; Back, B.B.; Rehm, K.E.

    1995-08-01

    In order to select the most cost-effective method for the production of secondary ion beams, yield calculations for a variety of primary beams were performed ranging in mass from protons to {sup 18}O with energies of 100-200 MeV/u. For comparison, production yields for 600-1000 MeV protons were also calculated. For light ion-(A < {sup 4}He) induced reactions at energies above 50 MeV/u the LAHET code was used while the low energy calculations were performed with LPACE. Heavy-ion-induced production rates were calculated with the ISAPACE program. The results of these codes were checked against each other and wherever possible a comparison with experimental data was performed. These comparisons extended to very exotic reaction channels, such as the production of {sup 100}Sn from {sup 112}Sn and {sup 124}Xe induced fragmentation reactions. These comparisons indicate that the codes are able to predict production rates to within one order of magnitude.

  12. Low-energy radioactive ion beam production of 22Mg

    International Nuclear Information System (INIS)

    The 22Mg nucleus plays an important role in nuclear astrophysics, specially in the 22Mg(α,p)25Al and proton capture 22Mg(p,γ)23Al reactions. It is believed that 22Mg is a waiting point in the αp-process of nucleosynthesis in novae. We proposed a direct measurement of the 22Mg+α resonance reaction in inverse kinematics using a radioactive ion (RI) beam. A 22Mg beam of 3.73 MeV/u was produced at CRIB (Center for Nuclear Study (CNS) low-energy RI Beam) facility of the University of Tokyo located at RIKEN (Japan) in 2011. In this paper we present the results about the production of the 22Mg beam used for the direct measurement of the scattering reaction 22Mg(α,α)22Mg, and the stellar reaction 22Mg(α,p)25Al in the energy region concerning an astrophysical temperature of T9=1–3 GK

  13. Production of intense light ion beams from a superpower generator

    International Nuclear Information System (INIS)

    The operation of a pinch-reflex diode as an intense pulsed ion-beam source has been scaled up to the multiterawatt PITHON generator. Ion beams with currents of 1 MA at 1.8 MeV have been extracted in a 130 kJ, 100-ns (FWHM) pulse. The corresponding ion production efficiency is 60%. Power losses were observed in interfacing the coaxial diode to the biconic vacuum feed of the generator. By using smaller area diodes, the average current density at the anode source has been increased to 20 kA/cm2. Proton and deuteron beams were studied in both planar and spherical diode geometries. The focusing of ion beams is predominately by self-magnetic fields for planar diodes and predominately by electrode shaping for spherical diodes. Current densities of at least 150 kA/cm2 were achieved with spherical diodes. The spatial evolution of the anode and cathode plasmas was studied by laser interferometric holography. As the peak of the power pulse is approached, plasmas were observed to expand from the electrodes in fairly uniform profiles with steep density gradients and to accelerate across the vacuum gap. After peak power, anode plasma fluctuations and a high velocity (30 cm/μs) axial plume develop; the latter expands radially coincident with collapse of the power pulse

  14. LISE++: Exotic beam production with fragment separators and their design

    Science.gov (United States)

    Tarasov, O. B.; Bazin, D.

    2016-06-01

    Since the LISE++ code presentation at the EMIS 2007 conference (Tarasov and Bazin, 2008), important improvements have been made in the analytical and Monte Carlo calculations of transmission, and accuracy of reaction product distributions. In this paper new features of the code in ion-beam optics, creation of new LISE++ blocks, and development of some reaction models will be discussed. Large progress has been done in ion-beam optics with the introduction of "elemental" blocks, that allows optical matrices calculation within LISE++. New type of configurations based on these blocks allow a detailed analysis of the transmission, useful for fragment separator design, and can be used for optics optimization based on user constraints.

  15. Radioactive ion beam production by the ISOL method for SPIRAL

    International Nuclear Information System (INIS)

    This work is directly related to the SPIRAL project (Systeme de Production d'Ions Radioactifs Acceleres en Lignes) of which the start up will begin in September 2001 at GANIL (Grand Accelerateur National d'Ions Lourds) in Caen. This thesis primarily concerns the development of radioactive ion production systems (target/ion source) by the thorough study of each production stage of the ISOL (Isotopic Separation On Line) method: target and/or projectile fragmentation production, diffusion out of target material, effusion into the ion source and finally the ionization of the radioactive atoms. A bibliographical research and thermal simulations allowed us to optimize materials and the shape of the production and diffusion targets. A first target was optimized and made reliable for the radioactive noble gases production (argon, neon...). A second target dedicated to the radioactive helium production was entirely designed and realised (from the specifications to the 'off line' and 'on line' tests). Finally, a third target source system was defined for singly-charged radioactive alkaline production. The intensities of secondary beams planned for SPIRAL are presented here. A detailed study of the diffusion effusion efficiency for these various targets showed that the use of a fine microstructure carbon (grain size of 1 μm) improved the diffusion and showed the importance of thickness of the lamella for the short lived isotope effusion. (author)

  16. Ion beam polarization in storage rings. Production, controlling and preservation

    Energy Technology Data Exchange (ETDEWEB)

    Prozorov, A. [St. Petersburg State Univ. (Russian Federation). V.A. Fock Research Institute for Physics; Labzowsky, L. [St. Petersburg State Univ. (Russian Federation). V.A. Fock Research Institute for Physics]|[St. Petersburg Nuclear Physics Institute (Russian Federation); Plunien, G. [Technische Univ. Dresden (Germany). Inst. fuer Theoretische Physik; Liesen, D. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Heidelberg Univ. (Germany). Physikalisches Inst.; Bosch, F. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Fritzsche, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Heidelberg Univ. (Germany). Physikalisches Inst.]|[Max-Planck Insitute of Nuclear Physics, Heidelberg (Germany); Surzhykov, A. [Max-Planck Insitute of Nuclear Physics, Heidelberg (Germany)

    2008-03-15

    The present paper reports on the actual status of the theoretical concepts for the production of polarized heavy ion beams in storage rings and for methods to control online the degree of polarization as well as investigations of the preservation of the polarization during the ion movement across the magnetic system of the ring. It is argued that for hydrogen-like ions beam polarization can be built up efficiently by optical pumping of the Zeeman sublevels of ground-state hyperfine levels and that the maximal achievable nuclear polarization exceeds 90%. Of special interest are polarized helium-like ions which can be produced by the capture of one electron, because in selected cases parity nonconservation effects are found to be of unprecedented size in Atomic Physics. The measurements of these effects require online-diagnostics of the degree of the ion beam polarization. It is shown that this can be accomplished by an online-detection of the linear polarization of the X-rays which are emitted with the capture of the electron. In order to investigate the preservation of the polarization of the ions stored in the ring, the concept of an instantaneous quantization axis is introduced. The dynamics of this axis and the behaviour of the polarization with respect to it are explored in detail. (orig.)

  17. Industrialization and production of neutral beam ion sources for MFTF

    International Nuclear Information System (INIS)

    The existing LLNL designs of the 20 and 80kV deuterium fueled Neutral Beam Ion Source Modules (NBSM) have been industrialized and are being produced successfully for the MFTF. Industrialization includes value engineering, production engineering, cost reduction, fixturing, facilitation and procurement of components. Production assembly, inspection and testing is being performed in a large electronics manufacturing plant. Decades of experience in high voltage, high vacuum power tubes is being applied to the procedures and processes. Independent quality and reliability assurance criteria are being utilized. Scheduling of the various engineering, procurement and manufacturing task is performed by the use of a Critical Path Method (CPM) computer code, Innovative, computerized grid alignment methods were also designed and installed specifically for this project. New jointing and cleaning techniques were devised for the NBSMs. Traceability and cost control are also utilized

  18. Heavy Flavour Cascade Production in a Beam Dump

    CERN Document Server

    2015-01-01

    SHiP will use a 400~GeV/c proton beam impinging on a several interaction length long Molybdenum target. Heavy flavour hadrons produced in the dump can decay semi-leptonically, which can produce both the Heavy Neutral Leptons as signal, but also potential background from muons and neutrinos. The absolute rate of heavy flavour production is taken from measurements. Pythia is used to predict the phase space distribution of the charm and beauty hadrons which are produced both in the primary interaction of the 400~GeV/c proton and in interactions of the secondaries produced in the cascade. The full cascade production of both HNL and background is compared to that reported in the SHiP Technical Proposal, where only the primary $pN$ interactions were taken into account.

  19. Development, Production and Testing of 4500 Beam Loss Monitors

    CERN Document Server

    Holzer, E B; Dehning, B; Ferioli, G; Grishin, V; Jimenez, T M; Koshelev, A; Kramer, Daniel; Larionov, A; Taborelli, M; Seleznev, V; Sleptsov, M; Sytin, A; Wevers, I

    2008-01-01

    Beam-loss monitoring (BLM) [1] is a key element in the LHC machine protection. 4250 nitrogen filled ionization chambers (IC) and 350 secondary emission monitors (SEM) have been manufactured and tested at the Institute for High Energy Physics (IHEP) in Protvino, Russia, following their development at CERN. Signal speed and robustness against aging were the main design criteria. Each monitor is permanently sealed inside a stainless-steel cylinder. The quality of the welding was a critical aspect during production. The SEMs are requested to hold a vacuum of $10^{-7}$ bar. Impurity levels from thermal and radiationinduced desorption should remain in the range of parts per million in the ICs. To avoid radiation aging (up to $2·10^{8}$ Gy in 20 years) production of the chambers followed strict UHV requirements. IHEP designed and built the UHV production stand. Due to the required dynamic range of $10^{8}$, the leakage current of the monitors has to stay below 2 pA. Several tests during and after production were ...

  20. Electron beam technology for production of preparations of immobilized enzymes

    International Nuclear Information System (INIS)

    Possibility of electron beam usage for proteases immobilization on 1,4-polyalkylene oxide (1,4-PAO) was studied to obtain biologically active complex for multi-purpose usage. It is shown that immobilization of Bacillus Subtilis protease is done due to free-radical linking of enzyme and carrier with formation of mycelium-like structures. Immobilization improves heat resistance of enzyme up to 60 centigrade without substrate and up to 80 centigrade in presence of substrate, widens range pH activity in comparison with non-immobilized forms. Immobilized proteases does not contain peroxides and long-live radicals. Our results permitted to create technologies for production of medical and veterinary preparations, active components for wool washing agents and leather fabrication technology

  1. Neutron production and ion beam generation in plasma focus devices

    International Nuclear Information System (INIS)

    Concerning the physical processes leading to neutron emission, a clearer situation has been achieved compared to the state at the start of this work. The general discussion will realize that the whole experimental data cannot be described consistently by the predictions of either the beam-target model or the quasi-thermonuclear fusion model, although many questions about the neutron production properties have been solved. In particular the neutron fluence anisotropy is found to be a property basically related to the existence of fast ions escaping axially out of the pinch region. The requirements to explain broad radial neutron energy spectra, long emission times, and energetic but not spatial emission anisotropies suggest a kind of particle trapping in the main source region. (orig./HT)

  2. Production of annular flat-topped vortex beams

    Institute of Scientific and Technical Information of China (English)

    Jiannong Chen; Yongjiang Yu; Feifei Wang

    2011-01-01

    @@ A model of an annular flat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.%A model of an annular fiat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.

  3. Study of electron beam production by a plasma focus

    International Nuclear Information System (INIS)

    A preliminary investigation of the electron beam produced by a plasma focus device using a current charged transmission line is described. Electron beam currents as high as 10 kA were measured. Interaction of the extracted beam and the filling gas was studied using open shutter photography

  4. The Physics and Applications of High Brightness Beams: Working Group A Summary on High Brightness Beam Production

    International Nuclear Information System (INIS)

    Working group A was devoted to high brightness beam production and characterization. The presentations and discussions could be categorized as cathode physics, new photoinjector designs, computational modeling of high brightness beams, and new experimental methods and results. Several novel injector and cathode designs were presented. However, a standard 1.5 cell rf photoinjector is still the most common source for high brightness beams. New experimental results and techniques were presented and thoroughly discussed. The brightest beam produced in a rf photoinjector published at the time of the workshop is approximately 2 1014 A/(m-rad)2 at Sumitomo Heavy Industries in Japan with 1 nC of charge, a 9 ps FWHM long laser pulse and a normalized transverse emittance of 1.2 pm. The emittance was achieved by utilizing a temporally flat laser pulse which decreased the emittance by an estimated factor of 2 from the beam produced with a Gaussian pulse shape with an identical pulse length

  5. Production of fast neutrons from deuteron beams in view of producing radioactive heavy ions beams

    International Nuclear Information System (INIS)

    This thesis is part of two research and development programmes for the study of neutron rich radioactive nuclear beam production. The technique is based on the ISOL method and can be summarized as follows. Fast neutrons are generated by the break-up of deuterons in a thick target. These neutrons irradiate a fissionable 238U target. The resulting fission products are extracted from the target, ionised, mass selected and post-accelerated. The aim of the thesis is to study the neutron angular and energetic distributions. After a bibliographical research to justify the choice of deuterons as the best projectile, we developed more specifically three points: - the extension of the activation detector method for neutron spectroscopy to a wide energy range (1 to 150 MeV), - the experimental measurement of neutron angular and energetic distributions produced by deuterons on thick targets. The deuteron energy ranges from 17 to 200 MeV and the thick targets were Be, C and U, - the realization of a code based on Serber's theory to predict the neutron distribution for any couple (deuteron energy-thick target). We conclude that for our application the most suitable target is C and the best deuteron energy is about 100 MeV. (author)

  6. Beam line shielding calculations for an Electron Accelerator Mo-99 production facility

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-03

    The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report the resulting neutron and photon dose fields.

  7. Recent experiments towards production and diagnostics of nitrogen ion beam for medium-mass ion beam ICF

    International Nuclear Information System (INIS)

    Three research teams are collaborating in the title topics. The first group presented proposals and preliminary results on (1) re-operation of cryogenic diode for nitrogen beam, (2) laser plasma production to supply ion source, (3) application of CCD camera element to advanced particle detector, (4) application of cryogenic technique to advanced material production method, and (5) reform of UV laser for future diode cleaning or plasma production. The joint 2nd and 3rd groups present (6) most recent results of time- and space-dependent particle beam diagnostics by an advanced arrayed pin-hole camera. (orig.). 5 figs., 6 refs

  8. Intense ion beam production in a ballistic focusing diode

    International Nuclear Information System (INIS)

    The results of experimental investigation of intense ion beam (IIB) production in a coaxial magnetic insulated diode are presented. The diode consists of a coaxial external anode of 94-120 mm diameter and internal cathode with longitudinal slits of 12 mm width. Two types of insulating magnetic fields: Bsub(Z)-field created by external solenoid and Bsub(o)-pulse field obtained in the course of current transmission from the external battery along the cathode. In the regime with Bsub(Z)=0,42 T the IID amplitudes for anodes from teflon, copper, lead have reached 3,7, 1, 1,3 kA and densities - 330 A/cm2, 87 A/cm2, 114 A/cm2, respectively. In the regime with Bsub(o)=1 T maximum IIB density on the cathode surface has reached 220 A/cm2, IIB maximum current constitutes 10 and 11 kA for the current getting to the cathode ribs and penetrating into slits, respectively. The production efficiency constitutes 67%

  9. The ADRIA project for high intensity radioactive beams production

    Energy Technology Data Exchange (ETDEWEB)

    Bisoffi, G.; Cavenago, M.; Dainelli, A.; Facco, A.; Fortuna, G.; Lombardi, A.; Moisio, M.F.; Pisent, A.; Spolaore, P.; Tiveron, B. (Laboratori Nazionali di Legnari, Legnaro (Italy)); Ruggiero, A.G. (Brookhaven National Lab., Upton, NY (United States)); Tecchio, L. (Turin Univ. (Italy) Istituto Nazionale di Fisica Nucleare, Turin (Italy))

    1992-01-01

    A proposal of an accelerator complex (ADRIA) for the Laboratori Nazionali di Legnaro (LNL) is described in this report. The main components of the complex are a Heavy Ion Injection system and two rings, a Booster and a Decelerator, both with a maximum rigidity of 22.25 Tm, connected by a Transfer Line where exotic proposal has two main goals consisting in the isotopes are produced and selected. The proposal has two main goals consisting in the acceleration of stable ion species up to kinetic energies of the order of few GeV/u, at a repetition rate of 10 Hz with intensities of about 10[sup 12] ions per second, for fixed target experiments in nuclear physics and for the production of fully stripped radioactive beams, using particle fragmentation method for nuclear spectroscopy experiments. Fragments are accumulated in the Decelerator, with intensities 10[sup 8] [divided by] 10[sup 9] ions/s, cooled and delivered at the production energies or decelerated down to energies of few MeV/u, in proximity of the Coulomb barrier.

  10. The ADRIA project for high intensity radioactive beams production

    Energy Technology Data Exchange (ETDEWEB)

    Bisoffi, G.; Cavenago, M.; Dainelli, A.; Facco, A.; Fortuna, G.; Lombardi, A.; Moisio, M.F.; Pisent, A.; Spolaore, P.; Tiveron, B. [Laboratori Nazionali di Legnari, Legnaro (Italy); Ruggiero, A.G. [Brookhaven National Lab., Upton, NY (United States); Tecchio, L. [Turin Univ. (Italy)]|[Istituto Nazionale di Fisica Nucleare, Turin (Italy)

    1992-12-31

    A proposal of an accelerator complex (ADRIA) for the Laboratori Nazionali di Legnaro (LNL) is described in this report. The main components of the complex are a Heavy Ion Injection system and two rings, a Booster and a Decelerator, both with a maximum rigidity of 22.25 Tm, connected by a Transfer Line where exotic proposal has two main goals consisting in the isotopes are produced and selected. The proposal has two main goals consisting in the acceleration of stable ion species up to kinetic energies of the order of few GeV/u, at a repetition rate of 10 Hz with intensities of about 10{sup 12} ions per second, for fixed target experiments in nuclear physics and for the production of fully stripped radioactive beams, using particle fragmentation method for nuclear spectroscopy experiments. Fragments are accumulated in the Decelerator, with intensities 10{sup 8} {divided_by} 10{sup 9} ions/s, cooled and delivered at the production energies or decelerated down to energies of few MeV/u, in proximity of the Coulomb barrier.

  11. Electron Production and Collective Field Generation in Intense Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A W; Vay, J; Cohen, R; Friedman, A; Lee, E; Verboncoeur, J; Covo, M K

    2006-02-09

    Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding. With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R&D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have 5

  12. AA, entrance of proton beam to antiproton production target

    CERN Multimedia

    1980-01-01

    Please look up 8010295 first. The intense proton beam from the 26 GeV PS arrives from the right, through the vacuum chamber. The big flange contains a thin window, after which the proton beam continues through free air. A beam transformer, affixed to the shielding block, measures its intensity, before it enters the hole in the concrete to hit the target behind it.

  13. Production of GW electron and ion beams by focused discharges

    International Nuclear Information System (INIS)

    This chapter attempts to determine how magnetized plasma structure and current distribution must vary with time in the pinch region to have a consistent picture. A method is presented to evaluate the total charge of a beam from a single discharge. Discusses the experimental system; an optimized mode of operation; ion beams; electron beams; the beam source; and plasmoid imaging by nuclear tracks in solids. The data support the existence of a fibrous structure for all stages of evolution of the current sheath (CS), from propagation in the interelectrodegap to axial-pinch collapse and at a later time when CS is fragmented

  14. Electron beam treatment parameters for control of stored product insects

    Science.gov (United States)

    Cleghorn, D. A.; Nablo, S. V.; Ferro, D. N.; Hagstrum, D. W.

    2002-03-01

    The fluidized bed process (EBFB) has been evaluated for the disinfestation of cereal grains. The various life stages from egg to adult have been studied on the 225 kV pilot as a function of surface dose. Three of the most common pests were selected: the rice weevil ( S. oryzae), the lesser grain borer ( R. dominica) and the red flour beetle ( T. castaneum). The major challenge to this process lies in those "protected" life-stages active deeply within the endosperm of the grain kernel. The rice weevil is such an internal feeder in which the larvae develop through several molts during several weeks before pupation and adult emergence. Product velocities up to 2000 m/min have been used for infested hard winter wheat at dose levels up to 1000 Gy. Detailed depth of penetration studies at three life stages of S. oryzae larvae were conducted at 225-700 kV and demonstrated effective mortality at 400 kV×200 Gy. Mortality data are also presented for the radiation labile eggs of these insects as well as the (sterile) adults, which typically lived for several weeks before death. These results are compared with earlier 60Co gamma-ray studies on these same insects. Based upon these studies, the effectiveness of the fluidized bed process employing self-shielded electron beam equipment for insect control in wheat/rice at sub-kilogray dose levels has been demonstrated.

  15. Electron beam treatment parameters for control of stored product insects

    International Nuclear Information System (INIS)

    The fluidized bed process (EBFB) has been evaluated for the disinfestation of cereal grains. The various life stages from egg to adult have been studied on the 225 kV pilot as a function of surface dose. Three of the most common pests were selected: the rice weevil (S. oryzae), the lesser grain borer (R. dominica) and the red flour beetle (T. castaneum). The major challenge to this process lies in those 'protected' life-stages active deeply within the endosperm of the grain kernel. The rice weevil is such an internal feeder in which the larvae develop through several molts during several weeks before pupation and adult emergence. Product velocities up to 2000 m/min have been used for infested hard winter wheat at dose levels up to 1000 Gy. Detailed depth of penetration studies at three life stages of S. oryzae larvae were conducted at 225-700 kV and demonstrated effective mortality at 400 kVx200 Gy. Mortality data are also presented for the radiation labile eggs of these insects as well as the (sterile) adults, which typically lived for several weeks before death. These results are compared with earlier 60Co gamma-ray studies on these same insects. Based upon these studies, the effectiveness of the fluidized bed process employing self-shielded electron beam equipment for insect control in wheat/rice at sub-kilogray dose levels has been demonstrated

  16. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O7+ and 1.15 emA of O6+, more than 100 eμA of intermediate heavy ions for charge states up to Ar13+, Ca13+, Fe13+, Co14+ and Kr18+, and tens of eμA of heavy ions with charge states to Kr26+, Xe28+, Au35+, Bi34+ and U34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe36+, Au46+, Bi47+ and U48+. An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams

  17. Intense ion beams from laser plasma : production and application

    International Nuclear Information System (INIS)

    The production of intense ion beams from plasma injectors using laser-induced plasma bundles are considered. Laser plasma bundles with quantity of ions about 10 sup 1 sup 5 - 10 sup 1 sup 6 imp sup -1 are created by interaction of laser irradiation ( q = 10 sup 9 - 10 sup 1 sup 3 W / cm sup 2, less than 'thermonuclear' intensities, lambda - 0.53 - 10.6 micro, E 0.1 - 10 J/ imp )with various solid targets in vacuum. By changing laser parameters and focusing conditions it is able to produce ions from very wide spectrum of chemical elements and of different charge. High density moving plasma gives the possibility to extract and to form in time up to 1 - 3 microsecond ion current equal 10-10 sup 3 A. Some types of such injector for radiation physics arrangements were elaborated. The main goals of the application of these equipment are the following : - acceleration of multiply charged ions in big accelerators; - ion implantation and material modification; - generation of intense pulse neutron fluxes; - vaporization of material and special layers creation. 4 refs., (author)

  18. Production and Release of ISOL Beams from Molten Fluoride Salt Targets

    CERN Document Server

    Mendonca, T M; Ghetta, V; Alibert, M; Heuer, D; Noah, E; Cimmino, S; Delonca, M; Gottberg, A; Kronberger, M; Ramos, J; Seiffert, C; Stora, T; CERN. Geneva. ATS Department

    2014-01-01

    In the framework of the Beta Beams study, a molten fluoride target has been proposed for the production of the required 1013 18Ne/s. The production and extraction of such rates are obtained on a circulating molten salt with proton beam energy beams at close to 1 MW power. As a most important step to validate the concept, a prototype has been designed and investigated at CERN-ISOLDE using a static target unit. The target material consisted of a binary fluoride system, NaF:LiF (39:61 % mol.), with melting point at 649ºC. The production of Ne beams has been monitored as a function of the target temperature and proton beam intensity. The prototype development and the results of the first online tests with 1.4 GeV proton beam are presented in this paper.

  19. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    International Nuclear Information System (INIS)

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient.

  20. Production of high current proton beams using complex H-rich molecules at GSI

    Science.gov (United States)

    Adonin, A.; Barth, W.; Heymach, F.; Hollinger, R.; Vormann, H.; Yakushev, A.

    2016-02-01

    In this contribution, the concept of production of intense proton beams using molecular heavy ion beams from an ion source is described, as well as the indisputable advantages of this technique for operation of the GSI linear accelerator. The results of experimental investigations, including mass-spectra analysis and beam emittance measurements, with different ion beams (CH3+,C2H4+,C3H7+) using various gaseous and liquid substances (methane, ethane, propane, isobutane, and iodoethane) at the ion source are summarized. Further steps to improve the ion source and injector performance with molecular beams are depicted.

  1. Production of high current proton beams using complex H-rich molecules at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A., E-mail: a.adonin@gsi.de; Barth, W.; Heymach, F.; Hollinger, R.; Vormann, H.; Yakushev, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291 (Germany)

    2016-02-15

    In this contribution, the concept of production of intense proton beams using molecular heavy ion beams from an ion source is described, as well as the indisputable advantages of this technique for operation of the GSI linear accelerator. The results of experimental investigations, including mass-spectra analysis and beam emittance measurements, with different ion beams (CH{sub 3}{sup +},C{sub 2}H{sub 4}{sup +},C{sub 3}H{sub 7}{sup +}) using various gaseous and liquid substances (methane, ethane, propane, isobutane, and iodoethane) at the ion source are summarized. Further steps to improve the ion source and injector performance with molecular beams are depicted.

  2. Bunch beam production and microwave generation in reditrons

    International Nuclear Information System (INIS)

    The authors have discovered in our two-dimensional particle-in-cell simulations that the oscillation of virtual cathodes in reditrons can produce a highly modulated electron beam. Full (100%) current modulation of the leakage electron beam was observed in our simulations. The modulation is at the frequency of the oscillating virtual cathode and the transverse magnetic mode generated by the reditron. The authors have further incorporated an inverse diode with a line impedance of 50 ohms in the reditron and showed that 28% of the kinetic energy of the modulated electron beam was converted into transverse electromagnetic waves with peak power of 1 GW

  3. Bunch beam production and microwave generation in reditrons

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, T.J.T.; Davis, H.A.; Fulton, R.D.; Sherwood, E.G.

    1989-01-01

    We have discovered in our two-dimensional particle-in-cell simulations that the oscillation of virtual cathodes in reditrons can produce a highly modulated electron beam. Full (100%) current modulation of the leakage electron beam was observed in our simulations. The modulation is at the frequency of the oscillating virtual cathode and the transverse magnetic mode generated by the reditron. We had further incorporated an inverse diode in the reditron and showed that the kinetic energy of the modulated electron beam was efficiently converted into transverse electromagnetic waves. Our simulations showed an efficiency of 26% and the time averaged microwave power was about 6 GW. 7 refs., 8 figs.

  4. Bunch Beam Production And Microwave Generation In Reditrons

    Science.gov (United States)

    Kwan, Thomas J. T.; Davis, Harold A.; Fulton, Robert D.; Sherwood, Eugene G.

    1989-07-01

    We have discovered in our two-dimensional particle-in-cell simulations that the oscillation of virtual cathodes in reditrons can produce a highly modulated electron beam. Full (100%) current modulation of the leakage electron beam was observed in our simulations. The modulation is at the frequency of the oscillating virtual cathode and the transverse magnetic mode generated by the reditron. We had further incorporated an inverse diode with a line impedance of 50 ohms in the reditron and showed that 28% of the kinetic energy of the modulated electron beam was converted into transverse electromagnetic waves with peak power of 1 GW.

  5. Improve large area uniformity and production capacity of laser interference lithography with beam flattening device

    Science.gov (United States)

    Yang, Yin-Kuang; Wu, Yu-Xiang; Lin, Te-Hsun; Yu, Chun-Wen; Fu, Chien-Chung

    2016-03-01

    Laser interference lithography (LIL) is a maskless lithography technique with many advantages such as simple optical design, inexpensive, infinite depth of focus, and large area patterning with single exposure. However, the intensity of normal laser beam is Gaussian distribution. In order to obtain large area uniform structure, we have to expand the laser beam much bigger than the wafer and use only the center part of the beam. Resulting in wasting lots of energy and the production capacity decrease. In this study, we designed a beam shaping device which consists of two parallel fused silicon optical window with different coating on both side. Two optical window form an air thin film. When the expanded laser beam pass through the device, the beam will experience many refraction and reflection between two optical window and interference with each other. The transmittance of laser beam will depend on the incident angle. The output intensity distribution will change from Gaussian distribution to a flat top distribution. In our experiment, we combined the beam shaping device with a Lloyd's mirror LIL system. Experiment results indicated that the LIL system with beam shaping device can obtain large area uniform pattern. And compare with the traditional Lloyd's mirror LIL system, the exposure time is shorten up to 4.5 times. In conclusion, this study design a beam flattening device for LIL system. The flat top beam can improve the large area uniformity and the production capacity of LIL. Making LIL more suitable for industry application.

  6. Production of secondary radioactive beams from 44 MeV/u Ar projectiles

    International Nuclear Information System (INIS)

    Secondary beams have been produced through interaction of a 1760 MeV Ar beam with a 99 mg/cm2 Be target. An achromatic spectrometer is used to select the magnetic rigidity corresponding to a given beam, and to transport this beam over a distance of about 18 m. The beam purity is studied using a solid state ΔE-E telescope. Beams of 38S and 39Cl are produced with a purity of about 80%, and production rates of 1.5 . 10-6 I0 and 5 . 10-5 I0 respectively. Here I0 denotes the primary beam intensity. Beams of 38Ar, 39Ar and 41K are produced with about the same abundances as 39Cl but with lower purities. It is shown that, by setting properly the experimental parameters, the beam production can be improved by a factor 2 to 5. This could lead to intensities of about 2 . 106 pps for 38S, and of 107 to 108 pps for the four other beams. The possibility of purifying these beams by placing a degrader between the two dipoles of the spectrometer is shown experimentally. (orig.)

  7. Production of high energy photon beam at TAC

    International Nuclear Information System (INIS)

    When an electron pass through an electric field, the electron loose its part of energy and photon is generated. This process is known as Bremsstrahlung (means 'radiation breaking' in German) and this photon can be used in a variety of different application. The TAC will be first Turkish Accelerator Center (TAC) where a IR-FEL and Beamstrahlung photon beam facilities will be established in first stage. The electrons will be accelerated up to 40 MeV by two LINAC and these beam will be used to generate Bremsstrahlung photon. In this study, the main parameters for Bremsstrahlung photon beam facility will be established at TAC will be detailed and fields to be used Bremsstrahlung beam will also be presented.

  8. Production of and experiments with secondary radioactive beams

    International Nuclear Information System (INIS)

    Examples of recent experiments performed at the doubly achromatic spectrometer LISE are used to highlight the present-day interest in secondary radioactive beams and to point to some future experimental possibilities

  9. Production of high-efficiency microsecond heavy-current beams

    International Nuclear Information System (INIS)

    The comparative analysis of various constructions of diodes with magnetic insulation is reported. It is shown that the diode current leakage decrease results in increase of pulse duration of relativistic electron beam and diode efficiency. A ring high quality electron beam of 0.6 MeV energy, current - 3-4 kA, duration - 2.5 μs and ring width 0.8 - 1 mm is obtained

  10. CRIS: A new method in isomeric beam production

    Directory of Open Access Journals (Sweden)

    Lynch K.M.

    2013-12-01

    Full Text Available The Collinear Resonance Ionization Spectroscopy (CRIS experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DSS. This consists of a rotating wheel implantation system for alpha- and beta-decay spectroscopy, and up to three germanium detectors around the implantation site for gamma-ray detection. Resonance ionization spectroscopy and the new technique of laser assisted nuclear decay spectroscopy have recently been performed at the CRIS beam line on the neutron-deficient francium isotopes. Here an overview of the two techniques will be presented, alongside a description of the CRIS beam line and DSS.

  11. CRIS: A new method in isomeric beam production

    International Nuclear Information System (INIS)

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DSS). This consists of a rotating wheel implantation system for alpha- and beta-decay spectroscopy, and up to three germanium detectors around the implantation site for gamma-ray detection. Resonance ionization spectroscopy and the new technique of laser assisted nuclear decay spectroscopy have recently been performed at the CRIS beam line on the neutron-deficient francium isotopes. Here an overview of the two techniques will be presented, alongside a description of the CRIS beam line and DSS. (authors)

  12. Contribution to the study of radioactive ion beam production by the ISOL method

    International Nuclear Information System (INIS)

    This thesis is related to the R and D program for the production of radioactive ion beams by the ISOL method at GANIL in Caen. This work concerns several different techniques based on the ISOL method. The first one is the production of radioactive ion beams with a SPIRAL target-source system (target + ECR source). The production rates of radioactive neon beams were determined on the SIRa test bench and previsions for SPIRAL were established. The feasibility of the production of radioactive condensable element beams with such target-source system, using a transport under a volatile molecular form between the target and the source, was experimentally proven by the production of radioactive oxygen beams via the CO molecule. The second technique is the production of radioactive alkaline beams with the target-source system MONOLITHE (target + hot cavity source). The production efficiencies of lithium and sodium radioactive beams were determined. A new methodology, the 'global method', has been developed as part of this thesis, for deducing diffusion, effusion and ionisation properties of these two elements with this ensemble. It is shown that the evolution of diffusion properties between different alkali elements is similar to noble gases. The third one is the IGISOL technique (target + ion guide). The MI-GI-CHEMIN code was created for simulating the movement of ions in an ion guide filled with helium and a given concentration of impurities, including electric and magnetic fields. A first IGISOL prototype is in realisation at GANIL. (author)

  13. Production and release of ISOL beams from molten fluoride salt targets

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, T.M., E-mail: taniamel@mail.cern.ch [IFIMUP and IN – Institut of Nanosciences and Nanotechnologies, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Hodak, R. [Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, SK-842 15 Bratislava (Slovakia); Ghetta, V.; Allibert, M.; Heuer, D. [Laboratoire de Physique Subatomique et de Cosmologie – LPSC, 53 Rue des Martyrs, 38026 Grenoble Cedex (France); Noah, E. [Section de Physique, Université de Genève, 1211 Genève 4 (Switzerland); Cimmino, S. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Delonca, M. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); IRTES-M3M, Université de Technologie de Belfort-Montbeliard, 90010 Belfort Cedex (France); IRTES-LERMPS, Université de Technologie de Belfort-Montbeliard, 90010 Belfort Cedex (France); Gottberg, A. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Instituto de Estructura de la Materia CSIC, E28006 Madrid (Spain); Kronberger, M. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Department of Physics, University of Jyväskylä, Survontie 9, Jyväskylä FI-40014 (Finland); Ramos, J.P. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); and others

    2014-06-01

    In the framework of the Beta Beams project, a molten fluoride target has been proposed for the production of the required 10{sup 1318}Ne/s. The production and extraction of such rates are predicted to be possible on a circulating molten salt with 160 MeV proton beams at close to 1 MW power. As a most important step to validate the concept, a prototype has been designed and investigated at CERN-ISOLDE using a static target unit. The target material consisted of a binary fluoride system, NaF:LiF (39:61 mol.%), with melting point at 649 °C. The production of Ne beams has been monitored as a function of the target temperature and proton beam intensity. The prototype development and the results of the first online tests with 1.4 GeV proton beam are presented in this paper.

  14. Analysis of fusion neutron production in EAST with neutral beam injection

    International Nuclear Information System (INIS)

    Background: The neutron emission rate increases rapidly with high-power deuterium beam injected into deuterium plasmas. It is necessary to calculate the neutron production in Experimental Advanced Superconducting Tokamak (EAST) for the radiation safety. Purpose: We aim to provide reference for developing new detection systems of fusion neutron and neutron radiation shielding design. Methods: Neutron emission rate was calculated using the typical particle model and analysis method. The relationships were analyzed among the fusion neutron production and the ion density, ion temperature, neutral beam energy and neutral beam power respectively. Results: The results demonstrated that the total fusion neutron production was 1016 n·s-1 with 80-keV, 4-MW neutral beam injection. Conclusion: Neutron intensity in EAST will increase by a factor of ten when appropriate neutral beam injection is applied. It can be referred for further performance improvement and radiation protection of EAST. (authors)

  15. Production and release of ISOL beams from molten fluoride salt targets

    International Nuclear Information System (INIS)

    In the framework of the Beta Beams project, a molten fluoride target has been proposed for the production of the required 101318Ne/s. The production and extraction of such rates are predicted to be possible on a circulating molten salt with 160 MeV proton beams at close to 1 MW power. As a most important step to validate the concept, a prototype has been designed and investigated at CERN-ISOLDE using a static target unit. The target material consisted of a binary fluoride system, NaF:LiF (39:61 mol.%), with melting point at 649 °C. The production of Ne beams has been monitored as a function of the target temperature and proton beam intensity. The prototype development and the results of the first online tests with 1.4 GeV proton beam are presented in this paper

  16. 30S RI Beam Production and X-ray Bursts

    CERN Document Server

    Kahl, David; Binh, Dam Nguyen; Chen, Jun; Hashimoto, Takashi; Hayakawa, Seiya; Kim, Aram; Kubono, Shigeru; Kurihara, Yuzo; Lee, Nam Hee; Michimasa, Shin'ichiro; Nishimura, Shunji; Van Ouellet, Christian; nia, Kiana Setoodeh; Wakabayashi, Yasuo; Yamaguchi, Hideotoshi

    2009-01-01

    The present work reports the results of 30S radioactive beam development for a future experiment directly measuring data to extrapolate the 30S(alpha,p) stellar reaction rate in Type I X-ray bursts, a phenomena where nuclear explosions occur repeatedly on the surface of accreting neutron stars. We produce the radioactive ion 30S via the 3He(28Si,30S)n reaction, by bombarding a cryogenically cooled target of 3He at 400 Torr and 80 K with 28Si beams of 6.9 and 7.54 MeV/u. In order to perform a successful future experiment which allows us to calculate the stellar 30S(alpha, p) reaction rate, Hauser-Feshbach calculations indicate we require a 30S beam of ~10^5 particles per second at ~32 MeV. Based on our recent beam development experiments in 2006 and 2008, it is believed that such a beam may be fabricated in 2009 according to the results presented. We plan to measure the 4He(30S,p) cross-section at astrophysical energies in 2009, and some brief remarks on the planned (alpha,p) technique are also elucidated.

  17. Production of rare isotope beams with the NSCL fragment separator

    International Nuclear Information System (INIS)

    Rare isotope beams at the National Superconducting Cyclotron Laboratory are produced by projectile fragmentation of medium energy primary beams on beryllium targets. The fragments of interest are selected by the A1900 high-acceptance fragment separator. The A1900 consists of superconducting magnets: four 45 deg. dipoles and eight quadrupole triplets with a maximum magnetic rigidity of 6 Tm. A momentum acceptance of Δp/p = 5% with a solid angle acceptance of ΔΩ = 8 msr makes the A1900 one of the highest-acceptance separators in the world. Detector systems installed within the device allow tracking and unambiguous identification of individual isotopes. During the first three years of operation of the A1900, more than 200 different rare isotope beams approaching both the neutron and proton driplines have been delivered to experiments

  18. Production, detection and utilization of thermal neutron beams

    International Nuclear Information System (INIS)

    Based on an original 14 MeV neutrons beam, a thermal neutron beam is produced by slowing down the fast neutrons in a polythylen moderator. This thermal neutron beam is applied to neutroradiographic analysis of materials. A new type of electronic detector which consists of a microchannel plate (MCP) associated to a convertor made of Boron or Lithium is developed in order to reduce the exposure time of the samples while maintaining a good contrast. Neutroradiographies with (neutron, alpha) reactions of standard solutions of Boron-10 and Lithium-6 are realizad using Solid State Nuclear Tracks Detectors, and some parasite phenomenons are described. This method is applied to the two stable elements analysis in histological cross sections

  19. Development of over-production strain of saccharification enzyme and biomass pretreatment by proton beam irradiation

    International Nuclear Information System (INIS)

    - The first year : Pre-treatment of biomass by proton beam irradiation and characterization of the pretreated biomass by IR and SEM - The second year : Strain development by proton beam irradiation for the production of cellulase and hemicellulase - The third year : Optimization of Saccharification process by cellulase and hemicellulase

  20. Production of high intensity heavy ion beams for the experiments on a gas-filled separator

    International Nuclear Information System (INIS)

    A gas-filled separator of heavy ions induced reactions products permits a substantial suppression of the background from primary beam ions. This feature allows one to obtain an extremely intensive ion beam from the cyclotron U-400. Experimental studies were performed to investigate the operation of various stripping carbon foils. 7 refs.; 2 figs

  1. Study and production of polarized monochromatic thermal neutron beams

    International Nuclear Information System (INIS)

    Results obtained with a recently built neutron spectrometer producing monochromatic polarized neutron beams,in the energy rang (10-3 - 10) eV and using a series of artificial (Co: 92 per cent - Fe: 8 per cent) monocrystal as polarizers and analysers, are given. A high precision method for cutting monocrystals is explained. A description of the installation itself as well as some results obtained with Fe3O4 crystals are also given. Experimental result pertaining to various magnetic guide and 'spin flip' system, as required in the handling of such polarized neutron beams, are also discussed. (author)

  2. Working group II report: Production and dynamics of high brightness beams

    International Nuclear Information System (INIS)

    This paper summarizes the main discussions of the Working Group on the Production and Dynamics of High Brightness Beams. The following topics are covered in this paper. Proposed new electron sources and needed research on existing sources is covered. The discussions on issues relating to the description of phase space on non-thermalized electron beam distributions and the theoretical modeling on non-thermalized electron beam distributions is presented. Finally, the present status of the theoretical modeling of beam transport in bends is given

  3. The production and use of ultralow energy ion beams

    Science.gov (United States)

    Goldberg, R. D.; Armour, D. G.; van den Berg, J. A.; Cook, C. E. A.; Whelan, S.; Zhang, S.; Knorr, N.; Foad, M. A.; Ohno, H.

    2000-02-01

    An ion accelerator, purpose built to produce beams at energies down to 10 eV with current densities in the 10-100 μA cm-2 range, is described. Fitted with dual ion source assemblies, the machine enables ultralow energy ion implantation and the growth of films and multilayers to be carried out under highly controlled conditions. The accelerator delivers ion beams into an ultrahigh vacuum chamber, containing a temperature controlled target stage (range -120 to +1350 °C), where they are used to study the fundamental physics relating to the interaction of ultralow energy ions with surfaces. This knowledge underlies a wide range of ion-beam and plasma-based technologies and, to illustrate its importance, results are presented from investigations designed to determine the optimum conditions for the growth of diamond-like and aluminum films by ion-beam deposition and the formation of ultrashallow junctions in semiconductors by 2.5 keV As+ implantation. The later investigation shows how transient arsenic diffusion, which occurs during post-implant thermal processing, can be controlled by manipulating the substrate temperature during implantation.

  4. High charge-state ion beam production from a laser ion source

    International Nuclear Information System (INIS)

    The high current, high charge-state ion beam which can be extracted from a laser produced plasma is well suited, after initial acceleration, for injection into synchrotrons. At CERN, the production of a heavy ion beam using such a source is studied. A 60 mA pulse of a mixture of high charge state tantalum or lead ions of 5 μs duration has been extracted at 59 kV. The resulting beam emittance and energy spread were measured. A Low Energy Beam Transport system (LEBT) consisting of two pulsed solenoids is used to match the beam to a four-rod Radio Frequency Quadrupole (RFQ). Preliminary results are given for the acceleration of the beam by an RFQ, designed for the acceleration of 10 mA of Ta16+ to an energy of 100 keV/u. (author)

  5. Photofission for the production of radioactive beams: Experimental data from an on-line measurement

    International Nuclear Information System (INIS)

    A PARRNe 1 experiment (Production d'Atomes Radioactifs Riches en Neutrons) aimed at the production of neutron-rich radioactive noble gases produced by photofission has been performed at CERN. The LEP Pre-Injector (LPI) has been used to deliver a 50 MeV electron beam. The results obtained show clearly that the use of an electron beam to produce neutron-rich fission fragments for futur RNB facilities is an option that should not be neglected. (orig.)

  6. Exploring the energy/beam current parameter space for the isotope production facility (IPF) at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Gulley, Mark S [Los Alamos National Laboratory; Bach, Hong [Los Alamos National Laboratory; Nortier, Francis M [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Bitteker, Leo J [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Valdez, Frank O [Los Alamos National Laboratory; Seifter, Achim [Los Alamos National Laboratory

    2010-09-07

    IPF has recently investigated isotope production with proton beams at energies other than the 100-MeV currently available to the IPF beam line. To maximize the yield of a particular isotope, it is necessary to measure the production rate and cross section versus proton beam energy. Studies were conducted at 800 MeV and 197 MeV to determine the cross section of Tb-159. Also, the ability to irradiate targets at different proton beam energies opens up the possibility of producing other radioisotopes. A proof-of-principle test was conducted to develop a 40-MeV tune in the 100-MeV beam line. Another parameter explored was the beam current, which was raised from the normal limit of 250 {mu}A up to 356 {mu}A via both power and repetition rate increase. This proof-of-principle test demonstrated the capability of the IPF beam line for high current operation with potential for higher isotope yields. For the full production mode, system upgrades will need to be in place to operate at high current and high duty factor. These activities are expected to provide the data needed for the development of a new and unique isotope production capability complementing the existing 100-MeV IPF facility.

  7. High energy photon production in strong colliding laser beams

    OpenAIRE

    Kuchiev, Michael; Ingham, Julian

    2015-01-01

    The collision of two intense, low-frequency laser beams is considered. The $e^-e^+$ pairs created in this field are shown to exhibit recollisions, which take place at high energy accumulated due to the wiggling of fermions. The resulting $e^-e^+$ annihilation produces high energy photons, or heavy particles. The coherent nature of the laser field provides strong enhancement of the probability of these events. Analytical and numerical results are outlined.

  8. Development of Cosmeceuticals from Natural Products using Proton Beam

    International Nuclear Information System (INIS)

    In this report, securing the plant material from the natural substance by irradiating of proton beam, development of the fittest combining and preparing technic for their development of the functional whitening cosmetics, examining the effect of cosmetics developed, safety test of cosmetics developed, stability test of cosmetics, safety test of cosmetics, cytotoxicity test of the cosmetic, and valuation of effect test as a Cosmeceuticals are included

  9. Development of Cosmeceuticals from Natural Products using Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. D.; Choi, J. K.; Hwang, Y. H. [Dongguk University, Seoul (Korea, Republic of)

    2009-04-15

    In this report, securing the plant material from the natural substance by irradiating of proton beam, development of the fittest combining and preparing technic for their development of the functional whitening cosmetics, examining the effect of cosmetics developed, safety test of cosmetics developed, stability test of cosmetics, safety test of cosmetics, cytotoxicity test of the cosmetic, and valuation of effect test as a Cosmeceuticals are included.

