WorldWideScience

Sample records for beam nbi apparatus

  1. JT-60 negative ion beam NBI apparatus. Present state of its construction and initial experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Masaaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-02-01

    The NBI (Neutral Beam Injection) apparatus used for negative ion at first in the world, has an aim to actually prove heating and electric current drive with high density plasma at the JT-60 and to constitute physical and technical bases for selection and design of heating apparatus of ITER (International Thermal Nuclear Fusion Experimental Reactor). Construction of 500 KeV negative ion NBI apparatus for the JT-60 started to operate on 1993 was completed at March, 1996. On the way, at a preliminary test on forming and acceleration of the negative ion beam using a portion of this apparatus, 400 KeV and 13.5 A/D of the highest deuterium negative ion beam acceleration in the world was obtained successfully, which gave a bright forecasting of the plasma heating and electric current drive experiment using the negative ion NBI apparatus. After March, 1996, some plans to begin beam incident experiment at the JT-60 using the negative ion NBI apparatus and to execute the heating and electric current drive experiment at the JT-60 under intending increase of beam output are progressed. (G.K.)

  2. Progressing state of design and R and D of NBI for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-02-01

    In the International Thermal Nuclear Fusion Experimental Reactor (ITER), Neutral Beam Injection (NBI) apparatus is thought to be a powerful means of electric current drive for heating and stabilizing of plasma, and of controlling the plasma stably. Then, design and development of 1 MeV class negative ion NBI apparatus with compactness and better consistency with reactor have been conducted. On its engineering design, numbers of ports for NBI apparatus were changed form 3 to 4 on a stage of intermediate design completion on June, 1995, and then incident power per unit port was increased from 12.5 MW to 16.7 MW, which brought severer characteristics required for negative ion source. At present, designs of beam deflector, magnetic shield, neutron shielding, remote maintenance and so forth as well as negative ion source and accelerator have been progressed. On its engineering R and D, for development of negative ion source, both deuterium negative ion current and its density established about 1/3 of the characteristics in ITER actural apparatus at an aimed operational gas pressure. And, for development of negative ion accerelator, over 80% of the negative ion acceleration energy which corresponds to an aim of ITER could be established. (G.K.)

  3. Ion beam dump for JT-60 NBI

    International Nuclear Information System (INIS)

    Kuriyama, Masaaki; Horiike, Hiroshi; Matsuda, Shinzaburo; Morita, Hiroaki; Shibanuma, Kiyoshi

    1981-10-01

    The design of the active cooling type ion beam dump for JT-60 NBI which receives the total beam power of 5.6 MW for 10 sec continuously is described. It is composed of array of many finned tubes which is made of oxygen free copper with 0.2% silver content. The safety margin against thermal and mechanical troubles is estimated by the heat transfer and the thermal stress calculation. (author)

  4. Long Pulse Operation on NBI Systems for JT-60U

    International Nuclear Information System (INIS)

    Akino, N.; Ebisawa, N.; Honda, A.; Ikeda, Y.; Kawai, M.; Kazawa, M.; Mogaki, K.; Ohga, T.; Umeda, N.; Usui, K.; Yamamoto, T.; Grisham, L.

    2005-01-01

    In the neutral beam injection (NBI) system, an extension of the pulse duration up to 30 sec has been intended to study quasi-steady state plasma on JT-60U. The four positive-ion based (P-NBI) units, which tangentially inject neutral beam to plasma, were mainly modified on the electric power supplies and the beam limiters to extend the pulse duration up to 30 sec with 2 MW at 80 keV per each. The seven P-NBI units, each of which perpendicularly injects for 10 sec, were conducted to operate in series for the total pulse duration of 30 sec. The ion source of the negative-ion based (N-NBI) unit, whose target beam energy is 500 keV for 10 sec, was also modified to reduce the heat load of the grid for long pulse operation. The reduction of the re-ionization of the neutral beam in the beam drift duct was a key to achieve a long pulse injection. It was found that the pressure rise in the beam drift duct, which gives the re-ionization rate, depended on the temperature of the re-ionization plates during NBI injection. Up to now, it was attained successfully that the pulse duration of the tangential P-NBI unit was extended up to 30 sec. 310 MJ of the total integrated injection energy into JT-60U plasma was achieved, including the negative-ion based NBI operation for 17 sec at 366 keV

  5. Design study of a negative-ion based NBI system for JT-60U

    International Nuclear Information System (INIS)

    Akino, Noboru; Araki, Masanori; Ebisawa, Noboru

    1994-03-01

    A high energy negative-ion based NBI system for JT-60U has been designed. The objective of the NBI system is to demonstrate mega-ampere level NB current drive and plasma core heating in a reactor-grade high density plasma. This is the first negative-ion based NBI system in the world. The required specifications of the NBI system are; a beam energy of 500 keV, an injection power of 10 MW, a beam pulse duration of 10 sec with a duty cycle of 1/60 and a beam species of deuterium or hydrogen. The neutral beam power of 10 MW is injected tangentially using one beam-line with two large negative-ion sources. The construction of the NBI system has been started, and will be operational in 1996. (author)

  6. Instrumentation for NBI SST-1 cooling water system

    International Nuclear Information System (INIS)

    Qureshi, Karishma; Patel, Paresh; Jana, M.R.

    2015-01-01

    Neutral Beam Injector (NBI) System is one of the heating systems for Steady state Superconducting Tokamak (SST-1). It is capable of generating a neutral hydrogen beam of power 0.5 MW at 30 kV. NBI system consists of following sub-systems: Ion source, Neutralizer, Deflection Magnet and Magnet Liner (ML), Ion Dump (ID), V-Target (VT), Pre Duct Scraper (PDS), Beam Transmission Duct (BTD) and Shine Through (ST). For better heat removal management purpose all the above sub-systems shall be equipped with Heat Transfer Elements (THE). During beam operation these sub-systems gets heated due to the received heat load which requires to be removed by efficient supplying water. The cooling water system along with the other systems (External Vacuum System, Gas Feed System, Cryogenics System, etc.) will be controlled by NBI Programmable Logic Control (PLC). In this paper instrumentation and its related design for cooling water system is discussed. The work involves flow control valves, transmitters (pressure, temperature and water flow), pH and conductivity meter signals and its interface with the NBI PLC. All the analog input, analog output, digital input and digital output signals from the cooling water system will be isolated and then fed to the NBI PLC. Graphical Users Interface (GUI) needed in the Wonderware SCADA for the cooling water system shall also be discussed. (author)

  7. Construction of negative-ion based NBI for JT-60U

    International Nuclear Information System (INIS)

    Kawai, Mikito; Akino, Noboru; Ebisawa, Noboru

    2001-11-01

    The world's first negative-ion based neutral beam injector (N-NBI) system has been developed for studies of non-inductive current drive and plasma core heating with high energy neutral beam injection in higher density plasma. Construction of the N-NBI system for JT-60U was completed in March 1996. The system is composed of a beamline with two ion sources, a set of ion source power supplies, control system and auxiliary sub-system such as cooling water, refrigeration and vacuum system. In July 2001, deuterium neutral beam injection of 400keV and 5.8MW into JT-60U plasma was achieved. In order to increase both beam power and energy we have to go on more improvement of the N-NBI. (author)

  8. Development of the computer system for the JT-60 negative-ion based NBI

    International Nuclear Information System (INIS)

    Kawai, Mikito; Oohara, Hiroshi; Honda, Atsushi; Kuriyama, Masaaki; Aoyagi, Tetsuo.

    1997-03-01

    The negative-ion based NBI system (N-NBI) for JT-60 is the first NBI system using a negative-ion source in the world. The N-NBI is designed do deliver a neutral beam injection power of 10 MW at 500 keV. The computer for the N-NBI system is composed of UNIX workstations and VMEbus systems, and has the functions of ion source operation and data acquisition and processing. Since a real-time operating system compatible with the UNIX is adopted for the VMEbus systems, the software development environment both for the workstation and the VMEbus system is unified with the UNIX. The software has been developed with a priority to the software required for the verification tests which are performed in accordance with the progress of the N-NBI construction. The first beam injection with the N-NBI has been conducted in March using the newly developed software, and the deuterium neutral beam injection of 350 keV, 2.5 MW has achieved as of the end of October 1996. (author)

  9. Low energy, high power injection in JT-60 NBI

    International Nuclear Information System (INIS)

    Mizuno, Makoto; Dairaku, Masayuki; Horiike, Hiroshi

    1988-05-01

    JT-60 neutral beam injector (JT-60 NBI) is designed to inject 20 MW neutral hydrogen beam at energies of 70 ∼ 100 keV and the injection power decreases significantly at low energies (∼40 keV). For the extention of operation region aiming at the low density plasma heating and achieving H-mode by plasma periphery heating, increment of the injection power at low beam energies was required. The single-stage acceleration system was investigated in advance at the Prototype Injector Unit. From this result, the total injection power of 17 MW at 40 keV, 48 A per source was expected at the JT-60 NBI. This system was adopted in the JT-60 NBI from June, 1987 to July, 1987 and 17.6 MW neutral beam injection power was achieved. In the NB heating experiment, the H-mode transition phenomena was observed in JT-60 plasma. (author)

  10. Heavy ion beam probe investigations of plasma potential in ECRH and NBI in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Melnikov, A.V.; Eliseev, L.; Perfilov, S.V.; Chmyga, A.A.; Dreval, N.; Khrebtov, S.M.; Komarov, A.D.; Kozachok, A.S.; Krupnik, L.; Alonso, A.; Pablos, J.L. de; Cappa, A.; Fernandez, A.; Fuentes, C.; Hidalgo, C.; Liniers, M.; Pedrosa, M.A.

    2005-01-01

    Direct measurements of electric potential and its fluctuations are of a primary importance in magnetic confinement systems. The Heavy Ion Beam Probe (HIBP) diagnostic is used in TJ-2 stellarator to study directly plasma electric potential profiles with spatial (up to 1cm) and temporal (up to 10 ∝s) resolution. The singly charged heavy ions Cs + with energies up to 125 keV are used to probe the plasma column from the edge to the core. Both ECRH and NBI heated plasmas (P ECRH = 200 - 400kW, P NBI = 400kW, E NBI = 28 kV) were studied. The significant improvement in the HIBP beam control system and the acquisition electronics leads us to increase the possibilities of the diagnostic. The most crucial one is the extension of the signal dynamic range, which allows us to have the reliable profiles from the plasma center to the plasma edge both in the high and low field side regions. Low density ECRH (n = 0.5-1.1.10 13 cm -3 ) plasmas in TJ-2 are characterised by core positive plasma potential of order of 500 - 1000 V and positive electric fields up to 50 V/cm. Edge radial electric fields remain positive at low densities and became negative at the threshold density that depends of plasma configuration. NBI plasmas are characterized by negative electric potential in the full plasma column and negative radial electric fields (in the range of 10 - 40 V/cm). The density rise during the NBI phase is accompanied by the decay of core plasma potential. When density is getting the level of n ∼ 2.0.10 13 cm -3 , the potential stops its evolution and remains constant. The evolution of plasma potential near density limit is under investigation. These observations, reported in different magnetic configurations, show the clear link between plasma potential and plasma density. (author)

  11. Conceptual design of NBI beamline for VEST plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.S., E-mail: tskim@kaeri.re.kr; In, S.R.; Jeong, S.H.; Park, M.; Chang, D.H.; Jung, B.K.; Lee, K.W.

    2016-11-01

    Highlights: • VEST NBI injector is conceptually designed to support further VEST plasma experiment. • VEST NBI injector composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, electrostatic ion dumps, NB vessel with cryopump, and rotating calorimerter. • The vacuum vessel of the beamline is divided into two parts for high injection efficiency and different direction (co- and counter-current) of neutral beam injection. • An ion source for the VEST NBI system was also designed to deliver neutral hydrogen beams with a power of 0.3 MW. The plasma generator of the VEST NB ion source has modified TFTR bucket multi-cusp chamber. The plasma generator has twelve hair-pin shaped tungsten filaments used as a cathode and an arc chamber including a bucket and an electron dump which serve as anode. The accelerator system consists of three grids, each having extraction area of 100 mm × 320 mm and 64 shaped slits of 3 mm spacing. • The preliminary structure design and the layout of the main components of the injector have been completed. Simulation and calculation for optimization of the NB beamline design results prove that the parameters of ion source, neutralization efficiency (76%:95% equilibrium neutralization efficiency), and beam power transmission efficiency (higher than 90%) are in agreement with design targets of the VEST NB beamline. • This VEST NBI system will provide a neutral beam of ∼0.6 MW for both heating and current drive in torus plasma. - Abstract: A 10 m s-pulsed NBI (Neutral Beam Injection) system for VEST (Versatile Experiment Spherical Torus) plasma heating is designed to provide a beam power of more than 0.6 MW with 20 keV H° neutrals. The VEST NBI injector is composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, residual ion dump, NB vessel with a cryopump, and rotating calorimeter. The position and size of these beamline components are roughly determined with geometric

  12. Conceptual design of NBI beamline for VEST plasma heating

    International Nuclear Information System (INIS)

    Kim, T.S.; In, S.R.; Jeong, S.H.; Park, M.; Chang, D.H.; Jung, B.K.; Lee, K.W.

    2016-01-01

    Highlights: • VEST NBI injector is conceptually designed to support further VEST plasma experiment. • VEST NBI injector composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, electrostatic ion dumps, NB vessel with cryopump, and rotating calorimerter. • The vacuum vessel of the beamline is divided into two parts for high injection efficiency and different direction (co- and counter-current) of neutral beam injection. • An ion source for the VEST NBI system was also designed to deliver neutral hydrogen beams with a power of 0.3 MW. The plasma generator of the VEST NB ion source has modified TFTR bucket multi-cusp chamber. The plasma generator has twelve hair-pin shaped tungsten filaments used as a cathode and an arc chamber including a bucket and an electron dump which serve as anode. The accelerator system consists of three grids, each having extraction area of 100 mm × 320 mm and 64 shaped slits of 3 mm spacing. • The preliminary structure design and the layout of the main components of the injector have been completed. Simulation and calculation for optimization of the NB beamline design results prove that the parameters of ion source, neutralization efficiency (76%:95% equilibrium neutralization efficiency), and beam power transmission efficiency (higher than 90%) are in agreement with design targets of the VEST NB beamline. • This VEST NBI system will provide a neutral beam of ∼0.6 MW for both heating and current drive in torus plasma. - Abstract: A 10 m s-pulsed NBI (Neutral Beam Injection) system for VEST (Versatile Experiment Spherical Torus) plasma heating is designed to provide a beam power of more than 0.6 MW with 20 keV H° neutrals. The VEST NBI injector is composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, residual ion dump, NB vessel with a cryopump, and rotating calorimeter. The position and size of these beamline components are roughly determined with geometric

  13. Divertor pumping system with NBI cryopump for JT-60

    International Nuclear Information System (INIS)

    Akino, Noboru; Kuriyama, Masaaki; Ohga, Tokumichi; Seki, Hiroshi; Tanai, Yutaka

    1998-08-01

    The pumping system for JT-60 W-shape divertor with the NBI cryopump have been developed. The pumping speed achieved in the divertor region was 13-15 m 3 /s for deuterium gas with three units of the NBI cryopumps. In a simulation experiment of helium ash exhaust through the divertor, pumping of a mixed gas of helium and deuterium has been demonstrated using the NBI cryosorption pumps covered with an argon condensed layer. Control of neutral particle pressure in the divertor region became possible by having remodeled an aperture of the existing fast shutter, which is installed between the JT-60 vacuum vessel and NBI beam-line, to be regulated. (author)

  14. The Implementation of Computer Data Processing Software for EAST NBI

    International Nuclear Information System (INIS)

    Zhang Xiaodan; Hu Chundong; Sheng Peng; Zhao Yuanzhe; Wu Deyun; Cui Qinglong

    2014-01-01

    One of the most important project missions of neutral beam injectors is the implementation of 100 s neutral beam injection (NBI) with high power energy to the plasma of the EAST superconducting tokamak. Correspondingly, it's necessary to construct a high-speed and reliable computer data processing system for processing experimental data, such as data acquisition, data compression and storage, data decompression and query, as well as data analysis. The implementation of computer data processing application software (CDPS) for EAST NBI is presented in this paper in terms of its functional structure and system realization. The set of software is programmed in C language and runs on Linux operating system based on TCP network protocol and multi-threading technology. The hardware mainly includes industrial control computer (IPC), data server, PXI DAQ cards and so on. Now this software has been applied to EAST NBI system, and experimental results show that the CDPS can serve EAST NBI very well. (fusion engineering)

  15. APPARATUS FOR ELECTRON BEAM HEATING CONTROL

    Science.gov (United States)

    Jones, W.H.; Reece, J.B.

    1962-09-18

    An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)

  16. Radiation therapy apparatus having retractable beam stopper

    International Nuclear Information System (INIS)

    Coad, G.L.

    1983-01-01

    This invention relates to a radiation therapy apparatus which utilized a linear translation mechanism for positioning a beam stopper. An apparatus is described wherein the beam stopper is pivotally attached to the therapy machine with an associated drive motor in such a way that the beam stopper retracts linearly

  17. Scoping studies for NBI launch geometries on DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, I., E-mail: ian.jenkins@ukaea.uk; Challis, C.D.; Keeling, D.L.; Surrey, E.

    2016-05-15

    Highlights: • NBCD scans are done for beam energies of 1.5 MeV and 1.0 MeV in two DEMO scenarios. • NBCD scan profiles are fed into genetic algorithm to fit a target current profile. • The result gives location and power of sources to give best fit to target profile. • This method can help provide requirements for DEMO beamline geometry. - Abstract: Engineering and technical constraints on Neutral Beam Injection (NBI) in DEMO may determine the available beam energy and may also strongly impact the Neutral Beam Current Drive (NBCD) efficiency by restricting available beam tangential radii. These latter are determined by factors such as the inter-TF coil spacing, as well as the degree of required shielding. In order to illustrate how these factors may affect the contribution of NBCD on DEMO operating scenarios, scans of NBI tangency radii and elevation on two possible DEMO scenarios have been performed with two beam energies, 1.5 MeV and 1.0 MeV, in order to determine the most favourable options for NBCD efficiency. In addition, a method using a genetic algorithm has been used to seek optimised solutions of NBI source locations and powers to attempt to synthesize a target total plasma driven-current profile. It is found that certain beam trajectories may be proscribed by limitations on shinethrough onto the vessel wall. This may affect the ability of NBCD to extend the duration of a pulse in a scenario where it must complement the induced plasma current. Operating at the lower beam energy reduces the restrictions due to shinethrough and is attractive for technical reasons as it will required less development, but in the scenarios examined here this results in a spatial broadening of the NBCD profile, which may make it more challenging to achieve desired total driven-current profiles.

  18. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    International Nuclear Information System (INIS)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T.; Guharay, S.K.

    1997-01-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H - ) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  19. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    Energy Technology Data Exchange (ETDEWEB)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T. [National Inst. for Fusion Science, Nagoya (Japan); Guharay, S.K.

    1997-02-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H{sup -}) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  20. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  1. Homodyne reflectometer for NBI interlock on Large Helical Device

    International Nuclear Information System (INIS)

    Tanaka, Kenji; Ito, Yasuhiko; Kawahata, Kazuo; Tokuzawa, Tokihiko; Osakabe, Masaki; Takeiri, Yasuhiko; Ejiri, Akira

    2001-01-01

    Neutral Beam Injection (NBI) under low density causes serious damage on vacuum vessel wall. It is necessary to stop NBI when electron density becomes lower than 1x10 19 m -3 . This needs reliable density monitor for NBI interlock. A three-channel homodyne reflectometer was installed on Large Helical Device (LHD) and was used for NBI interlock. 28.5, 34.9 and 40.2 GHz Gunn oscillators were used with O mode injection. Their O mode cut off density correspond to 1x10 19 , 1.5x10 19 and 2x10 19 m -3 respectively. The simple homodyne detection is presently used. When the density reaches to the cutoff density, the reflected signals are detected. The reflected signal consists of DC signal due to local and reflected power, and AC signal due to position of cut off layer and density fluctuation. Since the change of DC signal at lower and higher than cut off density was very small, root mean square (RMS) value of AC signal were used for interlock signal. This interlock system is successfully working from the beginning of the NBI experiments campaign on LHD. (author)

  2. Conceptual design of cesium removal device for ITER NBI maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Shibanuma, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Cesium is required in order to generate a stable negative ion of hydrogen in an ion source of the neutral beam injector (NBI), which is one of the plasma-heating devices for International Thermonuclear Experimental Reactor (ITER). After long time operation of the NBI, the cesium deposits to the insulators supporting the electrode. Due to the deterioration of the insulation resistance, the continuous operation of the NBI will be difficult. In addition, the NBI device is activated by neutrons from D-T plasma, so that periodic removal and cleaning of the cesium on the insulators by remove handling is required. A study of the cesium removal scenario and the device is therefore required considering remote handling. In this report, a cesium removal procedure and conceptual design of the cesium removal device using laser ablation technique are studied, and the feasibility of the laser ablation method is shown. (author)

  3. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation

    Science.gov (United States)

    Chundong, HU; Yongjian, XU; Yuanlai, XIE; Yahong, XIE; Lizhen, LIANG; Caichao, JIANG; Sheng, LIU; Jianglong, WEI; Peng, SHENG; Zhimin, LIU; Ling, TAO; the NBI Team

    2018-04-01

    Two sets of neutral beam injectors (NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with in-depth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that (1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline, (2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and (3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.

  4. Shielding of the NBI boxes against W7-X magnetic stray fields

    Energy Technology Data Exchange (ETDEWEB)

    Kick, Manfred [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)], E-mail: Kick@arcor.de; Sielanko, Juliusz [Maria Curie Sklodowska University, Pl. M. C. Sklodowskie 1, 20-031 Lublin (Poland); Heinemann, Bernd; Riedl, Rudolf; Speth, Eckehart; Staebler, Albrecht [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)

    2009-06-15

    Neutral Beam Injection (NBI), besides ECRH, is foreseen as one of the main heating devices at the W7-X stellarator currently under construction at IPP Greifswald, Germany. In a final stage 20 MW of NBI heating power will be installed generated by two NBI boxes of the ASDEX Upgrade (AUG) type. Since magnetic fields generally affect the trajectories of charged particles, essentially all the NBI boxes - including ion sources, acceleration sections, neutralisers and deflection magnets - must be shielded against the stray fields of W7-X. In the magnetic stray fields of W7-X there exist significant radial and toroidal components whereas at tokamaks the vertical components are dominant. The power loads on the ion dump and the protecting structures of the deflecting magnets and the beam lines caused by residual beam ions, therefore, will be strongly different. Thus the shielding concept of AUG cannot simply be taken over, but must be carefully redesigned in order to remain below the critical power limits. New modelling calculations of the magnetic shielding, the ion trajectories and the resulting power loads have been carried out for the 'high iota' and 'low shear' experimental scenarios of W7-X. The fields taken for these calculations are modelled by averaging the calculated W7-X stray fields on the one hand, and by fields generated by two-hypothetical-planar coils perpendicular to the x-y plane, on the other hand. The shielding concept for W7-X mainly consist of iron plates in the outer side regions of the boxes and as little magnetic material as possible inside the boxes.

  5. Impacts of the Shine Through neutrals on the Vacuum Vessel of TJ-II during NBI; Impactos de los Neutros de Shine Through en la Camara de Vacio del TJ-II durante NBI

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J.; Liniers, M.

    1995-07-01

    A numerical analysis of the impact patterns on the Vacuum Vessel produced by Shine Through neutrals during the tangential balanced NBI in TJ-II Helical Axis Stellarator has been done. The results show two main concentrations. The first one the circular part of the Hard Core, near the zone of closest approach of the beam. The second one, the most important, around the beam exit, on the border between the plate of the HC cover and the sector wall. As expected, the Shine Through loads decrease strongly with plasma density, predominating at low density at NBI start, decreasing quickly when density increases and increasing slightly with the beam energy. No overlapping with lost fast ions impacts is observed, that, in addition, show an opposite behaviour with density. (Author) 3 refs.

  6. Impacts of the Shine Through neutrals on the Vacuum Vessel of TJ-II during NBI

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1995-09-01

    A numerical analysis of the impact patterns on the Vacuum Vessel produced by Shine through neutrals during the tangential balanced NBI in TJ-II Helical Axis Stellarator has been done. The results show two main concentrations. The first one the circular part of the Hard Core, near the zone of closest approach of the beam. The second one, the most important, around the beam exit, on the border between the plate of the HC cover and the sector wall. As expected, the Shine through loads decrease strongly with plasma density, predominating at low density at NBI start, decreasing quickly when density increases and increasing slightly with the beam energy. No overlapping with lost fast ions impacts is observed, that, in addition, show an opposite behaviour with density

  7. High-ion temperature experiments with negative-ion-based NBI in LHD

    International Nuclear Information System (INIS)

    Takeiri, Y.; Morita, S.; Tsumori, K.; Ikeda, K.; Oka, Y.; Osakabe, M.; Nagaoka, K.; Goto, M.; Miyazawa, J.; Masuzaki, S.; Ashikawa, N.; Yokoyama, M.; Narihara, K.; Yamada, I.; Kubo, S.; Shimozuma, T.; Inagaki, S.; Tanaka, K.; Peterson, B.J.; Ida, K.; Kaneko, O.; Komori, A.; Murakami, S.

    2005-01-01

    High-Z plasmas have been produced with Ar- and/or Ne-gas fuelling to increase the ion temperature in the LHD plasmas heated with the high-energy negative-ion-based NBI. Although the electron heating is dominant in the high-energy NBI heating, the direct ion heating power is much enhanced effectively in low-density plasmas due to both an increase in the beam absorption (ionisation) power and a reduction of the ion density in the high-Z plasmas. Intensive Ne- and/or Ar-glow discharge cleaning works well to suppress dilution of the high-Z plasmas with the wall-absorbed hydrogen. As a result, the ion temperature increases with an increase in the ion heating power normalized by the ion density, and reaches 10 keV. An increase in the ion temperature is also observed with an addition of the centrally focused ECRH to the low-density and high-Z NBI plasma, suggesting improvement of the ion transport. The results obtained in the high-Z plasma experiments with the high-energy NBI heating indicate that an increase in the direct ion heating power and improvement of the ion transport are essential to the ion temperature rise, and that a high-ion temperature would be obtained as well in hydrogen plasmas with low-energy positive-NBI heating which is planed in near future in LHD. (author)

  8. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    Science.gov (United States)

    Campbell, Ann N.; Soden, Jerry M.

    1998-01-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  9. Design of Timing Synchronization Software on EAST-NBI

    International Nuclear Information System (INIS)

    Zhao Yuanzhe; Hu Chundong; Sheng Peng; Zhang Xiaodan

    2013-01-01

    To ensure the uniqueness and recognition of data and make it easy to analyze and process the data of all subsystems of the neutral beam injector (NBI), it is required that all subsystems have a unified system time. In this paper, the timing synchronization software is presented which is related to many kinds of technologies, such as shared memory, multithreading, TCP protocol and so on. Shared memory helps the server save the information of clients and system time, multithreading can deal with different clients with different threads, the server works under Linux operating system, the client works under Linux operating system and Windows operating system. With the help of this design, synchronization of all subsystems can be achieved in less than one second, and this accuracy is enough for the NBI system and the reliability of data is thus ensured. (fusion engineering)

  10. Apparatus for the deflection of an electron beam

    International Nuclear Information System (INIS)

    1976-01-01

    An X-ray apparatus is described that can be used in tomography. The design of the X-ray tube is the main subject of the patent with emphasis on the way of beam shaping and the control of the beam profile

  11. Impacts of the Shine Through neutrals on the Vacuum Vessel of TJ-II during NBI

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1995-01-01

    A numerical analysis of the impact patterns on the Vacuum Vessel produced by Shine Through neutrals during the tangential balanced NBI in TJ-II Helical Axis Stellarator has been done. The results show two main concentrations. The first one the circular part of the Hard Core, near the zone of closest approach of the beam. The second one, the most important, around the beam exit, on the border between the plate of the HC cover and the sector wall. As expected, the Shine Through loads decrease strongly with plasma density, predominating at low density at NBI start, decreasing quickly when density increases and increasing slightly with the beam energy. No overlapping with lost fast ions impacts is observed, that, in addition, show an opposite behaviour with density. (Author) 3 refs

  12. Improvements in or relating to the deflection of ion beams by electrostatic mirror apparatus

    International Nuclear Information System (INIS)

    Freeman, J.H.

    1980-01-01

    An electrostatic mirror apparatus is described for the deflection of positive ion beams. It is claimed that with this apparatus, ion beams of intensity greater than 100 microamps in an electromagnetic separator have been turned through 90 0 and it has been observed that high beam currents can cause the ion beam to 'blow up' (i.e. expand) as it enters the mirror space and then be focused down on exit to a beam narrower than that incident upon the mirror apparatus. (U.K.)

  13. Apparatus for irradiation with electron beam

    International Nuclear Information System (INIS)

    Uehara, K.; Ito, A.; Nishimune, K.; Fujita, K.

    1976-01-01

    An irradiation apparatus with high energy electrons is disclosed in which a wire shaped or linear object to be irradiated is moved back and forth many times under an electron window so as to irradiate it with an electron beam. According to one feature of the invention, an electron beam, which leaks through gaps between the objects to be irradiated or which penetrates the objects to be irradiated, is reversed by a magnetic field approximately perpendicular to the scanning face of the electron beam by means of a magnet which is disposed under the objects to be irradiated, and the reversed electron beam is thereby again applied to the objects to be irradiated. A high utilization rate of the electron beam is accomplished, and the objects can be thereby uniformly irradiated with the electron beam. 4 claims, 6 drawing figures

  14. Electron-impact ionization of SiCl{sub 3} using an improved crossed fast-neutral-beam - electron-beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J M; Gutkin, M V; Tarnovsky, V; Becker, K [Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)], E-mail: kbecker@poly.edu

    2008-05-15

    The fast-neutral-beam technique is a versatile approach to the determination of absolute cross sections for electron-impact ionization of atoms, stable molecules as well as free radicals and metastable species. A fast neutral beam of the species under study is prepared by charge-transfer neutralization of a mass-selected ion beam and the species are subsequently ionized by an electron beam. Mass- and energy-dispersive selection separates singly from multiply charged ions and parent from fragment ions and allows the determination of partial ionization cross sections. Here we describe some major improvements that were made recently to the fast-beam apparatus that has been used extensively for ionization cross section measurements for the past 15 years in our group. Experiments using well-established ionization cross sections in conjunction with extensive ion trajectory simulations were carried out to test the satisfactory performance of the modified fast-neutral-beam apparatus. We also report absolute partial cross sections for the formation of various singly charged positive ions produced by electron impact on SiCl{sub 3} for impact energies from threshold to 200 eV in the modified fast-beam apparatus.

  15. Re-entering fast ion effects on NBI heating power in high-beta plasmas of the Large Helical Device

    International Nuclear Information System (INIS)

    Seki, Ryosuke; Watanabe, Kiyomasa; Funaba, Hisamichi; Suzuki, Yasuhiro; Sakakibara, Satoru; Ohdachi, Satoshi; Matsumoto, Yutaka; Hamamatsu, Kiyotaka

    2011-10-01

    We calculate the heating power of the neutral beam injection (NBI) in the = 4.8% high-beta discharge achieved in the Large Helical Device (LHD). We investigate the difference of the heating efficiency and the heating power profile between with and without the re-entering fast ion effects. When the re-entering fast ion effects are taken into account, the heating efficiency in the co injection of the NBI (co-NBI case) is improved and it is about 1.8 times larger than that without the re-entering effects. In contrast, the heating efficiency with the re-entering effects in the counter injection of the NBI (ctr-NBI case) rarely differs from that without the re-entering ones. We also study the re-entering fast ion effects on the transport properties in the LHD high beta discharges. It is found that the tendency of the thermal conductivities on the beta value is not so much sensitive with and without the re-entering effects. In addition, we investigate the difference in the re-entering fast ion effects caused by the field strength and the magnetic configuration. In the co-NBI case, the re-entering fast ion effects on the heating efficiency increases with the decrease of the field strength. In the contrast, the re-entering fast ion effects in the ctr-NBI case rarely differs by changing the field strength. (author)

  16. Plasma Heating and Current Drive by Neutral Beam and Alpha Particles

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M; Okumura, Y [Fusion Research and Development Directorate, Japan Atomic Energy Agency (Japan)

    2012-09-15

    The purpose of plasma heating is to raise the plasma temperature enough to produce a deuterium and tritium reaction (D + T {yields} {sup 4}He + n). The required plasma temperature T is in the range of 10-30 keV. Since the high temperature plasma is confined by a strong magnetic field, injection of energetic ions from outside to heat the plasma is difficult due to the Lorenz force. The most efficient way to heat the plasma by energetic particles is to inject high energy 'neutrals' which get ionized in the plasma. Neutral beam injection (NBI) with a beam energy much above the average kinetic energy of the plasma electrons or ions is used (beam energy typically {approx}40 keV - 1 MeV). This heating scheme is similar to warming up cold water by pouring in hot water. There are two types of neutral beam, called P-NBI and N-NBI (P- and N- means 'positive' and 'negative', respectively). P-NBI uses the acceleration of positively charged ions and their neutralization, while N-NBI uses the acceleration of negative ions (electrons attached to neutral atoms) and their neutralization. Details are given in NBI technology Section. The first demonstration of plasma heating by P-NBI was made in ORMAK and ATC in 1974, while that by N-NBI was made in JT-60U for the first time in 1996. ITER has also adopted the N-NBI system as the heating and current drive system with a beam energy of 1 MeV. Figure A typical bird's eye view of a tokamak with N-NBI and N-NBI (JT-60U) is shown. (author)

  17. Characteristics of edge pedestals in LHW and NBI heated H-mode plasmas on EAST

    Science.gov (United States)

    Zang, Q.; Wang, T.; Liang, Y.; Sun, Y.; Chen, H.; Xiao, S.; Han, X.; Hu, A.; Hsieh, C.; Zhou, H.; Zhao, J.; Zhang, T.; Gong, X.; Hu, L.; Liu, F.; Hu, C.; Gao, X.; Wan, B.; the EAST Team

    2016-10-01

    By using the recently developed Thomson scattering diagnostic, the pedestal structure of the H-mode with neutral beam injection (NBI) or/and lower hybrid wave (LHW) heating on EAST (Experimental Advanced Superconducting Tokamak) is analyzed in detail. We find that a higher ratio of the power of the NBI to the total power of the NBI and the lower hybrid wave (LHW) will produce a large and regular different edge-localized mode (ELM), and a lower ratio will produce a small and irregular ELM. The experiments show that the mean pedestal width has good correlation with β \\text{p,\\text{ped}}0.5 , The pedestal width appears to be wider than that on other similar machines, which could be due to lithium coating. However, it is difficult to draw any conclusion of correlation between ρ * and the pedestal width for limited ρ * variation and scattered distribution. It is also found that T e/\

  18. Analysis of ferromagnetic shielding of the ITER NBI

    International Nuclear Information System (INIS)

    Roccella, M.; Lucca, F.; Roccella, R.; Cocilovo, V.; Ramogida, G.; Portone, A.; Tanga, A.; Formisano, A.; Martone, R.

    2006-01-01

    In ITER two heating and one diagnostic Neutral Beam Injectors (NBIs) are foreseen [P. L. Mondino et al., ''ITER neutral beam system '', Nucl. Fus., vol. 40, p. 501 (2000)]. Inside these components there are very stringent limits on the magnetic field (the flux density must be below some Gauss (G) along the ion path and below 20 G in the neutralizing region). To achieve these performances in an environment with high stray field due to the plasma and the poloidal field coils, both passive and active shielding systems are foreseen. The present design of the Magnetic Field Reduction System (MFRS) is made of seven active coils and of a box surrounding the NBI region, consisting of ferromagnetic plates 15 cm thick. The electromagnetic analysis of the effectiveness of these shields has been performed by a full 3D FEM model using the ANSYS code. To perform the FEM modeling of the component special care has been used to face the particular geometrical features of the component (a box of about 15 x 5 x 5 m vs. a ferromagnetic layer of only 15 cm thick). To insert an adequate number of FEM elements (at least 5) in the thickness of the ferromagnetic layer, without a prohibitive increase in the total FEM elements number, a particular modeling approach (a sort of '' Chinese boxes '' technique) has been developed. Due to this technique the FEM model enclosing the ferromagnetic box results completely independent on the fine FEM structure inside the shielding layer. It has been even possible, using this technique, introducing a thin (below 1 cm thick) slot all through the shielding plates, without perturbing the rest of the model. This slot has been used to analyze the effects of possible manufacturing lacks on the residual magnetic field inside the component. This technique has allowed the use of only structured meshes made by brick elements, much more accurate than the tetra elements, needed in the usual free meshing techniques. To have the possibility of changing the shielding

  19. Apparatus for electron beam irradiation of objects

    International Nuclear Information System (INIS)

    Dmitriev, S.P.; Ivanov, A.S.; Sviniin, M.P.; Fedotov, M.T.

    1984-01-01

    This patent provides an apparatus for electron beam irradiation of objects, comprising a shaper of a ribbon-shaped electron beam and a deflecting electromagnet having a frame-type magnetic circuit and used to direct said electron beam onto an irradiated object substantially at an angle of 90 degrees. The deflecting electromagnet has two poles extended over the width of the irradiated object and comprises two windings embracing said poles and connected to a d.c. source. The deflecting electromagnet is arranged in such a manner that the trajectories of the electrons at an area from the shaper to the electromagnet are inclined to the plane of the frame of its magnetic circuit

  20. Transient phenomena analysis of a DC-1 MV power supply for the ITER NBI

    International Nuclear Information System (INIS)

    Yamamoto, Masanori; Watanabe, Kazuhiro; Yamanaka, Haruhiko; Takemoto, Jumpei; Inoue, Takashi; Yamashita, Yasuo

    2010-08-01

    A power supply for the ITER Neutral Beam Injector (NBI) is a DC ultra-high voltage (UHV) power supply to accelerate negative ion beams of 40 A up to an energy of 1 MeV. Japan Atomic Energy Agency as the Japan Domestic Agency for ITER contributes procurement of dc -1 MV main components such as step-up -1 MV transformers rectifiers, a high voltage deck 2, a -1 MV insulating transformer, a transmission line, a surge reduction system and equipments for site test. Design of the surge suppression in the NBI power supply is one of the key issues to obtain the stable injector performance. This report describes the design study using EMTDC code on the surge suppression by optimizing the core snubber and additional elements in the -1 MV power supply. The results show that the input energy from the stray capacitance to the accelerator at the breakdown can be reduced to about 25 J that is smaller than design criteria for ITER. (author)

  1. Recent results with NBI plasmas in TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Liniers, M.; Ascasibar, E.; Estrada, T.; Tabares, F. L.; Acedo, M.; Alonso, J.; Balbin, R.; Blanco, B.; Branas, B.; Cappa, A.; Carrasco, R.; Castejon, F.; Fernandez, A.; Fontdecaba, J. M.; Fuentes, C.; Garcia, A.; Garcia-Cortes, I.; Guasp, J.; Hidalgo, A.; Hidalgo, C.; Jimenez, R.; Lopez-Bruna, D.; Lopez-Fraguas, A.; Marcon, G.; McCarthy, K. J.; Medina, F.; Medrano, M.; Ochando, M.; Pastor, I.; Pedrosa, M. A.; Rapisarda, D.; Sanchez, E.; Sanchez, M.; Sanchez, J.; Tafalla, D.; Wolfers, G.; Zurro, B.

    2005-07-01

    During the last experimental campaign Neutral Beam Injection into TJ-II plasmas has been available, with a single H0 beam aiming tangentially in the Co-direction. As the ion source conditioning was improved along the campaign, the injected power increased from 200 kW to 400 kW port-through, and the beam energy was raised from 26 kV to 30 kV [1]. Target plasmas are created by ECR heating, using two gyrotrons of 200 kW power, at the second harmonic frequency (53 GHz). The injection direction of the microwaves can be steered by means of movable mirrors placed inside the vacuum chamber, making it possible to vary the power deposition region from the plasma core (on-axis) to the outer regions near ?=0.5 (off-axis). The plasma temperature and density profiles obtained with on-axis or off axis ECRH are seen to differ widely, allowing us to study the neutral beam absorption in two qualitatively different plasma target scenarios. Other factors affecting the plasma profiles have also been investigated, such as the magnetic configuration or the OH-driven current. TJ-II has the capability of varying the magnetic configuration by changing the ratio of the current through the circular and helical conductors that form the Central Conductor. The iota values can be swept between 0.9 and 2.2 and the magnetic well between -1% and 6% giving rise to configurations with different confinement properties. A negative OH driven current has the effect of increasing the magnetic shear value, allowing low-order rationals in the central region which have been seen to modify density profiles in ECH plasmas. In most NBI discharges the central plasma density increases continuously from ECH typical values below 1.1 x 10 19 m-3 up to 6.5 x 10 19 m-3, as the beam is injected, until a thermal collapse that terminates the discharge is reached. So far, density control with NBI plasmas has not been achieved, although an improved behaviour is observed with wall cleaning. (Author)

  2. Recent results with NBI plasmas in TJ-II stellarator

    International Nuclear Information System (INIS)

    Liniers, M.; Ascasibar, E.; Estrada, T.; Tabares, F. L.; Acedo, M.; Alonso, J.; Balbin, R.; Blanco, B.; Branas, B.; Cappa, A.; Carrasco, R.; Castejon, F.; Fernandez, A.; Fontdecaba, J. M.; Fuentes, C.; Garcia, A.; Garcia-Cortes, I.; Guasp, J.; Hidalgo, A.; Hidalgo, C.; Jimenez, R.; Lopez-Bruna, D.; Lopez-Fraguas, A.; Marcon, G.; McCarthy, K. J.; Medina, F.; Medrano, M.; Ochando, M.; Pastor, I.; Pedrosa, M. A.; Rapisarda, D.; Sanchez, E.; Sanchez, M.; Sanchez, J.; Tafalla, D.; Wolfers, G.; Zurro, B.

    2005-01-01

    During the last experimental campaign Neutral Beam Injection into TJ-II plasmas has been available, with a single H0 beam aiming tangentially in the Co-direction. As the ion source conditioning was improved along the campaign, the injected power increased from 200 kW to 400 kW port-through, and the beam energy was raised from 26 kV to 30 kV [1]. Target plasmas are created by ECR heating, using two gyrotrons of 200 kW power, at the second harmonic frequency (53 GHz). The injection direction of the microwaves can be steered by means of movable mirrors placed inside the vacuum chamber, making it possible to vary the power deposition region from the plasma core (on-axis) to the outer regions near ?=0.5 (off-axis). The plasma temperature and density profiles obtained with on-axis or off axis ECRH are seen to differ widely, allowing us to study the neutral beam absorption in two qualitatively different plasma target scenarios. Other factors affecting the plasma profiles have also been investigated, such as the magnetic configuration or the OH-driven current. TJ-II has the capability of varying the magnetic configuration by changing the ratio of the current through the circular and helical conductors that form the Central Conductor. The iota values can be swept between 0.9 and 2.2 and the magnetic well between -1% and 6% giving rise to configurations with different confinement properties. A negative OH driven current has the effect of increasing the magnetic shear value, allowing low-order rationals in the central region which have been seen to modify density profiles in ECH plasmas. In most NBI discharges the central plasma density increases continuously from ECH typical values below 1.1 x 10 19 m-3 up to 6.5 x 10 19 m-3, as the beam is injected, until a thermal collapse that terminates the discharge is reached. So far, density control with NBI plasmas has not been achieved, although an improved behaviour is observed with wall cleaning. (Author)

  3. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    International Nuclear Information System (INIS)

    Song, Minsoo; Yoon, Tai Hyun

    2013-01-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s 2 1 S 0 ↔ 6s7s 1 S 0 ) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm 3 and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s 1 S 0 state via the intercombination 6s6p 3 P 1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  4. Simulations of beam-fueled supershot-like plasmas near ignition

    International Nuclear Information System (INIS)

    Budny, R.V.; Grisham, L.; Jassby, D.L.

    1992-01-01

    In certain conditions, neutral beam injection (NBI) and low recycling result in supershot plasmas. These are characterized by peaked density profiles and high central ion temperatures. We discuss the potential advantages of NBI fueled supershot-like plasmas in tokamaks operating near ignition. The goal is to investigate the feasibility of these plasmas to aid in the design of future advanced tokamaks. NBI has been very successful in advancing tokamak plasmas close to ignition conditions. The primary benefits of NBI are heating and particle fueling, but the plasma currents generated by the beam ions are also of considerable interest. The optimal injection energy E inj for the beam ions depends on the desired role of the NBI. For central particle fueling, E inj should be low to maximize the particle current at fixed P B , but high enough to penetrate to the center. For heating and current drive, higher E inj is preferable for deepest penetration. With the standard positive ion beam technology, the neutralization efficiency becomes too low for useful power densities if E inj is significantly greater than about 120 keV. Negative ion beam sources would be useful for heating and current drive at very high E inj (500 keV or more), but the fueling rate of NBI is too low to be practical. It seems generally accepted that future tokamaks which operate closer to ignition will have to be fueled and heated by means other than NBI since it is argued that the beams with low E inj cannot penetrate deeply into the dense plasmas of interest. (author) 3 refs., 4 figs

  5. Progress of the ITER NBI acceleration grid power supply reference design

    International Nuclear Information System (INIS)

    Toigo, Vanni; Zanotto, Loris; Bigi, Marco; Decamps, Hans; Ferro, Alberto; Gaio, Elena; Gutiérrez, Daniel; Tsuchida, Kazuki; Watanabe, Kazuhiro

    2013-01-01

    Highlights: ► This paper reports the progress in the reference design of the Acceleration Grid Power Supply (AGPS) of the ITER Neutral Beam Injector (NBI) ► A critical revision of the main design choices is presented in light of the definition of some key interface parameters between the two AGPS subsystems. ► The verification of the fulfillment of the requirements in any operational conditions is reported and discussed. -- Abstract: This paper reports the progress in the reference design of the Acceleration Grid Power Supply (AGPS) of the ITER Neutral Beam Injector (NBI). The design of the AGPS is very challenging, as it shall be rated to provide about 55 MW at 1 MV dc in quasi steady-state conditions; moreover, the procurement of the system is shared between the European Domestic Agency (F4E) and the Japanese Domestic Agency (JADA), resulting in additional design complication due to the need of a common definition of the interface parameters. A critical revision of the main design choices is presented also in light of the definition of some key interface parameters between the two AGPS subsystems. Moreover, the verification of the fulfillment of the requirements in any operational conditions taking into account the tolerance of the different parameters is also reported and discussed

  6. Design of a negative-ion based NBI system for JT-60U

    International Nuclear Information System (INIS)

    Kuriyama, M.; Araki, M.; Inoue, T.; Kunieda, S.; Matsuoka, M.; Mizuno, M.; Ohara, Y.; Okumura, Y.; Oohara, H.; Watanabe, K.

    1992-01-01

    This paper reports on a negative-ion based NBI system which is planned as a key device on the JT-60U in the experiments of current drive and plasma core heating with high density plasmas. The NBI system will inject neutral beams of 500keV, 10MW for 10sec from a beamline with two ion sources. The neutral beam will be injected tangentially in the codirection. Each ion source is a modified volume production-type negative-ion source with cesium vapor. The acceleration current is 22A with deuterium beam, and the current density is 13mA/cm 2 . An operational pressure in the negative-ion generator is less than 0.5 Pa. A three-stage electro static acceleration system is adopted as the accelerator. The beamline length between the ion source and the injection port is 24m. The beamline consists of an ion source tank, neutralizer cells of 10m in length, an ion dump tank and a drift duct. The ion source tank contains large cryopumps to maintain the exit of the ion source sufficiently low. The ion dump tank contains ion deflecting coils, ion dumps for positive and negative ions, a calorimeter, cryopumps and beam scrapers. Residual ions are deflected by the combined magnetic fields produced by the deflecting coils and the stray field form the tokamak. The two sources are connected to an acceleration power supply of 500kV/64A/10sec, while the negative-ion generator power, the extraction voltage, and electron-suppression voltage are fed individually

  7. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Yoon, Tai Hyun [Department of Physics, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-02-15

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s{sup 2} {sup 1}S{sub 0}{r_reversible} 6s7s {sup 1}S{sub 0}) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm{sup 3} and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s{sup 1}S{sub 0} state via the intercombination 6s6p{sup 3}P{sub 1} state with a high signal-to-noise ratio even at the temperature of 340 Degree-Sign C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  8. Plasma heating: NBI ampersand RF, an introduction

    International Nuclear Information System (INIS)

    Koch, R.

    1996-01-01

    The additional heating and non-inductive current-drive methods are reviewed. First, the limitations of ohmic heating in tokamaks are examined and the motivations for using additional heating in tokamaks or other machines are discussed. Next we sketch the principles of heating by injection of fast neutrals - or Neutral Beam Injection (NBI). The principle of the injector is briefly outlined. Positive and negative ion based concepts are discussed. The remainder of the lecture focuses on the processes by which the beam transfers energy to the plasma: the ionisation and slowing-down processes. Next, I make a review of the different heating schemes based on the transfer of electromagnetic energy to the plasma. The different wave heating frequency ranges are listed and the propagation and damping peculiarities are sketched in each domain. Heating in the Alfven and lower hybrid wave domains are described in some more details. 21 refs., 9 figs., 1 tab

  9. Method and Apparatus for Characterizing Pressure Sensors using Modulated Light Beam Pressure

    Science.gov (United States)

    Youngquist, Robert C. (Inventor)

    2003-01-01

    Embodiments of apparatuses and methods are provided that use light sources instead of sound sources for characterizing and calibrating sensors for measuring small pressures to mitigate many of the problems with using sound sources. In one embodiment an apparatus has a light source for directing a beam of light on a sensing surface of a pressure sensor for exerting a force on the sensing surface. The pressure sensor generates an electrical signal indicative of the force exerted on the sensing surface. A modulator modulates the beam of light. A signal processor is electrically coupled to the pressure sensor for receiving the electrical signal.

  10. Sawtooth stability in neutral beam heated plasmas in TEXTOR

    NARCIS (Netherlands)

    Chapman, I.T.; Pinches, S. D.; Koslowski, H. R.; Liang, Y.; Kramer-Flecken, A.; De Bock, M.

