WorldWideScience

Sample records for beam measurement dosimetry

  1. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  2. Scintillator-CCD camera system light output response to dosimetry parameters for proton beam range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Daftari, Inder K., E-mail: idaftari@radonc.ucsf.edu [Department of Radiation Oncology, 1600 Divisadero Street, Suite H1031, University of California-San Francisco, San Francisco, CA 94143 (United States); Castaneda, Carlos M.; Essert, Timothy [Crocker Nuclear Laboratory,1 Shields Avenue, University of California-Davis, Davis, CA 95616 (United States); Phillips, Theodore L.; Mishra, Kavita K. [Department of Radiation Oncology, 1600 Divisadero Street, Suite H1031, University of California-San Francisco, San Francisco, CA 94143 (United States)

    2012-09-11

    The purpose of this study is to investigate the luminescence light output response in a plastic scintillator irradiated by a 67.5 MeV proton beam using various dosimetry parameters. The relationship of the visible scintillator light with the beam current or dose rate, aperture size and the thickness of water in the water-column was studied. The images captured on a CCD camera system were used to determine optimal dosimetry parameters for measuring the range of a clinical proton beam. The method was developed as a simple quality assurance tool to measure the range of the proton beam and compare it to (a) measurements using two segmented ionization chambers and water column between them, and (b) with an ionization chamber (IC-18) measurements in water. We used a block of plastic scintillator that measured 5 Multiplication-Sign 5 Multiplication-Sign 5 cm{sup 3} to record visible light generated by a 67.5 MeV proton beam. A high-definition digital video camera Moticam 2300 connected to a PC via USB 2.0 communication channel was used to record images of scintillation luminescence. The brightness of the visible light was measured while changing beam current and aperture size. The results were analyzed to obtain the range and were compared with the Bragg peak measurements with an ionization chamber. The luminescence light from the scintillator increased linearly with the increase of proton beam current. The light output also increased linearly with aperture size. The relationship between the proton range in the scintillator and the thickness of the water column showed good linearity with a precision of 0.33 mm (SD) in proton range measurement. For the 67.5 MeV proton beam utilized, the optimal parameters for scintillator light output response were found to be 15 nA (16 Gy/min) and an aperture size of 15 mm with image integration time of 100 ms. The Bragg peak depth brightness distribution was compared with the depth dose distribution from ionization chamber measurements

  3. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, H.; Rozendaal, R.; Camargo, P.; Mans, A.; Wendling, M.; Olaciregui-Ruiz, I.; Sonke, J.J.; Herk, M. van; Mijnheer, B.

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the s

  4. Dosimetry for Electron Beam Applications

    DEFF Research Database (Denmark)

    Miller, Arne

    1983-01-01

    This report describes two aspects of electron bean dosimetry, on one hand developaent of thin fil« dosimeters and measurements of their properties, and on the other hand developaent of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film...

  5. Dosimetry of x-ray beams: The measure of the problem

    Energy Technology Data Exchange (ETDEWEB)

    de Castro, T.M.

    1986-08-01

    This document contains the text of an oral presentation on dosimetry of analytical x-ray equipment presented at the Denver X-Ray Conference. Included are discussions of sources of background radiation, exposure limits from occupational sources, and the relationship of these sources to the high dose source of x-rays found in analytical machines. The mathematical basis of x-ray dosimetry is reviewed in preparation for more detailed notes on personnel dosimetry and the selection of the most appropriate dosimeter for a specific application. The presentation concludes with a discussion common to previous x-ray equipment accidents. 2 refs. (TEM)

  6. In vivo dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mijnheer, Ben [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX (Netherlands); Beddar, Sam [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Izewska, Joanna [Division of Human Health, International Atomic Energy Agency, Vienna 1400 (Austria); Reft, Chester [Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois 60637 (United States)

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  7. Development and validation of a measurement-based source model for kilovoltage cone-beam CT Monte Carlo dosimetry simulations

    Science.gov (United States)

    McMillan, Kyle; McNitt-Gray, Michael; Ruan, Dan

    2013-01-01

    Purpose: The purpose of this study is to adapt an equivalent source model originally developed for conventional CT Monte Carlo dose quantification to the radiation oncology context and validate its application for evaluating concomitant dose incurred by a kilovoltage (kV) cone-beam CT (CBCT) system integrated into a linear accelerator. Methods: In order to properly characterize beams from the integrated kV CBCT system, the authors have adapted a previously developed equivalent source model consisting of an equivalent spectrum module that takes into account intrinsic filtration and an equivalent filter module characterizing the added bowtie filtration. An equivalent spectrum was generated for an 80, 100, and 125 kVp beam with beam energy characterized by half-value layer measurements. An equivalent filter description was generated from bowtie profile measurements for both the full- and half-bowtie. Equivalent source models for each combination of equivalent spectrum and filter were incorporated into the Monte Carlo software package MCNPX. Monte Carlo simulations were then validated against in-phantom measurements for both the radiographic and CBCT mode of operation of the kV CBCT system. Radiographic and CBCT imaging dose was measured for a variety of protocols at various locations within a body (32 cm in diameter) and head (16 cm in diameter) CTDI phantom. The in-phantom radiographic and CBCT dose was simulated at all measurement locations and converted to absolute dose using normalization factors calculated from air scan measurements and corresponding simulations. The simulated results were compared with the physical measurements and their discrepancies were assessed quantitatively. Results: Strong agreement was observed between in-phantom simulations and measurements. For the radiographic protocols, simulations uniformly underestimated measurements by 0.54%–5.14% (mean difference = −3.07%, SD = 1.60%). For the CBCT protocols, simulations uniformly