  10. Production of heavy ion beams for atomic physics studies

    International Nuclear Information System (INIS)

    A laboratory for research in atomic physics of ions has been set up around a 2 MV tandem Van de Graaff accelerator designed and built indegenously. Mass analysed negatively charged heavy ion beams from a directly extracted duoplasmatron ion source are injected through various ion-optical elements into the accelerating tube. A gas stripper at the high voltage dome changes the negative ions into positive ions which are subsequently accelerated. The high energy end of the accelerator consists of quadrupole focussing magnets and an analysing magnet. A pair of insulated tantalum slits provide corona feedback and stabilize the energy of the accelerator. A beam resolution of 5 keV at 1 MeV proton energy has been measured. A number of experiments are presently being planned to utilize the accelerator in the field of basic research in atomic physics. These include beam-foil spectroscopic measurements involving detection of decay photon/electrons, ion-induced X-ray emission, analytical applications and radiation damage studies. Electron spectrometers which are in the stage of testing include cylindrical mirror analyser and parallel plate analyser. On the accelerator front, efforts are underway to develop a new sputter ion source and computer automation for improving stability and reliability. The salient features of the accelerator and the instrumentation developed for carrying out experiments in atomic physics are reported. (author). 14 refs., 17 figs

  11. Monte Carlo study of secondary electron production from gold nanoparticle in proton beam irradiation

    Directory of Open Access Journals (Sweden)

    Jeff Gao

    2014-03-01

    Full Text Available Purpose: In this study, we examined some characteristics of secondary electrons produced by gold nanoparticle (NP during proton beam irradiation.Method: By using the Geant4 Monte Carlo simulation toolkit, we simulated the NP at the range from radius (r of 17.5 nm, 25 nm, 35 nm to r = 50 nm. The proton beam energies used were 20MeV, 50MeV, and 100MeV. Findings on secondary electron production and their average kinetic energy  are presented in this paper. Results: Firstly, for NP with a finite size, the secondary electron production increase with decreasing incident proton beam energy and secondary buildup existed outside NP. Secondly, the average kinetic energy of secondary electrons produced by a gold NP increased with incident proton beam energy. Thirdly, the larger the NP size, the more the secondary electron production.Conclusion: Collectively, our results suggest that apart from biological uptake efficiency, we should take the secondary electron production effect into   account when considering the potential use of NPs in proton beam irradiation.-----------------------------------------------Cite this article as: Gao J, Zheng Y. Monte Carlo study of secondary electron production from gold nanoparticle in proton beam irradiation. Int J  Cancer Ther Oncol 2014; 2(2:02025.DOI: http://dx.doi.org/10.14319/ijcto.0202.5

  12. A Method to Produce Intense Positron Beams via Electro Pair Production on Electrons

    CERN Document Server

    Schoch, Berthold

    2016-01-01

    Intense positron beams can be prepared via electro production with the reaction $e^{-} + e^{-} \\rightarrow e^{-}+e^{+}+e^{-}+e^{-}$ due to the availability of high current electron beams. Head on collisions inside of a magnetic field of a solenoid are used to produce unpolarized/polarized positrons via $e^{-}-e^{+}$ - pair production. A flux of unpolarized positrons, $N_{positron}=6.55 \\cdot 10^{11} s^{-1}$, has been obtained as a result of calculations for a special case of parameters with beam currents for both electron beams of $I_{e}$=10 mA and beam momenta of $p_{beam 1}$=0.63 MeV/c and $p_{beam 2}$=10.0 MeV/c. Intensities are an order of magnitude smaller in the case of polarized positrons due to a reduced current of one of the electron beams. Suitable cuts on momenta of the positrons allow to achieve a polarization transfer from electrons to positrons of $\\geq $ 85\\% reducing, however, the intensity to 27\\%

  13. Effects of sawtooth crashes on beam ions and fusion product tritons in JET

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.B.; Hone, M.A.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Adams, J.M.; Bond, D.S.; Watkins, N. [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.; Howarth, P.J.A. [Birmingham Univ. (United Kingdom)

    1994-07-01

    The effect of a sawtooth crash on the radial distribution of the slowing down fusion product tritons and on beams ions, is examined with measurements of the 2.5 MeV and 14 MeV neutron emission line-integrals before and after sawtooth crashes. In deuterium discharges, the 14 MeV neutron production was wholly attributable to burnup of the 1 MeV fusion product tritons from d-d fusion. The local emissivity of 14 MeV neutrons, and hence of the profile of thermalizing tritons, is shown to be only weakly affected by crashes in the discharges studied. This is in contradiction with the apparent behaviour of injected beam ions as deduced from a study of the considerable changes in local emissivity of the 2.5 MeV neutrons. Nevertheless, the behaviour of the fusion product tritons is consistent with the scaling of the beam injected deuterium. 1 ref., 6 figs.

  14. Application of Ion Beam Processing Technology in Production of Catalysts

    Directory of Open Access Journals (Sweden)

    Mykola G. Bannikov, Javed A. Chattha

    2012-08-01

    Full Text Available In this paper, the applicability of Ion Beam Processing Technology for making catalysts has been inves-tigated. Ceramic substrates of different shapes and metal fibre tablets were implanted by platinum ions and tested in nitrogen oxides (NOx and carbon monoxide (CO conversion reactions. Effectiveness of the implanted catalysts was compared to that of the commercially produced platinum catalysts made by impregnation. Platinum-implanted catalyst having fifteen times less platinum content showed the same CO conversion efficiency as the commercially pro-duced catalyst. It was revealed that the effectiveness of the platinum-implanted catalyst has complex dependence on the process parameters and the optimum can be achieved by varying the ions energy and the duration of implantation. Investigation of the pore structure showed that ion implantation did not decrease the specific surface area of the catalyst.Key Words: Catalyst, Ion Implantation, Noble metals.

  15. Proton beam production by a laser ion source with hydride target

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M., E-mail: okamura@bnl.gov [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Stifler, C. [Engineering Physics Systems Department, Providence College, Providence, Rhode Island 02918 (United States); Palm, K. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Steski, D.; Kanesue, T. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa (Japan); Kumaki, M. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo (Japan)

    2016-02-15

    We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam.

  16. Possible scheme of e-beam transverse modulation and high power CSR production

    International Nuclear Information System (INIS)

    A scheme for e-beam transverse modulation is proposed and analyzed. It is shown that such a new type of modulation can be produced by laser fields in a special undulator. The transverse modulated electron beams can be used for coherent spontaneous radiation (CSR) production in another undulator at a frequency which is twice as high as that of the modulating laser field. It is shown by numerical calculations that CSR of some orders higher power than the primary laser beam power can be obtained

  17. Proton beam production by a laser ion source with hydride target

    International Nuclear Information System (INIS)

    We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam

  18. Optimization of Electron Beam Melting for Production of Small Components in Biocompatible Titanium Grades

    OpenAIRE

    Karlsson, Joakim

    2015-01-01

    Additive manufacturing (AM), also called 3D-printing, are technologies where parts are formed from the bottom up by adding material layer-by-layer on top of each other. Electron Beam Melting (EBM) is an AM technique capable of manufacturing fully solid metallic parts, using a high-intensity electron beam to melt powder particles in layers to form finished components. Compared to conventional machining, EBM offers enhanced efficiency for production of customized and patient specific parts such...

  19. Feasibility study of heavy-ion beams and compound target materials for muon production

    Science.gov (United States)

    Sohn, Jae Bum; Lee, Ju Hahn; Kim, Gi Dong; Kim, Yong Kyun

    2015-10-01

    We have investigated the feasibility of using compound materials as targets for muon production by virtue of simulations using a GEANT4 toolkit. A graphite material and two thermostable compound materials, beryllium oxide (BeO) and boron carbide (B4C), were considered as muon production targets, and their muon production rates for a 600-MeV proton beam were calculated and compared. For the thermal analysis, the total heat deposited on the targets by the proton beams and the secondary particles was calculated with the MCNPX code; then, the temperature distribution of target was derived from the calculated heat by using the ANSYS code with consideration of heat transfer mechanisms such as thermal conduction and thermal radiation. In addition, we have investigated whether the heavy-ion beams can be utilized for muon production. For various beam species such as 3He2, 4He, 7Li, 10B and 12C, their muon production rates were calculated and compared with the rates experimentally-obtained for a proton beam.

  20. Feasibility study of heavy ion beams and compound target materials for muon production

    CERN Document Server

    Son, Jaebum; Kim, Gi Dong; Kim, Yong Kyun

    2015-01-01

    We have investigated the feasibility of using compound materials as target for muon production by virtue of simulations using a GEANT4 toolkit. A graphite and two thermostable compound materials, beryllium oxide (BeO) and boron carbide (B4C) were considered as muon production targets and their muon production rates for 600-MeV proton beam were calculated and compared. For thermal analysis, total heat deposited on the targets by the proton beams and the secondary particles was calculated with a MCNPX code, and then the temperature distribution of target was derived from the calculated heat by using an ANSYS code with consideration for heat transfer mechanisms, such as thermal conduction and thermal radiation. In addition, we have investigated whether the heavy ion beams can be utilized for muon production. For various beam species such as 3He2, 4He, 7Li, 10B and 12C, their muon production rates were calculated and compared with that obtained for a proton beam.

  1. GridPix detectors: Production and beam test results

    International Nuclear Information System (INIS)

    The innovative GridPix detector is a Time Projection Chamber (TPC) that is read out with a Timepix-1 pixel chip. By using wafer post-processing techniques an aluminium grid is placed on top of the chip. When operated, the electric field between the grid and the chip is sufficient to create electron induced avalanches which are detected by the pixels. The time-to-digital converter (TDC) records the drift time enabling the reconstruction of high precision 3D track segments. Recently GridPixes were produced on full wafer scale, to meet the demand for more reliable and cheaper devices in large quantities. In a recent beam test the contribution of both diffusion and time walk to the spatial and angular resolutions of a GridPix detector with a 1.2 mm drift gap are studied in detail. In addition long term tests show that in a significant fraction of the chips the protection layer successfully quenches discharges, preventing harm to the chip

  2. GridPix detectors: Production and beam test results

    Energy Technology Data Exchange (ETDEWEB)

    Koppert, W.J.C., E-mail: wkoppert@nikhef.nl [Nikhef, Amsterdam (Netherlands); Bakel, N. van [Nikhef, Amsterdam (Netherlands); Bilevych, Y. [Physikalisches Institut, University of Bonn, Bonn (Germany); Colas, P. [IRFU, CEA Saclay, Gif-sur-Yvette (France); Desch, K. [Physikalisches Institut, University of Bonn, Bonn (Germany); Fransen, M.; Graaf, H. van der; Hartjes, F.; Hessey, N.P. [Nikhef, Amsterdam (Netherlands); Kaminski, J. [Physikalisches Institut, University of Bonn, Bonn (Germany); Schmitz, J. [University of Twente, Mesa Institute for Nanotechnology, Enschede (Netherlands); Schön, R.; Zappon, F. [Nikhef, Amsterdam (Netherlands)

    2013-12-21

    The innovative GridPix detector is a Time Projection Chamber (TPC) that is read out with a Timepix-1 pixel chip. By using wafer post-processing techniques an aluminium grid is placed on top of the chip. When operated, the electric field between the grid and the chip is sufficient to create electron induced avalanches which are detected by the pixels. The time-to-digital converter (TDC) records the drift time enabling the reconstruction of high precision 3D track segments. Recently GridPixes were produced on full wafer scale, to meet the demand for more reliable and cheaper devices in large quantities. In a recent beam test the contribution of both diffusion and time walk to the spatial and angular resolutions of a GridPix detector with a 1.2 mm drift gap are studied in detail. In addition long term tests show that in a significant fraction of the chips the protection layer successfully quenches discharges, preventing harm to the chip.

  3. RESONATORS, MODES, BEAMS: Gain saturation of laser beams and production and decay of phase dislocations

    Science.gov (United States)

    Malyutin, A. A.

    2006-02-01

    The distortion of the distribution of initially pure laser modes caused by the gain saturation is simulated numerically. It is shown that the gain saturation results in a considerable enrichment of the modal spectrum of radiation accompanied by the production and decay of phase dislocations in the far-field domain and at the output of an astigmatic π/2-mode converter.

  4. Production of helium and helium-hydrogen positive ion beams for the alpha particle measurement

    International Nuclear Information System (INIS)

    In order to produce diagnostic helium neutral beam for alpha particle measurement in nuclear fusion plant of deuterium-tritium reation, helium ion (He+) or helium-hydrogen ion (HeH+) beams of ∼20 keV have been considered as a primary beam. For He+ beam, it is important to produce focused high-current-density ion beam in order to pass through small apertures of alkali gas cell with an enough signal level. For HeH+ beam, conditions producing HeH+ has not been investigated in detail as yet. In order to extract these beams, focused high-current-density neutral beam system is applied. For He+ beam extraction of ∼22 kV, it is confirmed that current density of ∼86 mA/cm2 is achieved, whose value is close to necessary value in ITER. For HeH+ beam extraction in the case of ∼300 V acceleration, the production rate of HeH+ component increases with the increase of helium gas pressure ratio to hydrogen gas pressure when its value is > ∼75%. In the case of 25 kV acceleration, if 15% of total current (which includes H+, H2+, H3+, He+ and HeH+ components) is HeH+ component, current density of HeH+ is estimated as ∼13 mA/cm2, whose value is larger than necessary value in ITER. From melted traces of the target plate, it is estimated that the divergence angle is about ±0.8deg. (author)

  5. In-beam production and transport of radioactive 17F at ATLAS

    International Nuclear Information System (INIS)

    Beam currents of radioactive 17F(T1/2 = 65s) as high as 2 x 106 s-1 have been produced at the ATLAS facility and delivered to target for nuclear physics research. The d(16O, 17F)n and p(17O,17F)n reaction were used to produce the 17F in the energy range of 65-110 MeV with 17F intensities of up to 250 pnA. The target employed is a liquid nitrogen cooled H2 gas cell, with HAVAR windows, operating at up to 8 x 104 Pa pressure. A new beam optics geometry consisting of a superconducting solenoid immediately after the production target followed by a single superconducting resonator has significantly improved the total capture efficiency of the transport system. The superconducting solenoid captures the highly divergent secondary beam and refocuses it to improve the beam match into the remainder of the transport system. A single superconducting resonator then ''debunches'' the beam, reducing the energy spread by a factor of four. The beam energy can also be varied, using the resonant cavity, without changing the primary beam energy. Detailed discussion of the results, comparison to calculations, and further possible improvements will be presented

  6. Hadron production measurements to constrain accelerator neutrino beams

    Science.gov (United States)

    Korzenev, Alexander

    2015-07-01

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the ν flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming xF scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are parametrized at the surface of the target, thus one avoids to trace the particle interaction history inside the target. As in the case of the first approach, a dedicated ancillary experiment is mandatory. Recent results from the hadron production experiments - NA61/SHINE at CERN (measurements for T2K) and MIPP at Fermilab (measurements for NuMI) - are reviewed.

  7. Hadron production measurements to constrain accelerator neutrino beams

    International Nuclear Information System (INIS)

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the ν flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming xF scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are parametrized at the surface of the target, thus one avoids to trace the particle interaction history inside the target. As in the case of the first approach, a dedicated ancillary experiment is mandatory. Recent results from the hadron production experiments – NA61/SHINE at CERN (measurements for T2K) and MIPP at Fermilab (measurements for NuMI) – are reviewed

  8. P.I.A.F.E. project: production of highly charged particles for radioactive ion beams

    International Nuclear Information System (INIS)

    The transformation of a mono-charged ion beam into a multicharged ion beam is an important problem in the projects of radioactive beams acceleration. This transformation must be performed with the best possible efficiency and in the shortest possible time to avoid the loss of particles by radioactive degenerescence. A ionization method using an electron cyclotron resonance (ECR) source is proposed. It consists in the fast capture by the ECR plasma of the radioactive elements injected inside this source in the form of a mono-charged ion beam. This method gives good results (2 to 6% efficiency to move from the 1+ to the 9+ charge state) for the ionization of alkaline elements, rare and metallic gases, with fast times of response allowing the ionization of radioactive products with a lifetime inferior to 1 s. (J.S.)

  9. Production of intense highly charged ion beams with SERSE

    CERN Document Server

    Gammino, S; Ciavola, G; Castro, M; Chines, F; Marletta, S; Melin, G; Briand, P; Girard, A; Ludwig, P; Seyfert, P; Guillaume, D

    1999-01-01

    The source SERSE is operational at LNS since June 1998 and many improvements have been carried out in this period. The frequency has been increased from 14.5 GHz to 18 GHz and the use of two frequency heating has given positive results. Metallic ion production has been tested by means of a high temperature oven and the preliminary results are described. Tests of magnetic field scaling and frequency scaling have confirmed the results of previous tests with SC-ECRIS at lower frequency and seems to suggest that the upgrading of the source to higher frequency may be considered.

  10. Physics of intense light ion beams and production of high energy density in matter. Annual report 1994

    International Nuclear Information System (INIS)

    This report presents the results obtained in 1994 within the FZK-program on 'Physics of intense ion beams and pulsed plasmas'. It describes the present status of the 6 MW, 2 TW pulsed generator KALIF-HELIA, the production and focussing of high power ion beams and numerical simulations and experiments related to the hydrodynamics of beam matter interaction. (orig.)

  11. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar12+, 0.92 emA Xe27+, and so on, will be presented

  12. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    Science.gov (United States)

    Sun, L.; Guo, J. W.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Yang, Y.; Qian, C.; Fang, X.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar12+, 0.92 emA Xe27+, and so on, will be presented.

  13. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L., E-mail: sunlt@impcas.ac.cn; Lu, W.; Zhang, W. H.; Feng, Y. C.; Qian, C.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Guo, J. W.; Yang, Y.; Fang, X. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω{sup 2} scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE{sub 01} and HE{sub 11} modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar{sup 12+}, 0.92 emA Xe{sup 27+}, and so on, will be presented.

  14. Recent progress of in-flight separators and rare isotope beam production

    Science.gov (United States)

    Kubo, Toshiyuki

    2016-06-01

    New-generation in-flight separators are being developed worldwide, including the Super-FRS separator at the GSI Facility for Antiproton and Ion Research (FAIR), the ARIS separator at the Michigan State University (MSU) Facility for Rare Isotopes Beams (FRIB), and the BigRIPS separator at the RIKEN RI Beam Factory (RIBF), each of which is aimed at expanding the frontiers of rare isotope (RI) production and advancing experimental studies on exotic nuclei far from stability. Here, the recent progress of in-flight separators is reviewed, focusing on the advanced features of these three representative separators. The RI beam production that we have conducted using the BigRIPS separator at RIKEN RIBF is also outlined.

  15. Advanced target concepts for production of radioactive ions and neutrino beams

    International Nuclear Information System (INIS)

    The 1-20 MW of proton beam power which modern accelerator technology put at our disposal for production of intense secondary beams presents a major technically challenge to the production targets. A conceptual design is presented for a high power pion production target and collection system, which was originally suggested to be used as the source for the proposed CERN muon-neutrino factory. It will be shown that the major parts of this target could also serve as an efficient spallation neutron source for production of 6He and fission products in the two-step converter target concept. The heart of the system consists of a free surface mercury jet with a high axial velocity, which allows the heat to be carried away efficiently from the production region. For the neutrino factory the secondary pions are collected and injected into the pion decay channel by means of a magnetic horn. For the radioactive ion-beam facility the Hg-jet is surrounded by the high-temperature isotope separator on-line (ISOL) production target. The suggested mechanical layout and technical parameters of the Hg-jet, ISOL target, horn and cooling system are discussed. The critical issues are identified and a description of the R and D program designed to provide experimental proof of the principle as well as providing engineering parameters is given

  16. Neutral V production with 14.6 x A GeV/c silicon beams

    International Nuclear Information System (INIS)

    We present the results of a measurement of neutral V production with 14.6xA GeV/c Si beams on Au and Cu targets. The Λ and Ks0 yields were measured as a function of negative particle multiplicity. Effective temperatures were determined from an exponential fit to the transverse mass distributions. (orig.)

  17. Electron Cyclotron Resonance Ion Sources (ECRIS) for cyclotrons and radioactive beam production

    International Nuclear Information System (INIS)

    Improvements in Electron Cyclotron Resonance Ion Sources are discussed. These improvements include improvements in the charge-state distribution to increase the fraction of high charge-state current, improvement in production of beams of metallic ions, and reduction of construction cost and energy consumption for such sources

  18. Development of a cryogenic gas target system for intense radioisotope beam production at CRIB

    International Nuclear Information System (INIS)

    A cryogenic gas target system was developed for the radioisotope (RI) beam production at CNS Radio Isotope Beam separator (CRIB). Hydrogen gas was cooled to 85-90 K using liquid nitrogen and used as a secondary beam production target having a thickness of 2.3mg/cm2. An intense 7Be beam (2x108 particles per second) was successfully produced using this target. We observed a density-reduction effect at the gas target for high-current primary beams with about 7.5 W heat deposition. One main feature of the target system is forced circulation of the target gas. We have found that the circulation of the target gas at a rate of 55 standard liters per minute (slm) was effective in eliminating the density reduction. The extent to which the forced flow can prevent the density reduction had not been known well. In this work, the relation between the density reduction and the forced circulation rate was quantitatively studied

  19. A novel beam-spin asymmetry in double-hadron inclusive lepto-production

    International Nuclear Information System (INIS)

    We show that a new beam-spin asymmetry appears in deep inelastic inclusive lepto-production at low transverse momenta when a hadron in the target fragmentation region is observed in association with another hadron in the current fragmentation region. The beam leptons are longitudinally polarized while the target nucleons are unpolarized. This asymmetry is a leading-twist effect generated by the correlation between the transverse momentum of quarks and the transverse momentum of the hadron emitted by the target. Experimental signatures of this effect are discussed.

  20. Production of megavolt neutron beams with relative energy spread of ∼5x10-4

    International Nuclear Information System (INIS)

    A method for production of megavolt neutron beams with relative energy spread of ∼ 5x10-4 based on using electrostatic accelerator and a foilless gas target permitting to realize continuous and easily controlled reproduction of working substance (acetone, heavy water) is described. Differential pumping of vapors of working substance by freezing in refrigerators cooled by liquid nitrogen is used in the target. Technique for using neutron beams from the 12C(d, n) reaction for measuring total cross sections of neutron interaction with nuclei and differential cross sections of elastic scattering is developed

  1. The rare isotope beams production at the Texas A&M university Cyclotron Institute

    OpenAIRE

    Tabacaru, G.; May, D. P.; Ärje, Juha; Chubarian, G.; Clark, H.; Kim, G.J.; Tribble, R. E.

    2013-01-01

    The Cyclotron Institute at Texas A&M is currently configuring a scheme for the production of radioactive-ion beams that incorporates a light-ion guide and a heavy-ion guide coupled with an electron-cyclotron-resonance ion source constructed for charge-breeding. This scheme is part of an upgrade to the facility and is intended to produce radioactive beams suitable for injection into the K500 superconducting cyclotron. The current status of the project and details on the ion sources...

  2. Status of the anti-proton production beam in the CERN PS

    International Nuclear Information System (INIS)

    A new scheme was put into operation in November 1988 to upgrade the proton beam delivered by the 26 GeV Proton Synchrotron (PS) for anti-proton production. It makes use of quasi-adiabatic manipulations of the RF parameters to squeeze a beam filling 1/2 of the PS circumference into a 1/4 turn and can in theory preserve the longitudinal emittance. A maximum intensity of 1.68 e13 ppp in 5 bunches at 26 GeV has been reached in the course of 22 weeks of operation. The limitations of the performance are analysed together with possible improvements. (author) 6 refs., 9 figs

  3. Experiments on the nuclear fragmentation and on the production of radioactive beams for direct reactions

    International Nuclear Information System (INIS)

    In April 1992 at the GSI a prototype experiment on the production and study of the double-magic radioactive nucleus 56Ni was successfully performed with proton scattering in inverse kinematics. A 350 MeV/u 56Ni primary beam from the heavy ion synchrotron SIS was fragmented in a 4/g/cm2 thick beryllium target. The separation of the formed isotopes ensued in the fragment separator FRS, which was operated in the achromatic mode with a degrader. Production cross sections for a whole series of fragments in the range 29≥Z≥19 and 57≥A≥41 were obtained. It succeeded to detect proton-rich isotopes at the boundary of the stability as for instance 52Co, 51Co, 50Co, or 52Ni and to determine for the first time their production cross sections. A further part of this thesis with regard to experiments with radioactive beams were first test experiments at the experimental storage ring ESR. The spotlight held luminosity measurements at the internal gas target with cooled, stable proton beam. For this the elastic scattering was stuided in inverse kinematics in the Rutherford range. Studied were different projectile beams (Ne, Xe) at energies of 150 MeV/u respectively 250 MeV/u and gas jets of nitrogen, argon, and hydrogen. The measured energy spectra of the recoils are in agreement with simulation calculations

  4. Identification of Degradation Products of Lincomycin and Iopromide by Electron Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yongbyoung; Ham, Hyunsun; Myung, Seungwoon [Kyonggi Univ., Suwon (Korea, Republic of)

    2013-07-01

    Lincomycin and Iopromide are major species among the Pharmaceuticals and Personal Care Products (PPCPs) from four major rivers in Korea. The structure characterization of six lincomycin's and two iopromide's degradation products formed under the irradiation of electron beam was performed, and the degradation efficiency as a function of the various irradiation dose and sample concentration was investigated. Electron beam (10 MeV, 0.5 mA and 5 kW) experiments for the structural characterization of the degradation products, which is fortified with lincomycin, were performed at the dose of 10 kGy. The separation of its degradation products and lincomycin was carried by C18 column (2.1 {Chi} 100 mm, 3.5 {mu}m), using gradient elution with 20 mM ammonium acetate and acetonitrile. The structures of degradation products of lincomycin and iopromide were proposed by interpretation of mass spectra and chromatograms by LC/MS/MS, and also the mass fragmentation pathways of mass spectra in tandem mass spectrometry were proposed. The experiments of the degradation efficiency as a function of the irradiation dose intensity and the initial concentration of lincomycin in aqueous environment were performed, and higher dose of electron beam and lower concentration was observed the increased degradation efficiency.

  5. LC/MS/MS identification of some folic acid degradation products after E-beam irradiation

    International Nuclear Information System (INIS)

    Folates belong to the B vitamin group based on the parental compound folic acid (FA). They are involved in important biochemical processes like DNA synthesis and repair. FA is composed of a pteridine ring, p-aminobenzoic acid and glutamate moieties. The human metabolism is not able to synthesize folates and therefore obtain them from diet. FA, a synthetic vitamin, is used as a food fortificant because of its low price, relative stability and increased bioavailability compared to natural folate forms. FA is known to be a sensitive compound easily degradable in aqueous solution by ultraviolet and visible light towards various by-products. Irradiation is a process for preservation of foods that uses accelerated electrons, gamma rays or X-rays. Irradiation is proposed for the treatment of various food products, eliminating or reducing pathogens and insects, increasing the storage time and replacing chemical fumigants. This study concerns the identification of degradation products of FA after E-beam irradiation. FA aqueous solutions were irradiated with a Van de Graaff electrons beam accelerator (2 MeV, 100 μA current, 20 cm scan width, dose rate about 2 kGy/s). Applied doses were between 0 (control) and 10.0 kGy. Absorbed doses were monitored with FWT 60.00 radiochromic dosimeters. - Highlights: ► We investigated the degradation of folic acid aqueous solution after electron beam treatment. ► Radiation doses over 5 kGy promote huge folic acid degradation and appearance of several degradation products. ► PCA, PABA and pABGA, already known folic acid degradation products, are formed due to E-beam treatment. ► Xanthopterin, a new radio-induced breakdown product, is formed after irradiation treatment.

  6. Use of electron beams for the production of radioactive nuclei through photo-fission

    International Nuclear Information System (INIS)

    The IPN (institute of nuclear physics) of Orsay decided to build a linear accelerator in order to produce an electron beam of 50 MeV energy and of 10 μA average intensity. It is the ALTO project (Linear Accelerator near the Tandem of Orsay). This project will be dedicated to the production of the radioactive ions using the photo-fission process. The central topic of this thesis is the study of the beam dynamics of the ALTO facility. The first part presents studies concerning the injector. The simulations made with the simulation code PARMELA allowed the optimization of the characteristics of pre-buncher (dephasing HF, accelerating field peak...) to obtain a good bunching factor at the entrance of the buncher and at the entrance of the accelerating section according to the distance separating the two systems. The second part of this thesis is related to measurements of transverse emittance of the beam at the buncher exit. The three gradients method has been selected and the optical system used is a solenoid. The results obtained are in good agreement with former measurements. Finally a calculation of the beam line was carried out to optimize the transport of the beam to the PARRNe target without degrading its characteristics. The calculation codes that have been used are BETA and TRACE-WIN. (author)

  7. Condition for production of circulating proton beam with intensity greater than space charge limit.

    Energy Technology Data Exchange (ETDEWEB)

    Vadim Dudnikov

    2002-11-19

    Transverse e-p instability in proton rings could be damped by increasing the beam density and the rate of secondary particles production above the threshold level, with the corresponding decrease of unstable wavelength {lambda} below the transverse beam size h (increase of beam density n{sub b} and ion density n{sub i} above the threshold level: n{sub b} + n{sub i} > {beta}{sup 2}/(r{sub e} h{sup 2}), where r{sub e} = e{sup 2}/mc{sup 2}). Such island of stability can be reached by a fast charge-exchange injection without painting and enhanced generation of secondary plasma, which was demonstrated in a small scale Proton Storage Ring (PSR) at the Institute of Nuclear Physics, Novosibirsk, Russia. With successful damping of e-p instability, the intensity of circulating proton beam, with a space charge neutralization was increased up to 6 times above a space charge limit. Corresponding tune shift without space charge neutralization should be up to {Delta}v=0.85 x 6 (in the ring with v = 0.85). In this paper, they review experimental observations of transverse instability of proton beams in various rings. they also discuss methods which can be used to damp the instability. Such experimental data could be useful for verification of computer simulation tools developed for the studies of the space charge and instabilities in realistic conditions.

  8. Use of electrons beams for the production of radioactive nuclei by photofission

    International Nuclear Information System (INIS)

    The IPN of Orsay decided to build a linear accelerator in order to produce an electron beam of 50 MeV energy and of 10 mA average intensity. It is the ALTO project (Linear Accelerator near the Tandem of Orsay). This project will be dedicated to the production of the radioactive ions using the photo-fission process. The central topic of this thesis is the study of the beam dynamics of the ALTO facility. The first part presents studies concerning the injector. The simulations made with the simulation code PARMELA allowed the optimization of the characteristics of pre-buncher (dephasing HF, accelerating field peak...) to obtain a good bunching factor at the entrance of the buncher and at the entrance of the accelerating section according to the distance separating the two systems. The second part of this thesis is related to measurements of transverse emittance of the beam at the buncher exit. The three gradients method has been selected and the optical system used is a solenoid. The results obtained are in good agreement with former measurements. Finally a calculation of the beam line was carried out to optimize the transport of the beam to the PARRNe target without degrading its characteristics. The calculation codes that have been used are BETA and TRACE-WIN. (author)

  9. Theoretical evaluation of induced radioactivity in food products by electron or X-ray beam sterilization

    International Nuclear Information System (INIS)

    We evaluate first the energy density for electrons or X-ray beams necessary to produce a reference level of 1 kilogray at the maximum of dose, as a function of energy, for electrons and bremsstrahlung photons, based on experimental data obtained on radio-therapy beams, from 4 to 32 MeV, and irradiation beams from production plant CARIC. Then from the production of neutrons on the tungsten target and from (γn) reactions on the deuterium content of the irradiated food, the slowing down and capture of these neutrons is estimated. Radioisotopes can be produced by (γn) reactions on iodine, and to a lesser extent on tin, lead, barium, etc., but the major contribution is neutron activation, where the more critical elements are sodium, chlorine, potassium, magnesium, phosphorus, calcium. Induced activity is compared to natural activity coming from potassium 40, carbon 14 and radium, contained in all foods. For electrons up to 1 Mrad the induced activity remains of the order of a few percent of natural activity, for energies below 10 to 11 MeV. Bremsstrahlung X-ray irradiations can give comparable levels as soon as the energy of the generating electron beam is above 3 MeV. The induced activity decays within a few days. (author)

  10. Residual Nitrite in Some Egyptian Meat Products and the Reduction Effect of Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Dalia A. Zahran

    2011-10-01

    Full Text Available Nitrite, a curing agent of meat products, is a precursor of carcinogenic N-nitrosamines during processing of meat products or under human stomach conditions, as well as having its own toxicity. To investigate the residual nitrite level in meat products marketed in Egyptian markets, 160 samples of cured cooked (luncheon and frankfurter and cured raw (oriental sausages and pastirma meat products (40 sample each were analyzed for residual nitrite by a spectrophotometric method. Samples were subjected to irradiation (3.0 and 5.0 kGy by electron beam accelerator to evaluate its effect on the residual nitrite level in the examined cured meat products. For statistical analysis, means and standard errors of residual nitrite level were determined and analyzed by one-way analysis of variance. The results revealed that the residual nitrite level was ranging between 10.45-251.6 ppm in the examined meat products and that pastirma had the highest residual level (p<0.05 while luncheon showed the least level. Residual nitrite level was significantly reduced (p<0.05 by electron beam irradiation (5.0 kGy and the reduction was dose dependent. This demonstrated that it would still be important to strengthen on control of residual nitrite level in Egyptian meat products and food safety education for public people.

  11. VO production with 14.5 GeV/c silicon beams

    International Nuclear Information System (INIS)

    This talk deals with Λ, ΚsO and bar Λ production with 14.5 GeV/c silicon beams. Why study VO production? Because the study of strangeness is an important part of the search for Quark Gluon Plasma (QGP). Many models predict an enhancement of strangeness in a QGP as compared to the amount of strangeness produced in a superposition of nucleon-nucleon interactions. The amount of enhancement varies from model to model. Even if no QGP is detected at AGS energies using Si beams, it is important to understand the production mechanisms in quantitative detail so that standard nucleon-nucleon production mechanism can be distinguished from QGP formation. The advantage of measuring strangeness production by measuring VO production is that VO's can be identified by kinematics without the use of any special particle ID detectors. The disadvantage is that usually large aperture detectors are required. Experiment 810 has the needed large aperture. This talk describes the technique and results of VO production from ∼ 9,000 interactions of Si in a 1 mil (25 micron) Au target recorded in June, 1989

  12. V0 production with 14.5 GeV/c silicon beams

    International Nuclear Information System (INIS)

    This talk deals with Λ, Ks0 and bar Λ production with 14.5 GeV/c Silicon beams. Why study Λ0 production? Because the study of strangeness is an important part of the search for Quark Gluon Plasma (QGP). Many models predict an enhancement of strangeness in a QGP as compared to the amount of strangeness produced in a superposition of nucleon-nucleon interactions. The amount of enhancement varies from model to model. Even if no QGP is detected at AGS energies using Si beams, it is important to understand the production mechanisms in quantitative detail so that standard nucleon-nucleon production mechanism can be distinguished from QGP formation. The advantage of measuring strangeness production by measuring V0 production is that V0's can be identified by kinematics without the use of any special particle ID detectors. The disadvantage is that usually large aperture detectors are required. Experiment 810 has the needed large aperture. This talk describes the technique and results of V0 production from ∼9000 interactions of Si in a 1 mil (25 micron) Au target recorded in June 1989. 13 figs., 1 tab

  13. The charge breeder beam line for the selective production of exotic species project at INFN-Legnaro National Laboratories

    Science.gov (United States)

    Galatà, A.; Comunian, M.; Maggiore, M.; Manzolaro, M.; Angot, J.; Lamy, T.

    2014-02-01

    SPES (Selective Production of Exotic Species) is an INFN (Istituto Nazionale di Fisica Nucleare) project with the aim at producing and post-accelerating exotic beams to perform forefront research in nuclear physics. To allow post-acceleration of the radioactive ions, an ECR-based Charge Breeder (CB) developed on the basis of the Phoenix booster was chosen. The design of the complete beam line for the SPES-CB will be described: a system for stable 1+ beams production was included; special attention was paid to the medium resolution mass spectrometer after the CB to limit possible superposition of the exotic beams with the impurities present in the ECR plasma.

  14. High Resolution Study of the Inclusive Production of Massive Muon Pairs by Intense Pion Beams

    CERN Multimedia

    2002-01-01

    This experiment measures with high resolution and large acceptance the inclusive production of massive muon pairs with the intense pion beam (up to 10|1|0 @p/pulse) in the experimental hall ECN3. The experiment explores extended M|2/s,x and transverse momentum ranges. The study of the departures of the lepton-pair production cross- section from scaling constitutes a good test of QCD ideas; in the framework of the 'Drell-Yan' process, the experiment allows a detailed study of the pion parton distribution functions. The detector consists of a beam dump, a pulsed toroidal a magnet, MWPC's and scintillator hodoscopes. Its @C3\\% mass resolution at 10 GeV is adequate for the substraction of resonances in the high-mass region.

  15. Photo-fission for the production of radioactive beams ALTO project

    International Nuclear Information System (INIS)

    In order to probe neutron rich radioactive noble gases produced by photo-fission, a PARRNe-1 experiment (Production d'Atomes Radioactifs Riches en Neutrons) has been carried out at CERN. The incident electron beam of 50 MeV was delivered by the LIL machine: LEP Injector Linac. The experiment allowed us to compare under the same conditions two production methods of radioactive noble gases: fission induced by fast neutrons and photo-fission. The obtained results show that the use of the electrons is a promising mode to get intense neutron rich ion beams. After the success of this photo-fission experiment, a conceptual design for the installation at IPN Orsay of a 50 MeV electron accelerator close to the PARRNe-2 device has been worked out: ALTO Project. This work has started within a collaboration between IPNO, LAL (Laboratoire de l'Accelerateur Lineaire) and CERN groups

  16. The production of neutral vector mesons by bremsstrahlung in electron-positron colliding beams

    International Nuclear Information System (INIS)

    The authors study the bremsstrahlung production of the rho meson in the reaction e+e- → e+e-rho (→ e+e- π+π-). This reaction gives a C = -1 background which complicates the study of C = +1 two-photon processes at the new colliding-beam facilities. The cross section for the reaction rises from approximately 0.3 nb to 0.7 nb as the beam energy increases from 2 GeV to 15 GeV. From a study of the distributions of the final leptons and pions, one finds a suitable choice of cuts which will reduce the event rate down to a small fraction of R. It is not possible to attribute the three-prong events seen at DELCO and PLUTO to this particular production mechanism. (Auth.)

  17. Note: Production of a mercury beam with an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    An electron cyclotron resonance ion source has been utilized to produce mercury beams with intensities of 4.5 eμA of 202Hg29+ and 3.0 eμA of 202Hg31+ from natural abundance mercury metal. The production technique relies on the evaporation of liquid mercury into the source plasma vacuum region and utilizes elemental mercury instead of a volatile organic compound as the neutral feed material

  18. Gain saturation of laser beams and production and decay of phase dislocations

    International Nuclear Information System (INIS)

    The distortion of the distribution of initially pure laser modes caused by the gain saturation is simulated numerically. It is shown that the gain saturation results in a considerable enrichment of the modal spectrum of radiation accompanied by the production and decay of phase dislocations in the far-field domain and at the output of an astigmatic π/2-mode converter. (resonators, modes, beams)

  19. Use of castor oil-based polyurethane adhesive in the production of glued laminated timber beams

    OpenAIRE

    Maximiliano dos Anjos Azambuja; Antonio Alves Dias

    2006-01-01

    Researchers from the Polymer Technology and Analytical Chemistry (LQATP) group at the São Carlos Institute of Chemistry, University of São Paulo, developed a polyurethane adhesive based on castor oil. In addition to deriving it from a renewable source, this adhesive is nonaggressive to humans and the environment. The purpose of this study is to investigate the feasible use of polyurethane adhesive based on castor oil in the production of 12 beams of Glulam, using the species Pinus caribea hon...

  20. Synthesis of novel UCx nanomaterials for online production of exotic isotope ion beams

    International Nuclear Information System (INIS)

    Radioactive ion beams (RIBs) provide unique opportunities to study nuclear, atomic, surface and solid-state physics, astrophysics, nuclear forensics, medicine, and biology. The isotope separation online (ISOL) method is used at ISOLDE - CERN to create RIBs through the bombardment of thick high-temperature targets by an accelerated primary proton beam. As a result, radionuclides are generated in the target material via induced spallation, fragmentation and fission nuclear reactions. Once produced, the isotopes must first diffuse from the interior of the target to the surface and then evaporate from it, followed by ionization, acceleration, mass separation and further beam manipulation until delivered at the final user. From the experimental point of view, high intensity RIBs can be obtained by increasing the overall efficiencies, high isotope diffusion and short delay times, or by increasing the power of the primary beam. Minimum delay times can be achieved in targets with highly-permeable, low-density, open-structures operating at high temperatures. However, increased driver beam intensity might carry serious concerns for the target as thermal loads, radiation damage, or physical integrity under irradiation. Thus to find the ideal material for a thick target is a tremendous technological challenge for the ISOL technique. Nearly five decades after the first irradiation tests, micrometric uranium carbide-based materials are still the reference materials for radioactive ion-beam production. Nevertheless, it was recently proved that a significant increase of the release and yields of exotic isotopes can be obtained on submicron and nanostructured porous materials. The objective of this study is to produce submicron structured carbides of U to be tested as target materials at ISOLDE

  1. Design and development of a tantalum foil target for the production of high intensity radioactive beams

    International Nuclear Information System (INIS)

    The design and development of a high power target and ion source for the production of Radioactive Beams at intensities approaching two orders of magnitude greater than currently possible is presented. This was a key aim of the RIST experiment, designed to utilise the proton synchrotron of the ISIS facility at Rutherford Appleton laboratory, Chilton, Oxfordshire, where an 800 MeV proton beam is available at currents of up to 200 μA. A number of different target designs were considered and analysed, and high temperature power dissipation tests were conducted. This culminated in the manufacture of a diffusion bonded structure comprising 6000 separate tantalum foil discs and spacer washers. The target was installed in the RIST facility, and thermal tests using electron beam heating demonstrated that the target was capable of dissipating 24 kW by thermal radiation, at the desired temperature of 2000 deg C. This is equivalent to running with the 800 MeV ISIS proton beam at a current of 100 μA. A smaller diameter target of otherwise similar geometry was successfully tested online at the ISOLDE facility, CERN, producing Radioactive Beam yields and release times at least as good as a normal ISOLDE target. A Monte Carlo program was written to investigate the parameters responsible for the delay time of radioactive atoms from their production within the target foils to extraction from the ion source. Data on the critical parameters, principally the diffusion coefficients and surface sticking times, is scarce for the elements of interest at the high temperatures required. By calculating the path length and number of surface interactions within the target geometry, it was possible in many cases to fit the calculated delay curves to the experimental results gained at ISOLDE, thus providing estimates of the diffusion constants and surface sticking times. This gave insight into which were the dominant mechanisms, and made it possible to predict the delay characteristics of the

  2. Latest developments at GANIL for stable and radioactive ion beam production

    International Nuclear Information System (INIS)

    In the frame of the SPIRAL II (Systeme de Production d'Ions Radioactifs Acceleres en Ligne Partie II) project, several developments of stable and radioactive ion production systems have been started up. In parallel, GANIL has the ambition to preserve the existing stable and radioactive beams and also to increase its range by offering new ones. In order to identify the best directions for this development, a new group called GANISOL has been formed. Its preliminary conclusions and the latest developments at GANIL are presented.

  3. THE PAIR BEAM PRODUCTION SPECTRUM FROM PHOTON-PHOTON ANNIHILATION IN COSMIC VOIDS

    International Nuclear Information System (INIS)

    Highly beamed relativistic e ±-pair energy distributions result in double photon collisions of the beamed gamma rays from TeV blazars at cosmological distances with the isotropically distributed extragalactic background light (EBL) in the intergalactic medium. The typical energies k 0 ≅ 10–7 in units of mec 2 of the EBL are more than 10 orders of magnitude smaller than the observed gamma-ray energies k 1 ≥ 107. Using the limit k 0 1, we demonstrate that the angular distribution of the generated pairs in the lab frame is highly beamed in the direction of the initial gamma-ray photons. For the astrophysically important case of power-law distributions of the emitted gamma-ray beam up to the maximum energy M interacting with Wien-type N(k 0)∝kq0exp (– k 0/Θ) soft photon distributions with total number density N 0, we calculate analytical approximations for the electron production spectrum. For distant objects with luminosity distances dL >> r 0 = (σ T N 0)–1 = 0.49N –10 Mpc (with Thomson cross section σ T), the implied large values of the optical depth τ0 = dL /r 0 indicate that the electron production spectra differ at energies inside and outside the interval [(Θln τ0)–1, τ0/Θ], given the maximum gamma-ray energy M >> Θ–1. In the case M >> Θ–1, the production spectrum is strongly peaked near E ≅ Θ–1, being exponentially reduced at small energies and decreasing with the steep power law ∝E –1–p up to the maximum energy E = M – (1/2).

  4. The Pair Beam Production Spectrum from Photon-Photon Annihilation in Cosmic Voids

    Science.gov (United States)

    Schlickeiser, R.; Elyiv, A.; Ibscher, D.; Miniati, F.

    2012-10-01

    Highly beamed relativistic e ±-pair energy distributions result in double photon collisions of the beamed gamma rays from TeV blazars at cosmological distances with the isotropically distributed extragalactic background light (EBL) in the intergalactic medium. The typical energies k 0 ~= 10-7 in units of mec 2 of the EBL are more than 10 orders of magnitude smaller than the observed gamma-ray energies k 1 >= 107. Using the limit k 0 Lt k 1, we demonstrate that the angular distribution of the generated pairs in the lab frame is highly beamed in the direction of the initial gamma-ray photons. For the astrophysically important case of power-law distributions of the emitted gamma-ray beam up to the maximum energy M interacting with Wien-type N(k 0)vpropkq 0exp (- k 0/Θ) soft photon distributions with total number density N 0, we calculate analytical approximations for the electron production spectrum. For distant objects with luminosity distances dL Gt r 0 = (σ T N 0)-1 = 0.49N -1 0 Mpc (with Thomson cross section σ T ), the implied large values of the optical depth τ0 = dL /r 0 indicate that the electron production spectra differ at energies inside and outside the interval [(Θln τ0)-1, τ0/Θ], given the maximum gamma-ray energy M Gt Θ-1. In the case M Gt Θ-1, the production spectrum is strongly peaked near E ~= Θ-1, being exponentially reduced at small energies and decreasing with the steep power law vpropE -1 - p up to the maximum energy E = M - (1/2).

  5. Study of muon-induced neutron production using accelerator muon beam at CERN

    International Nuclear Information System (INIS)

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production

  6. Design and optimization of a highly efficient optical multipass system for γ-ray beam production from electron laser beam Compton scattering

    Science.gov (United States)

    Dupraz, K.; Cassou, K.; Delerue, N.; Fichot, P.; Martens, A.; Stocchi, A.; Variola, A.; Zomer, F.; Courjaud, A.; Mottay, E.; Druon, F.; Gatti, G.; Ghigo, A.; Hovsepian, T.; Riou, J. Y.; Wang, F.; Mueller, A. C.; Palumbo, L.; Serafini, L.; Tomassini, P.

    2014-03-01

    A new kind of nonresonant optical recirculator, dedicated to the production of γ rays by means of Compton backscattering, is described. This novel instrument, inspired by optical multipass systems, has its design focused on high flux and very small spectral bandwidth of the γ-ray beam. It has been developed to fulfill the project specifications of the European Extreme Light Infrastructure "Nuclear Pillar," i.e., the Gamma Beam System. Our system allows a single high power laser pulse to recirculate 32 times synchronized on the radio frequency driving accelerating cavities for the electron beam. Namely, the polarization of the laser beam and crossing angle between laser and electrons are preserved all along the 32 passes. Moreover, optical aberrations are kept at a negligible level. The general tools developed for designing, optimizing, and aligning the system are described. A detailed simulation demonstrates the high efficiency of the device.