    2008-01-01

    The experimental sawtooth behaviour in neutral beam injection (NBI) heated plasmas in TEXTOR is described. It is found that the sawtooth period is minimized with a low NBI power oriented in the same direction as the plasma current. As the beam power is increased in the opposite direction to the

  11. Energy composition of high-energy neutral beams on the COMPASS tokamak

    Directory of Open Access Journals (Sweden)

    Mitosinkova Klara

    2016-12-01

    Full Text Available The COMPASS tokamak is equipped with two identical neutral beam injectors (NBI for additional plasma heating. They provide a beam of deuterium atoms with a power of up to ~(2 × 300 kW. We show that the neutral beam is not monoenergetic but contains several energy components. An accurate knowledge of the neutral beam power in each individual energy component is essential for a detailed description of the beam- -plasma interaction and better understanding of the NBI heating processes in the COMPASS tokamak. This paper describes the determination of individual energy components in the neutral beam from intensities of the Doppler-shifted Dα lines, which are measured by a high-resolution spectrometer viewing the neutral beam-line at the exit of NBI. Furthermore, the divergence of beamlets escaping single aperture of the last accelerating grid is deduced from the width of the Doppler-shifted lines. Recently, one of the NBI systems was modified by the removal of the Faraday copper shield from the ion source. The comparison of the beam composition and the beamlet divergence before and after this modification is also presented.

  12. A Neutral Beam Injector Upgrade for NSTX

    International Nuclear Information System (INIS)

    Stevenson, T.; McCormack, B.; Loesser, G.D.; Kalish, M.; Ramakrishnan, S.; Grisham, L.; Edwards, J.; Cropper, M.; Rossi, G.; Halle, A. von; Williams, M.

    2002-01-01

    The National Spherical Torus Experiment (NSTX) capability with a Neutral Beam Injector (NBI) capable of 80 kiloelectronvolt (keV), 5 Megawatt (MW), 5 second operation. This 5.95 million dollar upgrade reused a previous generation injector and equipment for technical, cost, and schedule reasons to obtain these specifications while retaining a legacy capability of 120 keV neutral particle beam delivery for shorter pulse lengths for possible future NSTX experiments. Concerns with NBI injection included power deposition in the plasma, aiming angles from the fixed NBI fan array, density profiles and beam shine through, orbit losses of beam particles, and protection of the vacuum vessel wall against beam impingement. The upgrade made use of the beamline and cryo panels from the Neutral Beam Test Stand facility, existing power supplies and controls, beamline components and equipment not contaminated by tritium during DT [deuterium-tritium] experiments, and a liquid Helium refrigerator plant to power and cryogenically pump a beamline and three ion sources. All of the Tokamak Fusion Test Reactor (TFTR) ion sources had been contaminated with tritium, so a refurbishment effort was undertaken on selected TFTR sources to rid the three sources destined for the NSTX NBI of as much tritium as possible. An interconnecting duct was fabricated using some spare and some new components to attach the beamline to the NSTX vacuum vessel. Internal vacuum vessel armor using carbon tiles was added to protect the stainless steel vacuum vessel from beam impingement in the absence of plasma and interlock failure. To date, the NBI has operated to 80 keV and 5 MW and has injected requested power levels into NSTX plasmas with good initial results, including high beta and strong heating characteristics at full rated plasma current

  13. Design of a -1 MV dc UHV power supply for ITER NBI

    Science.gov (United States)

    Watanabe, K.; Yamamoto, M.; Takemoto, J.; Yamashita, Y.; Dairaku, M.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; Umeda, N.; Sakamoto, K.; Inoue, T.

    2009-05-01

    Procurement of a dc -1 MV power supply system for the ITER neutral beam injector (NBI) is shared by Japan and the EU. The Japan Atomic Energy Agency as the Japan Domestic Agency (JADA) for ITER contributes to the procurement of dc -1 MV ultra-high voltage (UHV) components such as a dc -1 MV generator, a transmission line and a -1 MV insulating transformer for the ITER NBI power supply. The inverter frequency of 150 Hz in the -1 MV power supply and major circuit parameters have been proposed and adopted in the ITER NBI. The dc UHV insulation has been carefully designed since dc long pulse insulation is quite different from conventional ac insulation or dc short pulse systems. A multi-layer insulation structure of the transformer for a long pulse up to 3600 s has been designed with electric field simulation. Based on the simulation the overall dimensions of the dc UHV components have been finalized. A surge energy suppression system is also essential to protect the accelerator from electric breakdowns. The JADA contributes to provide an effective surge suppression system composed of core snubbers and resistors. Input energy into the accelerator from the power supply can be reduced to about 20 J, which satisfies the design criteria of 50 J in total in the case of breakdown at -1 MV.

  14. Increase of the positive ion source power in JT-60 NBI

    International Nuclear Information System (INIS)

    Kawai, Mikito; Akino, Noboru; Ebisawa, Noboru

    1998-09-01

    Neutral Beam Injection (NBI) heating experiment in JT-60 started in 1986, and the rated injection power of 20MW at 75keV with hydrogen was achieved after several month operation. In 1991, the ion sources and power supply had been upgraded for a higher beam energy up to 120keV with deuterium, following which the ion source operation re-started aiming for an injection power of 40MW at 110keV. In the operation, the beam acceleration voltage was tried to increase by modifying the ion source structure against the break-down which occurred frequently in the ion source. The beam acceleration was, however, unstable in a beam energy range of more than 105keV because of voltage-holding deterioration in the accelerator. Therefore we changed the strategy to increase the injection power: i.e. we tried to increase the beam current with keeping the beam energy. The structure of the source has been modified to be operated in a high current regime. As a result, the deuterium neutral beam injection of 40MW at 91-96keV was achieved in July 1996. (author)

  15. Method and apparatus for real time imaging and monitoring of radiotherapy beams

    Science.gov (United States)

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA; Macey, Daniel J [Birmingham, AL; Weisenberger, Andrew G [Yorktown, VA

    2011-11-01

    A method and apparatus for real time imaging and monitoring of radiation therapy beams is designed to preferentially distinguish and image low energy radiation from high energy secondary radiation emitted from a target as the result of therapeutic beam deposition. A detector having low sensitivity to high energy photons combined with a collimator designed to dynamically image in the region of the therapeutic beam target is used.

  16. Integration of cryopump instrumentation for SST-1 NBI

    International Nuclear Information System (INIS)

    Bansal, Laxmi Kant; Patel, Paresh J.; Prahlad, V.

    2015-01-01

    A positive ion neutral injector (PINI) capable in delivering 5MW (55kV, 90A) ion beam power is being operated for SST-1 neutral beam injection (NBI). The production and neutralization of the ion beams in the injector requires a gas throughput of 20 torr I/s in the plasma box and 50-100 torr I/s in the neutralizer section. It is necessary to maintain operating pressure of vessel at 10 -5 torr to reduce the re-ionization loss of beam within tolerable limits. Conventional Turbo molecular pumps cannot maintain this vacuum level at required gas feed rate so two cryo condensation pumps are being operated to achieve require vacuum in vessel. In order to monitor and optimize the performance of cryopumps, it is necessary to measure the temperature at various locations in LN 2 and LHe path. It is also required to monitor the level of LHe and LN 2 in cryopumps. Several temperature and level sensors are mounted at various places in cryopumps and integrated with PLC and SCADA based control system. This paper presents the details of sensor mounting, signals conditioning, scheme of their integration with PLC and SCADA and results in detail. (author)

  17. Method and apparatus to monitor a beam of ionizing radiation

    Science.gov (United States)

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  18. Impacts of lost fast ions on the TJ-II Vacuum Vessel during NBI; Impactos de los iones rapidos en la Camara de Vacio del TJ-II durante NBI

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J

    1995-07-01

    The possible deposition patterns, on the Vacuum Vessel, of lost fast ions during the balanced tangential NBI in TJ-II helical axis Stellarator are analysed theoretically, establishing the relation between those impact points, the plasma exit and birth positions and the magnetic configuration characteristics. It is shown that direct losses are the most important, mainly those produced by the beam injected with the same direction that the magnetic field, increasing with beam energy and plasma density but with impacts remaining fixed on well defined zones, a periodically distributed along the Hard Core cover plates, producing high loads at high densities. The remaining losses, except for the shine through ones that predominate at low density, are periodically distributed, with smooth maxima and produce very low loads. No overlapping between the different kind of losses or beams is observed. (Author) 6 refs.

  19. Low-energy ion-beam deposition apparatus equipped with surface analysis system

    International Nuclear Information System (INIS)

    Ohno, Hideki; Aoki, Yasushi; Nagai, Siro.

    1994-10-01

    A sophisticated apparatus for low energy ion beam deposition (IBD) was installed at Takasaki Radiation Chemistry Research Establishment of JAERI in March 1991. The apparatus is composed of an IBD system and a real time/in-situ surface analysis system for diagnosing deposited thin films. The IBD system provides various kinds of low energy ion down to 10 eV with current density of 10 μA/cm 2 and irradiation area of 15x15 mm 2 . The surface analysis system consists of RHEED, AES, ISS and SIMS. This report describes the characteristics and the operation procedure of the apparatus together with some experimental results on depositing thin carbon films. (author)

  20. National Bridge Inventory System (NBI)

    Data.gov (United States)

    Department of Transportation — The NBI System is the collection of bridge inspection information and costs associated with bridge replacements of structurally deficient bridges on and off the NHS....

  1. National Bridge Inventory (NBI) Bridges

    Data.gov (United States)

    Department of Homeland Security — The NBI is a collection of information (database) describing the more than 600,000 of the Nation's bridges located on public roads, including Interstate Highways,...

  2. Power supply for plasma generator of HL-1M neutral beam injector

    International Nuclear Information System (INIS)

    Wang Detai; Qian Jiamei; Lei Guangjiu; Shun Mengda; Jiang Shaofeng; Wang Enyao; Lu Xuejun; Yang Tiehai; Wang Xuehua; Zhao Zhimin; Hao Ming; Huang Jianrong; Yu Yanqiu; Cheng Baoqiang; Wu Zhige; Sheng Ning; Hu Qingtao

    1999-01-01

    The diagram of the HL-1M Neutral Beam Injector (NBI) and the power supply (PS) system is shown. The NBI consists of ion source, beam line and power supply system etc. The ion source includes plasma generator and three-electrode extraction system. The power supply for plasma generator consists of a filament PS, an arc PS and gas valve PS. Testing has shown that the PS for plasma generator of the HL-1M NBI has excellent stability and obtain good plasma heating effect

  3. Single beam pass migmacell method and apparatus

    International Nuclear Information System (INIS)

    Maglich, B.C.; Nering, J.E.; Mazarakis, M.G.; Miller, R.A.

    1976-01-01

    The invention provides improvements in migmacell apparatus and method by dispensing with the need for metastable confinement of injected molecular ions for multiple precession periods. Injected molecular ions undergo a 'single pass' through the reaction volume. By preconditioning the injected beam such that it contains a population distribution of molecules in higher vibrational states than in the case of a normal distribution, injected molecules in the single pass exper-ience collisionless dissociation in the migmacell under magnetic influence, i.e., so-called Lorentz dissociation. Dissociationions then form atomic migma

  4. Conceptual design of the beam source for the DEMO Neutral Beam Injectors

    Science.gov (United States)

    Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.

    2016-12-01

    DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.

  5. INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH ION CYCLOTRON RESONANCE FREQUENCY WAVES

    International Nuclear Information System (INIS)

    CHOI, M.; CHAN, V.S.; CHIU, S.C.; OMELCHENKO, Y.A.; SENTOKU, Y.; STJOH, H.E.

    2003-01-01

    OAK B202 INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH CYCLOTRON RESONANCE FREQUENCY WAVES. Existing tokamaks such as DIII-D and future experiments like ITER employ both NB injection (NBI) and ion-cyclotron resonance heating (ICRH) for auxiliary heating and current drive. The presence of energetic particles produced by NBI can result in absorption of the Ion cyclotron radio frequency (ICRF) power. ICRF can also interact with the energetic beam ions to alter the characteristics of NBI momentum deposition and resultant impact on current drive and plasma rotation. To study the synergism between NBI and ICRF, a simple physical model for the slowing-down of NB injected fast ions is implemented in a Monte-Carlo rf orbit code. This paper presents the first results. The velocity space distributions of energetic ions generated by ICRF and NBI are calculated and compared. The change in mechanical momentum of the beam and an estimate of its impact on the NB-driven current are presented and compared with ONETWO simulation results

  6. Empirical Scaling Laws of Neutral Beam Injection Power in HL-2A Tokamak

    International Nuclear Information System (INIS)

    Cao Jian-Yong; Wei Hui-Ling; Liu He; Yang Xian-Fu; Zou Gui-Qing; Yu Li-Ming; Li Qing; Luo Cui-Wen; Pan Yu-Dong; Jiang Shao-Feng; Lei Guang-Jiu; Li Bo; Rao Jun; Duan Xu-Ru

    2015-01-01

    We present an experimental method to obtain neutral beam injection (NBI) power scaling laws with operating parameters of the NBI system on HL-2A, including the beam divergence angle, the beam power transmission efficiency, the neutralization efficiency and so on. With the empirical scaling laws, the estimating power can be obtained in every shot of experiment on time, therefore the important parameters such as the energy confinement time can be obtained precisely. The simulation results by the tokamak simulation code (TSC) show that the evolution of the plasma parameters is in good agreement with the experimental results by using the NBI power from the empirical scaling law. (paper)

  7. Apparatus and method for neutralizing the beam in an ion implanter

    International Nuclear Information System (INIS)

    Douglas, E.C.

    1982-01-01

    An ion implanter apparatus is described with provision for neutralizing the space charge potential of the ionic beam with a closed loop feedback system responding to the electrical charges that tend to accumulate on a target specimen. Neutralization is provided by a controllable electron source surrounding the beam. Flow of electrons to a plate radially outward of the electron source is used to derive a signal proportional to the beam ion current when the space charge potential of the beam is neutralized. The beam current signal can be used (1) to provide a read-out display for the operator; (2) to control the magnitude of the ion beam; (3) to be integrated to determine the total positive charge that enters the faraday cage of the implanter for use to control the ion beam shutter; or (4) to effect relative movement of the specimen and the beam

  8. Physical performance analysis and progress of the development of the negative ion RF source for the ITER NBI system

    International Nuclear Information System (INIS)

    Fantz, U.; Franzen, P.; Kraus, W.; Berger, M.; Christ-Koch, S.; Falter, H.; Froeschle, M.; Gutser, R.; Heinemann, B.; Martens, C.; McNeely, P.; Riedl, R.; Speth, E.; Staebler, A.; Wuenderlich, D.

    2009-01-01

    For heating and current drive the neutral beam injection (NBI) system for ITER requires a 1 MeV deuterium beam for up to 1 h pulse length. In order to inject the required 17 MW the large area source (1.9 m x 0.9 m) has to deliver 40 A of negative ion current at the specified source pressure of 0.3 Pa. In 2007, the IPP RF driven negative hydrogen ion source was chosen by the ITER board as the new reference source for the ITER NBI system due to, in principle, its maintenance free operation and the progress in the RF source development. The performance analysis of the IPP RF sources is strongly supported by an extensive diagnostic program and modelling of the source and beam extraction. The control of the plasma chemistry and the processes in the plasma region near the extraction system are the most critical topics for source optimization both for long pulse operation as well as for the source homogeneity. The long pulse stability has been demonstrated at the test facility MANITU which is now operating routinely at stable pulses of up to 10 min with parameters near the ITER requirements. A quite uniform plasma illumination of a large area source (0.8 m x 0.8 m) has been demonstrated at the ion source test facility RADI. The new test facility ELISE presently planned at IPP is being designed for long pulse plasma operation and short pulse, but large-scale extraction from a half-size ITER source which is an important intermediate step towards ITER NBI.

  9. Modification to the accelerator of the NBI-1B ion source for improving the injection efficiency

    International Nuclear Information System (INIS)

    Kim, T. S.; Jeong, S. H.; Chang, D. H.; In, S. R.; Park, M.; Jung, B. K.; Lee, K. W.; Wang, S. J.; Bae, Y. S.; Park, H. T.; Kim, J. S.; Cho, W.; Choi, D. J.

    2016-01-01

    Minimizing power loss of a neutral beam imposes modification of the accelerator of the ion source for further improvement of the beam optics. The beam optics can be improved by focusing beamlets. The injection efficiencies by the steering of ion beamlets are investigated numerically to find the optimum modification of the accelerator design of the NBI-1B ion source. The beam power loss was reduced by aperture displacement of three edge beamlets arrays considering power loadings on the beamline components. Successful testing and operation of the ion source at 60 keV/84% of injection efficiency led to the possibility of enhancing the system capability to a 2.4 MW power level at 100 keV/1.9 μP

  10. Impacts of lost fast ions on the TJ-II Vacuum Vessel during NBI

    International Nuclear Information System (INIS)

    Guasp, J.

    1995-01-01

    The possible deposition patterns, on the Vacuum Vessel, of lost fast ions during the balanced tangential NBI in TJ-II helical axis Stellarator are analysed theoretically, establishing the relation between those impact points, the plasma exit and birth positions and the magnetic configuration characteristics. It is shown that direct losses are the most important, mainly those produced by the beam injected with the same direction that the magnetic field, increasing with beam energy and plasma density but with impacts remaining fixed on well defined zones, a periodically distributed along the Hard Core cover plates, producing high loads at high densities. The remaining losses, except for the shine through ones that predominate at low density, are periodically distributed, with smooth maxima and produce very low loads. No overlapping between the different kind of losses or beams is observed. (Author) 6 refs

  11. Impacts of lost fast ions on the TJ-II Vacuum vessel during NBI

    International Nuclear Information System (INIS)

    Guasp, J.

    1995-09-01

    The possible deposition patterns, on the Vacuum Vessel, of lost fast ions during the balanced tangential NBI in TJ-II helical axis Stellarator are analysed theoretically, establishing the relation between those impact points, the plasma exit and birth positions and positions and the magnetic configuration characteristics. It is shown that direct losses are the most important, mainly those produced by the beam injected with the same direction that the magnetic field, increasing with beam energy and plasma density but with impacts remaining fixed on well defined zones, a periodically distributed along the Hard Core cover plates, producing high loads at high densities. The remaining losses, except for the shine through ones that predominate at low density, are periodically distributed, with smooth maxima and produce very low loads. No overlapping between the different kind of losses or beams is observed

  12. Versatile user-oriented atomic and molecular beam apparatus for use with the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Mitchell, J.B.A.; Grover, J.R.

    1978-11-01

    A proposed atomic and moleuclar beam apparatus is described for photon interaction studies using the National Sychrotron Light Source at the Brookhaven National Laboratory. This apparatus will employ ultrahigh vacuum techniques compatible with storage ring operation. Supersonic nozzle sources will be used to produce the beams and signal detection will be accomplished using a quadrupole mass analysis system. The equipment is intended for use both by in-house and outside users and primary consideration has been given to flexibility of design. The application of photoionization techniques to the study of crossed beam reactive scattering with particular emphasis on internal energy distribution analysis is discussed

  13. JET neutral beam duct Optical Interlock

    Energy Technology Data Exchange (ETDEWEB)

    Ash, A.D.; Jones, T.T.C.; Surrey, E.; Ćirić, D.; Hall, S.I.; Young, D.; Afzal, M.; Hackett, L.; Day, I.E.; King, R.

    2015-10-15

    Highlights: • Optical Interlocks were installed on the JET NBI system as part of the EP2 upgrade. • The system protects the JET tokamak and NBI systems from thermal load damage. • Balmer-α beam emission is used to monitor the neutral beam-line pressure. • We demonstrate an improved trip delay of 2 ms compared to 50 ms before EP2. - Abstract: The JET Neutral Beam Injection (NBI) system is the most powerful neutral beam plasma heating system currently operating. Optical Interlocks were installed on the beam lines in 2011 for the JET Enhancement Project 2 (EP2), when the heating power was increased from 23 MW to 34 MW. JET NBI has two beam lines. Each has eight positive ion injectors operating in deuterium at 80 kV–125 kV (accelerator voltage) and up to 65 A (beam current). Heating power is delivered through two ducts where the central power density can be more than 100 MW/m{sup 2}. In order to deliver this safely, the beam line pressure should be below 2 × 10{sup −5} mbar otherwise the power load on the duct from the re-ionised fraction of the beam is excessive. The new Optical Interlock monitors the duct pressure by measuring the Balmer-α beam emission (656 nm). This is proportional to the instantaneous beam flux and the duct pressure. Light is collected from a diagnostic window and focused into 1-mm diameter fibres. The Doppler shifted signal is selected using an angle-tuned interference filter. The light is measured by a photo-multiplier module with a logarithmic amplifier. The interlock activation time of 2 ms is sufficient to protect the system from a fully re-ionised beam—a significant improvement on the previous interlock. The dynamic range is sufficient to see bremsstrahlung emission from JET plasma and not saturate during plasma disruptions. For high neutron flux operations the optical fibres within the biological shield can be annealed to 350 °C. A self-test is possible by illuminating the diagnostic window with a test lamp and measuring

  14. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Oliveira, A. N. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); INMETRO, Av. Nossa Senhora das Graças, 50 25250-020 Duque de Caxias, RJ (Brazil); Li, M. S. [Instituto de Física de São Carlos, Universidade de São Paulo, Ave. Trabalhador São Carlense, 400, 13565-590 São Carlos, SP (Brazil)

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  15. Modelling of combined ICRF and NBI heating in JET hybrid plasmas

    Directory of Open Access Journals (Sweden)

    Gallart Dani

    2017-01-01

    Full Text Available During the 2015-2016 JET campaigns many efforts have been devoted to the exploration of high performance plasma scenarios envisaged for ITER operation. In this paper we model the combined ICRF+NBI heating in selected key hybrid discharges using PION. The antenna frequency was tuned to match the cyclotron frequency of minority hydrogen (H at the center of the tokamak coinciding with the second harmonic cyclotron resonance of deuterium. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of deuterium beam ions which allows us to assess its impact on the neutron rate RNT. We evaluate the influence of H concentration which was varied in different discharges in order to test their role in the heating performance. According to our modelling, the ICRF enhancement of RNT increases by decreasing the H concentration which increases the ICRF power absorbed by deuterons. We find that in the recent hybrid discharges this ICRF enhancement was in the range of 10-25%. Finally, we extrapolate the results to D-T and find that the best performing hybrid discharges correspond to an equivalent fusion power of ∼7.0 MW in D-T.

  16. Gaussian beam profile shaping apparatus, method therefore and evaluation thereof

    International Nuclear Information System (INIS)

    Dickey, F.M.; Holswade, S.C.; Romero, L.A.

    1999-01-01

    A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system. 27 figs

  17. Neutral Beam Injection Requirements and Design Issues for the National Compact Stellarator Experiment

    International Nuclear Information System (INIS)

    Kugel, H.W.; Neilson, H.; Reiersen, W.; Zarnstorff, M.

    2002-01-01

    The National Compact Stellarator Experiment (NCSX) will require 6 MW of 50 keV neutral beam injection (NBI) with initial pulse lengths of 500 msec and upgradeable to pulse lengths of 1.5 sec. This paper discusses the NCSX NBI requirements and design issues, and shows how these are provided by the candidate PBX-M [Princeton Beta Experiment-Modification] NBI system

  18. Apparatus for servicing a jet pump hold down beam in a nuclear reactor

    International Nuclear Information System (INIS)

    Howell, D.A.; Hydeman, J.E.; Slater, J.L.; Bodnar, R.J.; Golick, L.R.; Sckera, R.S.; Roth, C.H. Jr.

    1991-01-01

    This patent describes an apparatus for replacing the hold down beam of a fluid circulating jet pump mounted in a nuclear reactor, the hold down beam having a beam body, a pair of opposed beam tabs and a pair of opposed beam positioning trunnions extending outwardly from the beam body. It comprises a housing having a lower surface configured to be positionable over the body of the hold down beam; means coupled to the housing for engaging the beam trunnions and securing the beam body against the lower surface of the housing; means coupled to the housing for depressing the beam tabs while the beam body is secured against the lower surface of the housing; means coupled to the trunnion engaging means and the beam tab depressing means for selectively actuating the trunnion engaging means and the beam tab depressing means from a position remote from the nuclear reactor; and means connectable to the housing for selectively changing the directional orientation of the beam

  19. Design of remote handling equipment for the ITER NBI

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-08-01

    The ITER machine has three Neutral Beam Injectors (NBIs) placed tangential to the plasma at a minimum radius of 6.25 m. During operation, neutrons produced by the D-T reactions will irradiate the NBI structure and it will become radioactive. Radiation levels will be such that all subsequent maintenance of the NBIs must be carried out remotely. The presence of tritium and possibly radioactive dust requires that precautions be taken during maintenance to prevent the escape of these contaminants beyond the prescribed boundaries. The scope of this task is both the development of remote maintenance procedures and the design of the remote handling equipment to handle the NBIs. This report describes the design of remote handling tools for the ion source and its filaments, transfer cask, maintenance time, manufacturing schedule and cost estimation. (author)

  20. Neutral Beam Injection Requirements and Design Issues for the National Compact Stellarator Experiment; TOPICAL

    International Nuclear Information System (INIS)

    H.W. Kugel; H. Neilson; W. Reiersen; M. Zarnstorff

    2002-01-01

    The National Compact Stellarator Experiment (NCSX) will require 6 MW of 50 keV neutral beam injection (NBI) with initial pulse lengths of 500 msec and upgradeable to pulse lengths of 1.5 sec. This paper discusses the NCSX NBI requirements and design issues, and shows how these are provided by the candidate PBX-M[Princeton Beta Experiment-Modification] NBI system

  1. Observations of ELM stabilization during neutral beam injection in DIII-D

    Science.gov (United States)

    Bortolon, Alessandro; Kramer, Gerrit; Diallo, Ahmed; Knolker, Matthias; Maingi, Rajesh; Nazikian, Raffi; Degrassie, John; Osborne, Thomas

    2017-10-01

    Edge localized modes (ELMs) are generally interpreted as peeling-ballooning instabilities, driven by the pedestal current and pressure gradient, with other subdominant effects possibly relevant close to marginal stability. We report observations of transient stabilization of type-I ELMs during neutral beam injection (NBI), emerging from a combined dataset of DIII-D ELMy H-mode plasmas with moderate heating obtained through pulsed NBI waveforms. Statistical analysis of ELM onset times indicates that, in the selected dataset, the likelihood of onset of an ELM lowers significantly during NBI modulation pulses, with the stronger correlation found with counter-current NBI. The effect is also found in rf-heated H-modes, where ELMs appear inhibited when isolated diagnostic beam pulses are applied. Coherent average analysis is used to determine how plasma density, temperature, rotation as well as beam ion quantities evolve during a NB modulation cycle, finding relatively small changes ( 3%) of pedestal Te and ne and toroidal and poloidal rotation variations up to 5 km/s. The effect of these changes on pedestal stability will be discussed. Work supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466.

  2. Exit points, on plasma, of lost fast ions during NBI in TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.

    1995-09-01

    The distribution of the exit points, on plasma border, for the lost fast ions during tangential balanced NBI in TJ-II helical axis Stellarator is theoretically analysed, as well for direct as for delayed losses. The link between the position of those exit points and the corresponding at birth, orbits and drifts is analysed also, it is shown that such relation is rather independent of beam energy and plasma density and is mainly related to the magnetic configuration characteristics. This study is a needed intermediate step to the analysis of impacts of those ions on the vacuum vessel of TJ-II

  3. Operation and Development on the Positive-Ion Based Neutral Beam Injection System for JT-60 and JT-60U

    International Nuclear Information System (INIS)

    Kuriyama, M.; Akino, N.; Ebisawa, N.; Honda, A.; Itoh, T.; Kawai, M.; Mogaki, K.; Ohga, T.; Oohara, H.; Umeda, N.; Usui, K.; Yamamoto, M.; Yamamoto, T.; Matsuoka, M.

    2002-01-01

    The positive-ion based neutral beam injection (NBI) system for JT-60, which consists of 14 beamline units and has a beam energy of 70 to 100 keV, started operation in 1986 with hydrogen beams and injected a neutral beam power of 27 MW at 75 keV into the JT-60 plasma. In 1991, the NBI system was modified to be able to handle deuterium beams as part of the JT-60 upgrade modification. After executing some research and developments, deuterium beams of 40 MW at 95 keV were injected in 1996. As a result, NBI has contributed to the achievement of the highest performance plasmas, a DT-equivalent fusion power gain of 1.25 and a fusion triple product of 1.55 x 10 21 keVs/m 3 , in the world on JT-60U

  4. The Supervisory Control System for the HL-2A Neutral Beam Injector

    Science.gov (United States)

    Li, Bo; Li, Li; Feng, Kun; Wang, Xueyun; Yang, Jiaxing; Huang, Zhihui; Kang, Zihua; Wang, Mingwei; Zhang, Guoqing; Lei, Guangjiu; Rao, Jun

    2009-06-01

    Supervisory control and protection system of the neutral beam injector (NBI) in the HL-2A tokamak is presented. The system is used for a safe coordination of all the main NBI subsystems. Because the system is based on computer networks with its transmission medium of optical fiber, its advantages in high operational stability, reliability, security and flexible functional expandability are clearly shown during the NBI commissioning and heating experiment in HL-2A.

  5. Exit points, on plasma, of lost fast ions during NBI in TJ-II; Puntos de salida en el plasma de los iones rapidos durante NBI en el TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J.

    1995-07-01

    The distribution of the exit points, on plasma border, for the lost fast ions during tangential balanced NBI in TJ-II helical axis Stellarator is theoretically analysed, as well for direct as for delayed losses. The link between, the position of those exit points and the corresponding at birth, orbits and drifts is analysed also. It is shown that such relation is rather independent of beam energy and plasma density and is mainly related to the magnetic configuration characteristics. This study is a needed intermediate step to the analysis of impacts of those ions on the vacuum vessel of TJ-II. (Author) 2 refs.

  6. Impacts of the CX neutrals on the Vacuum Vessel of TJ-II during NBI

    International Nuclear Information System (INIS)

    Guasp, J.

    1995-09-01

    A numerical analysis of the impact patterns on the Vacuum Vessel produced by CX neutrals during the tangential balanced NBI in TJ-II Helical Axis Stellerator has been done. The results show periodical distribution with smooth maxima and mild loads, concentrated prefentlyon the HC plates. A certain preference of these neutral to emerge downwards from the plasma appears, as consequence of a similar trend for the trapped particles. The differences between the impacts produced by the beam paralel to the magnetic field and the opposite one are small, once more as a consequence of the loss of memory of trapped particles to initial direction. The dependence of loads with plasma density and beam energy follows the trend of CX losses, decreasing strongly with increasing density and decreasing, more smoothly, with energy

  7. Edge localized modes and edge pedestal in NBI and ICRF heated H, D and T-plasmas in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.; Lingertat, J.; Barnsley, R.

    1998-12-01

    Based on experiments carried out in JET in D:T mixtures varying from 100:0 to 5:95 and those carried out in hydrogen plasmas, the isotopic mass dependence of ELM parameters and the edge pedestal pressure in neutral beam (NBI) and ion cyclotron resonance (ICRF) heated H-mode plasmas is presented. The ELM frequency is found to decrease with the atomic mass number both in ICRH and NBI discharges. However, the frequency in the case of ICRH is about 8 - 10 times higher than in the NBI case. Assuming that ELMs occur at a critical edge pressure gradient, limited by the ballooning instability, the scaling of the maximum edge pressure is most consistent with the assumption that the width of the transport barrier scales as the ion poloidal Larmor radius governed by the average energy of fast ions at the edge. The critical edge pressure in NBI heated discharges increases with the isotopic mass which. is consistent with the higher deduced width of the edge transport, barrier in tritium than in deuterium and hydrogen. The critical edge pressure in ICRH discharges is smaller, presumably, due to the smaller fast-ion contribution to the edge region. As a consequence of the edge pressure scaling with isotopic mass, the edge operational space in the n e - T e diagram increases with operation in tritium. If the evidence that the edge pedestal width is governed by the average energy of fast ions in the edge prevails, the pedestal in ITER would be controlled by the slowing down energy spectrum of α-particles in the edge. (author)

  8. NBI Calculations for the TJ-II Experimental Discharges

    International Nuclear Information System (INIS)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2005-01-01

    The density and electron temperature radial profiles, corresponding to the experimental TJ-II campaigns 2003-2004, with NBI, have been fitted to simple functionals in order to allow a fast approximative evaluation for any given density and injected power... The fits have been calculated, separately, for the four possibilities: ECRH and NBI Phases as well as On and Off Axis ECRH injection. The average difference between the experimental profiles for the individual discharges and the fit predictions are around 8% for the density and 10% for the temperature. The behaviour of the predicted profiles with average line density and injected power has been analysed. The central electron temperature decreases monotonically with increasing density and the ECRH phase On Axis central value is clearly higher than the Off axis one. The radial density profiles narrow with increasing density and the NBI On axis case is clearly wider than de Off one. The electron temperature profile widens slightly with increasing density and the width of the On Axix case is lesser than for the Off case in all phases. There exist Fortran subroutines, available at the three CIEMAT computers, allowing the fast approximative evaluation of all these profiles. (Author) 8 refs

  9. Design of cryo-vacuum system for MW neutral beam injector

    International Nuclear Information System (INIS)

    Hu Chundong; Xie Yuanlai

    2010-01-01

    Neutral beam injector is an equipment that is used to produce and then to neutralize high energetic particle beam. A neutral beam injector (EAST-NBI) with MW magnitude neutral beam power is considered to be developed to support the EAST physical research. The requirements for vacuum system were analyzed after introducing the principle of EAST-NBI. A differential vacuum system structure was chosen after analyzing the performance of different vacuum pumping system structure. The gas sources and their characteristics were analyzed, and two inserted type cryocondensation pumps were chosen as main vacuum pump. The schematic structure of the two cryocondensation pump with pumping area 8 m 2 and 6 m 2 were given and their cooling method and temperature control mode were determined. (authors)

  10. Thermo-mechanical analysis of an acceleration grid for the international thermonuclear experimental reactor-neutral beam injection system

    International Nuclear Information System (INIS)

    Fujiwara, Yukio; Hanada, Masaya; Okumura, Yoshikazu; Suzuki, Satoshi; Watanabe, Kazuhiro

    2001-01-01

    In the engineering design of a negative-ion beam source for a high-power neutral beam injection (NBI) system, one of the most important issues is thermo-mechanical design of acceleration grids for producing several tens of MW ion beams. An acceleration grid for the international thermonuclear experimental reactor-neutral beam injection (ITER-NBI) system will be subjected to the heat loading as high as 1.5 MW. In the present paper, thermo-mechanical characteristics of the acceleration grid for the ITER-NBI system were analyzed. Numerical simulation indicated that maximum aperture-axis displacement of the acceleration grid due to thermal expansion would be about 0.7 mm for the heat loading of 1.5 MW. From the thin lens theory of beam optics, beamlet deflection angle by the aperture-axis displacement was estimated to be about 2 mrad, which is within the requirement of the engineering design of the ITER-NBI system. Numerical simulation also indicated that no melting on the acceleration grid would occur for a heat loading of 1.5 MW, while local plastic deformation would happen. To avoid the plastic deformation, it is necessary to reduce the heat loading onto the acceleration grid to less than 1 MW

  11. A new crossed molecular beam apparatus using time-sliced ion velocity imaging technique

    International Nuclear Information System (INIS)

    Wu Guorong; Zhang Weiqing; Pan Huilin; Shuai Quan; Jiang Bo; Dai Dongxu; Yang Xueming

    2008-01-01

    A new crossed molecular beam apparatus has been constructed for investigating polyatomic chemical reactions using the time-sliced ion velocity map imaging technique. A unique design is adopted for one of the two beam sources and allows us to set up the molecular beam source either horizontally or vertically. This can be conveniently used to produce versatile atomic or radical beams from photodissociation and as well as electric discharge. Intensive H-atom beam source with high speed ratio was produced by photodissociation of the HI molecule and was reacted with the CD 4 molecule. Vibrational-state resolved HD product distribution was measured by detecting the CD 3 product. Preliminary results were also reported on the F+SiH 4 reaction using the discharged F atom beam. These results demonstrate that this new instrument is a powerful tool for investigating chemical dynamics of polyatomic reactions.

  12. Exit points, on plasma, of lost fast ions during NBI in TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.

    1995-01-01

    The distribution of the exit points, on plasma border, for the lost fast ions during tangential balanced NBI in TJ-II helical axis Stellarator is theoretically analysed, as well for direct as for delayed losses. The link between, the position of those exit points and the corresponding at birth, orbits and drifts is analysed also. It is shown that such relation is rather independent of beam energy and plasma density and is mainly related to the magnetic configuration characteristics. This study is a needed intermediate step to the analysis of impacts of those ions on the vacuum vessel of TJ-II. (Author) 2 refs

  13. NBI - plasma vaporization hybrid approach in bladder cancer endoscopic management.

    Science.gov (United States)

    Stănescu, F; Geavlete, B; Georgescu, D; Jecu, M; Moldoveanu, C; Adou, L; Bulai, C; Ene, C; Geavlete, P

    2014-06-15

    A prospective study was performed aiming to evaluate the surgical efficacy, perioperative safety profile, diagnostic accuracy and medium term results of a multi-modal approach consisting in narrow band imaging (NBI) cystoscopy and bipolar plasma vaporization (BPV) when compared to the standard protocol represented by white light cystoscopy (WLC) and transurethral resection of bladder tumors (TURBT). A total of 260 patients with apparently at least one bladder tumor over 3 cm were included in the trial. In the first group, 130 patients underwent conventional and NBI cystoscopy followed by BPV, while in a similar number of cases of the second arm, classical WLC and TURBT were applied. In all non-muscle invasive bladder tumors' (NMIBT) pathologically confirmed cases, standard monopolar Re-TUR was performed at 4-6 weeks after the initial intervention, followed by one year' BCG immunotherapy. The follow-up protocol included abdominal ultrasound, urinary cytology and WLC, performed every 3 months for a period of 2 years. The obturator nerve stimulation, bladder wall perforation, mean hemoglobin level drop, postoperative bleeding, catheterization period and hospital stay were significantly reduced for the plasma vaporization technique by comparison to conventional resection. Concerning tumoral detection, the present data confirmed the NBI superiority when compared to standard WLC regardless of tumor stage (95.3% vs. 65.1% for CIS, 93.3% vs. 82.2% for pTa, 97.4% vs. 94% for pT1, 95% vs. 84.2% overall). During standard Re-TUR the overall (6.3% versus 17.4%) and primary site (3.6% versus 12.8%) residual tumors' rates were significantly lower for the NBI-BPV group. The 1 (7.2% versus 18.3%) and 2 (11.5% versus 25.8%) years' recurrence rates were substantially lower for the combined approach. NBI cystoscopy significantly improved diagnostic accuracy, while bipolar technology showed a higher surgical efficiency, lower morbidity and faster postoperative recovery. The combined

  14. Impacts of the CX neutrals on the Vacuum Vessel of TJ-II during NBI

    International Nuclear Information System (INIS)

    Guasp, J.

    1995-01-01

    A numerical analysis of the impact patterns on the Vacuum Vessel produced by CX neutrals during the tangential balanced NBI in TJ-II Helical Axis Stellarator has been done. The results show periodical distributions with smooth maxima and mild loads, concentrated preferential on the HC plates. A certain preference of these neutral to emerge down wards from the plasma appears, as a consequence of a similar trend for the trapped particles. The differences between the impacts produced by the beam parallel to the magnetic field and the opposite one are small, once more as a consequence of the loss of memory of trapped particles to initial direction. The dependence of loads with plasma density and beam energy follows the trend of CX losses, decreasing strongly with increasing density and decreasing, more smoothly, with energy. (Author) 3 refs

  15. Optimization of the plasma parameters for the high current and uniform large-scale pulse arc ion source of the VEST-NBI system

    International Nuclear Information System (INIS)

    Jung, Bongki; Park, Min; Heo, Sung Ryul; Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2016-01-01

    Highlights: • High power magnetic bucket-type arc plasma source for the VEST NBI system is developed with modifications based on the prototype plasma source for KSTAR. • Plasma parameters in pulse duration are measured to characterize the plasma source. • High plasma density and good uniformity is achieved at the low operating pressure below 1 Pa. • Required ion beam current density is confirmed by analysis of plasma parameters and results of a particle balance model. - Abstract: A large-scale hydrogen arc plasma source was developed at the Korea Atomic Energy Research Institute for a high power pulsed NBI system of VEST which is a compact spherical tokamak at Seoul national university. One of the research target of VEST is to study innovative tokamak operating scenarios. For this purpose, high current density and uniform large-scale pulse plasma source is required to satisfy the target ion beam power efficiently. Therefore, optimizing the plasma parameters of the ion source such as the electron density, temperature, and plasma uniformity is conducted by changing the operating conditions of the plasma source. Furthermore, ion species of the hydrogen plasma source are analyzed using a particle balance model to increase the monatomic fraction which is another essential parameter for increasing the ion beam current density. Conclusively, efficient operating conditions are presented from the results of the optimized plasma parameters and the extractable ion beam current is calculated.

  16. Apparatus and method for increasing the bandwidth of a laser beam

    Science.gov (United States)

    Wilcox, Russell B.

    1992-01-01

    A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  17. Ion source development for a photoneutralization based NBI system for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simonin, A.; Esch, H. P. L. de; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A. [CEA-Cadarache, IRFM, F-13108 St. Paul-lez-Durance (France); LPSC, Grenoble-Alpes University, F-38026 Grenoble France (France)

    2015-04-08

    The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D{sup −} beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R and D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.

  18. Ion source development for a photoneutralization based NBI system for fusion reactors

    International Nuclear Information System (INIS)

    Simonin, A.; Esch, H. P. L. de; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A.

    2015-01-01

    The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D − beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R and D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities

  19. Phase I Development of Neutral Beam Injector Solid-State Power System

    Science.gov (United States)

    Prager, James; Ziemba, Timothy; Miller, Kenneth E.; Slobodov, Ilia; Anderson, Seth

    2017-10-01

    Neutral beam injection (NBI) is an important tool for plasma heating, current drive and a diagnostic at fusion science experiments around the United States, including tokamaks, validation platform experiments, and privately funded fusion concepts. Currently, there are no vendors in the United States for NBI power systems. Eagle Harbor Technologies (EHT), Inc. is developing a new power system for NBI that takes advantage of the latest developments in solid-state switching. EHT has developed a resonant converter that can be scaled to the power levels required for NBI at small-scale validation platform experiments like the Lithium Tokamak Experiment. This power system can be used to modulate the NBI voltages over the course of a plasma shot, which can lead to improved control over the plasma. EHT will present initial modeling used to design this system as well as experimental data showing operation at 15 kV and 40 A for 10 ms into a test load. With support of DOE SBIR.

  20. Bootstrap current of fast ions in neutral beam injection heating

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Li Xinxia; Yu Jun

    2012-01-01

    The bootstrap current of fast ions produced by neutral beam injection (NBI) is investigated in a large-aspect-ratio tokamak with circular cross-section under specific parameters. The bootstrap current density distribution and the total bootstrap current are reported. In addition, the beam bootstrap current always accompanies the electron return current due to the parallel momentum transfer from fast ions. With the electron return current taken into consideration, the net current density obviously decreases; at the same time, the peak of the current moves towards the central plasma. Numerical results show that the value of the net current depends sensitively not only on the angle of the NBI but also on the ratio of the velocity of fast ions to the critical velocity: the value of the net current is small for neutral beam parallel injection, but increases severalfold for perpendicular injection, and increases with increasing beam energy. (paper)

  1. A review of JAERI R and D activities on the negative-ion-based neutral beam injection system

    International Nuclear Information System (INIS)

    Ohara, Yoshihiro; Akiba, Masato; Araki, Masanori

    1990-08-01

    R and D efforts to realize a negative-ion-based neutral beam injection system have been made intensively at JAERI for the past several years. Concerning a high current negative ion source which is one of the most important R and D items, a 10 A, 50 keV negative hydrogen ion beam has been produced successfully. The negative ion beam current and the current density correspond already to the value required for the negative-ion-based NBI system. In order to increase the beam energy further, a 350 keV, 0.1 A test stand has been constructed, and the test of a high energy negative ion accelerator has started. Concerning a high energy acceleration power supply, an inverter type power supply which has a high speed AC switch was proposed and applied to the 100 kV, 5 A power supply for JAERI Electron Beam Irradiation Stand. The reliable operation indicates that the concept of this system can be applied for a MV class acceleration power supply. As one of the promising candidates for a beam dump cooling element, an externally-finned swirl tube was proposed and tested to have a high burnout heat flux of 4.1 kW/cm 2 , which is high enough for the next NBI system. The R and Ds on the negative-ion-based NBI system have made great progress at JAERI in recent years. The construction of a 500 keV class NBI system has become realistic from the engineering point of view. (author)

  2. Design of neutral particle incident heating apparatus for large scale helical apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Osamu; Oka, Yoshihide; Osakabe, Masaki; Takeiri, Yasuhiko; Tsumori, Katsuyoshi; Akiyama, Ryuichi; Asano, Eiji; Kawamoto, Toshikazu; Kuroda, Tsutomu [National Inst. for Fusion Science, Nagoya (Japan)

    1997-02-01

    In the Institute of Nuclear Fusion Science, construction of the large scale helical apparatus has been progressed favorably, and constructions of the heating apparatus as well as of electron resonance apparatus were begun in their orders under predetermined manner since 1994 fiscal year. And, on 1995 fiscal year, construction of neutral particle incident heating apparatus, leading heat apparatus, was begun under 3 years planning. The plasma heating study system adopted the study results developed in this institute through the large scale hydrogen negative ion source and also adopted thereafter development on nuclear fusion study by modifying the original specification set at the beginning of the research plan before 7 years. As a result, system design was changed from initial 125 KeV to 180 KeV in the beam energy and to execute 15 MW incidence using two sets beam lines, to begin its manufacturing. Here is described on its new design with reason of its modifications. (G.K.)

  3. High-confinement NBI discharges in the W7-AS stellarator

    International Nuclear Information System (INIS)

    Stroth, U.; Baldzuhn, J.; Geiger, J.; Geist, T.; Giannone, L.; Hartfuss, H.-J.; Hirsch, M.; Jaenicke, R.; Kick, M.; Koponen, J.P.; Kuehner, G.; Penningsfeld, F.-P.; Wagner, F.

    1998-01-01

    In W7-AS, the longest energy confinement times were achieved in neutral beam injection heated (NBI-heated) discharges under low wall-recycling conditions. Low recycling is needed to control the density at line-averaged values of n-bar e approx. 10 20 m -3 . Under these conditions, confinement was improved by a factor of two above the common scaling estimate. The reduction of radial transport is concentrated into a layer at about two-thirds of the plasma radius. In this region steep pressure gradients and a strong gradient in the radial electric field develop. Specific for the discharges is the slow transition to improved confinement, lasting up to three energy confinement times. Since the measured electric field is consistent with the neoclassical ambipolar field, this high-confinement mode could be an example where sheared plasma flow as created by the neoclassical radial electric field leads to a suppression of anomalous transport. (author)

  4. High-confinement NBI discharges in the W7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U; Baldzuhn, J; Geiger, J; Geist, T; Giannone, L.; Hartfuss, H -J; Hirsch, M; Jaenicke, R; Kick, M; Koponen, J P; Kuehner, G; Penningsfeld, F -P; Wagner, F [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    1998-08-01

    In W7-AS, the longest energy confinement times were achieved in neutral beam injection heated (NBI-heated) discharges under low wall-recycling conditions. Low recycling is needed to control the density at line-averaged values of n-bar{sub e} approx. 10{sup 20}m{sup -3}. Under these conditions, confinement was improved by a factor of two above the common scaling estimate. The reduction of radial transport is concentrated into a layer at about two-thirds of the plasma radius. In this region steep pressure gradients and a strong gradient in the radial electric field develop. Specific for the discharges is the slow transition to improved confinement, lasting up to three energy confinement times. Since the measured electric field is consistent with the neoclassical ambipolar field, this high-confinement mode could be an example where sheared plasma flow as created by the neoclassical radial electric field leads to a suppression of anomalous transport. (author)

  5. Performance of the first ASDEX Upgrade neutral beam injector

    International Nuclear Information System (INIS)

    Staebler, A.; Vollmer, O.; Feist, J.H.; Speth, E.; Heinemann, B.; Melkus, W.; Obermayer, S.; Riedl, R.; Schaerich, W.; Wittenbecher, K.

    1995-01-01

    Plasmas of the ASDEX Upgrade tokamak have been heated with H 0 beams of up to 7 MW and D 0 beams of up to 10 MW. Beam modulation allows to inject at any power level between zero and full power. Measurements characterizing the NBI system performance, the power accountability, and the operational experience obtained so far are discussed. (orig.)

  6. NBI Calculations for the TJ-II Experimental Discharges; Ajustes de los Perfiles Radiales de Densidad y Temperatura para las Descargas con NBI del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2005-07-01

    The density and electron temperature radial profiles, corresponding to the experimental TJ-II campaigns 2003-2004, with NBI, have been fitted to simple functionals in order to allow a fast approximative evaluation for any given density and injected power... The fits have been calculated, separately, for the four possibilities: ECRH and NBI Phases as well as On and Off Axis ECRH injection. The average difference between the experimental profiles for the individual discharges and the fit predictions are around 8% for the density and 10% for the temperature. The behaviour of the predicted profiles with average line density and injected power has been analysed. The central electron temperature decreases monotonically with increasing density and the ECRH phase On Axis central value is clearly higher than the Off axis one. The radial density profiles narrow with increasing density and the NBI On axis case is clearly wider than de Off one. The electron temperature profile widens slightly with increasing density and the width of the On Axix case is lesser than for the Off case in all phases. There exist Fortran subroutines, available at the three CIEMAT computers, allowing the fast approximative evaluation of all these profiles. (Author) 8 refs.

  7. Radiography apparatus

    International Nuclear Information System (INIS)

    Sashin, D.; Sternglass, E.J.