  8. Experimental determination of the effective point of measurement for various detectors used in photon and electron beam dosimetry

    Science.gov (United States)

    Khee Looe, Hui; Harder, Dietrich; Poppe, Björn

    2011-07-01

    The subject of this study is the 'shift of the effective point of measurement', Δz, well known as a method of correction compensating for the 'displacement effect' in photon and electron beam dosimetry. Radiochromic EBT 1 films have been used to measure the 'true' TPR curves of 6 and 15 MV photons and 6 and 9 MeV electrons in the solid water-equivalent material RW3. For the Roos and Markus chambers, the cylindrical 'PinPoint', 'Semiflex' and 'Rigid-Stem' chambers, the 2D-Array and the E-type silicon diode (all from PTW-Freiburg), the positions of the effective points of measurement have been determined by direct or indirect comparison between their TPR curves and those of the EBT 1 film. Both for the Roos and Markus chambers, we found Δz = (0.4 ± 0.1) mm, which confirms earlier experimental and Monte Carlo results, but means a shortcoming of the 'water-equivalent window thickness' formula. For the cylindrical chambers, the ratio Δz/r was observed to increase with r, confirming a recent Monte Carlo prediction by Tessier (2010 E2-CN-182, Paper no 147, IDOS, Vienna) as well as the experimental observations by Johansson et al (1978 IAEA Symp. Proc. (Vienna) IAEA-SM-222/35 pp 243-70). According to a theoretical consideration, the shift of the effective point of measurement from the reference point of the detector is caused by a gradient of the fluence of the ionizing particles. As the experiments have shown, the value of Δz depends on the construction of the detector, but remains invariant under changes of radiation quality and depth. Other disturbances, which do not belong to the class of 'gradient effects', are not corrected by shifting the effective point of measurement.

  9. Chemical vapour deposited diamonds for dosimetry of radiotherapeutical beams

    Energy Technology Data Exchange (ETDEWEB)

    Bucciolini, M.; Mazzocchi, S. [Firenze Univ., Firenze (Italy). Dipartimento di Fisiopatologia Clinica; INFN, Firenze (Italy); Borchi, E.; Bruzzi, M.; Pini, S.; Sciortino, S. [Firenze Univ., Firenze (Italy). Dipartimento di Energetica; INFN, Firenze (Italy); Cirrone, G.A.P.; Guttone, G.; Raffaele, L.; Sabini, M.G. [INFN, Catania (Italy). Laboratori Nazionali del Sud

    2002-07-01

    This paper deals with the application of synthetic diamond detectors to the clinical dosimetry of photon and electron beams. It has been developed in the frame of INFN CANDIDO project and MURST Cofin. Diamonds grown with CVD (Chemical Vapour Deposition) technique have been studied; some of them are commercial samples while others have been locally synthesised. Experiments have been formed using both on-line and off-line approaches. For the off-line measurements, TL (thermoluminescent) and TSC (thermally stimulated current) techniques have been used.

  10. Pulsed beam dosimetry using fiber-coupled radioluminescence detectors

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2012-01-01

    The objective of this work was to review and discuss the potential application of fiber-coupled radioluminescence detectors for dosimetry in pulsed MV photon beams. Two types of materials were used: carbon-doped aluminium oxide (Al2O3:C) and organic plastic scintillators. Special consideration...... was given to the discrimination between radioluminescence signals from the phosphors and unwanted light induced in the optical fiber cables during irradiation (Cerenkov and fluorescence). New instrumentation for dose-per-pulse measurements with organic plastic scintillators was developed....