  7. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    International Nuclear Information System (INIS)

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H− and D− beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H− (2.6 mA/cm2), which is the intensity needed at injection for production of 200 µA H+ with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed

  8. Upgrade of the facility EXOTIC for the in-flight production of light Radioactive Ion Beams

    International Nuclear Information System (INIS)

    Highlights: • Production of in-flight Radioactive Ion Beams via two-body reactions. • Development of a cryogenic gas target. • Event-by-event tracking via Parallel Plate Avalanche Counters (PPACs). -- Abstract: The facility EXOTIC for the in-flight production of light weakly-bound Radioactive Ion Beams (RIBs) has been operating at INFN-LNL since 2004. RIBs are produced via two-body reactions induced by high intensity heavy-ion beams impinging on light gas targets and selected by means of a 30°-dipole bending magnet and a 1-m long Wien filter. The facility has been recently upgraded (i) by developing a cryogenic gas target, (ii) by replacing the power supplies of the middle lenses of the two quadrupole triplets, (iii) by installing two y-steerers and (iv) by placing two Parallel Plate Avalanche Counters upstream the secondary target to provide an event-by-event reconstruction of the position hit on the target. So far, RIBs of 7Be, 8B and 17F in the energy range 3–5 MeV/u have been produced with intensities about 3 × 105, 1.6 × 103 and 105 pps, respectively. Possible light RIBs (up to Z = 10) deliverable by the facility EXOTIC are also reviewed

  9. High Power Molten Targets for Radioactive Ion Beam Production: from Particle Physics to Medical Applications

    CERN Document Server

    De Melo Mendonca, T M

    2014-01-01

    Megawatt-class molten targets, combining high material densities and good heat transfer properties are being considered for neutron spallation sources, neutrino physics facilities and radioactive ion beam production. For this last category of facilities, in order to cope with the limitation of long diffusion times affecting the extraction of short-lived isotopes, a lead-bismuth eutectic (LBE) target loop equipped with a diffusion chamber has been proposed and tested offline during the EURISOL design study. To validate the concept, a molten LBE loop is now in the design phase and will be prototyped and tested on-line at CERN-ISOLDE. This concept was further extended to an alternative route to produce 1013 18Ne/s for the Beta Beams, where a molten salt loop would be irradiated with 7 mA, 160 MeV proton beam. Some elements of the concept have been tested by using a molten fluoride salt static unit at CERNISOLDE. The investigation of the release and production of neon isotopes allowed the measurement of the diffu...

  10. Experience of electron beam treatment for production of polyethylene oxide gels for medical applications

    International Nuclear Information System (INIS)

    The gels of polyethylene oxide (PEO) produced by electron beam cross-linking (polymerization) are finding the growing application in biotechnology and medicine as the matrices (carriers) for enzymes and other biologically active substances, and these new preparations are used for treatment of purulent-necrotic processes having various ethology and localization, even for cleaning of carious cavities. The PEO gels are used for production of gel pastes purposed for endoscopy examinations and usage as contact media for ultrasonic diagnostics, electro cardio- and encelography. The viscosity of the produced gel ought to be chosen according the requirements to the final product made of this gel. We have carried out the study of the thermo rheological properties of PEO gels produced by electron beam crosslinking of PEO solutions by the electron beam with energy of 2.5-3 MeV generated by electron accelerator ILU-6. The required viscosity of gels ranges greatly, so we are using the solutions of PEO having the concentrations from 20% to 60%. (author)

  11. Purification of coal fired boiler flue gas and fertilizer production by using electron beam

    International Nuclear Information System (INIS)

    Electron beam irradiation technology which is applied in electron accelerators is used in a variety of fields, including industry, medicine and etc.. In collaboration with the Japan Atomic Energy Research Institute, Ebara Corporation has developed a novel flue-gas treatment process by making use of the electron beam for the purification of flue gas emitted from industrial plant such as thermal power station. The E-beam flue gas treatment process (EBA Process) is applied to clean flue gas generated in the combustion of coal containing sulfur oxides (SOx) and nitrogen oxides (NOx), which are chemical pollutants responsible for acid rain. As a by-product of this process, ammonium sulfate and ammonium nitrate mixture is obtained. This mixture can be recovered from the process as a valuable fertilizer to promote the growth of agricultural produce. The EBA process thus serves two important purposes at the same time: It helps prevent environmental pollution and produces a fertilizer that is vitally important for increasing food production to meet the world's future population growth. (J.P.N.)

  12. Electron beam processing technology for modification of different types of cellulose pulps for production of derivatives

    International Nuclear Information System (INIS)

    Institute of Nuclear Chemistry and Technology, Pulp and Paper Research Institute and Institute of Chemical Fibers carry out a joint research project in order to develop the radiation methods modification of cellulose pulps for production of cellulose derivatives such as carbamate (CC), carboxymethyl cellulose (CMC) and methylcellulose (MC). Three different types of textile pulps: Alicell (A); Borregaard (B), Ketchikan (K) and Kraft softwood (PSS) and hardwood (PSB) pulps have been irradiated with 10 MeV electron beam from LAE 13/9 linear accelerator with doses of 5, 10, 15, 20, 25 and 50 kGy. After electron beam treatment the samples of cellulose pulps have been examined by using of structural and physico-chemical methods. Electron paramagnetic resonance spectroscopy (EPR), gel permeation chromatography (GPC) and infrared spectroscopy (IRS) were applied for determination of structural changes in irradiated cellulose pulps. By means of analytical methods, such parameters as: viscosity, average degree of polymerization (DP) and α-cellulose contents were evaluated. Based on EPR and GPC investigations the relationship between concentrations of free radicals and decreasing polymerization degrees in electron beam treatment pulps has been confirmed. The carboxymethylcellulose, methylcellulose and cellulose carbamate were prepared using the raw material of radiation modified pulps. Positive results of investigations will allow for determination of optimum conditions for electron beam modification of selected cellulose paper and textile pulps. Such procedure leads to limit the amounts of chemical activators used in methods for preparation cellulose derivatives. The proposed electron beam technology is new approaches in technical solution and economic of process of cellulose derivatives preparation. (author)

  13. Prospects for utilization of Electron Beam Accelerators (EBAs) for processing of food products

    International Nuclear Information System (INIS)

    Radiation processing using gamma radiation and high energy electron beams has been in practice for more than three decades in the industry. Since gamma radiation has the ability of higher penetration in the material, large scale irradiators (mainly based on mega curies of 60Co radioactive source) are successfully employed for treating bulk products in sterilization and food preservation applications. Electron beam, due to its low penetration, has been exploited exclusively for applications involving polymer modifications to irradiate thin finished end products like electrical cable insulations, heat shrinkable sheets, tubes, automobile tyres etc using high power EBAs (energies 0.5 MeV-4 MeV and powers around ∼100 kW). Out of around 2500 industrial EB units currently employed worldwide (with total installed power above 150 MWL 90% are in the low to medium energy range (0.5 MeV to 4 MeV) being used for polymer modifications. However, recent technological advances in the manufacturing sector of industrial high energy EBAs and product handling systems resulted in widening utilization of EB technology for applications involving bulk product irradiation

  14. Electron-beam stimulation of the reactivity of cellulose pulps for production of derivatives

    International Nuclear Information System (INIS)

    New alternative technologies for manufacture of cellulose fibers are currently under development. The effect of electron beam irradiation on various types of cellulose pulps have been studied in order to improve the reactivity of raw material for production of cellulose derivatives. Three different types of textile pulps, Alicell (Canada), Borregaard (Norwegian), Ketchikan (USA) and Kraft softwood as well as Kraft hardwood pulps, have been irradiated with 10 MeV electron beam from LAE 13/g linear accelerator with dose 10, 15, 20, 25 and 50 kGy. Electron paramagnetic resonance spectroscopy (ESR) and gel permeation chromatography (GPC) were applied for determination of structural changes in irradiated pulps. Such parameters as viscosity, average degree of polymerization and α-cellulose contents were determinated by means of analytical methods. Results of there investigations are presented and discussed

  15. Electron-beam stimulation of the reactivity of cellulose pulps for production of derivatives

    Science.gov (United States)

    Iller, Edward; Kukiełka, Aleksandra; Stupińska, Halina; Mikołajczyk, Włodzimierz

    2002-03-01

    New alternative technologies for manufacture of cellulose fibers are currently under development. The effect of electron beam irradiation on various types of cellulose pulps have been studied in order to improve the reactivity of raw material for production of cellulose derivatives. Three different types of textile pulps, Alicell (Canada), Borregaard (Norwegian), Ketchikan (USA) and Kraft softwood as well as Kraft hardwood pulps, have been irradiated with 10 MeV electron beam from LAE 13/g linear accelerator with dose 10, 15, 20, 25 and 50 kGy. Electron paramagnetic resonance spectroscopy (ESR) and gel permeation chromatography (GPC) were applied for determination of structural changes in irradiated pulps. Such parameters as viscosity, average degree of polymerization and α-cellulose contents were determinated by means of analytical methods. Results of there investigations are presented and discussed.

  16. Nonlinear Breit-Wheeler pair production in a tightly focused laser beam

    CERN Document Server

    Di Piazza, A

    2016-01-01

    The only available analytical framework for investigating QED processes in a strong laser field systematically relies on approximating the latter as a plane wave. However, realistic high-intensity laser beams feature much more complex space-time structures than plane waves. Here, we show the feasibility of an analytical framework for investigating strong-field QED processes in laser beams of arbitrary space-time structure by determining the energy spectrum of positrons produced via nonlinear Breit-Wheeler pair production as a function of the background field. A numerical evaluation of the angular resolved positron spectrum shows significant quantitative differences with respect to the analogous result in a plane wave, such that the present results will be also important for the design of upcoming strong laser facilities aiming at measuring this process.

  17. Finish ion beam treatment of the longrange cylindrical products outer surface in automatic mode

    Science.gov (United States)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Yashin, A. S.; Krivobokov, V. P.; Yanin, S. N.; Asainov, O. Kh; Yurev, Yu N.

    2016-04-01

    The results of using of ion-beam technologies methods for finish treatment of metal products are presented. The experiments were performed at the installation ILUR-03, which allows the operation of cleaning, polishing and surface layers doping of the material of unlimited length cylindrical samples by radial Ar+ ions beam with energy up to 5 keV. The tubes from zirconium alloy E110 up to 500 mm length were used as samples for investigation. It is shown that selected automatic treatment modes reduce the surface roughness over the entire length of the samples and increase uniformity of the surface layer without observable effect on the bulk properties of material. Treatment promotes the formation of oxide films with improved defensive properties.

  18. Production of charm and beauty in e+ e- with polarized electron beams

    International Nuclear Information System (INIS)

    The test of the Standard Model through the measurements of Z0 to fermion couplings can benefit from much enhanced sensitivity by using longitudinally polarized electron beams. This paper reviews preliminary electroweak measurements from SLD on heavy-quark production at the Z0, using 150000 hadronic Z0 decays accumulated during the 1993-1995 runs with high electron beam polarization. The parity-violating parameters Ab and Ac of the Zbb and Zcc couplings are measured directly from the left-right forward-backward asymmetries. A measurement of Rb with a lifetime double tag and a summary of the preliminary measurement of ALR from the 1993-1995 SLD data are also included in this report

  19. Production of charm and beauty in e+e- with polarized electron beam

    International Nuclear Information System (INIS)

    The test of the Standard Model through the measurements of Z0 to fermion couplings can benefit from much enhanced sensitivity by using longitudinally polarized electron beams. This report reviews preliminary electroweak measurements from SLD on heavy quark production at the Z0, using 150,000 hadronic Z0 decays accumulated during the 93-95 runs with high electron beam polarization. The parity violating parameters Ab and Ac of the Zbb and Zcc couplings are measured directly from the left-right forward-backward asymmetries. A measurement of Rb with a lifetime double tag and a summary of the preliminary measurement of ALR from the 93-95 SLD data are also included in this report

  20. Use of castor oil-based polyurethane adhesive in the production of glued laminated timber beams

    Directory of Open Access Journals (Sweden)

    Maximiliano dos Anjos Azambuja

    2006-09-01

    Full Text Available Researchers from the Polymer Technology and Analytical Chemistry (LQATP group at the São Carlos Institute of Chemistry, University of São Paulo, developed a polyurethane adhesive based on castor oil. In addition to deriving it from a renewable source, this adhesive is nonaggressive to humans and the environment. The purpose of this study is to investigate the feasible use of polyurethane adhesive based on castor oil in the production of 12 beams of Glulam, using the species Pinus caribea hondurensis and Eucaliptus grandis. The structural performance of the beams of Glulam was evaluated through static bending tests. The results obtained enabled to conclude good efficiency of the polyurethane adhesive based on castor oil, for use in Glulam.

  1. Photo-production of scalar particles in the field of a circularly polarized laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Villalba-Chavez, S., E-mail: selym@tp1.uni-duesseldorf.de [Institut fuer Theoretische Physik I, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf (Germany); Mueller, C., E-mail: c.mueller@tp1.uni-duesseldorf.de [Institut fuer Theoretische Physik I, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf (Germany)

    2013-01-08

    The photo-production of a pair of scalar particles in the presence of an intense, circularly polarized laser beam is investigated. Using the optical theorem within the framework of scalar quantum electrodynamics, explicit expressions are given for the pair production probability in terms of the imaginary part of the vacuum polarization tensor. Its leading asymptotic behavior is determined for various limits of interest. The influence of the absence of internal spin degrees of freedom is analyzed via a comparison with the corresponding probabilities for production of spin-1/2 particles; the lack of spin is shown to suppress the pair creation rate, as compared to the predictions from Dirac theory. Potential applications of our results for the search of minicharged particles are indicated.

  2. Effects of R-Parity Violating Supersymmetry in Top Pair Production at Linear Colliders with Polarized Beams

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the minimal supersymmetric standard model with R-parity violation, the lepton number violating top quark interactions can contribute to the top pair production at a linear collider via tree-level u-channel squark exchange diagrams. We calculate such contributions and find that in the allowed range of these R-violating couplings, the top pair production rate as well as the top quark polarization and the forward-backward asymmetry can be significantly altered.By comparing the unpolarized beams with the polarized beams, we find that the polarized beams are more powerful in probing such new physics.

  3. Particle production in hadron-proton interactions at 250 GeV/c incident beam momentum

    International Nuclear Information System (INIS)

    In this thesis several characteristic properties are described of π+p, K+p and pp collisions at an incident beam momentum of 250 GeV/c, and compared to characteristics of other energy. The experiment has been performed in the European Hybrid Spectrometer (EHS) exposed to a tagged meson enriched beam. The rapid cycling bubble-chamber and the other detector elements which comprise EHS are described in Ch. 2. Events used for the analysis have been scanned, measured and merged with the electronic counter information. After the merge steps the data have been processed through a chain of reconstruction programs (Ch. 3). In Ch. 4 the multiplicity distributions and topological cross sections are presented. An introduction to the models (Monte Carlo programs) is given in Ch. 5. In Ch. 6 the characteristics of charged particle production in π+p, K+p and pp collisions at 250 GeV/c are presented. In Ch. 7 the forward π0 production is presented, a study of rho and omega resonance production in the forward hemisphere in Ch. 8. In Ch. 6, 7 and 8, the data are compared to predictions from the Monte Carlo programs described in Ch. 5. 117 refs.; 70 figs.; 23 tabs

  4. Efficient accumulation of antiprotons and positrons, production of slow mono-energetic beams, and their applications

    CERN Document Server

    Yamazaki, Yasunori

    2004-01-01

    Recent progress of ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) project, particularly the antiproton trapping and slow antiproton production, is discussed. An RFQD (Radio Frequency Quadrupole Decelerator) installed in the ASACUSA beam line has an excellent deceleration efficiency of 25% providing 10-130keV antiprotons, which improves the final accumulation efficiency at least one and half orders of magnitude. The decelerated antiprotons are then injected in a large volume multiring trap, stored, and electron-cooled. About 1 million antiprotons are successfully accumulated per one AD shot and 10-500eV antiprotons are extracted as a mono-energetic beam. A UHV compatible positron accumulation is newly developed combining electron plasma and an ion cloud, which yields an accumulation rate as high as 400e **+s/mCi, two and a half orders of magnitude higher than other UHV compatible schemes. A new scheme to synthesize a spin-polarized antihydrogen beam is also discussed, which will play a vit...

  5. A method for the production of an intense negative 14C beam

    International Nuclear Information System (INIS)

    For the purpose of studying low cross section nuclear reactions the method for the production of negative ion 14C beams with a current of some μA order by means of a cylindrical source with Fe3, 14C target sputtering is developed. The source target is fabricated in the following way: 100 mg of 14C black is mixed with a binder diluted by alcohol and acetone. The mixing is continued until the solvents do not evaporate and the mixture does not take the appearance of a slightly moistsand, small portions of the mixture are pressed in a substrate deepening the target is warmed up in the air during 1h at the temperature of 200 deg C, after cooling the target is thoroughly cleaned up by alcohol from surface impurities. The source configuration admits the passage of a part of cesium beam produced at the Van-de-Graaff accelerator near the target which later is reflected back and focused on the graphite surface. At 0.5 mA cesium current the 14C negative ions beam approximately 2 μA is produced. After 500 hrs of operation the source of surface contamination behined the target by 14C particles has not been found

  6. Production of chemically reactive radioactive ion beams through on-line separation

    International Nuclear Information System (INIS)

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO2, Nb, Ti, V,TiO2, CeOx, ThO2, C, ZrC4 and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target

  7. Direct Slicing Approach For The Production Of Perfused Components By Laser Beam Melting

    Directory of Open Access Journals (Sweden)

    Sehrt, Jan Torsten

    2014-05-01

    Full Text Available In this paper, laser beam melting technology is applied to the manufacture of defined porous metal structures using the exposure strategies of the machine manufacturer. It turns out that specific filter characteristics such as density, permeability, pore size, porosity, and shear strength are comparable to conventionally-made porosities [1]. To overcome some restrictions imposed by the default settings of the machine manufacturer, and to manufacture ultra-lightweight products, our own investigations such as direct slicing lead to an alternative exposure strategy for the laser. Here unique exposure lines, with their corresponding start and end points, are individually designed according to their practical needs. Even though this procedure is very complex and time-consuming, it leads to new possibilities for the perfusion of liquid or gaseous fluids that run through metal walls. In summary, the adjustment of the functional porosity of laser beam melted parts made of metal material is the focus of this investigation; and with it, the variation and determination of the proper process parameters is essential. With the easily adjustable porosities and pore sizes that are investigated, combined with the geometric freedom of laser beam melting, very complex elements can be integrated into one part; and this also leads to new fields of application.

  8. AEgIS experiment: Towards anti-hydrogen beam production for antimatter gravity measurements

    International Nuclear Information System (INIS)

    AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of anti-hydrogen in the Earth's field. A cold anti-hydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The anti-hydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a 'moire' deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 103 anti-hydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers are discussed. (authors)

  9. Experimental facilities for quasimonochromatic polarized photon beam production in the Kharkov linear accelerator

    International Nuclear Information System (INIS)

    A set of equipment designed to obtain quasimonochromatic linearly polarized high-energy photons in a linear accelerator is described. A beam of quasimonochromatic linearly polarized photons was obtained by coherent bremsstrahlung of electrons in diamond monocrystals. The 1.4 GeV electron beam with a divergence of approximately 10-4 rad and intensity of 0.2-0.3 μA strikes monocrystalline diamond targets having a thickness of 0.3 and 0.08 mm. The targets are installed in a qoniometric device with an angle reading accuracy of 5x10-5 rad. A beam of linearly polarized photons with a collimation angle of approximately 10-4 rad shaped with the help of adjustable lead-baffled collimators strikes a liquid-hydrogen target located at the focal point of two magnetic spectrometers. The nuclear reaction products are analyzed in momentum and detected by scintillation counter telescopes. The total photon flux with an intensity from 108-1010 equiv. γ-quantum/s and corresponding polarization of 90-50% is measured by means of Wilson-type or secondary-emission quantometers

  10. Radioactive Ion Beam Production by Fast-Neutron-Induced Fission in Actinide Targets at EURISOL

    CERN Document Server

    Herrera-Martínez, Adonai

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, the production of high-intensity RIBs of specific neutron-rich isotopes is obtained by inducing fission in large-mass actinide targets. In our contribution, the use of uranium targets is shown to be advantageous to other materials, such as thorium. Therefore, in order to produce fissions in U-238 and reduce the plutonium inventory, a fast neutron energy spectrum is necessary. The large beam power required to achieve these RIB levels requires the use of a liquid proton-to-neutron converter. This article details the design parameters of the converter, with special attention to the coupled neutronics of the liquid converter and fission target. Calculations performed with the ...

  11. AEgIS experiment: Towards antihydrogen beam production for antimatter gravity measurements

    CERN Document Server

    Mariazzi, Sebastiano; Amsler, Claude; Ariga, Akitaka; Ariga, Tomoko; Belov, Alexandre S; Bonomi, Germano; Bräunig, Philippe; Brusa, Roberto S; Bremer, Johan; Cabaret, Louis; Canali, Carlo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Cialdi, Simone; Comparat, Daniel; Consolati, Giovanni; Dassa, Luca; Derking, Jan Hendrik; Di Domizio, Sergio; Di Noto, Lea; Doser, Michael; Dudarev, Alexey; Ereditato, Antonio; Ferragut, Rafael; Fontana, Andrea; Genova, Pablo; Giammarchi, Marco; Gligorova, Angela; Gninenko, Sergei N; Hogan, Stephen D; Haider, Stefan; Jordan, Elena; Jørgensen, Lars V; Kaltenbacher, Thomas; Kawada, Jiro; Kellerbauer, Alban; Kimura, Mitsuhiro; Knecht, Andreas; Krasnický, Daniel; Lagomarsino, Vittorio; Lehner, Sebastian; Malbrunot, Chloe; Matveev, Viktor A; Merkt, Frederic; Moia, Fabio; Nebbia, Giancarlo; Nédélec, Patrick; Oberthaler, Markus K; Pacifico, Nicola; Petráček, Vojtech; Pistillo, Ciro; Prelz, Francesco; Prevedelli, Marco; Regenfus, Christian; Riccardi, Cristina; Røhne, Ole; Rotondi, Alberto; Sandaker, Heidi; Scampoli, Paola; Storey, James; Subieta Vasquez, Martin A.; Spaček, Michal; Czech Technical U. in Prague - FNSPE - B\\oehova 7 - 11519 - Praha 1 - Czech Aff25 Testera, Gemma; Vaccarone, Renzo; Villa, Fabio; Widmann, Eberhard; Zavatarelli, Sandra; Zmeskal, Johann

    2014-01-01

    AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the Earth’s field. A cold antihydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The antihydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a moir ́ e deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 10 3 antihydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers ar...

  12. Electron-beam plasma in the production of bioactive agents and drugs

    International Nuclear Information System (INIS)

    The modification of some biopolymers and amino-acids by the Electron-Beam Plasma was studied experimentally. The plasma was generated by injecting the continuous electron beam in gaseous or vapor media. The powders of the substances under consideration were found to change their physical-chemical and biological properties due to the treatment. The aggregation degree of human blood platelets in vitro was chosen as the quantitative characteristics of the biological effect. The untreated compounds were not dissolvable in distilled water at room temperature and did not inhibit the human platelet aggregation. The modified by the Electron-Beam Plasma synthetic derivative of 2-aminopropanoic acid (alanine) was proved to acquire the anti-aggregation activity for platelets. Products of the plasma modified fibrin-monomer were found to be soluble in water at room temperature and reduced the aggregation degree up to ∼ 33-35 % in vitro, treatment in the water EBP being more effective than the treatment in helium

  13. Electron-beam plasma in the production of bioactive agents and drugs

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M [Moscow Institute of Physics and Technology, Moscow region (Russian Federation); Vasilieva, T [Hematological Scientific Center, Moscow (Russian Federation)

    2006-07-15

    The modification of some biopolymers and amino-acids by the Electron-Beam Plasma was studied experimentally. The plasma was generated by injecting the continuous electron beam in gaseous or vapor media. The powders of the substances under consideration were found to change their physical-chemical and biological properties due to the treatment. The aggregation degree of human blood platelets in vitro was chosen as the quantitative characteristics of the biological effect. The untreated compounds were not dissolvable in distilled water at room temperature and did not inhibit the human platelet aggregation. The modified by the Electron-Beam Plasma synthetic derivative of 2-aminopropanoic acid (alanine) was proved to acquire the anti-aggregation activity for platelets. Products of the plasma modified fibrin-monomer were found to be soluble in water at room temperature and reduced the aggregation degree up to {approx} 33-35 % in vitro, treatment in the water EBP being more effective than the treatment in helium.

  14. Production of fully-stripped neon beam with the ECR ion source

    International Nuclear Information System (INIS)

    states of the lighter isotope. Then the working gas was changed to the isotopically enriched 22Ne gas; the source was optimized to maximise the 22Ne8+ ion current. The analysed beam current (22Ne8+) increased by a factor of 1.3 compared to the 20Ne8+ current. The main goal was to produce fully-stripped neon beam, which was easily reached when the source was optimised for the 20Ne9+ production. Result: 20 electrical nA (i.e. 2 particle nA) of 22Ne10+ current appeared in the spectra. This value was then further increased up to 43 nA by tuning the plasma directly to 22Ne10+ and by mixing helium gas into the neon.

  15. Production of multi-, oligo- and single-pore membranes using a continuous ion beam

    Science.gov (United States)

    Apel, P. Yu.; Ivanov, O. M.; Lizunov, N. E.; Mamonova, T. I.; Nechaev, A. N.; Olejniczak, K.; Vacik, J.; Dmitriev, S. N.

    2015-12-01

    Ion track membranes (ITM) have attracted significant interest over the past two decades due to their numerous applications in physical, biological, chemical, biochemical and medical experimental works. A particular feature of ITM technology is the possibility to fabricate samples with a predetermined number of pores, including single-pore membranes. The present report describes a procedure that allowed for the production of multi-, oligo- and single-pore membranes using a continuous ion beam from an IC-100 cyclotron. The beam was scanned over a set of small diaphragms, from 17 to ∼1000 μm in diameter. Ions passed through the apertures and impinged two sandwiched polymer foils, with the total thickness close to the ion range in the polymer. The foils were pulled across the ion beam at a constant speed. The ratio between the transport speed and the scanning frequency determined the distance between irradiation spots. The beam intensity and the aperture diameters were adjusted such that either several, one or no ions passed through the diaphragms during one half-period of scanning. After irradiation, the lower foil was separated from the upper foil and was etched to obtain pores 6-8 μm in diameter. The pores were found using a color chemical reaction between two reagents placed on opposite sides of the foil. The located pores were further confirmed using SEM and optical microscopy. The numbers of tracks in the irradiation spots were consistent with the Poisson statistics. Samples with single or few tracks obtained in this way were employed to study fine phenomena in ion track nanopores.

  16. Production of pure quasi-monochromatic {sup 11}C beams for accurate radiation therapy and dose delivery verification

    Energy Technology Data Exchange (ETDEWEB)

    Lazzeroni, Marta, E-mail: Marta.Lazzeroni@ki.se; Brahme, Anders

    2015-09-15

    In the present study we develop a new technique for the production of clean quasi-monochromatic {sup 11}C positron emitter beams for accurate radiation therapy and PET–CT dose delivery imaging and treatment verification. The {sup 11}C ion beam is produced by projectile fragmentation using a primary {sup 12}C ion beam. The practical elimination of the energy spread of the secondary {sup 11}C fragments and other beam contaminating fragments is described. Monte Carlo calculation with the SHIELD-HIT10+ code and analytical methods for the transport of the ions in matter are used in the analysis. Production yields, as well as energy, velocity and magnetic rigidity distributions of the fragments generated in a cylindrical target are scored as a function of the depth within 1 cm thick slices for an optimal target consisting of a fixed 20 cm section of liquid hydrogen followed by a variable thickness section of polyethylene. The wide energy and magnetic rigidity spread of the {sup 11}C ion beam can be reduced to values around 1% by using a variable monochromatizing wedge-shaped degrader in the beam line. Finally, magnetic rigidity and particle species selection, as well as discrimination of the particle velocity through a combined Time of Flight and Radio Frequency-driven Velocity filter purify the beam from similar magnetic rigidity contaminating fragments (mainly {sup 7}Be and {sup 3}He fragments). A beam purity of about 99% is expected by the combined method.

  17. Production of pure quasi-monochromatic 11C beams for accurate radiation therapy and dose delivery verification

    International Nuclear Information System (INIS)

    In the present study we develop a new technique for the production of clean quasi-monochromatic 11C positron emitter beams for accurate radiation therapy and PET–CT dose delivery imaging and treatment verification. The 11C ion beam is produced by projectile fragmentation using a primary 12C ion beam. The practical elimination of the energy spread of the secondary 11C fragments and other beam contaminating fragments is described. Monte Carlo calculation with the SHIELD-HIT10+ code and analytical methods for the transport of the ions in matter are used in the analysis. Production yields, as well as energy, velocity and magnetic rigidity distributions of the fragments generated in a cylindrical target are scored as a function of the depth within 1 cm thick slices for an optimal target consisting of a fixed 20 cm section of liquid hydrogen followed by a variable thickness section of polyethylene. The wide energy and magnetic rigidity spread of the 11C ion beam can be reduced to values around 1% by using a variable monochromatizing wedge-shaped degrader in the beam line. Finally, magnetic rigidity and particle species selection, as well as discrimination of the particle velocity through a combined Time of Flight and Radio Frequency-driven Velocity filter purify the beam from similar magnetic rigidity contaminating fragments (mainly 7Be and 3He fragments). A beam purity of about 99% is expected by the combined method

  18. Production of pure quasi-monochromatic 11C beams for accurate radiation therapy and dose delivery verification

    Science.gov (United States)

    Lazzeroni, Marta; Brahme, Anders

    2015-09-01

    In the present study we develop a new technique for the production of clean quasi-monochromatic 11C positron emitter beams for accurate radiation therapy and PET-CT dose delivery imaging and treatment verification. The 11C ion beam is produced by projectile fragmentation using a primary 12C ion beam. The practical elimination of the energy spread of the secondary 11C fragments and other beam contaminating fragments is described. Monte Carlo calculation with the SHIELD-HIT10+ code and analytical methods for the transport of the ions in matter are used in the analysis. Production yields, as well as energy, velocity and magnetic rigidity distributions of the fragments generated in a cylindrical target are scored as a function of the depth within 1 cm thick slices for an optimal target consisting of a fixed 20 cm section of liquid hydrogen followed by a variable thickness section of polyethylene. The wide energy and magnetic rigidity spread of the 11C ion beam can be reduced to values around 1% by using a variable monochromatizing wedge-shaped degrader in the beam line. Finally, magnetic rigidity and particle species selection, as well as discrimination of the particle velocity through a combined Time of Flight and Radio Frequency-driven Velocity filter purify the beam from similar magnetic rigidity contaminating fragments (mainly 7Be and 3He fragments). A beam purity of about 99% is expected by the combined method.

  19. THE PAIR BEAM PRODUCTION SPECTRUM FROM PHOTON-PHOTON ANNIHILATION IN COSMIC VOIDS

    Energy Technology Data Exchange (ETDEWEB)

    Schlickeiser, R.; Ibscher, D. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Elyiv, A. [Institut d' Astrophysique et de Geophysique, Universite de Liege, B-4000 Liege (Belgium); Miniati, F., E-mail: rsch@tp4.rub.de, E-mail: ibscher@tp4.rub.de, E-mail: elyiv@astro.ulg.ac.be, E-mail: fm@phys.ethz.ch [Physics Department, Wolfgang-Pauli-Strasse 27, ETH-Zuerich, CH-8093 Zuerich (Switzerland)

    2012-10-20

    Highly beamed relativistic e {sup {+-}}-pair energy distributions result in double photon collisions of the beamed gamma rays from TeV blazars at cosmological distances with the isotropically distributed extragalactic background light (EBL) in the intergalactic medium. The typical energies k {sub 0} {approx_equal} 10{sup -7} in units of m{sub e}c {sup 2} of the EBL are more than 10 orders of magnitude smaller than the observed gamma-ray energies k {sub 1} {>=} 10{sup 7}. Using the limit k {sub 0} << k {sub 1}, we demonstrate that the angular distribution of the generated pairs in the lab frame is highly beamed in the direction of the initial gamma-ray photons. For the astrophysically important case of power-law distributions of the emitted gamma-ray beam up to the maximum energy M interacting with Wien-type N(k {sub 0}){proportional_to}k{sup q} {sub 0}exp (- k {sub 0}/{Theta}) soft photon distributions with total number density N {sub 0}, we calculate analytical approximations for the electron production spectrum. For distant objects with luminosity distances d{sub L} >> r {sub 0} = ({sigma} {sub T} N {sub 0}){sup -1} = 0.49N {sup -1} {sub 0} Mpc (with Thomson cross section {sigma} {sub T}), the implied large values of the optical depth {tau}{sub 0} = d{sub L} /r {sub 0} indicate that the electron production spectra differ at energies inside and outside the interval [({Theta}ln {tau}{sub 0}){sup -1}, {tau}{sub 0}/{Theta}], given the maximum gamma-ray energy M >> {Theta}{sup -1}. In the case M >> {Theta}{sup -1}, the production spectrum is strongly peaked near E {approx_equal} {Theta}{sup -1}, being exponentially reduced at small energies and decreasing with the steep power law {proportional_to}E {sup -1-p} up to the maximum energy E = M - (1/2).

  20. The external beam facility used to characterize corrosion products in metallic statuettes

    International Nuclear Information System (INIS)

    To open new possibilities in nuclear applied physics research, mainly for the analysis of art objects in air, an external beam facility was installed at LAMFI (Laboratorio de Analise de Materiais por Feixes Ionicos) of University of Sao Paulo. PIXE measurements were made using an XR-100CR (Si-PIN) X-ray detector pointed to the sample mounted after an approximate 11 mm air path, hence with effective beam energy of 0.9 MeV. This setup was used to characterize the corrosion products of two ethnological metallic statuettes from the African collection of the Museum of Archaeology and Etnology. PIXE analysis of the corrosion free base of one statuette showed that Cu and Zn are the main components of the alloy, while Pb is present in smaller amount. The analysis of some corrosion products showed a Zn:Cu relationship higher than that of the base, evidencing selective corrosion. The main components of the other statuette were Cu and Pb, while S and Zn were found in smaller amounts

  1. The external beam facility used to characterize corrosion products in metallic statuettes

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, M.A. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R 187, 05508-900 Sao Paulo, SP (Brazil)]. E-mail: marcia.rizzutto@dfn.if.usp.br; Tabacniks, M.H. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Added, N. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Barbosa, M.D.L. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Curado, J.F. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Santos, W.A. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Lima, S.C. [Laboratorio de Conservacao e Restauracao, Museu de Arqueologia e Etnologia, Universidade de Sao Paulo, Av Prof. Almeida Prado, 1466, 05508-900 Sao Paulo, SP (Brazil); Melo, H.G. [Laboratorio de Eletroquimica e CorroSao, Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, Av. Luciano Gualberto, trav.3, n.380, 05508-900 Sao Paulo, SP (Brazil); Neiva, A.C. [Laboratorio de Eletroquimica e CorroSao, Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, Av. Luciano Gualberto, trav.3, n.380, 05508-900 Sao Paulo, SP (Brazil)

    2005-10-15

    To open new possibilities in nuclear applied physics research, mainly for the analysis of art objects in air, an external beam facility was installed at LAMFI (Laboratorio de Analise de Materiais por Feixes Ionicos) of University of Sao Paulo. PIXE measurements were made using an XR-100CR (Si-PIN) X-ray detector pointed to the sample mounted after an approximate 11 mm air path, hence with effective beam energy of 0.9 MeV. This setup was used to characterize the corrosion products of two ethnological metallic statuettes from the African collection of the Museum of Archaeology and Etnology. PIXE analysis of the corrosion free base of one statuette showed that Cu and Zn are the main components of the alloy, while Pb is present in smaller amount. The analysis of some corrosion products showed a Zn:Cu relationship higher than that of the base, evidencing selective corrosion. The main components of the other statuette were Cu and Pb, while S and Zn were found in smaller amounts.

  2. The Role of Diffusion in ISOL Targets for the Production of radioactive Ions Beams

    CERN Document Server

    Beyer, Gerd-Jürgen; Novgorodov, A F; Ravn, H L

    2003-01-01

    On line isotope separation techniques (ISOL) for production of ion beams of short-lived radionuclides require fast separation of nuclear reaction products from irradiated target materials followed by a transfer into an ion source. As a first step in this transport chain the release of nuclear reaction products from refractory metals has been studied systematically and will be reviewed. High-energy protons (500-1000MeV) produce a large number of radionuclides in irradiated materials via the nuclear reactions spallation, fission and fragmentation. Foils and powder of Re, W, Ta, Hf, Mo, Nb, Zr, Y, Ti and C were irradiated with protons (600-1000MeV) at the Dubna synchrocyclotron and at the CERN PS-booster to produce different nuclear reaction products. The main topic of the paper is the determination of diffusion coefficients of the nuclear reaction products in the target matrix, data evaluation and a systematic interpretation of the data. The influence of the ionic radius of the diffusing species and the lattice...

  3. Reduction of isotopically enriched 50Ti-dioxide for the production of high-intensity heavy-ion beam

    International Nuclear Information System (INIS)

    Titanium-50 (50Ti) is an important and often requested ion beam for nuclear physics' experiments. While natural titanium of very high purity is available in different forms; enriched material can only be bought as the dioxide or the tetrachloride. These compounds cannot be processed from currently available ion sources with a sufficient beam quality and sufficient beam intensity for a long time. We describe here the process of converting titanium dioxide into the metal, the material analysis of the starting material as well as of the reduced material. Despite varying contamination levels of silicon, chlorine, and tin in the primary materials, we obtained high yields of metallic titanium with different contamination levels. The obtained metallic 50Ti was applied at the accelerator UNILAC for the production of a high intensity ion beam for several month of beam time. (author)

  4. Large acceptance magnetic focussing horns for production of a high intensity narrow band neutrino beam at the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, A.; Chimienti, L.; Leonhardt, W.; Monaghan, R.; Ryan, G.; Sandberg, J.; Sims, W.; Smith, G.; Stillman, P.; Thorwarth, H.

    1985-01-01

    A set of two large acceptance (20 to 140 mrad) horns have been designed and built to form a parallel beam of 3 GeV/c pions and kaons for the production of an intense, dichromatic neutrino beam. A set of beam plugs and collimators determined the momentum of the particles which pass through the horns. The cooling and maintenance of the horns and target was a particular concern since they were operated with an incident intensity of over 10/sup 13/ proton/sec. These systems were designed for simplicity, reliability, and easy replacement.

  5. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    International Nuclear Information System (INIS)

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal

  6. Beam Diagnostics and Radioisotope Production in Low and Medium Power Plasma Focus Devices

    International Nuclear Information System (INIS)

    The report deals with activity at two distinct plasma focus facilities. The first with 7 kJ bank energy represents the traditional apparatus used for more than ten years at the University of Ferrara. The other, just constructed, reaches 150 kJ bank energy and is exclusively dedicated to the production of sizeable quantities of medical radioisotopes. In regards to the first device, the energy spectra of X rays generated by the impact of electron beams on high- and medium- Z targets following the pinch implosion of plasma focus (PF) devices are discussed in terms of the possible mechanisms of X ray production following electron impact ionization. In addition, a temperature measurement of the PF inner electrode is reported and some results have been proved useful in order to optimize the device functionalities. An experimental campaign was conducted in order to assess the feasibility of short lived radioisotope (SLR) production within the pulsed discharges of a plasma focus (PF) device. This so-called ''endogenous production'' technique rests on the exploitation of nuclear reactions for the creation of SLR directly within the plasma, rather than on irradiating an external target. Following the results displayed in such campaign a second high energy PF machine was designed and its characteristics together with the first tests are presented too. (author)

  7. Enhancement of L(+)-Lactic Acid Production of Immobilized Rhizopus Oryzae Implanted by Ion Beams

    Institute of Scientific and Technical Information of China (English)

    FAN Yonghong; YANG Yingge; ZHENG Zhiming; LI Wen; WANG Peng; YAO Liming; YU Zengliang

    2008-01-01

    Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. Oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 × 1015 ions/cm2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ~ 80 g/L of initial glucose, 38~C and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.

  8. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  9. Production of multicharged radioactive ion beams for spiral: studies and realization of the first target-ion source system

    International Nuclear Information System (INIS)

    In the framework of the SPIRAL project, which concerns the production and the acceleration of a multicharged radioactive ions beam, the following part has been studied: production and ionization of the radioactive ions beam. A first target-source (nanogan II), devoted exclusively to the production of multicharged radioactive ions gas type beams, has been studied and tested. The diffusion efficiency has been deduced from the diffusion equations (Fick laws). This efficiency is governed by the following parameters: the temperature, the grains size of the target, the Arrhenius parameters and the radioactive period. Another study concerning the production targets is presented. It deals with the temperature distribution allowing an utilization of more than one month at a temperature of 2400 K. Another development (SPIRAL II) is devoted to the production of high neutron content radioactive atoms created by the uranium fission, from fast neutrons. The neutrons beam is produced by the ''stripping break-up'' of a deutons beam in a converter. (A.L.B.)

  10. Production of low axial energy spread ion beams with multicusp sources

    International Nuclear Information System (INIS)

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as: ion projection lithography (IPL) and focused ion beams for the next generation lithographic tools and nuclear science experiments such as radioactive ion beam production. The axial ion energy spread for multicusp source is approximately 6 eV which is too large for IPL and radioactive ion beam applications. The addition of a magnetic filter which consists of a pair of permanent magnets to the multicusp source reduces the energy spread considerably. The reduction is due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. Axial ion energy spread of the filament driven ion source has been measured using three different techniques. In all cases, it was found to be less than 2 eV. Energy spread of the radio frequency (RF) driven source has also been explored, and it was found to be less than 3 eV with the proper RF-shielding. A new multicusp source configuration has been designed and constructed to further reduce the energy spread. To achieve a more uniform axial plasma potential distribution, a cylindrical magnetic filter has been designed and constructed for a 2-cm-diameter source. This new source configuration, the co-axial source, is new in its kind. The energy spread in this source has been measured to be a record low of 0.6 eV. Because of the novelty of this device, some plasma parameters inside the source have been studied. Langmuir probe has been used to measure the plasma potential, the electron temperature and the density distribution

  11. Study on application of the physical detection methods for electron beam-irradiated agricultural products

    International Nuclear Information System (INIS)

    Physical detection methods, photostimulated luminescence (PSL), thermoluminescence (TL) and electron spin resonance (ESR) were applied to detect electron beam-irradiated agricultural products, such as red pepper, black pepper, raisin, walnut, beef seasoning and pistachio. The absorbed irradiation doses for representative samples were controlled at 0, 1, 3, 5 and 10 kGy. PSL values for non-irradiated samples were 1) except beef seasoning, whereas those of irradiated samples were more than 5,000 photon counts, upper threshold (T2) in black pepper, raisin, and beef seasoning and intermediates values of T1-T2 in red pepper, walnut, and pistachio. Minerals separated from the samples for TL measurement showed that non-irradiated samples except pistachio (TL ratio, 0.12) were characterized by no glow curves situated at temperature range of 50 ∼ 400 .deg. C with TL ratio (0.01 ∼ 0.08), while irradiated samples except pistachio at only 1 kGy (TL ratio, 0.08) indicated glow curve at about 150 ∼ 250 .deg. C with TL ratio (0.28 ∼ 3.10). ESR measurements of irradiated samples any specific signals to irradiation. The samples of both red pepper ad pistachio were produced specific signals derived from cellulose radicals as well as single line signals for black pepper and walnut, and multiple signals derived from crystalline sugar radicals for raisin and beef seasoning. In conclusion, The ESR methods can apply for detection of pistachio exposed to electron beam but PSL and TL are not suitable methods. Furthermore, TL and ESR suggested that both techniques were more useful detection method than PSL to confirm whether red pepper, walnut and beef seasoning samples have been exposed to electron beam

  12. Production of a thermal stress resistant mutant Euglena gracilis strain using Fe-ion beam irradiation.

    Science.gov (United States)

    Yamada, Koji; Kazama, Yusuke; Mitra, Sharbanee; Marukawa, Yuka; Arashida, Ryo; Abe, Tomoko; Ishikawa, Takahiro; Suzuki, Kengo

    2016-08-01

    Euglena gracilis is a common phytoplankton species, which also has motile flagellate characteristics. Recent research and development has enabled the industrial use of E. gracilis and selective breeding of this species is expected to further expand its application. However, the production of E. gracilis nuclear mutants is difficult because of the robustness of its genome. To establish an efficient mutation induction procedure for E. gracilis, we employed Fe-ion beam irradiation in the RIKEN RI beam factory. A decrease in the survival rate was observed with the increase in irradiation dose, and the upper limit used for E. gracilis selective breeding was around 50 Gy. For a practical trial of Fe-ion irradiation, we conducted a screening to isolate high-temperature-tolerant mutants. The screening yielded mutants that proliferated faster than the wild-type strain at 32 °C. Our results demonstrate the effectiveness of heavy-ion irradiation on E. gracilis selective breeding. PMID:27075598

  13. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W., E-mail: luwang@impcas.ac.cn; Qian, C.; Sun, L. T.; Zhang, X. Z.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.; Zhan, W. L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); Fang, X.; Guo, J. W.; Yang, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, B.; Ruan, L. [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Xie, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-02-15

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O{sup 7+}, 620 eμA of Ar{sup 11+}, 430 eμA of Ar{sup 12+}, 430 eμA of Xe{sup 20+}, and so on. The comparison will be discussed in the paper.

  14. Neutralino production and decay at an e+e- linear collider with transversely polarized beams

    International Nuclear Information System (INIS)

    Once supersymmetric neutralinos anti χ0 are produced copiously at e+e- linear colliders, their characteristics can be measured with high precision. In particular, the fundamental parameters in the gaugino/higgsino sector of the minimal supersymmetric extension of the standard model (MSSM) can be analyzed. Here we focus on the determination of possible CP-odd phases of these parameters. To that end, we exploit the electron/positron beam polarization, including transverse polarization, as well as the spin/angular correlations of the neutralino production e+e-→χi0χj0 and subsequent 2-body decays χi0→χk0h, χk0Z, lR±l-+, using (partly) optimized CP-odd observables. If no final-state polarizations are measured, the Z and h modes are independent of the χi0 polarization, but CP-odd observables constructed from the leptonic decay mode can help in reconstructing the neutralino sector of the CP-noninvariant MSSM. However, transverse beam polarization does nto seem to be particularly useful in this context. (orig.)

  15. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    International Nuclear Information System (INIS)

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O7+, 620 eμA of Ar11+, 430 eμA of Ar12+, 430 eμA of Xe20+, and so on. The comparison will be discussed in the paper

  16. Nanoscale SiC production by ballistic ion beam mixing of C/Si multilayer structures

    Science.gov (United States)

    Battistig, G.; Zolnai, Z.; Németh, A.; Panjan, P.; Menyhárd, M.