    1982-01-01

    The apparatus of the present invention provides radiography apparatus wherein the use of a flat, generally rectangular beam or a fan-shaped beam of radiation in combination with a collimator, scintillator and device for optically coupling a self-scanning array of photodiodes to the scintillator means will permit production of images or image data with high contrast sensitivity and detail. It is contemplated that the self-scanning array of photodiodes may contain from about 60 to 2048, and preferably about 256 to 2048, individual photodiode elements per inch of object width, thereby permitting maximum data collection to produce a complete image or complete collection of image data

  8. Recent progress of high-power negative ion beam development for fusion plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuhiro; Akino, Noboru; Aoyagi, Tetsuo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1997-03-01

    A negative-ion-based neutral beam injector (N-NBI) has been constructed for JT-60U. The N-NBI is designed to inject 500 keV, 10 MW neutral beams using two ion sources, each producing a 500 keV, 22 A D{sup -} ion beam. Beam acceleration test started in July, 1995 using one ion source. In the preliminary experiment, D{sup -} ion beam of 13.5 A has been successfully accelerated with an energy of 400 keV (5.4 MW) for 0.12 s at an operating pressure of 0.22 Pa. This is the highest D{sup -} beam current and power in the world. Co-extracted electron current was effectively suppressed to the ratio of Ie/I{sub D}- <1. The highest energy beam of 460 keV, 2.4 A, 0.44 s has also been obtained. Neutral beam injection starts in March, 1996 using two ion sources. To realize 1 MeV class NBI system for ITER (International Thermonuclear Experimental Reactor), demonstration of ampere class negative ion beam acceleration up to 1 MeV is an important mile stone. To achieve the mile stone, a high energy test facility called MeV Test Facility (MTF) was constructed. The system consists of a 1 MV, 1 A acceleration power supply and a 100 kW power supply system for negative ion production. Up to now, an H{sup -} ion beam was accelerated up to the energy of 805 keV with an acceleration drain current of 150 mA for 1 s in a five stage electrostatic multi-aperture accelerator. (author)

  9. A scoping study of the application of neutral beam heating on the TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Karpushov, Alexander N., E-mail: alexander.karpushov@epfl.ch [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH-1015 Lausanne (Switzerland); Duval, Basil P.; Chavan, Rene [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH-1015 Lausanne (Switzerland); Fable, Emiliano [Max-Planck-Institut fuer Plasmaphysik, Euratom-IPP Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Mayor, Jean-Michel; Sauter, Olivier; Weisen, Henri [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH-1015 Lausanne (Switzerland)

    2011-10-15

    The TCV tokamak contributes to the physics understanding of fusion plasmas, broadening the parameter range of reactor relevant regimes, by investigations based on an extensive use of the existing main experimental tools: flexible shaping and high power real time-controllable electron cyclotron heating (ECH) and current drive (ECCD) systems. A proposed implementation of direct ion heating on the TCV by the installation of a 20-35 keV neutral beam injection (NBI) with a total power of 1-3 MW would permit an extension of the accessible range of ion to electron temperatures (T{sub i}/T{sub e} {approx} 0.1-0.8) to well beyond unity, depending on the NBI/ECH mix and the plasma density. A NBI system would provide TCV with a tool for plasma study at reactor relevant T{sub i}/T{sub e} ratios {approx}1 and in investigating fast ion and MHD physics together with the effects of plasma rotation and high plasma {beta} scenarios. The feasibility studies for a NBI heating on TCV presented in this paper were undertaken to construct a specification for the neutral beam injectors together with an experimental geometry for possible operational scenarios.

  10. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  11. Power and particle balance during neutral beam injection in TFTR

    International Nuclear Information System (INIS)

    Pitcher, C.S.; Budny, R.V.; Hill, K.W.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Ramsey, A.T.

    1991-05-01

    Detailed boundary plasma measurements on TFTR have been made during a NBI power scan in the range P tot = 1MW--20MW in the L-mode regime. The behavior of the plasma density left-angle n e right-angle, radiated power P rad , carbon and deuterium fluxes Γ C , Γ D , and Ζ eff can be summarized as, left-angle n e right-angle ∝ P tot 1/2 , P rad , Γ C , Γ D ∝ P tot , and Ζ eff ∼ constant. It is shown that central fuelling by the neutral beams plays a minor role in the particle balance of the discharge. More important is the NBI role in the power balance. The TFTR data during NBI originate primarily at the graphite limiter

  12. Effect of plasma rotation on sawtooth stabilization by beam ion

    International Nuclear Information System (INIS)

    Gorelenkov, N. N.; Nave, M. F. F.; Budny, R.; Cheng, C. Z.; Fu, G. Y.; Hastie, J.; Manickam, J.; Park, W.

    2000-01-01

    The sawtooth period in JET ELM-free H-Mode plasmas is increasing with Neutral Beam Injection (NBI) power. For injected power PNBI 12MW no large sawtooth crash is observed during the ELM-free period. However, as the edge stability is improved and external kink modes and ELMs are delayed, a possible sawtooth crash at a high plasma beta becomes a concern. In JET DT experiments, delaying sawteeth was found to be crucial in the quest for high fusion power. Fast particles are known to provide stabilizing effect on sawteeth, however, sawtooth stabilization by NBI ions is not clearly understood, since NBI ions are usually not ''fast'' enough to stabilize the m/n = 1/1 internal kink mode which is believed to cause the crash. In order to understand the observed sawteeth stabilization in tokamak experiments with NBI heating, the internal kink m/n = 1/1 mode stability of JET plasmas was modeled using the NOVA-K code, which is also benchmarked with the nonperturbative version of NOVA and the M3D code. Comparison of m/n = 1/1 mode stabilization by NBI ions in JET and TFTR and application of the nonlinear stabilization criteria is given

  13. Ion implantation apparatus

    International Nuclear Information System (INIS)

    Forneris, J.L.; Hicks, W.W.; Keller, J.H.; McKenna, C.M.; Siermarco, J.A.; Mueller, W.F.

    1981-01-01

    The invention relates to ion bombardment or implantation apparatus. It comprises an apparatus for bombarding a target with a beam of ions, including an arrangement for measuring the ion beam current and controlling the surface potential of the target. This comprises a Faraday cage formed, at least in part, by the target and by walls adjacent to, and electrically insulated from, the target and surrounding the beam. There is at least one electron source for supplying electrons to the interior of the Faraday cage and means within the cage for blocking direct rectilinear radiation from the source to the target. The target current is measured and combined with the wall currents to provide a measurement of the ion beam current. The quantity of electrons supplied to the interior of the cage can be varied to control the target current and thereby the target surface potential. (U.K.)

  14. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    DEFF Research Database (Denmark)

    Schneider, M.; Johnson, T.; Dumont, R.

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...... enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast...

  15. The role of nature-based infrastructure (NBI) in coastal resiliency planning: A literature review.

    Science.gov (United States)

    Saleh, Firas; Weinstein, Michael P

    2016-12-01

    The use of nature-based infrastructure (NBI) has attracted increasing attention in the context of protection against coastal flooding. This review is focused on NBI approaches to improve coastal resilience in the face of extreme storm events, including hurricanes. We not only consider the role of NBI as a measure to protect people and property but also in the context of other ecological goods and services provided by tidal wetlands including production of fish and shellfish. Although the results of many studies suggest that populated areas protected by coastal marshes were less likely to experience damage when exposed to the full force of storm surge, it was absolutely critical to place the role of coastal wetlands into perspective by noting that while tidal marshes can reduce wave energy from low-to-moderate-energy storms, their capacity to substantially reduce storm surge remains poorly quantified. Moreover, although tidal marshes can reduce storm surge from fast moving storms, very large expanses of habitat are needed to be most effective, and for most urban settings, there is insufficient space to rely on nature-based risk reduction strategies alone. The success of a given NBI method is also context dependent on local conditions, with potentially confounding influences from substrate characteristics, topography, near shore bathymetry, distance from the shore and other physical factors and human drivers such as development patterns. Furthermore, it is important to better understand the strengths and weaknesses of newly developed NBI projects through rigorous evaluations and characterize the local specificities of the particular built and natural environments surrounding these coastal areas. In order for the relevant science to better inform policy, and assist in land-use challenges, scientists must clearly state the likelihood of success in a particular circumstance and set of conditions. We conclude that "caution is advised" before selecting a particular NBI

  16. Experiments and simulations for the dynamics of cesium in negative hydrogen ion sources for ITER N-NBI

    Energy Technology Data Exchange (ETDEWEB)

    Gutser, Raphael

    2010-07-21

    The injection of fast neutral particles (NBI) into a fusion plasma is an important method for plasma heating and current drive. A source for negative deuterium ions delivering an 1 MeV beam that is accelerated to a specific energy and neutralized by a gas target is required for the ITER-NBI. Cesium seeding is required to extract high negative ion current densities from these sources. The optimization of the cesium homogeneity and control are major objectives to achieve the source requirements imposed by ITER. Within the scope of this thesis, the Monte Carlo based numerical transport simulation CsFlow3D was developed, which is the first computer model that is capable of simulating the flux and the accumulation of cesium on the surfaces of negative-ion sources. Basic studies that support the code development were performed at a dedicated experiment at the University of Augsburg. Input parameters of the ad- and desorption of cesium at ion source relevant conditions were taken from systematic measurements with a quartz micro balance, while the injection rate of the cesium oven at the ion source was determined by surface ionization detection. This experimental setup was used for further investigations of the work function of cesium-coated samples during plasma exposure. (orig.)

  17. Experiments and simulations for the dynamics of cesium in negative hydrogen ion sources for ITER N-NBI

    International Nuclear Information System (INIS)

    Gutser, Raphael

    2010-01-01

    The injection of fast neutral particles (NBI) into a fusion plasma is an important method for plasma heating and current drive. A source for negative deuterium ions delivering an 1 MeV beam that is accelerated to a specific energy and neutralized by a gas target is required for the ITER-NBI. Cesium seeding is required to extract high negative ion current densities from these sources. The optimization of the cesium homogeneity and control are major objectives to achieve the source requirements imposed by ITER. Within the scope of this thesis, the Monte Carlo based numerical transport simulation CsFlow3D was developed, which is the first computer model that is capable of simulating the flux and the accumulation of cesium on the surfaces of negative-ion sources. Basic studies that support the code development were performed at a dedicated experiment at the University of Augsburg. Input parameters of the ad- and desorption of cesium at ion source relevant conditions were taken from systematic measurements with a quartz micro balance, while the injection rate of the cesium oven at the ion source was determined by surface ionization detection. This experimental setup was used for further investigations of the work function of cesium-coated samples during plasma exposure. (orig.)

  18. Predictive Simulations of ITER Including Neutral Beam Driven Toroidal Rotation

    International Nuclear Information System (INIS)

    Halpern, Federico D.; Kritz, Arnold H.; Bateman, G.; Pankin, Alexei Y.; Budny, Robert V.; McCune, Douglas C.

    2008-01-01

    Predictive simulations of ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 2002] discharges are carried out for the 15 MA high confinement mode (H-mode) scenario using PTRANSP, the predictive version of the TRANSP code. The thermal and toroidal momentum transport equations are evolved using turbulent and neoclassical transport models. A predictive model is used to compute the temperature and width of the H-mode pedestal. The ITER simulations are carried out for neutral beam injection (NBI) heated plasmas, for ion cyclotron resonant frequency (ICRF) heated plasmas, and for plasmas heated with a mix of NBI and ICRF. It is shown that neutral beam injection drives toroidal rotation that improves the confinement and fusion power production in ITER. The scaling of fusion power with respect to the input power and to the pedestal temperature is studied. It is observed that, in simulations carried out using the momentum transport diffusivity computed using the GLF23 model [R.Waltz et al., Phys. Plasmas 4, 2482 (1997)], the fusion power increases with increasing injected beam power and central rotation frequency. It is found that the ITER target fusion power of 500 MW is produced with 20 MW of NBI power when the pedesta temperature is 3.5 keV. 2008 American Institute of Physics. [DOI: 10.1063/1.2931037

  19. Feasibility study of an optical resonator for applications in neutral-beam injection systems for the next generation of nuclear fusion reactors

    International Nuclear Information System (INIS)

    Fiorucci, Donatella

    2015-01-01

    This work is part of a larger project called SIPHORE (Single gap Photo-neutralizer energy Recovery injector), which aims to enhance the overall efficiency of one of the mechanisms through which the plasma is heated, in a nuclear fusion reactor, i.e. the Neutral Beam Injection (NBI) system. An important component of a NBI system is the neutralizer of high energetic ion beams. SIPHORE proposes to substitute the gas cell neutralizer, used in the current NBI systems, with a photo-neutralizer exploiting the photo-detachment process within Fabry Perot cavities. This mechanism should allow a relevant NBI global efficiency of η≥ 60%, significantly higher than the one currently possible (η≤25% for ITER). The present work concerns the feasibility study of an optical cavity with suitable properties for applications in NBI systems. Within this context, the issue of the determination of an appropriated optical cavity design has been firstly considered and the theoretical and experimental analysis of a particular optical resonator has been carried on. The problems associated with the high levels of intracavity optical power (∼3 MW) required for an adequate photo-neutralization rate have then been faced. In this respect, we addressed both the problem of the thermal effects on the cavity mirrors due to their absorption of intra-cavity optical power (∼1 W) and the one associated to the necessity of a high powerful input laser beam (∼1 kW) to feed the optical resonator. (author)

  20. Prompt loss of beam ions in KSTAR plasmas

    Directory of Open Access Journals (Sweden)

    Jun Young Kim

    2016-10-01

    Full Text Available For a toroidal plasma facility to realize fusion energy, researching the transport of fast ions is important not only due to its close relation to the heating and current drive efficiencies but also to determine the heat load on the plasma-facing components. We present a theoretical analysis and orbit simulation for the origin of lost fast-ions during neutral beam injection (NBI heating in Korea Superconducting Tokamak Advanced Research (KSTAR device. We adopted a two-dimensional phase diagram of the toroidal momentum and magnetic moment and describe detectable momentums at the fast-ion loss detector (FILD position as a quadratic line. This simple method was used to model birth ions deposited by NBI and drawn as points in the momentum phase space. A Lorentz orbit code was used to calculate the fast-ion orbits and present the prompt loss characteristics of the KSTAR NBI. The scrape-off layer deposition of fast ions produces a significant prompt loss, and the model and experimental results closely agreed on the pitch-angle range of the NBI prompt loss. Our approach can provide wall load information from the fast ion loss.

  1. Design of a new P-NBI control system for 100-s injection in JT-60SA

    International Nuclear Information System (INIS)

    Okano, F.; Shinozaki, S.; Honda, A.; Ooshima, K.; Numazawa, S.; Ikeda, Y.

    2008-01-01

    Modification of JT-60U to a superconducting device (so-called JT-60SA) has been planned to contribute to ITER and DEMO. The positive-ion-based NBI system (P-NBI) is required to inject 24 MW for 100 s with 12 units. The P-NBI control system is to be fully remodeled with PLC (Programmable Logic Controller), which is featured by high market availability, system extensibility, cost-effectiveness, and independent development in programming. One of the critical issues to apply the PLC to the P-NBI control system is to control quickly the high voltage power supplies within 200 μs. For this purpose, the fastest PLC dealing with 4 refresh words at the processing time of 200 μs is to be employed. The second issue is to construct a data acquisition system for such a large number of data channels (∼2300 digital and ∼1300 analog data channels). The use of PLC linked with PC-based data measurement devices via Ethernet allows processing the large number of channels. The third issue is to make the man-machine interface simple. The marketed software giving an easy product of graphic menus is available for PLC programming. From these results, it is expected that commercial PLC could be applied to the large-scale control system of the P-NBI system for 100 s operations

  2. Investigation of Public Charging Infrastructure : Case study Gränby sportfält

    OpenAIRE

    Dahl, Emma; Hedström, Andreas; Lindgren, Anna

    2017-01-01

    The municipal company Sportfastigheter AB is currently renovating and developing Gränby sportfält, a sports field in Uppsala. Adjacent to the sports field, a parking lot for 700 vehicles is located, where Sportfastigheter AB is preparing to install charging points for electric vehicles (EVs) at some of the places. This bachelor thesis aims to investigate how a public charging solution should be modeled, with the parking lot at Gränby sportfält as a case study. The investigation involves estim...

  3. Method and apparatus for dismantling mechanical anchors

    Energy Technology Data Exchange (ETDEWEB)

    Dubovskiy, Yu P; Chendev, F S; Gritsayuk, B I; Gubin, N I; Osipov, S P

    1982-01-01

    This apparatus is designed to reduce the amount of labor required to dismantle mechanical anchors while at the same time lowering expenditures for lumber. Longwall beams and timber skips are used to support the cap and any fractured rock faces. The apparatus itself has grooves, vertical guides, and a drive system to position the longwall beams.

  4. Neutral beam injection optimization at TJ-II

    International Nuclear Information System (INIS)

    Fuentes, C.; Liniers, M.; Wolfers, G.; Alonso, J.; Marcon, G.; Carrasco, R.; Guasp, J.; Acedo, M.; Sanchez, E.; Medrano, M.; Garcia, A.; Doncel, J.; Alejaldre, C.; Tsai, C.C.; Barber, G.; Sparks, D.

    2005-01-01

    Neutral beam injection (NBI) heating has been used on the TJ-II stellarator for the first time. The beam has a port-through power between 200 and 400 kW and injection energy 28 kV. Beam transmission is limited by beam interception at the injection port and the first toroidal field coil, therefore, beam steering optimization is of critical importance. The beam interaction areas inside TJ-II vacuum chamber are surveyed by infrared thermography. Beam reionization can be a problem due to the presence of residual gas in the duct region. Halpha emission is used to monitor the reionization at the duct. A careful optimization of the injected gas has been carried out

  5. Alpha-particle simulation using NBI beam and ICRF wave

    International Nuclear Information System (INIS)

    Ogawa, Y.; Hamada, Y.

    1984-07-01

    A new idea to produce the distribution function similar to that of alpha-particles in an ignited plasma has been proposed. This concept is attributed to the acceleration of the injected beam up to about 1 MeV/nucleon by the ICRF wave with cyclotron higher harmonics. This new method makes it possible to perform the simulation experiments for alpha-particles under the condition of moderate plasma parameters (e.g., Tsub(e) = 4 keV, nsub(e) = 3.5x10 19 m -3 and B sub(T) = 3 T). And it is found that 3ωsub(ci) ICRF wave is preferable compared with other cyclotron harmonics, from the viewpoints of the effective tail formation with smaller bulk ion heating and lower amplitude of the applied electric field. The formula for the maximum energy of the extended beam is also derived. (author)

  6. Study on improvement of the lifetime of a field-reversed configuration by tangential neutron beam injection

    International Nuclear Information System (INIS)

    Takahashi, Toshiki; Kondoh, Yoshiomi; Hirano, Yoichi; Asai, Tomohiko; Takahashi, Tsutomu; Mizuguchi, Naoki; Tomita, Yukihiro

    2006-01-01

    The numerical analysis of neutron beam injection (NBI) is carried out to keep the stationary conditions of the field-reversed configuration (FRC) plasma. The ionization process of neutron beam was reproduced by the Monte Carlo method. A confinement of 15 keV beam ion was investigated using the sharp of stormer region obtained by the position and velocity at a moment of ionization. The relation between the external magnetic field B ex [T] and radius of machine r w [m] was shown by B ex = 0.1 r w -3/4 . The power imparted to plasma was estimated by beam ion orbital calculation. The confinement coefficient of beam ion was lost by re-charge-exchange reaction with deuterium; this fact was discovered at first. In order to keep the configuration of plasma under the conditions of 0.2 T of the external magnetic field, 0.4 m of radius, and 100 eV ion temperature, about 17 MW/m NBI power is needed. (S.Y.)

  7. Therapeutic radiation apparatus having an optical pointer

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a therapeutic irradiating apparatus including a radiation source arranged to provide a beam of penetrating radiation and an optical alignment indicator comprising at least two light sources each provided with means to provide a planar divergent beam of light located so that at least two light beams intersect along a line substantially coincident with the central axis of the path of the radiation beam. The claim relates to cylindrical lenses providing the means of providing the divergent beams, and to lasers as the light sources. Claims are also made for the apparatus providing means of supporting and aligning the patient, and for disposing the light sources so that the exit point of the radiation beam is illuminated. (U.K.)

  8. Zeff measurements and low-Z impurity transport for NBI and ICRF heated plasma in JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ida, K.; Amano, T.; Kawahata, K.; Kaneko, O.

    1988-12-01

    A visible bremsstrahlung detector array system for Z eff measurements and a charge exchange recombination spectroscopy (CXRS) system for fully ionized impurity profile measurements were installed on JIPP TII-U to study impurity transport for NBI and ICRF heated plasma. More impurities are sputtered by ICRF heating than by NBI and/or ohmic heatings. The carbon contribution to Z eff is 80-90 % for NBI heated plasmas, and 60 % for NBI + ICRF heated plasmas. With a carbon coating of vacuum vessel, the Z eff value decreases 2.4 to 1.7 and the carbon contribution to Z eff increases up to 80-90 %. We obtain the diffusion coefficient D a = 1.0 m 2 /s and the convective velocity V a (a) = 13 m/s at the plasma edge for carbon impurity from the radial profile and time evolution of fully ionized carbon after the ICRF pulse is turned on. (author)

  9. Radiography apparatus

    International Nuclear Information System (INIS)

    Vasseur, J.P.

    1976-01-01

    A novel apparatus for radiographic examination purposes comprising an x-ray source emitting a flat beam is described. Detectors are arranged in the plane of the beam in order each to pick up part of the beam. To avoid the Compton effect, each detector has associated with it an auxiliary detector which only receives the rays emitted by the Compton effect. An electrical circuit forms a predetermined linear combination of the signals respectively picked up by each detector and the associated auxiliary detector, this in order to prevent the errors which are due to the Compton effect when the beam passes through the body being analyzed

  10. Telescope-based cavity for negative ion beam neutralization in future fusion reactors.

    Science.gov (United States)

    Fiorucci, Donatella; Hreibi, Ali; Chaibi, Walid

    2018-03-01

    In future fusion reactors, heating system efficiency is of the utmost importance. Photo-neutralization substantially increases the neutral beam injector (NBI) efficiency with respect to the foreseen system in the International Thermonuclear Experimental Reactor (ITER) based on a gaseous target. In this paper, we propose a telescope-based configuration to be used in the NBI photo-neutralizer cavity of the demonstration power plant (DEMO) project. This configuration greatly reduces the total length of the cavity, which likely solves overcrowding issues in a fusion reactor environment. Brought to a tabletop experiment, this cavity configuration is tested: a 4 mm beam width is obtained within a ≃1.5  m length cavity. The equivalent cavity g factor is measured to be 0.038(3), thus confirming the cavity stability.

  11. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a tomographic scanning apparatus using a fan beam and digital output signal, and particularly to the design of the gas-pressurized ionization detection system. (U.K.)

  12. Simulation study of energetic ion distribution during combined NBI and ICRF heating in LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Fukuyama, A.; Kasilov, V.

    2006-01-01

    In the LHD, significant performances of ICRF heating (fundamental, minority heating regime) have been demonstrated and up to 500keV of energetic tail ions have been observed by fast neutral particle analysis (NPA). These measured results indicate a good property of energetic ion confinement in helical systems. From the 9th campaign of LHD experiment (FY2005) a new perpendicular NBI heating system (P<3MW) has been installed and an effective heating of perpendicularly injected beam ions by the higher harmonics ICRF heating is expected. ICRF heating generates highly energetic tail ions, which drift around the torus for a long time (typically on a collisional time scale). Thus, the behavior of these energetic ions is strongly affected by the characteristics of the drift motions, which depend on the magnetic field configuration. In particular, in a three-dimensional (3D) magnetic configuration, complicated drift motions of trapped particles would play an important role in the confinement of the energetic ions and the ICRF heating process. Therefore a global simulation of ICRF heating is necessary for the accurate modeling of the plasma heating process in a 3D magnetic configuration. In this paper we study the energetic ion distribution during combined NBI and 2nd harmonics ICRF heating in LHD using two global simulation codes: a full wave field solver TASK/WK and a drift kinetic equation solver GNET. GNET solves a linearized drift kinetic equation for energetic ions including complicated behavior of trapped particles in 5-D phase space. TASK/WM solves Maxwell's equation for RF wave electric field with complex frequency as a boundary value problem in the 3D magnetic configuration. (author)

  13. Behaviour of direct and delayed fast ion losses during NBI on TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers; M.

    1995-09-01

    The dependence with density and beam energy of the different kind of fast ion losses, direct and delayed, during tangential balanced NBI injection in TJ-II helical axis stellerator has been analysed. Direct losses increase with energy and a strong difference between the two injection directions appears, are produced by passing particles that loss confinement in a dew mu,sec and the influence of birth profiles produces an increase with density. Delayed losses are very well separated in time from direct ones, are produced by particles experimenting pitch angle scattering an,d, most o them, correspond to trapped particles. Are much less important than the direct ones (about 1/3), decrease slowly with energy and, with CX, increase with density (an effect of initial profile). The absorption is rather independent of energy with low values at low density in reason of high shine trough and CX losses, but reovers quickly with the density increase

  14. Behaviour of direct and delayed fast ion losses during NBI on TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1995-01-01

    The dependence with density and beam energy of the different kind of fast ion losses, direct and delayed, during tangential balanced NBI injection in TJ-II helical axis stellarator has been analysed. Direct losses increase with energy and a strong difference between the two injection directions appears, are produced by passing particles that loss confinement in a few μsec and the influence of birth profiles produces an increase with density. Delayed losses are very well separated in time from direct ones, are produced by particles experimenting pitch angle scattering and, most o them, correspond to trapped particles. Are much less important than the direct ones (about 1/3), decrease slowly with energy and, with C X, increase with density (an effect of initial profile). The absorption is rather independent of energy with low values at low density in reason of high shine through and C X losses, but recovers quickly with the density increase. (Author) 4 refs

  15. Development of the High Current Ion Source for Neutral Beam Injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hun Ju; Kim, S. H.; Jang, D. H. [Jae Ju University, Jaeju (Korea, Republic of)

    1997-08-01

    The scope of the 1st year research is to design an 140keV deuterium ion source which has a beam current of 30-40A. According to the collected data, the model of an ion source for NBI of KSTAR was established. The negative ion source, which has good neutralization effecting in high energy, was selected. To generate a plasma, the thoriated tungsten filament was adopted. To increase the efficiency of plasma, the multi cusp type magnetic field was attached. The magnetic field was calculated by POISSON code. The extraction structure was designed with EGUN code, to extract the high quality ion beam. The design of a high current ion source for NBI was carried out. To develop the high current ion source with the high operational stability and the long lifetime, the parameters including an arc current, gas pressure and extraction voltage should be optimized. If designed ion source would be fabricated, its parameters could be optimized experimentally. Through the optimization of the ion source parameter, the core technology for NBI is established and the experiment of current drive in the fusion device can be performed. This technology also can be applied to the synthesis of new material and semiconductor industry. 18 refs., 11 tabs., 19 figs. (author)

  16. The ITER Neutral Beam Test Facility towards SPIDER operation

    Science.gov (United States)

    Toigo, V.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Gambetta, G.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Piovan, R.; Recchia, M.; Rizzolo, A.; Sartori, E.; Siragusa, M.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Fröschle, M.; Heinemann, B.; Kraus, W.; Nocentini, R.; Riedl, R.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Cavenago, M.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Hemsworth, R.

    2017-08-01

    SPIDER is one of two projects of the ITER Neutral Beam Test Facility under construction in Padova, Italy, at the Consorzio RFX premises. It will have a 100 keV beam source with a full-size prototype of the radiofrequency ion source for the ITER neutral beam injector (NBI) and also, similar to the ITER diagnostic neutral beam, it is designed to operate with a pulse length of up to 3600 s, featuring an ITER-like magnetic filter field configuration (for high extraction of negative ions) and caesium oven (for high production of negative ions) layout as well as a wide set of diagnostics. These features will allow a reproduction of the ion source operation in ITER, which cannot be done in any other existing test facility. SPIDER realization is well advanced and the first operation is expected at the beginning of 2018, with the mission of achieving the ITER heating and diagnostic NBI ion source requirements and of improving its performance in terms of reliability and availability. This paper mainly focuses on the preparation of the first SPIDER operations—integration and testing of SPIDER components, completion and implementation of diagnostics and control and formulation of operation and research plan, based on a staged strategy.

  17. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Masaaki [Princeton Plasma Physics Laboratory, Princeton University Princeton, New Jersey USA (United States)

    2016-03-25

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  18. An apparatus for sequential pulsed plasma beam treatment in combination with Arc PVD deposition

    International Nuclear Information System (INIS)

    Stanislawski, J.; Werner, Z.; Piekoszewski, J.; Richter, E.

    2002-01-01

    A hybrid type of apparatus is described which enables one to form a thin multi-layer film on the surface of any kind of solid substrate. In one process, the surface is treated with a high intensity pulse plasma beam which introduces the chosen kind of atoms into the near-surface layer of the substrate. In the second process, following the first without breaking the vacuum, the coating is formed by arc PVD (physics vapour deposition) process. Two examples of coatings formed on metallic and ceramic substrates are presented. (author)

  19. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification describes a tomographic scanning apparatus, with particular reference to the adjustable fan beam and its collimator system, together with the facility for taking a conventional x-radiograph without moving the patient. (U.K.)

  20. Narrow-band imaging (NBI for improving the assessment of vocal fold leukoplakia and overcoming the umbrella effect.

    Directory of Open Access Journals (Sweden)

    H Klimza

    Full Text Available It is crucial to find a balance between functional and oncological outcome when choosing an adequate method for the management of vocal fold leukoplakia. Therefore, a detailed examination is a milestone in the decision-making process.To examine whether narrow-band imaging (NBI can be helpful in vocal fold assessment in the case of leukoplakia and how to overcome the "umbrella effect"- understood as the submucosal vascular pattern hidden under the plaque.Prospective cohort of 41 consecutive patients. Inclusion criteria: vocal fold leukoplakia, no previous procedures (surgery, radiotherapy, and preoperative endoscopy with an optical filter for NBI. Two groups: "suspicious" and "normal", according to the submucosal microvascular pattern of peripheral regions of the mucosa surrounding the plaque, were distinguished. Patients were qualified for a full-thickness or partial-thickness biopsy, respectively. Criteria defining suspected characters were well-demarcated brownish areas with scattered brown spots corresponding to type IV, Va, Vb, and Vc NI classifications.In 22/41 (53.7% patients with "suspected" microvascular pattern, full-thickness biopsy was performed. Moderate and severe dysplasia was revealed in 15 type IV and 7 type Va NI patients. In 19/41 (46.3% patients with proper NBI vessel pattern treated by partial-thickness biopsy, hyperkeratosis was diagnosed. There was a strong correlation between the NBI pattern and final histology: Chi2 (2 = 41.0 (p = 0.0000.The results demonstrate that NBI endoscopic assessment of the submucosal microvascular pattern of mucosa surrounding the plaque can be an effective method to categorise the risk in vocal fold leukoplakia prior to treatment.

  1. Impurity Dynamics under Neutral Beam Injection at TJ-II (simulation)

    International Nuclear Information System (INIS)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2001-01-01

    In this study the simulations of plasma transport under NBI for TJ-II, previously performed, are extended. Since than a considerable number of important modifications have been introduced in the model: change of magnetic configuration, use of experimental initial profiles, expansion of the Data base from NBI calculations and, mainly, a detailed handling of impurities with inclusion of sputtering effects. Moreover there is now a particular emphasis on the analysis of the conditions for discharge collapse and on the possible effects of single beam injection. This analysis of impurity behaviour with sputtering shows that in the expected usual cases there is no radioactive collapse and that if the recycling coefficients remain lower the unity it is always possible to find a strategy for external gas puffing leading to a stationary state, with densities below the limit and efficient NBI absorption (>50%). The radioactive collapse can appear either at high densities (central value higher than 1.4x10''20 m''3), excessive influx of impurities (i. e. with sputtering rates higher than twice the expected values) o for insufficient injected beam power (less than 45 kW). The present study analyses only the 100 4 4 6 4 configuration of TJ-II, but future works will start a systematic scan of configuration using this same model. (Author) 12 Refs

  2. Shielding considerations for neutral-beam injection systems

    International Nuclear Information System (INIS)

    de Seynes, X.

    1983-03-01

    Results of a study on the geometry of an FED-A Neutral Beam Injector beamline duct shield are presented. Also included is a calculation of dose rates, as a function of time, from an activated NBI. The shielding investigations consisted of varying the parameters of the geometry and transporting particles through it using the MCNP Monte-Carlo code. The dose rates were calculated by the ACDOS3 code using realistic MCNP results. A final-to-incident flux ratio of 6.5 x 10 -7 can be achieved through the use of a 65.5 cm reentry duct. This is for a realistic source and pure water shielding material. The activated NBI produced a dose rate of 15.9 mrem/hr two and a half days after shutdown of the reactor

  3. Numerical Study of Instabilities Driven by Energetic Neutral Beam Ions in NSTX

    International Nuclear Information System (INIS)

    Belova, E.V.; Gorelenkov, N.N.; Cheng, C.Z.; Fredrickson, E.D.

    2003-01-01

    Recent experimental observations from NSTX [National Spherical Torus Experiment] suggest that many modes in a subcyclotron frequency range are excited during neutral-beam injection (NBI). These modes have been identified as Compressional Alfven Eigenmodes (CAEs) and Global Alfven Eigenmodes (GAEs), which are driven unstable through the Doppler-shifted cyclotron resonance with the beam ions. The injection velocities of the NBI ions in NSTX are large compared to Alfven velocity, V(sub)0 > 3V(sub)A, and a strong anisotropy in the fast-ion pitch-angle distribution provides the energy source for the instabilities. Recent interest in the excitation of Alfven Eigenmodes in the frequency range omega less than or approximately equal to omega(sub)ci, where omega(sub)ci is the ion cyclotron frequency, is related to the possibility that these modes can provide a mechanism for direct energy transfer from super-Alfvenic beam ions to thermal ions. Numerical simulations are required in order to find a self-consistent mode structure, and to include the effects of finite-Larmor radius (FLR), the nonlinear effects, and the thermal plasma kinetic effects

  4. High fusion performance at high T i/T e in JET-ILW baseline plasmas with high NBI heating power and low gas puffing

    Science.gov (United States)

    Kim, Hyun-Tae; Sips, A. C. C.; Romanelli, M.; Challis, C. D.; Rimini, F.; Garzotti, L.; Lerche, E.; Buchanan, J.; Yuan, X.; Kaye, S.; contributors, JET

    2018-03-01

    This paper presents the transport analysis of high density baseline discharges in the 2016 experimental campaign of the Joint European Torus with the ITER-Like Wall (JET-ILW), where a significant increase in the deuterium-deuterium (D-D) fusion neutron rate (~2.8  ×  1016 s-1) was achieved with stable high neutral beam injection (NBI) powers of up to 28 MW and low gas puffing. Increase in T i exceeding T e were produced for the first time in baseline discharges despite the high electron density; this enabled a significant increase in the thermal fusion reaction rate. As a result, the new achieved record in fusion performance was much higher than the previous record in the same heating power baseline discharges, where T i  =  T e. In addition to the decreases in collisionality and the increases in ion heating fraction in the discharges with high NBI power, T i  >  T e can also be attributed to positive feedback between the high T i/T e ratio and stabilisation of the turbulent heat flux resulting from the ion temperature gradient driven mode. The high T i/T e ratio was correlated with high rotation frequency. Among the discharges with identical beam heating power, higher rotation frequencies were observed when particle fuelling was provided by low gas puffing and pellet injection. This reveals that particle fuelling played a key role for achieving high T i/T e, and the improved fusion performance.

  5. Destabilization of counter-propagating TAEs by off-axis, co-current Neutral Beam Injection

    Science.gov (United States)

    Podesta', M.; Fredrickson, E.; Gorelenkova, M.

    2017-10-01

    Neutral Beam injection (NBI) is a common tool to heat the plasma and drive current non-inductively in fusion devices. Energetic particles (EP) resulting from NBI can drive instabilities that are detrimental for the performance and the predictability of plasma discharges. A broad NBI deposition profile, e.g. by off-axis injection aiming near the plasma mid-radius, is often assumed to limit those undesired effects by reducing the radial gradient of the EP density, thus reducing the ``universal'' drive for instabilities. However, this work presents new evidence that off-axis NBI can also lead to undesired effects such as the destabilization of Alfvénic instabilities, as observed in NSTX-U plasmas. Experimental observations indicate that counter propagating toroidal AEs are destabilized as the radial EP density profile becomes hollow as a result of off-axis NBI. Time-dependent analysis with the TRANSP code, augmented by a reduced fast ion transport model (known as kick model), indicates that instabilities are driven by a combination of radial and energy gradients in the EP distribution. Understanding the mechanisms for wave-particle interaction, revealed by the phase space resolved analysis, is the basis to identify strategies to mitigate or suppress the observed instabilities. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Contract Number DE-AC02-09CH11466.

  6. Maximum entropy algorithm and its implementation for the neutral beam profile measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Wook; Cho, Gyu Seong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cho, Yong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A tomography algorithm to maximize the entropy of image using Lagrangian multiplier technique and conjugate gradient method has been designed for the measurement of 2D spatial distribution of intense neutral beams of KSTAR NBI (Korea Superconducting Tokamak Advanced Research Neutral Beam Injector), which is now being designed. A possible detection system was assumed and a numerical simulation has been implemented to test the reconstruction quality of given beam profiles. This algorithm has the good applicability for sparse projection data and thus, can be used for the neutral beam tomography. 8 refs., 3 figs. (Author)

  7. Maximum entropy algorithm and its implementation for the neutral beam profile measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Wook; Cho, Gyu Seong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cho, Yong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A tomography algorithm to maximize the entropy of image using Lagrangian multiplier technique and conjugate gradient method has been designed for the measurement of 2D spatial distribution of intense neutral beams of KSTAR NBI (Korea Superconducting Tokamak Advanced Research Neutral Beam Injector), which is now being designed. A possible detection system was assumed and a numerical simulation has been implemented to test the reconstruction quality of given beam profiles. This algorithm has the good applicability for sparse projection data and thus, can be used for the neutral beam tomography. 8 refs., 3 figs. (Author)

  8. Neutral beam injection system design for KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.H.; Lee, K.W.; Chung, K.S.; Oh, B.H.; Cho, Y.S.; Bae, Y.D.; Han, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    The NBI system for KSTAR (Korean Superconducting Tokamak Advanced Research) has been designed based on conventional positive ion beam technology. One beam line consists of three ion sources, three neutralizers, one bending magnet, and one drift tube. This system will deliver 8 MW deuterium beam to KSTAR plasma in normal operation to support the advanced experiments on heating, current drive and profile control. The key technical issues in this design were high power ion source(120 kV, 65 A), long pulse operation (300 seconds; world record is 30 sec), and beam rotation from vertical to horizontal direction. The suggested important R and D points on ion source and beam line components are also included. (author). 7 refs., 27 figs., 1 tab.

  9. Specifications for surface reaction analysis apparatus

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2001-03-01

    A surface reaction analysis apparatus was installed at the JAERI soft x-ray beamline in the SPring-8 as an experimental end-station for the study of surface chemistry. The apparatus is devoted to the study concerning the influence of translational kinetic energy of incident molecules to chemical reactions on solid surfaces with gas molecules. In order to achieve the research purpose, reactive molecular scattering experiments and photoemission spectroscopic measurements using synchrotron radiation are performed in that apparatus via a supersonic molecular beam generator, an electron energy analyzer and a quadrupole mass analyzer. The detail specifications for the apparatus are described in this report. (author)

  10. Energy composition of high-energy neutral beams on the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Mitošinková, Klára; Stöckel, Jan; Varju, Jozef; Weinzettl, Vladimír

    2016-01-01

    Roč. 61, č. 4 (2016), s. 419-423 ISSN 0029-5922. [Summer School of Plasma Diagnostics PhDiaFusion 2015: “Soft X-ray Diagnostics for Fusion Plasma”. Bezmiechowa, 16.06.2015-20.06.2015] R&D Projects: GA MŠk(CZ) LM2011021; GA MŠk(CZ) 8D15001 Institutional support: RVO:61389021 Keywords : tokamak * neutral beam injection (NBI) * Doppler effect * beam composition * beam composition Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.760, year: 2016 http://www.ichtj.waw.pl/nukleonikaa/?p=1256

  11. Foil changing apparatus

    International Nuclear Information System (INIS)

    Crist, C.E.; Ives, H.C.; Leifeste, G.T.; Miller, R.B.

    1988-01-01

    A self-contained foil changer apparatus for replenishing foil material across the path of a high energy particle beam is described comprising: a cylindrical hermetically sealed housing comprising an end plate having an aperture defining a beam passageway therethrough; foil supply means disposed inside the housing for storing a foil web and supporting a portion of the web across the beam passageway to form a plane perpendicular to the beam path; a barrel assembly disposed inside the housing; web control means extending through the housing and operably connected to the foil supply means for selectively advancing the foil web to replenish a portion across the beam passageway; and barrel control means extending through the housing and operably connected to the barrel assembly for selectively moving the barrel to and from the advanced and retracted positions

  12. Heat transfer enhancement of NBI vacuum pump cryopanels

    International Nuclear Information System (INIS)

    Ochoa Guaman, Santiago; Hanke, Stefan; Day, Christian

    2013-01-01

    Highlights: ► Cryopanel is optimized minimizing its maximal temperature rise and heat capacity. ► Copper coating on the cryopanels is necessary to reach a high thermal efficiency. ► The copper coating is achieved using an electroplating technique. ► A thermal shield for the cryopump 4 K manifold would reduce heat leaks down to 10%. ► The manufacturability and operation of the thermal shield is discussed. -- Abstract: Huge cryogenic pumps are installed inside neutral beam injectors in order to manage the typically very large gas flows. This paper deals with the aspect of passive cooling in NBI cryopump design development and discusses design considerations in two example areas. One is the design of cryopanels consisting of a pipe, centrally supplied with cryogenic helium, and a welded fin, passively cooled, to provide the necessary pumping surface below a given maximum temperature. The results of several parametric simulations in ANSYS are presented using different copper thicknesses and cryopanel geometries to discuss the thermal capability (heat transfer characteristics and heat capacities) of a number of design variants. The optimum design solution is based on copper-coated fins, using an electroplating technique, and thereby improving the heat transfer of the cryopanels while attaining an overall reduction in weight. The other area is the sound design of the manifold shielding system with a weld contact between copper and stainless steel. Weld samples were manufactured and investigated to raise awareness of the demands and risks during manufacturing and to demonstrate that readily applicable weld procedures exist

  13. X-ray photographic apparatus

    International Nuclear Information System (INIS)

    1977-01-01

    The X-ray photographic system is designed for medical applications. Two detectors are used for surveys in different planes, and produce electrical signals which are supplied to a comparator. The electron beams are examined according to a system of reference time steps. The apparatus includes a light source and a photo-detector and enables a reference signal to be produced against which the detected signals are compared. The beam source is formed from an electron gun, an extractor electrode and an anode; beam then passes through a collimator. (G.C.)

  14. Analysis of active and passive magnetic field reduction systems (MFRS) of the ITER NBI

    International Nuclear Information System (INIS)

    Roccella, M.; Lucca, F.; Roccella, R.; Pizzuto, A.; Ramogida, G.; Portone, A.; Tanga, A.; Formisano, A.; Martone, R.

    2007-01-01

    In ITER two heating (HNBI) and one diagnostic neutral beam injectors (DNBI) are foreseen. Inside these components there are very stringent limits on the magnetic field (the flux density must be below some G along the ion path and below 20 G in the neutralizing regions). To achieve these performances in an environment with high stray field due to the plasma and the poloidal field coils (PFC), both passive and active shielding systems have been foreseen. The present design of the magnetic field reduction systems (MFRS) is made of seven active coils and of a box surrounding the NBI region, consisting of ferromagnetic plates. The electromagnetic analyses of the effectiveness of these shields have been performed by a 3D FEM model using ANSYS code for the HNBI. The ANSYS models of the ferromagnetic box and of the active coils are fully parametric, thus any size change of the ferromagnetic box and coils (linear dimension or thickness) preserving the overall box shape could be easily reproduced by simply changing some parameter in the model

  15. Analysis of active and passive magnetic field reduction systems (MFRS) of the ITER NBI

    Energy Technology Data Exchange (ETDEWEB)

    Roccella, M. [L.T. Calcoli S.a.S., Piazza Prinetti 26/B, Merate (Lecco) (Italy)], E-mail: roccella@ltcalcoli.it; Lucca, F.; Roccella, R. [L.T. Calcoli S.a.S., Piazza Prinetti 26/B, Merate (Lecco) (Italy); Pizzuto, A.; Ramogida, G. [Associazione EURATOM sulla Fusione - ENEA Frascati (Italy); Portone, A.; Tanga, A. [ITER EFDA (Italy); Formisano, A.; Martone, R. [CREATE Napoli (Italy)

    2007-10-15

    In ITER two heating (HNBI) and one diagnostic neutral beam injectors (DNBI) are foreseen. Inside these components there are very stringent limits on the magnetic field (the flux density must be below some G along the ion path and below 20 G in the neutralizing regions). To achieve these performances in an environment with high stray field due to the plasma and the poloidal field coils (PFC), both passive and active shielding systems have been foreseen. The present design of the magnetic field reduction systems (MFRS) is made of seven active coils and of a box surrounding the NBI region, consisting of ferromagnetic plates. The electromagnetic analyses of the effectiveness of these shields have been performed by a 3D FEM model using ANSYS code for the HNBI. The ANSYS models of the ferromagnetic box and of the active coils are fully parametric, thus any size change of the ferromagnetic box and coils (linear dimension or thickness) preserving the overall box shape could be easily reproduced by simply changing some parameter in the model.

  16. Magnetic lens apparatus for a low-voltage high-resolution electron microscope

    Science.gov (United States)

    Crewe, Albert V.

    1996-01-01

    A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.

  17. Development of a two-dimensional simulation code (koad) including atomic processes for beam direct energy conversion

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Yoshikawa, K.; Hattori, Y.

    1987-01-01

    A two-dimensional simulation code for the beam direct energy conversion called KVAD (Kyoto University Advanced DART) including various loss mechanisms has been developed, and shown excellent agreement with the authors' experiments using the He + beams. The beam direct energy converter (BDC) is the device to recover the kinetic energy of unneutralized ions in the neutral beam injection (NBI) system directly into electricity. The BDC is very important and essential not only to the improvements of NBI system efficiency, but also to the relaxation of high heat flux problems on the beam dump with increase of injection energies. So far no simulation code could have successfully predicted BDC experimental results. The KUAD code applies, an optimized algorithm for vector processing, the finite element method (FEM) for potential calculation, and a semi-automatic method for spatial segmentations. Since particle trajectories in the KVAD code are analytically solved, very high speed tracings of the particle could be achieved by introducing an adjacent element matrix to identify the neighboring triangle elements and electrodes. Ion space charges are also analytically calculated by the Cloud in Cell (CIC) method, as well as electron space charges. Power losses due to atomic processes can be also evaluated in the KUAD code

  18. High power neutral beam injection in LHD

    International Nuclear Information System (INIS)

    Tsumori, K.; Takeiri, Y.; Nagaoka, K.

    2005-01-01

    The results of high power injection with a neutral beam injection (NBI) system for the large helical device (LHD) are reported. The system consists of three beam-lines, and two hydrogen negative ion (H - ion) sources are installed in each beam-line. In order to improve the injection power, the new beam accelerator with multi-slot grounded grid (MSGG) has been developed and applied to one of the beam-lines. Using the accelerator, the maximum powers of 5.7 MW were achieved in 2003 and 2004, and the energy of 189 keV reached at maximum. The power and energy exceeded the design values of the individual beam-line for LHD. The other beam-lines also increased their injection power up to about 4 MW, and the total injection power of 13.1 MW was achieved with three beam-lines in 2003. Although the accelerator had an advantage in high power beam injection, it involved a demerit in the beam focal condition. The disadvantage was resolved by modifying the aperture shapes of the steering grid. (author)

  19. Conceptual design of the DEMO neutral beam injectors: main developments and R&D achievements

    Science.gov (United States)

    Sonato, P.; Agostinetti, P.; Bolzonella, T.; Cismondi, F.; Fantz, U.; Fassina, A.; Franke, T.; Furno, I.; Hopf, C.; Jenkins, I.; Sartori, E.; Tran, M. Q.; Varje, J.; Vincenzi, P.; Zanotto, L.

    2017-05-01

    The objectives of the nuclear fusion power plant DEMO, to be built after the ITER experimental reactor, are usually understood to lie somewhere between those of ITER and a ‘first of a kind’ commercial plant. Hence, in DEMO the issues related to efficiency and RAMI (reliability, availability, maintainability and inspectability) are among the most important drivers for the design, as the cost of the electricity produced by this power plant will strongly depend on these aspects. In the framework of the EUROfusion Work Package Heating and Current Drive within the Power Plant Physics and Development activities, a conceptual design of the neutral beam injector (NBI) for the DEMO fusion reactor has been developed by Consorzio RFX in collaboration with other European research institutes. In order to improve efficiency and RAMI aspects, several innovative solutions have been introduced in comparison to the ITER NBI, mainly regarding the beam source, neutralizer and vacuum pumping systems.

  20. Characteristics of large scale ionic source for JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Yukio; Honda, Atsushi; Inoue, Takashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-02-01

    The Neutral Beam Injection (NBI) apparatus is expected for important role sharing apparatus to realize the plasma electric current drive and the plasma control in not only temperature upgrading of the plasma but also Tokamak nuclear fusion reactor for the next generation such as JT-60, ITER and so forth. Japan Atomic Energy Research Institute has developed the ionic source with high energy and large electric current for about 10 years. Some arrangement tests of the large negative ion source for JT-60 No. 1 were executed from June to October, 1995. As a series of arrangement tests, 400 KeV and 13.5 A of deuterium negative ion beam was successfully accelerated for 0.12 sec. under 0.22 Pa of low gas pressure. And, it was elucidated that electron electric current could be controlled efficiently even in deuterium negative ion beam. Here is described on the testing results in details. (G.K.)

  1. Universal Linear Precoding for NBI-Proof Widely Linear Equalization in MC Systems

    Directory of Open Access Journals (Sweden)

    Donatella Darsena

    2007-09-01

    Full Text Available In multicarrier (MC systems, transmitter redundancy, which is introduced by means of finite-impulse response (FIR linear precoders, allows for perfect or zero-forcing (ZF equalization of FIR channels (in the absence of noise. Recently, it has been shown that the noncircular or improper nature of some symbol constellations offers an intrinsic source of redundancy, which can be exploited to design efficient FIR widely-linear (WL receiving structures for MC systems operating in the presence of narrowband interference (NBI. With regard to both cyclic-prefixed and zero-padded transmission techniques, it is shown in this paper that, with appropriately designed precoders, it is possible to synthesize in both cases WL-ZF universal equalizers, which guarantee perfect symbol recovery for any FIR channel. Furthermore, it is theoretically shown that the intrinsic redundancy of the improper symbol sequence also enables WL-ZF equalization, based on the minimum mean output-energy criterion, with improved NBI suppression capabilities. Finally, results of numerical simulations are presented, which assess the merits of the proposed precoding designs and validate the theoretical analysis carried out.

  2. On the electron extraction in a large RF-driven negative hydrogen ion source for the ITER NBI system

    International Nuclear Information System (INIS)

    Franzen, P; Wünderlich, D; Fantz, U

    2014-01-01

    The test facility ELISE, equipped with a large RF-driven ion source (1 × 0.9 m 2 ) of half the size of the ion source for the ITER neutral beam injection (NBI) system, has been constructed over the last three years at the Max-Planck-Institut für Plasmaphysik (IPP), Garching, and is now operational. The first measurements of the dependence of the co-extracted electron currents on various operational parameters have been performed. ELISE has the unique feature that the electron currents can be measured individually on both extraction grid segments, leading to vertical spatial resolution. Although performed in volume operation, where the negative hydrogen ions are created in the plasma volume solely, the results are very encouraging for operation with caesium, this being necessary in order to achieve the relevant negative ion currents for the ITER NBI injectors. The amount of co-extracted electrons could be suppressed sufficiently with moderate magnetic filter fields and by plasma grid bias. Furthermore, the electron extraction is more or less decoupled from the main plasma, as the observed vertical asymmetry of electron extraction is not correlated at all with the plasma asymmetry, which is anyway rather small. Both effects are superior to the experience from the small IPP prototype source; the reason for these encouraging results is most probably the larger size of the source as well as the new geometry of the source having unbiased areas in its centre. The reasons, however, for the observed asymmetry of the extracted electron currents and their dependencies on various operational parameters are not well understood. (paper)

  3. Fast wave current drive in neutral beam heated plasmas on DIII-D

    International Nuclear Information System (INIS)

    Petty, C.C.; Forest, C.B.; Pinsker, R.I.