    2016-05-01

    The ion beam-induced mixing process using Ar+, Ga+, and Xe+ ion irradiation has been used to form SiC rich layers on the nanometer scale at the interfaces of C/Si/C/Si/C multilayer structures. The SiC depth distributions were determined by Auger electron spectroscopy (AES) depth profiling and were compared to the results of analytical models developed for ballistic ion mixing and local thermal spike induced mixing. In addition, the measured SiC depth distributions were correlated to the Si and C mixing profiles simulated by the TRIDYN code which can follow the ballistic ion mixing process as a function of ion fluence. Good agreement has been found between the distributions provided by AES depth profiling and TRIDYN on the assumption that the majority of the Si (C) atoms transported to the neighboring C (Si) layer form the SiC compound. The ion beam mixing process can be successfully described by ballistic atomic transport processes. The results show that SiC production as a function of depth can be predicted, and tailored compound formation on the nanoscale becomes feasible, thus leading to controlled synthesis of protective SiC coatings at room temperature.

  17. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    Science.gov (United States)

    Lu, W.; Qian, C.; Sun, L. T.; Zhang, X. Z.; Fang, X.; Guo, J. W.; Yang, Y.; Feng, Y. C.; Ma, B. H.; Xiong, B.; Ruan, L.; Zhao, H. W.; Zhan, W. L.; Xie, D.

    2016-02-01

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O7+, 620 eμA of Ar11+, 430 eμA of Ar12+, 430 eμA of Xe20+, and so on. The comparison will be discussed in the paper.

  18. Assessment of protocols in cone-beam CT with symmetric and asymmetric beams usingeffective dose and air kerma-area product

    International Nuclear Information System (INIS)

    This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using thermoluminescent dosimeter (TLD) and the air kerma-area product (PKA) as the kerma index. The measurements were performed on two protocols used to obtain an image of the maxilla–mandible using the equipment GENDEX GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14 cm×8.5 cm-maxilla/mandible) and protocol [GX2] symmetrical beam (8.5 cm×8.5 cm-maxillary/mandible). LiF dosimeters inserted into a female anthropomorphic phantom were used. For both protocols, the value of PKA was evaluated using a PTW Diamentor E2 meter and the multimeter Radcal Rapidose system. The results obtained for the effective dose/PKA were separated by protocol image. [GX1]: 44.5 µSv/478 mGy cm2; [GX2]: 54.8 µSv/507 mGy cm2. Although the ratio of the diameters (14 cm/8.5 cm)=1.65, the ratio of effective dose values (44.5 µSv/54.8 µSv)=0.81, that is, the effective dose of the protocol with extended diameter is 19% smaller. The PKA values reveal very similar results between the two protocols. For the cases where the scanner uses an asymmetric beam to obtain images with large diameters that cover the entire face, there are advantages from the point of view of reducing the exposure of patients when compared to the use of symmetrical beam and/or to FOV images with a smaller diameter. - Highlights: • The study relies on the comparison of two image protocols in CBCT: symmetrical and asymmetrical FOV. • Effective dose assessment for symmetrical and asymmetrical FOV. • Measurements of air kerma-area product for CBCT with symmetrical and asymmetrical FOV

  19. Two-pion production in proton-proton collisions with a polarized beam

    International Nuclear Information System (INIS)

    The two-pion production reaction pp→ppπ+π- was measured with a polarized proton beam at Tp∼750 and 800 MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed-pulse technique for Quirl and central calorimeter provided positive π+ identification in addition to the standard particle identification, energy determination as well as time-of-flight and angle measurements. Thus all four-momenta of the emerging particles could be determined with 1-4 overconstraints. Total and differential cross-sections as well as angular distributions of the vector analyzing power have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find significant analyzing-power values up to Ay=0.3. The data taken in the energy region of the excitation of the Roper resonance confirm that its dominant ππ decay channel is N*→Nσ. (orig.)

  20. Near-threshold pion production with radioactive beams at the Rare Isotope Accelerator

    CERN Document Server

    Li, B A; Zuo, W; Li, Bao-An; Yong, Gao-Chan; Zuo, Wei

    2005-01-01

    Using an isospin- and momentum-dependent transport model we study near-threshold pion production in heavy-ion collisions induced by radioactive beams at the planned Rare Isotope Accelerator (RIA). We revisit the question of probing the high density behavior of nuclear symmetry energy $E_{sym}(\\rho)$ using the $\\pi^-/\\pi^+$ ratio. It is found that both the total and differential $\\pi^-/\\pi^+$ ratios remain sensitive to the $E_{sym}(\\rho)$ when the momentum-dependence of both the isoscalar and isovector potentials are consistently taken into account. Moreover, the multiplicity and spectrum of $\\pi^-$ mesons are found more sensitive to the $E_{sym}(\\rho)$ than those of $\\pi^+$ mesons. Finally, effects of the Coulomb potential on the pion spectra and $\\pi^-/\\pi^+$ ratio are also discussed.

  1. Production and application of pulsed slow-positron beam using an electron LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Tetsuo; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Kobayashi, Yoshinori

    1997-03-01

    Slow-positron beam is quite useful for non-destructive material research. At the Electrotechnical Laboratory (ETL), an intense slow positron beam line by exploiting an electron linac has been constructed in order to carry out various experiments on material analysis. The beam line can generates pulsed positron beams of variable energy and of variable pulse period. Many experiments have been carried out so far with the beam line. In this paper, various capability of the intense pulsed positron beam is presented, based on the experience at the ETL, and the prospect for the future is discussed. (author)

  2. Effect of helium and hydrogen production on hardness of F82H steel irradiated by dual/triple ion beams

    International Nuclear Information System (INIS)

    Effect of helium and hydrogen production on radiation-hardening of F82H irradiated by dual or triple beam condition were investigated. The specimens used were four types of ferritic martensitic steels of F82H-std (Fe-8Cr-2W-0.2V-0.04Ta-0.1C) steels tempered at 750degC for 60 minutes, 20% cold worked F82H steel, F82H tempered for 10 minutes and non-tempered F82H steels. The irradiation was performed at 450degC to 50 dpa under simultaneous dual beams of 10.5 MeV Fe3+ and 1.05 MeV He+ or triple beams of those and 380 keV H+ ions. The ratios of He (appm)/dpa and H(appm)/dpa were 15 nad 15 (or 150) for dual and triple ion beams. The hardness of the irradiated specimens measured at room temperature using a micro indentation after the irradiations. The hardness in these F82H steels irradiated at 450degC to 18 dpa under triple beam irradiation was harder than that under dual beam irradiation. Irradiation softening and hardening under dual beams was observed in F82H steel irradiated at 450degC to 18 and 50 dpa, respectively. (author)

  3. The role of diffusion in ISOL targets for the production of radioactive ion beams

    International Nuclear Information System (INIS)

    On-line isotope separation techniques (ISOL) for production of ion beams of short-lived radionuclides require fast separation of nuclear reaction products from irradiated target materials followed by a transfer into an ion source. As a first step in this transport chain the release of nuclear reaction products from refractory metals has been studied systematically and will be reviewed. High-energy protons (500-1000 MeV) produce a large number of radionuclides in irradiated materials via the nuclear reactions spallation, fission and fragmentation. Foils and powders of Re, W, Ta, Hf, Mo, Nb, Zr, Y, Ti and C were irradiated with protons (600-1000 MeV) at the Dubna synchrocyclotron, the CERN synchrocyclotron and at the CERN PS-booster to produce different nuclear reaction products. The main topic of the paper is the determination of diffusion coefficients of the nuclear reaction products in the target matrix, data evaluation and a systematic interpretation of the data. The influence of the ionic radius of the diffusing species and the lattice type of the host material used as matrix or target on the diffusion will be evaluated from these systematics. Special attention was directed to the release of group I-, II- and III-elements. Arrhenius plots lead to activation energies of the diffusion process. Results: 1. A strong radius determined diffusion behaviour was found: DIIIB>DIIA>DIA>DVIIIA; (DY>DSr>DRb>DKr). Rare earth elements diffuse as Me3+-species. 2. Within the host elements of one period of the periodic table the diffusion of the trace elements changes in the following order: DIIIB>DIVB>>DVB>DVIB. 3. In a given target trace elements of group I and II of a lower period diffuse faster than the corresponding elements of the higher period of the periodic table. D2ndperiod>D5thperiod>D6thperiod; (DBe>>DSr>DBa). The diffusion determined transport rate of nuclear reaction products in solid target materials is often satisfactory, and consequently several refractory metals

  4. Dependence of the dose field measurement results on dosimetric films orientation for products irradiated by electron beam

    International Nuclear Information System (INIS)

    The dosimetric films or tapes, for example standard sample of a dosimeter SO PD(F) 5/150 (Russia), are often used when dose fields are measured in a product irradiated by accelerator electron beams. The orientation of these films with respect to the beam direction may be fairly arbitrary. This is a source of a serious errors in the dose field measurement results, if that orientation is not taken into account. The error consists in an underestimate of the dose value up to 30-40%. The error is maximum for an unscattered beam (near the boundary of target) and for the angle between the film plane and the beam direction smaller than 20-30 deg. Besides that, a mean square-root error in these cases is about a factor of 1.5 larger. (author)

  5. From beam production to beam delivery, treatment planning and clinical requirements: The point of view of the vendors

    International Nuclear Information System (INIS)

    This paper covers the principles, rationale and present status of carbon ion therapy, an overview of a particle therapy system, recording and reporting of carbon ion therapy, beam generation and distribution, patient positioning, and quality assurance (QA) for carbon ion therapy. In order to guarantee a cost effective operation of the carbon ion therapy facility, the amount of time required for the quality assurance program, must be kept to a minimum while at the same time guaranteeing a complete coverage of all critical system parameters. Note that this in particular applies to any QA tasks that have to be performed on a daily basis. Consequently, an optimized QA procedure has to be setup that comprises the automation or semi-automation of a maximum number of individual QA tasks. While a safety-interlock system may at least partly be tested using a pure software approach and thus lends itself to automation, this is not the case for beam parameter and dosimetric measurements. The time required and the amount of manual interaction for the latter part of the QA program can be reduced if a robot system is employed. In this case the required detectors, phantoms, and auxiliary instrumentation may be positioned automatically with direct data transfer to the control system. Quality assurance of the plan can either be done by transferring the treatment plan to a phantom geometry, followed by measurements and comparisons of measured and calculated data, or by comparison to another independent calculation. (author)

  6. Structure modification and medical application of the natural products by proton beam irradiation

    International Nuclear Information System (INIS)

    This study was performed for the investigation of changes of constituent contents of Korean ginseng (Panax genseng C.A. Meyer) after proton beam irradiation (Beam energy from MC-50 cyclotron : 36.5MeV) with beam range of 500 - 10000Gy

  7. Analysis of products of thymine irradiated by 18O8+ ion beam in N2O saturated aqueous solution

    International Nuclear Information System (INIS)

    Some methods of capillary gas chromatography, such as GC, GC-MS GC-FT-IR, are used to analyze the products of thymine irradiated by 18O8+ ion beam in N2O saturated aqueous solution. From the results of GC-MS the molecular weight of products can be determined, and from the results of GC-FT-IR some molecular structure information of products can be obtained. By this way the products, 5,6-Dihydro-thymine, 5-Hydroxyl-5-Methylhydantoin, 5-Hydroxyl-6-Hydro-thymine, 5-Hydro-6-Hydroxyl thymine, 5-Hydroxymethyluracil, Trans-Thymine glycol, Cis-Thymine glycol and dimers are determined without separation of them from samples. Though these products are as same as those products of thymine irradiated by γ rays in N2O saturated aqueous solution, the mechanism of thymine irradiated by heavy ion beam in aqueous solution is different from that by γ rays. The main products of thymine irradiated by 18O8+ ion beam in N2O saturated aqueous solution are hydroxyl adducts at 5-6 band of thymine, while the main products of thymine irradiated by γ ray in N2O saturated aqueous solution are dimers of thymine

  8. Sensitive in situ method to measure the rate of neutral free radical production by photodeionization of negative ion beams

    International Nuclear Information System (INIS)

    Photoelectron-current measurement by low-frequency electromodulation probe (PMMP) is proposed as a sensitive method to determine the rate Gr of neutral free radical production by the photodeionization of negative ion beams (PDINIB). The PMMP method was employed to evaluate the production rate in a trial surface-processing apparatus developed in the author's laboratory utilizing a steady-flux refined beam of neutral free radicals produced by the PDINIB procedure. A 63Cu- negative ion beam of kinetic energy Ei varied up to 15 keV was irradiated with a 514.5 nm visible light beam from a 25 W cw Ar+ ion laser. The detection limit of the production rate by the measurement setup was 6x109/s under the conditions that Ei=15 keV, the negative ion beam current Ii=4 μA, and the laser power P=6 W. Based on the results of these basic experiments, furthermore, the photodeionization efficiency defined by eGr/Ii where e is the elementary electric charge was estimated to be 27±6% under the conditions that Ei=15 keV, Ii=40 μA, and P=18 W

  9. Fundamental aspects on ion-beam surface modification: defect production and migration processes

    International Nuclear Information System (INIS)

    Ion-beam modification of metals is generating increasing scientific interest not only because it has exciting technological potential, but also because it has raised fundamental questions concerning radiation-induced diffusion processes. In addition to the implanted species, several defect production and migration mechanisms contribute to changes in the near-surface composition of an alloy during ion bombardment, e.g., atoms exchange positions via displacements and replacement sequences; preferential sputtering effects arise; radiation-enhanced diffusion and radiation-induced segregation occur. The latter two defect migration mechanisms are of particular significance since they can alter the composition to depths which are much greater than the implanted ion range. By altering various parameters such as irradiation temperature, ion mass, energy, and current density, and initial alloying distributions, a rich variety of near-surface composition profiles can be created. We have utilized changes in ion mass and energy, and irradiation temperature to distinguish defect production from defect migration effects. Experimental results are presented which provide a guide to the relative efficiencies of different mechanisms under various irradiation conditions. 46 references

  10. STUDY OF BEAM SPIN ASYMMETRY IN EXCLUSIVE Π° PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Howley, I.; Avagyan, H.

    2007-01-01

    Describing and understanding atomic nuclei is a puzzle that has intrigued scientists for decades. Approximately ten years ago, a description of nucleon structure, referred to as Generalized Parton Distribution (GPD), was introduced. GPDs are a way of describing scattering and production processes in a single framework. Deeply Virtual Compton Scattering (DVCS) is a process that scatters a photon from a proton and detects a scattered electron, a proton, and one photon in the fi nal state. From DVCS, GPDs can be extracted in order to lead us to a more complete picture of nucleon structure. The focus of this study is to understand the beam spin asymmetry (BSA) of the neutral π° meson, a main source of background during the DVCS process. To calculate the BSA, the number of π° events with positive helicity (spin) and negative helicity were counted by integrating histograms with Gaussians fi ts. It is shown that there is a signifi cant non-zero BSA in production of exclusive π°, namely 0.0655±0.0022. In the analysis of previous experiments, the BSA of π° was assumed to be zero and therefore ignored. Now, future analyses of DVCS data may incorporate this evidence of BSA. A deeper understanding of background processes (π°) in the DVCS will allow precision measurements of GPDs, providing new insight concerning the structure of nucleons.

  11. Production of a sub-10 fs electron beam with 107 electrons

    Science.gov (United States)

    Han, Jang-Hui

    2011-05-01

    We study the possibility to produce a 1.6 pC electron beam (107 electrons) with a bunch length of less than 10 fs and a beam energy of a few MeV. Such a short, relativistic beam will be useful for an electron diffraction experiment with a 10 fs time resolution. An electron beam with 107 electrons will allow a single-shot experiment with a laser pulse pump and an electron beam probe. In this design, an S-band photocathode gun is used for generating and accelerating a beam and a buncher consisting of two S-band four-cell cavities is used for temporally compressing the beam. Focusing solenoids control the beam transverse divergence and size at the sample. Numerical optimization is carried out to achieve a beam with a 4 fs full-width-at-half-maximum length, a 26 microradian root-mean-square divergence, and a 2 nm transverse coherence length at a 3.24 MeV beam energy. When state-of-the-art rf stability is considered, beam arrival time jitter at the sample is calculated to be about 10 fs.

  12. Multi-Agent Based Beam Search for Real-Time Production Scheduling and Control Method, Software and Industrial Application

    CERN Document Server

    Kang, Shu Gang

    2013-01-01

    The Multi-Agent Based Beam Search (MABBS) method systematically integrates four major requirements of manufacturing production - representation capability, solution quality, computation efficiency, and implementation difficulty - within a unified framework to deal with the many challenges of complex real-world production planning and scheduling problems. Multi-agent Based Beam Search for Real-time Production Scheduling and Control introduces this method, together with its software implementation and industrial applications.  This book connects academic research with industrial practice, and develops a practical solution to production planning and scheduling problems. To simplify implementation, a reusable software platform is developed to build the MABBS method into a generic computation engine.  This engine is integrated with a script language, called the Embedded Extensible Application Script Language (EXASL), to provide a flexible and straightforward approach to representing complex real-world problems. ...

  13. Tertiary particle production and target optimization of the H2 beam line in the SPS North Area

    CERN Document Server

    Tellander, Felix

    2016-01-01

    H2 beam line of SPS North Area is a high energy, high resolution and multipurpose particle beam line. It is able to transport secondary hadron and pure electron beams with momenta between 10 and 400 GeV/c to be exploited by several different experiments. In this work, tertiary particle production from a secondary target placed in the line is studied. The introduction of this “filter” target enhances the middle to low momentum hadron (20 - 60 GeV/c) and electron production. In this work, a systematic Monte Carlo simulation study using a GEANT 4 based package, G4beamline, has been performed in order to investigate the tertiary particle production from several different targets. More specifically, Cu, W and polyethylene targets with different thicknesses have been studied. The proton over pi+ ratio is of particular interest, as well as the optimal electron production for several momenta. The present work will act as a reference to be used by the future test-beam users of the line as an indication of the expe...

  14. Production of low-energy neutral oxygen beams by grazing-incidence neutralization

    International Nuclear Information System (INIS)

    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded

  15. The production of low-energy neutral oxygen beams by grazing-incidence neutralization

    Science.gov (United States)

    Albridge, R. G.; Haglund, R. F.; Tolk, N. H.; Daech, A. F.

    1987-01-01

    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded.

  16. Measurement of neutral current coherent neutral pion production on carbon in a few-GeV neutrino beam

    OpenAIRE

    Kurimoto, Y; Alcaraz-Aunion, J. L.; Brice, S J; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D. A.; Franke, A. J.; C. Giganti; Gomez-Cadenas, J. J.; Guzowski, P.; Hanson, A.

    2010-01-01

    The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current cohere...

  17. Production of and studies with secondary radioactive ion beams at Lise

    International Nuclear Information System (INIS)

    The doubly achromatic spectrometer LISE, installed at GANIL has delivered secondary radioactive beams for the past 6 years. Essentially, it consists of by two dipole magnets selecting (in A/Z) and refocusing (achromatically) the projectile-like fragment-beams emitted at 00. Important features of LISE and selected experimental results will be discussed. LISE was substantially upgraded, recently, by adding a Wien-filter, providing secondary radioactive beams of still increased intensity and isotopic purity. (6 figs)

  18. Progress in long-pulse production of powerful negative ion beams for JT-60SA and ITER

    Science.gov (United States)

    Kojima, A.; Umeda, N.; Hanada, M.; Yoshida, M.; Kashiwagi, M.; Tobari, H.; Watanabe, K.; Akino, N.; Komata, M.; Mogaki, K.; Sasaki, S.; Seki, N.; Nemoto, S.; Shimizu, T.; Endo, Y.; Ohasa, K.; Dairaku, M.; Yamanaka, H.; Grisham, L. R.

    2015-06-01

    Significant progress in the extension of pulse durations of powerful negative ion beams has been made to realize the neutral beam injectors for JT-60SA and ITER. In order to overcome common issues of the long-pulse production/acceleration of negative ion beams in JT-60SA and ITER, new technologies have been developed in the JT-60SA ion source and the MeV accelerator in Japan Atomic Energy Agency. As for the long-pulse production of high-current negative ions for the JT-60SA ion source, the pulse durations have been successfully increased from 30 s at 13 A on JT-60U to 100 s at 15 A by modifying the JT-60SA ion source, which satisfies the required pulse duration of 100 s and 70% of the rated beam current for JT-60SA. This progress was based on the R&D efforts for the temperature control of the plasma grid and uniform negative ion productions with the modified tent-shaped filter field configuration. Moreover, each parameter of the required beam energy, current and pulse has been achieved individually by these R&D efforts. The developed techniques are useful to design the ITER ion source because the sustainment of the caesium coverage in the large extraction area is one of the common issues between JT-60SA and ITER. As for the long-pulse acceleration of high power density beams in the MeV accelerator for ITER, the pulse duration of MeV-class negative ion beams has been extended by more than 2 orders of magnitude by modifying the extraction grid with a high cooling capability and a high transmission of negative ions. A long-pulse acceleration of 60 s has been achieved at 70 MW m-2 (683 keV, 100 A m-2) which has reached the power density of JT-60SA level of 65 MW m-2. No degradations of the voltage holding capability of the acceleration voltage and the beam optics due to the distortion of the acceleration grids have been observed in this power density level. These results are the longest pulse durations of high-current and high-power-density negative ion beams in the

  19. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source.

    Science.gov (United States)

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U(35+) for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power. PMID:22380180

  20. In flight production of a 8Li radioactive beam for Big Bang nucleosynthesis investigations at LNS Catania

    International Nuclear Information System (INIS)

    The in flight production of a secondary 8Li radioactive beam using the existing beam transport lines at the SMP13 Tandem accelerator of the Laboratori Nazionali del Sud in Catania is studied. The method consists in the momentum filtering by a switching magnet of the 8Li ions emitted backward in the centre of mass of the 2H(7Li,p)8Li reaction, followed by a time-of-flight tagging of the deflected ions. Details of the experimental procedures and preliminary results of the 8Li(4He,n)11B reaction study relevant for pregalactic nucleosynthesis are presented and discussed

  1. Production of megavolt neutron beams with a relative energy spread of ∼ 5 x 10-4

    International Nuclear Information System (INIS)

    A method is described for producing megavolt neutron beams with a relative energy spread of ∼ 5 x 10-4, based on the use of an electrostatic accelerator and a gas target with no foil, making it possible to carry out continuous, controlled production of the working substance. In the target differential pumping of the vapor of the working substance is effected by freezing out in liquid-nitrogen condensers. A method has been developed for using beams of neutrons from the 12C(d,n) reaction to measure the total cross sections for the interaction of neutrons with nuclei and the differential cross sections for elastic scattering

  2. Optimizing production of Pb beams for 205,210Pb analysis by Accelerator Mass Spectrometry

    Science.gov (United States)

    Sookdeo, Adam; Cornett, Jack; Kieser, William E.

    2015-10-01

    The measurement of rare radioactive lead isotopes (205Pb or 210Pb) by AMS requires the production of strong Pb negative molecular anion beams from the ion source. This paper summarizes the results of tests of different target composition on the strength and stability of 208PbF3- currents and 210Pb counts. In an 834 SIMS-type Cs+ sputter source, the superhalogen, PbF3- had the largest current or ionization efficiency from a survey of Pb molecular anions. The target matrix that produced the largest current of PbF3- was composed of PbF2, AgF2 and CsF. The ratio of AgF2 and CsF does not affect the ionization efficiency of PbF3-. Chemically refluxed targets of PbF2, AgF2 and CsF increased the ionization efficiency of PbF3-. The count rate of the rare isotope, 210Pb, was increased with the addition of microgram quantities of stable PbF2 to the targets. In an SO-110 type Cs+ sputter source the ionization efficiency of PbF3- was increased with lower rather than higher Cs+ fluence.

  3. Production of highly charged ion beams from electron cyclotron resonance ion sources (invited)

    International Nuclear Information System (INIS)

    Electron cyclotron resonance ion source (ECRIS) development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields, and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECRISs. So far at continuous wave (CW) mode operation, up to 300 eμA of O7+ and 1.15 emA of O6+, more than 100 eμA of intermediate heavy ions for charge states up to Ar13+, Ca13+, Fe13+, Co14+, and Kr18+, and tens of eμA of heavy ions with charge states to Kr26+, Xe28+, Au35+, Bi34+, and U34+ were produced from ECRISs. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe36+, Au46+, Bi47+, and U48+. An order of magnitude enhancement for fully stripped argon ions (I≥60enA) were also achieved. This article will review the ECR ion source progress and discuss key requirement for ECRISs to produce the highly charged ion beams. copyright 1998 American Institute of Physics

  4. Disinfestation of agricultural products with electron beams and their radiation tolerance

    International Nuclear Information System (INIS)

    Some agricultural products contaminated with insect pests are fumigated with methyl bromide for quarantine purposes. However, the use of methyl bromide is preferably restricted because of its ozone depleting effect. Therefore, establishing alternative quarantine techniques is highly desirable; one such technique is exposure to ionizing radiation. Few data are available on the effects of radiation on insect pests other than fruit flies and stored-product insects and on the radiation tolerance of host commodities. Radiation technology as an alternative to methyl bromide fumigation will be used to inactivate not only insects but also mites, spider mites, thrips, nematodes, scales, mealybugs and thrips contaminating fruits, grains, cut flowers, vegetables, timbers, seedlings and seeds. In order to collect data on the effects of irradiation on pests and host commodities, IAEA and FAO have conducted an international project, 'FAO/IAEA Coordinated Research Programme on Irradiation as a Quarantine Treatment of Mites, Nematodes and Insects other than Fruit Fly' since 1992. The project determines the minimum doses necessary to inactivate pests and the maximum doses host commodities tolerate. All pests except nematodes can be inactivated at doses 400Gy or lower. Various varieties of cut flowers and herbs are tolerant to 400Gy of radiation, although some flowers and herbs such as chrysanthemum, rose, lily, calla, anthurium, sweet pea, iris, dill, basil and arugula are intolerant to 200Gy of radiation. Japanese research project on treatment of cut flowers with electron beams carried out mainly by Yokohama Plant Protection Station greatly contributes to these conclusions. Aqueous solution (2%) of sucrose, glucose, fructose or maltose prevents radiation-induced detrimental effects of radiation on chrysanthemums. Sugars reduce radiation-induced physiological deterioration of chrysanthemums. (author)

  5. Study of the production, the propagation and the focusing of an electron beam

    International Nuclear Information System (INIS)

    The electron beam (500 keV, 30 kA, 100 ns) of the RKA (Relativistic Klystron Amplifier) generator is used to study materials under shocks at low fluences (≤ 10 cal/cm2). Their response depends on the beam characteristics at the impact location, mainly in terms of spatial homogeneity. We have used electrical diagnostics as well as an optical diagnostics where the visible photons produced by Cerenkov emission in a silica target are collected by fast cameras. Beam homogeneity has been studied in the vacuum diode as a function of the materials used for the cathode and the anode. Beam propagation and focusing in a chamber filled with a low-pressure gas has also been investigated. Each part of the installation has been optimized during this work. We found that, among the tested materials, a velvet cathode with well-aligned fibers is the best emitter. An anode of thickness about ten micrometers improves the beam homogeneity by scattering of electrons. Next, we focused on beam propagation and focusing in the chamber. For example, a 400 keV, 4.2 kA electron beam can be propagated at constant radius in argon at 0.7 mbar. We performed simulations with the Monte Carlo code Geant4 in order to compute the beam interaction with the Cerenkov target as well as with the anode. Beam emission and propagation were simulated with the PIC code Magic. The good agreement with the experimental results allows us to estimate the electron distributions at any position along the beam path in order to initialize correctly the computation of the beam-material interaction. (author)

  6. LC-MS analysis in the e-beam and gamma radiolysis of metoprolol tartrate in aqueous solution: Structure elucidation and formation mechanism of radiolytic products

    Energy Technology Data Exchange (ETDEWEB)

    Slegers, Catherine [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium)]. E-mail: catherine.slegers@skynet.be; Maquille, Aubert [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium); Deridder, Veronique [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium); Sonveaux, Etienne [Unite de Chimie Pharmaceutique et de Radiopharmacie, Universite Catholique de Louvain, Brussels (Belgium); Habib Jiwan, Jean-Louis [Laboratoire de Spectrometrie de Masse, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium); Tilquin, Bernard [Unite d' Analyse Chimique et Physico-chimique des Medicaments, Universite Catholique de Louvain, CHAM 72.30, Avenue E. Mounier, 72, B-1200, Brussels (Belgium)

    2006-09-15

    E-beam and gamma products from the radiolysis of aqueous solutions of ({+-})-metoprolol tartrate, saturated in nitrogen, are analyzed by HPLC with on-line mass and UV detectors. The structures of 10 radiolytic products common to e-beam and gamma irradiations are elucidated by comparing their fragmentation pattern to that of ({+-})-metoprolol. Two of the radiolytic products are also metabolites. Different routes for the formation of the radiolytic products are proposed.

  7. LC MS analysis in the e-beam and gamma radiolysis of metoprolol tartrate in aqueous solution: Structure elucidation and formation mechanism of radiolytic products

    Science.gov (United States)

    Slegers, Catherine; Maquille, Aubert; Deridder, Véronique; Sonveaux, Etienne; Habib Jiwan, Jean-Louis; Tilquin, Bernard

    2006-09-01

    E-beam and gamma products from the radiolysis of aqueous solutions of (±)-metoprolol tartrate, saturated in nitrogen, are analyzed by HPLC with on-line mass and UV detectors. The structures of 10 radiolytic products common to e-beam and gamma irradiations are elucidated by comparing their fragmentation pattern to that of (±)-metoprolol. Two of the radiolytic products are also metabolites. Different routes for the formation of the radiolytic products are proposed.

  8. LC-MS analysis in the e-beam and gamma radiolysis of metoprolol tartrate in aqueous solution: Structure elucidation and formation mechanism of radiolytic products

    International Nuclear Information System (INIS)

    E-beam and gamma products from the radiolysis of aqueous solutions of (±)-metoprolol tartrate, saturated in nitrogen, are analyzed by HPLC with on-line mass and UV detectors. The structures of 10 radiolytic products common to e-beam and gamma irradiations are elucidated by comparing their fragmentation pattern to that of (±)-metoprolol. Two of the radiolytic products are also metabolites. Different routes for the formation of the radiolytic products are proposed

  9. Beam-spot temperature monitoring on the production target at the BigRIPS separator

    International Nuclear Information System (INIS)

    Since 2007, a water-cooled high-power rotating disk target has been in operation at the in-flight radioactive-isotope beam separator (BigRIPS), RIKEN. The target should withstand a goal beam intensity of 1 particle μA (pμA) 238U-beam at 350 AMeV with a spot size of 1 mm in diameter, resulting in a heat deposit of 22 kW in the target. A beam-spot temperature monitoring system using infrared devices in high-radiation environment was elaborately developed. The beam-spot temperature on a beryllium (Be) fixed target and on a rotating Be and tungsten (W) disk target was measured with the most intense beams presently available at our facility. The heat deposit achieved was 0.6 kW, that is 1/37 of the goal value. At the present beam intensity, the result supports our estimation that a water-cooled rotating disk target of 30 cm diameter can withstand an approximately tenfold beam intensity compared to a water-cooled fixed target.

  10. Production of Inorganic Thin Scintillating Films for Ion Beam Monitoring Devices

    CERN Document Server

    Re, Maurizio; Cosentino, Luigi; Cuttone, Giacomo; Finocchiaro, Paolo; Hermanne, Alex; Lojacono, Pietro A; Ma, YingJun; Thienpont, Hugo; Van Erps, Jurgen; Vervaeke, Michael; Volckaerts, Bart; Vynck, Pedro

    2005-01-01

    In this work we present the development of beam monitoring devices consisting of thin CsI(Tl) films deposited on Aluminium support layers. The light emitted by the scintillating layer during the beam irradiation is measured by a CCD-camera. In a first prototype a thin Aluminium support layer of 6 micron allows the ion beam to easily pass through without significant energy loss and scattering effects. Therefore it turns out to be a non-destructive monitoring device to characterize on-line beam shape and beam position without interfering with the rest of the irradiation process. A second device consists of an Aluminium support layer which is thick enough to completely stop the impinging ions allowing to monitor at the same time the beam profile and the beam current intensity. Some samples have been coated by a 100 Å protective layer to prevent the film damage by atmosphere exposition. In this contribution we present our experimental results obtained by irradiating the samples with proton beams at 8.3 and 62 Me...

  11. Review of neutral beam heating on JET for physics experiments and the production of high fusion performance plasmas

    International Nuclear Information System (INIS)

    The JET neutral beam injection system has proved to be both effective and reliable as a plasma heating device. The ion heating and plasma fuelling characteristics of the system are ideally suited to the production of high fusion performance plasmas while the flexibility in the choice of beam species (H, D, T, 3He or 4He) and the ability to inject into almost any JET plasma configuration allows a wide variety of related physics experiments to be carried out. The capability to inject (for the first time) tritium beams was essential to the successful execution of the first tritium experiments in which 1.7MW of power from D-T fusion reactions was generated. ((orig.))

  12. A gas circulation and purification system for gas-cell-based low-energy RI-beam production

    Science.gov (United States)

    Sonoda, T.; Tsubota, T.; Wada, M.; Katayama, I.; Kojima, T. M.; Reponen, M.

    2016-06-01

    A gas circulation and purification system was developed at the RIKEN Radioactive Isotope Beam Factory that can be used for gas-cell-based low-energy RI-beam production. A high-flow-rate gas cell filled with one atmosphere of buffer gas (argon or helium) is used for the deceleration and thermalization of high-energy RI-beams. The exhausted buffer gas is efficiently collected using a compact dry pump and returned to the gas cell with a recovery efficiency of >97%. The buffer gas is efficiently purified using two gas purifiers as well as collision cleaning, which eliminates impurities in the gas. An impurity level of one part per billion is achieved with this method.

  13. Production of low-Z ions in the Dresden superconducting electron ion beam source for medical particle therapy

    International Nuclear Information System (INIS)

    We report on experiments with a new superconducting electron beam ion source (EBIS-SC), the Dresden EBIS-SC, with the objective to meet the main requirements for their application in particle-therapy facilities. Synchrotrons as well as innovative accelerator concepts, such as high-gradient linacs which are driven by a large-current cyclotron (CYCLINACS) and direct drive RF linear accelerators may benefit from the advantages of EBISs in regard to their functional principle. First experimental studies of the production of low-Z ions such as H+, H2+, H3+, C4+, and C6+ are presented. Particular attention is paid to the ion output, i.e., the number of ions per pulse and per second, respectively. Important beam parameters in this context are, among others, ion pulse shaping, pulse repetition rates, beam emittance, and ion energy spread.

  14. Concept of Powerful Multistage Coaxial Cyclotron for Pulsed and Continuous Beam Production

    CERN Document Server

    Tumanyan, A R; Guiragossian, Z G T; Akopov, N Z

    1999-01-01

    The concept of large-radius multistage coaxial cyclotrons having separated orbits is described, to generate proton beams of 120-2000 MeV energy at tens of GW pulsed and hundreds of MW in continuous beam power operation. Accelerated beam losses must be less than 0.1 W/m for the intercepted average beam power linear density. The concept is inherently configured to actively compensate the longitudinal and transverse space charge expansion in beam bunches. These are based on (1) actively varying the bunch acceleration equilibrium phase while maintaining isochronism, independently for each cyclotron turns; (2) independently changing the acceleration voltage for each turn together with orbit corrections that preserve isochronism; (3) independently changing the transverse betatron oscillation tune shift, to assure non-resonant operation. Also, (4) sextupole lenses are included to compensate for chromaticity effects. Moreover, the concept is based on optimum uses of practical successful results so far achieved in bea...

  15. Drift distance survey in direct plasma injection scheme for high current beam production

    International Nuclear Information System (INIS)

    In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between a laser target and beam extraction position. In direct plasma injection scheme, which uses a laser ion source and a radio frequency quadrupole linac, we can apply relatively higher electric field at beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration such as several tens of milliamperes, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C6+ beam was accelerated. We confirmed that matching condition can be improved by controlling plasma drift distance.

  16. A novel process for production of spherical PBT powders and their processing behavior during laser beam melting

    Science.gov (United States)

    Schmidt, Jochen; Sachs, Marius; Zhao, Meng; Fanselow, Stephanie; Wudy, Katrin; Drexler, Maximilian; Drummer, Dietmar; Wirth, Karl-Ernst; Peukert, Wolfgang

    2016-03-01

    Additive manufacturing processes like laser beam melting of polymers are established for production of prototypes and individualized parts. The transfer to other areas of application and to serial production is currently hindered by the limited availability of polymer powders with good processability. Within this contribution a novel process route for the production of spherical polymer micron-sized particles of good flowability has been established and applied to produce polybutylene terephthalate (PBT) powders. Moreover, the applicability of the PBT powders in selective laser beam melting and the dependencies of process parameters on device properties will be outlined. First, polymer micro particles are produced by a novel wet grinding method. To improve the flowability the produced particles the particle shape is optimized by rounding in a heated downer reactor. A further improvement of flowability of the cohesive spherical PBT particles is realized by dry coating. An improvement of flowability by a factor of about 5 is achieved by subsequent rounding of the comminution product and dry-coating as proven by tensile strength measurements of the powders. The produced PBT powders were characterized with respect to their processability. Therefore thermal, rheological, optical and bulk properties were analyzed. Based on these investigations a range of processing parameters was derived. Parameter studies on thin layers, produced in a selective laser melting system, were conducted. Hence appropriate parameters for processing the PBT powders by laser beam melting, like building chamber temperature, scan speed and laser power have been identified.

  17. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    Science.gov (United States)

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications. PMID:26931978

  18. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    International Nuclear Information System (INIS)

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 1013 W cm−2 in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications

  19. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Science.gov (United States)

    Zhao, H. Y.; Zhang, J. J.; Jin, Q. Y.; Liu, W.; Wang, G. C.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 1013 W cm-2 in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  20. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Jin, Q. Y.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, W.; Wang, G. C. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10{sup 13} W cm{sup −2} in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  1. Shaping of intensive secondary pulsed molecular beam and production of accelerated molecules and radicals in it

    CERN Document Server

    Makarov, G N

    2001-01-01

    The method is described for shaping the intensive secondary pulsed molecular beam, wherein the molecules kinetic energy may be controlled through the powerful IR laser radiation by means of the molecules oscillatory excitation in the source itself. The thickening jump (the shock wave), which is formed by interaction of the intensive pulsed supersonic molecular beam (or flux) with a solid surface, is used as the secondary beam source. The intensive (>= 10 sup 2 sup 0 molecules/stere. s) beams of the SF sub 6 and CF sub 3 I molecules with the kinetic energy correspondingly equal to approximately 1.5 eV and 1.2 eV without gas-carrier and molecular SF sub 6 beams with kinetic energy approx = 2.5 eV are obtained. The spectral and energy characteristics of the SF sub 6 molecules acceleration in the secondary beam are studied. The possibility of obtaining the accelerated radicals in the secondary molecular beam is indicated

  2. Theoretical evaluation of induced radioactivity in food products by electron — or X-ray beam sterilization

    Science.gov (United States)

    Leboutet, H.; Aucouturier, J.

    We evaluate first the energy density for electrons or X-ray beams necessary to produce a reference level of 1 kilogray at the maximum of dose, as a function of energy, for electrons and bremsstrahlung photons ( BX rays), based on experimental data obtained on radio-therapy beams, from 4 to 32 MeV, and irradiation beams from production plant CARIC. Then from the production of neutrons on the tungsten target and from (γ n) reactions on the deuterium content of the irradiated food, the slowing down and capture of these neutrons is estimated. Radioisotopes can be produced by (γ n) reactions on iodine, and to a lesser extent on tin, lead, barium, etc., but the major contribution is neutron activation, where the more critical elements are sodium, chlorine, potassium, magnesium, phosphorus, calcium. Induced activity is compared to natural activity coming from potassium 40, carbon 14 and radium, contained in all foods. We conclude that for electrons up to 1 Mrad the induced activity remains of the order of a few percent of natural activity, for energies below 10-11 MeV. Bremsstrahlung X-ray irradiations can give comparable levels as soon as the energy of the generating electron beam is above 3 MeV. The induced activity decays within a few days. There is only a small increase of induced activity as the energy changes from 5 to 10 MeV, for the same total applied dose.

  3. Production of an intense microsecond electron beam with large cross section

    International Nuclear Information System (INIS)

    The article deals with the investigation of the shaping of a high-current rectangular electron beam whose current is of the order of maximum diode current, in the absence of a guiding magnetic fields as well as 'fast' storage in the power supply circuit. Numeric calculations and experiments were carried out to produce a microsecond electron beam with 500-600 keV electron energy, 50-70 kA current and 25x100 cm2 cross section in a vacuum diode. The obtained results points to a possible successful development of microsecond high-current diodes to be used for generating electron beams of large cross section

  4. Electron beam sterilization of medical products. The effects of irradiation on surgical rubber gloves

    International Nuclear Information System (INIS)

    Radiation damage of five commercially produced rubber gloves using electron beam and γ- rays from Cobalt-60 have been investigated in relation to radiation sterilization. Samples were irraadiated up to 100 kGy. The radiation damage of rubber gloves was ssmaller in electron beam than γ- rays. Good retention in tensile strength (T sub b) and elongation at break (E sub b) were observed even after six months storage. Higher beam currents (higher dose rate) above 5 mA was favourable for sterilization of rubber gloves because of smaller degradation. The tensile strength and elongation of the irradiated rubber gloves is still withinAM/N

  5. Plasma and Beam Production Experiments with HYBRIS, a Microwave-assisted H- Ion source

    International Nuclear Information System (INIS)

    A two-stage ion source concept had been presented a few years ago, consisting of a proven H- ion source and a 2.45-GHz Electron Cyclotron-Resonance (ECR) type ion source, here used as a plasma cathode. This paper describes the experimental development path pursued at Lawrence Berkeley National Laboratory, from the early concept to a working unit that produces plasma in both stages and creates a negative particle beam. Without cesiation applied to the second stage, the H- fraction of this beam is very low, yielding 75 micro-amperes of extracted ion beam current at best. The apparent limitations of this approach and envisaged improvements are discussed

  6. Vietnam Project For Production Of Radioactive Beam Based On ISOL Technique With The Dalat Reactor

    International Nuclear Information System (INIS)

    The presence in Vietnam of Dalat nuclear reactor dedicated to fundamental studies is a unique opportunity to produce Radioactive Ion (RI) Beams with the fission of a 235U induced by the thermal neutrons produced by the reactor. We propose to produce RI beams at the Dalat nuclear reactor using ISOL (Isotope Separation On-Line) technique. This project should be a unique opportunity for Vietnamese nuclear physics community to use its own facilities to produce RI beams for studying nuclear physics at an international level. (author)

  7. Associated vector boson production with b-jets at LHCb and Beam-Gas Vertexing at LHC for beam instrumentation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00287090

    This thesis presents the cross-section measurements of associated vector bosons production with bottom quarks jets at 7 and 8 TeV of centre-of-mass energies. The first channel for cross-section measurement is the Z+b-jet with $Z/\\gamma^* \\to \\mu^+\\mu^-$ in proton-proton collisions at $\\sqrt s = \\text {7 TeV}$ using data collected by the LHCb experiment in 2011. The second channel is the $W + b\\overline b$, requiring two b-jets and one lepton. Apart from cross-section measurement this channel is also used to calculate limits of the Higgs boson produced in association with a vector boson and decaying into a pair of bottom or charm quarks. One of the main source of systematic errors in these analyses is the jet energy resolution and correction. Reduction of this error is achieved by performing a calibration of the neutral jet energy component, named neutral recovery, where empirical functions of the ratio between the charged particle energy of the jet and the particle momentum are determined. This method improv...

  8. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    International Nuclear Information System (INIS)

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed

  9. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    CERN Document Server

    Panteleev, V N; Barzakh, A E; Fedorov, D V; Ivanov, V S; Moroz, F V; Orlov, S Y; Seliverstov, D M; Stroe, L; Tecchio, L B; Volkov, Y M

    2003-01-01

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed.

  10. Production of a high-brightness beam using an optimized extraction system

    International Nuclear Information System (INIS)

    Ion beam lithography relies on high brightness beams in the micro-ampere range. For such intensities the saddle field ion source is a good choice as it offers high efficiency and easy operation. In the authors' system, two screening electrodes are enclosed between two ground electrodes and an annular anode, ensuring high operational reliability. Optimization of the extraction system was performed both by experiments and by calculations according to the rules of high current ion beam generation. The best result for nitrogen at a 13.5 keV beam energy was a 160 μA ion current with an emittance of 2.5 mm m rad. and an emittance-normalized brightness of 11.4 A/(mm m rad.)2. (author)

  11. Production of multicharged metal ion beams on the first stage of tandem-type ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Hagino, Shogo, E-mail: hagino@nf.eie.eng.osaka-u.ac.jp; Nagaya, Tomoki; Nishiokada, Takuya; Otsuka, Takuro; Sato, Fuminobu; Kato, Yushi [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Muramatsu, Masayuki; Kitagawa, Atsushi [National Institute of Radiological Sciences (NIRS), 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2016-02-15

    Multicharged metal ion beams are required to be applied in a wide range of fields. We aim at synthesizing iron-endohedral fullerene by transporting iron ion beams from the first stage into the fullerene plasma in the second stage of the tandem-type electron cyclotron resonance ion source (ECRIS). We developed new evaporators by using a direct ohmic heating method and a radiation heating method from solid state pure metal materials. We investigate their properties in the test chamber and produce iron ions on the first stage of the tandem-type ECRIS. As a result, we were successful in extracting Fe{sup +} ion beams from the first stage and introducing Fe{sup +} ion beams to the second stage. We will try synthesizing iron-endohedral fullerene on the tandem-type ECRIS by using these evaporators.

  12. Progress in the production of intense ion beams and the formation of proton layers

    International Nuclear Information System (INIS)

    The results on ion sources and the application of ion beams to the formation of proton layers and rings are presented. Ion beams have been produced on three different generators. Some results from the experiments performed on the Gamble 2 generator are presented. The Gamble 2 generator with coaxial anode-cathode configuration, hollow beam cross-section produces power levels of 0.6-1.2 MV with peak ion current of 200 kA. The number of protons in the beam 4x1016. Peak ion currents is excess 200 kA, energy 1 MeV, ion current density 1 kA/cm2. Magnetic field configuration to provide formation of strong proton layers is shown

  13. Production of Dynamic Frozen Waves: Controlling shape, location (and speed) of diffraction-resistant beams

    OpenAIRE

    Vieira, Tárcio A.; Gesualdi, Marcos R. R.; Zamboni-Rached, Michel; Recami, Erasmo

    2015-01-01

    In recent times, we experimentally realized a quite efficient modeling of the shape of diffraction-resistant optical beams; thus generating for the first time the so-called Frozen Waves (FW), whose longitudinal intensity pattern can be arbitrarily chosen, within a prefixed space interval of the propagation axis. Such waves possess a host of potential applications: in medicine, biomedical optics, optical tweezers, atom guiding, remote sensing, tractor beams, optical communications or metrology...

  14. Measurement of neutral current neutral pion production on Carbon in a Few-GeV Neutrino Beam

    OpenAIRE

    Kurimoto, Y

    2009-01-01

    The SciBooNE Collaboration has measured neutral current neutral pion production by the muon neutrino beam at a polystyrene target (C8H8). We obtained (7.7+- 0.5(stat.)+0.4-0.5 (sys.)) x 10^-2 as cross section ratio of the neutral current neutral pion production to total charged current cross section at the mean neutrino energy of 1.16 GeV. This result is consistent with the Monte Carlo prediction based on the Rein-Sehgal model

  15. Production of neutron-rich isotopes by fragmentation of 80 MeV/nucleon 59Co beam

    International Nuclear Information System (INIS)

    using a primary beam of 59Co at 80 MeV/nucleon impinging on a berilium target, production cross-sections of neutron-rich fragments from projectile fragmentation have been measured at the Projectile Fragment Separator RIPS at the Institute of Physical and Chemical Research (RIKEN - Japan). The experimental production cross-sections ranging from Na to Ti for isotopes close to stability as well as for fragments at the neutron drip-line are compared to the results of the empirical parametrization EPAX

  16. Production of a high-current microsecond electron beam with a large cross section

    International Nuclear Information System (INIS)

    Obtaining high-current wide-aperture electron beams is an important problem in the development of laser technology for controlled nuclear fusion and for solving ecological and technological problems. The main scheme for producing such beams involves the use of generators with intermediate energy storage devices and burst-emission vacuum diodes. Beam pinching is prevented by using an external magnetic field or sectioning the diode into magnetically insulated diodes with currents lower than the limiting current. The length of the electron-current pulse varies from tens to hundreds of nano-seconds and is limited by the parameters of the intermediate storage device. Here the authors study the formation of a high-current electron beam with a square cross section and a current of the order of the limiting current of the diode in the absence of an external magnetic field as well as a 'fast' storage device in the power supply circuit. These conditions as a whole correspond to a simpler electron-source circuit, but the beam forming becomes more complicated. The reason for this is that there is no external magnetic field and that the role of plasma processes in the diode is enhanced by the greater length of the electron-current pulses

  17. Production and diagnosis of krypton ion beam using a freeman ion source

    International Nuclear Information System (INIS)

    The present work investigates the processes and phenomena occur in a Freeman heavy ion source system using krypton gas. The ion source parameters are adjusted in order to obtain the desired beam current with highest efficiency. The relations between the discharge current Id and the ion beam current Ib are obtained at constant pressures and for various accelerating voltages. The curves indicate a linear dependence of ion current from plasma density. Optimization of the ion source required adjustment of the cathode current and gas pressure. The dependence of ion beam currents on the accelerating voltage is given at constant discharge current (la = 0.8 A) and for various pressures. The ion beam current reaches 3m A at 45 KV and at a pressure of 2 x 105 Torr, and a cathode current equal to 130 A. An analysis has been made for an implanted Krypton ion beam in a zinc specimen using laser ablation inductively coupled plasma mass spectrometry. Photographs show the examined zinc specimen are presented. The depth profile shows that the highest concentration of Krypton ion under the surface of the zinc specimen is located at about 10 nm

  18. Hard X-ray bremsstrahlung production in solar flares by high-energy proton beams

    Science.gov (United States)

    Emslie, A. G.; Brown, J. C.

    1985-01-01

    The possibility that solar hard X-ray bremsstrahlung is produced by acceleration of stationary electrons by fast-moving protons, rather than vice versa, as commonly assumed, was investigated. It was found that a beam of protons which involves 1836 times fewer particles, each having an energy 1836 times greater than that of the electrons in the equivalent electron beam model, has exactly the same bremsstrahlung yield for a given target, i.e., the mechanism has an energetic efficiency equal to that of conventional bremsstrahlung models. Allowance for the different degrees of target ionization appropriate to the two models (for conventional flare geometries) makes the proton beam model more efficient than the electron beam model, by a factor of order three. The model places less stringent constraints than a conventional electron beam model on the flare energy release mechanism. It is also consistent with observed X-ray burst spectra, intensities, and directivities. The altitude distribution of hard X-rays predicted by the model agrees with observations only if nonvertical injection of the protons is assumed. The model is inconsistent with gamma-ray data in terms of conventional modeling.

  19. Beam-Beam Effects

    OpenAIRE

    Herr, W; Pieloni, T.

    2016-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  20. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  1. Production of uniform ion beam of large area in a magnetically-insulatd diode

    International Nuclear Information System (INIS)

    The results of experimental investigation of a magnetically insulated diode generating a powerful ribbon ion beam with 100x10 cm cross section are presented. Modification of the known diode designs allowed to provide the constancy of the electric and magnetic field by the anode length and uniform generation of the ion beam over the larger part of its length. At the same time these measures have decreased considerably electron losses in the anode up to 1-2 A/cm2 that reduces the efficiency of anode plasma formation during the first part of a high-voltage pulse. At 500 kV anode voltage the ion current amplitude is 18 kA, the beam-out energy - 460 J, the efficiency of ion generation - 85%

  2. High intensity heavy ion beams for exotic nuclei production at GANIL

    International Nuclear Information System (INIS)

    The GANIL heavy ion accelerator can be used as a driver for producing exotic beams either by fragmentation of the projectile, or by the ISOL method through the SPIRAL complex. The accelerator was first equipped with several devices for protection against thermal effects and activation. Then tests were carried out to increase the primary beam intensities, especially for projectiles ranging from C to Ar. The goal of 2 x 1013 pps was obtained with a 75 MeV/n carbon beam extracted from SSC2 for several hours. Losses at extraction limited the Ar intensity to 5 x 1012 pps, while a 1 x 1013 pps was aimed at. For some other ion species, substantial increases were obtained, although their use are somewhat limited by weaknesses in the concrete shielding. Detailed results of these tests are discussed. Possible cures to overcome limitations are presented, along with results of simulations concerning the effect of longitudinal space charge forces. (authors)

  3. Influence of target requirements on the production, acceleration, transport, and focusing of ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Bangerter, R.O.; Mark, J.W.K.; Meeker, D.J.; Judd, D.L.

    1981-01-01

    We have calculated the energy gain of ion-driven fusion targets as a function of input energy, ion range, and focal spot radius. For heavy-ion drivers a given target gain, together with final-lens properties, determines a 6-D phase space volume which must exceed that occupied by the ion beam. Because of Liouville's theorem and the inevitability of some phase space dilutions, the beams's 6-D volume will increase between the ion source and the target. This imposes important requirements on accelerators and on transport and focusing systems.

  4. Production of slow positron beam with small diameter using electron linac in Osaka University

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Yoshihide; Sawada, Junichi; Yamada, Masaki; Maekawa, Masaki; Okuda, Shuichi; Yoshida, Yoichi; Isoyama, Goro; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Yamamoto, Takayoshi

    1997-03-01

    A slow positron facility using an electron linac was designed and constructed. The specifications were mainly decided by numerical calculations. The slow positrons are transported along magnetic field line. The cross sectional size of slow positron beam is 1-2cm and the maximum conversion rate from electron to positron is about 1.5 x 10{sup -6}. This value is about 1/4 of ideal case in our system. Extraction of slow positron beam from magnetic field region was made and preliminary brightness enhancement experiment was also performed. (author)

  5. Influence of target requirements on the production, acceleration, transport, and focusing of ion beams

    International Nuclear Information System (INIS)

    We have calculated the energy gain of ion-driven fusion targets as a function of input energy, ion range, and focal spot radius. For heavy-ion drivers a given target gain, together with final-lens properties, determines a 6-D phase space volume which must exceed that occupied by the ion beam. Because of Liouville's theorem and the inevitability of some phase space dilutions, the beams's 6-D volume will increase between the ion source and the target. This imposes important requirements on accelerators and on transport and focusing systems

  6. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons

    International Nuclear Information System (INIS)

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons

  7. Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with $\\gamma$ Beams of High Intensity and Large Brilliance

    CERN Document Server

    Habs, D

    2010-01-01

    We study the production of radioisotopes for nuclear medicine in $(\\gamma,x{\\rm n}+y{\\rm p})$ photonuclear reactions or ($\\gamma,\\gamma'$) photoexcitation reactions with high flux [($10^{13}-10^{15}$)$\\gamma$/s], small diameter $\\sim (100 \\, \\mu$m$)^2$ and small band width ($\\Delta E/E \\approx 10^{-3}-10^{-4}$) $\\gamma$ beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,$x$n$ + y$p) reactions with (ion=p,d,$\\alpha$) from particle accelerators like cyclotrons and (n,$\\gamma$) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow $\\gamma$ beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). $(\\gamma,\\gamma')$ isomer production via specially selected $\\gamma$ cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground st...

  8. SHyPIE: a new source for on-line production of multicharged radioactive condensable ion beams

    International Nuclear Information System (INIS)

    In order to define the future intensity and reliability of the on line radioactive beams for the SPIRAL project, an intense activity of research and development is being done around the target and the ion source problems. The main instrument for this purpose is the isotopic separator SIRa (Separateur d'Ions Radioactifs) installed in the D2 experimental cave at GANIL. One of the research axis is the production of multicharged radioactive condensable ions. In this aim, we have built a new compact ECR ion source, SHyPIE (Source Hybride pour la Production d'Ions Exotiques), whose original magnetic configuration is under patent since 1997. This new magnetic structure allows to place an internal production target very close to the plasma, while avoiding radiation damages of the sensitive permanent magnets. A series of on line experiments have been done, using SHyPIE with several internal target systems, and around thirty species of condensable and noble gases radioactive multicharged ion beams have been produced. The behaviour of the plasma in a close geometry with the production target has been studied. (authors)

  9. Production of nitrogen, oxygen, neon, and argon nuclei in the KRION-2 electron-beam ion source

    International Nuclear Information System (INIS)

    The KRION-2 electron-beam ion source was designed for bench experiments to investigate the use of dense electron beams (over 100 A/cm2) for ionization purposes. The production of nitrogen and neon nuclei in this source has been reported previously. An ionization factor of approx. 1020 cm-2 for an ionizing electron energy of approx. 5 keV was achieved. A number of experiments aimed at investigating the evolution of the charge state spectrum of nitrogen, oxygen, neon, and argon ions as a function of the ionization factor and electron energy have been carried out. A brief description of the experimental setup and of the recent experiments conducted with the KRION-2 source is presented. A primary analysis of the results of these experiments is made

  10. Production of rare-earth atomic negative ion beams in a cesium-sputter-type negative ion source

    International Nuclear Information System (INIS)

    The desire to study negative ion structure and negative ion-photon interactions has spurred the development of ion sources for use in research and industry. The many different types of negative ion sources available today differ in their characteristics and abilities to produce anions of various species. Thus the importance of choosing the correct type of negative ion source for a particular research or industrial application is clear. In this study, the results of an investigation on the production of beams composed of negatively-charged rare-earth ions from a cylindrical-cathode-geometry, cesium-sputter-type negative ion source are presented. Beams of atomic anions have been observed for most of the first-row rare-earth elements, with typical currents ranging from hundreds of picoamps to several nanoamps

  11. Simulation of the Production of Secondary Particles from a Neutron Beam on Polyethylene Targets using the GEANT4 Simulation Tool

    CERN Document Server

    Ilgner, C

    2003-01-01

    In view of a beam test of RadFET semiconductor detectors and optically stimulated luminescence (OSL) detectors as on-line dosimeters for radiation monitoring purposes in the caverns of the Large Hadron Collider (LHC) experiments, a simulation on the production of secondary particles from a neutron beam on a polyethylene target was carried out. We describe the yield of recoil protons, scattered neutrons as well as electrons, positrons and photons, when neutrons of an average energy of 20 MeV hit polyethylene targets of several thicknesses. The simulation was carried out using the latest release 5.2 of the GEANT4 detector description and simulation tool, including advanced hadron interaction models.

  12. Investigation of multi-charged heavy ion production in an electron beam ion source

    International Nuclear Information System (INIS)

    Measurements of multi-charged heavy ions produced in an Electron Beam Ion Source (EBIS) were carried out with a test model ion source 20 cm in length. This test model utilized an electron gun placed external to the bore of the focusing solenoid in order to achieve electrostatically focussed electron beams and isolation of the vacuum surrounding the electron gun from the vacuum in the ionization region within the solenoid bore. An ultrahigh vacuum system utilizing liquid nitrogen (770K) cryopumping was used to achieve the low pressures needed in the ionization region for the operation of this ion source. Several technical problems limited the operation of this test model and prevented a thorough investigation of the ionization processes in the ion source, but the experimental results have shown qualitative agreement with the theoretical calculations for the operation of this type of ion source. Even with the problems of an insufficient vacuum and electron beam focussing field, measurable currents of C+5 and A+8 ions were produced. The present experimental results suggest that the approach taken in this work of using an external electron gun and cryopumping in the EBIS to achieve the large electron beam current density and low vacuum necessary for successful operation is a viable one. Such an ion source can be used to create highly-charged heavy ions for injection into a cyclotron or other type of particle accelerator

  13. Investigation of multi-charged heavy ion production in an electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, R.W.

    1977-12-01

    Measurements of multi-charged heavy ions produced in an Electron Beam Ion Source (EBIS) were carried out with a test model ion source 20 cm in length. This test model utilized an electron gun placed external to the bore of the focusing solenoid in order to achieve electrostatically focussed electron beams and isolation of the vacuum surrounding the electron gun from the vacuum in the ionization region within the solenoid bore. An ultrahigh vacuum system utilizing liquid nitrogen (77/sup 0/K) cryopumping was used to achieve the low pressures needed in the ionization region for the operation of this ion source. Several technical problems limited the operation of this test model and prevented a thorough investigation of the ionization processes in the ion source, but the experimental results have shown qualitative agreement with the theoretical calculations for the operation of this type of ion source. Even with the problems of an insufficient vacuum and electron beam focussing field, measurable currents of C/sup +5/ and A/sup +8/ ions were produced. The present experimental results suggest that the approach taken in this work of using an external electron gun and cryopumping in the EBIS to achieve the large electron beam current density and low vacuum necessary for successful operation is a viable one. Such an ion source can be used to create highly-charged heavy ions for injection into a cyclotron or other type of particle accelerator.

  14. Studies on the production of high energy densities in matter by intense heavy-ion beams

    International Nuclear Information System (INIS)

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopical amount of matter is studied. Thereby high energy densities in the target matter are produced. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A KR+-ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focussed by a fine-focusing lens to a closed xenon gas target. The light emitted from the target was space- and time resolved taken up by a spectrometer as well as by a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam was observed. The free electron density of the plasma was determined from the Stark broadening of emission lines (ne ≅ 4x1016 cm-3). The temperature could be determined by different methods (shock-wave velocity, degree of ionization, line ratios). The electron temperature amounted in the center of the pipe to kT ≅ 0.75 eV. For the opacity of the target by which the emitted light power is determined under the assumption of the two-dimensional model (equilibrium between emitted and absorbed energy) the value κp ≅ 7700 cm2/g resulted. (orig./HSI)

  15. Production of multi-, oligo- and single-pore membranes using a continuous ion beam

    Czech Academy of Sciences Publication Activity Database

    Apel, P. Yu.; Ivanov, O.; Lizunov, N. E.; Mamonova, T. I.; Nechaev, A. N.; Olejniczak, K.; Vacík, Jiří; Dmitriev, S. N.

    2015-01-01

    Roč. 365, DEC (2015), s. 641-645. ISSN 0168-583X R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : ion beam * irradiation * ion track * etching * single nanopore Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  16. Production of intense attosecond vector beam pulse trains based on harmonics

    Science.gov (United States)

    Han, Yu-Jing; Liao, Guo-Qian; Chen, Li-Ming; Li, Yu-Tong; Wang, Wei-Min; Zhang, Jie

    2015-11-01

    We provide the first report on the harmonics generated by an intense femtosecond vector beam that is normally incident on a solid target. By using 2D particle-in-cell (PIC) codes, we observe the third and the fifth harmonic signals with the same vector structure as the driving beam, and obtain an attosecond vector beam pulse train. We also show that the conversion efficiencies of the third and the fifth harmonics reach their maxima for a plasma density of four times the critical density due to the plasma resonating with the driving force. This method provides a new means of generating intense extreme ultraviolet (XUV) vector beams via ultra-intense laser-driven harmonics. Project supported by the National Basic Research Program of China (Grant Nos. 2013CBA01501 and 2013CBA01504), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2012YQ120047), Chinese Academy of Science Key Program, the National Natural Science of China (Grant Nos. 11135012 and 11375262), and the Project of Shandong Province Higher Educational Science and Technology Program, China (Grant No. J11LA52).

  17. Voluminous D2 source for intense cold neutron beam production at the ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Batkov, K.; Mezei, F.;

    2014-01-01

    target for the complementary needs of certain fundamental physics experiments. To facilitate experiments depending on the total number of neutrons in a sizable beam, the option of a voluminous D2 moderator, in a large cross-section extraction guide is discussed and its neutronic performance is assessed....

  18. Genealogy of gas cells for low-energy RI-beam production

    International Nuclear Information System (INIS)

    Highlights: • In order to overcome serious limitations in the universality of the traditional isotope separator on-line technique, various endeavors have been made on gas catcher cells for converting relativistic RI-beams from in-flight separators to low-energy RI-beams. • The origin of the gas catcher is found in the IGISOL (Ion guide isotope separator on-line) technique. • Many developments have been made over the years to overcome the various difficulties and drawbacks found in the IGISOL technique. -- Abstract: In order to overcome serious limitations in the universality of the traditional isotope separator on-line technique, various endeavors have been made on gas catcher cells for converting relativistic RI-beams from in-flight separators to low-energy RI-beams. The origin of the gas catcher is found in the IGISOL (Ion guide isotope separator on-line) technique. Many developments have been made over the years to overcome the various difficulties and drawbacks found in the IGISOL technique

  19. Design of a compact, permanent magnet electron cyclotron resonance ion source for proton and H2+ beam production

    International Nuclear Information System (INIS)

    A 2.45 GHz microwave ion source was developed at China Institute of Atomic Energy (CIAE) for proton beam production of over 60 mA [B.-Q. Cui, Y.-W. Bao, L.-Q. Li, W.-S. Jiang, and R.-W. Wang, Proceedings of the High Current Electron Cyclotron Resonance (ECR) Ion Source for Proton Accelerator, APAC-2001, 2001 (unpublished)]. For various proton beam applications, another 2.45 GHz microwave ion source with a compact structure is designed and will be built at CIAE as well for high current proton beam production. It is also considered to be used for the test of H2+ beam, which could be injected into the central region model cyclotron at CIAE, and accelerated to 5 MeV before extraction by stripping. The required ECR magnetic field is supplied by all the permanent magnets rather than electrical solenoids and six poles. The magnetic field distribution provided by this permanent magnets configuration is a large and uniformly volume of ECR zone, with central magnetic field of a magnitude of ∼875 Gs[T. Taylor and J. S. C. Wills, Nucl. Instrum. Methods Phys. Res. A 309, 37 (1991)]. The field adjustment at the extraction end can be implemented by moving the position of the magnet blocks. The results of plasma, coupling with 2.45 GHz microwave in the ECR zone inside the ion source are simulated by particle-in-cell code to optimize the density by adjusting the magnetic field distribution. The design configuration of the ion source will be summarized in the paper.

  20. Properties and possibilities to use by-product from e-beam installations for partial recycling of ammonia

    International Nuclear Information System (INIS)

    Generated by-products from E-beam cleaning systems of industrial waste gases have been studied using different techniques like TG-DTA systems, Electron Microscopy, X-Ray diffraction and IR spectroscopy methods. On the base of the investigations it was found that the composition of the by-product varies depending on the content of pollutants in the waste gases and technological parameters during cleaning process. Size of particles and thermal stability of the by product were determined. Content of ammonium sulphate as a main component, ammonium nitrate and heavy metals content is also determined and discussed. During thermal treatment of the by-product at temperature range 543-663K half of the ammonia is released in the gas phase. Kinetic parameters of the thermal decomposition are determined and it is confirmed that for waste gases containing mainly SOx as a pollutants they are very close to the pure ammonium sulphate. By-product from demonstration E-beam installation at Maritsa-East -2 TPP is used to produce mixed fertilisers using milled Tunisia phosphorites or tribo-activated mixtures of the by-product, Tunisia phosphorite, potassium sulphate and aches from electrostatic precipitators of TPP. It was found that during thermo-tribochemical treatment of selected mixtures different type of fertilisers could be produced, where the soluble forms of Phosphorous may vary, depending on the conditions. During thermal treatment about half of ammonia is released in the gas phase opening a way for partial recycling of ammonia to the cleaning process. Agrochemical tests of the fertilisers on the base of by-product confirm their efficiency. (author)

  1. Aspects of strangeness production with 15 -- 30 GeV proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Dover, C.B.

    1992-04-01

    We discuss the spectrum of physics questions related to strangeness which could be addressed with a 15--30 GeV proton storage ring. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hyper-fragments in p-nucleus collisions, and hyperon spin observables in inclusive production.

  2. Laser ion beam production at CERN-ISOLDE: New features - More possibilities

    Science.gov (United States)

    Rothe, S.; Day Goodacre, T.; Fedorov, D. V.; Fedosseev, V. N.; Marsh, B. A.; Molkanov, P. L.; Rossel, R. E.; Seliverstov, M. D.; Veinhard, M.; Wendt, K. D. A.

    2016-06-01

    This article summarizes the current specifications and the latest features of the CERN-ISOLDE resonance ionization laser ion source (RILIS). This includes a description of the optical layout and the newly designed reference system. The ionization schemes for the laser ionized beams at ISOLDE are tabulated, including six new elements. All RILIS schemes are also made publicly available in the RILIS elements on-line database. Finally, we announce a paradigm shift in RILIS operation - the combination of a machine protection and a monitoring and control system has enabled on-call operation of the laser ion source for selected beams in 2014 and has become the standard mode of operation in 2015.

  3. Photostop: Production of zero-velocity molecules by photodissociation in a molecular beam

    CERN Document Server

    Trottier, Alexandre; Wrede, Eckart

    2011-01-01

    We have demonstrated a new, accessible and economical technique, dubbed photostop, for producing high densities of trappable molecules. Direct measurements are presented of NO molecules produced with a narrow velocity distribution centered at zero in the laboratory frame. NO2, initially cooled in a pulsed molecular beam, is photodissociated such that the recoil velocity of the NO photofragments cancels out the velocity of the beam. NO(X^2Pi_3/2, v=0, J=1.5) molecules are observed up to 10 mircoseconds after the dissociation event in the probe volume at an estimated density of 1E7 cm-3 per quantum state and at a translational temperature of 1.6 K. Through the choice of suitable precursors, photostop has the potential to extend the list atoms and molecules that can be slowed or trapped. It should be possible to accumulate density in a trap through consecutive loading of multiple pulses.

  4. Production of beams from solid materials at Center for Nuclear Study electron cyclotron resonance ion source

    Science.gov (United States)

    Ohshiro, Y.; Yamaka, S.; Watanabe, S.; Kobayashi, K.; Kotaka, Y.; Nishimura, M.; Kase, M.; Muto, H.; Yamaguchi, H.; Shimoura, S.

    2014-02-01

    Two methods for the feed of vapor from solid materials in the Center for Nuclear Study ECR ion source are described. A rod placed near the wall of the plasma chamber, operating up to a melting point of 2600 °C, has been used for CaO, SiO2, and FeO. An oven with a number of openings, operating up to 800 °C, has been used for P2O5, Li, and S. Typical ion beam intensities of 7Li2+, 6Li3+, 40Ca12+, and 56Fe15+ are achieved 280, 75, 28, and 7 eμA, respectively. High intensity heavy ion beams are stably supplied into the azimuthally varying field cyclotron.

  5. Production of new antituberculosis drug and other medical preparations by electron beam treatment

    International Nuclear Information System (INIS)

    Possibility of electron beam usage for immobilization of hydrazidum of an isonicotinic acid (HIA) on dextrane was studied to produce a drug for treatment of a tuberculosis. As a result of irradiation of dextrane the processes of oxidation and formation of polysaccharide occur due to carbonyl groups which are to link isoniasidum. The HIA immobilized on dextrane may be used as an effective medical preparation having prolonged action for action on endo and extracellular population of Micobacterium tuberculosis

  6. Large-angle production of charged pions with incident pion beams on nuclear targets

    OpenAIRE

    HARP Collaboration; Burguet Castell, Jordi; Cervera Villanueva, Anselmo; Gómez Cadenas, Juan José; Martín-Albo, Justo; Novella, Pau; Sorel, Michel; Apollonio, M.; Catanesi, M.G.

    2009-01-01

    We gratefully acknowledge the help and support of the PS beam staff and of the numerous technical collaborators who contributed to the detector design, construction, commissioning and operation. In particular, we would like to thank G. Barichello, R. Brocard, K. Burin, V. Carassiti, F. Chignoli, D. Conventi, G. Decreuse, M. Delattre, C. Detraz, A. Domeniconi, M. Dwuznik, F. Evangelisti, B. Friend, A. Iaciofano, I. Krasin, D. Lacroix, J.-C. Legrand, M. Lobello, M. Lollo, J. Loquet, F. Marinill...

  7. Angular Dependence of ϕ Meson Production for Different Photon Beam Energies

    International Nuclear Information System (INIS)

    The dependence of ϕ-meson photoproduction on the polar angle is investigated in the framework of a multisource thermal model. We present a detailed comparison between our results and experimental data of the neutral decay mode in the reaction γp→pϕ(KSKL). The results are in good agreement with the experimental data. It is found that the movement factor bz increases linearly with the photon beam energies

  8. Off-line production of intense 7,10Be+ beams

    International Nuclear Information System (INIS)

    7Be and 10Be were produced by 590 MeV proton bombardment of a graphite target at PSI. Parts of this graphite target were transferred into an ISOLDE target and ion source unit and ionized with the ISOLDE resonance ionization laser ion source. Thus intense radioactive ion beams of 300 nA of 7,10Be+ were produced off-line

  9. Production of DT neutrons by means of TiT targets and analyzed atomic deuteron beams

    International Nuclear Information System (INIS)

    The half-lives of TiT targets irradiated with pure d+ beams were investigated at a current density of about 1 mA/cm2. Values of 17 and 13 mAh/cm2 were found for 5 and 2 C/sq. inch targets in agreement with previous experiments at lower current densities (0.3 mAh/cm2). (Auth.)

  10. Determination of Partial Gamma Ray Production Cross-Sections in Cold Neutron Beams

    International Nuclear Information System (INIS)

    Cold neutron beam facilities have been used in material science with a great success for a few decades. At the same time, prompt gamma activation analysis (PGAA) using cold neutron beams also started propagating, and these days, most of the large neutron centers operate PGAA facilities, too. In-beam activation is a proper technique for determining nuclear data related to neutron capture, too. A spectroscopy database for PGAA suitable for accurate chemical analysis was not available until the end the 1990s. The first almost complete series of measurements of prompt gamma spectra for 75 elements was performed at Massachusetts Institute of Technology (MIT). The most ambitious effort to establish a comprehensive library from these measurements was the Chalk River compilation. The “Lone table” and its electronic version distributed with an IAEA Technical Report has been the only source of spectroscopic data for scientists working in the field of PGAA for twenty years. After the start-up of the PGAA facility at Budapest in 1996, our goal was to establish a catalog for the neutron capture data that can be reliably used at any laboratories for chemical analysis. The measurements took place from 1997 to 2000. This database has been used in Budapest, Garching and partly at other facilities for analysis, and its different compilations have been published in two books. The revision of the database is continuous

  11. Production of Dynamic Frozen Waves: Controlling shape, location (and speed) of diffraction-resistant beams

    CERN Document Server

    Vieira, Tárcio A; Zamboni-Rached, Michel; Recami, Erasmo

    2015-01-01

    In recent times, we experimentally realized a quite efficient modeling of the shape of diffraction-resistant optical beams; thus generating for the first time the so-called Frozen Waves (FW), whose longitudinal intensity pattern can be arbitrarily chosen, within a prefixed space interval of the propagation axis. Such waves possess a host of potential applications: in medicine, biomedical optics, optical tweezers, atom guiding, remote sensing, tractor beams, optical communications or metrology, and other topics in photonic areas. In this work, we extend our theory of FWs -- which led to beams endowed with a static envelope -- through a dynamic modeling of the FWs, whose shape is now allowed to evolve in time in a predetermined way. And we experimentally create such dynamic FWs in Optics, via a computational holographic technique and a spatial light modulator. Experimental results are here presented for two cases of dynamic FWs, one of the zeroth and the other of higher order, the last one being the most intere...

  12. Modification of the cylindrical products outer surface influenced by radial beam of argon ions at automatic mode

    Science.gov (United States)

    Valikov, R. A.; Yashin, A. S.; Yakutkina, T. V.; Kalin, B. A.; Volkov, N. V.; Krivobokov, V. P.; Yanin, S. N.; Asainov, O. Kh; Yurev, Yu N.

    2015-11-01

    Obtaining surface with high purity and good roughness is important for increasing the corrosion resistance and wear resistance of products working in corrosion-active environment. Installation ILUR-03 with the coaxial ion beam wide energy spectrum source for cleaning, polishing and surface doping of long cylindrical items has been developed. Upgraded installation ILUR-03 provides effective technological defects cleaning (abrasives after mechanical polishing, acid residues after chemical etching, adsorbed gases), surface polishing, film deposition by using magnetrons and surface doping by ion mixing method in one technological cycle.

  13. First Measurement of the Beam Normal Single Spin Asymmetry in $\\Delta$ Resonance Production by $Q_{\\rm weak}$

    CERN Document Server

    ,

    2015-01-01

    The beam normal single spin asymmetry ($B_{\\rm n}$) is generated in the scattering of transversely polarized electrons from unpolarized nuclei. The asymmetry arises from the interference of the imaginary part of the two-photon exchange with the one-photon exchange amplitude. The $Q_{\\rm weak}$ experiment has made the first measurement of $B_{\\rm n}$ in the production of the $\\Delta$(1232) resonance, using the $Q_{\\rm weak}$ apparatus in Hall-C at the Thomas Jefferson National Accelerator Facility. The final transverse asymmetry, corrected for backgrounds and beam polarization, is $B_{\\rm n}$ = 43 $\\pm$ 16 ppm at beam energy 1.16 GeV at an average scattering angle of about 8.3 degrees, and invariant mass of 1.2 GeV. The measured preliminary $B_{\\rm n}$ agrees with a preliminary theoretical calculation. $B_{\\rm n}$ for the $\\Delta$ is the only known observable that is sensitive to the $\\Delta$ elastic form-factors ($\\gamma$*$\\Delta\\Delta$) in addition to the generally studied transition form-factors ($\\gamma$*N...

  14. Ab initio molecular orbital characterization of dimethyl group-III azides as sources for photolytic production of free radical beams

    International Nuclear Information System (INIS)

    Use of a beam of biradicaloid such as dialkyl group-III nitrene produced by the method of photodissociation of energetic compound beams (PDECB) is expected to be advantageous to the low-temperature thin-film growth of stoichiometric group-III nitride. Through the clarification of fundamental processes involved in pyrolysis as well as photolysis of dimethylgallium azide [(CH3)2GaN3], dimethylaluminum azide [(CH3)2AlN3], and dimethylboron azide [(CH3)2BN3] based on post-self-consistent field ab initio molecular orbital methods, we discuss the suitability of these possible source compounds for the production of beams of dimethylgalliumnitrene [(CH3)2GaN], dimethylaluminumnitrene [(CH3)2AlN], and dimethylboronnitrene [(CH3)2BN] by the PDECB method. The theoretical results suggested that (CH3)2GaN3 is a promising PDECB source material in that this molecule possesses the nature of unimolecular metastable dye

  15. Annular electron beam production on gamble II using a magnetically insulated splitter

    International Nuclear Information System (INIS)

    Annular electron beams have been tested using a post-hole convolute or magnetically insulated splitter (MIS) to feed current to both sides of a ring cathode. Beams were produced on the BLACKJACK 3 generator using a coaxial feed and from BLACKJACK 5 with a triplate feed. On BLACKJACK 3, annular cathodes with 5 cm and 10 cm mean diameters were tested. The cathodes were fed in four places by a MIS. The cathodes were 1.2 cm wide made from stainless steel or brass. Typical anode/cathode gap spacings were 0.6 cm. Experiments were performed at power levels of about 0.6 TW and energies of 30-40 kJ. Typical voltages were 0:6-1 MV with currents of about 0.8 MA. Diagnostics were diode voltage, diode current, and an X-ray pinhole camera. For the 10 cm cathode, current was measured before and after the MIS. The current on each side of the ring was measured separately. The beam voltage was determined from the diode voltage by an inductive correction. The annular beams had a linear current density of about 30 kA/cm and about 60 kA/cm for the 10 cm and 5 cm, respectively. The beam diameter at the cathode could be varied by changing the inductance on each side of the ring cathode and thereby the current balance. The impedance behavior could be modeled using the critical current formulation with a closure velocity of 3.5-4.5 cm/us. The BLACKJACK 5 geometry was a triplate feed. The ring cathode was fed by generators of 0.5 and 0.75 Ω, respectively. The MIS was used to combine the power before the cathode. The cathode had a mean diameter of 25 cm and width of 1.5-3 cm. Experiments were performed at power levels up to about6 TW and energies greater than or equal to200 kJ. Typical operating parameters were about 2 MV and 3 MA

  16. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  17. Proceedings of the workshop on the production and use of intense radioactive beams at the Isospin Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J.D. [ed.

    1992-12-31

    These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world`s experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  18. Proceedings of the workshop on the production and use of intense radioactive beams at the Isospin Laboratory

    International Nuclear Information System (INIS)

    These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world's experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  19. Production of fast neutrons through beam-target reactions driven by PALS laser system

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Klír, D.; Velyhan, Andriy; Řezáč, K.; Cikhardt, J.; Krouský, Eduard; Pfeifer, Miroslav; Jungwirth, Karel; Ullschmied, Jiří

    Paris : University Paris Sud, 2014. s. 57-57. ISBN N. [European Conference on Laser Interaction with Matter /33./. 31.08.2014-05.09.2014, Paris] R&D Projects: GA MŠk EE2.3.20.0279; GA ČR GAP205/12/0454 Grant ostatní: LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : Laser ion sources * DD fusion * beam-target interction Subject RIV: BL - Plasma and Gas Discharge Physics

  20. Ion-beam therapy: from electron production in tissue like media to DNA damage estimations

    CERN Document Server

    Scifoni, Emanuele; Solov'yov, Andrey; Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2008-01-01

    Radiation damage induced by ion beams is traditionally treated at different levels of theoretical approaches, for the different scales and mechanisms involved.We present here details of a combined approach that, from a method at a nanoscopic scale, attempts to merge with higher scales existing results, by tuning the analytical method employed when extended to larger scale and so yielding a consistent picture of the entire process. Results will show the possibility to get a good agreement with macroscale methods and, on the other hand, to produce a reliable electron energy spectra to be used for DNA damage estimations.

  1. Production of a high energy beam of multiply charged Cn+60 ions

    International Nuclear Information System (INIS)

    For the first time fullerene ions have been accelerated to high energy (14-50 MeV). Negative ions of C-60 were produced in the ion source with a Cs gun and injected into the tandem accelerator. The change of charge from negative to positive was achieved in a N2 gas cell at the high voltage terminal before the second acceleration. To identify the accelerated molecular ions, the injected beam was pulsed, and time of flight measurements were performed. Unambiguous mass and charge assignments were obtained

  2. Production of shower particles from various beam collisions with different emulsion targets

    International Nuclear Information System (INIS)

    The reaction cross sections for 4.5 A GeV/cP, d, 4He, 6He, 6Li, 7Li, 12C, 16C, 16O, 24Mg, 2*Si and 32S beams with different chemical components of emulsion nuclei are studied with high statistics, and compared with the calculations according to Glauber model. The multiplicity distributions of shower produced particles from the interactions with light and heavy emulsion nuclei are analyzed in terms of the negative binomial and Poisson laws. Some of the present negative binomial parameters agree with the corresponding ones obtained from the propane bubble chamber

  3. Production of highly charged argon ions from a room temperature electron beam ion trap

    Institute of Scientific and Technical Information of China (English)

    WANG Tie-Shan; PENG Hai-Bo; Ovsyannikov V P; Kentsch U; Ullmann F; CHENG Rui; Zschornack G

    2008-01-01

    In this work.highly charged ions have been extracted from the advanced Electron Beam Ion Source (EBIS-A) developed in a scientific cooperation between the Dresden University of Technology and the DREEBIT GmbH Dresden.The charge state distributions of ions extracted from the EBIS-A are measured in and extracted in the leaky mode.3×105 Ar18+ ions per pulse are extracted in the pulse mode.The ion charge state distribution is a function of the ionization time.

  4. Measurement of D*± production at low Q2 with the beam-pipe calorimeter of ZEUS at HERA

    International Nuclear Information System (INIS)

    The production of D* mesons in deep-inelastic ep-scattering has been studied using the ZEUS detector at HERA. The total D* production cross-section and the differential cross-sections as functions of Q2, y, pt(D*) and η(D*) have been measured at low Q2. The data sample used was collected during the period 1998-2000 and amounts to an integrated luminosity of 82.2 pb-1. The low Q2 region could be reached using the beam-pipe calorimeter which measures the scattered electron at very small angles. Therefore special emphasis was put on the calibration of the BPC in order to reconstruct events in the kinematic range 0.05 2 2 and 0.02 *+→K-π+π- and the charged conjugated decay in the kinematic region 1.5t(D*)2 in agreement with the corresponding perturbative QCD predictions. (orig.)

  5. Molecular beam studies of unimolecular and bimolecular chemical reaction dynamics using VUV synchrotron radiation as a product probe

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.

    1997-08-01

    This dissertation describes the use of a new molecular beam apparatus designed to use tunable VUV synchrotron radiation for photoionization of the products from scattering experiments. The apparatus was built at the recently constructed Advanced Light Source at Lawrence Berkeley National Laboratory, a third generation 1-2 GeV synchrotron radiation source. The new apparatus is applied to investigations of the dynamics of unimolecular reactions, photodissociation experiments, and bimolecular reactions, crossed molecular beam experiments. The first chapter describes the new apparatus and the VUV radiation used for photoionization. This is followed by a number of examples of the many advantages provided by using VUV photoionization in comparison with the traditional technique of electron bombardment ionization. At the end of the chapter there is a discussion of the data analysis employed in these scattering experiments. The remaining four chapters are complete investigations of the dynamics of four chemical systems using the new apparatus and provide numerous additional examples of the advantages provided by VUV photoionizaiton of the products. Chapters 2-4 are photofragment translational spectroscopy studies of the photodissociation dynamics of dimethyl sulfoxide, acrylonitrile, and vinyl chloride following absorption at 193 mn. All of these systems have multiple dissociation channels and provide good examples of the ability of the new apparatus to unravel the complex UV photodissociation dynamics that can arise in small polyatomic molecules.

  6. Theoretical and Experimental Studies on Laser Beam Harmonic Production using Solid State Nonlinear Crystals

    International Nuclear Information System (INIS)

    There is a real demand for a high power UV laser due to its applications in science and technology. Very few lasers are found in this region. The question of how to produce such an effective laser is to be solved. The answer regarding this problem is the nonlinear optical frequency mixing. This process is not efficient in producing higher harmonics. In the present work, for the first time, a model for producing harmonics based on cascading process is suggested. Theoretical relations are derived for the efficiency evaluation and optimization for the generation of second harmonic and its consequence cascading to produce the third, fourth and fifth harmonics. These relations can be applied to a wide class of nonlinear optical materials that meet the prerequisite of the process. Calculations are made for KTP and borate crystals for Nd-YAG laser with 1.064 m wavelength. Our model is tested experimentally where a case study is carried out. The case study involved producing the fourth harmonics at 250 nm in the absence of the fundamental beam. Experimental setup is configured involving a high power diode laser as pump source and a Nd- KTP crystal chip. A second harmonic is obtained with this set-up. The second harmonic beam in this work is fed to a borate crystal configured and placed in a calculated position. The experimental results obtained with this set- up, are consistent with the prediction of the theoretical work for the fourth harmonic. (Author)

  7. Ion beam production with sub-milligram samples of material from an ECR source for AMS

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R., E-mail: scott@phy.anl.gov; Palchan-Hazan, T.; Pardo, R.; Vondrasek, R. [Argonne Tandem Linac Accelerator System (ATLAS), Argonne National Laboratory, Lemont, Illinois 60439 (United States); Bauder, W. [Argonne Tandem Linac Accelerator System (ATLAS), Argonne National Laboratory, Lemont, Illinois 60439 (United States); Nuclear Structure Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2016-02-15

    Current accelerator mass spectrometry experiments at the Argonne Tandem Linac Accelerator System facility at Argonne National Laboratory push us to improve the ion source performance with a large number of samples and a need to minimize cross contamination. These experiments can require the creation of ion beams from as little as a few micrograms of material. These low concentration samples push the limit of our current efficiency and stability capabilities of the electron cyclotron resonance ion source. A combination of laser ablation and sputtering techniques coupled with a newly modified multi-sample changer has been used to meet this demand. We will discuss performance, stability, and consumption rates as well as planned improvements.

  8. Distribution of products in polymer materials induced by ion-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masaki; Kudoh, Hisaaki; Sasuga, Tsuneo; Seguchi, Tadao [Japan Atomic Energy Research Inst., Tokyo (Japan); Hama, Yoshimasa; Hamanaka, Ken-ichi; Matsumoto, Hideya

    1997-03-01

    The depth profile of double bond formed in low density polyethylene (LDPE) sheet by ion beams irradiation was observed by a micro FT-IR spectrometer in order to investigate the linear energy transfer (LET) dependency on radiation effects to polymer materials. The distribution of double bond formation in LDPE by irradiation of light ions as H+ was found to be same with the dose distribution calculated from TRIM code, and the yield was also same with that by gamma-rays irradiation, which means that the LET dependency is very small. However, the distribution of double bond to depth was much different from the calculated depth-dose in heavy ions irradiation as Ar and Kr. Then, the dose evaluation was difficult from the TRIM code calculation for heavy ions. (author)

  9. Production of shower particles from various beam collisions with different emulsion targets

    CERN Document Server

    Elnagdy, M S

    2003-01-01

    The reaction cross sections for 4.5 A GeV/cP, d, sup 4 He, sup 6 He, sup 6 Li, sup 7 Li, sup 1 sup 2 C, sup 1 sup 6 C, sup 1 sup 6 O, sup 2 sup 4 Mg, sup 2 sup * Si and sup 3 sup 2 S beams with different chemical components of emulsion nuclei are studied with high statistics, and compared with the calculations according to Glauber model. The multiplicity distributions of shower produced particles from the interactions with light and heavy emulsion nuclei are analyzed in terms of the negative binomial and Poisson laws. Some of the present negative binomial parameters agree with the corresponding ones obtained from the propane bubble chamber.

  10. Production and crosslinking of multi-layer tubes (PE & metal) by E-beam

    Science.gov (United States)

    Zyball, Alfred

    2000-03-01

    Irradiation crosslinking of PE-tubes has been used for heating floors for about 25 years. Such tubes are also used today for drinking water supply. A further development has been the coating of such tubes with Ethylene-Vinyl-Alcohol-Copolymers (EVAL), in order to prevent oxygen diffusion into the water through the PE tube. For about 15 years composite tubes made of PE and aluminum have been available. These tubes are crosslinked with electron beams. The energy of the accelerated electrons must be adjusted for the particular tube configuration, so that the inner PE-layer will be crosslinked. This paper will concern itself with the manufacture and the crosslinking of composite tubes.

  11. Production and detection of neutral molecular beams : from single amino acids to biomolecular complexes

    International Nuclear Information System (INIS)

    This thesis presents a laser desorption source for neutral organic molecules and clusters as well as the first exploration of a superconducting single photon detector for the detection of massive neutral particles. Whereas the source can produce beams of biomolecules for various gas-phase applications, the detector can be used to overcome the current post- ionization detection mass limit of neutral molecules. The aim of our work is to produce and detect neutral molecular gas-phase beams, ranging from small amino acids overlarge polypeptides to massive complexes. The purpose of creating these beams is to use them for quantum optics experiments, like near field matter wave interference and its applications in metrology. Standard effusive sources usually lack the ability to cool the evaporated organic molecules fast enough to prevent fragmentation. In contrast to that, the presented laser desorption source cools the initially evaporated molecules by embedding them into a supersonic seed gas beam. The mixing of the seed gas and the desorbed molecules is implemented both in free expansion as well as inside a closed mixing channel. The desorbed neutral molecules are detected by photo-ionization using UV (266 nm) and FUV (157 nm) light followed by time-of-flight mass spectrometry. For the amino acid tryptophan (204amu) and for the antibiotic polypeptide gramicidin (1884amu) the ion yields for both photo-ionization wavelengths are examined and the ionization cross sections for the UV wavelength are measured. In case of tryptophan the ionization yield is comparable for both wavelengths, whereas gramicidin is detected fifteen times more efficiently under VUV ionization than for UV ionization at equal intensity. Desorption of heavier molecules than gramicidin never resulted in a detectable ion yield, which confirms the known inefficiency for the post-ionization of isolated large organic molecules [1-3]. The desorption source is also used for the formation of large neutral

  12. Hyperthermal molecular beam scattering: K--O2 ion/neutral product angular, energy, and branching ratio analysis

    International Nuclear Information System (INIS)

    Angular distributions of K+ ions and K atoms from collisions of a beam of hyperthermal K atoms with a cross beam of thermal O2 molecules were determined in the range from 18 to 38 eV (lab). A pronounced rainbow was observed in the ion-pair channel at a reduced angle of 240 eV deg. A smaller rainbow was also found in the neutral channel at 220 eV deg. Energy loss distributions for both product species were also determined at 28 eV (lab) by time-of-flight measurements. Both K+ ions and K atoms from K+O2 were detected concurrently. A pseudorandom pulsing method was used to increase the duty cycle. The TOF spectra indicated overlapping energy-loss distributions corresponding to ground and excited state formation for both the neutral and ion products. Excited state to ground state branching ratios for both the neutral and ion products were determined as a function of reduced angle. The neutral branching ratio shows a pronounced peak at approx.180 eV deg., while the ion ratio increases rapidly above 200 eV deg. From these ratios the differential cross sections were calculated for neutral K in which either K or O2 is electronically excited. These cross sections are similar to the differential cross sections of K+ ions. The neutral to ion branching ratios, also determined, exhibit a broad minimum in the vicinity of the rainbow angle. Differential cross sections for neutral and ion scattering were integrated to give the total neutral/ion branching ratio of approx.4. A preliminary analysis of the experimental differential cross sections has been performed via an atom--atom model. Although the model has substantial and expected deficiencies, the analysis strongly indicates that the quartet surfaces emanating from the neutral ground electronic asymptote must be substantially more repulsive than the corresponding doublet surface

  13. Enhancement of Gongronella sp. JG Chitosanase Production by Ion Beam Implantation

    Institute of Scientific and Technical Information of China (English)

    YUAN Hang; ZHOU Wei; WANG Jun; ZHANG Shuqing; YAO Jianming

    2007-01-01

    Gongronella sp. JG was a fungal strain which expressed extracellular chitosanase of about 800 U/L during its growth in production medium. To improve its enzyme production, low energy N+ implantation was employed to mutate spores of JG. The implantation condition was optimized and the parameters of 15 keV and 60 × 2.6 × 1013 ions/cm2 were selected for further breeding experiments. A mutant designated as SG was obtained. It showed increased chitosanase production (1800 U/L) and shortened cultivation period (from 72 h to 60 h). Five-generation cultivation of SG indicated that its chitosanase production was stable at about 1800 U/L.