    1997-04-01

    The physics of non-inductive current drive and current profile control using the fast magnetosonic wave has been demonstrated on the DIII-D tokamak. In non-sawtoothing discharges formed by neutral beam injection (NBI), the radial profile of the fast wave current drive (FWCD) was determined by the response of the loop voltage profile to co, counter, and symmetric antenna phasings, and was found to be in good agreement with theoretical models. The application of counter FWCD increased the magnetic shear reversal of the plasma and delayed the onset of sawteeth, compared to co FWCD. The partial absorption of fast waves by energetic beam ions at high harmonics of the ion cyclotron frequency was also evident from a build up of fast particle pressure near the magnetic axis and a correlated increase in the neutron rate. The anomalous fast particle pressure and neutron rate increased with increasing NBI power and peaked when a harmonic of the deuterium cyclotron frequency passed through the center of the plasma. The experimental FWCD efficiency was highest at 2 T where the interaction between the fast waves and the beam ions was weakest; as the magnetic field strength was lowered, the FWCD efficiency decreased to approximately half of the maximum theoretical value

  4. Beam calorimetry at the large negative ion source test facility ELISE: Experimental setup and latest results

    International Nuclear Information System (INIS)

    Nocentini, Riccardo; Bonomo, Federica; Ricci, Marina; Pimazzoni, Antonio; Fantz, Ursel; Heinemann, Bernd; Riedl, Rudolf; Wünderlich, Dirk

    2016-01-01

    Highlights: • ELISE is the first step in the European roadmap for the development of the ITER NBI. • Several beam diagnostic tools have been installed, the latest results are presented. • A gaussian fit procedure has been implemented to characterize the large ion beam. • Average beamlet group inhomogeneity is maximum 13%, close to the ITER target of 10%. • Beam divergence measured by calorimeter agrees with the BES measurements within 30%. - Abstract: The test facility ELISE is the first step within the European roadmap for the development of the ITER NBI system. ELISE is equipped with a 1 × 0.9 m"2 radio frequency negative ion source (half the ITER source size) and an ITER-like 3-grid extraction system which can extract an H"− or D"− beam for 10 s every 3 min (limited by available power supplies) with a total acceleration voltage of up to 60 kV. In the beam line of ELISE several beam diagnostic tools have been installed with the aim to evaluate beam intensity, divergence and uniformity. A copper diagnostic calorimeter gives the possibility to measure the beam power density profile with high resolution. The measurements are performed by an IR micro-bolometer camera and 48 thermocouples embedded in the calorimeter. A gaussian fit procedure has been implemented in order to characterize the large negative ion beam produced by ELISE. The latest results obtained from the beam calorimetry at ELISE show that the average beamlet group inhomogeneity is maximum 13%. The measured beam divergence agrees with the one measured by beam emission spectroscopy within 30%.

  5. Anomalous Beam-Ion Loss in TFTR Reversed Magnetic Shear Plasmas

    International Nuclear Information System (INIS)

    Ruskov, E.; Bell, M.; Budny, R.V.; McCune, D.C.; Medley, S.S.; Redi, M.H.; Scott, S.; Synakowski, E.J.; Goeler, S. von; White, R.B.; Zweben, S.J.

    1999-01-01

    Anomalous beam-ion loss has been observed in an experiment with short tritium beam pulses injected into deuterium-beam-heated Tokamak Fusion Test Reactor plasmas (P NBI =15 MW) with reversed magnetic shear (RS). Comparisons of the measured total 14thinspthinspMeV neutron emission, the neutron flux along eight radial locations, and the perpendicular plasma stored energy with predictions from an extensive set of TRANSP simulations suggest that about 40% beam power is lost on a time scale much shorter than the tritium beam pulse length Δt=70 ms. In contrast with recent results [K. Tobita et al., Nucl.Fusion 37, 1583 (1997)] from RS experiments at JT-60U, we were not able to show conclusively that magnetic field ripple is responsible for this anomaly. copyright 1999 The American Physical Society

  6. Clinical experiences of NBI laryngoscope in diagnosis of laryngeal lesions

    Science.gov (United States)

    Qi, Xinmeng; Yu, Dan; Zhao, Xue; Jin, Chunshun; Sun, Changling; Liu, Xueshibojie; Cheng, Jinzhang; Zhang, Dejun

    2014-01-01

    Endoscopy is essential for the diagnosis and treatment of cancers derived from the larynx. However, a laryngoscope with conventional white light (CWL) has technical limitations in detecting small or superficial lesions on the mucosa. Narrow band imaging especially combined with magnifying endoscopy (ME) is useful for the detection of superficial squamous cell carcinoma (SCC) within the oropharynx, hypopharynx, and oral cavity. A total of 3675 patients who have come to the outpatient clinic and complained of inspiratory stridor, dyspnea, phonation problems or foreign body sensation, were enrolled in this study. We describe the glottic conditions of the patients. All 3675 patients underwent laryngoscopy equipped with conventional white light (CWL) and NBI system. 1149 patients received a biopsy process. And 1153 lesions were classified into different groups according to their histopathological results. Among all the 1149 patients, 346 patients (312 males, 34 females; mean age 62.2±10.5 years) were suspected of having a total of 347 precancerous or cancerous (T1 or T2 without lymphnode involvement) lesions of the larynx under the CWL. Thus, we expected to attain a complete vision of what laryngeal lesions look like under the NBI view of a laryngoscope. The aim was to develop a complete description list of each laryngeal conditions (e.g. polyps, papilloma, leukoplakia, etc.), which can serve as a criteria for further laryngoscopic examinations and diagnosis. PMID:25419362

  7. Radiographic apparatus

    International Nuclear Information System (INIS)

    Dalton, B.L.

    1984-01-01

    This patent application describes a radiographic apparatus including an array of radiation sensors, a source of radiation for projecting a beam through a body and means for moving one of said source and array relative to the body and for producing an electrical signal representative of the movement of the other of said source and array needed to bring the array into register with the beam. Drive means are arranged to move the other of said source and array in response to the electrical signal. In one embodiment, the source is rotated by an amount measured by a grating and associated electronics. The required movement of the array to maintain registration is calculated and transmitted to a driver. Alternatively, a laser may be mounted with the same and the array driven so that the laser beam continuously impinges on a photocell mounted with the array. (author)

  8. Method and apparatus for computerized tomography

    International Nuclear Information System (INIS)

    1976-01-01

    A method and apparatus is disclosed for examining a plane through a body by detecting the absorption of X- or gamma ray beams directed tangent to concentric rings defined in the body plane as the beams are rotated three hundred sixty degrees around the outside of the body. Signals proportional to the detected beams are used to generate signals proportional to absorption or transmission coefficients of defined concentric ring elements. These coefficients are useful in describing the interior of the body at the plane under examination

  9. X-ray examination apparatus

    NARCIS (Netherlands)

    2000-01-01

    The invention relates to an X-ray apparatus which includes an adjustable X-ray filter. In order to adjust an intensity profile of the X-ray beam, an X-ray absorbing liquid is transported to filter elements of the X-ray filter. Such transport is susceptible to gravitational forces which lead to an

  10. Development of a high-current ion source with slit beam extraction for neutral beam injector of VEST

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Bong-ki; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr; An, Young-Hwa; Park, Jong-Yoon; Hwang, Y.S.

    2015-10-15

    Highlights: • A high-current ion source is developed for NBI system of VEST. • A cold-cathode electron gun is employed to produce primary electrons. • A hemi-cylindrical discharge chamber with cusp magnetic field is used. • Plasma density is measured to be 2 × 10{sup 18} m{sup −3} near the extraction aperture. • NBI power of 90 kW with beam energy of 20 keV is expected to be achieved. - Abstract: A high-current pulsed ion source has been developed for the neutral beam injector of the VEST (Versatile Experiment Spherical Torus) to accommodate high-beta fusion plasma experiments. The ion source consists of two parts: an electron gun for supplying sufficient primary electrons by cold-cathode arc discharge and a hemi-cylindrical discharge chamber where uniform, high-density plasma generated by the primary electrons is confined by multi-cusp magnetic field. A pulse forming network is also developed to drive high current of ∼1 kA to sustain the cold-cathode discharge in the electron gun up to 10 ms. Diagnostics with a triple probe in the discharge chamber shows that a hydrogen plasma whose density is as high as 1 × 10{sup 18} m{sup −3} can be obtained near extraction slits at the gas pressure lower than 0.5 Pa. This value is estimated to be sufficient to deposit a heating power of 90 kW to the VEST plasma when the appropriate extraction through slits with 20 cm{sup 2} in area and acceleration of ion beams up to 20 kV are fulfilled.

  11. Merged neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Osterwalder, Andreas [Ecole Polytechnique Federale de Lausanne (EPFL), Institute for Chemical Sciences and Engineering, Lausanne (Switzerland)

    2015-12-15

    A detailed description of a merged beam apparatus for the study of low energy molecular scattering is given. This review is intended to guide any scientist who plans to construct a similar experiment, and to provide some inspiration in describing the approach we chose to our goal. In our experiment a supersonic expansion of paramagnetic particles is merged with one of polar molecules. A magnetic and an electric multipole guide are used to bend the two beams onto the same axis. We here describe in detail how the apparatus is designed, characterised, and operated. (orig.)

  12. PNO-apparatus and its test use for neutron interferometry

    International Nuclear Information System (INIS)

    Tomimitsu, Hiroshi; Aizawa, Kazuya; Hasegawa, Yuji; Kikuta, Seishi.

    1993-01-01

    Special apparatus 'PNO' of multiutility in the so-called precise neutron optics, such as double or triple crystal diffractometry, interferometry, etc., including neutron diffraction topography, was settled at 3G beam hole in the JRR-3M. In the symposium, several applications of the PNO apparatus are presented as 1) very small angle neutron scattering tool with double crystal arrangement, 2) the characterization of the quality of artificial multilayer lattices made of Ti-Ni by a triple crystal arrangement, 3) the characterization of Ni-base superalloy single crystals by the diffraction topography, which are presented in individual sessions. Preliminary test of the neutron interferometry was also tried with the PNO apparatus. Usual monolithic Si LLL- type interferometer was used with an Al phase shifter in the neutron beam paths. The periodicity of the measured intensity curve was well corresponded to the expected one. The best contrast of the intensity curve was measured as high as 43%. The utility of the PNO-apparatus for neutron interferometry was, thus, approved. (author)

  13. Development of an energy analyzer as diagnostic of beam-generated plasma in negative ion beam systems

    Science.gov (United States)

    Sartori, E.; Carozzi, G.; Veltri, P.; Spolaore, M.; Cavazzana, R.; Antoni, V.; Serianni, G.

    2017-08-01

    The measurement of the plasma potential and the energy spectrum of secondary particles in the drift region of a negative ion beam offers an insight into beam-induced plasma formation and beam transport in low pressure gasses. Plasma formation in negative-ion beam systems, and the characteristics of such a plasma are of interest especially for space charge compensation, plasma formation in neutralizers, and the development of improved schemes of beam-induced plasma neutralisers for future fusion devices. All these aspects have direct implications in the ITER Heating Neutral Beam and the operation of the prototypes, SPIDER and MITICA, and also have important role in the conceptual studies for NBI systems of DEMO, while at present experimental data are lacking. In this paper we present the design and development of an ion energy analyzer to measure the beam plasma formation and space charge compensation in negative ion beams. The diagnostic is a retarding field energy analyzer (RFEA), and will measure the transverse energy spectra of plasma molecular ions. The calculations that supported the design are reported, and a method to interpret the measurements in negative ion beam systems is also proposed. Finally, the experimental results of the first test in a magnetron plasma are presented.

  14. Apparatus for enrichment of uranium by double photoionization

    International Nuclear Information System (INIS)

    Laude, J.P.

    1983-11-01

    The present invention concerns enrichment of uranium by double photoionization. The use of a beam from a dye laser for excitation of gaseous uranium is known and the present invention concerns an apparatus of this type. The purpose of the invention is essentially to produce an apparatus having high energy efficiency. This is achieved according to the invention by using a continuous wave laser

  15. Ion beam exposure apparatus using a liquid metal source

    International Nuclear Information System (INIS)

    Komuro, M.

    1982-01-01

    A field effect liquid metal ion source is described. The current-voltage characteristics, the angular intensity distribution and the total energy distribution were measured for gallium, gold and lead sources. The results are presented and the effect of space charge on the emission current is discussed. Optimum working conditions for the use of the ion sources in probe formation are derived. On the basis of the experimental results, an apparatus operating at 50 kV or less was designed. Details of the design, which includes a triode ion gun and an einzel lens, are given together with preliminary results of pattern delineation with the apparatus. (Auth.)

  16. Modeling of the lithium based neutralizer for ITER neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Dure, F., E-mail: franck.dure@u-psud.fr [LPGP, Laboratoire de Physique des Gaz et Plasmas, CNRS-Universite Paris Sud, Orsay (France); Lifschitz, A.; Bretagne, J.; Maynard, G. [LPGP, Laboratoire de Physique des Gaz et Plasmas, CNRS-Universite Paris Sud, Orsay (France); Simonin, A. [IRFM, Institut de Recherche sur la Fusion Magnetique, CEA Cadarache, 13108 Saint-Paul lez Durance (France); Minea, T. [LPGP, Laboratoire de Physique des Gaz et Plasmas, CNRS-Universite Paris Sud, Orsay (France)

    2012-04-04

    Highlights: Black-Right-Pointing-Pointer We compare different lithium based neutraliser configurations to the deuterium one. Black-Right-Pointing-Pointer We study characteristics of the secondary plasma and the propagation of the 1 MeV beam. Black-Right-Pointing-Pointer Using lithium increases the neutralisation effiency keeping correct beam focusing. Black-Right-Pointing-Pointer Using lithium also reduces the backstreaming effect in direction of the ion source. - Abstract: To achieve thermonuclear temperatures necessary to produce fusion reactions in the ITER Tokamak, additional heating systems are required. One of the main method to heat the plasma ions in ITER will be the injection of energetic neutrals (NBI). In the neutral beam injector, negative ions (D{sup -}) are electrostatically accelerated to 1 MeV, and then stripped of their extra electron via collisions with a target gas, in a structure known as neutralizer. In the current ITER specification, the target gas is deuterium. It has been recently proposed to use lithium vapor instead of deuterium as target gas in the neutralizer. This would allow to reduce the gas load in the NBI vessel and to improve the neutralization efficiency. A Particle-in-Cell Monte Carlo code has been developed to study the transport of the beams and the plasma formation in the neutralizer. A comparison between Li and D{sub 2} based neutralizers made with this code is presented here, as well as a parametric study on the geometry of the Li based neutralizer. Results demonstrate the feasibility of a Li based neutralizer, and its advantages with respect to the deuterium based one.

  17. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  18. Development of KSTAR Neutral Beam Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)

    2007-10-15

    The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.

  19. The development of the radio frequency driven negative ion source for neutral beam injectors (invited)

    International Nuclear Information System (INIS)

    Kraus, W.; Fantz, U.; Franzen, P.; Froeschle, M.; Heinemann, B.; Riedl, R.; Wuenderlich, D.

    2012-01-01

    Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut fuer Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions.

  20. Design issues of the High Voltage platform and feedthrough for the ITER NBI Ion Source

    International Nuclear Information System (INIS)

    Boldrin, M.; Palma, M. Dalla; Milani, F.

    2009-01-01

    In the ITER heating Neutral Beam Injector (NBI), a High Voltage air-insulated platform (named High Voltage Deck, HVD) will be installed to host the Ion Source and Extractor Power supply system and associated diagnostics referred to -1 MV DC potential. All power and control cables are routed from the HVD via a feedthrough (HV bushing) to the gas insulated transmission line which feeds the Injector. The paper focuses on insulation and mechanical issues for both HVD and HV bushing which are very special components, far from the present industrial standards as far as voltage (-1 MV DC) and dimensions are concerned. For this purpose, a preliminary design of the HVD has been carried out as concerns the mechanical structure and external shield. Then, the structure has been verified with a seismic analysis applying the seismic load excitation specified for the ITER construction site (Cadarache) and carrying out verifications according to relevant international standards. As regards the HV bushing design, proposals for the complex inner conductor structure and for interfaces to the HVD and transmission line are outlined; alternative installation layouts (aside or underneath the HVD) are compared from both mechanical and electrical points of view.

  1. Method and apparatus for laser-controlled proton beam radiology

    Science.gov (United States)

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  2. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Science.gov (United States)

    Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  3. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E. [Consorzio RFX—Associazione EURATOM-ENEA per la Fusione, Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  4. Fabrication and installment of hard-wired I and C works for the neutral beam injection system of the KSTAR project

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Oh, Byung Hun; In, Sang Ryul; Yoon, Jae Sung

    2004-01-01

    Instrumentation and Control(I and C) of the neutral beam injection(NBI) system for the K-STAR national fusion research project has been working from the start of the project to answer diverse requests arising from various facets of the development and construction phases of the project. In a parallel effort with the software oriented I and C development, there has been existing an enormous amount of hard-wiring I and C works for the NBI facility to be developed and fabricated in schedule. Circuits and hardwired functions have been designed, tested, fabricated, and finally installed to the relevant parts of the system. Some examples of those hard-wired I and C works are related to the vacuum system, gas feeding system, arc detector circuit, ion source monitoring, bending magnet and calorimeter. They are one of those integral parts for the proper operation of the NBI system. Examples of those hard-wired I and C works are introduced in this presentation

  5. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  6. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    ., Nuruzzaman [Hampton Univ., Hampton, VA (United States)

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  7. High intensity beam dump for the Tevatron beam abort system

    International Nuclear Information System (INIS)

    Kidd, J.; Mokhov, N.; Murphy, T.; Palmer, M.; Toohig, T.; Turkot, F.; VanGinneken, A.

    1981-01-01

    The beam abort system proposed for the Fermilab Tevatron Accelerator will extract the proton beam from the ring in a single turn (approximately 20/mu/s) and direct it to an external beam dump. It is the function of the beam dump to absorb the unwanted beam and limit the escaping radiation to levels that are acceptable to the surrounding populace and apparatus. A beam dump that is expected to meet these requirements has been designed and constructed. Detailed design of the dump, including considerations leading to the choice of materials, are given. 6 refs

  8. Method and apparatus for altering material

    Science.gov (United States)

    Stinnett, Regan W.; Greenly, John B.

    2002-02-05

    Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.

  9. Radiation measuring apparatus

    International Nuclear Information System (INIS)

    Schmid, C.J.

    1983-01-01

    A colorimeter in which a light source, a collimating lens and a band pass filter are supported by a housing that is movable with respect to a stationary beam dividing assembly in a direction at least substantially transverse to the optical axis of the light from the source. The assembly separates the incoming collimated and filtered light into a sample beam and a reference beam which are directed back toward the housing in directions parallel to the optical axis. The movement of the housing toward or away from the sample produces an increase or decrease in the intensity of the light illuminating the sample and a corresponding decrease or increase in the intensity of the light at the reference detector. The arrangement is such that the apparatus may be readily adjusted to obtain accurate colorimeter readings even for samples having abnormally high or low density characteristics

  10. Confinement improvement in high-ion temperature plasmas heated with high-energy negative-NBI in LHD

    International Nuclear Information System (INIS)

    Takeiri, Y.; Morita, S.; Ikeda, K.

    2006-10-01

    The increase in the ion temperature due to transport improvement has been observed in plasmas heated with high-energy negative-NBI, in which electrons are dominantly heated, in Large Helical Device (LHD). When the centrally focused ECRH is superposed on the NBI plasma, the ion temperature is observed to rise, accompanied by formation of the electron-ITB. This is ascribed to the ion transport improvement with the transition to the neoclassical electron root with a positive radial electric field. In high-Z plasmas, the ion temperature is increased with an increase in the ion heating power, and reaches 13.5keV. The central ion temperature increases with an increase in a gradient of the electron temperature in an outer plasma region of ρ=0.8, suggesting the ion transport improvement in the outer plasma region induced by the neoclassical electron root. These results indicate the effectiveness of the electron-root scenario for obtaining high-ion temperature plasmas in helical systems. (author)

  11. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic dental radiography is described in detail. It comprises an electron gun having an elongated tubular target carrier extending into the patient's mouth. The carrier supports an inclined target for direction of an X-ray pattern towards a film positioned externally of the patient's mouth. Image definition is improved by a focusing anode which focuses the electron beam into a sharp spot (0.05 to 0.10 mm diameter) on the target. The potential on the focusing anode is adjustable to vary the size of the spot. An X-ray transmitting ceramic (oxides of Be, Al and Si) window is positioned adjacent to the front face of the target. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  12. Apparatus for proton radiography

    International Nuclear Information System (INIS)

    Martin, R.L.

    1976-01-01

    An apparatus for effecting diagnostic proton radiography of patients in hospitals comprises a source of negative hydrogen ions, a synchrotron for accelerating the negative hydrogen ions to a predetermined energy, a plurality of stations for stripping extraction of a radiography beam of protons, means for sweeping the extracted beam to cover a target, and means for measuring the residual range, residual energy, or percentage transmission of protons that pass through the target. The combination of information identifying the position of the beam with information about particles traversing the subject and the back absorber is performed with the aid of a computer to provide a proton radiograph of the subject. In an alternate embodiment of the invention, a back absorber comprises a plurality of scintillators which are coupled to detectors. 10 claims, 7 drawing figures

  13. Fast ion behavior during neutral beam injection in ATF

    International Nuclear Information System (INIS)

    Wade, M.R.; Thomas, C.E.; Colchin, R.J.; Rome, J.A.; England, A.C.; Fowler, R.H.; Aceto, S.C.

    1993-01-01

    In stellarators, single-particle confinement properties can be more complex than in their tokamak counterparts. Fast-ion behavior in tokamaks has been well characterized through an abundance of measurements on various devices and in general has been shown to be consistent with classical slowing-down theory, although anomalous ion behavior has been observed during intense beam injection in ISX-B, during fishbone instabilities in PDX, and in experiments on TFR. In contrast, fast ion behavior in stellarators is not as wel established experimentally with the primary experiments to date focusing o near-perpendicular or perpendicular neutral beam injection (NBI) on the Wendelstein 7-A stellarator (91 and Heliotron-E. This paper addresses fast-ion confinement properties in a large-aspect-ratio, moderate-shear stellarator, the Advanced Toroidal Facility, during tangential NBI. The primary data used in this study are the experimentally measured energy spectra of charge-exchange neutrals escaping from the plasma, using a two-dimensional scanning neutral particle analyzer. This diagnostic method is well established, having been used on several devices since the early 1970's. Various aspects of fast-ion behavior are investigated by comparing these data with computed theoretical spectra based on energeticion distributions derived from the fastion Fokker-Planck equation. Ion orbits are studied by computer orbit following, by the computation of J* surfaces, and by Monte Carlo calculations

  14. Apparatus for neutralization of accelerated ions

    International Nuclear Information System (INIS)

    Fink, J.H.; Frank, A.M.

    1979-01-01

    Apparatus is described for neutralization of a beam of accelerated ions, such as hydrogen negative ions (H - ), using relatively efficient strip diode lasers which emit monochromatically at an appropriate wavelength (lambda = 8000 A for H - ions) to strip the excess electrons by photodetachment. A cavity, formed by two or more reflectors spaced apart, causes the laser beams to undergo multiple reflections within the cavity, thus increasing the efficiency and reducing the illumination required to obtain an acceptable percentage (approx. 85%) of neutralization

  15. A beam-walking apparatus to assess behavioural impairments in MPTP-treated mice: pharmacological validation with R-(-)-deprenyl.

    Science.gov (United States)

    Quinn, Leann P; Perren, Marion J; Brackenborough, Kim T; Woodhams, Peter L; Vidgeon-Hart, Martin; Chapman, Helen; Pangalos, Menelas N; Upton, Neil; Virley, David J

    2007-08-15

    A beam-walking apparatus has been evaluated for its ability to detect motor impairments in mice acutely treated with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg, s.c., single or double administration). Mice subjected to MPTP lesioning showed deficits in motor performance on the beam-walking task, for up to 6 days post-MPTP administration, as compared to saline-treated controls. In addition, MPTP-treated mice were detected to have a marked depletion in striatal dopamine levels and a concomitant reduction in substantia nigra (SN) tyrosine hydroxylase (TH) immunoreactivity, at 7 days post-MPTP administration, indicative of dopaminergic neuronal loss. Pre-administration of the potent MAO-B inhibitor R-(-)-deprenyl at 3 or 10 mg/kg, 30 min, s.c, significantly inhibited the MPTP-induced reduction in SN TH-immunoreactivity, striatal dopamine depletions and impairments in mouse motor function. The data described in the present study provides further evidence that functional deficits following an acute MPTP dosing schedule in mice can be quantified and are related to nigro-striatal dopamine function.

  16. A modified beam-walking apparatus for assessment of anxiety in a rodent model of blast traumatic brain injury.

    Science.gov (United States)

    Sweis, Brian M; Bachour, Salam P; Brekke, Julia A; Gewirtz, Jonathan C; Sadeghi-Bazargani, Homayoun; Hevesi, Mario; Divani, Afshin A

    2016-01-01

    The elevated plus maze (EPM) is used to assess anxiety in rodents. Beam-walking tasks are used to assess vestibulomotor function. Brain injury in rodents can disrupt performance on both of these tasks. Developing novel paradigms that integrate tasks like these can reduce the need for multiple tests when attempting to assess multiple behaviors in the same animal. Using adult male rats, we evaluated the use of a modified beam-walking (MBW) apparatus as a surrogate indicator for anxiety. We used a model of blast-induced traumatic brain injury (bTBI). A total of 39 rats were assessed before and at 3, 6, 24, 72, and 168h either post- bTBI (n=33) or no-injury (n=6) using both EPM and MBW. A novel anxiety index was calculated that encompassed peeks and re-emergences on MBW. The proposed MBW anxiety index was compared with the standard anxiety index calculated from exploration into different sections of EPM. Post- bTBI, rats had an increased anxiety index when measured using EPM. Similarly, they peeked or fully emerged less out of the safe box on MBW. It was found that this novel MBW anxiety index captured similar aspects of behavior when compared to the standard anxiety index obtained from EPM. Further, these effects were dissociated from the effects of bTBI on motor function simultaneously measured on MBW. Over the course of 168h post-bTBI, rats gradually recovered on both EPM and MBW. The MBW apparatus succeeded at capturing and dissociating two separate facets of rat behavior, motor function and anxiety, simultaneously. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Method and apparatus for continuous sampling

    International Nuclear Information System (INIS)

    Marcussen, C.

    1982-01-01

    An apparatus and method for continuously sampling a pulverous material flow includes means for extracting a representative subflow from a pulverous material flow. A screw conveyor is provided to cause the extracted subflow to be pushed upwardly through a duct to an overflow. Means for transmitting a radiation beam transversely to the subflow in the duct, and means for sensing the transmitted beam through opposite pairs of windows in the duct are provided to measure the concentration of one or more constituents in the subflow. (author)

  18. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral X-ray apparatus which reduces the number of exposures necessary to obtain panoramic dental radiographs is described in detail. It comprises an electron gun, a tubular target carrier projecting from the gun along the beam axis and carrying at its distal end a target surrounded by a shield of X-ray opaque material. This shield extends forward and laterally of the target and has surfaces which define a wedge or cone-shaped radiation pattern delimited vertically by the root tips of the patient's teeth. A film holder is located externally of the patient's mouth. A disposable member can fit on the target carrier to depress the patient's tongue out of the radiation pattern and to further shield the roof of the mouth. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  19. ITER Neutral Beam Injection System

    International Nuclear Information System (INIS)

    Ohara, Yoshihiro; Tanaka, Shigeru; Akiba, Masato

    1991-03-01

    A Japanese design proposal of the ITER Neutral Beam Injection System (NBS) which is consistent with the ITER common design requirements is described. The injection system is required to deliver a neutral deuterium beam of 75MW at 1.3MeV to the reactor plasma and utilized not only for plasma heating but also for current drive and current profile control. The injection system is composed of 9 modules, each of which is designed so as to inject a 1.3MeV, 10MW neutral beam. The most important point in the design is that the injection system is based on the utilization of a cesium-seeded volume negative ion source which can produce an intense negative ion beam with high current density at a low source operating pressure. The design value of the source is based on the experimental values achieved at JAERI. The utilization of the cesium-seeded volume source is essential to the design of an efficient and compact neutral beam injection system which satisfies the ITER common design requirements. The critical components to realize this design are the 1.3MeV, 17A electrostatic accelerator and the high voltage DC acceleration power supply, whose performances must be demonstrated prior to the construction of ITER NBI system. (author)

  20. A new apparatus at hyper irradiation research facility at the Atomic Research Center, University of Tokyo

    International Nuclear Information System (INIS)

    Shibata, Hiromi; Iwai, Takeo; Narui, Makoto; Omata, Takao

    1996-01-01

    In the hyper irradiation research facility at the Atomic Research Center, the University of Tokyo, following apparatuses were newly installed for accelerator relating apparatus on 1995 fiscal year; 1) Hyper ion microbeam analysis apparatus, 2) Fourier conversion infrared microscopy, 3) Pico second two-dimensional fluorescence measuring apparatus, 4) Femto second wave-length reversible pulse laser radiation apparatus, and others. In addition to double irradiation, pulse beam irradiation experiment and so forth characteristic in conventional hyper irradiation research apparatus, upgrading of material irradiation experiments using these new apparatuses are intended. (G.K.)

  1. A new apparatus at hyper irradiation research facility at the Atomic Research Center, University of Tokyo

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Hiromi; Iwai, Takeo; Narui, Makoto; Omata, Takao [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology

    1996-12-01

    In the hyper irradiation research facility at the Atomic Research Center, the University of Tokyo, following apparatuses were newly installed for accelerator relating apparatus on 1995 fiscal year; (1) Hyper ion microbeam analysis apparatus, (2) Fourier conversion infrared microscopy, (3) Pico second two-dimensional fluorescence measuring apparatus, (4) Femto second wave-length reversible pulse laser radiation apparatus, and others. In addition to double irradiation, pulse beam irradiation experiment and so forth characteristic in conventional hyper irradiation research apparatus, upgrading of material irradiation experiments using these new apparatuses are intended. (G.K.)

  2. Isotope separation apparatus and method

    International Nuclear Information System (INIS)

    Cotter, T.P.

    1982-01-01

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises pi-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction pi-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning pi-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of pi-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam

  3. Gas measuring apparatus with standardization means, and method therefor

    International Nuclear Information System (INIS)

    Typpo, P.M.

    1980-01-01

    An apparatus and a method for standardizing a gas measuring device has a source capable of emitting a beam of radiation aligned to impinge a detector. A housing means encloses the beam. The housing means has a plurality of apertures permitting the gas to enter the housing means, to intercept the beam, and to exit from the housing means. The device further comprises means for closing the apertures and a means for purging said gas from the housing means

  4. Development of protection system for power supply facilities in JT-60U P-NBI for long pulse operation

    International Nuclear Information System (INIS)

    Ohshima, Katsumi; Okano, Fuminori; Honda, Atsushi; Shinozaki, Shin-ichi; Usui, Katsutomi; Noto, Katsuya; Kawai, Mikito; Ikeda, Yoshitaka

    2007-06-01

    In the positive ion based NBI (P-NBI) system, we have developed a protection system to protect the power supply facilities from over load during long pulse operation. The protection system monitors the voltage (V) and current (I) in the power supply facilities, and calculates the parameters of V2t and I2t in real-time, where T is the pulse duration. It turns off the power supply facilities when V2t and I2t are beyond the critical values. After two development stages, we have completed the protection system using a package typed PLC (Programmable Logic Controller) which has a high expandability of multi-unit operation. Moreover, we have constructed a user-friendly system by using a SCADA (Supervisory Control and Data Acquisition) system. (author)

  5. Optical grid alignment system for portable radiography and portable radiography apparatus incorporating same

    International Nuclear Information System (INIS)

    MacMahon, H.

    1993-01-01

    A grid alignment system is described for use in a portable radiographic apparatus for aligning x-ray film with an x-ray source within said portable radiographic apparatus, comprising: a grid cassette, movable relative to said x-ray source, including an x-ray film holding portion, an anti-scatter grid substantially fixed relative to said x-ray film holding portion and positioned between said x-ray film holding portion and said x-ray source, and a reflector element substantially fixed relative to said grid, said reflector element including a reflective surface for reflecting said incident light beam to produce a reflected light beam, and an imaging surface for producing images of said incident light beam and said reflected light beam, said images providing an indication of alignment between said grid cassette and said x-ray source; and a light beam projector substantially fixed relative to said x-ray source, said light-beam projector projecting said incident light beam upon said reflector element to provide said indication of alignment between said grid cassette and said x-ray source

  6. nGEM fast neutron detectors for beam diagnostics

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Cavenago, M.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Pietropaolo, A.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.

    2013-01-01

    Fast neutron detectors with a sub-millimetric space resolution are required in order to qualify neutron beams in applications related to magnetically-controlled nuclear fusion plasmas and to spallation sources. A nGEM detector has been developed for the CNESM diagnostic system of the SPIDER NBI prototype for ITER and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a triple GEM gaseous detector equipped with polypropylene and polyethylene layers used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a nGEM detector at the ISIS spallation source on the VESUVIO beam line. Beam profiles (σ x =14.35 mm, σ y =15.75 mm), nGEM counting efficiency (around 10 -4 for 3 MeV n <15 MeV), detector stability (≈4.5%) and the effect of filtering the beam with different type of materials were successfully measured. The x beam profile was compared to the one measured by a single crystal diamond detector. Finally, the efficiency of the detector was simulated exploiting the GEANT4 tool

  7. Structural analysis of the Passive Magnetic Shield for the ITER Heating Neutral Beam Injector system

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Santiago, E-mail: santiago.cabrera@ciemat.es [CIEMAT Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Rincón, Esther; Ahedo, Begoña; Alonso, Javier; Barrera, Germán; Ramos, Francisco; Ríos, Luis [CIEMAT Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); El-Ouazzani, Anass; García, Pablo [ITER Organization, Route de Vinon-sur-Verdon – CS 90 046, 13067 St Paul Lez Durance Cedex (France); Agarici, Gilbert [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3 – 07/08, 08019 Barcelona (Spain)

    2015-10-15

    The ITER Passive Magnetic Shield (PMS) main function is to protect the Neutral Beam Injector (NBI) from the external magnetic field coming from the tokamak, and to shield the NB cell from the radiation coming from all activated components. The shielding from the external magnetic field is performed in association with the Active Compensation Cooled Correction Coils (ACCC). The Bushing and Transmission Line (TL) PMS also provides structural support for HV bushing, allowing its maintenance and providing air sealing function between NBI cell and High Voltage deck room. The paper summarizes the structural analyses performed in order to evaluate the mechanical behaviour of the HNB PMS under operation combined with seismic event. The RCC-MR Code is used to validate the design, assuming creep is negligible, since the structure is expected to be at room temperature. P-type damage is assessed.

  8. Impurity Dynamics under Neutral Beam Injection at TJ-II (simulation); Dinamica de Impurezas durante la Inyeccion de Haces Neutros en el TJ-II (simulacion)

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2001-07-01

    In this study the simulations of plasma transport under NBI for TJ-II, previously performed, are extended. Since than a considerable number of important modifications have been introduced in the model: change of magnetic configuration, use of experimental initial profiles, expansion of the Data base from NBI calculations and, mainly, a detailed handling of impurities with inclusion of sputtering effects. Moreover there is now a particular emphasis on the analysis of the conditions for discharge collapse and on the possible effects of single beam injection. This analysis of impurity behaviour with sputtering shows that in the expected usual cases there is no radioactive collapse and that if the recycling coefficients remain lower the unity it is always possible to find a strategy for external gas puffing leading to a stationary state, with densities below the limit and efficient NBI absorption (>50%). The radioactive collapse can appear either at high densities (central value higher than 1.4x10''20 m''3), excessive influx of impurities (i. e. with sputtering rates higher than twice the expected values) o for insufficient injected beam power (less than 45 kW). The present study analyses only the 100{sub 4}4{sub 6}4 configuration of TJ-II, but future works will start a systematic scan of configuration using this same model. (Author) 12 Refs.

  9. Isotope separation apparatus and method

    International Nuclear Information System (INIS)

    Feldman, B. J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam

  10. An atomic hydrogen beam to test ASACUSA's apparatus for antihydrogen spectroscopy

    CERN Document Server

    Diermaier, Martin; Kolbinger, Bernadette; Malbrunot, Chloé; Massiczek, Oswald; Sauerzopf, Clemens; Simon, Martin C.; Wolf, Michael; Zmeskal, Johann; Widmann, Eberhard

    2015-01-01

    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter pendant to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth's magnetic field.

  11. Holographic memory using beam steering

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Hanan, Jay C. (Inventor); Reyes, George F. (Inventor); Zhou, Hanying (Inventor)

    2006-01-01

    A method, apparatus, and system provide the ability for storing holograms at high speed. A single laser diode emits a collimated laser beam to both write to and read from a photorefractice crystal. One or more liquid crystal beam steering spatial light modulators (BSSLMs) or Micro-Electro-Mechanical Systems (MEMS) mirrors steer a reference beam, split from the collimated laser beam, at high speed to the photorefractive crystal.

  12. Operating characteristics of a new ion source for KSTAR neutral beam injection system.

    Science.gov (United States)

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-01

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  13. Ionization beam scanner

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  14. Analysis of activation and shutdown contact dose rate for EAST neutral beam port

    Science.gov (United States)

    Chen, Yuqing; Wang, Ji; Zhong, Guoqiang; Li, Jun; Wang, Jinfang; Xie, Yahong; Wu, Bin; Hu, Chundong

    2017-12-01

    For the safe operation and maintenance of neutral beam injector (NBI), specific activity and shutdown contact dose rate of the sample material SS316 are estimated around the experimental advanced superconducting tokamak (EAST) neutral beam port. Firstly, the neutron emission intensity is calculated by TRANSP code while the neutral beam is co-injected to EAST. Secondly, the neutron activation and shutdown contact dose rates for the neutral beam sample materials SS316 are derived by the Monte Carlo code MCNP and the inventory code FISPACT-2007. The simulations indicate that the primary radioactive nuclides of SS316 are 58Co and 54Mn. The peak contact dose rate is 8.52 × 10-6 Sv/h after EAST shutdown one second. That is under the International Thermonuclear Experimental Reactor (ITER) design values 1 × 10-5 Sv/h.

  15. Present status of radiation-pasteurization apparatus

    International Nuclear Information System (INIS)

    Mio, Keigo

    2006-01-01

    Electron beams with the energy less than 10 MeV can be utilized to destroy directly DNA of microorganism or indirectly via OH radicals produced from water which may diffuse toward the DNA. The article summarizes the features of radiation pasteurization in general, using X-rays or electron beams, followed by stating the advantage claimed for electron beam treatment compared to X-ray treatment. The article explains various types of electron-beam accelerators now used for pasteurization and food preservation. For this purposes some specific apparatus are introduced with which food irradiation facilities should be equipped, for example beam scanning systems and sample transport systems with an automatic switch for door open-shut. The objects of each type of food to be irradiated and necessary dose range are tabulated. Finally, some recent problems regarding food irradiation are discussed: possible radioactivity induced by irradiation, use of methyl bromide instead of irradiation, etc. (S. Ohno)

  16. Status of the LHCf apparatus at LHC

    CERN Document Server

    Bonechi, L; Bongi, M; Castellini, G; D’Alessandro, R; Faus, A; Fukui, K; Haguenauer, M; Itow, Y; Kasahara, K; Macina, D; Mase, T; Masuda, K; Matsubara, Y; Menjo, H; Mizuishi, M; Muraki, Y; Papini, P; Perrot, A L; Ricciarini, S; Sako, T; Shimizu, Y; Taki, K; Tamura, T; Torii, S; Tricomi, A; Turner, W C; Velasco, J; Viciani, A; Yoshida, K

    2009-01-01

    The LHCf experiment at the LHC accelerator is ready for data taking. Both the LHCf detectors have been successfully tested and installed in their running configuration. The status of the apparatus, control software and some results of the last beam test at the SPS accelerator are presented in this work.

  17. Design study of a new P-NBI control system for 100-s injection in JT-60SA

    International Nuclear Information System (INIS)

    Honda, Atsushi; Okano, Fuminori; Shinozaki, Shinichi; Ooshima, Katsumi; Ikeda, Yoshitaka; Numazawa, Susumu

    2007-03-01

    The modification of the JT-60U to a fully superconducting coil tokamak, JT-60SA (Super Advanced), has been programmed as the satellite devise for the ITER (International Thermonuclear Experimental Reactor) and as the national centralized tokamak. The present positive-ion-based NBI system (P-NBI), which has been operated for 20 years and will be the main heating system on JT-60SA, is required to manage the long pulse injection extended from 30 s to 100 s at the power of 24 MW with 12 units. To realize such a requirement, the original control system handling more than 4000 digital data is to be fully remodeled. Design study of the new control system has been conducted from viewpoint of market availability, system extensibility, cost-effectiveness and independent development in programming. It has been concluded that a distributed control system using PLC (Programmable Logic Controller) could be applied to the large-scale control system for 100-s operations with satisfaction of the evaluation viewpoints. (author)

  18. Electron temperature profiles in high power neutral-beam-heated TFTR [Tokamak Fusion Test Reactor] plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Grek, B.; Stauffer, F.J.; Goldston, R.J.; Fredrickson, E.D.; Wieland, R.M.; Zarnstorff, M.C.

    1987-09-01

    In 1986, the maximum neutral beam injection (NBI) power in the Tokamak Fusion Test Reactor (TFTR) was increased to 20 MW, with three beams co-parallel and one counter-parallel to I/sub p/. TFTR was operated over a wide range of plasma parameters; 2.5 19 19 m -3 . Data bases have been constructed with over 600 measured electron temperature profiles from multipoint TV Thomson scattering which span much of this parameter space. We have also examined electron temperature profile shapes from electron cyclotron emission at the fundamental ordinary mode and second harmonic extraordinary mode for a subset of these discharges. In the light of recent work on ''profile consistency'' we have analyzed these temperature profiles in the range 0.3 < (r/a) < 0.9 to determine if a profile shape exists which is insensitive to q/sub cyl/ and beam-heating profile. Data from both sides of the temperature profile [T/sub e/(R)] were mapped to magnetic flux surfaces [T/sub e/(r/a)]. Although T/sub e/(r/a), in the region where 0.3 < r/a < 0.9 was found to be slightly broader at lower q/sub cyl/, it was found to be remarkably insensitive to β/sub p/, to the fraction of NBI power injected co-parallel to I/sub p/, and to the heating profile going from peaked on axis, to hollow. 10 refs., 8 figs

  19. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  20. Pellet fueling of JET plasmas during ohmic, ICRF and NBI heating

    International Nuclear Information System (INIS)

    Gondhalekar, A.; Cheetham, A.; Bures, M.

    1986-01-01

    Pellet fueling experiments have been performed on JET using a single-shot pneumatic injector giving 4.6mm (4.5 x 10 21 D atoms) and 3.6mm (2.2 x 10 21 D atoms) diameter cylindrical deuterium pellets with velocity 0.8 ≤ V(km.s -1 ) ≤ 1.2. Z/sub eff/ 20 m -3 and T/sub e/(0) ≅ 1keV. Separately, high value of n/sub D/(0)tau/sub E/T/sub i/(0) = 1.3 x 10 20 m -3 .s.keV at T/sub i/90) = 6.5keV has been obtained with pellet fueling followed by NBI heating

  1. Observation of Beam Driven Modes during Neutral Beam Heating on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; Gorelenkov, E.D.; Cheng, C.Z.; Bell, R.; Darrow, D.; Johnson, D.; Kaye, S.; LeBlanc, B.; Menard, J.; Kubota, S.; Peebles, W.

    2001-01-01

    With the first injection of neutral beams on the National Spherical Torus Experiment (NSTX), a broad and complicated spectrum of coherent modes was seen between approximately 0.4 MHz and 2.5 MHz [where f(subscript ''ci'')] for deuterium is approximately 2.2 MHz. The modes have been observed with high bandwidth magnetic pick-up coils and with a reflectometer. The parametric scaling of the mode frequency with density and magnetic field is consistent with Alfvenic modes (linear in B, inversely with the square root of density). These modes have been identified as magnetosonic waves or compressional Alfven eigenmodes (CAE) excited by a cyclotron resonance with the neutral-beam ions. Modes have also been observed in the frequency range 50-150 kHz with toroidal mode numbers n = 1-5. These lower frequency modes are thought to be related to the TAE [Toroidal Alfven Eigenmode] seen commonly in tokamaks and driven by energetic fast ion populations resulting from ICRF [ion cyclotron range of frequency] and NBI [neutral-beam injection] heating. There is no clear indication of enhanced fast ion losses associated with the modes

  2. Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect

    International Nuclear Information System (INIS)

    Gupta, A.; Hong, S.; Moacanin, J.

    1981-01-01

    A method and apparatus for measuring thermal diffusivity and molecular relaxation processes in a sample material utilizing two light beams, one being a pulsed laser light beam for forming a thermal lens in the sample material, and the other being a relatively low power probe light beam for measuring changes in the refractive index of the sample material during formation and dissipation of the thermal lens. More specifically, a sample material is irradiated by relatively high power, short pulses from a dye laser. Energy from the pulses is absorbed by the sample material, thereby forming a thermal lens in the area of absorption. The pulse repetition rate is chosen so that the thermal lens is substantially dissipated by the time the next pulse reaches the sample material. A probe light beam, which in a specific embodiment is a relatively low power, continuous wave (Cw) laser beam, irradiates the thermal lens formed in the sample material. The intensity characteristics of the probe light beam subsequent to irradiation of the thermal lens is related to changes in the refractive index of the sample material as the thermal lens is formed and dissipated. A plot of the changes in refractive index as a function of time during formation of the thermal lens as reflected by changes in intensity of the probe beam, provides a curve related to molecular relaxation characteristics of the material, and a plot during dissipation of the thermal lens provides a curve related to the thermal diffusivity of the sample material

  3. Method for controlling low-energy high current density electron beams

    International Nuclear Information System (INIS)

    Lee, J.N.; Oswald, R.B. Jr.

    1977-01-01

    A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams

  4. Improved cold neutron radiographic apparatus and method

    International Nuclear Information System (INIS)

    1981-01-01

    An improved cold neutron radiography technique is described in which the neutron temperature is matched to the specific material to be analyzed. In addition to a beam source and detector the apparatus incorporates a cryogenic refrigerator which enables the moderator material to be cooled to a predetermined adjustable temperature below the Bragg edge temperature of the sample. (U.K.)

  5. Sol-Gel-Hydrothermal Synthesis of the Heterostructured TiO2/N-Bi2WO6 Composite with High-Visible-Light- and Ultraviolet-Light-Induced Photocatalytic Performances

    Directory of Open Access Journals (Sweden)

    Jiang Zhang

    2012-01-01

    Full Text Available The heterostructured TiO2/N-Bi2WO6 composites were prepared by a facile sol-gel-hydrothermal method. The phase structures, morphologies, and optical properties of the samples were characterized by using X-ray powder diffraction (XRD, scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HRTEM, energy dispersive spectroscopy (EDS, and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities for rhodamine B of the as-prepared products were measured under visible and ultraviolet light irradiation at room temperature. The TiO2/N-Bi2WO6 composites exhibited much higher photocatalytic performances than TiO2 as well as Bi2WO6. The enhancement in the visible light photocatalytic performance of the TiO2/N-Bi2WO6 composites could be attributed to the effective electron-hole separations at the interfaces of the two semiconductors, which facilitate the transfer of the photoinduced carriers.

  6. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fracti...

  7. An atomic hydrogen beam to test ASACUSA’s apparatus for antihydrogen spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diermaier, M., E-mail: martin.diermaier@oeaw.ac.at; Caradonna, P.; Kolbinger, B. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Wolf, M.; Zmeskal, J.; Widmann, E. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2015-08-15

    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter counterpart to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth’s magnetic field.

  8. Asymmetric Distributions of Energetic Circulating Ions and Sawtooth Control using ICCD and Unbalanced NBI

    International Nuclear Information System (INIS)

    Graves, J. P.

    2007-01-01

    There is little doubt that various auxiliary heating systems are successfully and routinely controlling sawteeth. There is however some room for improving our understanding of the mechanisms that influence these important changes to the discharges. A mechanism that appears to be common across ECCS, ICCD and unbalanced NBI discharges involves the effect of the q = 1 localised current drive perturbation on resistive diffusion during the sawtooth ramp. Nevertheless, it is important to look for explanations for sawtooth control which may exist in ion based auxiliary systems, but may differ or not exist in electron auxiliary means of sawtooth control. The reason for this is that monster sawteeth, initially lengthened by trapped energetic ions, have up to the present day only been controlled using ICCD, while in ITER the primary method for sawtooth control could be ECCD. A mechanism based on the finite orbit width of parallel asymmetric energetic circulating particles is only non-negligible for ion based auxiliary systems. The present contribution examines the relevance of the latter in sawtooth control experiments, such as those using ICCD and NBI at JET, by looking carefully at the role of circulating ions close to the trapped boundary. At such pitch angles the orbit width is largest, and the parallel asymmetry of the distribution function has the greatest influence. (Author)

  9. Fluctuations observed in NBI heated Doublet III divertor discharges

    International Nuclear Information System (INIS)

    Konoshima, Shigeru; Aikawa, Hiroshi; Azumi, Masafumi

    1983-10-01

    A specific type of activity associated with fairly large pulsive energy loss has been observed, predominantly during improved confinement (H-mode) discharges in the NBI heated Doublet III tokamak. Large repetitive bursts of edge recycling light with 2-5ms duration and --10ms intervals appear in the course of increasing βsub(p). The amount of energy released by a single burst is estimated to be at least 2-3% of stored energy. As a result of these periodic energy losses, attained values of plasma energy is evaluated to be depressed as much as 10%. Prior to a burst, large m=n=0 magnetic field oscillations of --20kHz were observed with highly peaked distribution near the divertor region. No other particular activities which might be responsible for either the confinement deterioration or improvement have been found throughout the entire operational space. (author)

  10. Measurements of the fast ion distribution during neutral beam injection and ion cyclotron heating in ATF [Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Wade, M.R.; Kwon, M.; Thomas, C.E.; Colchin, R.J.; England, A.C.; Gossett, J.M.; Horton, L.D.; Isler, R.C.; Lyon, J.F.; Rasmussen, D.A.; Rayburn, T.M.; Shepard, T.D.; Bell, G.L.; Fowler, R.H.; Morris, R.N.

    1990-01-01

    A neutral particle analyzer (NPA) with horizontal and vertical scanning capability has been used to make initial measurements of the fast ion distribution during neutral beam injection (NBI) and ion cyclotron heating (ICH) on the Advanced Toroidal Facility (ATF). These measurements are presented and compared with the results of modeling codes that predict the analyzer signals during these heating processes. 6 refs., 5 figs

  11. Beam characterization at BATMAN for variation of the Cs evaporation asymmetry and comparing two driver geometries

    Science.gov (United States)

    Aza, E.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Fantz, U.

    2017-08-01

    The properties of the negative hydrogen ion beam produced by the scaled prototype ITER NBI source at the BATMAN testbed were investigated by means of two beam diagnostics: Beam Emission Spectroscopy (BES) and a calorimeter. Two modifications to the prototype were applied. The first was the installation of a second Cs oven at the bottom part of the backplate in addition to the standard one at the upper part of the backplate varying the Cs evaporation asymmetry inside the source. The second consisted in the replacement of the cylindrical driver with a larger racetrack-shaped RF driver and placing a single Cs oven in a central position at the backplate of the driver. The resulting beam characteristics are discussed and compared with those obtained with the previous source design. The position of the Cs oven and the different driver size and geometry appear not to influence the beam profile and the beam deflection for a well-conditioned source.

  12. Pulse radiolysis apparatus for monitoring at 2000 Å

    DEFF Research Database (Denmark)

    Christensen, H.C.; Nilsson, G.; Pagsberg, Palle Bjørn

    1969-01-01

    A pulse radiolysis apparatus with photometric monitoring has been built around an 11 MeV, 250 mA peak current, linac that delivers single 0.25 to 4 μsec pulses. The novel features of the apparatus include (1) a 450 W xenon lamp as the analyzing light source which in pulsed operation had a 25 times...... increased luminance; (2) a fast electronic switch that cut out the signal due to the Cerenkov radiation; (3) a secondary emission chamber that allowed the simultaneous measurement of the current and the direction of the pulsed electron beam; and (4) a system for remote controlled change of liquid samples...

  13. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  14. Welding for fusion grade neutral beam components - requirements, challenges, experiences and learnings

    International Nuclear Information System (INIS)

    Joshi, Jaydeep; Patel, Hitesh; Yadav, Ashish; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2016-01-01

    Negative ion based Neutral Beam Injectors (NBI) are the integral part of large size fusion devices where Neutral Beams of Hydrogen/Deuterium atoms are injected into the fusion reactor to heat the plasma, drive a plasma current, provide fuel to the plasma and also help to diagnose the plasma through spectroscopic measurements. The presentation shares the experiences of handling, some of special welding activities applicable for fusion prototypes developments, experiments, methodology developed for the inspection/tests, criteria considered with the appropriate justifications. This also shares the view point of authors code should further be supplement and incorporate the fusion specific applications considering future needs. In addition, explorations to meet our future needs of welding with specific attention to indigenous developments have been described

  15. NBI Calculations for the TJ-II Experimental discharges

    International Nuclear Information System (INIS)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2004-01-01

    Calculations for NBI losses, absorption and power deposition radial profiles, corresponding to the experimental TJ-II campaigns 2003-2004, have been fitted to simple functionals in order to allow a fast approximative evaluation for any given density. The average difference between the calculations for the individual discharges using the experimental density and temperature radial profiles and the fit predictions are between 10 and 15% and the behaviour with density is the expected one: nonotonic decrease of shine through losses and increase of absorption with incipient saturation for high densities. The fast ion birth radial profile narrows initially at low densities but later starts to widen, although, for the average line density range analysed (0.51 a 4.1x10''13 cm''-3), never are wide enough to induce an increase of direct orbit losses neither to produce hollow radial profiles. The power absorption radial profile widens nonotonically. There exist Fortran subroutines, available at the three CIEMAT computers, allowing the fast approximative evaluation of all these values. (Author) 8 refs

  16. Nanosecond and femtosecond mass spectroscopic analysis of a molecular beam produced by the spray-jet technique

    International Nuclear Information System (INIS)

    Yamada, Toshiki; Shinohara, Hidenori; Kamikado, Toshiya; Okuno, Yoshishige; Suzuki, Hitoshi; Mashiko, Shinro; Yokoyama, Shiyoshi

    2008-01-01

    The spray-jet molecular beam apparatus enabled us to produce a molecular beam of non-volatile molecules under high vacuum from a sprayed mist of sample solutions. The apparatus has been used in spectroscopic studies and as a means of molecular beam deposition. We analyzed the molecular beam, consisting of non-volatile, solvent, and carrier-gas molecules, by using femtosecond- and nanosecond- laser mass spectroscopy. The information thus obtained provided insight into the molecular beam produced by the spray-jet technique

  17. Transition phenomena and thermal transport properties in LHD plasmas with an electron internal transport barrier

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.; Inagaki, S.; Tamura, N.; Tokuzawa, T.; Morisaki, T.; Watanabe, K.Y.; Ida, K.; Yamada, I.; Narihara, K.; Muto, S.; Yokoyama, M.; Yoshimura, Y.; Notake, T.; Ohkubo, K.; Seki, T.; Saito, K.; Kumazawa, R.; Mutoh, T.; Watari, T.; Komori, A.

    2005-01-01

    Two types of improved core confinement were observed during centrally focused electron cyclotron heating (ECH) into plasmas sustained by counter (CNTR) and Co neutral beam injections (NBI) in the Large Helical Device. The CNTR NBI plasma displayed transition phenomena to the high-electron-temperature state and had a clear electron internal transport barrier, while the Co NBI plasma did not show a clear transition or an ECH power threshold but showed broad high temperature profiles with moderate temperature gradient. This indicated that the Co NBI plasma with additional ECH also had an improved core confinement. The electron heat transport characteristics of these plasmas were directly investigated using heat pulse propagation excited by modulated ECH. These effects appear to be related to the m/n = 2/1 rational surface or the island induced by NBI beam-driven current

  18. Effect of magnetic configuration on frequency of NBI-driven Alfvén modes in TJ-II

    Science.gov (United States)

    Melnikov, A. V.; Ochando, M.; Ascasibar, E.; Castejon, F.; Cappa, A.; Eliseev, L. G.; Hidalgo, C.; Krupnik, L. I.; Lopez-Fraguas, A.; Liniers, M.; Lysenko, S. E.; de Pablos, J. L.; Perfilov, S. V.; Sharapov, S. E.; Spong, D. A.; Jimenez, J. A.; Ufimtsev, M. V.; Breizman, B. N.; HIBP Group; the TJ-II Team

    2014-12-01

    Excitation of modes in the Alfvénic frequency range, 30 kHz values, 1.51advantage of the unique TJ-II capabilities, a dynamic magnetic configuration experiment with \\unicode{7548} (ρ , t) variation during discharges has shown strong effects on the mode frequency via both vacuum \\unicode{7548} changes and induced net plasma current. A drastic frequency increase from ˜50 to ˜250 kHz was observed for some modes when plasma current as low as ±2 kA was induced by small (10%) changes in the vertical field. A comprehensive set of diagnostics including a heavy ion beam probe, magnetic probes and a multi-chord bolometer made it possible to identify the spatial spread of the modes and deduce the internal amplitudes of their plasma density and magnetic field perturbations. A simple analytical model for fAE, based on the local Alfvén eigenmode (AE) dispersion relation, was proposed to characterize the observation. It was shown that all the observations, including vacuum iota and plasma current variations, may be fitted by the model, so the linear mode frequency dependence on \\unicode{7548} (plasma current) and one over square root density dependence present the major features of the NBI-induced AEs in TJ-II, and provide the framework for further experiment-to-theory comparison.

  19. Development and validation of a critical gradient energetic particle driven Alfven eigenmode transport model for DIII-D tilted neutral beam experiments

    Science.gov (United States)

    Waltz, R. E.; Bass, E. M.; Heidbrink, W. W.; VanZeeland, M. A.

    2015-11-01

    Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient [Heidbrink et al 2013 Nucl. Fusion 53 093006]. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code [Waltz and Bass 2014 Nucl. Fusion 54 104006], used to validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the Angioni et al (2009 Nucl. Fusion 49 055013) energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a  <  0.5 and the central density is about half the slowing down density. These results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.

  20. Fabrication and installment of the hard-wired I and C works for the neutral beam injection test stand of the K-STAR project

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Oh, Byung Hun

    2004-12-01

    Instrumentation and Control(I and C) of the neutral beam injection test stand (NBI-TS) for the K-STAR national fusion research project has been underway since the start of the project to answer the diverse requests arising from the various facets of the development and construction phases of the project. In a parallel effort with the software oriented I and C development, there has been existing an enormous amount of hard-wiring I and C works for the NBI facility to be developed and fabricated in schedule. Circuits and hardwired functions have been designed, tested, fabricated, and finally installed to the relevant parts of the system. Examples of those hard-wired I and C works are related to the vacuum system, gas feeding system, arc detector circuit, ion source monitoring, bending magnet and calorimeter. Another one to be mentioned is the interlock circuitry. One of the interlock circuits are related to the coolant flow failure. The other is the interlock circuit related to the vacuum failure. All of the above mentioned circuitry now constitutes integral parts for the proper operation of the NBI system; details of those hard-wired I and C work are described in this report

  1. Effect of a spectrometer magnet on the beam-beam interaction

    International Nuclear Information System (INIS)

    Cornacchia, M.; Parzen, G.

    1981-01-01

    The presence of experimental apparatus in the interaction regions of an intersecting beam accelerator changes the configuration of the crossing beams. This changes the space-charge forces with respect to the standard, magnet-free crossing. The question is: what is the maximum allowable perturbation caused by the spectrometer magnet that can be tolerated from the point of view of the beam dynamics. This paper is limited to the perturbations that the curved trajectories cause the beam-beam space charge nonlinearities. The question has arisen of how one defines the strength of the perturbation. The only solution is to compute the strength of the most important nonlinear resources. In what follows, the computational method used in calculating these resonances is described, and compared with those induced by random orbit errors

  2. Effect of a spectrometer magnet on the beam-beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cornacchia, M; Parzen, G

    1981-01-01

    The presence of experimental apparatus in the interaction regions of an intersecting beam accelerator changes the configuration of the crossing beams. This changes the space-charge forces with respect to the standard, magnet-free crossing. The question is: what is the maximum allowable perturbation caused by the spectrometer magnet that can be tolerated from the point of view of the beam dynamics. This paper is limited to the perturbations that the curved trajectories cause the beam-beam space charge nonlinearities. The question has arisen of how one defines the strength of the perturbation. The only solution is to compute the strength of the most important nonlinear resources. In what follows, the computational method used in calculating these resonances is described, and compared with those induced by random orbit errors.

  3. The next step in a development of negative ion beam plasma neutraliser for ITER NBI

    International Nuclear Information System (INIS)

    Kulygin, V.M.; Dlougach, E.D.; Gorbunov, E.P.

    2001-01-01

    Injectors of deuterium atom beams developing for ITER plasma heating and current drive are based on the negative ion acceleration and further neutralization with a gas target. The maximal efficiency of a gas stripping process is 60%. The replacement of the gas neutralizer by plasma one must increase the neutral yield to 80%. The experimental study overview of the microwave discharge in a multi-cusp magnetic system chosen as a base device for Plasma Neutralizer realization and the design development for ITER Neutral Beam Injectors are presented. The experimental results achieved at a plasma neutralizer model PNX-U is discussed. Plasma confinement, gas flows, ionization degree were investigated. The plasma in the volume 0.5m 3 with density n e ∼ 10 18 m -3 has been achieved at power density 80kW/m 3 in operation with Argon. (author)

  4. Laser-based irradiation apparatus and methods for monitoring the dose-rate response of semiconductor devices

    Science.gov (United States)

    Horn, Kevin M [Albuquerque, NM

    2006-03-28

    A scanned, pulsed, focused laser irradiation apparatus can measure and image the photocurrent collection resulting from a dose-rate equivalent exposure to infrared laser light across an entire silicon die. Comparisons of dose-rate response images or time-delay images from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems allows precise identification of those specific age-affected circuit structures within a device that merit further quantitative analysis with targeted materials or electrical testing techniques. Another embodiment of the invention comprises a broad-beam, dose rate-equivalent exposure apparatus. The broad-beam laser irradiation apparatus can determine if aging has affected the device's overall functionality. This embodiment can be combined with the synchronized introduction of external electrical transients into a device under test to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure.

  5. Calibration assembly for nuclear reactor vessel inspection apparatus

    International Nuclear Information System (INIS)

    Elsner, H.J.

    1981-01-01

    A removable calibration assembly can be utilized to verify the angular mounting of transducers in an array employed in an ultrasonic inpsection apparatus, to calibrate one axis of movement of the array with reference to a starting point, or to measure and calibrate the speed per unit of distance of the transducer's ultrasonic beam in the operating medium. The calibration assembly includes both a large and small reflecting surface separated by known distances, and several large cones, the tips of which are machined or adjusted to angles at which certain of the transducers are to be mounted. Clamping means for securing the calibration assembly to the inspection apparatus at a predetermined orientation is provided

  6. Apparatus for producing laser targets

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Baker, W.R.

    1975-01-01

    This patent relates to an apparatus and method for producing deuterium targets or pellets of 25u to 75u diameter. The pellets are sliced from a continuously spun solid deuterium thread at a rate of up to 10 pellets/second. The pellets after being sliced from the continuous thread of deuterium are collimated and directed to a point of use, such as a laser activated combustion or explosion chamber wherein the pellets are imploded by laser energy or laser produced target plasmas for neutral beam injection

  7. Characteristics of an electron-beam rocket pellet accelerator

    International Nuclear Information System (INIS)

    Tsai, C.C.; Foster, C.A.; Schechter, D.E.

    1989-01-01

    An electron-beam rocket pellet accelerator has been designed, built, assembled, and tested as a proof-of-principle (POP) apparatus. The main goal of accelerators based on this concept is to use intense electron-beam heating and ablation of a hydrogen propellant stick to accelerate deuterium and/or tritium pellets to ultrahigh speeds (10 to 20 km/s) for plasma fueling of next-generation fusion devices such as the International Thermonuclear Engineering Reactor (ITER). The POP apparatus is described and initial results of pellet acceleration experiments are presented. Conceptual ultrahigh-speed pellet accelerators are discussed. 14 refs., 8 figs

  8. Application of positron annihilation to polymer and development of a radioisotopes-based pulsed slow positron beam apparatus

    International Nuclear Information System (INIS)

    Suzuki, Takenori

    2004-01-01

    Positrons injected into polymer behave as nanometer probes, which can detect the size and amount of intermolecular spaces among polymer structures. Although positrons can probe the characteristics of polymer, they induce a radiation effect on polymer samples. At low temperature, the radiation effect induces free electrons, which can be trapped in a shallow potential created among intermolecular structures after freezing molecular motions. These trapped electrons can be released after the disappearance of the shallow potential due to the reappearance of molecular motion above the relaxation temperature. Thus, positrons can be used as a probe for relaxation studies. Coincidence of Doppler broadening spectroscopy (CDBS) can improve the S/N ratio to 10 7 , which makes it possible to detect trace elements, since CDBS can separate the high-momentum component of core electrons. A pulsed slow positron beam apparatus is necessary for measuring holes in the polymer film and allows the measurement of the characteristics of thin film coated on semiconductors used widely in electronics industries. (author)

  9. Intense ion beam generator

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Sudan, R.N.

    1977-01-01

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation

  10. Organic ice resists for 3D electron-beam processing: Instrumentation and operation

    DEFF Research Database (Denmark)

    Tiddi, William; Elsukova, Anna; Beleggia, Marco

    2018-01-01

    Organic vapors condensed into thin layers of ice on the surface of a cold substrate are exposed with an electron beam to create resist patterns for lithography applications. The entire spin- and development-free lithography process requires a single custom instrument. We report the design, material...... choice, implementation and operation of this apparatus. It is based on a scanning electron microscope fitted with an electron beam control system that is normally used for electron beam lithography in a multi-user open-access laboratory. The microscope was also equipped with a gas injection system......, a liquid nitrogen cooled cryostage, a temperature control system, and a load-lock. Three steps are required to initialize the apparatus for organic ice resist processing, and two steps are required to restore the apparatus for routine multi-user operations. Five steps are needed to create organic ice...

  11. Experimental apparatus to investigate interactions of low energy ions with solid surfaces, 1

    International Nuclear Information System (INIS)

    Tsukakoshi, Osamu; Narusawa, Tadashi; Mizuno, Masayasu; Sone, Kazuho; Ohtsuka, Hidewo.

    1975-12-01

    Experimental apparatus to study the surface phenomena has been designed, which is intended to solve the vacuum wall problems in future thermonuclear fusion reactors and large experimental tokamak devices. An ion source and the beam transport optics are provided for bombarding solid target surface with an ion beam of energy from 0.1 to 6 keV. Measuring instruments include an ion energy analyser, a quadrupole mass spectrometer, an Auger electron spectrometer, an electro-micro-balance, a neutral particle energy spectrometer and its calibration system. Pumping system consists of oil-free ultrahigh vacuum pumps. Various kinds of experiments will be carried out by using the apparatus: 1) sputtering by low energy ion bombardment, 2) re-emission of the incident particles during and after ion bombardment, 3) release of adsorbed and occluded gases in the solids by ion bombardment, and 4) backscattering of fast ions. The combinations of measuring instruments for each experiment and their relative positions in the vacuum chamber are described through detailed drawings. The fundamental aspect in design of the ion beam transport optics for a low energy ion beam which can no longer neglect the space charge effect is also discussed. (auth.)

  12. Development of a RF source for ITER NBI: First results with D- operation

    International Nuclear Information System (INIS)

    Speth, E.; Falter, H.D.; Franzen, P.; Heinemann, B.; Bandyopadhyay, M.; Fantz, U.; Kraus, W.; McNeely, P.; Riedl, R.; Tanga, A.; Wilhelm, R.

    2005-01-01

    As an alternative for ITER NBI a RF source is being developed at IPP, Garching. This paper reports the first results with deuterium extracted from a restricted extraction area and accelerated to about 22 KeV. A current density of 150 A/m 2 (calorimetric) of D - ions has been reached so far in a Cs-seeded discharge with an electron/ion ration of ≤1. The effect of the magnetic filter field on the yield and the electron suppression and possible limitations/improvements are discussed. The neutron production rate is about a factor 40 lower than expected from positive ions. Possible reasons for this are discussed

  13. An extraordinary tabletop speed of light apparatus

    Science.gov (United States)

    Pegna, Guido

    2017-09-01

    A compact, low-cost, pre-aligned apparatus of the modulation type is described. The apparatus allows accurate determination of the speed of light in free propagation with an accuracy on the order of one part in 104. Due to the 433.92 MHz radio frequency (rf) modulation of its laser diode, determination of the speed of light is possible within a sub-meter measuring base and in small volumes (some cm3) of transparent solids or liquids. No oscilloscope is necessary, while the required function generators, power supplies, and optical components are incorporated into the design of the apparatus and its receiver can slide along the optical bench while maintaining alignment with the laser beam. Measurement of the velocity factor of coaxial cables is also easily performed. The apparatus detects the phase difference between the rf modulation of the laser diode by further modulating the rf signal with an audio frequency signal; the phase difference between these signals is then observed as the loudness of the audio signal. In this way, the positions at which the minima of the audio signal are found determine where the rf signals are completely out of phase. This phase detection method yields a much increased sensitivity with respect to the display of coincidence of two signals of questionable arrival time and somewhat distorted shape on an oscilloscope. The displaying technique is also particularly suitable for large audiences as well as in unattended exhibits in museums and science centers. In addition, the apparatus can be set up in less than one minute.

  14. Cluster ion beam facilities

    International Nuclear Information System (INIS)

    Popok, V.N.; Prasalovich, S.V.; Odzhaev, V.B.; Campbell, E.E.B.

    2001-01-01

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  15. Improvements relating to apparatus for examining bodies by means of penetrating radiation

    International Nuclear Information System (INIS)

    Hounsfield, G.N.

    1977-01-01

    Improved radiographic apparatus is described for examining the human body. It is applicable to either X- or γ-radiation. Some disadvantages of the apparatus described in BP 1283915 are pointed out and the present apparatus seeks to reduce these disadvantages. One such disadvantage is that the time taken by scanning is relatively long since the transverse scanning has to be sufficiently slow to allow an adequate photon count to be obtained on each of closely space parallel beam paths; this affects the results obtained from parts of the patient's body liable to be obscured by movement of the patient's organs. The apparatus described includes means for orbiting the source and detector around the body so as to irradiate a planar section of the body from a number of different directions, with means for moving the source and detector laterally so as to scan the radiation across the planar section. (U.K.)

  16. Tomographic apparatus for reconstructing planar slices from non-absorbed and non-scattered radiation

    International Nuclear Information System (INIS)

    1980-01-01

    Apparatus which can be used in computerized tomographic systems for producing a fan shaped beam, detectors to be used in conjunction with the source and equipment for rotating the source supports are described. (U.K.)

  17. Compact two-beam push-pull free electron laser

    Science.gov (United States)

    Hutton, Andrew [Yorktown, VA

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  18. Tomographic scanning apparatus with ionization detector means

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification describes a tomographic scanning apparatus using a fan beam and digital output signal. Particular reference is made to the gas-pressurized ionization detector chamber, consisting of an array of side-by-side elongate ionization detection cells, the principal axis of each of the said cells being oriented along a radius extending towards the radiation source, and connection means for applying potentials across the cells for taking their output signals. (U.K.)

  19. Heat flux estimation for neutral beam line components using inverse heat conduction procedures

    International Nuclear Information System (INIS)

    Bharathi, P.; Prahlad, V.; Quereshi, K.; Bansal, L.K.; Rambabu, S.; Sharma, S.K.; Parmar, S.; Patel, P.J.; Baruah, U.K.; Patel, Ravi

    2015-01-01

    In this work, we describe and compare the analytical IHCP methods such-as semi-infinite method, finite slab method and a numerical method called Stolz method for estimating the incident heat flux from the experimentally measured temperature data. In case of analytical methods, the finite time response of the sensor is needed to be accounted for an accurate power density estimations. The modified models corrected for the response time of the sensors are also discussed in this paper. Application of these methods using example temperature waveforms obtained on the SST1-NBI test stand is presented and discussed. For choosing the suitable method for the calorimetry on beam line components, the estimated results are also validated using the ANSYS analysis done on these beam Iine components. As a conclusion, the finite slab method corrected for the influence of the sensor response time found out to be the most suitable method for the inversion of temperature data in case of neutral beam line components

  20. The development of long pulse high voltage power supply for MNI-1U neutral beam injector

    International Nuclear Information System (INIS)

    Detai Wang

    1989-01-01

    A high power long pulse high voltage power supply (HVPS) for MNI- 1 U neutral beam injector (NBI) is described. This HVPS is used as a switching regulator with a duty cycle of 1/100, the specifications of circuit are as follows, output pulse voltage 50kv, pulse current 30A, pulse width 50ms, rise-time and fall-time of the voltage are less than 25 μs, stability of the pulse flat is better than 0.5%, regulation response time of the pulse voltage less than 30 μs can be attained. It is also used as a stable DC HVPS, output voltage is 1 to 100kv, current is 1 to 5A. If regulation tube is shunted with high power resistor in parallel, the current can be extended to 10 A, stability of the output voltage or current is better than 0.1%. Now, the HVPS has been put into operation for MNI- 1 U NBI and PIG ion source made in French. 3 refs., 5 figs

  1. Reconstruction of negative hydrogen ion beam properties from beamline diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Benjamin

    2014-09-25

    For the experimental fusion reactor ITER, which should show the feasibility of sustaining a fusion plasma with a positive power balance, some technology still has to be developed, amongst others also the plasma heating system. One heating technique is the neutral beam injection (NBI). A beam of fast deuterium atoms is injected into the fusion plasma. By heavy particle collisions the beam particles give their energy to the plasma. A NBI system consists of three major components. First, deuterium ions are generated in a low temperature, low pressure plasma of an ion source. At ITER, the requirements on the beam energy of 1 MeV cause the necessity of negative charged deuterium ions. Secondly, the ions are accelerated within an acceleration system with several grids, where the plasma grid is the first grid. The grids are on different descending high voltage potentials. The source itself is on the highest negative potential. Thirdly, the fast deuterium ions have to be neutralised. This thesis deals with the second step in the mentioned beam system, the ion acceleration and beam formation. The underlying experiments and measurements were carried out at the testbeds BATMAN (BAvarianTest MAchine for Negative ions) and ELISE (Extraction from a Large Ion Source Experiment) at the Max-Planck-Institut fuer Plasmaphysik Garching (IPP Garching). The main goal of this thesis is to provide a tool which allows the determination of the beam properties. These are beam divergence, stripping losses and beam inhomogeneity. For this purpose a particle trajectory code has been developed from scratch, namely BBC-NI (Bavarian Beam Code for Negative Ions). The code is able to simulate the whole beam and the outcome of several beam diagnostic tools. The data obtained from the code together with the measurements of the beam diagnostic tools should allow the reconstruction of the beam properties. The major beam diagnostic tool, which is used in this thesis, is the beam emission spectroscopy

  2. Assembly and handling apparatus for the EBFA Marx generator

    International Nuclear Information System (INIS)

    Staller, G.E.; Hiett, G.E.; Hamilton, I.D.; Aker, M.F.; Daniels, G.A.

    1979-05-01

    Marx generators, a major slow-pulsed power component in Sandia Laboratories' Electron Beam Fusion Accelerator (EBFA), were assembled at a remote facility modified to utilize an assembly-line technique. Due to the size and weight of the various components, as well as the final Marx generator assembly, special handling apparatus was designed. Time and manpower constraints required that this assembly be done in parallel with the construction of the Electron Beam Fusion Facility (EBFF). The completed Marx generators were temporarily stored and then moved from the assembly building to the EBFF using special transportation racks designed specifically for this purpose

  3. Radiation apparatus with distance mapper for dose control

    International Nuclear Information System (INIS)

    Saunders, A.M.

    1990-01-01

    The patent describes apparatus for delivering a radiation dose. It comprises: radiation source means for producing a beam of ionizing gamma ray or x-ray radiation directed so as to deliver a dose of the radiation to an area of a target surface, a light source emitting a light beam in a direction transverse to the direction of the ionizing radiation beam, a photodetector, positioned to receive light scattered from the target surface, means for scanning the light beam over the area of the target surface, means for forming a three-dimensional surface profile map of the area of the target surface without movement of the radiation source means or the light source, and means responsive to the surface profile map for adjusting the dose of radiation from the radiation source over the area of the target surface, so that the radiation source means and the light source may be operated simultaneously

  4. Luminescent beam stop

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Diane; Morton, Simon A.

    2017-10-25

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end of the optical fiber attached to the third side of the luminescent material.

  5. Several methods and apparatus of low-energy laser therapy in veterinary practice

    Science.gov (United States)

    Svirin, Vaytcheslav N.; Rogatkin, Dmitrii A.; Barybin, Vitalii F.

    1998-12-01

    During same years various medical effect of low-energy laser therapy in veterinary were tested. We established that the laser low-energy therapy can be very effective for treatment such animal's diseases as mastitis and demodekose when certain combinations of laser beam parameters are used. This combinations were taken as the principle of a number of laser veterinary apparatus, which we started to produce at `POLUS'. It is our series of apparatus `VEGA-MB' and `VETLAS-3', which is real used today for dogs and cows treatment in Russia.

  6. The construction and operation of an ion channelling apparatus

    International Nuclear Information System (INIS)

    Grimshaw, J. A.; Barrat, E.E.; Wilson, C.G.; Spooner, F.J.

    1975-12-01

    The ion channelling facility at the Royal Military College of Science Rutherford Laboratory is described. A detailed account is given of new apparatus installed on the beam line of the 2.5 MeV Van de Graaf accelerator. Emphasis is placed on the mechanical and electronic requirements of such a system for the attainment of the required experimental conditions for good channelling. (author)

  7. Method and apparatus for positioning a beam of charged particles

    International Nuclear Information System (INIS)

    Michail, M.S.; Woodard, O.C.; Yourke, H.S.

    1975-01-01

    A beam of charged particles is stepped from one predetermined position to another to form a desired pattern on a semiconductor wafer. There is a dynamic correction for the deviation of the actual position of the beam from its predetermined position, so that the beam is applied to the deviated position rather than the predetermined position. Through the location of four registration marks, the writing field is precisely defined. Writing fields may be interconnected by the sharing of registration marks, enabling the construction of chips which are larger than a single writing field. (auth)

  8. Laser systems configured to output a spectrally-consolidated laser beam and related methods

    Science.gov (United States)

    Koplow, Jeffrey P [San Ramon, CA

    2012-01-10

    A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.

  9. Apparatus and method for inspecting a sealed container

    Science.gov (United States)

    Harmon, J Frank [Pocatello, ID; Jones, James L [Idaho Falls, ID; Hunt, Alan W [Pocatello, ID; Spaulding, Randy J [Pocatello, ID; Smith, Michael [Phoenix, AZ

    2009-03-24

    An apparatus for inspecting a sealed container is disclosed and which includes a pulsed electron accelerator which is positioned in spaced relation relative to a first side of the sealed container, and which produces a pulsed beam of photons which passes through the sealed container and any contents enclosed within the sealed container; a detector positioned in spaced relation relative to a second, opposite side of the sealed container, and which receives the pulsed beam of photons which passes through the contents of the sealed container, and which produces an output signal; and a computer for developing a visible image from the output signal of the detector which depicts the contents of the sealed container.

  10. Standard beam PWC for Fermilab

    International Nuclear Information System (INIS)

    Fenker, H.

    1983-02-01

    As one of its projects the Fermilab Experimental Areas Department has been designed and tested a relatively small proportional wire chamber for use in the secondary beam lines. It is intended to supplement the variety of detectors known in the vernacular as SWICS that are used to obtain profiles for beam tuning. The new detector, described in this report, operates in the limited proportional mode and allows experimenters to use a standard, lab supported device for associating trajectories of individual beam particles with events triggering their own experiment's apparatus. A completed triple plane module is shown

  11. Annual review of Plasma Physics Laboratory, Kyoto University, July, 1981

    International Nuclear Information System (INIS)

    1981-07-01

    The construction of the Heliotron E was completed in June, 1980. After the preliminary examination for two months and the improvement of the power supply, the Joule heating experiment was carried out from September, 1980, to January, 1981. The experiment of electron cyclotron resonance heating was also carried out in January, 1981. Then, experiment was stopped to install the neutral beam injection apparatus. The results obtained by both experiments are reported. The target may be attained by producing high density plasma with low plasma current, and heating the plasma by NBI additionally. In the ECRH experiment, plasma was produced and heated successfully without Joule heating current, by the Gyrotron with 200 kW power output. The favorable results of the confinement experiment with current-free plasma indicate the possibility of a stationary fusion reactor of Heliotron type. The Heliotron magnetic field configuration was proposed in 1959, and since then, the experiments of Heliotron A, B, C, D and DM were carried out in succession. Now, the purpose of the experiment to prove the principle is being achieved with Heliotron E. Hope is placed on the NBI experiment in preparation. (Kako, I.)

  12. Heavy particle beam cancer treatment apparatus, HIMAC, and clinical trial

    International Nuclear Information System (INIS)

    Soga, Fuminori

    1994-01-01

    The clinical trial was begun in June, 1994, on the treatment of cancer patients using heavy particle beam for the first time in Japan in National Institute of Radiological Sciences. It is the result of promoting the construction of Heavy Ion Medical Accelerator in Chiba (HIMAC) with the first period construction cost of 32.6 billion yen as a part of the 10 year general strategy against cancer. This is only one facility of this kind in the world. The features of heavy particle beam as radiation therapy are the excellent concentration of dose distribution, biological effect and so on. The nuclides to be used are those having the atomic number from helium to argon. The acceleration energy of ions was set at 800 MeV per nucleon so as to reach 30 cm in human bodies. The beam intensity is 5 Gy/min to finish irradiation within 1 min. The maximum irradiation field is 22 cm in diameter. The specification of the HIMAC accelerator is summarized. The Penning Ionization Gauge and the electron cyclotron resonance ion sources were installed for the reliability. The radio frequency quadrupole linear accelerator is suitable to accelerate low velocity, high intensity beam. Two synchrotrons of 41 m mean diameter are installed. High energy beam transport system, irradiation equipment, and the clinical trial are reported. (K.I.)

  13. Tomographic X-ray apparatus for the production of transverse layer images

    International Nuclear Information System (INIS)

    Liebetruth, R.

    1984-01-01

    In an extension of the utility of rotary scan tomographic x-ray apparatus, the apparatus is locked in a fixed angular relationship and the patient support is automatically advanced in small longitudinal increments relative to the angularly fixed scanner, the scanner being pulsed in synchronism with the longitudinal steps to produce successive sets of transmittance readings defining a radiographic shadow image having a substantial longitudinal extent. The stored sets of readings may be reproduced on a conventional television display unit. Advantageously, the scanner may present a fan-type beam which in a fixed angular relationship to the patient still scans a substantial portion of the patient cross section, the x-ray source or sources being pulsed at successive longitudinal positions of the patient relative to the scanning apparatus, and the successive sets of readings being utilized for on line display of a shadow radiograph covering the desired longitudinal extent

  14. Maintenance and control of apparatus for radiotherapy

    International Nuclear Information System (INIS)

    Wakui, Sho

    1979-01-01

    In order to perform the safe operation of radiotherapy apparatuses and to secure the accuracy in positioning patients and in setting up radiation beam, proper checking-up and maintenance schedule is necessary. Such schedule is described briefly and also the mechanical or electrical equipments designed for securing the safety and accuracy or eliminating in adequate operation are explained, especially on treatment tables and accessories, such as wedge filters, irradiation field indicators and pointers, and the devices for observing patients. The structures and the practical control of the following equipments are explained; standard treatment table, treatment table with a lifting column by oil pressure, mobile positioning control pedestal, positioning control pendaut, mechanical fuse cutter for the safeguard of table height movement, safety interlock to protect table from physical contact with radiation head in rotation and safeguard for arms of a patient in longitudinal movement of treatment table. For the maintenance and control of wedge filters, the kind of filter angle in use, the direction of filter in use and whether filter is used or not are exactly confirmed by adequate display. The direction mechanism of radiation field and the pointers are required to be strict for exact focusing of radiation. Various control apparatuses and monitoring apparatuses are described. (Kobatake, H.)

  15. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  16. Transition phenomena and thermal transport property in LHD plasmas with an electron internal transport barrier

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.

    2005-01-01

    Two kinds of improved core confinement were observed during centrally focused Electron Cyclotron Heating (ECH) into plasmas sustained by Counter (CNTR) and Co Neutral Beam Injections (NBI) in the Large Helical Device (LHD). One shows transition phenomena to the high-electron-temperature state and has a clear electron Internal Transport Barrier (eITB) in CNTR NBI plasma. Another has no clear transition and no ECH power threshold, but shows a broad high temperature profiles with moderate temperature gradient, which indicates the improved core confinement with additional ECH in Co NBI plasma. The electron heat transport characteristics of these plasmas were directly investigated by using the heat pulse propagation excited by Modulated ECH (MECH). The difference of the features could be caused by the existence of the m/n=2/1 rational surface or island determined by the direction of NBI beam-driven current. (author)

  17. Strong beam production for some elements

    International Nuclear Information System (INIS)

    Camplan, J.; Chaumont, J.; Meunier, R.

    1974-01-01

    Three electromagnetic isotope separators are installed in Rene Bernas Laboratory, one being especially adapted to ion implantation. The three apparatus use the same type of ion source and system of beam extraction. The special ion source is distinguishable from the others only by its smaller dimensions. These sources allow strong currents to be obtained for almost every element. The source and its extraction system are briefly described, examples of beams obtained are given [fr

  18. Characterization of beam-driven instabilities and current redistribution in MST plasmas

    Science.gov (United States)

    Parke, E.

    2015-11-01

    A unique, high-rep-rate (>10 kHz) Thomson scattering diagnostic and a high-bandwidth FIR interferometer-polarimeter on MST have enabled characterization of beam-driven instabilities and magnetic equilibrium changes observed during high power (1 MW) neutral beam injection (NBI). While NBI leads to negligible net current drive, an increase in on-axis current density observed through Faraday rotation is offset by a reduction in mid-radius current. Identification of the phase flip in temperature fluctuations associated with tearing modes provides a sensitive measure of rational surface locations. This technique strongly constrains the safety factor for equilibrium reconstruction and provides a powerful new tool for measuring the equilibrium magnetic field. For example, the n = 6 temperature structure is observed to shift inward 1.1 +/- 0.6 cm, with an estimated reduction of q0 by 5%. This is consistent with a mid-radius reduction in current, and together the Faraday rotation and Thomson scattering measurements corroborate an inductive redistribution of current that compares well with TRANSP/MSTFit predictions. Interpreting tearing mode temperature structures in the RFP remains challenging; the effects of multiple, closely-spaced tearing modes on the mode phase measurement require further verification. In addition to equilibrium changes, previous work has shown that the large fast ion population drives instabilities at higher frequencies near the Alfvén continuum. Recent observations reveal a new instability at much lower frequency (~7 kHz) with strongly chirping behavior. It participates in extensive avalanches of the higher frequency energetic particle and Alfvénic modes to drive enhanced fast ion transport. Internal structures measured from Te and ne fluctuations, their dependence on the safety factor, as well as frequency scaling motivate speculation about mode identity. Work supported by U.S. DOE.

  19. Active beam scattering apparatus and its application to JFT-2 tokamak

    International Nuclear Information System (INIS)

    Takeuchi, Hiroshi; Matsuda, Toshiaki; Nishitani, Takeo; Shiho, Makoto; Maeda, Hikosuke; Konagai, Chikara; Kimura, Hironobu.

    1983-09-01

    The capability to assess the ion temperatures using a neutral beam scattering system is investigated on the JFT-2 tokamak. The neutral beam scattering system consists of a 15 KeV neutral hydrogen atom beam and a momentum analyser with silicon surface barrier detectors. The energy analysis of scattered particles on the scattering angle of 4 0 gives the estimation of ion temperatures, which agree well with the one deduced from passive charge-exchange neutral measurements. The influence of impurity ions to the scattering spectrum is not observed and the results of gas scattering experiments suggests that this phenomenon occurs because of the ionization of neutral beam due to the collisions with impurity ions. (author)

  20. Beam diagnostic tools for the negative hydrogen ion source test facility ELISE

    International Nuclear Information System (INIS)

    Nocentini, Riccardo; Fantz, Ursel; Franzen, Peter; Froeschle, Markus; Heinemann, Bernd; Riedl, Rudolf; Ruf, Benjamin; Wuenderlich, Dirk

    2013-01-01

    Highlights: ► We present an overview of beam diagnostic tools foreseen for the new testbed ELISE. ► A sophisticated diagnostic calorimeter allows beam profile measurement. ► A tungsten wire mesh in the beam path provides a qualitative picture of the beam. ► Stripping losses and beam divergence are measured by H α Doppler shift spectroscopy. -- Abstract: The test facility ELISE, presently being commissioned at IPP, is a first step in the R and D roadmap for the RF driven ion source and extraction system of the ITER NBI system. The “half-size” ITER-like test facility includes a negative hydrogen ion source that can be operated for 1 h. ELISE is expected to extract an ion beam of 20 A at 60 kV for 10 s every 3 min, therefore delivering a total power of 1.2 MW. The extraction area has a geometry that closely reproduces the ITER design, with the same width and half the height, i.e. 1 m × 1 m. This paper presents an overview of beam diagnostic tools foreseen for ELISE. For the commissioning phase, a simple beam dump with basic diagnostic capabilities has been installed. In the second phase, the beam dump will be substituted by a more sophisticated diagnostic calorimeter to allow beam profile measurement. Additionally, a tungsten wire mesh will be introduced in the beam path to provide a qualitative picture of beam size and position. Stripping losses and beam divergence will be measured by means of H α Doppler shift spectroscopy. An absolute calibration is foreseen in order to measure beam intensity

  1. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    Science.gov (United States)

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  2. Tomographic apparatus and method for reconstructing planar slices from non-absorbed and non-scattered radiation

    International Nuclear Information System (INIS)

    1980-01-01

    An apparatus is described which can be used in computerized tomographic systems for constructing a representation of an object and which uses a fan-shaped beam source, detectors and a convolution method of data reconstruction. (U.K.)

  3. Dust appearance rates during neutral beam injection and after oxygen bake in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Yu, J.H.; Smirnov, R.D.; Rudakov, D.L.

    2011-01-01

    A simple model to quantify source and sink terms of dust observed in tokamaks using fast visible imaging is presented. During neutral beam injection (NBI), dust appearance rates increase in front of the neutral beam port by up to a factor of 5. The images show dust streaming from the port box as previously settled dust becomes mobilized during beam injection. Following an oxygen bake and vent, the dust observation rate is a factor of 2 lower than that after a vessel entry vent with no oxygen bake. Detected dust levels decay on a shot-to-shot basis in a roughly exponential fashion, with a decay time of approximately 20 s of plasma exposure. Appearance rates of dust mass are estimated using assumed lognormal and power law functional forms for the dust size distribution. The two dust size distributions differ significantly on the amount the dust material carried by the largest particles, highlighting the need for further dust studies in order to make accurate forecasts to ITER.

  4. Improvements in or relating to X-ray apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    In this invention an apparatus is described for producing X-ray radiation. It comprises a target which, in use, is exposed to an electron beam so as to produce a conical beam of X-ray radiation, a primary collimator with an opening defining the largest desired angle of the conical beam of radiation and a first electron absorber made from one or more elements having an atomic number lower than that of copper, (aluminium or graphite) and a second electron absorber, made from a similar material, mounted in the opening of the primary collimator, with dimensions similar to those of the opening. The effective cross-section for producing x-ray radiation increases with the atomic number and the electron absorption is proportional to the density. With the lower atomic number of the electron absorber material, the proportion of additional X-radiation arising is reduced. The problem of the reduced electron absorption is overcome by the use of two electron absorbers. (U.K.)

  5. Characteristics of the positive ion source at reduced gas feed

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S. K., E-mail: sksharma@ipr.res.in; Bharathi, P.; Prahlad, V.; Patel, P. J.; Choksi, B.; Jana, M. R.; Bansal, L. K.; Qureshi, K.; Sumod, C. B.; Vadher, V.; Thakkar, D.; Gupta, L. N.; Rambabu, S.; Parmar, S.; Contractor, N.; Sahu, A. K.; Pandya, B.; Sridhar, B.; Pandya, S.; Baruah, U. K. [Institute for Plasma Research, Bhat, Gandhinagar (India)

    2014-11-15

    The neutral beam injector of steady state superconducting tokamak (SST1-NBI) at IPR is designed for injecting upto 1.7 MW of neutral beam (Hº, 30–55 keV) power to the tokamak plasma for heating and current drive. Operations of the positive ion source (PINI or Plug-In-Neutral-Injector) of SST1-NBI were carried out on the NBI test stand. The PINI was operated at reduced gas feed rate of 2–3 Torr l/s, without using the high speed cryo pumps. Experiments were conducted to achieve a stable beam extraction by optimizing operational parameters namely, the arc current (120–300 A), acceleration voltage (16–40 kV), and a suitable control sequence. The beam divergence, power density profiles, and species fractions (H{sup +}:H{sub 2}{sup +}:H{sub 3}{sup +}) were measured by using the diagnostics such as thermal calorimetry, infrared thermography, and Doppler shift spectroscopy. The maximum extracted beam current was about 18 A. A further increase of beam current was found to be limited by the amount of gas feed rate to the ion source.

  6. Collider detector beam line test table: a structural analysis

    International Nuclear Information System (INIS)

    Leininger, M.B.

    1983-01-01

    The apparatus which sweeps calorimeter and endwall modules through the beam during testing is called a beam line test table. Because of rather stringent requirements for the physical positioning of the modules an analysis is done here to determine the modifications to the current test table design which will minimize deflections of the table under load

  7. Dual beam translator for use in Laser Doppler anemometry

    Science.gov (United States)

    Brudnoy, David M.

    1987-01-01

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  8. Method of and apparatus for measuring vapor density

    Science.gov (United States)

    Nelson, L.D.; Cerni, T.A.

    1989-10-17

    Apparatus and method are disclosed which determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavelength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to an equation given in the patent where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4) + K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation. 11 figs.

  9. Method and apparatus for producing and selectively directing x-rays to different points on an object

    International Nuclear Information System (INIS)

    Haimson, J.

    1981-01-01

    The invention relates to apparatus suitable for use in a computer tomography X-ray scanner. High intensity X-rays are produced and directed towards the object of interest from any of a plurality of preselected coplanar points spaced from the object and spaced radially about a line through the object. There are no moving parts. The electron beam, which produces X-rays as a consequence of impact with the target, is directed selectively to preselected points on the stationary target. Beam-direction compensates for the beam spreading effect of space charge forces acting on the beam, and beam-shaping shapes the beam to a predetermined cross-sectional configuration at its point of incidence with the target. Beam aberrations including sextupole aberrations are corrected. (U.K.)

  10. Construction of an apparatus for the magnetic capture of fermionic lithium atoms

    International Nuclear Information System (INIS)

    Jochim, S.

    2000-01-01

    This thesis reports on the construction of an apparatus for the magneto-optical trapping of the fermionic 6 Li-Isotope. This represents a first step towards experiments on the quantum degeneracy of dilute fermionic gases. The magneto-optical trap (MOT) will serve as a cold atom source for loading an optical trap. The apparatus consists of a laser system that excites the two 6 Li-D 2 -lines at 671 nm, an arrangement of coils generating the magnetic fields necessary to operate the MOT and a Zeeman slower, and a UHV-apparatus. The MOT is loaded from a thermal atomic beam. The Zeeman slower decelerates atoms with a velocity smaller than 600 m/s to about 40 m/s, so that they can be captured in the MOT. We expect to trap at least 10 8 atoms at a temperature of about 400 μK. (orig.)

  11. European contributions to the beam source design and R and D of the ITER neutral beam injectors

    International Nuclear Information System (INIS)

    Massmann, P.; Bayetti, P.; Bucalossi, J.

    2001-01-01

    The paper reports on the progress made by the European Home Team in strong interaction with the ITER JCT and JAERI regarding several key aspects of the beam source for the ITER injectors: integration of the SINGAP accelerator into the ITER injector design. This is a substantially simpler concept than the MAMuG accelerator of the ITER NBI 'reference design', which has potential for significant cost savings, and which avoids some of the weaknesses of the reference design such as the need for intermediate high voltage potentials from the HV power supply and pressurised gas insulation; high energy negative ion acceleration using a SINGAP accelerator; long pulse (i.e. >1000 s) negative ion source operation in deuterium; RF source development, which could reduce the scheduled maintenance of the ITER injectors (as it uses no filaments), and simplify the transmission line and the auxiliary power supplies for the ion source. (author)

  12. European contributions to the beam source design and R and D of the ITER neutral beam injectors

    International Nuclear Information System (INIS)

    Massmann, P.; Bayetti, P.; Bucalossi, J.

    1999-01-01

    The paper reports on the progress made by the European Home Team in strong interaction with the ITER JCT and JAERI regarding several key aspects of the beam source for the ITER injectors: integration of the SINGAP accelerator into the ITER injector design. This is a substantially simpler concept than the MAMuG accelerator of the ITER NBI 'reference design', which has potential for significant cost savings, and which avoids some of the weaknesses of the reference design such as the need for intermediate high voltage potentials from the HV power supply and pressurised gas insulation; high energy negative ion acceleration using a SINGAP accelerator; long pulse (i.e. >1000 s) negative ion source operation in deuterium; RF source development, which could reduce the scheduled maintenance of the ITER injectors (as it uses no filaments), and simplify the transmission line and the auxiliary power supplies for the ion source. (author)

  13. Role of radial electric field in LH transition triggered by counter-NBI at low plasma density in the TUMAN-3M tokamak

    International Nuclear Information System (INIS)

    Tukachinsky, A.S.; Askinazi, L.G.; Chernyshev, F.V. and others; Krupnik, L.I.; Rushkevich, A.A.

    2008-01-01

    Threshold power needed to attain H-mode in a tokamak is a critical parameter for designing of future devices and in particular fusion reactor ITER [1]. According to commonly accepted scaling [2] the threshold power P t hr increases with average density n e when the density exceeds some n em in at which P t hr is minimal. An increase in the P t hr towards low density was observed in many experiments [3-6], prevents the transition at lower n e as well. Physics of the threshold power increase at low ne is not well understood. Since the radial electric field E r and E r xB sheared flow play important roles in the LH transition one could expect these quantities effect the low n-bar e transitions. Toroidal rotation and radial electric field generation during counter-NBI have been studied in [7] and recently reconsidered theoretically in [8]. Thus, motivation for the presented study is to analyze effect of counter-NBI on the LH transition at low density

  14. Analogue computer display of accelerator beam optics

    International Nuclear Information System (INIS)

    Brand, K.

    1984-01-01

    Analogue computers have been used years ago by several authors for the design of magnetic beam handling systems. At Bochum a small analogue/hybrid computer was combined with a particular analogue expansion and logic control unit for beam transport work. This apparatus was very successful in the design and setup of the beam handling system of the tandem accelerator. The center of the stripper canal was the object point for the calculations, instead of the high energy acceleration tube a drift length was inserted into the program neglecting the weak focusing action of the tube. In the course of the installation of a second injector for heavy ions it became necessary to do better calculations. A simple method was found to represent accelerating sections on the computer and a particular way to simulate thin lenses was adopted. The analogue computer system proved its usefulness in the design and in studies of the characteristics of different accelerator installations over many years. The results of the calculations are in very good agreement with real accelerator data. The apparatus is the ideal tool to demonstrate beam optics to students and accelerator operators since the effect of a change of any of the parameters is immediately visible on the oscilloscope

  15. PULSED MOLECULAR BEAM PRODUCTION WITH NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Hagena, Otto-Friedrich

    1963-05-15

    Molecular beam experiments that can be carried out in pulsed operation may be performed at considerably reduced expense for apparatus if, for pulse generation, the gas supply to the beam production system is interrupted as opposed to the usual steady molecular beam. This technique is studied by measuring intensity vs time of molecular beam impulses of varying length, how fast and through which intermediate states the initial intensity of the impulse attains equilibrium, and in which way the intensity of the molecular-beam impulse is affected by the pulse length and by increasing pressure in the first pressure stage. For production of pulses, a magnetically actuated, quick shutting, valve is used whose scaling area is the inlet cone of the nozzle used for the beam generation. The shortest pulses produced had a pulse length of 1.6 ms. (auth)

  16. Parametric scaling studies of energy-confinement time for neutral-beam-heated Heliotron-E plasmas

    International Nuclear Information System (INIS)

    Sano, F.; Takeiri, Y.; Hanatani, K.