  14. Tritium production potential of beam research and magnetic fusion program technologies

    International Nuclear Information System (INIS)

    Regular replenishment of tritium in the nuclear weapons stockpile is essential to maintain our nuclear deterrent. Nuclear reactor facilities presently used for the production of tritium are aging, and their operation is being curtailed awaiting the repairs and upgrades needed to meet modern standards of safety and environment. To provide improved capability in the future, DOE plans to construct a new production reactor. Alternatives to nuclear reactor methods for the production of tritium, mainly electrically-driven accelerator or fusion systems, have been proposed many times in the past. Given the critical national security implications of maintaining adequate tritium production facilities, it is clearly worthwhile for political decision-makers to have a clear and accurate picture of the technical options that could be made available at various points in the future. The goal of this white paper is to summarize available technical information on a set of non-nuclear-reactor options for tritium production with a minimum of advocacy for any one system of implicit assumptions about politically desirable attributes. Indeed, these various options differ considerably in aspects such as the maturity of the technology, the development cost and timescales required, and the capital and operating costs of a typical ''optimized'' facility

  15. Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams

    CERN Document Server

    Altmannshofer, Wolfgang; Pospelov, Maxim; Yavin, Itay

    2014-01-01

    The production of a mu+mu- pair from the scattering of a muon-neutrino off the Coulomb field of a nucleus, known as neutrino trident production, is a sub-weak process that has been observed in only a couple of experiments. As such, we show that it constitutes an exquisitely sensitive probe in the search for new neutral currents among leptons, putting the strongest constraints on well-motivated and well-hidden extensions of the Standard Model gauge group, including the one coupled to the difference of the lepton number between the muon and tau flavor, L_mu-L_tau. The new gauge boson, Z', increases the rate of neutrino trident production by inducing additional $(\\bar\\mu \\gamma_\\alpha \\mu)(\\bar\

  16. $K^0 \\Lambda$ and $D^- \\Lambda_c^+$ production induced by pion beams off the nucleon

    CERN Document Server

    Kim, Sang-Ho; Hosaka, Atsushi

    2016-01-01

    We present a comparative study of the pion induced production of $K^0 \\Lambda$ and $D^- \\Lambda_c^+$ off the nucleon. A hybrid framework is utilized by combining an effective Lagrangian method with a Regge approach. We consider the $t$-channel process in a plannar diagram by vector-meson Reggeon exchanges and the $u$-channel one in a non-planar diagram by baryon Reggeon exchanges. The present model reproduces the $K^0 \\Lambda$ production data well with a few parameters. Having fixed them, we predict the $D^- \\Lambda_c^+$ production, which turns out to be about $10^4-10^6$ times smaller than the strangeness one, depending on the kinematical regions.

  17. New electron beam facility for R and D and production at acsion industries

    International Nuclear Information System (INIS)

    Since its incorporation in 1998, Acsion Industries Inc. has been working with clients to develop industrial uses of electron processing for improving products and manufacturing processes. Acsion has promoted this technology for sterilizing medical devices and pharmaceuticals, for treating wood pulp in the viscose/rayon process, for reducing pathogens in food and animal feed, and for curing advanced composites for the aerospace industry. As a result of significant developments in its composite curing programs, Acsion has recently made major modifications to its facility to increase its production and R and D capabilities. These modifications are described in this paper

  18. New methods for high current fast ion beam production by laser-driven acceleration

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Prokůpek, Jan; Velyhan, Andriy; Torrisi, L.; Picciotto, A.; Giuffrida, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Serra, E.; Mangione, A.; Rosinski, M.; Parys, P.; Ryc, L.; Limpouch, J.; Láska, Leoš; Jungwirth, Karel; Ullschmied, Jiří; Mocek, Tomáš; Korn, Georg; Rus, Bedřich

    2012-01-01

    Roč. 83, č. 2 (2012), "02B307-1"-"02B307-3". ISSN 0034-6748 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA MŠk(CZ) LC528; GA MŠk ED1.1.00/02.0061; GA MŠk EE.2.3.20.0087; GA MŠk ED2.1.00/01.0027 Grant ostatní: ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087; HILASE(XE) CZ.1.05/2.1.00/01.0027 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : ion beam * laser-driven acceleration Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.602, year: 2012 http://dx.doi.org/10.1063/1.3669796

  19. S neutrino identification in lepton pair production at ILC with polarized beams

    International Nuclear Information System (INIS)

    Numerous non-standard dynamics are described by contact-like effective interactions that can manifest themselves in electron-positron collisions only through deviations of the observables (cross sections, asymmetries) from the Standard Model predictions. If such a deviation were observed, it would be important to identify the actual source among the possible non-standard interactions as many different new physics scenarios may lead to very similar experimental signatures. We study the possibility of uniquely identifying the indirect effects of s-channel sneutrino exchange, as predicted by supersymmetric theories with R-parity violation, against other new physics scenarios in high-energy e+e- annihilation into lepton pairs at the International Linear Collider. These competitive models are interactions based on gravity in large and in TeV-scale extra dimensions, anomalous gauge couplings, Z′ vector bosons and compositeness-inspired four-fermion contact interactions. To evaluate the identification reach on sneutrino exchange, we use as basic observable a double polarization asymmetry, that is particularly suitable to directly test for such s-channel sneutrino exchange effects in the data analysis. The availability of both beams being polarized plays a crucial rôle in identifying the new physics scenario.

  20. Improvement of Vitamin K2 Production by Escherichia sp. with Nitrogen Ion Beam Implantation Induction

    International Nuclear Information System (INIS)

    Low-energy ion implantation as a novel mutagen has been increasingly applied in the microbial mutagenesis for its higher mutation frequency and wider mutation spectra. In this work, N+ ion beam implantation was used to enhance Escherichia sp. in vitamin K2 yield. Optimization of process parameters under submerged fermentation was carried out to improve the vitamin K2 yield of mutant FM5-632. The results indicate that an excellent mutant FM5-632 with a yield of 123.2±1.6 μg/L, that is four times that of the original strain, was achieved by eight successive implantations under the conditions of 15 keV and 60×2.6×1013 ions/cm2. A further optimization increased the yield of the mutant by 39.7%, i.e. 172.1±1.2 μg/L which occurred in the mutant cultivated in the optimal fermentation culture medium composed of (per liter): 15.31 g glycerol, 10 g peptone, 2.89 g yeast extract, 5 g K2HPO4, 1 g NaCl, 0.5 g MgSO4·7H2O and 0.04 g cedar wood oil, incubated at 33 °C, pH 7.0 and 180 rpm for 120 h. (plasma technology)

  1. "DIAGNOSTIC" PULSE FOR SINGLE-PARTICLE-LIKE BEAM POSITION MEASUREMENTS DURING ACCUMULATION/PRODUCTION MODE IN THE LOS ALAMOS PROTON STORAGE RING

    Energy Technology Data Exchange (ETDEWEB)

    Kolski, Jeffrey S. [Los Alamos National Laboratory; Baily, Scott A. [Los Alamos National Laboratory; Bjorklund, Eric A. [Los Alamos National Laboratory; Bolme, Gerald O. [Los Alamos National Laboratory; Hall, Michael J. [Los Alamos National Laboratory; Kwon, Sung I. [Los Alamos National Laboratory; Martinez, Martin P. [Los Alamos National Laboratory; Prokop, Mark S. [Los Alamos National Laboratory; Shelley, Fred E. Jr. [Los Alamos National Laboratory; Torrez, Phillip A. [Los Alamos National Laboratory

    2012-05-14

    Beam position monitors (BPMs) are the primary diagnostic in the Los Alamos Proton Storage Ring (PSR). When injecting one turn, the transversemotion is approximated as a single particle with initial betatron position and angle {rvec x}{sub 0} and {rvec x}'{sub 0}. With single-turn injection, we fit the betatron tune, closed orbit (CO), and injection offset ({rvec x}{sub 0} and {rvec x}'{sub 0} at the injection point) to the turn-by-turn beam position. In production mode, we accumulate multiple turns, the transverse phase space fills after 5 injections (horizontal and vertical fractional betatron tunes {approx}0.2) resulting in no coherent betatron motion, and only the CO may be measured. The injection offset, which determines the accumulated beam size and is very sensitive to steering upstream of the ring, is not measurable in production mode. We describe our approach and ongoing efforts to measure the injection offset during production mode by injecting a 'diagnostic' pulse {approx}50 {micro}s after the accumulated beam is extracted. We also study the effects of increasing the linac RF gate length to accommodate the diagnostic pulse on the production beam position, transverse size, and loss.

  2. Neutrino trident production: a powerful probe of new physics with neutrino beams.

    Science.gov (United States)

    Altmannshofer, Wolfgang; Gori, Stefania; Pospelov, Maxim; Yavin, Itay

    2014-08-29

    The production of a μ+ μ- pair from the scattering of a muon neutrino off the Coulomb field of a nucleus, known as neutrino trident production, is a subweak process that has been observed in only a couple of experiments. As such, we show that it constitutes an exquisitely sensitive probe in the search for new neutral currents among leptons, putting the strongest constraints on well-motivated and well-hidden extensions of the standard model gauge group, including the one coupled to the difference of the lepton number between the muon and tau flavor, Lμ-Lτ. The new gauge boson Z', increases the rate of neutrino trident production by inducing additional (μγαμ)(νγ(α)ν) interactions, which interfere constructively with the standard model contribution. Existing experimental results put significant restrictions on the parameter space of any model coupled to muon number Lμ, and disfavor a putative resolution to the muon g-2 discrepancy via the loop of Z' for any mass mZ'≳400  MeV. The reach to the models' parameter space can be widened with future searches of the trident production at high-intensity neutrino facilities such as the LBNE. PMID:25215977

  3. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  4. Production of a 'natural' metastable nozzle beam: Van der Waals Zeeman atomic levels near a metal surface

    Science.gov (United States)

    Karam, J.-C.; Grucker, J.; Boustimi, M.; Bocvarski, V.; Vassilev, G.; Reinhardt, J.; Mainos, C.; Perales, F.; Baudon, J.; Robert, J.; Ducloy, Martial

    2005-01-01

    A method for obtaining a metastable atom beam with properties near to those of a ground state supersonic beam is demonstrated. Calculations on m sublevels of metastable argon near a metal surface are then presented.

  5. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki; /Kyoto U.

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for {nu}{sub {mu}} {yields} {nu}{sub x} oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance ({nu}{sub {mu}}N {yields} {mu}{sup -} N{pi}{sup +}) and coherent pion production interacting with the entire nucleus ({nu}{sub {mu}}A {yields} {mu}{sup -} A{pi}{sup +}), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, {nu}{sub {mu}} {sup 12}C {yields} {mu}{sup -12}C{pi}{sup +}, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 10{sup 20} protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 10{sup 20} protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged

  6. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki [Kyoto Univ. (Japan)

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for vμ → vx oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance (vμN → μ-+) and coherent pion production interacting with the entire nucleus (vμA → μ-+), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, vμ 12C → μ-12+, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 1020 protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 1020 protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio

  7. Expression of Interest for an experiment to study charm production with proton and heavy ion beams

    CERN Document Server

    Arleo, François; Ferreiro, Elena; Gossiaux, Pol-Bernard; Peigné, Stéphane

    2012-01-01

    We propose an experiment to perform a systematic study of charmonia production in heavy ion collisions at SPS. Taking advantage of significant advances in electromagnetic calorimetry, the measurement of low energy photons from chi_c decays should now be achievable. Together with recent measurements made at RHIC and at LHC on J/psi and upsilon production, such a measurement will offer the opportunity to use quarkonia as a direct test of phase transition and lattice QCD calculations. In a one month data taking one can expect the collection of thousands of chi_c. This new and dedicated experiment is designed to also study, under optimal conditions, Cold Nuclear Matter (CNM) effects in a larger rapidity range than previously explored by the NA50/NA60 experiments. This measurement of nuclear effects in absence of Quark Gluon Plasma formation will provide a clear and unambiguous reference for the study of Hot and Dense Matter (HDM) effects, a reference which is today needed to deduce an unambiguous interpretation ...

  8. Shallow irradiation of vienna sausage by electron beams in preventation of the slime production

    International Nuclear Information System (INIS)

    Vienna sausages get spoiled by slime production or putrefaction due to the propagation of microorganisms when stored for 3 to 5 days at 10 deg C. The radiation pasteurization of vienna sausages has mainly been studied with gamma irradiation. The slime of sausages is believed to be microorganisms themselves growing on the surface of the sausages. Pasteurization of the surface of vienna sausages with electron irradiation was thus investigated. The results obtained are as follows: The vienna sausages irradiated with a dose of 0.8 to approximately 1.0 Mrad by 0.5 MeV electrons could be stored without slime production or putrefaction for more than a week at 11 deg C. The effect of pasteurization increased with energy and dose of electrons. However, the changes in the organoleptic qualities of vienna sausages were detected when irradiated with a dose of over 0.7 Mrad by 2.0 MeV electrons. Consequently, the irradiation with a dose of 1.0 Mrad by 1.0 MeV electrons was effectual in lengthening their shelf-life without deterioration of the organoleptic qualities. (author)

  9. Intense positron beams: linacs

    International Nuclear Information System (INIS)

    Beams of monoenergetic positrons with energies of a few eV to many keV have been used in experiments in atomic physics, solid-state physics and materials science. The production of positron beams from a new source, an electron linac, is described. Intense, pulsed beams of low-energy positrons were produced by a high-energy beam from an electron linac. The production efficiency, moderator geometry, beam spot size and other positron beam parameters were determined for electrons with energies from 60 to 120 MeV. Low-energy positron beams produced with a high-energy electron linac can be of much higher intensity than those beams currently derived from radioactive sources. These higher intensity beams will make possible positron experiments previously infeasible. 10 references, 1 figure

  10. Feasibility studies on the potential of employing electron beam machine for non-medical products irradiation in Malaysia

    International Nuclear Information System (INIS)

    In Malaysia, two 10 MeV irradiators were installed by private companies as part of in-house manufacturing or as third party sterilization service provider. At the same time, the 3 MeV EPS 3000 machine at Nuclear Malaysia is providing irradiation services for various purposes and products. With the current increase in demand in automotive manufacturing for better quality harnesses and components, the irradiation service at Nuclear Malaysia had to provide extended time to cope with the requests. This paper looks at the potential of setting up a commercial irradiation facility to cater for non-medical products such as automotive wires and tubing, food, fruits, cosmetic and semiconductors. Intensive interviews with related industries were carried out throughout Malaysia to evaluate the potential of installing electron beam machine for commercial irradiation. The results show that a majority of non-medical industries are not aware of the irradiation service provided by Nuclear Malaysia, although many understand the need for it. A multipurpose irradiator is desired in order to optimize the usage since a single dedicated machine may be too costly to sustain. (author)

  11. Adjustable mounting device for high-volume production of beam-shaping systems for high-power diode lasers

    Science.gov (United States)

    Haag, Sebastian; Bernhardt, Henning; Rübenach, Olaf; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Brecher, Christian

    2015-02-01

    In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.

  12. Production of transversely cooled, spin-polarized pulse beam from a low-velocity intense source of rubidium

    International Nuclear Information System (INIS)

    In this experiment we studied the possibility of producing a pulsed beam for greater instantaneous beam flux, cooling the beam transversely to increase the effective beam flux and finally optical pumping to produce spin polarized atomic beam. We successfully and reliably produced a pulsed beam, and observed definite transverse cooling of the beam. We developed rather elaborate control program and interface hardware to produce the pulsed beam, and transversely cool, optically pump, and detect the atoms. We have produced the low-velocity intense source(LVIS) beam and operated it in a pulsed mode. Using an electronically controlled shutter we could load a Magneto Optical Trap(MOT) for 1 sec and launched a pulse of rubidium atoms. We performed the transverse cooling experiment using the pulses. In order to detect how the cooling is working, we used a slit to narrow down the probe beam. The probe beam had a width of 1 mm and we scanned it using a micrometer-controlled translational stage. (Cho, G.S.). 7 refs., 2 figs

  13. Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kronberger, M., E-mail: matthias.kronberger@gmx.at [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland); Department of Physics, University of Jyväskylä, Survontie 9, FI-40014 (Finland); Gottberg, A. [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland); Instituto de Estructura de la Materia CSIC, E28006 Madrid (Spain); Mendonca, T.M. [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland); IFIMUP and IN – Institute of Nanosciences and Nanotechnologies, University of Porto, Rua do Campo Alegre 687, PT-4169-007 (Portugal); Ramos, J.P. [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 (Switzerland); Seiffert, C.; Suominen, P.; Stora, T. [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland)

    2013-12-15

    Highlights: • We present a novel radioactive ion source concept for nuclear physics experiments. • Molecular sideband beams are produced by an RF discharge in a magnetized plasma. • Ionization efficiencies of 2.5% and 4% were measured for CO{sup +} and Ar, respectively. • Using a HfO{sub 2} fibre target, 17-CO{sup +} was produced for the first time at ISOLDE. • Up to 50 × gain was achieved by using a nanostructured CaO target and He as buffer gas. -- Abstract: In order to account for the increasing demand for strong molecular beams for nuclear physics experiments at ISOLDE, a new radioactive ion source concept based on an RF discharge in a magnetized plasma was developed at CERN. Experimental studies at the ISOLDE offline separator show that the optimum conditions for CO{sup +} and CO{sub 2}{sup +} ion production are given when the ion source is operated with He plasma, in line with expectations based on their electron impact ionization cross-sections. At optimum tuning, ionization efficiencies of 2.5% and 4% were measured for CO{sup +} and Ar{sup +}, respectively. The capability of the Helicon ion source prototype for ISOL operation was evaluated during two online runs at the General Purpose Separator of CERN-ISOLDE, yielding the first observation of {sup 17}CO{sup +} with a HfO{sub 2} fibre target, and a more than 50-fold enhancement of the {sup 10}CO{sup +} and {sup 11}CO{sup +} yields with a nanostructured CaO target and an upgraded ion source prototype.

  14. Programmatic Assessment of Potential Induced Radioactivity in Electron Beam Sterilization of Healthcare Products.

    Science.gov (United States)

    Smith, Mark; Logar, John; Montgomery, Alan; Vrain, Olivier

    2016-08-01

    ISO 11137-1:2006 Sterilization of Healthcare Products-Radiation requires that the potential for induced radioactivity be evaluated for medical devices irradiated with electrons with energy more than 10 MeV. For a manufacturing operation where new devices are being developed, a practical program for making such an evaluation should be engrained in the process, including the device design phase, where selection of materials can make a difference in the potential for activation to occur as a result of the irradiation process. The program, which is based on general assumptions as to the likely activation processes and generalized process assessments is being implemented in three phases: (1) incorporating materials consideration in the design phase, (2) evaluating potential activation empirically, including measurement at the point of irradiation, and (3) implementing routine procedures for the program, including developing a data base of results for consideration in future design efforts. PMID:27356164

  15. Beam Energy Dependence of Dielectron Production in Au+Au Collisions from STAR at RHIC

    CERN Document Server

    Huck, Patrick

    2014-01-01

    We present the energy-dependent study of dielectron production in 0-80% minimum-bias Au+Au collisions at $\\sqrt{s_{NN}}$ energies of 19.6, 27, 39, and 62.4 GeV in STAR. Invariant mass ($M_{ee}$) and transverse momentum ($p_T$) differential measurements of dielectron yields are compared to cocktail simulations of known hadronic sources and semi-leptonic charmed decays. The enhancement (excess yield) prominent in the Low-Mass Region (LMR) over the cocktail at all energies, is further compared to calculations of $\\rho$ in-medium modifications. Within statistical and systematic uncertainties, we find that the model consistently describes this enhancement from SPS up to top RHIC energies in its $M_{ee}$- as well as $p_T$-dependence. Dielectron measurements drive the statistics for the future BES Phase-II program, which promises to improve our understanding of the LMR enhancement's trend with total baryon densities.

  16. Measurement of Neutral Current Neutral Pion Production on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kurimoto, Yoshinori [Kyoto Univ. (Japan)

    2010-01-01

    Understanding of the π0 production via neutrino-nucleus neutral current interaction in the neutrino energy region of a few GeV is essential for the neutrino oscillation experiments. In this thesis, we present a study of neutral current π0 production from muon neutrinos scattering on a polystyrene (C8H8) target in the SciBooNE experiment. All neutrino beam data corresponding to 0.99 × 1020 protons on target have been analyzed. We have measured the cross section ratio of the neutral current π0 production to the total charge current interaction and the π0 kinematic distribution such as momentum and direction. We obtain [7.7 ± 0.5(stat.) ± 0.5(sys.)] × 10-2 as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein- Sehgal model, which is generally used for the Monte Carlo simulation by many neutrino oscillation experiments. We achieve less than 10 % uncertainty which is required for the next generation search for νµ → νe oscillation. The spectrum shape of the π0 momentum and the distribution of the π0 emitted angle agree with the prediction, which means that not only the Rein-Sehgal model but also the intra-nuclear interaction models describe our data well. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (1.17 ± 0.23 ) × 10-2 based on the Rein and Sehgal model. The result gives the evidence for non-zero coherent pion production via neutral current interaction at the mean neutrino energy of 1.0 GeV.

  17. The use of a radiactive beam of fission products for TDPAC experiments

    International Nuclear Information System (INIS)

    In order to use a wide variety of radioactive nuclei as probes in material research, an on-line isotope separator (ISOL) for fission products has been utilized to produce and accelerate short-lived nuclei suitable for TDPAC experiments. The 140Cs isotope (T1/2 = 63.7 s) from ISOL has been implanted into YBaCuO compounds to investigate the hyperfine field around a Ba atom. The 140Ba-140La source of 3 x 104 decays/s is obtained for TDPAC experiments on the 329-487 keV γ-γ cascade in 140Ce. Another candidate was examined to use the 345-94 keV cascade in the 91Rb (T1/2 58 s) decay. The angular correlation coefficients, however, unfortunately turned out to be fairly small. A tentative result of the g-factor measurement has been given. The details of the present method have been described with emphasis on the application to material research. (orig.)

  18. Lanthanides in Nuclear Medicine. The Production of Terbium-149 by Heavy Ion Beams

    CERN Document Server

    Dmitriev, S N; Zaitseva, N G; Maslov, O D; Molokanova, L G; Starodub, G Ya; Shishkin, S V; Shishkina, T V

    2001-01-01

    Among radioactive isotopes of lanthanide series elements, finding the increasing using in nuclear medicine, alpha-emitter {149}Tb (T_{1/2} = 4.118 h; EC 76.2 %; beta^+ 7.1 %; alpha 16.7 %) is considered as a perspective radionuclide for radioimmunotherapy. The aim of the present work is to study experimental conditions of the {149}Tb production in reactions Nd({12}C, xn){149}Dy (4.23 min; beta^+, EC)\\to {149}Tb when the Nd targets have been irradiated by heavy ions of carbon. On the basis of results of formation and decay of {149}Dy\\to{149}Tb evaluation of the {149}Tb activity, is made which can be received under optimum conditions (enriched {142}Nd target, {12}C ions with the energy 120 MeV and up to current 100 mu A, time of irradiating 8-10 hours). Under these conditions {149}Tb can be obtained up to 30 GBq (up to 0.8 Ci).

  19. High-brightness electron beams for production of high intensity, coherent radiation for scientific and industrial applications

    International Nuclear Information System (INIS)

    Relativistic electron beams with high six-dimensional phase space densities, i.e., high-brightness beams, are the basis for efficient generation of intense and coherent radiation beams for advanced scientific and industrial applications. The remarkable progress in synchrotrons radiation facilities from the first generation to the current, third-generation capability illustrates this point. With the recent development of the high-brightness electron gun based on laser-driven rf photocathodes, linacs have become another important option for high-brightness electron beams. With linacs of about 100 MeV, megawatt-class infrared free-electron lasers can be designed for industrial applications such as power beaming. With linacs of about 10 GeV, 1- angstrom x-ray beams with brightness and time resolution exceeding by several orders of magnitude the current synchrotrons radiation sources can be generated based on self-amplified spontaneous emission. Scattering of a high-brightness electron beam by high power laser beams is emerging as a compact method of generating short-pulse, bright x-rays. In the high-energy frontier, photons of TeV quantum energy could be generated by scattering laser beams with TeV electron beams in future linear colliders

  20. Studies on the transport and on the focusing of intense, high-energetic heavy ion beams for the production of high energy density in matter

    International Nuclear Information System (INIS)

    A measurement place for the production of hot, dense plasmas by the bombardment of matter with intense, high-energetic ion beams, was constructed, erected and taken into operation at the Society for Heavy Ion Research (GSI) in Darmstadt. A focusing system consisting of five quadrupole and one dipole magnet was calculated at the II. Physical Institute of the JLU in Giessen and erected at the high-temperature (HT) measuring place. The ion-optical properties of this system were in the framework of this thesis studied and optimized. Especially connection between the operational mode of the heavy-ion synchrotron SIS, the beam transport to the HT measuring place, and the focusing properties were elaborated. by this it succeeded to produce the calculated circular focusing area with a radius of 145 μm. A new procedure for the determination of the entrance beam parameters and, based on this, an optimization of the adjustment of the beam guiding system was tested. For the study of the interaction of the ion beams with the hot, dense target plasma stopped ions are excellently suited. For the determination of the energy loss and the charge change of such ions a spectrometer was constructed and its component erected. On the base of beam tests at the Z6 measuring place for the spectrometer at the HT measurement place a high-current-pulsed quadrupole doublet was constructed and erected. For the separation of the single charge states two classical dipole magnets in the spectrometer are foreseen

  1. Proton Beam Energy Characterization

    OpenAIRE

    Marus, Lauren A.; Engle, J.W.; John, K. D.; Birnbaum, E. R.; Nortier, F. M.

    2015-01-01

    Introduction The Los Alamos Isotope Production Facility (IPF) is actively engaged in the development of isotope production technologies that can utilize its 100 MeV proton beam. Characterization of the proton beam energy and current is vital for optimizing isotope production and accurately conducting research at the IPF. Motivation In order to monitor beam intensity during research irradiations, aluminum foils are interspersed in experimental stacks. A theoretical yield of 22Na from...

  2. Production of cold beams of ND3 with variable rotational state distributions by electrostatic extraction of He and Ne buffer-gas-cooled beams

    International Nuclear Information System (INIS)

    The measurement of the rotational state distribution of a velocity-selected, buffer-gas-cooled beam of ND3 is described. In an apparatus recently constructed to study cold ion-molecule collisions, the ND3 beam is extracted from a cryogenically cooled buffer-gas cell using a 2.15 m long electrostatic quadrupole guide with three 90° bends. (2+1) resonance enhanced multiphoton ionization spectra of molecules exiting the guide show that beams of ND3 can be produced with rotational state populations corresponding to approximately Trot = 9–18 K, achieved through manipulation of the temperature of the buffer-gas cell (operated at 6 K or 17 K), the identity of the buffer gas (He or Ne), or the relative densities of the buffer gas and ND3. The translational temperature of the guided ND3 is found to be similar in a 6 K helium and 17 K neon buffer-gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively). The characterization of this cold-molecule source provides an opportunity for the first experimental investigations into the rotational dependence of reaction cross sections in low temperature collisions

  3. Development of an all-permanent-magnet microwave ion source equipped with multicusp magnetic fields for high current proton beam production.

    Science.gov (United States)

    Tanaka, M; Hara, S; Seki, T; Iga, T

    2008-02-01

    An all-permanent-magnet (APM) microwave hydrogen ion source was developed to reduce the size and to simplify structure of a conventional solenoid coil microwave ion source developed for reliability improvement of high current proton linac application systems. The difficulty in developing the APM source was sensitive dependence of the source performance on axial magnetic field in the microwave discharge chamber. It was difficult to produce high current proton beam stably without precise tuning of the magnetic field using solenoid coils. We lowered the sensitivity using multicusp magnetic fields for plasma confinement at the discharge chamber sidewall of the source. This enabled stable high current proton beam production with the APM microwave ion source with no tuning coil. The water cooling and the power supply for the coils are not necessary for the APM source, which leads to better reliability and system simplification. The outer diameter of the APM source was around 300 mm, which was 20% lower than the coil source. The APM source produced a maximum hydrogen ion beam current of 65 mA (high current density of 330 mA/cm(2), proton ratio of 87%, and beam energy of 30 keV) with a 5 mm diameter extraction aperture, pulse width of 400 micros, and 20 Hz repetition rate at 1.3 kW microwave power. This performance is almost the same as the best performances of the conventional coil sources. The extracted ion beams were focused with electrostatic five-grid lens to match beam to acceptance of radio-frequency quadrupole linacs. The maximum focused beam current through the orifice (5 mm radius) and the lens was 36 mA and the 90% focused beam half-width was 1-2 mm. PMID:18315183

  4. Report for muon production target with the 300-kW proton beam operation at MUSE/MLF/J-PARC

    International Nuclear Information System (INIS)

    The most intense pulsed muon beam will be generated by a 3-GeV 333-microA proton beam on a muon target made of 20-mm thick isotropic graphite (IG-430) in J-PARC/MUSE (Muon Science Establishment). The energy deposited by a 1-MW proton beam is estimated to be 3.9 kW on the muon target. The first muon beam was successfully generated on September 26th, 2008. Gradually upgrading the beam intensity, continuous 300-kW proton beam operation was started in January of 2013. The temperatures of the principle components have been measured and recorded through thermocouples and a control system. The lifetime of the muon target is determined by a proton-irradiation damage of the graphite. Even in the 300-kW operation to July of 2013, the radiation damage was anticipated to surpass the lifetime. Therefore, the position of the proton beam has been moved to eight surrounding positions every three weeks to distribute the radiation damage uniformly to a wider area. The position-control is named EXILE operation. The variation of the temperatures at the muon target has been monitored. In this report, the status of proton beam operation and the lifetime extension of the muon target will be described. (author)

  5. Production and dosimetry of simultaneous therapeutic photons and electrons beam by linear accelerator: A Monte Carlo study

    International Nuclear Information System (INIS)

    Depending on the location and depth of tumor, the electron or photon beams might be used for treatment. Electron beam have some advantages over photon beam for treatment of shallow tumors to spare the normal tissues beyond of the tumor. In the other hand, the photon beam are used for deep targets treatment. Both of these beams have some limitations, for example the dependency of penumbra with depth, and the lack of lateral equilibrium for small electron beam fields. In first, we simulated the conventional head configuration of Varian 2300 for 16 MeV electron, and the results approved by benchmarking the Percent Depth Dose (PDD) and profile of the simulation and measurement. In the next step, a perforated Lead (Pb) sheet with 1mm thickness placed at the top of the applicator holder tray. This layer producing bremsstrahlung x-ray and a part of the electrons passing through the holes, in result, we have a simultaneous mixed electron and photon beam. For making the irradiation field uniform, a layer of steel placed after the Pb layer. The simulation was performed for 10×10, and 4×4 cm2 field size. This study was showed the advantages of mixing the electron and photon beam by reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size

  6. Production of electron cyclotron resonance plasma by using multifrequencies microwaves and active beam profile control on a large bore electron cyclotron resonance ion source with permanent magnets

    International Nuclear Information System (INIS)

    A new concept on magnetic field with all magnets on plasma production and confinement has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure. The magnetic field configuration is constructed by a pair of magnets assembly, i.e., comb-shaped magnet which cylindrically surrounds the plasma chamber. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequencies are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds. It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequencies microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.

  7. Three-dimensional particle-in-cell modeling of relativistic electron beam production and transport for KrF laser pumping

    International Nuclear Information System (INIS)

    The effects of diode geometry and externally applied magnetic fields on electron beam production and transport for KrF laser pumping has been studied using two and three dimensional particle-in-cell models. The efficiency with which electrons may be transported through the foil support structure depends critically on the size of the openings in the structure as well as the magnitude of the applied magnetic fields. As the electron diodes become larger the current which can be produced becomes limited by the self-magnetic field of the beam. Simulations show the diode current is limited to slightly more than the usual ''critical current.'' However this electron flow is found to be unstable. The application of strong guide fields not only increases the current from the diode but tends to stabilize the electron beam. 4 refs., 5 figs

  8. Evaluation of the effect of tooth and dental restoration material on electron dose distribution and production of photon contamination in electron beam radiotherapy.

    Science.gov (United States)

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Akbari, Fatemeh; Mehrpouyan, Mohammad; Sobhkhiz Sabet, Leila

    2016-03-01

    The aim of this study is to evaluate the effect of tooth and dental restoration materials on electron dose distribution and photon contamination production in electron beams of a medical linac. This evaluation was performed on 8, 12 and 14 MeV electron beams of a Siemens Primus linac. MCNPX Monte Carlo code was utilized and a 10 × 10 cm(2) applicator was simulated in the cases of tooth and combinations of tooth and Ceramco C3 ceramic veneer, tooth and Eclipse alloy and tooth and amalgam restoration materials in a soft tissue phantom. The relative electron and photon contamination doses were calculated for these materials. The presence of tooth and dental restoration material changed the electron dose distribution and photon contamination in phantom, depending on the type of the restoration material and electron beam's energy. The maximum relative electron dose was 1.07 in the presence of tooth including amalgam for 14 MeV electron beam. When 100.00 cGy was prescribed for the reference point, the maximum absolute electron dose was 105.10 cGy in the presence of amalgam for 12 MeV electron beam and the maximum absolute photon contamination dose was 376.67 μGy for tooth in 14 MeV electron beam. The change in electron dose distribution should be considered in treatment planning, when teeth are irradiated in electron beam radiotherapy. If treatment planning can be performed in such a way that the teeth are excluded from primary irradiation, the potential errors in dose delivery to the tumour and normal tissues can be avoided. PMID:26581762

  9. Simulation of Neutron Production in Selected Targets by Proton and Deuteron Beam in Energy Range from 10 MeV to 75 MeV

    International Nuclear Information System (INIS)

    Initial inter-comparison study of simulation of neutron production by beam of protons and deuterons in different target materials, in energy range from 10 MeV to 75 MeV, is shown in the paper. An idealised cylindrical (diameter = height = 2.5 cm) target is bombarded, along the central axis, perpendicularly at target base, by an infinite thin particle beam. Simulation is carried out for the target surrounded by void, i.e., the 'return effect' from surrounding materials in a real system is not encountered. The study is carried out using Monte Carlo based computer codes for intermediate and high-energy nucleon transport: LCS, ver.2.7 (LANL, USA) and SHIELD (INR, Russia). Yield (total number of neutrons in 4 , per incident particle) and spectrum of neutrons escaping the target surfaces are determined for different targets made from 208Pb/Pb, 238U/U, 184W/W, Be and 7Li. Maximum neutron yield, near 30%, is calculated for proton beam energy of 75 MeV bombarding 238U/U target, shaped as mentioned above. Generally, neutron yield for deuteron beam is less than neutron yield for proton beam of the same energy for targets made from high-Z nuclides. The opposite conclusion is derived for targets made from low-Z nuclides. (author)

  10. Research on Metallic Ion Beam Production at IMP%近物所在产生金属离子束方面的研究

    Institute of Scientific and Technical Information of China (English)

    曹云; 李锡霞; 郭晓虹; 卢旺; 冯玉成; 李锦钰; 王辉; 马宝华; 孙良亭; 赵环昱; 尚勇; 张雪珍

    2007-01-01

    Since 1998,many experiments for metallic ion production have been done on LECR2(Lanzhou ECR ion source NO.2),LECR3(Lanzhou ECR ion source NO.3)and SECRAL(Superconductiong ECR ion source Advanced design in Lanzhou)at Institute of Modern Physics.The very heavy metallic ion beams such as those of uranium were also produced by the plasma sputtering method,and supplied for HIRFL(Heavy Ion Research Facility in Lanzhou)accelerators successfully.During the test,11.5eμAU28+,9eμAU24+were obtained. Some ion beams of the metal having lower melting temperature such as Ni and Mg ion beams were produced by oven method on LECR3 too.The consumption rate was controlled to be lower for 26Mg ion beams production,and the minimum consumption was about 0.3mg per hour.In this paper,the main experimental results are given.Some discussions are made for some experimental phenomena and results,and some conclusions are drawn.

  11. Novel method for the production of spin-aligned RI beams in projectile fragmentation reaction with the dispersion matching technique

    International Nuclear Information System (INIS)

    A novel method to produce spin-aligned rare-isotope (RI) beam has been developed, that is the two-step projectile fragmentation method with a technique of dispersion matching. The present method was verified in an experiment at the RIKEN RIBF, where an RI beam of 32Al with spin alignment of 8(1) % was successfully produced from a primary beam of 48Ca, with 33Al as an intermediate nucleus. Figure of merit of the present method was found to be improved by a factor larger than 50 compared with a conventional method employing single-step projectile fragmentation.

  12. Novel method for the production of spin-aligned RI beams in projectile fragmentation reaction with the dispersion matching technique

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Y., E-mail: yuichikawa@phys.titech.ac.jp [Tokyo Institute of Technology, Department of Physics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Ishii, Y. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Yoshimi, A. [Okayama University, Research Core for Extreme Quantum World (Japan); Kameda, D.; Watanabe, H.; Aoi, N. [RIKEN Nishina Center (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Balabanski, D. L. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Chevrier, R.; Daugas, J. M. [CEA, DAM, DIF (France); Fukuda, N. [RIKEN Nishina Center (Japan); Georgiev, G. [CSNSM, IN2P3-CNRS, Universite Paris-sud (France); Hayashi, H.; Iijima, H. [Tokyo Institute of Technology, Department of Physics (Japan); Inabe, N. [RIKEN Nishina Center (Japan); Inoue, T. [Tokyo Institute of Technology, Department of Physics (Japan); Ishihara, M.; Kubo, T. [RIKEN Nishina Center (Japan); and others

    2013-05-15

    A novel method to produce spin-aligned rare-isotope (RI) beam has been developed, that is the two-step projectile fragmentation method with a technique of dispersion matching. The present method was verified in an experiment at the RIKEN RIBF, where an RI beam of {sup 32}Al with spin alignment of 8(1) % was successfully produced from a primary beam of {sup 48}Ca, with {sup 33}Al as an intermediate nucleus. Figure of merit of the present method was found to be improved by a factor larger than 50 compared with a conventional method employing single-step projectile fragmentation.

  13. Submicro and Nano Structured Porous Materials for the Production of High-Intensity Exotic Radioactive Ion Beams

    CERN Document Server

    Fernandes, Sandrina; Stora, Thierry

    2010-01-01

    ISOLDE, the CERN Isotope Separator On-line DEvice is a unique source of low energy beams of radioactive isotopes - atomic nuclei that have too many or too few neutrons to be stable. The facility is like a small ‘chemical factory’, giving the possibility of changing one element to another, by selecting the atomic mass of the required isotope beam in the mass separator, rather as the ‘alchemists’ once imagined. It produces a total of more than 1000 different isotopes from helium to radium, with half-lives down to milliseconds, by impinging a 1.4 GeV proton beam from the Proton Synchrotron Booster (PSB) onto special targets, yielding a wide variety of atomic fragments. Different components then extract the nuclei and separate them according to mass. The post-accelerator REX (Radioactive beam EXperiment) at ISOLDE accelerates the radioactive beams up to 3 MeV/u for many experiments. A wide international user radioactive ion beam (RIB) community investigates fundamental aspects of nuclear physics, particle...

  14. X-band rf power production and deceleration in the two-beam test stand of the Compact Linear Collider test facility

    CERN Document Server

    Adli, E; Dubrovskiy, A; Syratchev, I; Ruber, R; Ziemann, V

    2011-01-01

    We discuss X-band rf power production and deceleration in the two-beam test stand of the CLIC test facility at CERN. The rf power is extracted from an electron drive beam by a specially designed power extraction structure. In order to test the structures at high-power levels, part of the generated power is recirculated to an input port, thus allowing for increased deceleration and power levels within the structure. The degree of recirculation is controlled by a splitter and phase shifter. We present a model that describes the system and validate it with measurements over a wide range of parameters. Moreover, by correlating rf power measurements with the energy lost by the electron beam, as measured in a spectrometer placed after the power extraction structure, we are able to identify system parameters, including the form factor of the electron beam. The quality of the agreement between model and reality gives us confidence to extrapolate the results found in the present test facility towards the parameter reg...

  15. Production of Si+ and Cl+ ion beams from a Freeman type ion source using low toxicity and non-corrosive vapours as source gas

    International Nuclear Information System (INIS)

    A method is proposed for production of Si+ and Cl+ ions in Freeman type ion sources using low toxicity and non-corrosive vapours of hexamethyldisilane ((CH3)3SiSi(CH3)3) and carbon tetrachloride (CCl4), respectively. These source materials can be used without expensive and complicated safety systems required for silane and chlorine source gases. Experimental X-ray photoelectron spectroscopy results show that in the case of (CH3)3SiSi(CH3)3 vapour used as the ion source gas, the ion beam, after using standard magnetic field ion mass analysis for mass 28, contains about 62% of 28Si+ ions. It is assumed that the molecular ions C2H4+ with the same mass 28 are the main component of the remaining 38% of this ion beam. In the case of the use of CCl4 vapour as ion source gas and magnetic field mass analysis set for mass 35, a pure Cl+ beam is observed; there are no other ions of mass 35 that can be formed from the source gas. The same system when used with water vapour as a source gas can produce pure ion beams of O+ and/or H+ ions without adverse effects produced in the ion source by oxygen gas (oxidation) or typical safety problems with a hydrogen gas supply (explosive)

  16. Optimization studies of photo-neutron production in high- metallic targets using high energy electron beam for ADS and transmutation

    Indian Academy of Sciences (India)

    V C Petwal; V K Senecha; K V Subbaiah; H C Soni; S Kotaiah

    2007-02-01

    Monte Carlo calculations have been performed using MCNP code to study the optimization of photo-neutron yield for different electron beam energies impinging on Pb, W and Ta cylindrical targets of varying thickness. It is noticed that photo-neutron yield can be increased for electron beam energies ≥ 100 MeV for appropriate thickness of the target. It is also noticed that it can be maximized by further increasing the thickness of the target. Further, at higher electron beam energy heat gradient in the target decreases, which facilitates easier heat removal from the target. This can help in developing a photo-neutron source based on electron LINAC by choosing appropriate electron beam energy and target thickness to optimize the neutron flux for ADS, transmutation studies and as high energy neutron source etc. Photo-neutron yield for different targets, optimum target thickness and photo-neutron energy spectrum and heat deposition by electron beam for different incident energy is presented.

  17. Use of electron beams for the production of radioactive nuclei through photo-fission; Utilisation de faisceaux d'electrons pour la production des noyaux radioactifs par photo-fission

    Energy Technology Data Exchange (ETDEWEB)

    M' garrech, Slah

    2004-09-01

    The IPN (institute of nuclear physics) of Orsay decided to build a linear accelerator in order to produce an electron beam of 50 MeV energy and of 10 {mu}A average intensity. It is the ALTO project (Linear Accelerator near the Tandem of Orsay). This project will be dedicated to the production of the radioactive ions using the photo-fission process. The central topic of this thesis is the study of the beam dynamics of the ALTO facility. The first part presents studies concerning the injector. The simulations made with the simulation code PARMELA allowed the optimization of the characteristics of pre-buncher (dephasing HF, accelerating field peak...) to obtain a good bunching factor at the entrance of the buncher and at the entrance of the accelerating section according to the distance separating the two systems. The second part of this thesis is related to measurements of transverse emittance of the beam at the buncher exit. The three gradients method has been selected and the optical system used is a solenoid. The results obtained are in good agreement with former measurements. Finally a calculation of the beam line was carried out to optimize the transport of the beam to the PARRNe target without degrading its characteristics. The calculation codes that have been used are BETA and TRACE-WIN. (author)

  18. Nuclear physics with radioactive beams

    International Nuclear Information System (INIS)

    Radioactive beam production through two different mechanisms: acceleration of radioactive nuclei, and production of secondary beams from projectile fragmentation is overviewed. Some topics of the applications of radioactive beams in nuclear physics, such as identification and study of exotic nuclei, neutron halos, nuclear astrophysics and medical applications are discussed. (K.A.). 24 refs., 8 figs

  19. Lise: a recoil spectrometer at GANIL for the production and study of secondary radioactive beams. Present status and future

    International Nuclear Information System (INIS)

    The doubly achromatic spectrometer LISE, installed at the intermediate-energy heavy-ion facility GANIL is now operating since five years. Essentially, it is composed by two dipole-magnets selecting (in A/Z) and refocusing (achromatically) the projectile-like radioactive fragment-beams emitted at 00. We shall review some of the essential properties of LISE. Some selected examples will be used to demonstrate experimental results which have been obtained so far (discovery of numerous new nuclei up to the drip-lines, half-life measurements, β-γ and delayed-particle spectroscopy, spin-aligned beams, total reaction cross-sections). We shall also discuss several improvements, in particular a cross-field electrostatic/electromagnetic post separator, which are expected to provide in the near future secondary beams of still increased intensity and isotopic purity

  20. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007. PMID:18315105

  1. The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen

    International Nuclear Information System (INIS)

    The authors describe a method for performing nuclear-resonance absorption with the proton beam from a radio-frequency quadrupole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen compared to electrostatic accelerators. This choice of accelerator results in trade-offs in performance and complexity, in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, they successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of the initial laboratory measurements are reported

  2. Measurement of the beam asymmetry Σ in π0η production off the proton with the CBELSA/TAPS experiment

    International Nuclear Information System (INIS)

    In photoproduction experiments, a large number of final states yielding various resonance contributions are accessible. To extract resonance parameters via partial-wave analysis not only the measurement of differential cross-sections is necessary, but also the determination of polarization observables. At the electron accelerator ELSA (Bonn) the coherent bremsstrahlung method was used to generate a linearly polarized photon beam. Using the CBELSA/TAPS detector setup, the beam asymmetry Σ in the reaction γp→pπ0η was determined as a function of various masses and angles for photon energies between 970 MeV and 1650 MeV. (orig.)

  3. Resonance-like production of tensor polarization in the interaction of an unpolarized deuteron beam with graphite targets

    International Nuclear Information System (INIS)

    As shown in a recent paper, an initially unpolarized beam of deuterons can acquire appreciable tensor polarization by traversing a graphite foil. Here those results are presented which result when the earlier linear fits to the measured data are replaced by quadratic fits, taking into account slight non-linearities. The parameters of the fit to the energy dependence of the tensor polarization are discussed. Measured asymmetries confirm the azimuthal symmetry of the beam behind the targets. The values of pzz, achievable with graphite foils, are discussed.