    1989-02-01

    Kinetic analysis of the global energy confinement time for neutral-beam-heated Heliotron-E plasmas has been performed with the 1-D, time-independent transport analysis code, PROCTR-Mod. Beam-power scans were performed by firing various number of hydrogen neutral beams, while density scans were performed by puffing gas and/or pellet fueling under the metallic or carbonized wall conditions. The wall carbonization facilitated the density increase due to the enhanced particle recycling on the walls, and also enabled long-pulse, quasi-stationary, currentless ECH + NBI operation with reduced heavy-impurity contamination. The data analysis shows that the favorable density dependence partially offsets the unfavorable power dependence, and that the anomalous electron transport loss becomes dominant in the over-all energy balance as the beam power and plasma density are increased. An alternative scaling law is also presented which is to fit τ E G [ms] by an 'offset-linear' law. The latter scaling is found to provide a better fit to the presented data sets in spite of its simple form. The parametric scaling of the local electron thermal diffusivity, χ e , is also discussed on the basis of the kinetic analysis. (J.P.N.)

  17. Apparatus and method for inhibiting the generation of excessive radiation

    International Nuclear Information System (INIS)

    Hernandez, F.; Chamberlain, J.

    1991-01-01

    This patent describes an apparatus for generating electron radiation or X-ray radiation. It comprises accelerator means for generating and accelerating electrons to form an electron beam which has a predetermined low intensity level for the generation of the electron radiation or a predetermined high intensity level for the generation of the X-ray radiation; supporting means for supporting a scattering foil and a target and for selectively moving either the foil into the trajectory of the electron beam having the low intensity level for generating the electron radiation upon impingement of the electrons there or on the target into the trajectory of the electron beam having the high intensity level for generating the X-ray radiation upon impingement of the electrons thereon; detecting means operable by the supporting means for sensing the position of the target relative to the trajectory of the electron beam; and inhibiting means coupled to the accelerator means and to the detecting means for preventing the generation of an electron beam having the high intensity level if the foil and not the target is positioned in the trajectory of the electron beam

  18. Semiconductor apparatus and method of fabrication for a semiconductor apparatus

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a semiconductor apparatus (1) and a method of fabrication for a semiconductor apparatus (1), wherein the semiconductor apparatus (1) comprises a semiconductor layer (2) and a passivation layer (3), arranged on a surface of the semiconductor layer (2), for passivating the

  19. Vectorization and improvement of nuclear codes (MEUDAS4, FORCE, STREAM V2.6, HEATING7-VP, SCDAP/RELAP5/MOD2.5, NBI3DGFN)

    International Nuclear Information System (INIS)

    Nemoto, Toshiyuki; Suzuki, Koichiro; Isobe, Nobuo; Machida, Masahiko; Osanai, Seiji; Yokokawa, Mitsuo

    1992-09-01

    Eight nuclear codes have been vectorized and modified to improve their performance. These codes are magnetic fluid equilibrium code MEUDAS4 (CR and FFT versions), the magnetic field analysis code FORCE, the three-dimensional heat fluid analysis code STREAM V2.6, the three-dimensional heat analysis code HEATING 7-VP, the severe accident transient analysis code SCDAP/RELAP 5/MOD 2.5 for light water reactors, the ion beam orbital analysis code NBI3DGFN, and a free electron laser analysis code. The speedup ratios of the vectorized versions to the original ones in scalar mode are 2.3-4.9, 1.9-5.4, 2.6-6.2, and 1.9 for the MEUDAS4, STREAM, FORCE, and free electron laser analysis code, respectively. The definition method of the computational regions in the HEATING7-VP is improved. The SCDAP/RELAP5/MOD2.5 is modified to use extended memory regions of the computer. In this report, outlines of the codes, techniques used in the vectorization and reorganization of the codes, verification of computed results, and improvement on the performance are presented. (author)

  20. Beam profile measurements using nonimaging gamma optics

    International Nuclear Information System (INIS)

    Norem, J.; Dawson, J.; Haberichter, W.; Lam, R.; Reed, L.; Yang, X.F.; Spencer, J.

    1995-01-01

    High energy photons produced from bremsstrahlung foils, Compton scattering or beamstrahlung from high energy e + e - collisions can be used to measure beam profiles using nonimaging optics. We describe the method and its limitations (resolution, backgrounds etc.), as well as the apparatus required to implement it. Data from a low energy test run is described as well as other possible applications, such as a 250+250 GeV linear collider and possible experiments with existing beams. (orig.)

  1. Apparatus for observing a sample with a particle beam and an optical microscope

    NARCIS (Netherlands)

    2010-01-01

    An apparatus for observing a sample (1) with a TEM column and an optical high resolution scanning microscope (10). The sample position when observing the sample with the TEM column differs from the sample position when observing the sample with the optical microscope in that in the latter case the

  2. A proposal for study of ion-beam induced chemical reactions using JAERI tandem accelerator

    International Nuclear Information System (INIS)

    1985-11-01

    Problems in ion-beam induced chemical reactions using JAERI Tandem Accelerator were discussed. Research philosophy, some proposed experiments which are based on measurements during ion-beam bombardment, and main features of the experimental apparatus are briefly described in this report. (author)

  3. Methods and apparatus for laser beam scanners with different actuating mechanisms

    Science.gov (United States)

    Chen, Si-hai; Xiang, Si-hua; Wu, Xin; Dong, Shan; Xiao, Ding; Zheng, Xia-wei

    2009-07-01

    In this paper, 3 types of laser beam scanner are introduced. One is transmissive beam scanner, which is composed of convex and concave microlens arrays (MLAs). By moving the concave lens in the plane vertical to the optical axis, the incident beam can be deflected in two dimensions. Those two kinds of MLAs are fabricated by thermal reflow and replication process. A set of mechanical scanner frame is fabricated with the two MLAs assembling in it. The testing result shown that the beam deflection angles are 9.5° and 9.6°, in the 2 dimension(2D) with the scanning frequency of 2 HZ and 8 HZ, respectively. The second type of laser beam scanner is actuated by voice coil actuators (VCAs). Based on ANSOFT MAXWELL software, we have designed VCAs with small size and large force which have optimized properties. The model of VCAs is built using AutoCAD and is analyzed by Ansoft maxwell. According to the simulation results, high performance VCAs are fabricated and tested. The result is that the force of the VCAs is 6.39N/A, and the displacement is +/-2.5mm. A set up of beam scanner is fabricated and actuated by the designed VCAs. The testing result shown that the two dimensional scanning angle is 15° and 10° respectively at the frequency of 60HZ. The two dimensional scanning angle is 8.3° and 6° respectively at the frequency of 100HZ. The third type of scanner is actuated by amplified piezoelectric actuators (APAs). The scanning mirror is actuated by the piezoelectric (PZ) actuators with the scanning frequency of 700HZ, 250HZ and 87HZ respectively. The optical scanning angle is +/-0.5° at the three frequencies.

  4. The ionoluminescence apparatus at the LABEC external microbeam facility

    International Nuclear Information System (INIS)

    Calusi, S.; Colombo, E.; Giuntini, L.; Giudice, A. Lo; Manfredotti, C.; Massi, M.; Pratesi, G.; Vittone, E.

    2008-01-01

    In this paper, we describe the main features of the ionoluminescence (IL) apparatus recently installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC Laboratory in Firenze. The peculiarity of this IL set-up resides in the fact that the light produced by the ion irradiation of the specimen is collected by a bifurcated optical fiber, so that photons are shunted both to a CCD spectrometer, working in the 200-900 nm wavelength range, and to a photomultiplier (PMT). The accurate focusing of the optical system allows high photon collection efficiency and this results in rapid acquisition of luminescence spectra with low ion currents on luminescent materials; simultaneously, luminescence maps with a spatial resolution of 10 μm can be acquired through the synchronization of PMT photon detection with the position of the scanning focused ion beam. An optical filter with a narrow passband facing the photomultiplier allows chromatic selectivity of the luminescence centres. The IL apparatus is synergistically integrated into the existing set-up for ion beam analyses (IBA). The upgraded system permits simultaneous IL and PIXE/PIGE/BS measurements. With our integrated system, we have been studying raw lapis lazuli samples of different known origins and precious lapis lazuli artworks of the Collezione Medicea of Museum of Natural History, University of Firenze, aiming at characterising their composition and provenance

  5. The ionoluminescence apparatus at the LABEC external microbeam facility

    Energy Technology Data Exchange (ETDEWEB)

    Calusi, S.; Colombo, E. [INFN Sezione di Torino, Via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy); Giuntini, L. [Dipartimento di Fisica, Universita and INFN Sezione di Firenze, Via Sansone 1, 50019, Sesto Fiorentino, Firenze (Italy)], E-mail: giuntini@fi.infn.it; Giudice, A. Lo [Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy); Manfredotti, C. [INFN Sezione di Torino, Via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy); Massi, M. [Dipartimento di Fisica, Universita and INFN Sezione di Firenze, Via Sansone 1, 50019, Sesto Fiorentino, Firenze (Italy); Pratesi, G. [Dipartimento di Scienze della Terra and Museo di Storia Naturale, Universita di Firenze, Via G. La Pira 4, 50121 Firenze (Italy); Vittone, E. [INFN Sezione di Torino, Via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy)

    2008-05-15

    In this paper, we describe the main features of the ionoluminescence (IL) apparatus recently installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC Laboratory in Firenze. The peculiarity of this IL set-up resides in the fact that the light produced by the ion irradiation of the specimen is collected by a bifurcated optical fiber, so that photons are shunted both to a CCD spectrometer, working in the 200-900 nm wavelength range, and to a photomultiplier (PMT). The accurate focusing of the optical system allows high photon collection efficiency and this results in rapid acquisition of luminescence spectra with low ion currents on luminescent materials; simultaneously, luminescence maps with a spatial resolution of 10 {mu}m can be acquired through the synchronization of PMT photon detection with the position of the scanning focused ion beam. An optical filter with a narrow passband facing the photomultiplier allows chromatic selectivity of the luminescence centres. The IL apparatus is synergistically integrated into the existing set-up for ion beam analyses (IBA). The upgraded system permits simultaneous IL and PIXE/PIGE/BS measurements. With our integrated system, we have been studying raw lapis lazuli samples of different known origins and precious lapis lazuli artworks of the Collezione Medicea of Museum of Natural History, University of Firenze, aiming at characterising their composition and provenance.

  6. Beam dancer fusion device

    International Nuclear Information System (INIS)

    Maier, H.B.

    1984-01-01

    To accomplish fusion of two or more fusion fuel elements numerous minute spots of energy or laser light are directed to a micro target area, there to be moved or danced about by a precision mechanical controlling apparatus at the source of the laser light or electromagnetic energy beams, so that merging and coinciding patterns of light or energy beams can occur around the area of the fuel atoms or ions. The projecting of these merging patterns may be considered as target searching techniques to locate responsive clusters of fuel elements and to compress such elements into a condition in which fusion may occur. Computerized programming may be used

  7. Method of stabilizing a laser apparatus with wavelength converter

    DEFF Research Database (Denmark)

    2013-01-01

    and to output the frequency-converted radiation (213), the frequency-converted radiation having at least a second wavelength different from the first wavelength, the diode laser (10) comprising at least a first and a second section (222,223), a first contact (220) for injecting a first current (I1......) into the first section (222), a second contact (221) for injecting a second current (I2) into the second section (223), and means for controlling a temperature of the diode laser; wherein the method comprises monitoring a first parameter indicative of the power content of a dominant lobe of the first radiation......A method of controlling beam quality and stability of a laser apparatus, the laser apparatus comprising, a diode laser (10) providing first radiation of at least a first wavelength, and a frequency conversion unit (12) configured to frequency-convert the first radiation from the diode laser...

  8. Direct Measurement of Neutral/Ion Beam Power using Thermocouple Analysis

    International Nuclear Information System (INIS)

    Day, I.; Gee, S.

    2006-01-01

    Modern Neutral Beam Injection systems such as those used on JET and MAST routinely use thermocouples embedded close to the surface of beam stopping elements, such as calorimeters and ion dumps, coupled to high speed data acquisition systems to determine beam profile and position from temperature rise data. With the availability of low cost data acquisition and storage systems it is now possible to record data from all thermocouples in a fully instrumented calorimeter or ion dump on 20 ms timescales or better. This sample rate is sufficiently fast to enable the thermocouple data to be used to calculate the incident power density from 1d heat transfer theory. This power density data coupled with appropriate Gaussian fits enables the determination of the 2d beam profile and thus allows an instantaneous and direct measurement of beam power. The theory and methodology required to analyse the fast thermocouple data from the MAST calorimeter and residual ion dump thermocouples is presented and direct measurements of beam power density are demonstrated. The power of desktop computers allows such analysis to be carried out virtually instantaneously. The methods used to automate this analysis are discussed in detail. A code, utilising the theory and methodology, has been developed to allow immediate measurements of beam power on a pulse by pulse basis. The uncertainty in determining the beam power density is shown to be less than 10 %. This power density data is then fitted to a 2d Gaussian beam profile and integrated to establish the total beam power. Results of this automated analysis for the neutral beam and residual ion power of the MAST duopigatron and PINI NBI systems are presented. This technology could be applied to a beam power safety interlock system. The application to a beam shine through protection system for the inner wall of the JET Tokamak is discussed as an example. (author)

  9. Computer system for the beam line data processing at JT-60 prototype neutral beam injector

    International Nuclear Information System (INIS)

    Horiike, Hiroshi; Kawai, Mikito; Ohara, Yoshihiro

    1987-08-01

    The present report describes the hard and soft wares of the data acquisition computer system for the prototype neutral injector unit for JT-60. In order to operate the unit, more than hundreds of signals of the beam line components have to be measured. These are mainly differential thermometers for the coolant waters and thermocouples for the beam dump components but not include those for the cryo system. Since the unit operates in a series of pulses, the measurement should be conducted very quickly in order to ensure the simultaneity of large number of the measured data. The present system actualize fast data acquisition using a small computer of 128 kB and measuring instruments connected through the bus. The system is connected to the JAERI computer center since the data capacity is fairly large to completely process them by the small computer. Therefore the measured data can be transferred to the computer center to calculate there, and the results can be received. After the system was completed the computer quickly print out the power flow data, which needed much work to calculate with hands. This system was very useful. It enhanced the experiments at the unit and reduced the labor. It enables us to early demonstrate the rated operation of the unit and to accurately estimate such operation data of the JT-60 NBI as the injection power. (author)

  10. 10-channel neutral particle energy analyser apparatus and its application to tokamak plasmas

    International Nuclear Information System (INIS)

    Takeuchi, Hiroshi; Funahashi, Akimasa; Takahashi, Koki; Shirakata, Hirofumi; Yano, Syukuro.

    1976-07-01

    A 10-channel neutral particle energy analyser apparatus for measurement of charge-exchange fast atoms emitted from a hot tokamak plasma has been constructed to determine the ion temperature of plasma from fewer discharge shots and to improve the accuracy of measurement. It consists of a 45-degrees parallel plate electrostatic analyser with ten ion detectors (Ceratron multipliers), a charge stripping cell, a dry vacuum pumping system and pulse-counting circuits for data acquisition. A calibration experiment of the apparatus is made for the particle energy and the energy resolution with electron beams of 100 to 1000 eV. The transmission efficiency of particles in the energy analyser is measured with proton beams of 1, 2 and 3 keV, and the conversion efficiency for H 2 gas in a charge stripping cell is also determined with hydrogen-atom beams of 2, 3 and 4 keV. Ion temperatures of JFT-2a and JFT-2 devices were measured with this apparatus, in order to check the usefulness and reliability of the apparatus and to investigate the parameter dependence of ion temperatures. It is found that an ion temperature can be measured with sufficient accuracy from six plasma shots (three shots to determine particle signals and three shots to determine background noises). The peak ion temperatures 80 to 400 eV are about (1/2 - 1/3) of the central electron temperatures. Dependence of the ion temperatures on plasma current I sub(p), toroidal magnetic field B sub(t) and average electron density anti n sub(e) is investigated for I sub(p) = 15 to 170 kAmp, B sub(t) = 10 to 18 kGauss and anti n sub(e) = (0.8 to 1.8) x 10 13 cm -3 on JFT-2a and JFT-2 devices. It is shown that the ion temperatures are in good agreement with the scaling law by Artsimovich Tsub(i) proportional to (Isub(p)Bsub(t) anti n sub(e)R 2 )sup(1/3), with R as the major radius of a tokamak device. (J.P.N.)

  11. Dual axis translation apparatus and system for translating an optical beam and related method

    Science.gov (United States)

    Cassidy, Kelly

    1991-01-01

    A dual axis translation device and system in accordance with this invention, for translating an optical beam along both an x-axis and a y-axis which are perpendicular to one another, has a beam directing means acting on said optical beam for directing the beam along a particular path transverse to said x and y axes. An arrangement supporting said beam directing means for movement in the x and y direction within a given plane is provided. The arrangement includes a first means for translating said beam directing means along the x-axis in said given plane in order to translate the beam along said x-axis. The arrangement comprises a second means for translating said beam directing means along the y-axis in said given plane in order to translate the beam along said y-axis.

  12. A calorimeter-Faraday cup to measure energy content of ion beams

    International Nuclear Information System (INIS)

    Luzzi, G.

    1984-01-01

    A calorimeter-Faraday cup to measure energy content of ion beams is described. It uses an HP quartz thermometer having a 10 -40 C sensitivity; contact potential problems, arising when working with thermocouples, are so avoided. Calibration has been performed with a resistive filament and with an electron beam. The apparatus is profitable if the measured ion beams are constant in time. The measured sensitivity was 10 -40 C/10 -5 W. (author)

  13. Beam Steering Devices Reduce Payload Weight

    Science.gov (United States)

    2012-01-01

    Scientists have long been able to shift the direction of a laser beam, steering it toward a target, but often the strength and focus of the light is altered. For precision applications, where the quality of the beam cannot be compromised, scientists have typically turned to mechanical steering methods, redirecting the source of the beam by swinging the entire laser apparatus toward the target. Just as the mechanical methods used for turning cars has evolved into simpler, lighter, power steering methods, so has the means by which researchers can direct lasers. Some of the typical contraptions used to redirect lasers are large and bulky, relying on steering gimbals pivoted, rotating supports to shift the device toward its intended target. These devices, some as large and awkward as a piece of heavy luggage, are subject to the same issues confronted by mechanical parts: Components rub, wear out, and get stuck. The poor reliability and bulk not to mention the power requirements to run one of the machines have made mechanical beam steering components less than ideal for use in applications where weight, bulk, and maneuverability are prime concerns, such as on an unmanned aerial vehicle (UAV) or a microscope. The solution to developing reliable, lighter weight, nonmechanical steering methods to replace the hefty steering boxes was to think outside the box, and a NASA research partner did just that by developing a new beam steering method that bends and redirects the beam, as opposed to shifting the entire apparatus. The benefits include lower power requirements, a smaller footprint, reduced weight, and better control and flexibility in steering capabilities. Such benefits are realized without sacrificing aperture size, efficiency, or scanning range, and can be applied to myriad uses: propulsion systems, structures, radiation protection systems, and landing systems.

  14. Multileaf collimator and related apparatus

    International Nuclear Information System (INIS)

    Brown, K.J.

    1989-01-01

    In radiotherapy apparatus using a multileaf collimator, the adjustment positions of the individual leaves can be determined optically by means of a video camera which observes the leaves via a radiation transparent mirror in the beam path. In order to overcome problems of low contrast and varying object brightness, the improvement comprises adding retroreflectors to the collimator leaves whose positions are known relative to the inner edge of the respective leaf. The retroreflectors can extend along the length of the leaf or they can be small. For setting up, corresponding manually adjustable optical diaphragm leaves can be used to project an optical simulation of the treatment area onto the patient, retroreflectors being similarly located relative to the shadow-casting edge of the leaves. (author)

  15. ROLLER FILTRATION APPARATUS

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to the field of filtering, more precisely the present invention concerns an apparatus and a method for the separation of dry matter from a medium and the use of said apparatus. One embodiment discloses an apparatus for the separation of dry matter and liquid from a m...

  16. Development of the techniques for food processing with low-energy electron beam

    International Nuclear Information System (INIS)

    Todoroki, Setsuko; Hayashi, Toru

    1999-01-01

    This study aimed to construct a new electron beam irradiation apparatus which allows to perform homogeneous irradiation up to a certain depth of a spherical or granular material through rotating it. And the sterilizing effects of this apparatus on various kinds of spices such as black and white peppers (grains), turmeric (root), coriander (seed), basil (leaves) were investigated to compare with the effects of γ-ray irradiation. Electron beam irradiation was made changing the energy form 200 keV for 15 min to 500 keV for 5 min and a dose-depth curve was drawn for each electron energy. Indicator balls were used to examine the radiation effects. It became possible to make homogeneous irradiation onto a spherical surface of food by using the rotary system of the apparatus. It was demonstrated that satisfactory sterilizing effects as much as those of γ-ray were obtainable by superficial treatments with low-energy electron. (M.N.)

  17. Development of the techniques for food processing with low-energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Todoroki, Setsuko; Hayashi, Toru [National Food Research Inst., Tsukuba, Ibaraki (Japan)

    1999-02-01

    This study aimed to construct a new electron beam irradiation apparatus which allows to perform homogeneous irradiation up to a certain depth of a spherical or granular material through rotating it. And the sterilizing effects of this apparatus on various kinds of spices such as black and white peppers (grains), turmeric (root), coriander (seed), basil (leaves) were investigated to compare with the effects of {gamma}-ray irradiation. Electron beam irradiation was made changing the energy form 200 keV for 15 min to 500 keV for 5 min and a dose-depth curve was drawn for each electron energy. Indicator balls were used to examine the radiation effects. It became possible to make homogeneous irradiation onto a spherical surface of food by using the rotary system of the apparatus. It was demonstrated that satisfactory sterilizing effects as much as those of {gamma}-ray were obtainable by superficial treatments with low-energy electron. (M.N.)

  18. Particle beam generator using a radioactive source

    Science.gov (United States)

    Underwood, D.G.

    1993-03-30

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  19. Fundamental ion cyclotron resonance heating of JET deuterium plasmas

    International Nuclear Information System (INIS)

    Krasilnikov, A V; Amosov, V N; Kaschuck, Yu A; Van Eester, D; Lerche, E; Ongena, J; Bonheure, G; Biewer, T; Crombe, K; Ericsson, G; Giacomelli, L; Hellesen, C; Hjalmarsson, A; Esposito, B; Marocco, D; Jachmich, S; Kiptily, V; Leggate, H; Mailloux, J; Kallne, J

    2009-01-01

    Radio frequency heating of majority ions is of prime importance for understanding the basic role of auxiliary heating in the activated D-T phase of ITER. Majority deuterium ion cyclotron resonance heating (ICRH) experiments at the fundamental cyclotron frequency were performed in JET. In spite of the poor antenna coupling at 25 MHz, this heating scheme proved promising when adopted in combination with D neutral beam injection (NBI). The effect of fundamental ICRH of a D population was clearly demonstrated in these experiments: by adding ∼25% of heating power the fusion power was increased up to 30-50%, depending on the type of NBI adopted. At this power level, the ion and electron temperatures increased from T i ∼ 4.0 keV and T e ∼ 4.5 keV (NBI-only phase) to T i ∼ 5.5 keV and T e ∼ 5.2 keV (ICRH + NBI phase), respectively. The increase in the neutron yield was stronger when 80 keV rather than 130 keV deuterons were injected in the plasma. It is shown that the neutron rate, the diamagnetic energy and the electron as well as the ion temperature scale roughly linearly with the applied RF power. A synergistic effect of the combined use of ICRF and NBI heating was observed: (i) the number of neutron counts measured by the neutron camera during the combined ICRF + NBI phases of the discharges exceeded the sum of the individual counts of the NBI-only and ICRF-only phases; (ii) a substantial increase in the number of slowing-down beam ions was detected by the time of flight neutron spectrometer when ICRF power was switched on; (iii) a small D subpopulation with energies slightly above the NBI launch energy was detected by the neutral particle analyzer and γ-ray spectroscopy.

  20. Multipactor discharge apparatus

    International Nuclear Information System (INIS)

    1976-01-01

    The invention deals with a multipactor discharge apparatus which can be used for tuning microwave organs such as magnetron oscillators and other cavity resonators. This apparatus is suitable for delivering an improved tuning effect in a resonation organ wherefrom the working frequency must be set. This apparatus is equipped with two multipactor discharge electrodes set in a configuration such to that a net current flows from one electrode to another. These electrodes are parallel and flat. The apparatus can be used in magnetron devices as well for continuous waves as for impulses

  1. Gamma tomography apparatus

    International Nuclear Information System (INIS)

    Span, F.J.

    1988-01-01

    The patent concerns a gamma tomography apparatus for medical diagnosis. The apparatus comprises a gamma scintillation camera head and a suspension system for supporting and positioning the camera head with respect for the patient. Both total body scanning and single photon emission tomography can be carried out with the apparatus. (U.K.)

  2. Computed tomography apparatus

    International Nuclear Information System (INIS)

    Fairbairn, I.A.

    1984-01-01

    In fan-beam computed tomography apparatus, timing reference pulses, normally occurring at intervals t, for data transfer and reset of approx. 500 integrators in the signal path from the detector array, are generated from the scan displacement, e.g. using a graticule and optical sensor to relate the measurement paths geometrically to the body section. Sometimes, a slow scan rate is required to provide a time-averaged density image, e.g. for planning irradiation therapy, and then the sensed impulses will occur at extended intervals and can cause integrator overload. An improvement is described which provides a pulse generator which responds to a reduced scan rate by generating a succession of further transfer and reset pulses at intervals approximately equal to t starting a time t after each timing reference pulse. Then, using an adding device and RAM, all the transferred signals integrated in the interval t' between two successive slow scan reference pulses are accumulated in order to form a corresponding measurement signal. (author)

  3. Multichannel Thomson scattering apparatus

    International Nuclear Information System (INIS)

    Bretz, N.; Dimock, D.; Foote, V.; Johnson, D.; Long, D.; Tolnas, E.

    1977-07-01

    A Thomson scattering apparatus for measuring the electron temperature and density along a 90 cm diameter of the PLT plasma has been built. A wide angle objective images the 3 mm x 900 mm ruby laser beam onto an image dissector which rearranges the 300 : 1 image to 20 : 1 forming the input slit of a spectrometer. The stigmatic spectrometer provides 20 wavelength elements of approximately 70 A each. A micro-channel-plate image intensifier optically coupled to a cooled SIT tube provides detection with single frame linearity and 1000 : 1 dynamic range. Spatial profiles of N/sub e/ and T/sub e/ in the range 10 13 - 10 14 cm -3 and 0.05 - 3 keV have an accuracy of 30 √10 13 /N/sub e/ (cm -3 ) percent per 1.2 cm element

  4. Hanging drop crystal growth apparatus

    Science.gov (United States)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  5. Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation

    Science.gov (United States)

    Buican, Tudor N.; Martin, John C.

    1990-01-01

    An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.

  6. Directionally positionable neutron beam

    International Nuclear Information System (INIS)

    Dance, W.E.; Bumgardner, H.M.

    1981-01-01

    Disclosed is apparatus for forming and directionally positioning a neutron beam. The apparatus includes an enclosed housing rotatable about a first axis with a neutron source axially positioned on the axis of rotation of the enclosed housing but not rotating with the housing. The rotatable housing is carried by a vertically positionable arm carried on a mobile transport. A collimator is supported by the rotatable housing and projects into the housing to orientationally position its inlet window at an adjustably fixed axial and radial spacing from the neutron source so that rotation of the enclosed housing causes the inlet window to rotate about a circle which is a fixed axial distance from the neutron source and has the axis of rotation of the housing as its center. (author)

  7. Apparatus and method for reconstructing data

    International Nuclear Information System (INIS)

    Pavkovich, J.M.

    1977-01-01

    The apparatus and method for reconstructing data are described. A fan beam of radiation is passed through an object, the beam lying in the same quasi-plane as the object slice to be examined. Radiation not absorbed in the object slice is recorded on oppositely situated detectors aligned with the source of radiation. Relative rotation is provided between the source-detector configuration and the object. Reconstruction means are coupled to the detector means, and may comprise a general purpose computer, a special purpose computer, and control logic for interfacing between said computers and controlling the respective functioning thereof for performing a convolution and back projection based upon non-absorbed radiation detected by said detector means, whereby the reconstruction means converts values of the non-absorbed radiation into values of absorbed radiation at each of an arbitrarily large number of points selected within the object slice. Display means are coupled to the reconstruction means for providing a visual or other display or representation of the quantities of radiation absorbed at the points considered in the object. (Auth.)

  8. Magnetic properties of Aurivillius lanthanide-bismuth (LnFeO3nBi4Ti3O12 (n = 1,2 layered titanates

    Directory of Open Access Journals (Sweden)

    Tartaj, J.

    2008-06-01

    Full Text Available Bismuth titanates of Aurivillius layer-structure (BiFeO3nBi4Ti3O12, are of great technological interest because of their applications as non-volatile ferroelectric memories and high-temperature piezoelectric materials. The synthesis and crystallographic characterization of a new family of compounds (LnFeO3nBi4Ti3O12 was recently reported, in which the layers consist of LnFeO3 perovskites with a lanthanide Ln3+ substituting diamagnetic Bi3+. We report herein the magnetic properties of bulk samples, with Ln = Nd, Eu, Gd and Tb, and n = 1 and 2. Single-layer materials are paramagnetic, similar to non-substituted bismuth titanate Bi5FeTi3O15, and show crystal field effects due to the crystallographic environment of Eu3+ and Tb3+. Several anomalies are detected in the magnetization M(T of double-layer (LnFeO32Bi4Ti3O12 compounds, related to the strong magnetism of Tb and Gd, since they weakly appear for Nd and they are absent in the VanVleck Eu3+ ion and in the parent Bi6Fe2Ti3O18 compound.Los titanatos de hierro y bismuto con estructura laminar tipo Aurivillius, (BiFeO3nBi4Ti3O12, tienen un gran interés tecnológico debido a sus aplicaciones como memorias ferroeléctricas no volátiles y como piezoeléctrico cerámico de alta temperatura. La síntesis y la caracterización cristalina de una nueva familia de compuestos (LnFeO3nBi4Ti3O12 han sido recientemente reportadas, en la que el catión diamagnético Bi3+ ha sido sustituido por los paramagnéticos Ln3+ en los bloques de perovskita. Se estudian las propiedades magnéticas de muestras cerámicas en volumen con Ln = Nd, Eu, Gd y Tb, y n = 1 y 2. Los materiales con n=1 son paramagnéticos y similares al no sustituido Bi5FeTi3O15, y muestran efectos de campo cristalino debido al entorno cristalino de Eu3+ y Tb3+. Se han detectado algunas anomalías en la magnetización M(T de los compuestos n=2 (LnFeO32Bi4Ti3O12 que están relacionadas con el fuerte magnetismo de Tb y Gd, que aparecen d

  9. Project study of a small-angle neutron scattering apparatus

    International Nuclear Information System (INIS)

    Schedler, E.; Pollet, J.L.

    1979-03-01

    This design study deals with the set up of a low angle scattering apparatus in the HMI reactor hall in Berlin. The experiences of other institutes with facilities of a similar type, - especially with D11 and D17 of the ILL in Grenoble, the set up the KFA in Juelich and of the PTB in Braunschweig -, are included to a large extend. The aim of this paper is - to define the necessary boundary conditions for the construction (including: installation of a cold source, the beam line, the neutron guide pipe and an extention of the reactor hall), -to determine the properties of the planned apparatus, especially in comparison with D11, probably the most versatile instrument, - to make desitions for the design of the components, - to work out the detailed drawings for construction - to estimate the costs and the time necessary for construction, if industrial manufacturers set up the project. (orig.) [de

  10. Measurements of the fast-ion distribution function at ASDEX upgrade by collective Thomson scattering (CTS) using active and passive views

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Stejner Pedersen, Morten; Rasmussen, Jesper

    2015-01-01

    , the measured spectra agree quantitatively with the synthetic spectra in periods with and without NBI heating. For the discharges investigated, the central velocity distribution of neutral beam ions can be described by classical slowing down. These results will have a major impact on ITER physics exploration...... independent heterodyne receiver systems enables subtraction of the additional part from the total spectrum, revealing the resulting CTS spectrum. Here we present CTS measurements from the plasma centre obtained in L-mode and H-mode plasmas with and without neutral beam injection (NBI). For the first time...

  11. Effects of ion beam irradiation on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nashiyama, Isamu; Hirao, Toshio; Itoh, Hisayoshi; Ohshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Energetic heavy-ion irradiation apparatus has been developed for single-event effects (SEE) testing. We have applied three irradiation methods such as a scattered-ion irradiation method, a recoiled-atom irradiation method, and a direct-beam irradiation method to perform SEE testing efficiently. (author)

  12. Power supply system for KSTAR neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W., E-mail: franciscocho@nfri.re.kr; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-10-15

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  13. Power supply system for KSTAR neutral beam injector

    International Nuclear Information System (INIS)

    Cho, W.; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-01-01

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  14. Analysis and optimization of the extracted ELSA beam at the Bonn ELAN experiment

    International Nuclear Information System (INIS)

    Breest, A.

    1989-09-01

    In 1987 the new electron-stretcher-ring ELSA came into operation. Before starting the first experiment at the electron scattering facility ELAN several detailed measurements on the external beam-line and the beam itself had to be performed. These measurements concerned the correct alignment and background studies and the emittance and time-structure (duty-cycle) of the ejected electron-beam. Finally the measurement of elastic electron-proton cross-sections showed that the beam and apparatus are well under control. (orig.) [de

  15. Slim planar apparatus for converting LED light into collimated polarized light uniformly emitted from its top surface.

    Science.gov (United States)

    Teng, Tun-Chien; Tseng, Li-Wei

    2014-10-20

    This study proposes a slim planar apparatus for converting nonpolarized light from a light-emitting diode (LED) into an ultra-collimated linearly polarized beam uniformly emitted from its top surface. The apparatus was designed based on a folded-bilayer configuration comprising a light-mixing collimation element, polarization conversion element, and polarization-preserving light guide plate (PPLGP) with an overall thickness of 5 mm. Moreover, the apparatus can be extended transversally by connecting multiple light-mixing collimation elements and polarization conversion elements in a side-by-side configuration to share a considerably wider PPLGP, so the apparatus can have theoretically unlimited width. The simulation results indicate that the proposed apparatus is feasible for the maximal backlight modules in 39-inch liquid crystal panels. In the case of an apparatus with a 480 × 80 mm emission area and two 8-lumen LED light sources, the average head-on polarized luminance and spatial uniformity over the emission area was 5000 nit and 83%, respectively; the vertical and transverse angular distributions of the emitting light were only 5° and 10°, respectively. Moreover, the average degree of polarization and energy efficiency of the apparatus were 82% and 72%, respectively. As compared with the high-performance ultra-collimated nonpolarized backlight module proposed in our prior work, not only did the apparatus exhibit outstanding optical performance, but also the highly polarized light emissions actually increased the energy efficiency by 100%.

  16. Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E

    International Nuclear Information System (INIS)

    Sudo, Shigeru; Zushi, Hideki; Kondo, Katsumi

    1993-01-01

    Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E are studied. The peaked density profile produced by pellet injection increases the stored energy by 20-30% compared to the gas puffed plasmas which obey the empirical stellarator/heliotron scaling in a moderate density range. In contrast to confinement, the peaked pressure profile tends to destabilize the plasma. By limiter insertion, MHD instability occurs (seems to locate near ι/2π=1) even in case of low β (β 0 ≤1%, where β 0 is the central β value) plasmas. On the other hand, the mode of m/n=3/2 at ι/2π=2/3, seems to be a key parameter to the major MHD instability in case of high β (β 0 ≥2%) plasmas. (author)

  17. Method and apparatus for Doppler frequency modulation of radiation

    Science.gov (United States)

    Margolis, J. S.; Mccleese, D. J.; Shumate, M. S.; Seaman, C. H. (Inventor)

    1980-01-01

    A method and apparatus are described for frequency modulating radiation, such as from a laser, for optoacoustic detectors, interferometers, heterodyne spectrometers, and similar devices. Two oppositely reciprocating cats-eye retroreflectors are used to Doppler modulate the radiation. By reciprocally moving both retroreflectors, the center of mass is maintained constant to permit smooth operation at many Hertz. By slightly offsetting the axis of one retroreflector relative to the other, multiple passes of a light beam may be achieved for greater Doppler shifts with the same reciprocating motion of the retroreflectors.

  18. A zero-to-few-hundred eV proton beam for calibrations of neutron beta decay experiments

    CERN Document Server

    Naab, F; Zech, W; García, A; Mumm, P

    2002-01-01

    We have constructed a system using a duoplasmatron source to produce a beam of low-energy (0 - few hundred eV) protons with the principal goal of testing and calibrating detectors used to detect protons from neutron beta decay. The system is stable and produces beams by simply turning on the associated power supplies without the need of careful tuning. As an example we show data from calibration of a surface barrier detector in the emiT apparatus. Protons from the system were scattered from an Al target and used to calibrate detectors in the emiT apparatus.

  19. Method and Apparatus for Creating a Topography at a Surface

    Science.gov (United States)

    Adams, David P.; Sinclair, Michael B.; Mayer, Thomas M.; Vasile, Michael J.; Sweatt, William C.

    2008-11-11

    Methods and apparatus whereby an optical interferometer is utilized to monitor and provide feedback control to an integrated energetic particle column, to create desired topographies, including the depth, shape and/or roughness of features, at a surface of a specimen. Energetic particle columns can direct energetic species including, ions, photons and/or neutral particles to a surface to create features having in-plane dimensions on the order of 1 micron, and a height or depth on the order of 1 nanometer. Energetic processes can include subtractive processes such as sputtering, ablation, focused ion beam milling and, additive processes, such as energetic beam induced chemical vapor deposition. The integration of interferometric methods with processing by energetic species offers the ability to create desired topographies at surfaces, including planar and curved shapes.

  20. Borehole sealing method and apparatus

    International Nuclear Information System (INIS)

    Hartley, J.N.; Jansen, G. Jr.

    1977-01-01

    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole. 5 claims, 1 figure

  1. Biological shield around the neutral beam injector ducts in the ITER conceptual design

    International Nuclear Information System (INIS)

    Maki, Koichi; Takatsu, Hideyuki; Satoh, Satoshi; Seki, Yasushi

    1994-01-01

    There are gaps between the toroidal field coils and neutral beam injector (NBI) duct wall for the thermal insulator in tokamak reactors such as ITER (International Thermonuclear Experimental Reactor). Neutrons stream through the duct, and some of them penetrate the wall and stream through the gaps. These neutrons activate the materials composing the duct wall, toroidal field coil (TFC) case and cryostat wall surfaces. The dose rate is enhanced just outside the cryostat around the ducts in the reactor room after reactor operation by activation. We investigated the gamma-ray dose rate just outside the cryostat after shutdown due to gamma-rays from activity induced by the neutrons streaming through the gaps. By evaluating the difference between the dose rate in models with and without gaps, we decided whether the thickness of the cryostat as biological shielding is sufficient or not. From these investigations, we recommend a cryostat design suitable for radiation shielding. Dose rates after shutdown at a point just outside the cryostat around the NBI ducts in the model with gaps are two orders larger than those without gaps. The value at this point is approximately 400 mrem h -1 (4 mSv h -1 ), which is two orders larger than the design value for workers to enter the reactor room. In order to reduce the dose rate after shutdown, a method of providing the shielding function of the cryostat is suggested. ((orig.))

  2. Apparatus for drying sugar cubes

    NARCIS (Netherlands)

    Derckx, H.A.J.; Torringa, H.M.

    1999-01-01

    Device for drying sugar cubes containing a heating apparatus for heating and dehumidifying the sugar cubes, a conditioning apparatus for cooling off and possibly further dehumidifying the sugar cubes and a conveying apparatus for conveying the sugar cubes through the heating apparatus and the

  3. Spectroscopic determination of species and divergence of hydrogen beams in the W7AS neutral beam injectors

    International Nuclear Information System (INIS)

    Ott, W.; Penningsfeld, F.P.

    1993-01-01

    Light-collecting systems are installed at the neutralizers of the W7AS neutral beam lines. They receive light emitted at an angle of 120 to the beam axes. Hydrogen beams are analyzed at around the wavelength of H α (6562.8 A), helium beams at around 5875.6 A. The hydrogen spectra show the well-known shifted and unshifted lines emitted by the different beam species and the background gas. The line widths are mainly determined by the beam focussing, the beamlet divergence and the apparatus profile. Knowing the focussing properties of the ion source and the instrument function of the spectrometer, one can determine the beamlet divergence. The spectrum is approximated by a series of Gaussians using least-squares fitting methods and evaluated with respect to beam species and divergence. Evaluation of the spectra proved difficult because they show a structured background, which is observed in the whole range of the Doppler shift. It is shown with helium beams that the background is caused by wall reflection of light emitted by the beam in the whole angular range between 0 and 180 . The knowledge of the background structure gained with He beams allows interpretation of the more complicated hydrogen spectra. (orig.)

  4. Particle beam source development

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Electron beam research directed toward providing improved in-diode pinched beam sources and establishing the efficiency and feasibility for superposition of many beams progressed in three major areas. Focusing stability has been improved from large effective aspect ratio (radius/gap of emitting surface) diodes. Substantial progress toward establishing the feasibility of combining beams guided along ionized current-carrying channels has been made. Two beams have been transported and overlayed on a target. Theoretical and experimental measurements on channel formation have resulted in specifications for the capacitor bank channel initiation system for a 12-beam combination experiment on Proto II. An additional area of beam research has been the development of a small pulsed X-ray source to yield high quality flash X-radiography of pellets. A source yielding approximately 100-μm resolution of objects has been demonstrated and work continues to improve the convenience and reliability of this source. The effort to extend the capability of higher power conventional pulse power generators to accelerate ions (rather than electrons), and assess the feasibility of this technology variation for target experiments and reactors has progressed. Progress toward development of a multistage accelerator for ions with pulse power technology centered on development of a new laboratory facility and design and procurement of hardware for a five-stage test apparatus for the Pulslac concept

  5. The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield

    Directory of Open Access Journals (Sweden)

    Mantsinen Mervi

    2017-01-01

    Full Text Available Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW. In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (∼1000 s thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.

  6. Design status and procurement activities of the High Voltage Deck 1 and Bushing for the ITER Neutral Beam Injector

    International Nuclear Information System (INIS)

    Boldrin, Marco; De Lorenzi, Antonio; Decamps, Hans; Grando, Luca; Simon, Muriel; Toigo, Vanni

    2013-01-01

    Highlights: ► ITER Neutral Beam Injector includes several non-standard components. ► The design status of the −1 MV dc HVD1 and Bushing is described. ► The paper reports also on the integrated layout of the two components. ► Preliminary electrostatic and thermal analyses are presented. ► Procurement activities are outlined. -- Abstract: The ITER Neutral Beam Injector (NBI) power supply system includes several non-standard components, whose ratings go beyond the present industrial practice. Two of these items, to be procured by Fusion for Energy, are: 1.A −1 MV dc air-insulated Faraday cage, called High Voltage Deck 1 (HVD1), hosting the Ion Source and Extractor Power Supplies (ISEPS) and the associated diagnostics. 2.A −1 MV dc feedthrough, called HVD1-TL Bushing, aimed at connecting the HVD1 to the gas (SF 6 ) insulated Transmission Line (TL), containing inside its High Voltage (HV) conductor all ISEPS power and control cables coming from the HVD1 to be connected to the NBI Ion Source services. The paper deals with the status of the design of the HVD1 and HVD1-TL Bushing, focusing on insulation, mechanical and thermal issues as well as on their integration with the other components of the power supply system. In particular, the insulation issue of the integrated system has been addressed by means of an electrostatic Finite Element (FE) analysis whilst a FE thermal simulation has been carried out to assess the impact of the dissipation of the proposed design of the inner conductors (ISEPS conductors) not actively cooled. Finally, the paper describes the status of procurement strategy and execution

  7. Training apparatus

    International Nuclear Information System (INIS)

    Monteith, W.D.

    1983-01-01

    Training apparatus for use in contamination surveillance uses a mathematical model of a hypothetical contamination source (e.g. nuclear, bacteriological or chemical explosion or leak) to determine from input data defining the contamination source, the contamination level at any location within a defined exercise area. The contamination level to be displayed by the apparatus is corrected to real time from a real time clock or may be displayed in response to a time input from a keyboard. In a preferred embodiment the location is defined by entering UTM grid reference coordinates using the keyboard. The mathematical model used by a microprocessor of the apparatus for simulation of contamination levels in the event of a nuclear explosion is described. (author)

  8. Description of a laser vaporization source and a supersonic cluster beam apparatus

    International Nuclear Information System (INIS)

    Doverstaal, M.; Lindgren, B.; Sassenberg, U.; Yu, H.

    1993-11-01

    Laser vaporization of an appropriate target and recent developments in molecular beam technology have now made it possible to produce supersonic cluster beams of virtually any element in the periodic table. This paper describes the design and principles of a cluster source combined with a time of flight mass spectrometer built for reaction experiments and spectroscopic investigations at Stockholm University

  9. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    International Nuclear Information System (INIS)

    Bindslev, H; Nielsen, S K; Porte, L; Hoekzema, J A; Korsholm, S B; Meo, F; Michelsen, P K; Michelsen, S; Oosterbeek, J W; Tsakadze, E L; Westerhof, E; Woskov, P

    2007-01-01

    The dynamics of fast ion populations in the TEXTOR tokamak are measured by collective Thomson scattering of millimetre wave radiation generated by a gyrotron operated at 110 GHz and 100-150 kW. Temporal evolution of the energetic ion velocity distribution at switch on of neutral beam injection (NBI) and the slowdown after switch off of NBI are measured. The turn on phase of the NBI has, furthermore, been measured in plasmas with a range of electron densities and temperatures. All of these measurements are shown to be in good agreement with simple Fokker-Planck modelling. Bulk ion rotation velocity is also measured

  10. Apparatus for precision micromachining with lasers

    Science.gov (United States)

    Chang, J.J.; Dragon, E.P.; Warner, B.E.

    1998-04-28

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

  11. Improvements in or relating to electron beam deflection arrangements

    International Nuclear Information System (INIS)

    Bull, E.W.

    1979-01-01

    This relates to the deflection of ribbon-like electron beams in X-ray tubes particularly in radiographic equipment. The X-ray tubes includes a source of a ribbon-shaped beam of electrons relatively narrow in a direction orthogonal to the direction of the beam and relatively wide in a second orthogonal direction. An elongated target projects X-rays about a chosen direction in response to the incident beam. There is a means (toroidal former, deflection coils or plates) for deflecting the electron beam to scan the region of incidence along the target and correction means for changing the shape of the electron beam depending on the deflection so that the region of incidence of the deflected beam remains a linear region substantially parallel to the region of incidence of the undeflected beam. The apparatus for this, and variations, are described. A medical radiography unit (computerise axial tomography) including the X-ray tube described is also detailed. (U.K.)

  12. Pore roller filtration apparatus

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to the field of filtering, more precisely the present invention concerns an apparatus and a method for the separation of dry matter from a medium and the use of said apparatus. One embodiment discloses an apparatus for the separation of dry matter from a medium, comp...

  13. High resolution time-of-flight spectrometer for crossed molecular beam study of elementary chemical reactions

    International Nuclear Information System (INIS)

    Qiu Minghui; Che Li; Ren Zefeng; Dai Dongxu; Wang Xiuyan; Yang Xueming

    2005-01-01

    In this article, we describe an apparatus in our laboratory for investigating elementary chemical reactions using the high resolution time-of-flight Rydberg tagging method. In this apparatus, we have adopted a rotating source design so that collision energy can be changed for crossed beam studies of chemical reactions. Preliminary results on the HI photodissociation and the F atom reaction with H 2 are reported here. These results suggest that the experimental apparatus is potentially a powerful tool for investigating state-to-state dynamics of elementary chemical reactions

  14. Formation of A Cold Antihydrogen Beam in AEGIS For Gravity Measurements

    CERN Document Server

    Testera, G; Bonomi, G; Boscolo, I; Brambilla, N; Brusa, R S; Byakov, V M; Cabaret, L; Canali, C; Carraro, C; Castelli, F; Cialdi, S; de Combarieu, M; Comparat, D; Consolati, G; Djourelov, N; Doser, M; Drobychev, G; Dupasquier, A; Fabris, D; Ferragut, R; Ferrari, G; Fischer, A; Fontana, A; Forget, P; Formaro, L; Lunardon, M; Gervasini, A; Giammarchi, M G; Gninenko, S N; Gribakin, G; Heyne, R; Hogan, S D; Kellerbauer, A G; Krasnicky, D; Lagomarsino, V; Manuzio, G; Mariazzi, S; Matveev, V A; Merkt, F; Moretto, S; Morhard, C; Nebbia, G; Nédélec, P; Oberthaler, M K; Pari, P; Petracek, V; Prevedelli, M; Al-Qaradawi, I Y; Quasso, F; Rohne, O; Pesente, S; Rotondi, A; Stapnes, S; Sillou, D; Stepanov, S V; Stroke, Hinko Henry; Tino, G; Vairo, Antonio; Viesti, G; Walters, H; Warring, U; Zavatarelli, S; Zenoni, A; Zvezhinskij, D S

    2008-01-01

    The formation of the antihydrogen beam in the AEGIS experiment through the use of inhomogeneous electric fields is discussed and simulation results including the geometry of the apparatus and realistic hypothesis about the antihydrogen initial conditions are shown. The resulting velocity distribution matches the requirements of the gravity experiment. In particular it is shown that the inhomogeneous electric fields provide radial cooling of the beam during the acceleration.

  15. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si0 2 . The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  16. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  17. Apparatus for gamma ray radiography

    International Nuclear Information System (INIS)

    Kobayashi, Masatoshi; Enomoto, Shigemasa; Oga, Hiroshi

    1979-01-01

    This is the standard of Japan Non-Destructive Inspection Society, NDIS 1101-79, which stipulates on the design, construction and testing method of the apparatuses for gamma ray radiography used for taking industrial radiograms. The gamma ray apparatuses stipulated in this standard are those containing sealed radioactive isotopes exceeding 100 μCi, which emit gamma ray. The gamma ray apparatuses are classified into three groups according to their movability. The general design conditions, the irradiation dose rate and the sealed radiation sources for the gamma ray apparatuses are stipulated. The construction of the gamma ray apparatuses must be in accordance with the notification No. 52 of the Ministry of Labor, and safety devices and collimators must be equipped. The main bodies of the gamma ray apparatuses must pass the vibration test, penetration test, impact test and shielding efficiency test. The method of each test is described. The attached equipments must be also tested. The tests according to this standard are carried out by the makers of the apparatuses. The test records must be made when the apparatuses have passed the tests, and the test certificates are attached. The limit of guarantee by the endurance test must be clearly shown. The items to be shown on the apparatuses are stipulated. (Kako, I.)