  4. Nonlinear beam-beam resonances

    International Nuclear Information System (INIS)

    Head-on collisions of bunched beams are considered, assuming the two colliding beams have opposite charges. A few experimental observations are described. The single resonance analysis is developed that is applicable to the strong-weak case of the beam-beam interaction. In this case, the strong beam is unperturbed by the beam-beam interaction; motions of the weak beam particles are then analyzed in the presence of the nonlinear electromagnetic force produced by the strong beam at the collision points. The coherent motions of the two coupled strong beams are shown to exhibit distinct nonlinear resonance behavior. 16 refs., 22 figs

  5. K*(892)(+) production in proton-proton collisions at E-beam=3.5 GeV

    Czech Academy of Sciences Publication Activity Database

    Agakishiev, G.; Arnold, O.; Belver, D.; Krása, Antonín; Křížek, Filip; Kugler, Andrej; Sobolev, Yuri, G.; Svoboda, Ondřej; Tlustý, Pavel; Wagner, Vladimír

    2015-01-01

    Roč. 92, č. 2 (2015), 024903. ISSN 0556-2813 R&D Projects: GA ČR GA13-06759S Institutional support: RVO:61389005 Keywords : HADES collaboration * beam energy * mesons Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.733, year: 2014

  6. Quantum beam nanolithography

    International Nuclear Information System (INIS)

    Recently, nanotechnology has attracted much attention. Nanotechnology-related research and development have been intensively carried out in the world. Quantum beam nanolithography such as electron beam lithography is expected as a fabrication tool for nanotechnology-related products. For the development of materials capable of fabricating nanostructures, it is important to understand beam-material interaction. We reported radiation-induced reactions in nanolithography materials studied by ISIR subpicosecond pulse radiolysis system. (author)

  7. Interfacial reaction product and mechanical properties of the electron beam brazed K465 Ni-based superalloy joints

    Institute of Scientific and Technical Information of China (English)

    Wang Gang; Zhang Binggang; He Jingshan; Feng Jicai; Wu Yingjie

    2008-01-01

    Ni-based superalloy K465 is brazed with BNi-2 filler metal by vacuum electron beam brazing (VEBB). In process of VEBB, effects of processing primary parameters on shear strength of joints are investigated. Microstructure of the brazed joint with BNi-2 filler metal is studied by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the structure of brazed seam consists of a large amount of Ni-based γ solid solution, Ni3Al (γ′), Ni3B, WB, CrB, and a small quantity of WC, NbC. The maximum shear strength of the joint is 398 MPa when the beam current of welding is 2.6 mA, heating time is 480 s and focused current is 1 800 mA.

  8. Identified particle production and freeze-out properties in heavy-ion collisions at RHIC Beam Energy Scan program

    CERN Document Server

    ,

    2014-01-01

    The first phase of Beam Energy Scan (BES) program at the Relativistic Heavy-Ion Collider (RHIC) was started in the year 2010 with the aim to study the several aspects of the quantum chromodynamics (QCD) phase diagram. The Solenoidal Tracker At RHIC (STAR) detector has taken data at $\\sqrt{s_{NN}} = $ 7.7, 11.5, 19.6, 27, and 39 GeV in Au+Au collisions in the years 2010 and 2011 as part of the BES programme. For these beam energies, we present the results on the particle yields, average transverse mass and particle ratios for identified particles in mid-rapidity ($|y|$ < 0.1). The measured particle ratios have been used to study the chemical freeze-out dynamics within the framework of a statistical model.

  9. Identified particle production and freeze-out properties in heavy-ion collisions at RHIC Beam Energy Scan program

    Directory of Open Access Journals (Sweden)

    Das Sabita

    2015-01-01

    Full Text Available The first phase of Beam Energy Scan (BES program at the Relativistic Heavy-Ion Collider (RHIC was started in the year 2010 with the aim to study the several aspects of the quantum chromodynamics (QCD phase diagram. The Solenoidal Tracker At RHIC (STAR detector has taken data at √sNN = 7.7, 11.5, 19.6, 27, and 39 GeV in Au+Au collisions in the years 2010 and 2011 as part of the BES programme. For these beam energies, we present the results on the particle yields, average transverse mass and particle ratios for identified particles in mid-rapidity (|y| < 0.1. The measured particle ratios have been used to study the chemical freezeout dynamics within the framework of a statistical model.

  10. Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays

    Energy Technology Data Exchange (ETDEWEB)

    May, J.C. E-mail: may@cber.fda.gov; Rey, L.; Lee, C.-J

    2002-03-01

    Molecular sizing potency results are presented for irradiated samples of one lot of Haemophilus b conjugate vaccine, pneumococcal polysaccharide type 6B and typhoid vi polysaccharide vaccine. The samples were irradiated (25 kGy) by gamma rays, electron beams and X-rays. IgG and IgM antibody response in mice test results (ELISA) are given for the Hib conjugate vaccine irradiated at 0 deg. C or frozen in liquid nitrogen.

  11. Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays

    International Nuclear Information System (INIS)

    Molecular sizing potency results are presented for irradiated samples of one lot of Haemophilus b conjugate vaccine, pneumococcal polysaccharide type 6B and typhoid vi polysaccharide vaccine. The samples were irradiated (25 kGy) by gamma rays, electron beams and X-rays. IgG and IgM antibody response in mice test results (ELISA) are given for the Hib conjugate vaccine irradiated at 0 deg. C or frozen in liquid nitrogen

  12. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    CERN Document Server

    Czapski, M; Tardivat, C; Stora, T; Bouville, F; Leloup, J; Luis, R Fernandes; Augusto, R Santos

    2013-01-01

    New silicon carbide (SiC) and aluminum oxide (Al2O3) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLORA codes. (C) 2013 Elsevier B.V. All rights reserved.

  13. Single source sound production and dynamic beam formation in echolocating harbour porpoises (Phocoena phocoena)

    DEFF Research Database (Denmark)

    Madsen, Peter Teglberg; Wisniewska, Danuta Maria; Beedholm, Kristian

    2010-01-01

    three echolocating porpoises (Phocoena phocoena) with symmetrical pairs of phonic lips. Using time of arrival differences on three hydrophones, we show that all recorded clicks from these three porpoises are produced by the right pair of phonic lips with no evidence of simultaneous or independent...... waveguide for sound energy between 100 and 160 kHz to generate a forward-directed sound beam for echolocation....

  14. Measurement of charm and beauty-production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors

    International Nuclear Information System (INIS)

    A measurement of charm and beauty production in Deep Inelastic Scattering at HERA is presented. The analysis is based on the data sample collected by the ZEUS detector in the period from 2003 to 2007 corresponding to an integrated luminosity of 354 pb-1. The kinematic region of the measurement is given by 522 and 0.022 is the photon virtuality and y is the inelasticity. A lifetime technique is used to tag the production of charm and beauty quarks. Secondary vertices due to decays of charm and beauty hadrons are reconstructed, in association with jets. The jet kinematics is defined by EjetT>4.2(5) GeV for charm (beauty) and -1.6jetjetT and ηjet are the transverse energy and pseudorapidity of the jet, respectively. The significance of the decay length and the invariant mass of charged tracks associated with the secondary vertex are used as discriminating variables to distinguish between signal and background. Differential cross sections of jet production in charm and beauty events as a function of Q2, y, EjetT and ηjet are measured. Results are compared to Next-to-Leading Order (NLO) predictions from Quantum Chromodynamics (QCD) in the fixed flavour number scheme. Good agreement between data and theory is observed. Contributions of the charm and beauty production to the inclusive proton structure function, Fcbarc2 and Fbantib2, are determined by extrapolating the double differential cross sections using NLO QCD predictions. Contributions to the test beam program for the Insertable B-Layer upgrade project of the ATLAS pixel detector are discussed. The test beam data analysis software package EUTelescope was extended, which allowed an efficient analysis of ATLAS pixel sensors. The USBPix DAQ system was integrated into the EUDET telescope allowing test beam measurements with the front end chip FE-I4. Planar and 3D ATLAS pixel sensors were studied at the first IBL test beam at the CERN SPS.

  15. Measurement of fragment production DDX of 72 and 144 MeV 12C beam induced reaction on carbon using Bragg Curve Counter

    International Nuclear Information System (INIS)

    Double differential cross section (DDX) data of fragment production for 72 (6 MeV/nucleon) and 144 MeV (12 MeV/nucleon) 12C beam induced reaction on carbon were measured using a Bragg Curve Counter (BCC). The DDX data were obtained for fragments of He, Li, Be, B, C, N and O at 30 degree emission angle. Theoretical calculation using PHITS code with QMD+GEM model represents the DDX well except for components from reactions of direct process and α particle clustering process. (author)

  16. Optimization of L-lactic Acid Production of Rhizopus Oryzae Mutant RLC41-6 by Ion Beam Implantation at Low-Energy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae RF3608 was mutated by means of nitrogen ion beam implantation and the mutant strain RLC41-6 was isolated. Under optimal conditions the yield of L(+)-lactic acid produced in a shake-flask reached 133 g/L~137 g/L after 36 h cultivation, indicating that the It was almost a 115% increase in lactic acid production compared with the original strain RF3608.

  17. Measurement of charm and beauty-production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Libov, Vladyslav

    2013-08-15

    A measurement of charm and beauty production in Deep Inelastic Scattering at HERA is presented. The analysis is based on the data sample collected by the ZEUS detector in the period from 2003 to 2007 corresponding to an integrated luminosity of 354 pb{sup -1}. The kinematic region of the measurement is given by 5production of charm and beauty quarks. Secondary vertices due to decays of charm and beauty hadrons are reconstructed, in association with jets. The jet kinematics is defined by E{sup jet}{sub T}>4.2(5) GeV for charm (beauty) and -1.6<{eta}{sup jet}<2.2 for both charm and beauty, where E{sup jet}{sub T} and {eta}{sup jet} are the transverse energy and pseudorapidity of the jet, respectively. The significance of the decay length and the invariant mass of charged tracks associated with the secondary vertex are used as discriminating variables to distinguish between signal and background. Differential cross sections of jet production in charm and beauty events as a function of Q{sup 2}, y, E{sup jet}{sub T} and {eta}{sup jet} are measured. Results are compared to Next-to-Leading Order (NLO) predictions from Quantum Chromodynamics (QCD) in the fixed flavour number scheme. Good agreement between data and theory is observed. Contributions of the charm and beauty production to the inclusive proton structure function, F{sup cbar} {sup c}{sub 2} and F{sup b} {sup anti} {sup b}{sub 2}, are determined by extrapolating the double differential cross sections using NLO QCD predictions. Contributions to the test beam program for the Insertable B-Layer upgrade project of the ATLAS pixel detector are discussed. The test beam data analysis software package EUTelescope was extended, which allowed an efficient analysis of ATLAS pixel sensors. The USBPix DAQ system was integrated into the EUDET telescope allowing test beam

  18. Production of Sigma{\\pm}pi?pK+ in p+p reactions at 3.5 GeV beam energy

    CERN Document Server

    Agakishiev, G; Belver, D; Belyaev, A; Berger-Chen, J C; Blanco, A; Boehmer, M; Boyard, J L; Cabanelas, P; Castro, E; Chernenko, S; Destefanis, T Christ M; Dohrmann, F; Dybczak, A; Epple, E; Fabbietti, L; Fateev, O; Finocchiaro, P; Fonte, P; Friese, J; Fröhlich, I; Galatyuk, T; Garzon, J A; Gernhäuser, R; Gilardi, C; Golubeva, M; Gonza'lez-Di'az, D; Guber, F; Gumberidze, M; Heinz, T; Hennino, T; Holzmann, R; Ierusalimov, A; Iori, I; Ivashkin, A; Jurkovic, M; Kämpfer, B; Kanaki, K; Karavicheva, T; Koenig, I; Koenig, W; Kolb, B W; Kotte, R; Kr'asa, A; Krizek, F; Krücken, R; Kuc, H; Kuehn, W; Kugler, A; Kurepin, A; Lalik, R; Lang, S; Lange, J S; Lapidus, K; Liu, T; Lopes, L; Lorenz, M; Maier, L; Mangiarotti, A; Markert, J; Metag, V; Michalska, B; Michel, J; Morinie're, E; Mousa, J; Müntz, C; Naumann, L; Otwinowski, J; Pachmayer, Y C; Palka, M; Parpottas, Y; Pechenov, V; Pechenova, O; Pietraszko, J; Przygoda, W; Ramstein, B; Reshetin, A; Rustamov, A; Sadovsky, A; Salabura, P; Schmah, A; Schwab, E; Siebenson, J; Sobolev, Yu G; Spataro, S; Spruck, B; Ströbele, H; Stroth, J; Sturm, C; Tarantola, A; Teilab, K; Tlusty, P; Traxler, M; Trebacz, R; Tsertos, H; Wagner, V; Weber, M; Wendisch, C; Wüstenfeld, J; Yurevich, S; Zanevsky, Y

    2012-01-01

    We study the production of Sigma^+-pi^+-pK^+ particle quartets in p+p reactions at 3.5 GeV kinetic beam energy. The data were taken with the HADES experiment at GSI. This report evaluates the contribution of resonances like Lambda(1405$, Sigma(1385)^0, Lambda(1520), Delta(1232), N^* and K^*0 to the Sigma^+- pi^-+ p K+ final state. The resulting simulation model is compared to the experimental data in several angular distributions and it shows itself as suitable to evaluate the acceptance corrections properly.

  19. Production of a fluorescence probe in ion-beam radiolysis of aqueous coumarin-3-carboxylic acid solution-2: Effects of nuclear fragmentation and its simulation with PHITS

    Energy Technology Data Exchange (ETDEWEB)

    Maeyama, Takuya [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yamashita, Shinichi; Taguchi, Mitsumasa [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Baldacchino, Gerard [CEA Saclay, IRAMIS, UMR 3299 CEA-CNRS SIS2M, Laboratoire de Radiolyse, F-91191 Gif sur Yvette Cedex (France); Sihver, Lembit [Department of Physics, University of Houston, Houston, TX 77204-5005 (United States); Department of Nuclear Engineering, Texas A and M University, TX 77843-3133 (United States); Department of Roanoke College, Salem, VA 24153 (United States); Department of Nuclear Engineering, Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Murakami, Takeshi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nuclear Professional School, School of Engineering, University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2011-12-15

    The G(OH) values in aqueous coumarin-3-carboxylic-acid (3-CCA) solutions irradiated with {sup 12}C{sup 6+} beams having the energies of 135, 290 and 400 MeV/u were measured by a fluorescent method around the Bragg peak, with 0.6 mm intervals, and quartz cells of 1 cm optical lengths, at the Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences (NIRS). For each ion, the G(OH) has been calculated as a function of dose average LET and position. The calculated results have been compared to measurements, and the results, reproducibility and reliability of the calculations are discussed in the paper. - Highlights: > Therapeutic ion beam has energy of several hundred MeV/u because it is necessary for a few tens cm range. > With such high energy, nuclear fragmentations of carbon ions occur resulting in production of lighter ions. > In this study, OH yield in water radiolysis near the Bragg peak of therapeutic ion beams was measured. > Measured yields are discussed considering nuclear fragmentation by PHITS code.

  20. Production and study of pulsed heavy-ion beams of highest phase-space density in the GSI experimental storage ring

    International Nuclear Information System (INIS)

    Aim of the present thesis was the production of intense, bunched heavy-ion beams for the high temperature measurement place of the GSI. The main topics layed hereby both on the study of collective effects in space-charge dominated, stationary bunches in the ESR, and on the implementation of a procedure for the compression of weakly bunched beams. All considerations concentrated hereby exclusively on the longitudinal phase space with the attempt to minimize the pulse duration of the beams available for target experiments. By means of the experimental results the flattening of the external RF potential in space-charge dominated bunches predicted by the analytical model of the envelope equation could be confirmed. Especially the evaluation of longitudinal Schottky spectra permitted the observation of the reduced, incoherent synchrotron frequency, as well as the splitting of the coherent multipole modes. Furthermore it could be shown that the separation of the synchrotron satellites is farly independent on the shape of the considered distribution function and represents a direct measure for their phase-space density

  1. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons; Etude de la production de faisceaux riches en neutrons par fission induite par neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ch

    2000-09-15

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons.

  2. Final product analysis in the e-beam and gamma radiolysis of aqueous solutions of metoprolol tartrate

    Energy Technology Data Exchange (ETDEWEB)

    Slegers, Catherine [Universite Catholique de Louvain, Unite d' Analyse Chimique et Physico-chimique des Medicaments, CHAM 72.30, Avenue E. Mounier, 72, B-1200 Brussels (Belgium)]. E-mail: catherine.slegers@cham.ucl.ac.be; Tilquin, Bernard [Universite Catholique de Louvain, Unite d' Analyse Chimique et Physico-chimique des Medicaments, CHAM 72.30, Avenue E. Mounier, 72, B-1200 Brussels (Belgium)

    2006-09-15

    The radiostability of metoprolol tartrate aqueous solutions and the influence of the absorbed dose (0-50 kGy), dose rate (e-beam (EB) vs. gamma ({gamma})) and radioprotectors (pharmaceutical excipients) are investigated by HPLC-UV analyses and through computer simulations. The use of radioprotecting excipients is more promising than an increase in the dose rate to lower the degradation of metoprolol tartrate aqueous solutions for applications such as radiosterilization. The decontamination of metoprolol tartrate from waste waters by EB processing appears highly feasible.

  3. Final product analysis in the e-beam and gamma radiolysis of aqueous solutions of metoprolol tartrate

    Science.gov (United States)

    Slegers, Catherine; Tilquin, Bernard

    2006-09-01

    The radiostability of metoprolol tartrate aqueous solutions and the influence of the absorbed dose (0-50 kGy), dose rate (e-beam (EB) vs. gamma ( γ)) and radioprotectors (pharmaceutical excipients) are investigated by HPLC-UV analyses and through computer simulations. The use of radioprotecting excipients is more promising than an increase in the dose rate to lower the degradation of metoprolol tartrate aqueous solutions for applications such as radiosterilization. The decontamination of metoprolol tartrate from waste waters by EB processing appears highly feasible.

  4. Final product analysis in the e-beam and gamma radiolysis of aqueous solutions of metoprolol tartrate

    International Nuclear Information System (INIS)

    The radiostability of metoprolol tartrate aqueous solutions and the influence of the absorbed dose (0-50 kGy), dose rate (e-beam (EB) vs. gamma (γ)) and radioprotectors (pharmaceutical excipients) are investigated by HPLC-UV analyses and through computer simulations. The use of radioprotecting excipients is more promising than an increase in the dose rate to lower the degradation of metoprolol tartrate aqueous solutions for applications such as radiosterilization. The decontamination of metoprolol tartrate from waste waters by EB processing appears highly feasible

  5. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  6. 用于产生放射性离子束ECR离子源%ECR Ion Sources for Radioactive Ion Beam Production

    Institute of Scientific and Technical Information of China (English)

    P.Jardin; F.Lemagnen; R.Leroy; J.Y.Pacquet; M.G.Saint Laurent; A.C.C.Villari; C.Canet; J.C.Cornell; M.Dupuis; C.Eleon; J.L.Flambard; G.Gaubert; N.Lecesne; P.Leherissier

    2007-01-01

    ECRIS's dedicated to radioactive ion production must be as efficient as those used for production of stable elements,but in addition they are subject to more specific constraints such as radiation hardness,short atom-to-ion transformation time,beam purity and low cost.Up to now,different target/ion-source systems(TISSs)have been designed,using singly-charged ECRISs,multi.charged ion sources or an association of singly-to-multi-charged ECRISs.The main goals,constraints and advantages of different existing ECR setups will be compared before a more detailed description is given of the one designed for the SPIRAL Ⅱ project and its future improvements.

  7. Soft Fusion Energy Path: Isotope Production in Energy Subcritical/Economy Hypercritical D +D Colliding-Beam Mini Fusion Reactor `Exyder'

    Science.gov (United States)

    Hester, Tim; Maglich, Bogdan; Calsec Collaboration

    2015-03-01

    Bethe1 and Sakharov2 argued for soft fusion energy path via isotope production, substantiated by Manheimer3. - Copious T and 3He production4 , 5 from D(d, p) T and D(d, n) 3He reactions in 725 KeV D +D colliding beams was measured in weak-focusing Self-Collider6 , 7 radius 0.15 m, in B = 3.12 T, non-linearly stabilized by electron cloud oscillations8 to confinement time = 24 s. Simulations6 predict that by switching to strong focusing9, 10 deuterons 0.75 MeV each, generate 1 3He +1T +1p + 1n at total input energy cost 10.72 MeV. Economic value of T and 3He is 65 and 120 MeV/atom, respectively. We obtain economic gain 205MeV/10.72 MeV ~ 2,000% i.e. 3He production funds cost of T. If first wall is made of Thorium n's will breed 233U releasing 200 MeV/fission, at neutron cost 5.36 MeV versus 160 MeV in beam on target, resulting in no cost 3He production, valued 75K/g. 1. Physics Today, May 1979, p.44; 2. Memoirs, Vintage Books, (1992); 3. Phys. Today, May 2012 p. 12; 4. Phys. Rev. Lett. 54, 796 (1985); 5. Bull. APS, 57, No. 3 (2012); 6. Part. Acc.1, (1970); 7. ANEUTRONIC FUSION NIM A 271 1-167 (1988); 8. Phys. Rev. Lett. 70, 1818 (1993); 9. Part. Acc. 34, 13 (1990).

  8. Design of a secondary ionization target for direct production of a C− beam from CO2 pulses for online AMS

    International Nuclear Information System (INIS)

    We designed and optimized a novel device “target” that directs a CO2 gas pulse onto a Ti surface where a Cs+ beam generates C− from the CO2. This secondary ionization target enables an accelerator mass spectrometer to ionize pulses of CO2 in the negative mode to measure 14C/12C isotopic ratios in real time. The design of the targets were based on computational flow dynamics, ionization mechanism and empirical optimization. As part of the ionization mechanism, the adsorption of CO2 on the Ti surface was fitted with the Jovanovic–Freundlich isotherm model using empirical and simulation data. The inferred adsorption constants were in good agreement with other works. The empirical optimization showed that amount of injected carbon and the flow speed of the helium carrier gas improve the ionization efficiency and the amount of 12C− produced until reaching a saturation point. Linear dynamic range between 150 and 1000 ng of C and optimum carrier gas flow speed of around 0.1 mL/min were shown. It was also shown that the ionization depends on the area of the Ti surface and Cs+ beam cross-section. A range of ionization efficiency of 1–2.5% was obtained by optimizing the described parameters.

  9. Study of Prompt Dimuon and Charm Production with Proton and Heavy Ion Beams at the CERN SPS

    CERN Multimedia

    Cicalo, C

    2002-01-01

    The NA60 detector complements the muon spectrometer and zero degree calorimeter previously used in NA50 with new state-of-the-art silicon detectors, placed in the target region. A radiation hard beam tracker, made of silicon microstrip detectors operated at 130 K, is placed on the beam line, upstream of the target system. It gives the transverse coordinates of the interaction point on the targets with a precision around 20 micron, allowing us to measure the offset of the muon tracks, and tag events where a pair of D mesons was produced. Downstream of the target system, and inside a dipole magnetic field of 2.5 T, we have a silicon tracking telescope, that tracks the charged particles and allows us to identify which one of them provides the best match to the muon measured in the muon spectrometer, placed behind a 5.5m silicon microstrip planes complemented by pixel planes. For the ion runs, the very high multiplicity of charged particles imposes the exclusive use of radiation tolerant pixel detectors.

  10. Measurements of yields of fission products in the reaction of {sup 238}U with high-energy p, d and n beams

    Energy Technology Data Exchange (ETDEWEB)

    Nolen, J.A.; Ahmad, I.; Back, B.B. [and others

    1995-08-01

    An experiment was performed at the Michigan State University cyclotron to determine the yields of neutron-rich fission products in the reaction of {sup 238}U with 100-MeV neutrons, 200-MeV deuterons and 200-MeV protons. Several 1-mm-thick {sup 238}U foils were irradiated for 100-second intervals sequentially for each configuration and the ten spectra were added for higher statistics. The three successive spectra, each for a 40 s period, were accumulated for each sample. Ten foils were irradiated. Successive spectra allowed us to determine approximate half-lives of the gamma peaks. Several arrangements, which were similar to the setup we plan to use in our radioactive beam proposal, were used for the production of fission products. For the high-energy neutron irradiation, U foils were placed after a 5-inch-long, 1-inch-diameter Be cylinder which stopped the 200-MeV deuteron beam generating 100-MeV neutrons. Arrangements for deuteron irradiation included direct irradiation of U foils, placing U foils after different lengths of (0.5 inch, 1.0 inch and 1.5 inch) 2-inch diameter U cylinder. Since the deuteron range in uranium is 17 mm, some of the irradiations were due to the secondary neutrons from the deuteron-induced fission of U. Similar arrangements were also used for the 200-MeV proton irradiation of the {sup 238}U foils. In all cases, several neutron-rich fission products were identified and their yields determined. In particular, we were able to observe Sn in all the runs and determine its yield. The data show that with our proposed radioactive device we will be able to produce more than 10{sup 12} {sup 132}Sn atoms per second in the target. Assuming an overall efficiency of 1 %, we will be able to deliver one particle nanoampere of {sup 132}Sn beam at a target location. Detailed analysis of the {gamma}-ray spectra is in progress.

  11. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    International Nuclear Information System (INIS)

    Highlights: • SiC and Al2O3 of uniaxial porosity were produced with ice-templating method. • The method allows controlled pore formation within the material. • Calculation of mechanical integrity under irradiation with protons was performed. • Generated thermal stresses should not exceed material’s strength. -- Abstract: New silicon carbide (SiC) and aluminum oxide (Al2O3) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLUKA codes

  12. Beam-spin asymmetry of pion, kaon, proton and antiproton production in semi-inclusive deep-inelastic scattering

    International Nuclear Information System (INIS)

    Beam-spin asymmetries in the azimuthal distribution of pions, kaons, protons and antiprotons in semi-inclusive deep inelastic scattering (SIDIS) extracted from 2000-2007 HERMES data are presented. The asymmetries were measured in the kinematic region Q2>1 GeV2, W2 > 10 GeV2, 0.1

  13. Production of intense highly charged ion beams by IMP 14.5 GHz electron cyclotron resonance ion source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new 14.5 GHz Electron Cyclotron Resonance (ECR) ion source has been constructed over the last two years. The source was designed and tested by making use of the latest results from ECR ion source development, such as high mirror magnetic field, large plasma volume, and biased probe. 140μA of O7+, 185μA of Ar11+ and 50 μA of Xe26+ could be produced with a RF power of 800 W. The intense beams of highly charged metallic ions are produced by means of the method of a metal evaporation oven and volatile compound through axial access. The test results are 130μA of Ca11+, 70μA of Ca12+ and 65μA of Fe10+. The ion source has been put into operation for the cyclotron at the Institute of Modern Physics (IMP).

  14. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  15. Energy release, beam attenuation radiation damage, gas production and accumulation of long-lived activity in Pb, Pb-Bi and Hg targets

    Energy Technology Data Exchange (ETDEWEB)

    Shubin, Yu.N. [IPPE, Obninsk (Russian Federation)

    1996-06-01

    The calculation and analysis of the nuclei concentrations and long-lived residual radioactivity accumulated in Pb, Pb-Bi and Hg targets irradiated by 800 MeV, 30 mA proton beam have been performed. The dominating components to the total radioactivity of radionuclides resulting from fission and spallation reactions and radiative capture by both target nuclei and accumulated radioactive nuclei for various irradiation and cooling times were analyzed. The estimations of spectral component contributions of neutron and proton fluxes to the accumulated activity were carried out. The contributions of fission products to the targets activity and partial activities of main long-lived fission products to the targets activity and partial activities of main long-lived fission products were evaluated. The accumulation of Po isotopes due to reactions induced by secondary alpha-particles were found to be important for the Pb target as compared with two-step radiative capture. The production of Tritium in the targets and its contribution to the total targets activity was considered in detail. It is found that total activities of both targets are close to one another.

  16. Inclusive rho0 and π production in hadron-proton interactions at 147 GeV/c incident beam momentum

    International Nuclear Information System (INIS)

    In this thesis several aspects of particle production at low transverse momentum in high energy hadron-proton collisions are described. The phenomenology of the observed spectra is compared to the expectations of various quark-parton models. (Auth.)

  17. Dynamics of beam halo in mismatched beams

    International Nuclear Information System (INIS)

    High-power proton linacs for nuclear materials transmutation and production, and new accelerator-driven neutron spallation sources must be designed to control beam-halo formation, which leads to beam loss. The study of particle-core models is leading to a better understanding of the causes and characteristics of beam halo produced by space-charge forces in rms mismatched beams. Detailed studies of the models have resulted in predictions of the dependence of the maximum amplitude of halo particles on a mismatch parameter and on the space-charge tune-depression ratio. Scaling formulas have been derived which will provide guidance for choosing the aperture radius to contain the halo without loss. (author)

  18. Inclusive dielectron production in proton-proton collisions at 2.2 GeV beam energy

    CERN Document Server

    Agakishiev, G; Balanda, A; Bassini, R; Böhmer, M; Bokemeye, H; Boyard, J L; Cabanelas, P; Chernenko, S; Christ, T; Destefanis, M; Dohrmann, F; Dybczak, A; Eberl, T; Fabbietti, L; Fateev, O; Finocchiaro, P; Friese, J; Fröhlich, I; Galatyuk, T; Garzón, J A; Gernhäuser, R; Gilardi, C; Golubeva, M; González-Díaz, D; Guber, F; Gumberidze, M; Hennino, T; Holzmann, R; Ierusalimov, A; Iori, I; Ierusalimov, A; Ivashkin, A; Jurkovic, M; Kämpfer, B; Kanaki, K; Karavicheva, T; Koenig, I; Koenig, W; Kolb, B W; Kotte, R; Kozuch, A; Krizek, F; Kühn, W; Kugler, A; Kurepin, A; Lang, S; Lapidus, K; Liu, T; Maier, L; Markert, J; Metag, V; Michalska, B; Morinière, E; Mousa, J; Münch, M; Müntz, C; Naumann, L; Otwinowski, J; Pachmayer, Y C; Pechenov, V; Pechenova, O; Cavalcanti, T Perez; Pietraszko, J; Pospisil, V; Przygoda, W; Ramstein, B; Reshetin, A; Roy-Stephan, M; Rustamov, A; Sadovsky, A; Sailer, B; Salabura, P; Sánchez, M; Schmah, A; Schwab, E; Sobolev, Yu G; Spataro, S; Spruck, B; Ströbele, H; Stroth, J; Sturm, C; Tarantola, A; Teilab, K; Tlusty, P; Toia, A; Traxler, M; Trebacz, R; Tsertos, H; Wagner, V; Wisniowski, M; Wojcik, T; Wüstenfeld, J; Yurevich, S; Zanevsky, Y; Zumbruch, P

    2012-01-01

    Data on inclusive dielectron production are presented for the reaction p+p at 2.2 GeV measured with the High Acceptance DiElectron Spectrometer (HADES). Our results supplement data obtained earlier in this bombarding energy regime by DLS and HADES. The comparison with the 2.09 GeV DLS data is discussed. The reconstructed e+e- distributions are confronted with simulated pair cocktails, revealing an excess yield at invariant masses around 0.5 GeV/c2. Inclusive cross sections of neutral pion and eta production are obtained.

  19. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    Science.gov (United States)

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  20. On the beam-target nature of neutron production in the FN-II dense plasma focus device

    International Nuclear Information System (INIS)

    The origin of neutrons produced in Dense Plasma Focus devices has been a longstanding subject of controversy. It has been established in the literature, through time resolved measurements, that at least for the cases of medium and large energy devices, there are two pulses of neutron emission. The first pulse arises before the plasma column is disrupted, and there can be some doubt about whether it is of thermonuclear origin, or due to the acceleration of ions by a Fermi mechanism. The second one, which has been found to occur when the plasma column expands, and m=0 instabilities set in, seems to be due to beam-target effect. Evidence has been collected at the FN-II dense plasma focus device, which shows that the origin of neutrons in this particular experiment is predominantly of the latter kind. Two different time integrated measurements of anisotropy of neutrons have been carried out. One of them is obtained with silver activation neutron detectors placed on axis and at 90 deg. . Independently, an array of CR-39 plastic track detectors, covered with polyethylene is used to determine the average angular distribution of the neutron emission. Time resolved measurements have been obtained with scintillator-photomultiplier systems, using the time-of-flight technique. By comparing the arrival of the neutron pulse at 90 deg. with the ones at greater angles, a Doppler shift has been observed

  1. Analyzing power in inclusive π+ and π- production at high xF with a 200 GeV polarized proton beam

    International Nuclear Information System (INIS)

    The analyzing power in inclusive charged pion production has been measured using the 200 GeV Fermilab polarized proton beam. A striking dependence in χF is observed in which AN increases from 0 to 0.42 with increasing χF for the π+ data and decreases from 0 to -0.38 with increasing χF for π- data. The kinematic range covered is 0.2≤χF≤0.9 and 0.2≤pT≤2.0 GeV/c. In a simple model our data indicate that at large χF the transverse spin of the proton is correlated with that of its quark constituents. (orig.)

  2. Thermal-electric coupled-field finite element modeling and experimental testing of high-temperature ion sources for the production of radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Manzolaro, M., E-mail: mattia.manzolaro@lnl.infn.it; Andrighetto, A. [INFN, Laboratori Nazionali di Legnaro, Viale dell’Universita’ 2, Legnaro, 35020 Padova (Italy); Meneghetti, G. [Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova (Italy); Vivian, G.; D’Agostini, F. [INFN, Laboratori Nazionali di Legnaro, Viale dell’Universita’ 2, Legnaro, 35020 Padova (Italy); Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova (Italy)

    2016-02-15

    In isotope separation on line facilities the target system and the related ion source are two of the most critical components. In the context of the selective production of exotic species (SPES) project, a 40 MeV 200 μA proton beam directly impinges a uranium carbide target, generating approximately 10{sup 13} fissions per second. The radioactive isotopes produced in this way are then directed to the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work both the surface ion source and the plasma ion source adopted for the SPES facility are presented and studied by means of numerical thermal-electric models. Then, numerical results are compared with temperature and electric potential difference measurements, and finally the main advantages of the proposed simulation approach are discussed.

  3. Thermal-electric coupled-field finite element modeling and experimental testing of high-temperature ion sources for the production of radioactive ion beams

    International Nuclear Information System (INIS)

    In isotope separation on line facilities the target system and the related ion source are two of the most critical components. In the context of the selective production of exotic species (SPES) project, a 40 MeV 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The radioactive isotopes produced in this way are then directed to the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work both the surface ion source and the plasma ion source adopted for the SPES facility are presented and studied by means of numerical thermal-electric models. Then, numerical results are compared with temperature and electric potential difference measurements, and finally the main advantages of the proposed simulation approach are discussed

  4. Thermal-electric coupled-field finite element modeling and experimental testing of high-temperature ion sources for the production of radioactive ion beams.

    Science.gov (United States)

    Manzolaro, M; Meneghetti, G; Andrighetto, A; Vivian, G; D'Agostini, F

    2016-02-01

    In isotope separation on line facilities the target system and the related ion source are two of the most critical components. In the context of the selective production of exotic species (SPES) project, a 40 MeV 200 μA proton beam directly impinges a uranium carbide target, generating approximately 10(13) fissions per second. The radioactive isotopes produced in this way are then directed to the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work both the surface ion source and the plasma ion source adopted for the SPES facility are presented and studied by means of numerical thermal-electric models. Then, numerical results are compared with temperature and electric potential difference measurements, and finally the main advantages of the proposed simulation approach are discussed. PMID:26932055

  5. Study of Particle Production and Nuclear Fragmentation in Collisions of $^{16}$O Beams with Emulsion Nuclei at 13-200 A GeV

    CERN Multimedia

    2002-01-01

    .SK 2\\\\ \\\\ The aim of the experiment is to study, on an event by event basis, multiplicities of produced charged particles, pseudo-rapidity density distributions globally and in selected regions of pseudo-rapidity, density fluctuations, multiplicity and angular distributions of nuclear fragments and recoiling protons (30-400~A~MeV) and cross sections for production and interation of light and medium (Z=2-8) projectile fragments. \\\\ \\\\ The detectors are emulsion chambers as well as conventional emulsion stacks. The emulsion chambers consist of several layers of a plastic substrate, each coated with nuclear emulsion on both sides. Since the best measurement accuracy is obtained for the particles with the smallest emission angles, this design is especially suited for the pseudo-rapidity determination. The emulsion stacks, of both high and low sensitivity, have been exposed in the conventional way, with the beam parallel to the emulsion sheets. These stacks are used to study the fragmentation of the interaction n...

  6. Molecular beam scattering investigation of the oxidation of CO on Rh(111). II. Angular and velocity distributions of the CO/sub 2/ product

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.S.; Sibener, S.J.

    1989-03-01

    Molecular beam and time of flight methods have been used to examine the angular distributions and velocity distributions of the CO/sub 2/ product molecules formed in the catalytic oxidation of CO on a Rh(111) single crystal in the surface temperature range 700--1000 K. The angular distribution was sharply peaked about the surface normal, and cannot be described by a simple cos/sup n/ theta expression. No temperature dependence was observed in the angular distribution over the range of temperatures studied here. Observed velocity distributions were clearly non-Maxwellian and had average translational energies in excess of those expected at the surface temperatures. Furthermore, the average velocity depended strongly on the desorption angle. Molecules desorbing along the surface normal had an average translational energy of approx.8 kcal/mol. The average energy decreased with increasing angle, reaching a value of approx.4 kcal/mol at an angle of 60/sup 0/. All of the observed velocity distributions were narrower than Maxwellian distributions with the same average energies. Product velocity distributions did not appear to vary with surface temperature. The observed excess energies are believed to arise from the crossing of the activation barrier to reaction, with a fraction of the reaction energy being carried away from the surface by the product molecules.

  7. Measurement of D{sup *{+-}} production at low Q{sup 2} with the beam-pipe calorimeter of ZEUS at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Irrgang, P.

    2004-12-01

    The production of D* mesons in deep-inelastic ep-scattering has been studied using the ZEUS detector at HERA. The total D* production cross-section and the differential cross-sections as functions of Q{sup 2}, y, p{sub t}(D*) and {eta}(D*) have been measured at low Q{sup 2}. The data sample used was collected during the period 1998-2000 and amounts to an integrated luminosity of 82.2 pb{sup -1}. The low Q{sup 2} region could be reached using the beam-pipe calorimeter which measures the scattered electron at very small angles. Therefore special emphasis was put on the calibration of the BPC in order to reconstruct events in the kinematic range 0.05 < Q{sup 2} < 0.7 GeV{sup 2} and 0.02 < y < 0.85. The D* mesons have been identified via the decay into lighter mesons D{sup *}+{yields}K{sup -}{pi}{sup +}{pi}{sup -} and the charged conjugated decay in the kinematic region 1.5production measurements could be extended towards lower values of Q{sup 2} in agreement with the corresponding perturbative QCD predictions. (orig.)

  8. Product yields of water radiolysis with high-energy heavy-ion beams relevant to spatial and temporal track structures

    International Nuclear Information System (INIS)

    Radiolysis of neutral water with high-energy heavy ions has been investigated since the FY 2002. It has been purposed to clarify track structure and its dynamics based on product yields, which are macroscopically measurable. Until the end of the FY 2008, following 4 things has been accomplished: (A) measurement of primary yields of main products (e-aq, ·OH, H2O2), which are defined as yields approximately at 100 ns after irradiation, (B) investigation of temporal behavior of water radicals during ns-μs, (C) development of a sensitive method to determine ·OH yield and its application to heavy-ion irradiations, and (D) investigation of ·OH yields near the Bragg peak. In the FY 2009, experimental data obtained in activity, (D) were carefully discussed based on fragmentation simulation with HIBRAC and PHITS. In addition, two new challenges, (E) utilization of ESR and (F) development of online analysis apparatus of gaseous products, have been started. (author)

  9. Radioactive ion beams at SPIRAL

    International Nuclear Information System (INIS)

    The radioactive ion beam facility SPIRAL, presently under construction, will be based on the very high intensity heavy-ion beams (96AMeV at 6kW from He to Ar) at GANIL, France. The facility will produce radioactive ion beams using the ISOL method and a permanent magnet ECRIS which will allow for the production of multiple charged radioactive ions. The beam will be accelerated by a K=265 compact cyclotron and delivered into the existing experimental areas. The first tests for the production of radioactive ion beams have been undertaken with the test bench separator SIRa. A description of the facility, including the first results for the production of radioactive ion beams and perspectives are given. ((orig.))

  10. Radioactive ion beams at Spiral

    International Nuclear Information System (INIS)

    The radioactive ion beam facility SPIRAL, presently under construction, will be based on the very high intensity heavy-ion beams (96A MeV at 6kW from He to Ar) at GANIL, France. The facility will produce radioactive ion beams using the ISOL method and a permanent magnet ECRIS which will allow for the production of multiple charged radioactive ions. The beam will be accelerated by a K = 265 compact cyclotron and delivered into the existing experimental areas. The first tests for the production of radioactive ion beams has been undertaken with the test bench separator SIRa. A description of the facility, including the first results for the production of radioactive ion beams and perspectives are given. (authors). 10 refs., 3 figs., 1 tab

  11. Measurement of transverse energy production with Si and Au beams at relativistic energy: Towards hot and dense hadronic matter

    International Nuclear Information System (INIS)

    We present a systematic study of transverse energy (ET) production in collisions of 11.4A GeV/c Au and 14.6A GeV/c Si ions with targets of Al, Au, and Pb. Comparison of data for Au+Au and Si+Al indicates that, for the heavier system, there is an increase in the amount of stopping which is accompanied by a decrease in the width of the dET/dη distribution. The ratio of the maximum ET observed for the two systems is significantly greater than the ratio of the total energy available in the center of mass frame

  12. High intensity laser generation of proton beams for the production of β+ sources used in positron emission tomography

    International Nuclear Information System (INIS)

    Protons of energies up to 37 MeV have been generated using ultra-intense laser-solid interactions. These protons can be used to induce nuclear reactions in materials to produce β+ emitting nuclei of relevance to the nuclear medicine community for Positron Emission Tomography, namely 11C and 13N via (p,n) and (p,α) reactions. Activities of the order of 100 kBq have been measured from a single laser pulse. The possibility of using ultraintense lasers as a substitute to cyclotrons for isotope production is discussed

  13. Tailoring medium energy proton beam to induce low energy nuclear reactions in 86SrCl2 for production of PET radioisotope 86Y

    International Nuclear Information System (INIS)

    This paper reports results of experiments at Brookhaven Linac Isotope Producer (BLIP) aiming to investigate effective production of positron emitting radioisotope 86Y by the low energy 86Sr(p,n) reaction. BLIP is a facility at Brookhaven National Laboratory designed for the proton irradiation of the targets for isotope production at high and intermediate proton energies. The proton beam is delivered by the Linear Accelerator (LINAC) whose incident energy is tunable from 200 to 66 MeV in approximately 21 MeV increments. The array was designed to ensure energy degradation from 66 MeV down to less than 20 MeV. Aluminum slabs were used to degrade the proton energy down to the required range. The production yield of 86Y (1.2+/−0.1 mCi (44.4+/−3.7) MBq/μAh) and ratio of radioisotopic impurities was determined by assaying an aliquot of the irradiated 86SrCl2 solution by gamma spectroscopy. The analysis of energy dependence of the 86Y production yield and the ratios of radioisotopic impurities has been used to adjust degrader thickness. Experimental data showed substantial discrepancies in actual energy propagation compared to energy loss calculations. - Highlights: • High energy proton accelerator was used to produce 86Y via low energy 86Sr(p,n) reaction. • Proton energy was tailored by degradation. • Radioisotopic purity of yttrium fraction is comparable to that obtained in “small” cyclotron. • Energy loss calculations were not reliable

  14. Beam - cavity interaction beam loading

    International Nuclear Information System (INIS)

    The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)

  15. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Science.gov (United States)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  16. Frozen Beams

    CERN Document Server

    Okamoto, Hiromi

    2005-01-01

    In general, the temperature of a charged particle beam traveling in an accelerator is very high. Seen from the rest frame of the beam, individual particles randomly oscillate about the reference orbit at high speed. This internal kinetic energy can, however, be removed by introducing dissipative interactions into the system. As a dissipative process advances, the beam becomes denser in phase space or, in other words, the emittance is more diminished. Ideally, it is possible to reach a "zero-emittance" state where the beam is Coulomb crystallized. The space-charge repulsion of a crystalline beam just balances the external restoring force provided by artificial electromagnetic elements. In this talk, general discussion is made of coasting and bunched crystalline beams circulating in a storage ring. Results of molecular dynamics simulations are presented to demonstrate the dynamic nature of various crystalline states. A possible method to approach such an ultimate state of matter is also discussed.

  17. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  18. Propagation of an ultra intense laser pulse in an under dense plasma: production of quasi monoenergetic electron beams and development of applications

    International Nuclear Information System (INIS)

    This experimental study concerns the generation of electron beams with original properties. These electrons beams originate from the interaction of an ultra-intense and short laser pulse with a gas jet. Previously, these electron beams had a large divergence and a broad spectrum. A major improvement in this field was achieved when an electron beam with low divergence (10 mrad) and a peaked spectrum (170 MeV) was observed during this thesis, using a new single shot electron spectrometer. A parametric study of the interaction allowed to observe the evolution of the electron beam. Experiments have been carried out to deepen the characterization of the electron beam. The observation of transition radiation generated by the electrons at an interface shows that the electron beam interacts with the laser pulse during the acceleration. Radial oscillations of the electron beam around the laser axis, named betatron oscillations, were also observed on the electron spectra. Such a quasi-monoenergetic spectrum is essential for many applications. In order to justify the interest of this electron beam, several applications are presented: a sub-milli-metric gamma-ray radiography of dense objects, a dose profile of the electron beam comparable to present capabilities of photon sources for radiotherapy, a very short temporal profile useful for water radiolysis and the generation of a bright X-ray source with low divergence. (author)

  19. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the delta m**2 about equals 1-eV**2 region

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, David W.; /Columbia U.

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the {Delta}m{sup 2} {approx} 1 eV{sup 2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  20. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G; Thorn, A

    2013-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  1. Parton distributions with high energy proton beams

    International Nuclear Information System (INIS)

    The opportunities for using high energy proton beams to advance our current knowledge in parton distributions are discussed. Highlights from some Fermilab dimuon production experiments with 800 GeV proton beams are presented. Possible future directions are discussed

  2. Operational beams for the LHC

    CERN Document Server

    Papaphilippou, Y; Rumolo, G; Manglunki, D

    2014-01-01

    The variety of beams, needed to set-up in the injectors as requested in the LHC, are reviewed, in terms of priority but also performance expectations and reach during 2015. This includes the single bunch beams for machine commissioning and measurements (probe, Indiv) but also the standard physics beams with 50 ns and 25 ns bunch spacing and their high brightness variants using the Bunch Compression Merging and Splitting (BCMS) scheme. The required parameters and target performance of special beams like the doublet for electron cloud enhancement and the more exotic 8b$\\oplus$4e beam, compatible with some post-scrubbing scenarios are also described. The progress and plans for the LHC ion production beams during 2014-2015 are detailed. Highlights on the current progress of the setting up of the various beams are finally presented with special emphasis on potential performance issues across the proton and ion injector chain.

  3. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    Science.gov (United States)

    Kolmogorov, A.; Atoian, G.; Davydenko, V.; Ivanov, A.; Ritter, J.; Stupishin, N.; Zelenski, A.

    2014-02-01

    The RHIC polarized H- ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ˜0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  4. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  5. A beam profile monitor using the ionization of residual gas in the beam pipe

    International Nuclear Information System (INIS)

    A beam profile monitor for high energy beams, which has no intercepting parts in the beam pipe, is described. It makes use of the ionization of the residual gas, which is still present in the vacuum chamber of the beam guiding system. The detection of the ionization products is performed with microchannel plates. (orig.)

  6. Heavy pentaquark states $P_c(4380)$ and $P_c(4450)$ in the $J/\\psi$ production induced by pion beams off the nucleon

    CERN Document Server

    Kim, Sang-Ho; Hosaka, Atsushi

    2016-01-01

    We investigate the $J/\\psi$ production induced by pion beams off the nucleon, emphasizing the heavy pentaquarks $P_c(4380)$ and $P_c(4450)$ in the intermediate states, based on a hybridized Regge model. We consider the $\\rho$ and $\\pi$ mesons in the $t$ channel as a background, and include the heavy pentaquarks in the $s$ channel. The coupling constants such as the $\\rho NN$ and $\\pi NN$ vertices are taken from the $NN$ potentials, whereas those for the $J/\\psi\\rho\\pi$ and $J/\\psi\\pi\\pi$ vertices are determined by using the experimental data on the branching ratios. In order to estimate the $P_c(4380)$ and $P_c(4450)$ coupling constants, we are guided by the experimental upper limit on the total cross section for the $\\pi N\\to J/\\psi N$ reaction. The background total cross section turns out to be of order $10^{-4}-10^{-3}$ nb. In the vicinity of the heavy pentaquark masses, we find that the total cross section reaches about $1$ nb.

  7. Electron beam processing system

    International Nuclear Information System (INIS)

    Electron beam Processing Systems (EPS) are used as useful and powerful tools in many industrial application fields such as the production of cross-linked wire, rubber tire, heat shrinkable film and tubing, curing, degradation of polymers, sterilization and environmental application. In this paper, the feature and application fields, the selection of machine ratings and safety measures of EPS will be described. (author)

  8. Intense positron beams: linacs - preworkshop copy

    International Nuclear Information System (INIS)

    Beams of monoenergetic positrons with energies of a few eV to many keV have been used in experiments in atomic physics, solid-state physics and materials science. The production of positron beams from a new source, an electron linac, is described. Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency, moderator geometry, beam spot size and other positron beam parameters have been determined for electrons with energies from 60 to 120 MeV. Low-energy positron beams produced with a high-energy electron linac can be of much higher intensity than those beams currently derived from radioactive sources. These higher-intensity beams will make possible positron experiments previously infeasible

  9. Intense positron beams: linacs. Preworkshop copy

    International Nuclear Information System (INIS)

    Beams of monoenergetic positrons with energies of a few eV to many keV have been used in experiments in atomic physics, solid state physics and materials science. The production of positron beams from a new source, an electron linac, is described. Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency, moderator geometry, beam spot size and other positron beam parameters have been determined for electrons with energies from 60 to 120 MeV. Low-energy positron beams produced with a high-energy electron linac can be of much higher intensity than those beams currently derived from radioactive sources. These higher intensity beams will make possible positron experiments previously infeasible

  10. Carbon beams, production and acceleration

    International Nuclear Information System (INIS)

    Installation, test and working conditions of a new negative-ion facility of the Salazar EN tandem are briefly described. Carbon is the material used for the test and the heavy ion stripping phenomenon is reviewed. (author)

  11. Molecular beams

    International Nuclear Information System (INIS)

    This book is a timeless and rather complete theoretical and experimental treatment of electric and magnetic resonance molecular-beam experiments for studying the radio frequency spectra of atoms and molecules. The theory of interactions of the nucleus with atomic and molecular fields is extensively presented. Measurements of atomic and nuclear magnetic moments, electric multipole moments, and atomic fine and hyperfine structure are detailed. Useful but somewhat outdated chapters on gas kinetics, molecular beam design, and experimental techniques are also included

  12. Use of gamma irradiation for microbial inactivation of buckwheat flour and products, 8; Effects of electron beam irradiation on sterility and quality of buckwheat flour

    Energy Technology Data Exchange (ETDEWEB)

    Muramatu, Nobuyuki; Ohinata, Hiroshi; Karasawa, Hideyuki; Oike, Terutake (Nagano State Lab. of Food Technology (Japan)); Ito, Hitoshi; Ishigaki, Isao

    1991-10-01

    Effects of irradiation at 3.0-7.0 kGy with 2 MeV electron beams were investigated on the number of microorganisms and quality of buckwheat flour. Electron beams and gamma-rays were compared in terms of the effects on the quality of buckwheat flour. The results were as follows. (1) Electron beams at 3 kGy reduced the number of microorganisms almost to the same level as gamma-rays. Oxygen content in buckwheat flour had no effect on inactivation of microorganisms by irradiation with electron beams and gamma-rays. (2) Peroxide-value (POV) of lipid in buckwheat flour increased with absorbed dose of gamma-rays and electron beams. The increase of POV was suppressed by the usage of oxygen absorber. The color change of buckwheat flour was suppressed by the usage of oxygen absorber as well. Acid-value (AV) of lipid in buckwheat flour was not changed by irradiation at high dose with gamma-rays or electron beams. (3) Maximum torque in Farinograph test of dough prepared from irradiated buckwheat flour decreased with increase of absorbed dose of electron beams. However, oxygen absorber suppressed the change of these properties induced by irradiation. (4) The usage of oxygen absorber resulted in a high sensory score of noodles from irradiated buckwheat flour with small changes of color, flavor and texture. (author).

  13. Ions beams. Theory and implementation

    International Nuclear Information System (INIS)

    After a presentation of the physical phenomena implied by ions beams (stopping power, defects creation), the implementation of ions beams is described (production, separation in terms of masses, experimental devices). Then, two use modes of ions beams are distinguished: analysis and synthesis. When the ion beam is destined to analysis, there are two possible experiments types. In the first case, the sample to be studied is the source of ions production and the analysis consists to separate in mass the ions extracted; this method is destructive. In the second case, the analysis results of the interaction between the light ions beam and a target: the sample. According to the nature of the analysis, different types of detectors can be used to quantify the energy of the particles diffused by the sample (fluorescence, back-scattering of particles). When ions beams are used as tools of controlled alterations of samples, several parameters (energy, flux, dose, nature of the beam, target temperature) are adjustable following to the searched objective (defects creation, ordering, synthesis of new phases or surfaces alteration). The typical experimental devices used for beams production (scheme of sources principle) and the environment of the sample are described in terms of the applications studied. (O.M.)

  14. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    International Nuclear Information System (INIS)

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region

  15. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Bonomo, F., E-mail: federica.bonomo@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Istituto Gas Ionizzati - CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Barbisan, M.; Pasqualotto, R.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Cristofaro, S. [Universitá degli Studi di Padova, Via 8 Febbraio 2, 35122 Padova (Italy)

    2015-04-08

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H{sub α} light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H{sub α} spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  16. 铁路货车制动梁检修生产线在昆明北车辆段中的应用%Application of Railway Truck Brake Beam Overhaul Production Line in North Kunming Car Depot

    Institute of Scientific and Technical Information of China (English)

    王树生; 陆明; 王浩然; 邰俊勇

    2014-01-01

    Through analysis of railway truck brake beam overhaul production line, this article expounds the equipment composition, technical indicators, and related equipment, and analyzes the control system in detail, thus providing reference for the application of railway truck brake beam overhaul production line in north Kunming car depot.%本文通过对铁路货车制动梁检修生产线进行分析,阐述设备的组成、技术指标,以及相关的设备等,并详细分析了控制系统,进而为铁路货车制动梁检修生产线在昆明北车辆段中的应用提供参考依据。

  17. Beam emittance and beam disruption

    International Nuclear Information System (INIS)

    Beam disruption during the collision of intense relativistic bunches has been studied by R. Hollebeek. In the case of oppositely charged bunches, focussing effects occur causing a decrease in the effective bunch cross section, and thereby an increase of luminosity by an enhancement factor H. The term disruption derives from the fact that the beam emittance changes markedly during the collision. 1 ref., 1 fig., 1 tab

  18. Cross- sections of large-angle hadron production in proton- and pion-nucleus interactions III: tantalum nuclei and beam momenta from $\\pm$ 3 GeV/c to $\\pm$ 15 GeV/c

    CERN Document Server

    Bolshakova, A; Chelkov, G; Dedovitch, D; Elagin, A; Gostkin, M; Guskov, A; Kroumshtein, Z; Nefedov, Yu; Nikolaev, K; Zhemchugov, A; Dydak, F; Wotschack, J; De Min, A; Ammosov, V; Gapienko, V; Koreshev, V; Semak, A; Sviridov, Yu; Usenko, E; Zaets, V

    2009-01-01

    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% $\\lambda_{abs}$ thick stationary tantalum target, of proton and pion beams with momentum from $\\pm{3} GeV/c to \\pm{15} GeV/c$. Results are given for secondary particles with production angles 20° &lt; heta &lt; 125° . They are of particular relevance for the optimization of the design parameters of the proton driver of a neutrino factory.

  19. External photon beams: Physical aspects

    International Nuclear Information System (INIS)

    Radiotherapy procedures fall into two main categories: external beam radiotherapy and brachytherapy. In external beam radiotherapy the radiation source is at a certain distance from the patient and the target within the patient is irradiated with an external radiation beam. In brachytherapy (see Chapter 13) radiation sources are placed directly into the target volume (intracavitary or interstitial brachytherapy) or on to a target (surface mould or intraoperative radiotherapy). Most external beam radiotherapy is carried out with photon beams, some with electron beams and a very small fraction with more exotic particles such as protons, heavier ions or neutrons. This chapter deals with external photon beam radiotherapy. Photon external beams are all characterized by the same physical parameters, but fall into various categories depending on their origin, means of production and energy. There are two origins of photon beams: g rays, which originate from radioactive nuclei, and X rays, which originate in a target bombarded with energetic electrons. The X rays from a target consist of bremsstrahlung photons and characteristic photons. X rays are produced either in an X ray tube (superficial or orthovoltage X rays) or in a linac (megavoltage X rays)

  20. Radioactive Ion Beam Development at the Holifield Radioactive Ion Beam Facility

    CERN Document Server

    Stracener, Dan; Beene, James R; Bilheux, Hassina Z; Bilheux, Jean-Christophe; Blackmon, Jeff C; Carter, Ken; Dowling, Darryl; Juras, Raymond; Kawai, Yoko; Kronenberg, Andreas; Liu, Yuan; Meigs, Martha; Müller, Paul; Spejewski, Eugene H; Tatum, A

    2005-01-01

    Radioactive beams are produced at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory using the Isotope Separator On-Line (ISOL) technique. Radioactive nuclei are produced in a thick target via irradiation with energetic light ions (protons, deuterons, helium isotopes) and then post-accelerated to a few MeV/nucleon for use in nuclear physics experiments. An overview of radioactive beam development at the HRIBF will be presented, including ion source development, improvements in the ISOL production targets, and a description of techniques to improve the quality (intensity and purity) of the beams. Facilities for radioactive ion beam development include two ion source test facilities, a target/ion source preparation and quality assurance facility, and an in-beam test facility where low intensity production beams are used. A new test facility, the High Power Target Laboratory, will be available later this year. At this facility, high intensity production beams will be available t...

  1. Production of events with two or three muons in the final state during the interaction on nucleons of neutrinos and anti-neutrinos of the CERN narrow band beam with a maximum energy of 200 GeV

    International Nuclear Information System (INIS)

    A study was made of the production of dimuons and trimuons in the neutrino interactions using the data of the CDHS (CERN-Dortmund-Heidelberg-Saclay Cooperation) experiment taken in the CERN narrow band beam. The analysis of the quick results (since the statistics are weak) leads to significant conclusions on these events: 1) the c quark fragmentation function is approximately flat, 2) the production of heavy leptons, if this exists, only represents a very small part of the charged currents (10-4 approximately). 3) the pair production of charmed quarks can explain some of the dimuons of same sign, the greater part of these events coming from the semi leptonic disintegration of pions and kaons (π→μν,K → μν) produced in the hadronic jet. 4) any other process (for instance the production of b quarks) is very weak (-3 of the charged currents)

  2. / production

    Indian Academy of Sciences (India)

    François Arleo; Pol-Bernard Gossiaux; Thierry Gousset; Jörg Aichelin

    2003-04-01

    For more than 25 years /Ψ production has helped to sharpen our understanding of QCD. In proton induced reaction some observations are rather well understood while others are still unclear. The current status of the theory of /Ψ production will be sketched, paying special attention to the issues of formation time and /Ψ re-interaction in a nuclear medium.

  3. 14. Euro summer school on exotic beams

    International Nuclear Information System (INIS)

    This school is intended for thesis students and young post-docs working in areas related to radioactive beams. It consists of several lecture courses given by specialists in their field, starting from a basic level. This document gathers only the slides of the following presentations: 1) clusters in nuclei, 2) the production of radioactive ion beams - in-flight methods, 3) ab-initio calculations for light nuclei, 4) the production of radioactive ion beams - ISOL methods, 5) neutrons for science, and 6) the production of radioactive ion beams - charge breeding

  4. 14. Euro summer school on exotic beams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This school is intended for thesis students and young post-docs working in areas related to radioactive beams. It consists of several lecture courses given by specialists in their field, starting from a basic level. This document gathers only the slides of the following presentations: 1) clusters in nuclei, 2) the production of radioactive ion beams - in-flight methods, 3) ab-initio calculations for light nuclei, 4) the production of radioactive ion beams - ISOL methods, 5) neutrons for science, and 6) the production of radioactive ion beams - charge breeding.

  5. Study on High Intensity High Charge State Lead Ion Beam Production and Optimize%强流高电荷态Pb离子束的产生与优化研究

    Institute of Scientific and Technical Information of China (English)

    何伟; 李锦钰; 赵环昱; 曹云; 孙良亭; 赵红卫; 张子民

    2005-01-01

    随着原子物理及表面物理研究的发展,高电荷态金属离子束的需求日益增多.近来,在中国科学院近代物理研究所14.5GHz LECR3离子源实验平台上,以炉子法产生的铅离子束作为研究对象,进行了一系列ECR离子源关键参数(如:磁场、炉子功率、掺气等)影响高电荷态铅离子束产额的实验研究,在此基础上,调整优化了LECR3离子源的状态参数,从而获得了强流高电荷态铅离子束18etA 207pb30+和6.7eμA207pb37+.%High charge state metal ion beam is quite effective and essential for new investigations on atomic physics and surface physics. Recently, The high intensity high charge state lead ion beams have been produced with IMP 14.5GHz LECR3, we investigated experimentally influences of some key parameters,such as magnetic field, electrical power on oven, gas mixing etc., on lead ion beam production. Through optimization of the ion source conditions, stable 207Pb30+ beam of 18eμA and 207Pb37+ beam of 6.7eμA have been obtained with oven method at 20kV extraction voltage.

  6. Beta Beams Implementation at CERN

    CERN Document Server

    Hansen, Christian

    2011-01-01

    Beta Beam,the concept of generating a pure and intense (anti) neutrino beam by letting accelerated radioactive ions beta decay in a storage ring, called Decay Ring (DR), is the base of one of the proposed next generation neutrino oscillation facilities, necessary for a complete study of the neutrino oscillation parameter space. Sensitivities of the unknown neutrino oscillation parameters depend on the Decay Ring's ion intensity and of it's duty factor (the filled ratio of the ring). Therefore efficient ion production, stripping, bunching, acceleration and storing are crucial sub-projects under study and development within the Beta Beam collaboration. Specifically the feasibility of these tasks as parts of a Beta Beam implementation at CERN will be discussed in this report. The positive impact of the large {\\theta}13 indications from T2K on the Beta Beam performance will also be discussed.

  7. LEDA Beam Operations Milestone and Observed Beam Transmission Characteristics

    OpenAIRE

    Rybarcyk, L. J.; Schneider, J. D.; Smith, H. V.; Young, L. M.; Schulze, M. E.

    2000-01-01

    Recently, the Low-Energy Demonstration Accelerator (LEDA) portion of the Accelerator Production of Tritium (APT) project reached its 100-mA, 8-hr CW beam operation milestone. LEDA consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW radio-frequency quadrupole (RFQ) with associated high-power and low-level rf systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam dump. During the commissioning phase it was discovered that the RFQ field level must to be approxim...

  8. Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation

    International Nuclear Information System (INIS)

    X-ray radiotherapy activates tumor antigen-specific T-cell responses, and increases in the serum levels of high mobility group box 1 (HMGB1) induced by X-ray irradiation play a pivotal role in activating anti-tumor immunity. Here, we examined whether carbon-ion beams, as well as X-rays, can induce HMGB1 release from human cancer cell lines. The study examined five human cancer cell lines: TE2, KYSE70, A549, NCI-H460 and WiDr. The proportion of cells surviving X- or carbon-ion beam irradiation was assessed in a clonogenic assay. The D10, the dose at which 10% of cells survive, was calculated using a linear–quadratic model. HMGB1 levels in the culture supernatants were assessed by an ELISA. The D10 dose for X-rays in TE2, KYSE70, A549, NCI-H460 and WiDr cells was 2.1, 6.7, 8.0, 4.8 and 7.1 Gy, respectively, whereas that for carbon-ion beams was 0.9, 2.5, 2.7, 1.8 and 3.5 Gy, respectively. X-rays and carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of A549, NCI-H460 and WiDr cells at 72 h post-irradiation with a D10 dose. Furthermore, irradiation with X-rays or carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of all five cell lines at 96 h post-irradiation. There was no significant difference in the amount of HMGB1 induced by X-rays and carbon-ion beams at any time-point (except at 96 h for NCI-H460 cells); thus we conclude that comparable levels of HMGB1 were detected after irradiation with iso-survival doses of X-rays and carbon-ion beams. (author)

  9. Electron beam sterilisation of heterogeneous medical devices

    Science.gov (United States)

    Sadat, T.; Morisseau, MrD.; Ross, MissA.

    1993-07-01

    Electron beam radiation is used in the sterilisation of medical disposable devices. High energy, 10 MeV, electron beam linear accelerators are in use worldwide for this purpose. The dose distribution achieved in the products treated influences the efficiency of treatment. This paper looks at the dose distribution achieved with such machines and the methods used to define it in heterogeneous products.

  10. Electron beam sterilisation of heterogeneous medical devices

    International Nuclear Information System (INIS)

    Electron beam radiation is used in the sterilization of medical disposable devices. High energy, 10 MeV, electron beam linear accelerators are in use worldwide for this purpose. The dose distribution achieved in the products treated influences the efficiency of treatment. This paper looks at the dose distribution achieved with such machines and the methods used to define it in heterogeneous products. (author)

  11. Beam transport

    International Nuclear Information System (INIS)

    The beam diagnostic components for both the transfer and the high-energy beamlines perform well except for some of the scanners whose noise pick-up has become a problem, especially at low beam intensities. This noise pick-up is primarily due to deterioration of the bearings in the scanner. At some locations in the high-energy beamlines, scanners were replaced by harps as the scanners proved to be practically useless for the low-intensity beams required in the experimental areas. The slits in the low-energy beamline, which are not water-cooled, have to be repaired at regular intervals because of vacuum leaks. Overheating causes the ceramic feedthroughs to deteriorate resulting in the vacuum leaks. Water-cooled slits have been ordered to replace the existing slits which will later be used in the beamlines associated with the second injector cyclotron SPC2. The current-measurement system will be slightly modified and should then be much more reliable. 3 figs

  12. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  13. Femtosecond Transversal Deflection of Electron Beams with the Help of Laser Beams and Its Possible Applications

    OpenAIRE

    Ispirian, K. A.; Ispiryan, M. K.

    2003-01-01

    It is shown that the interaction of an electron beam with polarized electromagnetic wave of laser photons propagating in the same direction in a short interaction region results in significant transversal deflection of the electrons which can be used for production of femtosecond electron and synchrotron radiation beams, for chopping the electron beams and construction of laser oscilloscopes measuring femtosecond processes.

  14. 3D proton beam micromachining

    International Nuclear Information System (INIS)

    Focused high energy ion beam micromachining is the newest of the micromachining techniques. There are about 50 scanning proton microprobe facilities worldwide, but so far only few of them showed activity in this promising field. High energy ion beam micromachining using a direct-write scanning MeV ion beam is capable of producing 3D microstructures and components with well defined lateral and depth geometry. The technique has high potential in the manufacture of 3D molds, stamps, and masks for X-ray lithography (LIGA), and also in the rapid prototyping of microcomponents either for research purposes or for components testing prior to batch production. (R.P.)

  15. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  16. 14,15N beam from cyanide compounds

    International Nuclear Information System (INIS)

    We report here on the direct generation of a CN− ion beam for the production of a N ion beam to be used in nuclear astrophysics measurements. The procedure relies on the production of CN− ion beam with a SNICS source starting from several appropriate substrates containing CN− triple bond. Several of the investigated substrates showed a higher beam intensity with respect to the common N beam production from a cathode of BN plus graphite. Best results in terms of analyzed beam intensity were observed with K3Fe(CN)6 and KSCN cathodes. Use of the latter compound is particularly appealing because of the easy availability of mass-15 enriched molecule.

  17. Recent developments in production of radioactive ion beams with the selective laser ion source at the on-line isotope separator ISOLDE

    International Nuclear Information System (INIS)

    The resonance ionization laser ion source (RILIS) of the ISOLDE on-line isotope separation facility is based on the method of laser stepwise resonance ionization of atoms in a hot metal cavity. The atomic selectivity of the RILIS compliments the mass selection process of the ISOLDE separator magnets to provide beams of a chosen isotope with greatly reduced isobaric contamination. Using a system of dye lasers pumped by copper vapor lasers, ion beams of 22 elements have been generated at ISOLDE with ionization efficiencies in the range of 0.5%-30%. As part of the ongoing RILIS development, recent off-line resonance ionization spectroscopy studies have determined the optimal three-step ionization schemes for yttrium, scandium, and antimony

  18. Recent developments in production of radioactive ion beams with the selective laser ion source at the on-line isotope separator ISOLDE

    Science.gov (United States)

    Catherall, R.; Fedosseev, V. N.; Köster, U.; Lettry, J.; Suberlucq, G.; Marsh, B. A.; Tengborn, E.

    2004-05-01

    The resonance ionization laser ion source (RILIS) of the ISOLDE on-line isotope separation facility is based on the method of laser stepwise resonance ionization of atoms in a hot metal cavity. The atomic selectivity of the RILIS compliments the mass selection process of the ISOLDE separator magnets to provide beams of a chosen isotope with greatly reduced isobaric contamination. Using a system of dye lasers pumped by copper vapor lasers, ion beams of 22 elements have been generated at ISOLDE with ionization efficiencies in the range of 0.5%-30%. As part of the ongoing RILIS development, recent off-line resonance ionization spectroscopy studies have determined the optimal three-step ionization schemes for yttrium, scandium, and antimony.

  19. Optimization of the laser-induced photoemission for the production of polarized electron beams at the 50-keV source of the Bonn accelerator facility ELSA

    International Nuclear Information System (INIS)

    Medium energy experiments requiring circularly polarized photons (produced by Bremsstrahlung of longitudinally polarized electrons) have started at the electron stretcher ELSA in Bonn. To fulfill the demands of the experiment (GDH) the laser induced photoemission of the 50 keV electron source has been optimized. Systematic studies with a titan-sapphire laser to optimize the pulse structure of the laser pulse and the emitted spectral width has been done. Using a Be-InGaAs/Be-AlGaAs strained superlattice photocathode a beam polarization of 80% with a quantum efficiency of 0.4% has been obtained while producing a space charge limited 100 mA beam current. (orig.)

  20. Scatter-free propagation of low-energy protons in the magnetosheath: Implications for the production of field-aligned ion beams by nonthermal leakage

    International Nuclear Information System (INIS)

    We investigate the scatter-free propagation of low-energy (1--5 keV) protons in the magnetosheath by following test particle trajectories in a model of the magnetosheath fields previously obtained from gasdynamic simulations. We concentrate on those ions energized by near-specular reflection at the quasi-perpendicular shock: the reflected-gyrating ions. Our results indicate that for the most common orientations of the interplanetary field, it is unlikely that such ions when scattered in pitch angle behind the near-perpendicular bow shock (theta/sub Bn/> or =800) can contribute to upstream field-aligned beams leaving the bow shock at shock-normal angles (theta/sub Bn/) greater than 450. Reflected-gyrating ions similarly scattered behind the quasi-perpendicular shock (theta/sub Bn/> or =450) are more likely to contribute to such beams by leaking from the bow shock close to where they entered the magnetosheath

  1. Realization of an electrostatic collection of nuclei. Application to the production of isotopes and to nuclear reactions induced by 12C beams at 86 MeV/nucleon

    International Nuclear Information System (INIS)

    The working conditions of a new on-line electrostatic collection system are presented. The main characteristics are high efficiency (reaching 20%) and short delay time (down to the millisecond). A systematic study of this method, comparing experiment and theory, is done. The device has been successfully used on the one hand for the exotic isotopes research (discovery of 184Pb) and on the other hand for the study of reactions induced by a 12C beam at 86 MeV/nucleon

  2. Production and characterization of LiYF.sub.4./sub. oxifluoride glass ceramics prepared by electron beam evaporation and pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Bočan, Jiří; Lančok, Ján; Bulíř, Jiří; Fitl, Přemysl; Novotný, Michal

    Singapore : National University of Singapore, 2009 - (Luk´yanchuk, B.). s. 250-250 [International Conference on Laser Ablation /10./. 22.11.2009-27.11.2009, Singapore] R&D Projects: GA ČR GA106/07/0949; GA AV ČR KAN400100653 Institutional research plan: CEZ:AV0Z10100522 Keywords : oxifluoride glass ceramics * rare-earth doping * e-beam evaporation * PLD Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Production of positronium negative ions using a pulsed low-energy positron beam at the KEK-PF slow positron facility

    International Nuclear Information System (INIS)

    A new apparatus for experimental studies on the positronium negative ions has been developed at the KEK-PF slow positron facility. The ions are emitted into vacuum from the Na deposited surface of a tungsten target bombarded with pulsed slow positrons. The apparatus will allow the study of the process of the Ps- photodetachment when it is combined with the use of an intense pulsed laser synchronized to the positron beam.

  4. Production of radioactive ion beams and resonance ionization spectroscopy with the laser ion source at on-line isotope separator ISOLDE

    International Nuclear Information System (INIS)

    Full text: The resonance ionisation laser ion source (RILIS) of the ISOLDE on-line isotope separation facility at CERN is based on the method of laser step-wise resonance ionisation of atoms in a hot metal cavity. Using the system of dye lasers pumped by copper vapour lasers the ion beams of many different metallic elements have been produced at ISOLDE with an ionization efficiency of up to 27%. The high selectivity of the resonance ionization is an important asset for the study of short-lived nuclides produced in targets bombarded by the proton beam of the CERN Booster accelerator. Radioactive ion beams of Be, Mg, Al, Mn, Ni, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Tb, Yb, Tl, Pb and Bi have been generated with the RILIS. Setting the RILIS laser in the narrow line-width mode provides conditions for a high-resolution study of hyperfine structure and isotopic shifts of atomic lines for short-lived isotopes. The isomer selective ionization of Cu, Ag and Pb isotopes has been achieved by appropriate tuning of laser wavelengths

  5. A study on beam profile at an industrial electron beam accelerator

    International Nuclear Information System (INIS)

    An industrial type electron beam accelerator located at BARC-BRIT complex, Vashi, Navi Mumbai is operational for development of applications and technology demonstration to the Indian industry in the field of polymer modifications and for processing of various other products. Recently the accelerator has been upgraded from 2 MeV to 5 MeV to process thick polymers, packaged products and for waste water treatment. This accelerator is capable of delivering powered electron beams up to 15 kW average beam power in the energy range 3 to 5 MeV. In the facility, product is irradiated either in static or conveyor mode of operation under the scanning- type beam. In the present work, we have performed beam profile measurement at different distances from the beam extraction window under conveyor and static mode of operation. We have used cellulose triacetate (CTA) strip dosimeters for the beam profile measurement. Dose profile measured along the scan direction (beam width) in conveyor mode and beam length profile in static mode of operation at different distances below accelerator beam exit window is shown. In the conveyor mode of operation, as the distance increases from the beam window the uniformity of the dose distribution improves but dose decreases linearly with distance. For a scanned beam, the beam width defines the dimension of the beam sweep. For static mode of operation, the dose from the exit window of the accelerator follows inverse relation with distance (i.e. l/r). This shows that the system is a line-type directional radiation source. Beam length is critical for processes where product is stationary under the beam and also for setting speed of the conveyor depending on pulse frequency in conveyor mode of operation. The present paper describes optimization of operational parameters to maximize the efficiency of the irradiation process based on these measurements. (author)

  6. Hyperon Beam Experiment

    CERN Multimedia

    2002-01-01

    The experiment WA89 uses the upgraded Omega facility together with a hyperon beam installed at the end of the H1 beamline. The beam can deliver 2~10$ ^{5} \\% Sigma ^- $ per machine burst at 330 GeV/c with a background of 5 10$ ^{5} \\% \\pi ^- $. \\\\ \\\\ The goals of the experiment are: observation of charmed particles, mainly the charmed-strange baryons and measurements of their production in the kinematical range x$ _{F} $~$>$~0.2, and their decay properties, a search for exotic states such as U(3100) observed in the previous CERN hyperon beam experiment WA62, measurements of hyperon polarization and production properties. \\\\ \\\\ A vertex detector consisting of 24 silicon microstrip planes with 25~$\\mu$m pitch and 6~planes with 50~$\\mu$m pitch provides track measurements of sufficient accuracy to identify the decays of short living charmed particles and measure their lifetimes. A RICH detector provides good $\\pi$/K separation for momenta up to 100~GeV/c and $\\pi$/p separation up to 150~GeV/c. Photons are detecte...

  7. Fragmentation in Carbon Therapy Beams

    CERN Document Server

    Charara, Y M

    2010-01-01

    The state of the art Monte Carlo code HETC-HEDS was used to simulate spallation products, secondary neutron, and secondary proton production in A-150 Tissue Equivalent Plastic phantoms to investigate fragmentation of carbon therapy beams. For a 356 MeV/Nucleon carbon ion beam, production of charged particles heavier than protons was 0.24 spallation products per incident carbon ion with atomic numbers ranging from 1 through 5 (hydrogen to boron). In addition, there were 4.73 neutrons and 2.95 protons produced per incident carbon ion. Furthermore, as the incident energy increases, the neutron production rate increases at a rate of 20% per 10 MeV/nucleon. Secondary protons were created at a rate between 2.62-2.87 per carbon ion, while spallation products were created at a rate between 0.20-0.24 per carbon ion.

  8. Beam quality measure for vector beams.

    Science.gov (United States)

    Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2016-08-01

    Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580

  9. Neutron beam characterization

    International Nuclear Information System (INIS)

    At the first Research Coordination Meeting in November 1999 it was agreed that each experimental participant would characterize his own neutron beam and detector system, and then use it to analyze an unknown sample. A set of five materials was prepared and distributed to aid this effort: titanium foil, gold foil, borophosphosilicate glass on silicon, boron 10-aluminum alloy sheet, and a mixture of a complex aluminosilicate and graphite. Neutron flux can be measured by the conventional foil activation method using the gold foil. The titanium foil is to be used to measure the sensitivity of the system, the product of the neutron flux and the detector efficiency. The effective velocity or wavelength of the beam can be measured with the boron samples using a prescribed procedure. Excel spreadsheets for the flux and velocity calculations were placed on the IAEA server ndsalpha.iaea.org

  10. LEDA Beam Operations Milestone and Observed Beam Transmission Characteristics

    CERN Document Server

    Rybarcyk, L J; Smith, H V; Young, L M; Schulze, M E

    2000-01-01

    Recently, the Low-Energy Demonstration Accelerator (LEDA) portion of the Accelerator Production of Tritium (APT) project reached its 100-mA, 8-hr CW beam operation milestone. LEDA consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW radio-frequency quadrupole (RFQ) with associated high-power and low-level rf systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam dump. During the commissioning phase it was discovered that the RFQ field level must to be approximately 5-10% higher than design in order to accelerate the full 100-mA beam with low losses. Measurements of a low-duty-factor, 100-mA beam show the beam transmission is unexpectedly low for RFQ field levels between ~90 and 105% of design. This paper will describe some aspects of LEDA operations critical to achieving the above milestone. Measurement and simulation results for reduced RFQ beam transmission near design operating conditions are also presented.

  11. LEDA beam operations milestone and observed beam transmission characteristics

    International Nuclear Information System (INIS)

    Recently, the Low-Energy Demonstration Accelerator (LEDA) portion of the Accelerator Production of Tritium (APT) project reached its 100-mA, 8-hr CW beam operation milestone. LEDA consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW radio-frequency quadruple (RFQ) with associated high-power and low-level rf systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam dump. During the commissioning phase it was discovered that the RFQ field level needs to be approximately 5-10% higher than design in order to accelerate the full 100-mA beam with low losses. Upon further investigation, we have observed that the beam transmission for the 100-mA low-duty-factor beam is unexpectedly low for RFQ field levels between 90 and 105% of design. This paper will describe some aspects of LEDA operations critical to achieving the above milestone. Measurement and simulation results focused on understanding this reduced beam transmission for the RFQ operating at design conditions are also presented

  12. Beam propagation

    International Nuclear Information System (INIS)

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  13. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  14. Power ion beam production in a magnetic-insulated diode placed in a circuit with an inductive storage with a plasmoerosion circuit breaker

    International Nuclear Information System (INIS)

    Consideration is given to results of experimental studies of modes of operation of plasma current breaker and magnetic insulated diode, placed parallel in a circuit with inductive storage and microsecond generator, as well as parameters of high-power ion beam, generated in gas-filled diode. Magnetic field of mirror configuration, which enabled to locate the gas-filled diode dose to breaking region was used for decrease of electrodynamic plasma transfer. It is shown that time delay (of the order of ten and more) of power maximum in gas-filled diode with respect to power maximum in plasma breaker is observed when using passive plasma source on anode

  15. Measurements of gas and volatile element production rates from an irradiated molten lead and lead-bismuth spallation target with proton beams of 1 and 1.4 GeV

    International Nuclear Information System (INIS)

    The integrated project EUROTRANS (European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System) of the 6. EURATOM Framework Programme aims to demonstrate the transmutation of radioactive waste in ADS (Accelerator Driven Sub-critical system). It will carry out a first advanced design of an experimental facility to demonstrate the technical feasibility of transmutation, and will produce a conceptual design of an industrial facility dedicated to transmutation. An ADS consists of three fundamental elements: the accelerator of protons, the sub-critical core and the spallation target. SUBATECH (physique Sub-Atomique et des Technologies associees) laboratory is involved to the study of the chosen liquid lead-bismuth as a spallation ADS target. The irradiation of liquid lead-bismuth target with energetic proton beam generates in addition to neutrons, volatile and radioactive residues. In order to determine experimentally the production rates of gas and volatile elements following a spallation reaction in a lead-bismuth target, the experiment IS419 was performed at the ISOLDE facility at CERN (Centre Europeen de la Recherche Nucleaire). This experiment constitutes the frame of the thesis whose main objective is to assess and study the production and release rates of many gas and volatile element from the irradiated lead-bismuth target with an energetic proton beam. The obtained data are compared to Monte Carlo simulation code (MCNPX) results in order to test the intranuclear cascade model of Bertini and of Cugnon, and the evaporation options of Dresner and Schmidt. (author)

  16. RIKEN RI Beam Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Yasushige; Goto, Akira; Katayama, Takeshi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    The RARF proposes `RIKEN RI Beam Factory` as a next facility-expanding project. The factory makes it the primary aim to provide RI (Radioactive Isotope) beams covering over the whole atomic-mass range with the world-highest intensity in a wide energy range up to several hundreds MeV/nucleon. These RI beams are generated by the fragmentation of high-intensity heavy-ion beams. For the efficient production heavy-ion energies will be boosted up to over 100 MeV/nucleon even for very heavy ions by a K2500-MeV superconducting ring cyclotron serving as a post accelerator of the existing K540-MeV ring cyclotron. A new type of experimental installation called `MUSES` (Multi-USe Experimental Storage rings) will be constructed as well. With MUSES, various types of unique colliding experiments will become possible. (author)

  17. Maskless, resistless ion beam lithography

    CERN Document Server

    Ji, Q

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements...

  18. Mixed beams for the nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Breese, M.B.H.; Legge, G.L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Recently the Micro-Analytical Research Centre (MARC) at Melbourne University has developed a technique to provide mixed beams of ions for a magnetically focussed nuclear microprobe. Such a mixed beam is defined as two (or more) beams of different species ions that can quickly and easily be made to have the same magnetic rigidity R{sub m} = (mE/q{sup 2}) and therefore be transported, focused and scanned the same in a magnetic nuclear microprobe. The production of mixed beams in an electrostatically focussed micro- probe have already been demonstrated. This paper will show how mixed beams can be produced on a single-ended accelerator. Indications of how to produce them on a tandem will also be given. Applications of these mixed beams in micro-lithography, scanning transmission ion microscopy (STIM) imaging and ion beam induced charge (IBIC) imaging will also be presented. 3 refs., 3 figs.

  19. Splitting of high power, cw proton beams

    CERN Document Server

    Facco, Alberto; Berkovits, Dan; Yamane, Isao

    2007-01-01

    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  20. Development of radioactive ion beam production systems for Tokai Radioactive Ion Acceleration Complex--High temperature ion source for short-lived isotopes

    International Nuclear Information System (INIS)

    We have developed a new ion source system in the isotope separator on-line at Japan Atomic Energy Agency, for separation of short-lived isotopes produced by proton-induced fission of 238U. The ion source system is a forced electron beam induced arc discharge version E type ion source with a target container. We successfully operated this system at 2000 deg. C as a result of reductions in volume of the ion source and the target container, introduction of heating method by electron bombardment, and improvement to the heat shield. This new ion source system was tested using 238U of 640 mg/cm2 with a proton primary beam of 30 MeV, 350 nA. Release times were measured for Kr, In, and Xe. The values of release times are 2.6 s for Kr, 1.8 s for In, and 4.6 s for Xe. In this work, the ion source system enabled us to mass-separate short-lived isotopes such as 93Kr(T1/2=1.286 s), 129In(T1/2=0.61 s), and 141Xe(T1/2=1.73 s) with intensity of 103 ions/s.

  1. Application of electron-beam irradiation on the production of salted and seasoned short-necked clam, Tapes Pilippinarum, for safe distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.; Song, H.P.; Choe, J.H.; Jung, S. [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Jang, A. [Quality Control and Utilization of Animal Products, National Institute of Animal Science, Suwon 441-706 (Korea, Republic of); Kim, Y.J. [Food Safety Research Division, Korea Food Research Institute, Seongnam 463-746 (Korea, Republic of); Jo, C. [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)], E-mail: cheorun@cnu.ac.kr

    2009-07-15

    Salted and seasoned short-necked clam (Tapes Philippinarum; SNC) and its major ingredients, red hot pepper powder, ginger, garlic and onion were irradiated at 0.5, 1, 2 and 5 kGy, respectively, and the microbiological and sensory quality were evaluated. The water activities of SNC and red pepper powder were 0.91 and 0.56, respectively, and others were higher than 0.97. The initial microbial populations of SNC were approximately 3.99, 4.38 and 2.22 log CFU/g for total aerobic bacteria, yeast and mold, and coliform bacteria. The highest contamination of total aerobic bacteria was detected from ground ginger among ingredients at 5.51 log CFU/g. Electron-beam irradiation (0, 0.5, 1, 2 and 5 kGy) significantly reduced the initial microbial level of SNC and its ingredients not only immediately after irradiation, but also during storage at 10 {sup o}C for 4 weeks (p<0.05). There was no adverse change of sensory score except for the color of onion irradiated at 5 kGy, which results in a lower score than control. From the results electron-beam irradiation is a useful tool to enhance the storage stability and safe distribution of SNC.

  2. Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    CERN Document Server

    Habs, D; Thirolf, P G; Böni, P

    2010-01-01

    We propose to search for neutron halo isomers populated via $\\gamma$-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the $4s_{1/2}$ or $3s_{1/2}$ neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new $\\gamma$-beams of high intensity and small band width ($\\le$ 0.1\\%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \\cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the $\\gamma$-decay back to the ground state in the 100 ps-$\\mu$s range. Similar to the treatment of photodisintegration ...

  3. Determination of the LEP beam energy

    CERN Document Server

    Torrence, E

    2000-01-01

    This article describes the determination of the LEP beam energy above the production threshold for W boson pairs. A brief overview of the magnetic extrapolation method is presented which is currently used to determine the LEP beam energy to a relative precision of 2*10/sup -4 /. A new method for beam energy measurements based on an in-line energy spectrometer is presented, and current developments in the commissioning of this device are outlined. (2 refs).

  4. Recent developments in electron beam machine technology

    International Nuclear Information System (INIS)

    Electron beam accelerator provides ionisation energy for industrial processing. Electron beam accelerators are increasingly used for decontamination, conservation and disinfestation of food, for sterilization of medical products, and for polymerisation of materials. These machines are easy to install into a production factory as the radiation stops as soon as the machine is switched off. This safety advantage, together with the flexibility of use of these highly automated machines, has allowed the electron beam accelerator to become an important production tool. (author). 23 refs., 6 figs., 2 tabs

  5. Detection systems for radioactive ion beams

    International Nuclear Information System (INIS)

    Two main methods are used to produce radioactive ion beams: -) the ISOL method (isotope separation on-line) in which the stable beam interacts with a thick target, the reaction products diffuse outside the target and are transferred to a source where they are ionized, a mass separator and a post-accelerator drive the selected radioactive ions to the right energy; -) the in-flight fragmentation method in which the stable beam interacts with a thin target, the reaction products are emitted from the target with a restricted angular distribution and a velocity close to that of the incident beam, the experimenter has to take advantage from the reaction kinetics to get the right particle beam. Characteristic time is far longer with the ISOL method but the beam intensity is much better because of the use of a post-accelerator. In both cases, the beam intensity is lower by several orders of magnitude than in the case of a stable beam. This article presents all the constraints imposed by radioactive beams to the detection systems of the reaction products and gives new technical solutions according to the type of nuclear reaction studied. (A.C.)

  6. On the fast electron beam, consequent generation of electrostatic fields and fast ion production in front of LH grills: Measurements and theory

    International Nuclear Information System (INIS)

    The paper presents measurements of radial variations of the floating potential at the Tore Supra (TS) tokamak ergodic divertor plate and in front of the CASTOR tokamak lower hybrid (LH) grill, due to the presence in these two locations of the fast particle beam generated in front of LH grills. The paper also presents a scanning electron microscope (SEM) and secondary ion mass spectrometric (SIMS) analysis of an eroded graphite tile from the TS LH grill guard limiter, performed in order to check the authors' theoretical conclusion that fast ions can be generated in a thin layer in front of LH grills and that they can contribute to damage of tokamak vessel components. The paper first presents theoretical conclusions that are relevant to the experimental data and then the experimental results. (author)

  7. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  8. Low energy beam transport system developments

    International Nuclear Information System (INIS)

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H− beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H− beams, but such gas densities cause unacceptably high H− beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H− beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed

  9. Low energy beam transport system developments

    Science.gov (United States)

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-01

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H- beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H- beams, but such gas densities cause unacceptably high H- beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H- beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  10. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  11. Design of a new low momentum kaon beam for the AGS

    International Nuclear Information System (INIS)

    The low momentum beam described is to be a unique source of antiprotons as well as kaons. The discussion covers (1) choice of production angle; (2) secondary beams; (3) the use of sector dipole magnets for minimizing aberrations; (4) beam bending magnets; (5) beam separators; and (6) beam acceptance

  12. Radio frequency atomic hydrogen beam source

    International Nuclear Information System (INIS)

    A simple, convenient rf discharge source for the production of an intense beam of hydrogen atoms is described. The design and operation is such that the discharge tube can be operated over a period of several thousand hours, producing an intense beam with dissociation approx.95%

  13. History of the polarized beam

    International Nuclear Information System (INIS)

    In 1973, the first high energy polarized proton beam was developed at the Argonne Zero Gradient Synchrotron (ZGS). It operated very successfully and productively until 1979 when the ZGS was shut down permanently. This report describes the development, characteristics, and operations of this facility

  14. Robust Collimation Control of Laser-Generated Ion Beam

    CERN Document Server

    Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.

  15. Electron Beam Lithography for nano-patterning

    DEFF Research Database (Denmark)

    Greibe, Tine; Anhøj, Thomas Aarøe; Khomtchenko, Elena;

    2014-01-01

    Electron beam lithography is a versatile tool for fabrication of nano-sized patterns. The patterns are generated by scanning a focused beam of high-energy electrons onto a substrate coated with a thin layer of electron-sensitive polymer (resist), i.e. by directly writing custom-made patterns in a...... polymer. Electron beam lithography is a suitable method for nano-sized production, research, or development of semiconductor components on a low-volume level. Here, we present electron beam lithography available at DTU Danchip. We expertize a JEOL 9500FZ with electrons accelerated to an energy of 100ke...

  16. Modeling of electron beams produced by linear accelerator installed at CNSTN / optimization study for the case of radiation sterilization of medical products and pharmaceutical

    International Nuclear Information System (INIS)

    The evolution of particle accelerators has led to the disposal of a very wide diversity of applications, such as the technique of treatment with Beta radiations. an electron accelerator has been installed at the National Center for nuclear Sciences and Technologies CNSTN) with the aim of controlling this technology, its development and its use in the areas of agriculture, industry, human health and scientific research. this project is committed for the study of the exploitation of this new facility in the field of radio-sterilization of medical, pharmaceuticals, cosmetics and laboratory products. A numerical tool has been then developed to simulate the radio processing and to simplify this process. Due to this option of dose distribution modeling inside a studied product, it's possible to estimate the best configuration for the accelerator parameter setting. It is a solution allowing to guarantee at once the conformity of the treatment of a product, as well as the reliability of the installation.

  17. A symplectic coherent beam-beam model

    International Nuclear Information System (INIS)

    We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs

  18. Literature in Focus Beta Beams: Neutrino Beams

    CERN Document Server

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  19. Feasibility Studies for Quarkonium Production at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC

    Directory of Open Access Journals (Sweden)

    L. Massacrier

    2015-01-01

    Full Text Available Being used in the fixed-target mode, the multi-TeV LHC proton and lead beams allow for studies of heavy-flavour hadroproduction with unprecedented precision at backward rapidities, far negative Feynman-x, using conventional detection techniques. At the nominal LHC energies, quarkonia can be studied in detail in p+p, p+d, and p+A collisions at sNN≃115 GeV and in Pb + p and Pb + A collisions at sNN≃72 GeV with luminosities roughly equivalent to that of the collider mode that is up to 20 fb−1 yr−1 in p+p and p+d collisions, up to 0.6 fb−1 yr−1 in p+A collisions, and up to 10 nb−1 yr−1 in Pb + A collisions. In this paper, we assess the feasibility of such studies by performing fast simulations using the performance of a LHCb-like detector.

  20. Neutron-rich rare isotope production from projectile fission of heavy beams in the energy range of 20 MeV/nucleon

    CERN Document Server

    Vonta, N; Loveland, W D; Kwon, Y K; Tshoo, K; Jeong, S C; Veselsky, M; Bonasera, A; Botvina, A

    2016-01-01

    We investigate the possibilities of producing neutron-rich nuclides in projectile fission of heavy beams in the energy range of 20 MeV/nucleon expected from low-energy facilities. We report our efforts to theoretically describe the reaction mechanism of projectile fission following a multinucleon transfer collision at this energy range. Our calculations are mainly based on a two-step approach: the dynamical stage of the collision is described with either the phenomenological Deep-Inelastic Transfer model (DIT), or with the microscopic Constrained Molecular Dynamics model (CoMD). The deexcitation/fission of the hot heavy projectile fragments is performed with the Statistical Mul- tifragmentation Model (SMM). We compared our model calculations with our previous experimental projectile-fission data of 238U (20 MeV/nucleon)+208Pb and 197Au (20 MeV/nucleon)+197Au and found an overall reasonable agreement. Our study suggests that projectile fission following periph- eral heavy-ion collisions at this energy range of...