  18. Mirror plasma apparatus

    International Nuclear Information System (INIS)

    Moir, R.W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma

  19. Multisample matrix-assisted laser desorption source for molecular beams of neutral peptides

    International Nuclear Information System (INIS)

    Lupulescu, C.; Abd El Rahim, M.; Antoine, R.; Barbaire, M.; Broyer, M.; Dagany, X.; Maurelli, J.; Rayane, D.; Dugourd, Ph.

    2006-01-01

    We developed and tested a multisample laser desorption source for producing stable molecular beams of neutral peptides. Our apparatus is based on matrix-assisted laser desorption technique. The source consists of 96 different targets which may be scanned by a software control procedure. Examples of molecular beams of neutral peptides are presented, as well as the influence of the different source parameters on the jet

  20. Water intake fish diversion apparatus

    International Nuclear Information System (INIS)

    Taft, E.P. III; Cook, T.C.

    1995-01-01

    A fish diversion apparatus uses a plane screen to divert fish for variety of types of water intakes in order to protect fish from injury and death. The apparatus permits selection of a relatively small screen angle, for example ten degrees, to minimize fish injury. The apparatus permits selection of a high water velocity, for example ten feet per second, to maximize power generation efficiency. The apparatus is especially suitable retrofit to existing water intakes. The apparatus is modular to allow use plural modules in parallel to adjust for water flow conditions. The apparatus has a floor, two opposite side walls, and a roof which define a water flow passage and a plane screen within the passage. The screen is oriented to divert fish into a fish bypass which carries fish to a safe discharge location. The dimensions of the floor, walls, and roof are selected to define the dimensions of the passage and to permit selection of the screen angle. The floor is bi-level with a level upstream of the screen and a level beneath screen selected to provide a uniform flow distribution through the screen. The apparatus may include separation walls to provide a water flow channel between the apparatus and the water intake. Lead walls may be used to adjust water flow conditions into the apparatus. The apparatus features stoplog guides near its upstream and downstream ends to permit the water flow passage to be dewatered. 3 figs

  1. MOLECULAR BEAM STUDIES OF IR LASER INDUCED MULTIPHOTON DISSOCIATION AND VIBRATIONAL PREDISSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yuan T.; Shen, Y. Ron

    1980-06-01

    The advancement of crossed molecular beam methods, modern spectroscopy and laser technology allows us to observe chemical reactions on atomic and molecular levels in great detail. After a brief history of crossed molecular beams studies, the author describes and discusses the universal molecular beam apparatus and gives examples of crossed molecular beam studies. The crossed beam technique is compared to other techniques used to provide microscopic information on reaction dynamics. Application of crossed laser and molecular beam studies to the problem of IR multiphoton dissociation of polyatomic molecules is discussed. Study of vibrational predissociation of hydrogen-bonded and van der Waals molecular clusters are discussed. Future cases that the author considers worth pursuing that could benefit from the collisionless environment of molecular beams are enumerated.

  2. Light shielding apparatus

    Science.gov (United States)

    Miller, Richard Dean; Thom, Robert Anthony

    2017-10-10

    A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectable to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.

  3. Protections Against Grid Breakdowns in the ITER Neutral Beam Injector Power Supplies

    International Nuclear Information System (INIS)

    Bigi, M.; Toigo, V.; Zanotto, L.

    2006-01-01

    The ITER Neutral Beam Injector (NBI) is designed to deliver 16.5 MW of additional heating power to the plasma, accelerating negative ions up to -1 MV with a current up to 40 A. Two main power supplies are foreseen to feed the system: the Acceleration Grid Power Supply (AGPS), which provides power to the acceleration grids, and the Ion Source Power Supply (ISPS), devoted to supplying the ion source components. For the accelerator, two different concepts are under investigation: the MAMuG (Multiple Aperture, Multiple Gap) and the SINGAP (SINgle Aperture). During operation of the NBI, the breakdown of the acceleration grids will occur regularly; as a consequence the AGPS is expected to experience frequent load short-circuits during a pulse. For each grid breakdown, energy and current peaks are delivered from the power supply systems that could damage the grids, if not limited. In previous NBI, rated for a lower accelerating voltage, the protection system in case of grid breakdowns was based on dc circuit breakers able to quickly disconnect the power supply from the grids. In the ITER case, a similar solution is not feasible, as the voltage level is too high for present dc breaker technology. Therefore, the protection strategy has to rely on fast switch-off of the power supplies, on the optimisation of the filter elements and core snubbers placed downstream the AGPS and on the introduction of additional passive elements. However, achieving a satisfactory protection against grid breakdowns is a challenging task, as the optimisation of each single provision can result in drawbacks for other aspects of the design; for instance, the optimisation of the filter elements, obtained by reducing the filter capacitance, produces an increase of the output voltage ripple. Therefore, the design of the protections must be carried out considering all the relevant aspects of the specifications, also those that are not strictly related to the limitations of the current peaks and energy

  4. Apparatus and method for determining stress and strain in pipes, pressure vessels, structural members and other deformable bodies

    International Nuclear Information System (INIS)

    Vachon, R.I.; Ranson, W.F.

    1987-01-01

    A method and apparatus for measuring stress and strain associated with a pipe, pressurized vessel, structural member or deformable body containing a flaw or stress concentration utilizes a laser beam to illuminate a surface being analyzed and an optical data digitizer to sense a signal provided by a speckle pattern produced by the light beam reflected from the illuminated surface. One signal is received from the surface in a reference condition and subsequent signals are received from the surface after surface deformation. The optical data digitizer provides the received signal to an image processor, and the processor stores the signals and correlates the deformed image received with the reference image and then sends this correlated information to a minicomputer which performs mathematical analyses of the signal to determine stress and strain associated with the surface. The apparatus is constructed as one integral unit, and further includes a digital and tape display, as well as a television monitor and an electro-optic range indicator. (author) 15 figs

  5. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    Science.gov (United States)

    Fishman, Ilya M.; Kino, Gordon S.

    1996-11-12

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  6. Gamma apparatuses for radiotherapy

    International Nuclear Information System (INIS)

    Sul'kin, A.G.

    1986-01-01

    Scientific and technical achievements in development and application of gamma therapeutic apparatuses for external and intracavity irradiations are generalized. Radiation-physical parameters of apparatuses providing usability of progressive methods in radiotherapy of onclogical patients are given. Optimization of main apparatus elements, ensurance of its operation reliability, reduction of errors of irradiation plan reproduction are considered. Attention is paid to radiation safety

  7. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  8. Apparatus and method of optical marker projection for the three-dimensional shape measurement

    Science.gov (United States)

    Chen, Zhe; Qu, Xinghua; Geng, Xin; Zhang, Fumin

    2015-08-01

    Optical photography measurement and three-dimensional (3-D) scanning measurement have been widely used in the field of the fast dimensional and surface metrology. In the measurement process, however, retro-reflective markers are often pasted on the surface in advance for image registration and positioning the 3-D measuring instruments. For the large-scale workpiece with freeform surface, the process of pasting markers is time consuming, which reduces the measurement efficiency. Meanwhile, the measurement precision is impaired owing to the thickness of the marker. In this paper, we propose a system that projects two-dimensional (2-D) array optical markers with uniform energy on the surface of the workpiece instead of pasting retro-reflective markers, which achieves large-range and automated optical projection of the mark points. In order to conjunction with the 3-D handheld scanner belonging to our team, we develop an apparatus of optical marker projection, which is mainly composed of the high-power laser, the optical beam expander system, adjustable aperture stop and Dammann grating of dibasic spectrophotometric device. The projection apparatus can achieve the function of beams of 15 * 15 uniformly light of the two-dimensional lattice. And it's much cheaper than the existing systems.

  9. The LBL multiple beam experiments

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Keefe, D.; Kim, C.; Meuth, H.; Warwick, A.

    1987-01-01

    The multiple-beam induction linac approach to a heavy ion driver for inertial confinement fusion features continuous current amplification along the accelerator and a minimum of beam manipulations from source to pellet. Current amplification and bunch length control require careful shaping of the accelerating voltages. MBE-4 is designed as a four-beam induction linac that models much of the accelerator physics of the electrostatically focused section of a significantly longer induction accelerator. Four space-charge-dominated Cs + beams, initially about one meter in length at a current of 13 mA, are focused by electrostatic quadrupoles and accelerated in parallel from 200 to nearly 600 keV. The energy will reach approximately one MeV when the accelerator is complete. Experiments have proceeded in parallel with the construction of the apparatus which began in FY 85 and is now more than half complete. The results show a current amplification, so far, by a factor of 2.8 in good agreement with the longitudinal acceleration calculations. 9 refs

  10. Method and apparatus for simulating atomospheric absorption of solar energy due to water vapor and CO.sub.2

    Science.gov (United States)

    Sopori, Bhushan L.

    1995-01-01

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth's surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO.sub.2 and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO.sub.2 and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO.sub.2 and moisture.

  11. Design of neutral beam injection power supplies for ITER

    International Nuclear Information System (INIS)

    Watanabe, Kazuhiro; Okumura, Yoshikazu; Ono, Youichi; Tanaka, Masanobu

    2000-03-01

    Design study on a power supply system for the ITER neutral beam injector(NBI) has been performed. Circuits of converter/inverter system and other components of the acceleration power supply whose capacity is 1 MV, 45 A have been designed in detail. Performance of the negative ion production power supplies such as an arc and an extraction power supplies was investigated using the EMTDC code. It was confirmed that ripples of 0.34%p-p for the extraction power supply and 1.7%p-p for the arc power supply are small enough. It was also confirmed that an energy input to a negative ion generator from the arc power supply at an arcing can be suppressed smaller than 8 J. The extraction power supply was designed to suppress the energy input lower than 13 J at the breakdown in the extractor. These performances satisfy the required specification of the power supply system. (author)

  12. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  13. Experiments on Li pellet injection into Heliotron E

    International Nuclear Information System (INIS)

    Sergeev, V.Yu.; Khlopenkov, K.V.; Kuteev, B.V.; Sudo, S.; Kondo, K.; Zushi, H.; Besshou, S.; Sano, F.; Okada, H.; Mizuuchi, T.; Nagasaki, K.; Obiki, T.; Kurimoto, Y.

    1998-01-01

    Li pellets of large size were injected into electron cyclotron resonance (ECR) heated plasmas and neutral beam injection (NBI) heated plasmas of Heliotron E. The discharge behaviour, pellet ablation and wall conditioning were studied. The electron pressure is doubled after injection into the NBI plasma and remains unchanged in the case of ECR heating. This may be due to the energy exchange between the electrons and thermal ions with the fast ions from the neutral beam. The observed discrepancy between the experimental and modelled ablation rates may be caused by both the plasma cooling due to pellet ablatant and the ablation stimulated by the fast ions in the NBI-heated regime and by the fast electrons in the ECR-heated regime. In preliminary experiments on wall conditioning by Li pellet injection, no improvement of plasma performance after Li pellet injection was observed in the divertor or limiter configuration, with the limiter radii r L =24-25cm. (author)

  14. Isotope separation method and apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.L.

    1980-01-01

    A method and apparatus are specified for separating a mixture of isotopes present in a compound, preferably a gaseous compound, into two or more parts in each of which the abundances of the isotopes differ from the natural abundances of the isotopes in the compound. The invention particularly relates to carrying out a laser induced, isotopically selective conversion of gaseous molecules in such a manner as to achieve more than one stage of isotope separation along the length of the laser beam. As an example, the invention is applied to the separation of the isotopes of uranium in UF 6 , in which either the U-235 or U-238 isotope is selectively excited by means of irradiation from an infrared laser, and the selectively excited isotope converted into a product that can be recovered from UF 6 by one of a variety of methods that are described. (U.K.)

  15. Thermal loads on the TJ-II Vacuum Vessel under Neutral Beam Injection

    International Nuclear Information System (INIS)

    Guasp, J.; Fuentes, C.; Liniers, M.

    1996-01-01

    In this study a numerical analysis of power loads on the complex 3D structure of the TJ-II Vacuum Vessel, moderated with reasonable accuracy, under NBI, is done. To do this it has been necessary to modify deeply the DENSB code for power loads in order to include the TJ-II VV wall parts as targets and as beam scrapers, allowing the possibility of self-shadowing. After a short description of the primitive version of the DENSB code (paragraph 2) and of the visualisation code MOVIE(paragraph 3), the DENSB upgrading are described (paragraphs 4,5) and finally the results are presented (paragraph 6). These code modifications and the improving on the visualization tools provide more realistic load evaluations, both with and without plasma, validating former results and showing clearly the VV zones that will need new protections. (Author)

  16. Technical Note: Partial body irradiation of mice using a customized PMMA apparatus and a clinical 3D planning/LINAC radiotherapy system

    Energy Technology Data Exchange (ETDEWEB)

    Karagounis, Ilias V.; Koukourakis, Michael I., E-mail: targ@her.forthnet.gr, E-mail: mkoukour@med.duth.gr [Department of Radiotherapy–Oncology, Radiopathology and Radiobiology Unit, Medical School, Democritus University of Thrace, Alexandroupolis 68100 (Greece); Abatzoglou, Ioannis M., E-mail: abadzoglou@yahoo.gr [Medical Physics Department, University General Hospital of Alexandroupolis, Alexandroupolis 68100 (Greece)

    2016-05-15

    Purpose: In vivo radiobiology experiments involving partial body irradiation (PBI) of mice are of major importance because they allow for the evaluation of individual organ tolerance; overcoming current limitations of experiments using lower dose, whole body irradiation. In the current study, the authors characterize and validate an effective and efficient apparatus for multiple animal PBI, directed to the head, thorax, or abdomen of mice. Methods: The apparatus is made of polymethylmethacrylate and consists of a rectangular parallelepiped prism (40 cm × 16 cm × 8 cm), in which five holes were drilled to accomodate standard 60 ml syringes, each housing an unanesthetized, fully immobilized mouse. Following CT-scanning and radiotherapy treatment planning, radiation fields were designed to irradiate the head, thorax, or abdomen of the animal. Thermoluminescent dosimeters (TLDs) were used to confirm the treatment planning dosimetry for primary beam and scattered radiation. Results: Mice are efficiently placed into 60 ml syringes and immobilized, without the use of anesthetics. Although partial rotational movement around the longitudinal axis and a minor 2 mm forward/backward movement are permitted, this does not compromise the irradiation of the chosen body area. TLDs confirmed the dose values predicted by the treatment planning dosimetry, both for primary beam and scattered radiation. Conclusions: The customized PMMA apparatus described and validated is cost-effective, convenient to use, and efficient in performing PBI without the use of anesthesia. The developed apparatus permits the isolated irradiation of the mouse head, thorax, and abdomen. Importantly, the apparatus allows the delivery of PBI to five mice, simultaneously, representing an efficient way to effectively expose a large number of animals to PBI through multiple daily fractions, simulating clinical radiotherapy treatment schedules.

  17. Waste Water Treatment Apparatus and Methods

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  18. Construction of shallow land simulation apparatuses

    International Nuclear Information System (INIS)

    Yamamoto, Tadatoshi; Ohtsuka, Yoshiro; Takebe, Shinichi; Ohnuki, Toshihiko; Ogawa, Hiromichi; Harada, Yoshikane; Saitoh, Kazuaki; Wadachi, Yoshiki

    1984-07-01

    Shallow land simulation apparatuses in which natural soil can be used as testing soil have been constructed to investigate the migration characteristics of radionuclides in a disposal site. These apparatuses consist of aerated zone apparatus and aquifer zone one. In the aerated zone apparatus, aerated soil upon ground water level is contained in the soil column (d: 30cm x h: 120cm). In the aquifer zone apparatus, aquifer soil laying ground water level is contained in the soil vessel (b: 90cm x l: 270cm x h: 45cm). This report describes the outline of shallow land simulation apparatuses : function of apparatuses and specification of devices, analysis of obstructions, safety rules, analysis of accidents and operation manual. (author)

  19. Design status and procurement activities of the High Voltage Deck 1 and Bushing for the ITER Neutral Beam Injector

    Energy Technology Data Exchange (ETDEWEB)

    Boldrin, Marco, E-mail: marco.boldrin@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); De Lorenzi, Antonio [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Decamps, Hans [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Grando, Luca [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Simon, Muriel [Fusion For Energy, c/ Josep Pla 2, 08019 Barcelona (Spain); Toigo, Vanni [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2013-10-15

    Highlights: ► ITER Neutral Beam Injector includes several non-standard components. ► The design status of the −1 MV{sub dc} HVD1 and Bushing is described. ► The paper reports also on the integrated layout of the two components. ► Preliminary electrostatic and thermal analyses are presented. ► Procurement activities are outlined. -- Abstract: The ITER Neutral Beam Injector (NBI) power supply system includes several non-standard components, whose ratings go beyond the present industrial practice. Two of these items, to be procured by Fusion for Energy, are: 1.A −1 MV{sub dc} air-insulated Faraday cage, called High Voltage Deck 1 (HVD1), hosting the Ion Source and Extractor Power Supplies (ISEPS) and the associated diagnostics. 2.A −1 MV{sub dc} feedthrough, called HVD1-TL Bushing, aimed at connecting the HVD1 to the gas (SF{sub 6}) insulated Transmission Line (TL), containing inside its High Voltage (HV) conductor all ISEPS power and control cables coming from the HVD1 to be connected to the NBI Ion Source services. The paper deals with the status of the design of the HVD1 and HVD1-TL Bushing, focusing on insulation, mechanical and thermal issues as well as on their integration with the other components of the power supply system. In particular, the insulation issue of the integrated system has been addressed by means of an electrostatic Finite Element (FE) analysis whilst a FE thermal simulation has been carried out to assess the impact of the dissipation of the proposed design of the inner conductors (ISEPS conductors) not actively cooled. Finally, the paper describes the status of procurement strategy and execution.

  20. The experimental apparatus for synchrotron radiation Moessbauer spectroscopy of BL11 in SPring-8

    International Nuclear Information System (INIS)

    Mitsui, T.; Kitao, S.; Zhang, X.W.; Marushita, M.; Seto, M.

    2001-01-01

    Synchrotron radiation Moessbauer spectroscopy (time spectrum of nuclear forward scattering and nuclear resonant inelastic scattering) enables us to study both the electronic state and lattice dynamics of a target material. Furthermore, the excellent properties of synchrotron radiation (polarization, pulse, small beam size) promise us the unique studies for material science. In order to progress in these studies, some experimental apparatuses were installed in BL11XU of SPring-8

  1. A critical study of emittance measurements of intense low-energy proton beams

    CERN Document Server

    Evans, Lyndon R

    1972-01-01

    The measurement of emittance in low energy proton beams suffers from two perturbing effects: 1) the neutralisation of the beam by backstreaming secondary electrons and 2) the space charge blowup of the beam sample between defining and analysing apparatus. An experimental study shows a significant change of the emittance orientation when bias is used to eliminate the secondary electrons. Biased and non-biased cases are also compared with computed dynamics including space charge. Criteria for the slit size and drift distance which make the space charge blow-up negligible are derived. In addition a transverse coherent oscillation of the proton beam, which was revealed the measurements, is discussed briefly. (11 refs).

  2. Large Rotor Test Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — This test apparatus, when combined with the National Full-Scale Aerodynamics Complex, produces a thorough, full-scale test capability. The Large Rotor Test Apparatus...

  3. Conduit grinding apparatus

    Science.gov (United States)

    Nachbar, Henry D.; Korytkowski, Alfred S.

    1991-01-01

    A grinding apparatus for grinding the interior portion of a valve stem receiving area of a valve. The apparatus comprises a faceplate, a plurality of cams mounted to an interior face of the faceplate, a locking bolt to lock the faceplate at a predetermined position on the valve, a movable grinder and a guide tube for positioning an optical viewer proximate the area to be grinded. The apparatus can either be rotated about the valve for grinding an area of the inner diameter of a valve stem receiving area or locked at a predetermined position to grind a specific point in the receiving area.

  4. Method and apparatus for obtaining very high energy laser pulses: photon cyclotron

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Goldstein, R.

    1975-01-01

    Apparatus is arranged in selected embodiments of several combinations, each sometimes being referred to as a system, and each embodiment establishing a large enclosable chamber containing a laser energy reacting medium through which a laser beam is created. When laser energy pulses of such a beam are created, they are guided in a continuous path using reflectors in this chamber, and they receive supplemental energy units from multiple spaced laser pumps. Each laser pump is effective in respect to its own inverted population laser energy source, and each laser pump is triggered by an overall excitation control system. The laser beam is thereby supplemented to a higher level at each laser pump. Yet at all times the laser energy reacting medium remains at a level below super radiance. A working unit or working pulse of a laser beam is allowed to escape from each large enclosable chamber through an escape exit only when a preselected very high energy level is reached. The escape exit of this chamber may be designed to be destroyed by the exiting high level pulse energy of the laser beam. Also an escape exit may be opened upon the operation of a piezoelectric decoupler. (U.S.)

  5. An Apparatus For Student Projects Using External-Beam PIXE And PIGE

    International Nuclear Information System (INIS)

    Correll, Francis D.; Edsall, Douglas W.; DePooter, Katherine A.; Maskell, Nicholas D.; Vanhoy, Jeffrey R.

    2011-01-01

    We recently installed a simple endstation at the Naval Academy Tandem Accelerator Laboratory to support student projects using external-beam PIXE and PIGE. It consists of a short, graphite-lined beamline extension with a thin window, an interlocked box that surrounds the target, detectors for x- and gamma rays, provision for flooding the target with helium gas, easily changed x-ray absorbers, and a compact video camera for monitoring the position of the beam spot. We used this system to measure the elemental composition of colonial-era architectural materials, principally bricks and mortar, from James Madison's Montpelier, the reconstructed Virginia estate of the fourth President of the United States. We describe the design and construction of the system, relate some of our experiences using it, and present some preliminary data from our investigations.

  6. Pipework inspection apparatus

    International Nuclear Information System (INIS)

    Wrigglesworth, K.J.; Knowles, J.F.

    1987-01-01

    The patent concerns a pipework inspection apparatus, which is capable of negotiating bends in pipework. The apparatus comprises a TV camera system, which contains an optical section and an electronics section, which are connected by a flexible coupling. The system can be pulled or pushed along the bore of the pipework. (U.K.)

  7. Transverse combining of four beams in MBE-4

    International Nuclear Information System (INIS)

    Celata, C.M.; Chupp, W.; Faltens, A.; Fawley, W.M.; Ghiorso, W.; Hahn, K.D.; Henestroza, E.; Judd, D.; Peters, C.; Seidl, P.A.

    1996-01-01

    Transverse beam combining is a cost-saving option employed in many designs for induction linac heavy ion fusion drivers. The resultant transverse emittance increase, due predominantly to anharmonic space charge forces, must be kept minimal so that the beam remains focusable at the target. A prototype combining experiment has been built using the MBE-4 experimental apparatus. Four new sources produce up to 6.7 mA Cs + beams at 200 keV. The ion sources are angled toward each other so that the beams converge. Focusing upstream of the merge consists of four quadrupoles and a final combined-function element (quadrupole and dipole). All lattice elements are electrostatic. Owing to the small distance between beams at the last element (about 3-4 mm), the electrodes here are a cage of small rods, each at different voltage. The beams emerge into the 30-period transport lattice of MBE-4 where emittance growth due to merging, as well as the subsequent evolution of the distribution function, can be diagnosed. The combiner design, simulation predictions and preliminary results from the experiment are presented. (orig.)

  8. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    Science.gov (United States)

    Sopori, B.L.

    1995-06-20

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  9. Development of a Charged Particle Microbeam for Single-Particle Subcellular Irradiations at the MIT Laboratory for Accelerator Beam Application

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2004-01-01

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube

  10. Operational experience of SST1 NBI control system with prototype Ion source

    International Nuclear Information System (INIS)

    Patel, V B; Patel, P J; Singh, N P; Tripathi, V; Thakkar, D; Gupta, L N; Prahlad, V; Sharma, S K; Bandyopadyay, M; Chakraborty, A K; Baruah, U K; Mattoo, S K; Patel, G B; Onali, Raja

    2010-01-01

    This paper presents operational experience of integrated control of the arc-filament and High-voltage power supply of Steady State Tokamak (SST)-1 NBI system using Versa Module Europa (VME) system on prototype Ion source. The control algorithm is implemented on the VxWorks operating system using 'C' language. This paper also describes the operating sequence and controls on power supply system. Discharge and Filament power supplies are controlled in such a way so that necessary discharge current can be available in Ion Source. The discharge current is controlled by manipulating the filament current. Close loop control is implemented on each filament power supply with feedback from Discharge Current to control the overall discharge inside the ion source. Necessary actions for shut OFF and subsequent Turn ON are also taken during breakdowns between the Grids of the ion source. Total numbers of breakdowns are also monitored. Shot is terminated, if the breakdown count is higher than the set value. This control system can be programmed to restart High-voltage power supply within 5mS after breakdown occurs. This control system is capable to handle the all types of dynamics in the system. This paper also presents results of experiment.

  11. Detailed design of the RF source for the 1 MV neutral beam test facility

    International Nuclear Information System (INIS)

    Marcuzzi, D.; Palma, M. Dalla; Pavei, M.; Heinemann, B.; Kraus, W.; Riedl, R.

    2009-01-01

    In the framework of the EU activities for the development of the Neutral Beam Injector for ITER, the detailed design of the Radio Frequency (RF) driven negative ion source to be installed in the 1 MV ITER Neutral Beam Test Facility (NBTF) has been carried out. Results coming from ongoing R and D on IPP test beds [A. Staebler et al., Development of a RF-Driven Ion Source for the ITER NBI System, this conference] and the design of the new ELISE facility [B. Heinemann et al., Design of the Half-Size ITER Neutral Beam Source Test Facility ELISE, this conference] brought several modifications to the solution based on the previous design. An assessment was carried out regarding the Back-Streaming positive Ions (BSI+) that impinge on the back plates of the ion source and cause high and localized heat loads. This led to the redesign of most heated components to increase cooling, and to different choices for the plasma facing materials to reduce the effects of sputtering. The design of the electric circuit, gas supply and the other auxiliary systems has been optimized. Integration with other components of the beam source has been revised, with regards to the interfaces with the supporting structure, the plasma grid and the flexible connections. In the paper the design will be presented in detail, as well as the results of the analyses performed for the thermo-mechanical verification of the components.

  12. Development of apparatus for high-intensity beam lines at the KEK-PS new experimental hall

    International Nuclear Information System (INIS)

    Yamanoi, Yutaka; Tanaka, Kazuhiro; Minakawa, Michifumi

    1992-01-01

    The new counter experimental hall was constructed at the KEK 12 GeV Proton Synchrotron (the KEK-PS) in order to handle high-intensity primary proton beams of up to 1 x 10 13 pps (protons per second), which is one order of magnitude greater than the present beam intensity of the KEK-PS, 1 x 10 12 pps. New technologies for handling high-intensity beams have, then, been developed and employed in the new hall construction. A part of our R/D work on handling high intensity beam is briefly reported. (author)

  13. High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam

    Science.gov (United States)

    Brown, Jr., R. Malcolm; Barnes, Zack [Austin, TX; Sawatari, Chie [Shizuoka, JP; Kondo, Tetsuo [Kukuoka, JP

    2008-02-26

    The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

  14. Laser-based irradiation apparatus and method to measure the functional dose-rate response of semiconductor devices

    Science.gov (United States)

    Horn, Kevin M [Albuquerque, NM

    2008-05-20

    A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.

  15. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-01

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possibly IBW-generated sheared flows

  16. Fusion reactor development using high power particle beams

    International Nuclear Information System (INIS)

    Ohara, Y.

    1990-01-01

    The present paper outlines major applications of the ion source/accelerator to fusion research and also addresses the present status and future plans for accelerator development. Applications of ion sources/accelerators for fusion research are discussed first, focusing on plasma heating, plasma current drive, plasma current profile control, and plasma diagnostics. The present status and future plan of ion sources/accelerators development are then described focusing on the features of existing and future tokamak equipment. Positive-ion-based NBI systems of 100 keV class have contributed to obtaining high temperature plasmas whose parameters are close to the fusion break-even condition. For the next tokamak fusion devices, a MeV class high power neutral beam injector, which will be used to obtain a steady state burning plasma, is considered to become the primary heating and current drive system. Development of such a system is a key to realize nuclear fusion reactor. It will be entirely indebted to the development of a MeV class high current negative deuterium ion source/accelerator. (N.K.)

  17. Progress towards antihydrogen hyperfine spectroscopy in a beam

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, Eberhard [Stefan Meyer Institute for Subatomic Physics, Vienna (Austria); Collaboration: ASACUSA CUSP collaboration

    2014-07-01

    The spectroscopy of antihydrogen promises one of the most precise tests of CPT symmetry. The ASACUSA CUSP collaboration at the Antiproton Decelerator of CERN is preparing an experiment to measure the ground-state hyperfine structure GS-HFS of antihydrogen, since this quantity is one of the most precisely determined transitions in ordinary hydrogen (relative accuracy ∝10{sup -12}). The experiment uses a Rabi-type atomic beam apparatus consisting of a source of spin-polarized antihydrogen (a so-called cusp trap), a microwave cavity to induce a spin flip, a superconducting sextuple magnet for spin analysis, and an antihydrogen detector. In this configuration, a relative accuracy of better than 10{sup -6} can be obtained. This precision will already allow to be sensitive to finite size effects of the antiproton, provided its magnetic moment will measured to higher precision, which is in progress by two collaborations at the AD. The recent progress in producing a beam of antihydrogen atoms and in the development of the apparatus as well as ways to further improve the accuracy by using the Ramsey method of separated oscillatory fields are presented.

  18. The effect of space charge force on beams extracted from ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1989-01-01

    A new 3 dimensional ray tracing code BEAM-3D, with a simple model to calculate the space charge force of multiple ion species, is under development and serves as a theoretical tool to study the ECRIS beam formation. Excellent agreement between the BEAM-3D calculations and beam profile and emittance measurements of the total extracted helium 1+ beam from the RTECR ion source was obtained when a low degree of beam neutralization was assumed in the calculations. The experimental evidence indicates that the positive space charge effects dominate the early RTECR ion source beam formation and beamline optics matching process. A review of important beam characteristics is made, including a conceptual model for the space charge beam blow up. Better beam transport through the RTECR beamline analysis magnet has resulted after an extraction geometry modification in which the space charge force was more correctly matched. This work involved the development of an online beam characteristic measuring apparatus which will also be described

  19. Using a simple apparatus to measure direct and diffuse photosynthetically active radiation at remote locations.

    Directory of Open Access Journals (Sweden)

    Michael J Cruse

    Full Text Available Plant canopy interception of photosynthetically active radiation (PAR drives carbon dioxide (CO2, water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the

  20. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    International Nuclear Information System (INIS)

    Shu, Deming; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je

    2016-01-01

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  1. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming, E-mail: shu@aps.anl.gov; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, U.S.A (United States)

    2016-07-27

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  2. Radioimmunoassay apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Apparatus for performing a quantitative radioimmunoassay comprising: a substantially spherical bead for carrying an antibody and a gripper for gripping said bead, said gripper comprising an integrally formed unit having a single elongate handle portion and a plurality of resilient fingers arranged at the base of the handle so that when said bead is secured within said fingers, said bead may be freely rotated about any diametric axis of the bead. In particular the invention relates to an apparatus for a two site immunoradiometric assay for serum ferritin in human blood samples. (author)

  3. TRANSFORMER APPARATUS

    Science.gov (United States)

    Wolfgang, F.; Nicol, J.

    1962-11-01

    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  4. Radiotherapy apparatus

    International Nuclear Information System (INIS)

    Leung, P.M.; Webb, H.P.J.

    1985-01-01

    This invention relates to apparatus for applying intracavitary radiotherapy. In previously-known systems radioactive material is conveyed to a desired location within a patient by transporting a chain of balls pneumatically to and from an appropriately inserted applicator. According to this invention a ball chain for such a purpose comprises several radioactive balls separated by non-radioactive tracer balls of radiographically transparent material of lower density and surface hardness than the radioactive balls. The invention also extends to radiotherapy treatment apparatus comprising a storage, sorting and assembly system

  5. Monte Carlo program for the cold neutron beam guide

    International Nuclear Information System (INIS)

    Yoshiki, H.

    1985-02-01

    A Monte Carlo program for the transport of cold neutrons through beam guides has been developed assuming that the neutrons follow the specular reflections. Cold neutron beam guides are normally used to transport cold neutrons (4 ∼ 10 Angstrom) to experimental equipments such as small angle scattering apparatus, TOF measuring devices, polarized neutron spectrometers, and ultra cold neutron generators, etc. The beam guide is about tens of meters in length and is composed from a meter long guide elements made up from four pieces of Ni coated rectangular optical glass. This report describes mathematics and algorithm employed in the Monte Carlo program together with the display of the results. The source program and input data listings are also attached. (Aoki, K.)

  6. Production of intermediate energy beams by high speed rotors

    International Nuclear Information System (INIS)

    Nutt, C.W.; Bale, T.J.; Cosgrove, P.; Kirby, M.J.

    1975-01-01

    A rotor apparatus intended for the study of gas/surface interaction processes is presently nearing completion. The carbon fiber rotors under consideration are constructed with shapes derived from long thin cylindrical rods oriented with the longest axis in a horizontal plane, and spun in a horizontal plane about an axis which is perpendicular to the long axis and passes through the mid-point of the cylinder. The beam formation processes are discussed and rotor diagrams presented. Performance of these types of high speed rotor show them to have a very important future as sources of intermediate energy molecular beams

  7. Apparatus for Teaching Physics.

    Science.gov (United States)

    Gottlieb, Herbert H., Ed.

    1981-01-01

    Describes: (1) a variable inductor suitable for an inductance-capacitance bridge consisting of a fixed cylindrical solenoid and a moveable solenoid; (2) long-range apparatus for demonstrating falling bodies; and (3) an apparatus using two lasers to demonstrate ray optics. (SK)

  8. Radiation imaging apparatus

    International Nuclear Information System (INIS)

    1979-01-01

    This invention relates to a radiation imaging apparatus. It relates more particularly to apparatus of this general type which employs stationary X-ray source and detector arrays capable of acquiring multiple ultrafast scans per second to facilitate the dynamic study of moving human organs such as the beating heart. While the invention has many applications, it has particular utility in connection with computerized tomographic (CT) scanners. (Auth.)

  9. Method and apparatus for inspecting tires

    International Nuclear Information System (INIS)

    Fox, R.L.T.

    1975-01-01

    A method and apparatus for inspecting tires by the use of x-rays is disclosed in which a tire is advanced to an inspection station, engaged along opposite bead rims and inflated to axially spread the bead rims and side walls. An x-ray source is advanced axially into the tire and the tire is eccentrically rotated relative to the x-ray source to enable radial positioning of the source relative to the tire near the tire bead rim diameter without requiring radial movement of the x-ray source. The x-ray source produces an x-ray beam which sweeps about the interior of the expanded tire from bead rim to bead rim while the tire is rotated about its centerline. An x-ray detection system detects x-rays which have penetrated the wall and produces inspection information concerning the tire construction. (Patent Office Record)

  10. The LBL [Lawrence Berkeley Laboratory] multiple beam experiments

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Keefe, D.; Kim, C.; Meuth, H.; Warwick, A.

    1987-03-01

    The multiple-beam induction linac approach to a heavy ion driver for inertial confinement, fusion features continuous current amplification along the accelerator and a minimum of beam manipulations from source to pellet. Current amplification and bunch length control require careful shaping of the accelerating voltages. MBE-4 is designed as a four-beam induction linac that models much of the accelerator physics of the electrostatically focused section of a significantly longer induction accelerator. Four space-charge-dominated Cs + beams, initially about one meter in length at a current of 13 mA, are focused by electrostatic quadrupoles and accelerated in parallel from 200 to nearly 600 keV. The energy will reach approximately one MeV when the accelerator is complete. Experiments have proceeded in parallel with the construction of the apparatus which began in FY 85 and is now more than half complete. The results show a current amplification, so far, by a factor of 2.8 in good agreement with the longitudinal acceleration calculations

  11. Method of beam welding metallic parts together and apparatus for doing same

    Science.gov (United States)

    Lewandowski, E.F.; Cassidy, D.A.; Sommer, R.G.

    1985-11-29

    This method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. The exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extrucing beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

  12. Experimental methods in radioactive ion-beam target/ion source development and characterization

    International Nuclear Information System (INIS)

    Welton, R.F.; Alton, G.D.; Cui, B.; Murray, S.N.

    1998-01-01

    We have developed off-line experimental techniques and apparatuses that permit direct measurement of effusive-flow delay times and ionization efficiencies for nearly any chemically reactive element in high-temperature target/ion sources (TIS) commonly used for on-line radioactive ion-beam (RIB) generation. The apparatuses include a hot Ta valve for effusive-flow delay-time measurements, a cooled molecular injection system for determination of ionization efficiencies, and a gas flow measurement/control system for introducing very low, well-defined molecular flows into the TIS. Measurements are performed on a test stand using molecular feed compounds containing stable complements of the radioactive nuclei of interest delivered to the TIS at flow rates commensurate with on-line RIB generation. In this article, the general techniques are described and effusive-flow delay times and ionization efficiency measurements are reported for fluorine in an electron-beam plasma target/ion source developed for RIB generation and operated in both positive- and negative-ion extraction modes. copyright 1998 American Institute of Physics

  13. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  14. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  15. Informationization nuclear apparatus communication technique

    International Nuclear Information System (INIS)

    Yu Tiqi; Fang Zongliang; Wen Qilin

    2006-01-01

    The paper explains the request of communication ability in nuclear technique application area. Based on the actuality of nuclear apparatus communication ability, and mainly combining with the development of communication technique, the authors analyzes the application trend of communication technique applying in nuclear apparatus, for the apparatus and system needing communication ability, they need selecting suitable communication means to make them accomplish the task immediately and effectively. (authors)

  16. Radiation Safety System for SPIDER Neutral Beam Accelerator

    International Nuclear Information System (INIS)

    Sandri, S.; Poggi, C.; Coniglio, A.; D'Arienzo, M.

    2011-01-01

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  17. Target bombardment by ion beams generated in the Focus experiment

    International Nuclear Information System (INIS)

    Bernard, Alain; Coudeville, Alain; Garconnet, J.-P.; Jolas, A.; Mascureau, J. de; Nazet, Christian.

    1976-01-01

    In a Mather-Focus experiment, it was shown that 80% of the neutron emitted were generated through bombardment. The apparatus was operated with various targets at a distance of 13mm from the anode. In the low pressure regime, a deuteron beam of high energy was produced. Its emission duration was measured using a CD 2 target [fr

  18. Status of the 1 MeV Accelerator Design for ITER NBI

    Science.gov (United States)

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.

    2011-09-01

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  19. Status of the 1 MeV Accelerator Design for ITER NBI

    International Nuclear Information System (INIS)

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.

    2011-01-01

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D - at 1 MeV for 3600 sec. In order to realize the beam source, design and R and D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  20. Study on dosimetry systems for a few tens MeV/u ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takuji; Sunaga, Hiromi; Takizawa, Haruki; Tachibana, Hiroyuki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A combined measurement system consisting of a total calorimeter, a Faraday cup and thin film dosimeters have been developed and tested using a simultaneous irradiation apparatus to measure absorbed dose for a few tens MeV/u ion beams of the TIARA AVF cyclotron. (author)

  1. Laser alignment measurement model with double beam

    Science.gov (United States)

    Mo, Changtao; Zhang, Lili; Hou, Xianglin; Wang, Ming; Lv, Jia; Du, Xin; He, Ping

    2012-10-01

    Double LD-Double PSD schedule.employ a symmetric structure and there are a laser and a PSD receiver on each axis. The Double LD-Double PSD is used, and the rectangular coordinate system is set up by use of the relationship of arbitrary two points coordinates, and then the parameter formula is deduced by the knowledge of solid geometry. Using the data acquisition system and the data processing model of laser alignment meter with double laser beam and two detector , basing on the installation parameter of the computer, we can have the state parameter between the two shafts by more complicated calculation and correction. The correcting data of the four under chassis of the adjusted apparatus moving on the level and the vertical plane can be calculated using the computer. This will instruct us to move the apparatus to align the shafts.

  2. Dynamics of infrared multiphonon dissociation of SF6 by molecular beam method

    International Nuclear Information System (INIS)

    Grant, E.R.; Coggiola, M.J.; Lee, Y.T.; Schulz, P.A.; Shen, Y.R.

    1977-01-01

    A crossed molecular beam apparatus has been adapted to study the dynamics of excitation and dissociation of polyatomic molecules in intense IR laser fields. Initial experiments have involved the study of the dissociation of SF 6 by CO 2 laser radiation at 10.6 μm. A molecular beam of SF 6 was formed by supersonic expansion using three stages of differential pumping. A grating tuned pulsed CO 2 TEA laser was used as the excitation source. The laser beam was focused by a 25 cm focal length ZnSe lens, and crossed the molecular beam near its focal point. The fragments produced by multiphonon dissociation of SF 6 within the small interaction region were detected as a function of recoil angle and velocity. (Auth.)

  3. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.; Inayat, Salman Bin; Smith, Casey Eben

    2013-01-01

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  4. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.

    2013-08-08

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  5. CASTING METHOD AND APPARATUS

    Science.gov (United States)

    Gray, C.F.; Thompson, R.H.

    1958-10-01

    An improved apparatus for the melting and casting of uranium is described. A vacuum chamber is positioned over the casting mold and connected thereto, and a rod to pierce the oxide skin of the molten uranium is fitted into the bottom of the melting chamber. The entire apparatus is surrounded by a jacket, and operations are conducted under a vacuum. The improvement in this apparatus lies in the fact that the top of the melting chamber is fitted with a plunger which allows squeezing of the oxide skin to force out any molten uranium remaining after the skin has been broken and the molten charge has been cast.

  6. Search for Decays of Heavy Neutrinos with the PS Beam

    CERN Multimedia

    2002-01-01

    The experiment searches for neutrino decay, primarily into the e|+e|-@n^e and @g@g@n^e modes. Neutrino masses in the region between 1 and 400~MeV will be explored. The beam used is the neutrino PS beam used for the oscillation experiments. The apparatus consists of a decay volume @=30~m long and a calorimeter @=8~radiation lengths thick and @=20~m|2 in surface. The detectors are flash-tube modules of the type developed at Saclay for the proton-stability experiment. Scintillator hodoscopes give the timing information necessary for the trigger logic and background rejection.

  7. A portable Compton spectrometer for clinical X-ray beams in the energy range 20-150 keV

    International Nuclear Information System (INIS)

    Vieira, A.A.; Linke, A.; Yoshimura, E.M.; Terini, R.A.; Herdade, S.B.

    2011-01-01

    Primary beam spectra were obtained for an X-ray industrial equipment (40-150 kV), and for a clinical mammography apparatus (25-35 kV) from beams scattered at angles close to 90 o , measured with a CdTe Compton spectrometer. Actual scattering angles were determined from the Compton energy shift of characteristic X-rays or spectra end-point energy. Evaluated contribution of coherent scattering amounts to more than 15% of fluence in mammographic beams. This technique can be used in clinical environments.

  8. Self-propelled pulse X-ray apparatus Sirena-1

    International Nuclear Information System (INIS)

    Danil'chenko, N.T.; Ershov, L.S.; Il'chenko, A.V.; Krasil'nikov, S.B.; Kristalinskij, A.L.; Lozovoj, L.N.; Markov, S.N.; Morgovskij, L.Ya.

    1984-01-01

    The structure and specifications of a self-propelled pulse X-ray apparatus ''Sirena-1'' for testing oilt and gas pipelines welded joints are described. The apparatus is designed on the base of pulse X-ray apparatus MIRA. Apparatus control is realized by means of the 137 Cs source or manual control desk. The apparatus ensures perfect control sensitivity

  9. Encephalographic apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    An X-ray apparatus is described for determining the size and location of brain tumours by tomography during pneumoencephalography. The apparatus comprises an image recording device arranged opposite an X-ray source and a frame mounted on a tiltable patient table and rotatable with respect to the table. A patient support is arranged in the frame and is rotatable with respect to the frame. Air injected into the patients' spinal column travels up into the brain and displaces some of the cerebral fluid. Tomographic X-ray exposures are made of the air bubble which moves around in the brain cavities as the patient is rotated. (U.K.)

  10. Positioning calibration apparatus for transducers employed in nuclear reactor vessel inspection apparatus

    International Nuclear Information System (INIS)

    Elsner, H.J.

    1979-01-01

    Calibration apparatus for verifying the position and orientation of transducers used in nuclear reactor vessel inspection apparatus is disclosed. A tank, filled with water, the operating inspection medium, is fitted with a movable mounting assembly adapted to securely accommodate a transducer and the mounting assembly in which it is normally secured during an inspection procedure. The tank is also provided with a slidably mounted target positioned therein at a predetermined distance from the target which is selected to avoid the distortion effects in the near field of the transducer response. The calibration apparatus can be used to check the normal transducer mounting for either perpendicularity or angular orientation by moving the tank's mounting assembly via a lead screw with which it is threadingly engaged. 6 claims

  11. PROJECTED MOLECULAR BEAM RESEARCH AT THE APPLIED PHYSICS LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Fristrom, R. M.

    1963-05-15

    An apparatus is described that is used in the study of elementary chemical reactions using the crossed molecular beam technique. A time-of-flight mass spectrometer is used as a detector and the velocity and angular distributions of the scattered species are measured directly. Schematic representation of the scope detector and the results of H + O/sub 2/ yields OH + O are given. (R.E.U.)

  12. Ice and Atoms: experiments with laboratory-based positron beams

    International Nuclear Information System (INIS)

    Coleman, P G

    2011-01-01

    This short review presents results of new positron and positronium (Ps) experiments in condensed matter and atomic physics, as an illustration of the satisfying variety of scientific endeavours involving positron beams which can be pursued with relatively simple apparatus in a university laboratory environment. The first of these two studies - on ice films - is an example of how positrons and Ps can provide new insights into an important system which has been widely interrogated by other techniques. The second is an example of how simple positron beam systems can still provide interesting information - here on a current interesting fundamental problem in positron atomic physics.

  13. Ion and laser beam induced metastable alloy formation

    International Nuclear Information System (INIS)

    Westendorp, J.F.M.

    1986-01-01

    This thesis deals with ion and laser beam induced thin film mixing. It describes the development of an Ultra High Vacuum apparatus for deposition, ion irradiation and in situ analysis of thin film sandwiches. This chamber has been developed in close collaboration with High Voltage Engineering Europa. Thin films can be deposited by an e-gun evaporator. The atom flux is monitored by a quadrupole mass spectrometer. A comparison is made between ion beam and laser mixing of Cu with Au and Cu with W. The comparison provides a better understanding of the relative importance of purely collisional mixing, the role of thermodynamic effects and the contribution of diffusion due to defect generation and migration. (Auth.)

  14. Method and apparatus for measuring incombustible content of coal mine dust using gamma-ray backscatter

    International Nuclear Information System (INIS)

    Armstrong, F.E.

    1976-01-01

    A method and apparatus for measuring incombustible content of particulate material, particularly coal mine dust, include placing a sample of the particulate material in a container to define a pair of angularly oriented surfaces of the sample, directing an incident gamma-ray beam from a radiation source at one surface of the sample and detecting gamma-ray backscatter from the other surface of the sample with a radiation detector having an output operating a display to indicate incombustible content of the sample. The positioning of the source and detector along different surfaces of the sample permits the depth of the scattering volume defined by intersection of the incident beam and a detection cone from the detector to be selected such that variations in scattered radiation produced by variations in density of the sample are compensated by variations in the attenuation of the incident beam and the gamma-ray backscatter. 17 claims 5 figures

  15. Design of automatic tracking system for electron beam welding

    International Nuclear Information System (INIS)

    He Chengdan; Chinese Academy of Space Technology, Lanzhou; Li Heqi; Li Chunxu; Ying Lei; Luo Yan

    2004-01-01

    The design and experimental process of an automatic tracking system applied to local vacuum electron beam welding are dealt with in this paper. When the annular parts of an exactitude apparatus were welded, the centre of rotation of the electron gun and the centre of the annular weld are usually not superposed because of the machining error, workpiece's setting error and so on. In this teaching process, a little bundle of electron beam is used to scan the weld groove, the amount of the secondary electrons reflected from the workpiece is different when the electron beam scans the both sides and the centre of the weld groove. The difference can indicate the position of the weld and then a computer will record the deviation between the electron beam spot and the centre of the weld groove. The computer will analyze the data and put the data into the storage software. During the welding process, the computer will modify the position of the electron gun based on the deviation to make the electron beam spot centered on the annular weld groove. (authors)

  16. Manufacture of electrostatic septum for extracting particle beam

    International Nuclear Information System (INIS)

    Tokumoto, Shuichi

    1979-01-01

    In the main ring of National Laboratory for High Energy Physics, fast and slow extractions of accelerated proton beam are carried out by using electrostatic septa. The electrostatic septum is an apparatus to deflect beam by an electrostatic field, basically composed of a couple of parallel plate electrodes installed in a vacuum chamber. The electrostatic septum is required to satisfy the following two conditions: it must be very thin and flat to reduce the loss of extracted beam, and sufficiently high electric field must be generated to deflect beam in a limited length. The structure and manufacture of electrostatic septa are described. The manufacturing is explained by dividing a septum into an anode and a cathode, terminals introducing high voltage, a vacuum chamber, and high voltage circuit. The performance is also described on the experiments for no-beam condition and beam extraction. Beam extraction has been carried out over 1500 hours thus far, the average beam intensity being 1 x 10 12 ppp, and extraction efficiency more than 90%. There have been no serious failure to affect the performance nor metal wire breakage. They have satisfied their purposes, being used for both fast and slow extractions. Presently, lengthening of the electrostatic field region is being planned to increase the length of the septa to 1.5 m per unit. (Wakatsuki, Y.)

  17. X-ray apparatus

    International Nuclear Information System (INIS)

    Tomita, Chuji.

    1980-01-01

    A principal object of the present invention is to provide an X-ray apparatus which is such that the distance between the surface of the patient's table and the floor on which the apparatus is installed is sufficiently small in the horizontal position of the patient's table of the roentgenographical pedestal and that the rotation of the pedestal from the horizontal position to a tilted position and further to the vertical position of the table can be carried out smoothly. (auth)

  18. Nuclear core baffling apparatus

    International Nuclear Information System (INIS)

    Cooper, F.W. Jr.; Silverblatt, B.L.; Knight, C.B.; Berringer, R.T.

    1979-01-01

    An apparatus for baffling the flow of reactor coolant fluid into and about the core of a nuclear reactor is described. The apparatus includes a plurality of longitudinally aligned baffle plates with mating surfaces that allow longitudinal growth with temperature increases while alleviating both leakage through the aligned plates and stresses on the components supporting the plates

  19. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  20. Radioactive waste material melter apparatus

    Science.gov (United States)

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  1. Radioactive waste material melter apparatus

    International Nuclear Information System (INIS)

    Newman, D.F.; Ross, W.A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs

  2. Fractionation and rectification apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Sauerwald, A

    1932-05-25

    Fractionation and rectifying apparatus with a distillation vessel and a stirring tube, drainage tubes leading from its coils to a central collecting tube, the drainage tubes being somewhat parallel and attached to the outer half of the stirring tube and partly on the inner half of the central collecting tube, whereby distillation and rectification can be effected in a single apparatus.

  3. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.; Trevor, D.J.; Lee, Y.T.; Shirley, D.A.

    1981-01-01

    A high-resolution photoelectron spectrometer which uses molecular beam sampling is described. Photons from a rare-gas resonance lamp or UV laser are crossed with the beam from a differentially pumped supersonic nozzle source. The resulting photoelectrons are collected by an electrostatic analyzer of a unique design consisting of a 90 0 spherical sector preanalyzer, a system of lenses, and a 180 0 hemispherical deflector. A multichannel detection system based on dual microchannel plates with a resistive anode position encoder provides an increase in counting efficiency by a factor of 12 over the equivalent single channel detector. The apparatus has demonstrated an instrumental resolution of better than 10 meV FWHM, limited largely by the photon source linewidth. A quadrupole mass spectrometer is used to characterize the composition of the molecular beam. Extensive differential pumping is provided to protect the critical surfaces of the analyzer and mass spectrometer from contamination. Because of the near elimination of Doppler and rotational broadenings, the practical resolution is the highest yet obtained in molecular PES

  4. 42 CFR 84.74 - Apparatus containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Apparatus containers; minimum requirements. 84.74...-Contained Breathing Apparatus § 84.74 Apparatus containers; minimum requirements. (a) Apparatus may be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  5. Beam analysis spectrometer for relativistic heavy ions

    International Nuclear Information System (INIS)

    Schimmerling, W.; Subramanian, T.S.; McDonald, W.J.; Kaplan, S.N.; Sadoff, A.; Gabor, G.

    1983-01-01

    A versatile spectrometer useful for measuring the mass, charge, energy, fluence and angular distribution of primaries and fragments associated with relativistic heavy ion beams is described. The apparatus is designed to provide accurate physical data for biology experiments and medical therapy planning as a function of depth in tissue. The spectrometer can also be used to measure W, the average energy to produce an ion pair, range-energy, dE/dx, and removal cross section data of interest in nuclear physics. (orig.)

  6. Electron beam hardening type copper plate printing ink

    International Nuclear Information System (INIS)

    Kawamura, Eiji; Inoue, Mitsuo; Kusaki, Satoichiro

    1989-01-01

    Copper plate printing is the printing method of filling ink in the parts of concave printing elements on a type area, and transferring the ink to a base, and it is the feature that the ink in the printing element parts of a print rises. Copper plate prints show profound feeling, in addition, its effect of preventing forgery is high. This method is generally called engraving printing, and is used frequently for printing various bills and artistic prints. The electron beam irradiation apparatus installed in the laboratory of the Printing Bureau, Ministry of Finance, is an experimental machine of area beam type, and is so constructed as to do batch conveyance and web conveyance. As the ink in printing element parts rises, the offset at the delivery part of a printing machine becomes a problem. Electron beam is superior in its transparency, and can dry instantaneously to the inside of opaque ink. At 200 kV of acceleration voltage, the ink of copper plate prints can be hardened by electron beam irradiation. The dilution monomers as the vehicle for ink were tested for their dilution capability and the effect of electron beam hardening. The problem in the utilization of electron beam is the deterioration of papers, and the counter-measures were tested. (K.I.)

  7. Radioactive waste processing apparatus

    Science.gov (United States)

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  8. Development of an electron momentum spectrometer for time-resolved experiments employing nanosecond pulsed electron beam

    Science.gov (United States)

    Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun

    2018-03-01

    The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.

  9. Switched-mode power supply apparatus and method

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to a switched-mode power supply apparatus and a corresponding method. For an effective compensation of non-linearities caused by dead- time and voltage drops in the switching power amplifier of the apparatus, an apparatus is proposed comprising a switching power

  10. Switched-mode power supply apparatus and method

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to a switched-mode power supply apparatus and a corresponding method. For an effective compensation of non-linearities caused by dead-time and voltage drops in the switching power amplifier of the apparatus, an apparatus is proposed comprising a switching power

  11. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system.

    Science.gov (United States)

    Bowker, Colleen; Sain, Amanda; Shatalov, Max; Ducoste, Joel

    2011-02-01

    A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. An experimental evaluation of a new designed apparatus (NDA) for the rapid measurement of impaired motor function in rats.

    Science.gov (United States)

    Jarrahi, M; Sedighi Moghadam, B; Torkmandi, H

    2015-08-15

    Assessment of the ability of rat to balance by rotarod apparatus (ROTA) is frequently used as a measure of impaired motor system function. Most of these methods have some disadvantages, such as failing to sense motor coordination rather than endurance and as the sensitivity of the method is low, more animals are needed to obtain statistically significant results. We have designed and tested a new designed apparatus (NDA) to measure motor system function in rats. Our system consists of a glass box containing 4 beams which placed with 1cm distance between them, two electrical motors for rotating the beams, and a camera to record the movements of the rats. The RPM of the beams is adjustable digitally between 0 and 50 rounds per minute. We evaluated experimentally the capability of the NDA for the rapid measurement of impaired motor function in rats. Also we demonstrated that the sensitivity of the NDA increases by faster rotation speeds and may be more sensitive than ROTA for evaluating of impaired motor system function. Compared to a previous version of this task, our NDA provides a more efficient method to test rodents for studies of motor system function after impaired motor nervous system. In summary, our NDA will allow high efficient monitoring of rat motor system function and may be more sensitive than ROTA for evaluating of impaired motor system function in rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. EXTRACTION APPARATUS

    Science.gov (United States)

    Ballard, A.E.; Brigham, H.R.

    1958-10-28

    An apparatus whereby relatlvely volatile solvents may be contacted with volatile or non-volatile material without certaln attendant hazards is described. A suitable apparatus for handling relatively volatlle liqulds may be constructed comprising a tank, and a closure covering the tank and adapted to be securely attached to an external suppont. The closure is provided with a rigidly mounted motor-driven agitator. This agitator is connected from the driving motor lnto the lnterlor of the tank through a gland adapted to be cooled witb inert gas thereby eliminating possible hazard due to frictional heat. The closure is arranged so that the tank may be removed from it without materially dlsturbing the closure which, as described, carrles the motor driven agitator and other parts.

  14. Apparatus for ultrasonic nebulization

    International Nuclear Information System (INIS)

    Olson, K.W.; Haas, W.J. Jr.; Fassel, V.A.

    1978-01-01

    An improved apparatus is described for ultrasonic nebulization of liquid samples or suspensions in which the piezoelectric transducer is protected from chemical attack and erosion. The transducer is protected by being bonded to the inner surface of a glass plate which forms one end wall of a first hollow body provided with apparatus for circulating a fluid for cooling and stabilizing the transducer. The glass plate, which is one-half wavelength in thickness to provide an acoustically coupled outer nebulizing surface, seals an opening in a second hollow body which encloses an aerosol mixing chamber. The second body includes apparatus for delivering the sample solution to the nebulizing surface, a gas inlet for providing a flow of carrier gas for transporting the aerosol of the nebulized sample and an aerosol outlet

  15. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, Paul; Wihbey, Joseph [Physics Department, The College of the Holy Cross, Worcester, Massachusetts 01610 (United States)

    2016-09-15

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  16. Precision atomic beam density characterization by diode laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Oxley, Paul; Wihbey, Joseph

    2016-01-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 −5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm −3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  17. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  18. Production of pulsed atomic oxygen beams via laser vaporization methods

    International Nuclear Information System (INIS)

    Brinza, D.E.; Coulter, D.R.; Liang, R.H.; Gupta, A.

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P/sub J/) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus

  19. Positron beams: The journey from fundamental physics to industrial application

    International Nuclear Information System (INIS)

    Coleman, P.G.

    2002-01-01

    Monoenergetic beams of positrons developed for fundamental atomic physics experiments have evolved - via basic and applied research in condensed matter physics and chemistry - to a phase in which possibilities for commercial exploitation are becoming apparent. The evolution of positron beam technology, from table-top laboratory-based apparatus with positrons of energies controllable in the 10 0 -10 2 eV energy range and beam intensities of ∼1 s -1 , to systems capable of delivering positrons of energies from 0.02 eV to MeV at intensities as high as 10 8 s -1 , has been both steady and saltatory. The journey from fundamental research to industrial application is a classic example of scientific development; a brief summary of steps on the way is followed by an example in which an attempt is being made to harness the efficacy of positron beams applied to defect spectroscopy of semiconductor structures to create an instrument of value to the ion implantation industry

  20. Active core profile and transport modification by application of ion Bernstein wave power in the Princeton Beta Experiment-Modification

    Science.gov (United States)

    LeBlanc, B.; Batha, S.; Bell, R.; Bernabei, S.; Blush, L.; de la Luna, E.; Doerner, R.; Dunlap, J.; England, A.; Garcia, I.; Ignat, D.; Isler, R.; Jones, S.; Kaita, R.; Kaye, S.; Kugel, H.; Levinton, F.; Luckhardt, S.; Mutoh, T.; Okabayashi, M.; Ono, M.; Paoletti, F.; Paul, S.; Petravich, G.; Post-Zwicker, A.; Sauthoff, N.; Schmitz, L.; Sesnic, S.; Takahashi, H.; Talvard, M.; Tighe, W.; Tynan, G.; von Goeler, S.; Woskov, P.; Zolfaghari, A.

    1995-03-01

    Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) [Phys. Fluids B 2, 1271 (1990)] tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH-assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large ∇ne, ∇Te, ∇νφ, and ∇Ti, delimiting the confinement zone. This regime is reminiscent of the H(high) mode, but with a confinement zone moved inward. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhances NBI core deposition and increases nuclear reactivity. An increase in central Ti results from χi reduction (compared to the H mode) and better beam penetration. Bootstrap current fractions of up to 0.32-0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma.

  1. Active core profile and transport modification by application of ion Bernstein wave power in the Princeton Beta Experiment-Modification

    International Nuclear Information System (INIS)

    LeBlanc, B.; Batha, S.; Bell, R.; Bernabei, S.; Blush, L.; de la Luna, E.; Doerner, R.; Dunlap, J.; England, A.; Garcia, I.; Ignat, D.; Isler, R.; Jones, S.; Kaita, R.; Kaye, S.; Kugel, H.; Levinton, F.; Luckhardt, S.; Mutoh, T.; Okabayashi, M.; Ono, M.; Paoletti, F.; Paul, S.; Petravich, G.; Post-Zwicker, A.; Sauthoff, N.; Schmitz, L.; Sesnic, S.; Takahashi, H.; Talvard, M.; Tighe, W.; Tynan, G.; von Goeler, S.; Woskov, P.; Zolfaghari, A.

    1995-01-01

    Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) [Phys. Fluids B 2, 1271 (1990)] tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH-assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large ∇n e , ∇T e , ∇ν φ , and ∇T i , delimiting the confinement zone. This regime is reminiscent of the H(high) mode, but with a confinement zone moved inward. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhances NBI core deposition and increases nuclear reactivity. An increase in central T i results from χ i reduction (compared to the H mode) and better beam penetration. Bootstrap current fractions of up to 0.32--0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma

  2. Active core profile and transport modification by application of Ion Bernstein Wave power in PBX-M

    International Nuclear Information System (INIS)

    LeBlanc, B.; Bell, R.

    1995-01-01

    Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large triangledown n e , triangledown T e , triangledown v phi , and triangledown T i , delimiting the confinement zone. This regime is reminiscent of the H(high)-mode but with a confinement zone moved inwards. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhanced NBI core deposition and increases nuclear reactivity. An increase in central T i results from χ i reduction (compared to H-mode) and better beam penetration. Bootstrap current fractions of up to 0.32--0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma

  3. Test sample handling apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    A test sample handling apparatus using automatic scintillation counting for gamma detection, for use in such fields as radioimmunoassay, is described. The apparatus automatically and continuously counts large numbers of samples rapidly and efficiently by the simultaneous counting of two samples. By means of sequential ordering of non-sequential counting data, it is possible to obtain precisely ordered data while utilizing sample carrier holders having a minimum length. (U.K.)

  4. Infrared microscope inspection apparatus

    Science.gov (United States)

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  5. The COMPASS Setup for Physics with Hadron Beams

    CERN Document Server

    Abbon, Ph.; Akhunzyanov, R.; Alexandrov, Yu.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Ciliberti, P.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Cotte, D.; Crespo, M.L.; Curiel, Q.; Dafni, T.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Desforge, D.; Dinkelbach, A.M.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Durand, D.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Gatignon, L.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giganon, A.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Gregori, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Hoppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kroumchtein, Z.V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Menon, G.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Moinester, M.A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, Ana Sofia; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesaro, G.; Pesaro, V.; Peshekhonov, D.V.; Pires, C.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Reymond, J-M.; Rocco, E.; Rossiyskaya, N.S.; Rousse, J.Y.; Ryabchikov, D.I.; Rychter, A.; Samartsev, A.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Weitzel, Q.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-01-01

    The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successfully used with positive and negative hadron beams and with liquid hydrogen and solid nuclear targets. This article describes the new and upgraded detectors and auxiliary equipment, outlines the reconstruction procedures used, and summarises the general performance of the setup.

  6. Molecular beam photoionization and gas-surface scattering

    International Nuclear Information System (INIS)

    Ceyer, S.T.

    1979-09-01

    The energetics of the ethylene ion-molecule reactions was investigated in more detail than previously possible in two body collision experiments by photoionization of the neutral van der Waals ethylene dimer. The stability of the (C 2 H 4 ) + C 2 H 4 ion-molecule collision complex has been determined to be 18.2 +- 0.5 kcal. The highest potential barriers along the reaction coordinate for decomposition of this collision complex into C 4 H 7 + + H and C 3 H 5 + + CH 3 have been determined to be 0 +- 1.5 and 8.7 +- 1.5 kcal. In a similar manner, the energetics of the solvated ethylene dimer ion was investigated by the photoionization of the ethylene trimer. The absolute proton affinity of NH 3 (203.6 +- 1.3 kcal/mole) and the proton solvation energies by more than one NH 3 have been determined by molecular beam photoionization. In addition, the NH 3 + -NH 3 interaction energy (0.79 +- 0.05 eV) was measured by photoionization of the neutral van der Waals dimer. These experiments have shown that photoionization of van der Waals clusters is a very powerful method of determining the energetics of gas phase proton solvation. The scattering of helium atomic beams from a high Miller index platinum surface that exhibits ordered, periodic steps on the atomic scale to probe the effect of atomic steps on the scattering distribution is explored. Rainbow scattering is observed when the step edges are perpendicular to the incident helium atoms. The design, construction and operation of a beam-surface scattering apparatus are described. The first data obtained in this apparatus are presented and the interesting dynamical aspects of the oxidation of D, D 2 and CO are discussed. 75 references

  7. Improvements to the APEX apparatus

    International Nuclear Information System (INIS)

    Ahmad, I.; Back, B.B.; Betts, R.R.

    1995-01-01

    A number of technical issues led us to rework extensively the APEX apparatus in summer 1994. During the earlier runs, a significant fraction of the 432 silicon detector elements showed degraded resolution such that they had to be excluded from the final analysis in software. The effect of this is to reduce the efficiency of APEX and possibly also to introduce holes in the acceptance which, for some perhaps exotic scenarios, might reduce the acceptance to an unacceptably low level. Also, the energy thresholds below which it is not possible to generate timing information from the silicon detectors, were high enough that the low-energy acceptance of APEX was compromised to a significant extent. The origins of these difficulties were in part due to degraded performance of the silicon detectors themselves, problems with the silicon cooling systems and electronics problems. Both silicon arrays were disassembled and sub-standard detectors replaced, all detectors were also cleaned with the result that all detectors now performed at the specified values of leakage current. The silicon cooling systems were disassembled and rebuilt with the result that many small leaks were fixed. Defective electronics channels were repaired or replaced. The rotating target wheel was also improved with the installation of new bearings and a computer-controlled rotation and readout system. The rebuilt wheel can now run at speeds up to 900 rpm for weeks on end without breakdown. The target wheel and associated beam sweeping now work extremely well so that low-melting-point targets such as Pb and In can be used in quite intense beams without melting

  8. Transport in Auxiliary Heated NSTX Discharges

    International Nuclear Information System (INIS)

    LeBlanc, B.P.; Bell, M.G.; Bell, R.E.; Bitte, M.L.; Bourdelle, C.; Gates, D.A.; Kaye, S.M.; Maingi, R.; Menard, J.E.; Mueller, D.; Ono, M.; Paul, S.F.; Redi, M.H.; Roquemore, A.L.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Synakowski, E.J.; Soukhanovskii, V.A.; Wilson, J.R.

    2003-01-01

    The NSTX spherical torus (ST) provides a unique platform to investigate magnetic confinement in auxiliary-heated plasmas at low aspect ratio. Auxiliary power is routinely coupled to ohmically heated plasmas by deuterium neutral-beam injection (NBI) and by high-harmonic fast waves (HHFW) launch. While theory predicts both techniques to preferentially heat electrons, experiment reveals the electron temperature is greater than the ion temperature during HHFW, but the electron temperature is less than the ion temperature during NBI. In the following we present the experimental data and the results of transport analyses

  9. Bi-planal angiographic apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Angiography apparatus has an L-arm rotatable about a vertical axis and a U-arm mounted on the upstanding section of the L-arm for rotation about a horizontal axis. An x-ray source is at one end of the U-arm and image receptors including an image intensifier and a first film changer are at the other end to enable making posterior-anterior and anterior-posterior x-ray views at various angles relative to a patient who is located on the isocenter which is the intersection of the horizontal, vertical and x-ray beam axis. A second film changer for making lateral generally isocentric views is mounted within the U-arm on a stand that is movable along the horizontal U-arm axis to allow obtaining various distances between the image plane of the film and another x-ray source. The lateral changer is on a mechanism for shifting it vertically and longitudinally a limited amount and for rotating it with a motor so this changer will stay level until the U-arm has been tilted through a pre-determined angle. After this angle is reached motorized rotation is discontinued and the lateral changer is allowed to rotate with the U-arm. (Auth.)

  10. Accounting of the Power Balance for Neutral-beam heated H-Mode Plasmas in NSTX

    International Nuclear Information System (INIS)

    Paul, S.F.; Maingi, R.; Soukhanovskii, V.; Kaye, S.M.; Kugel, H.

    2004-01-01

    A survey of the dependence of power balance on input power, shape, and plasma current was conducted for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Measurements of heat to the divertor strike plates and divertor and core radiation were taken over a wide range of plasma conditions. The different conditions were obtained by inducing a L-mode to H-mode transition, changing the divertor configuration [lower single null (LSN) vs. double-null (DND)] and conducting a NBI power scan in H-mode. 60-70% of the net input power is accounted for in the LSN discharges with 20% of power lost as fast ions, 30-45% incident on the divertor plates, up to 10% radiated in the core, and about 12% radiated in the divertor. In contrast, the power accountability in DND is 85-90%. A comparison of DND and LSN data show that the remaining power in the LSN is likely to be directed to the upper divertor

  11. Radiation collimator for use with high energy radiation beams

    International Nuclear Information System (INIS)

    Malak, S.P.

    1978-01-01

    A collimator is described for use with a beam of radiation, and in particular, for use in controlling the cross-sectional size and shape of the radiation beam and intercepting undesired off-focus radiation in an x-ray apparatus. The collimator is positioned adjacent to the source of radiation and embodies a plurality longitudinally extending leaves pivotally mounted on and between two supports, the leaves move about their pivots to close overlapping relation to define a hollow cone. The cone defines an aperture at its narrow end which can be adjusted in size and shape by rotation of the two supports which are adaptable to being moved one relative to the other, to cause an expansion or contraction of the hollow cone and correspondingly an increase or decrease of the cross-sectional size and/or shape of the radiation beam passing through the aperture

  12. First events from the CNGS neutrino beam detected in the OPERA experiment

    CERN Document Server

    Acquafredda, R.; Ambrosio, M.; Anokhina, A.; Aoki, S.; Ariga, A.; Arrabito, L.; Autiero, D.; Badertscher, A.; Bergnoli, A.; Bersani Greggio, F.; Besnier, M.; Beyer, M.; Bondil-Blin, S.; Borer, K.; Boucrot, J.; Boyarkin, V.; Bozza, C.; Brugnera, R.; Buontempo, S.; Caffari, Y.; Campagne, Jean-Eric; Carlus, B.; Carrara, E.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chon-Sen, N.; Chukanov, A.; Ciesielski, R.; Consiglio, L.; Cozzi, M.; Dal Corso, F.; D'Ambrosio, N.; Damet, J.; De Lellis, G.; Declais, Y.; Descombes, T.; De Serio, M.; Di Capua, F.; Di Ferdinando, D.; Di Giovanni, A.; Di Marco, N.; Di Troia, C.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dulach, B.; Dusini, S.; Ebert, J.; Enikeev, R.; Ereditato, A.; Esposito, L.S.; Fanin, C.; Favier, J.; Felici, G.; Ferber, T.; Fournier, L.; Franceschi, A.; Frekers, D.; Fukuda, T.; Fukushima, C.; Galkin, V.I.; Galkin, V.A.; Gallet, R.; Garfagnini, A.; Gaudiot, G.; Giacomelli, G.; Giarmana, O.; Giorgini, M.; Girard, L.; Girerd, C.; Goellnitz, C.; Goldberg, J.; Gornoushkin, Y.; Grella, G.; Grianti, F.; Guerin, C.; Guler, M.; Gustavino, C.; Hagner, C.; Hamane, T.; Hara, T.; Hauger, M.; Hess, M.; Hoshino, K.; Ieva, M.; Incurvati, M.; Jakovcic, K.; Janicsko Csathy, J.; Janutta, B.; Jollet, C.; Juget, F.; Kazuyama, M.; Kim, S.H.; Kimura, M.; Knuesel, J.; Kodama, K.; Kolev, D.; Komatsu, M.; Kose, U.; Krasnoperov, A.; Kreslo, I.; Krumstein, Z.; Laktineh, I.; de La Taille, C.; Le Flour, T.; Lieunard, S.; Ljubicic, A.; Longhin, A.; Malgin, A.; Manai, K.; Mandrioli, G.; Mantello, U.; Marotta, A.; Marteau, J.; Martin-Chassard, G.; Matveev, V.; Messina, M.; Meyer, L.; Micanovic, S.; Migliozzi, P.; Miyamoto, S.; Monacelli, Piero; Monteiro, I.; Morishima, K.; Moser, U.; Muciaccia, M.T.; Mugnier, P.; Naganawa, N.; Nakamura, M.; Nakano, T.; Napolitano, T.; Natsume, M.; Niwa, K.; Nonoyama, Y.; Nozdrin, A.; Ogawa, S.; Olchevski, A.; Orlandi, D.; Ossetski, D.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, L.; Pellegrino, L.; Pessard, H.; Pilipenko, V.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Publichenko, P.; Raux, L.; Repellin, J.P.; Roganova, T.; Romano, G.; Rosa, G.; Rubbia, A.; Ryasny, V.; Ryazhskaya, O.; Ryzhikov, D.; Sadovski, A.; Sanelli, C.; Sato, O.; Sato, Y.; Saveliev, V.; Savvinov, N.; Sazhina, G.; Schembri, A.; Schmidt Parzefall, W.; Schroeder, H.; Schutz, H.U.; Scotto Lavina, L.; Sewing, J.; Shibuya, H.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J.S.; Spaeti, R.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strolin, Paolo Emilio; Sugonyaev, V.; Takahashi, S.; Tereschenko, V.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tikhomirov, I.; Tolun, P.; Toshito, T.; Tsarev, V.; Tsenov, R.; Ugolino, U.; Ushida, N.; Van Beek, G.; Verguilov, V.; Vilain, P.; Votano, L.; Vuilleumier, J.L.; Waelchli, T.; Waldi, R.; Weber, M.; Wilquet, G.; Wonsak, B.; Wurth, R.; Wurtz, J.; Yakushev, V.; Yoon, C.S.; Zaitsev, Y.; Zamboni, I.; Zimmerman, R.

    2006-01-01

    The OPERA neutrino detector at the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in appearance mode, through the study of nu_mu to nu_tau oscillations. The apparatus consists of a lead/emulsion-film target complemented by electronic detectors. It is placed in the high-energy, long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source. In August 2006 a first run with CNGS neutrinos was successfully conducted. A first sample of neutrino events was collected, statistically consistent with the integrated beam intensity. After a brief description of the beam and of the various sub-detectors, we report on the achievement of this milestone, presenting the first data and some analysis results.

  13. METHOD AND APPARATUS FOR TRAPPING IONS IN A MAGNETIC FIELD

    Science.gov (United States)

    Luce, J.S.

    1962-04-17

    A method and apparatus are described for trapping ions within an evacuated container and within a magnetic field utilizing dissociation and/or ionization of molecular ions to form atomic ions and energetic neutral particles. The atomic ions are magnetically trapped as a result of a change of charge-to- mass ratio. The molecular ions are injected into the container and into the path of an energetic carbon arc discharge which dissociates and/or ionizes a portion of the molecular ions into atomic ions and energetic neutrals. The resulting atomic ions are trapped by the magnetic field to form a circulating beam of atomic ions, and the energetic neutrals pass out of the system and may be utilized in a particle accelerator. (AEC)

  14. Diagnostic tools used in the calibration and verification of protein crystallography synchrotron beam lines and apparatus

    International Nuclear Information System (INIS)

    Rotella, F.J.; Alkire, R.W.; Duke, N.E.C.; Molitsky, M.J.

    2011-01-01

    Diagnostic tools have been developed for use at the Structural Biology Center beam lines at the Advanced Photon Source. These tools are used in the calibration and operating verification of these synchrotron X-ray beam lines and constituent equipment.

  15. Integrating supervision, control and data acquisition—The ITER Neutral Beam Test Facility experience

    Energy Technology Data Exchange (ETDEWEB)

    Luchetta, A., E-mail: adriano.luchetta@igi.cnr.it; Manduchi, G.; Taliercio, C.; Breda, M.; Capobianco, R.; Molon, F.; Moressa, M.; Simionato, P.; Zampiva, E.

    2016-11-15

    Highlights: • The paper describes the experience gained in the integration of different systems for the control and data acquisition system of the ITER Neutral Beam Test Facility. • It describes the way the different frameworks have been integrated. • It reports some lessons learnt during system integration. • It reports some authors’ considerations about the development the ITER CODAC. - Abstract: The ITER Neutral Beam (NBI) Test Facility, under construction in Padova, Italy consists in the ITER full scale ion source for the heating neutral beam injector, referred to as SPIDER, and the full size prototype injector, referred to as MITICA. The Control and Data Acquisition System (CODAS) for SPIDER has been developed and is going to be in operation in 2016. The system is composed of four main components: Supervision, Slow Control, Fast Control and Data Acquisition. These components interact with each other to carry out the system operation and, since they represent a common pattern in fusion experiments, software frameworks have been used for each (set of) component. In order to reuse as far as possible the architecture developed for SPIDER, it is important to clearly define the boundaries and the interfaces among the system components so that the implementation of any component can be replaced without affecting the overall architecture. This work reports the experience gained in the development of SPIDER components, highlighting the importance in the definition of generic interfaces among component, showing how the specific solutions have been adapted to such interfaces and suggesting possible approaches for the development of other ITER subsystems.

  16. Integrating supervision, control and data acquisition—The ITER Neutral Beam Test Facility experience

    International Nuclear Information System (INIS)

    Luchetta, A.; Manduchi, G.; Taliercio, C.; Breda, M.; Capobianco, R.; Molon, F.; Moressa, M.; Simionato, P.; Zampiva, E.

    2016-01-01

    Highlights: • The paper describes the experience gained in the integration of different systems for the control and data acquisition system of the ITER Neutral Beam Test Facility. • It describes the way the different frameworks have been integrated. • It reports some lessons learnt during system integration. • It reports some authors’ considerations about the development the ITER CODAC. - Abstract: The ITER Neutral Beam (NBI) Test Facility, under construction in Padova, Italy consists in the ITER full scale ion source for the heating neutral beam injector, referred to as SPIDER, and the full size prototype injector, referred to as MITICA. The Control and Data Acquisition System (CODAS) for SPIDER has been developed and is going to be in operation in 2016. The system is composed of four main components: Supervision, Slow Control, Fast Control and Data Acquisition. These components interact with each other to carry out the system operation and, since they represent a common pattern in fusion experiments, software frameworks have been used for each (set of) component. In order to reuse as far as possible the architecture developed for SPIDER, it is important to clearly define the boundaries and the interfaces among the system components so that the implementation of any component can be replaced without affecting the overall architecture. This work reports the experience gained in the development of SPIDER components, highlighting the importance in the definition of generic interfaces among component, showing how the specific solutions have been adapted to such interfaces and suggesting possible approaches for the development of other ITER subsystems.

  17. Design study of a neutral beam injection system for the JAERI Experimental Fusion Reactor (JXFR)

    International Nuclear Information System (INIS)

    1977-10-01

    Design study has been made of a 200 kV, 45 MW D 0 neutral beam injection system for the JAERI Experimental Fusion Reactor (JXFR) covering the following: determination of the ion source specifications, design of components such as ion source with extraction electrodes, energy converter, cryopump and cooling system, and estimations of the energy conversion efficiency, overall power efficiency and total power required for operation of the NBI system, and also a hydrogen isotope separation method using cryo-sorption pumps. Optimizations and parameter studies of the neutralizing cell length, gas flow rate, operating pressure of ion sources, total pumping speed and pressure of energy converters are made in the design study based on reactor plasma requirements. Hollow cathode ion sources are proposed because of the extended operation time at low gas pressure (about 4.5 x 10 -3 Torr) and the high gas efficiency (40%). Life of the extraction electrodes is determined by blistering due to deuterium ions. Fast neutron radiation damage is relatively small. In-line direct converters with grounded recovery electrodes and neutralizing cells floated at negative potential -190 kV are used to recover residual deuterium ion energy without interrupting the neutral beam trajectories. Energy conversion efficiency of 80% and overall power efficiency of about 40% are obtained. (auth.)

  18. Method and apparatus for generating neutrons

    International Nuclear Information System (INIS)

    Cranberg, L.

    1978-01-01

    An apparatus and method for generating high-energy neutrons are disclosed. Neutron emissive target material is deposited on one or more surfaces on a rotatable, hollow, toroidal target support. The surfaces are bombarded by beams of ions of generally rectangular cross section, so that when the bombarded surfaces are viewed end-wise, a compact, generally square source of neutrons is provided, such as is required for collimation. A combination of molecular and atomic ions emitted from at least one conventional accelerator are passed through a magnetic field for the purpose of separating the ions into one homogeneous group of atomic and one homogeneous group of molecular ions before the ions are allowed to impinge on the target surfaces. One accelerator directs ions to each target surface as the target rotates. Coolant is directed through a cavity within the toroidal support for the purpose of cooling the target support and target material. A refrigerated surface is placed in close proximity to the target surface to condense vapors which might prove harmful to the target and for thermally cooling said target

  19. A linear radiofrequency quadrupole ion trap for the cooling and bunching of radioactive ion beams

    CERN Document Server

    Kellerbauer, A G; Dilling, J; Henry, S; Herfurth, F; Kluge, H J; Lamour, E; Moore, R B; Scheidenberger, C; Schwarz, S; Sikler, G; Szerypo, J

    2002-01-01

    A linear radiofrequency quadrupole ion guide and beam buncher has been installed at the ISOLTRAP mass spectrometry experiment at the ISOLDE facility at CERN. The apparatus is being used as a beam cooling, accumulation, and bunching system. It operates with a buffer gas that cools the injected ions and converts the quasicontinuous 60- keV beam from the ISOLDE facility to 2.5-keV beam pulses with improved normalized transverse emittance. Recent measurements suggest a capture efficiency of the ion guide of up to 40% and a cooling and bunching efficiency of at least 12% which is expected to still be increased. The improved ISOLTRAP setup has so far been used very successfully in three on-line experiments. (12 refs).

  20. Apparatus to measure adsorption of condensable solvents on technical surfaces by photothermal deflection

    Science.gov (United States)

    Plimmer, M. D.; du Colombier, D.; Iraqi Houssaini, N.; Silvestri, Z.; Pinot, P.; Hannachi, R.

    2012-11-01

    This article describes an instrument for the measurement of the mirage effect as a tool to determine the molar adsorption per unit surface area Y1 of condensable solvents in the presence of a non-condensable carrier gas. The present apparatus is a much improved version of previous prototypes developed in our laboratory and elsewhere with a higher surface bake-out temperature (150 °C rather than 40 °C), lower residual vacuum (3 Pa versus 100 Pa), greater sample surface (40 mm diameter instead of 10 mm), more powerful optical pump beam (150 W cf. 50 W), and larger saturated vapour preparation volume (4 L instead of 1 L). The new set-up also includes the in situ monitoring of the surface via a reflected HeNe laser beam for the real-time detection of the onset of condensation. Here, we give a detailed description of the various components, outline the experimental procedure, show typical results, and suggest some straightforward improvements.

  1. Determining shear modulus of thin wood composite materials using a cantilever beam vibration method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; John F. Hunt; Haicheng Yan

    2016-01-01

    Shear modulus (G) of thin wood composite materials is one of several important indicators that characterizes mechanical properties. However, there is not an easy method to obtain this value. This study presents the use of a newly developed cantilever beam free vibration test apparatus to detect in-plane G of thin wood composite...

  2. Support of nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Watarai, Tetsuo; Ito, Yutaka.

    1975-01-01

    Object: To integrally form a bed for a body for supporting a vacuum container, coil and the like and a bed for a current transformer for supporting the current transformer prior to installation thereof on the floor thereby facilitating assembly and installation. Structure: To provide a base common to a current transformer bed and a body bed without direct installation thereof on the floor. Prior to installation of the current transformer bed and body bed, they are fastened to the base by means of bolts and welded integrally, and the thus formed base is fixed to the floor by means of anchor bolts. Since the current transformer bed and the body bed are formed integrally through the common base, apparatus may easily be carried in and disassembling and re-assembling of apparatus become unnecessary when installed. Further, since the positional relation of the current transformer bed and body bed does not depend on accuracy at the time of installation but depends on accuracy when apparatus manufactured, the toroidal type nuclear fusion apparatus of good accuracy may be obtained. (Yoshihara, H.)

  3. Air-cleaning apparatus

    International Nuclear Information System (INIS)

    Howard, A.G.

    1981-01-01

    An air-cleaning, heat-exchange apparatus includes a main housing portion connected by means of an air inlet fan to the kitchen exhaust stack of a restaurant. The apparatus includes a plurality of heat exchangers through which a heat-absorptive fluid is circulated, simultaneously, by means of a suitable fluid pump. These heat exchangers absorb heat from the hot exhaust gas, out of the exhaust stack of the restaurant, which flows over and through these heat exchangers and transfers this heat to the circulating fluid which communicates with remote heat exchangers. These remote heat exchangers further transfer this heat to a stream of air, such as that from a cold-air return duct for supplementing the conventional heating system of the restaurant. Due to the fact that such hot exhaust gas is heavily grease laden , grease will be deposited on virtually all internal surfaces of the apparatus which this exhaust gas contacts. Consequently, means are provided for spraying these contacted internal surfaces , as well as the hot exhaust gas itself, with a detergent solution in which the grease is soluble, thereby removing grease buildup from these internal surfaces

  4. A Study on Test Technology to Diagnose the Power Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K H; Kang, Y S; Jeon, Y K; Lee, W Y; Kang, D S; Kyu, H S; Sun, J H; Jo, K H [Korea Electrotechnology Research Institute (Korea, Republic of); Jung, J S; Mun, Y T; Lee, K H; Jung, E H; Kim, J H [Korea Water Resources Corporation (Korea, Republic of)

    1997-02-01

    In this study, we have educated KOWACO(Korea Water Resources Corporation) specialists about the insulation diagnostic technology and trained them the insulation diagnostic test and estimation method of power apparatus. The main results of this study are as follows; A. Education of basic high-voltage engineering. B. Research of insulation characteristic and deterioration mechanism in power apparatus C. Discussion on high-voltage test standard specifications. D. Study on insulation deterioration diagnostics in power apparatus. E. Field testing of insulation diagnosis in power apparatus. F. Engineering of insulation diagnostic testing apparatus to diagnose power apparatus. KOWACO specialists are able to diagnose insulation diagnostic test of power apparatus through this study. As they have instruments to diagnose power apparatus, they can do the test and estimation of the power apparatus insulation diagnosis. (author). refs., figs., tabs.

  5. Apparatus Named after Our Academic Ancestors--I

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2010-01-01

    Let us now praise famous physicists, and the apparatus named after them, with apologies to the writer of Ecclesiastes. I once compiled a list of about 300 pieces of apparatus known to us as X's Apparatus. Some of the values of X are familiar, like Wheatstone and Kelvin and Faraday, but have you heard of Pickering or Rhumkorff or Barlow? In an…

  6. 21 CFR 886.4100 - Radiofrequency electrosurgical cautery apparatus.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiofrequency electrosurgical cautery apparatus... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4100 Radiofrequency electrosurgical cautery apparatus. (a) Identification. A radiofrequency electrosurgical cautery apparatus is an AC...

  7. Isomer beam elastic scattering: 26mAl(p, p) for astrophysics

    Science.gov (United States)

    Kahl, D.; Shimizu, H.; Yamaguchi, H.; Abe, K.; Beliuskina, O.; Cha, S. M.; Chae, K. Y.; Chen, A. A.; Ge, Z.; Hayakawa, S.; Imai, N.; Iwasa, N.; Kim, A.; Kim, D. H.; Kim, M. J.; Kubono, S.; Kwag, M. S.; Liang, J.; Moon, J. Y.; Nishimura, S.; Oka, S.; Park, S. Y.; Psaltis, A.; Teranishi, T.; Ueno, Y.; Yang, L.

    2018-01-01

    The advent of radioactive ground-state beams some three decades ago ultimately sparked a revolution in our understanding of nuclear physics. However, studies with radioactive isomer beams are sparse and have often required sophisticated apparatuses coupled with the technologies of ground-state beams due to typical mass differences on the order of hundreds of keV and vastly different lifetimes for isomers. We present an application of a isomeric beam of 26mAl to one of the most famous observables in nuclear astrophysics: galactic 26Al. The characteristic decay of 26Al in the Galaxy was the first such specific radioactivity to be observed originating from outside the Earth some four decades ago. We present a newly-developed, novel technique to probe the structure of low-spin states in 27Si. Using the Center for Nuclear Study low-energy radioisotope beam separator (CRIB), we report on the measurement of 26mAl proton resonant elastic scattering conducted with a thick target in inverse kinematics. The preliminary results of this on-going study are presented.

  8. Plastic coating on paper by electron beam irradiation

    International Nuclear Information System (INIS)

    Ametani, Kazuo; Tsuchiya, Mitsuaki; Sawai, Takeshi

    1984-01-01

    It has been known long since that the resin system of unsaturated polyester and vinylmonomer mixture cures by irradiation. Ford of USA for the first time industrialized the radiation curing reaction of resins for the coating of automobile parts. Thereafter, accompanying the development and technical advance of the low energy electron beam irradiation apparatus which is suitable to surface treatment such as coating and easy to handle and the development of resins, the electron beam curing method has become to be utilized for coating hardboard and wooden doors, coating automobile tire rims, adhering printing papers and others. The electron beam curing method has advantage such as energy conservation, resource saving and little pollution because solvent is not used, high production rate and small floor space. In glossing industry, for the purpose of developing the techniques to apply electron beam curing method to glazed paper production, the selection of the composition of resins suitable to glazed papers, the irradiating condition and the properties of cured films were examined. The films withstanding bending can be obtained at low dose with urethane group, ester group or the combination of monomers. (Kako, I.)

  9. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    International Nuclear Information System (INIS)

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the beam profile will be described

  10. On the NBI system for substantial current drive in a fusion power plant: Status and R and D needs for ion source and laser neutralizer

    International Nuclear Information System (INIS)

    Franzen, P.; Fantz, U.

    2014-01-01

    Highlights: • NBI is a candidate for a cw tokamak DEMO due to its high current drive efficiency. • The plug-in efficiency must be improved from the present 20–30% to more than 50%. • A suitable candidate is a photo neutralizer with almost 100% neutralization efficiency; basic feasibility studies are underway. • Cw operation with a large availability puts rather high demands on source operation with some safety margins, especially for the components with high power density loads (source back plate and extraction system). • Alternatives to the present use of cesium are under exploitations. - Abstract: The requirements for the heating and current drive systems of a fusion power plant will strongly depend on the DEMO scenario. The paper discusses the R and D needs for a neutral beam injection system — being a candidate due to the highest current drive efficiency — for the most demanding scenario, a steady state tokamak DEMO. Most important issues are the improvement of the wall-plug efficiency from the present ∼25% to the required 50–60% by improving the neutralization efficiency with a laser neutralizer system and the improvement of the reliability of the ion source operation. The demands on and the potential of decreasing the ion source operation pressure, as well as decreasing the amount of co-extracted electrons and backstreaming ions are discussed using the ITER requirements and solutions as basis. A further concern is the necessity of cesium for which either the cesium management must be improved or alternatives to cesium for the production of negative ions have to be identified

  11. Uranium dioxide calcining apparatus

    International Nuclear Information System (INIS)

    Cole, E.A.; Peterson, R.S.

    1978-01-01

    This invention relates to an improved continuous calcining apparatus for consistently and controllably producing from calcinable reactive solid compounds of uranium, such as ammonium diuranate, uranium dioxide (UO 2 ) having an oxygen to uranium ratio of less than 2.2. The apparatus comprises means at the outlet end of a calciner kiln for receiving hot UO 2 , means for cooling the UO 2 to a temperature of below 100 deg C and conveying the cooled UO 2 to storage or to subsequent UO 2 processing apparatus where it finally comes into contact with air, the means for receiving cooling and conveying being sealed to the outlet end of the calciner and being maintained full of UO 2 and so operable as to exclude atmospheric oxygen from coming into contact with any UO 2 which is at elevated temperatures where it would readily oxidize, without the use of extra hydrogen gas in said means. (author)

  12. Excitation of electrostatic ion cyclotron wave in electron beam plasma system

    International Nuclear Information System (INIS)

    Fukumura, Takashi; Takamoto, Teruo

    1984-01-01

    The electrostatic ion cyclotron waves excited in an electron beam plasma system was investigated. The excitation condition of the waves was calculated by using Harris type dispersion relation under some assumption, and its comparison with the experimental result was made. Beam plasma discharge is a kind of RF discharge, and it is caused by the waves generated by the interaction of electron beam with plasma. It was shown that electrostatic ion cyclotron waves seemed to be the most probable as excited waves. But the excitation mechanism of these waves has not been concretely investigated. In this study, the excitation condition of electrostatic ion cyclotron waves was calculated as described above. The experimental apparatus and the results of potential, electric field and ion saturation current in beam plasma, electron drift motion in azimuthal direction and the waves excited in beam plasma are reported. The frequency of oscillation observed in beam plasma corresponds to the harmonics or subharmonics of ion cyclotron frequency. The calculation of Harris type dispersion relation, the numerical calculation and the comparison of the experimental result with the calculated result are described. (Kako, I.)

  13. Designing of the Low Energy Beam Lines with Achromatic Condition in the RAON Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang; Jang, Ji-Ho; Jeon, Dong-O [Institute for Basic Science, Daejeon (Korea, Republic of)

    2017-01-15

    The RAON accelerator has been built to create and accelerate stable heavy-ion beams and rare isotope beams. The stable heavy-ion beams are generated by the superconducting electron cyclotron resonance ion source and accelerated by the low energy superconducting linac SCL1. The beams accelerated by the SCL1 are re-accelerated by the high energy superconducting linac SCL2 for the generation of rare isotope beams by using the in-flight fragmentation system or are put to use in the low energy experimental halls, which include the neutron science facility and the Korea Broad acceptance Recoil spectrometer and Apparatus after having passed through the low energy beam lines which have long deflecting sections. At the end of each beam line in the low energy experimental halls, the beams should meet the targets of the two facilities with the specific requirements satisfied. Namely, if the beam is to be sent safely and accurately to the targets and simultaneously, satisfy the requirements, an achromatic lattice design needs to be applied in each beam line. In this paper, we will present the lattice design of the low energy beam lines and describe the results of the beam dynamics simulations. In addition, the correction of the beam orbit, which is distorted by machine imperfections, will be discussed.

  14. 120-keV beam direct conversion system for TFTR injectors

    International Nuclear Information System (INIS)

    Hamilton, G.W.

    1976-01-01

    Several practical motivations exist for the development of beam direct conversion systems that are compatible with the injection systems of large experiments such as the Tokamak Fusion Test Reactor (TFTR). We present a preliminary design in which we analyze the most acute problems involved in scaling up existing designs and apparatus to fulfill TFTR requirements. Some of the questions addressed are the requirements for electron suppression, gas pumping, compactness, and power densities. A new idea is presented that allows for the handling of higher beam power. The gross savings in the capital cost of injector power supplies for the TFTR will be about $7.2 million, but the net savings will be somewhat less than this. This preliminary design has not yet revealed fundamental limitations with respect to the development of beam energy-recovery systems operating at high levels of current, voltage, and power densities

  15. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3x10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform region up to 15 kOe). In the experiments various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90 0 . From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5x10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. Thomson scattering of laser radiation indicated the presence of a comparatively cold plasma component with a temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of electrons under conditions in which pair collisions are minor are indicated. (author)

  16. A demonstration of magnetic field optimization in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, S.; Yamada, H. [National Inst. for Fusion Science, Toki, Gifu (Japan); Wakasa, A. [Hokkaido Univ., Graduate School of Engineering, Sapporo, Hokkaido (JP)] [and others

    2002-11-01

    An optimized configuration of the neoclassical transport and the energetic particle confinement to a level typical of so-called 'advanced stellarators' is found by shifting the magnetic axis position in LHD. Electron heat transport and NBI beam ion distribution are investigated in low-collisionality LHD plasma in order to study the magnetic field optimization effect on the thermal plasma transport and the energetic particle confinement. A higher electron temperature is obtained in the optimized configuration, and the transport analysis suggests a considerable effect of neoclassical transport on the electron heat transport assuming the ion-root level of radial electric field. Also a higher energetic ion distribution of NBI beam ions is observed showing the improvement of the energetic particle confinement. These obtained results support a future reactor design by magnetic field optimization in a non-axisymmetric configuration. (author)

  17. A demonstration of magnetic field optimization in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, S.; Yamada, H. [National Inst. for Fusion Science, Toki, Gifu (Japan); Wakasa, A. [Hokkaido Univ., Graduate School of Engineering, Sapporo, Hokkaido (JP)] [and others

    2002-10-01

    An optimized configuration of the neoclassical transport and the energetic particle confinement to a level typical of so-called 'advanced stellarators' is found by shifting the magnetic axis position in LHD. Electron heat transport and NBI beam ion distribution are investigated in low-collisionality LHD plasma in order to study the magnetic field optimization effect on the thermal plasma transport and the energetic particle confinement. A higher electron temperature is obtained in the optimized configuration, and the transport analysis suggests a considerable effect of neoclassical transport on the electron heat transport assuming the ion-root level of radial electric field. Also a higher energetic ion distribution of NBI beam ions is observed showing the improvement of the energetic particle confinement. These obtained results support a future reactor design by magnetic field optimization in a non-axisymmetric configuration. (author)

  18. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Science.gov (United States)

    2010-04-01

    ... apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add nitric oxide to gases that are to be breathed by a patient. The nitric oxide administration apparatus is to be used in conjunction with a ventilator or other breathing gas administration system. (b) Classification...

  19. Dosimeter charging apparatus

    International Nuclear Information System (INIS)

    Reuter, F.A.; Moorman, Ch.J.

    1985-01-01

    An apparatus for charging a dosimeter which has a capacitor connected between first and second electrodes and a movable electrode in a chamber electrically connected to the first electrode. The movable electrode deflects varying amounts depending upon the charge present on said capacitor. The charger apparatus includes first and second charger electrodes couplable to the first and second dosimeter electrodes. To charge the dosimeter, it is urged downwardly into a charging socket on the charger apparatus. The second dosimeter electrode, which is the dosimeter housing, is electrically coupled to the second charger electrode through a conductive ring which is urged upwardly by a spring. As the dosimeter is urged into the socket, the ring moves downwardly, in contact with the second charger electrode. As the dosimeter is further urged downwardly, the first dosimeter electrode and first charger electrode contact one another, and an insulator post carrying the first and second charger electrodes is urged downwardly. Downward movement of the post effects the application of a charging potential between the first and second charger electrodes. After the charging potential has been applied, the dosimeter is moved further into the charging socket against the force of a relatively heavy biasing spring until the dosimeter reaches a mechanical stop in the charging socket

  20. Hydraulic Apparatus for Mechanical Testing of Nuts

    Science.gov (United States)

    Hinkel, Todd J.; Dean, Richard J.; Hacker, Scott C.; Harrington, Douglas W.; Salazar, Frank

    2004-01-01

    The figure depicts an apparatus for mechanical testing of nuts. In the original application for which the apparatus was developed, the nuts are of a frangible type designed for use with pyrotechnic devices in spacecraft applications in which there are requirements for rapid, one-time separations of structures that are bolted together. The apparatus can also be used to test nonfrangible nuts engaged without pyrotechnic devices. This apparatus was developed to replace prior testing systems that were extremely heavy and immobile and characterized by long setup times (of the order of an hour for each nut to be tested). This apparatus is mobile, and the setup for each test can now be completed in about five minutes. The apparatus can load a nut under test with a static axial force of as much as 6.8 x 10(exp 5) lb (3.0 MN) and a static moment of as much as 8.5 x 10(exp 4) lb in. (9.6 x 10(exp 3) N(raised dot)m) for a predetermined amount of time. In the case of a test of a frangible nut, the pyrotechnic devices can be exploded to break the nut while the load is applied, in which case the breakage of the nut relieves the load. The apparatus can be operated remotely for safety during an explosive test. The load-generating portion of the apparatus is driven by low-pressure compressed air; the remainder of the apparatus is driven by 110-Vac electricity. From its source, the compressed air is fed to the apparatus through a regulator and a manually operated valve. The regulated compressed air is fed to a pneumatically driven hydraulic pump, which pressurizes oil in a hydraulic cylinder, thereby causing a load to be applied via a hydraulic nut (not to be confused with the nut under test). During operation, the hydraulic pressure is correlated with the applied axial load, which is verified by use of a load cell. Prior to operation, one end of a test stud (which could be an ordinary threaded rod or bolt) is installed in the hydraulic nut. The other end of the test stud passes