  11. Recombination characteristics of therapeutic ion beams on ion chamber dosimetry

    Science.gov (United States)

    Matsufuji, Naruhiro; Matsuyama, Tetsuharu; Sato, Shinji; Kohno, Toshiyuki

    2016-09-01

    In heavy ion radiotherapy, ionization chambers are regarded as a standard for determining the absorbed dose given to patients. In ion dosimetry, it is necessary to correct the radiation quality, which depends on the initial recombination effect. This study reveals for the radiation quality dependence of the initial recombination in air in ion dosimetry. Ionization charge was measured for the beams of protons at 40-160 MeV, carbon at 21-400 MeV/n, and iron at 23.5-500 MeV/n using two identical parallel-plate ionization chambers placed in series along the beam axis. The downstream chamber was used as a monitor operated with a constant applied voltage, while the other chamber was used for recombination measurement by changing the voltage. The ratio of the ionization charge measured by the two ionization chambers showed a linear relationship with the inverse of the voltage in the high-voltage region. The initial recombination factor was estimated by extrapolating the obtained linear relationship to infinite voltage. The extent of the initial recombination was found to increase with decreasing incident energy or increasing atomic number of the beam. This behavior can be explained with an amorphous track structure model: the increase of ionization density in the core region of the track due to decreasing kinetic energy or increasing atomic number leads to denser initial ion production and results in a higher recombination probability. For therapeutic carbon ion beams, the extent of the initial recombination was not constant but changed by 0.6% even in the target region. This tendency was quantitatively well reproduced with the track-structure based on the initial recombination model; however, the transitional change in the track structure is considered to play an important role in further understanding of the characteristics of the initial recombination.

  12. Fast 2D phantom dosimetry for scanning proton beams

    NARCIS (Netherlands)

    Boon, SN; van Luijk, P; Schippers, JM; Meertens, H; Denis, JM; Vynckier, S; Medin, J; Grusell, E

    1998-01-01

    A quality control system especially designed for dosimetry in scanning proton beams has been designed and tested. The system consists of a scintillating screen (Gd2O2S:Tb), mounted at the beam-exit side of a phantom, and observed by a low noise CCD camera with a long integration time. The purpose of

  13. Carbon beam dosimetry using VIP polymer gel and MRI

    DEFF Research Database (Denmark)

    Kantemiris, I; Petrokokkinos, L; Angelopoulos, A

    2009-01-01

    VIP polymer gel dosimeter was used for Carbon ion beam dosimetry using a 150 MeV/n beam with 10 Gy plateau dose and a SOBP irradiation scheme with 5 Gy Bragg peak dose. The results show a decrease by 8 mm in the expected from Monte Carlo simulation range in water, suggesting that the dosimeter is...

  14. Application of spherical diodes for megavoltage photon beams dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Barbés, Benigno, E-mail: bbarbes@unav.es [Servicio de Oncología Radioterápica, Clínica Universidad de Navarra, Avda. Pío XII, 36, E-31008 Pamplona, Navarra (Spain); Azcona, Juan D. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Servicio de Oncología Radioterápica, Clínica Universidad de Navarra, Avda. Pío XII 36, E-31008 Pamplona, Navarra (Spain); Burguete, Javier [Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Navarra (Spain); Martí-Climent, Josep M. [Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Avda. Pío XII 36, E-31008 Pamplona, Navarra (Spain)

    2014-01-15

    Purpose: External beam radiation therapy (EBRT) usually uses heterogeneous dose distributions in a given volume. Designing detectors for quality control of these treatments is still a developing subject. The size of the detectors should be small to enhance spatial resolution and ensure low perturbation of the beam. A high uniformity in angular response is also a very important feature in a detector, because it has to measure radiation coming from all the directions of the space. It is also convenient that detectors are inexpensive and robust, especially to performin vivo measurements. The purpose of this work is to introduce a new detector for measuring megavoltage photon beams and to assess its performance to measure relative dose in EBRT. Methods: The detector studied in this work was designed as a spherical photodiode (1.8 mm in diameter). The change in response of the spherical diodes is measured regarding the angle of incidence, cumulated irradiation, and instantaneous dose rate (or dose per pulse). Additionally, total scatter factors for large and small fields (between 1 × 1 cm{sup 2} and 20 × 20 cm{sup 2}) are evaluated and compared with the results obtained from some commercially available ionization chambers and planar diodes. Additionally, the over-response to low energy scattered photons in large fields is investigated using a shielding layer. Results: The spherical diode studied in this work produces a high signal (150 nC/Gy for photons of nominal energy of 15 MV and 160 for 6 MV, after 12 kGy) and its angular dependence is lower than that of planar diodes: less than 5% between maximum and minimum in all directions, and 2% around one of the axis. It also has a moderated variation with accumulated dose (about 1.5%/kGy for 15 MV photons and 0.7%/kGy for 6 MV, after 12 kGy) and a low variation with dose per pulse (±0.4%), and its behavior is similar to commercial diodes in total scatter factor measurements. Conclusions: The measurements of relative dose

  15. Monte Carlo simulations to optimize experimental dosimetry of narrow beams used in Gamma Knife radio-surgery

    Energy Technology Data Exchange (ETDEWEB)

    Lymperopoulou, G. [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece)], E-mail: glymper@phys.uoa.gr; Petrokokkinos, L.; Papagiannis, P. [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece); Steiner, M.; Spevacek, V.; Semnicka, J.; Dvorak, P. [Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Department of Dosimetry and Application of Ionizing Radiation, Brehova 7 115 19, Prague 1 (Czech Republic); Seimenis, I. [Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece)

    2007-09-21

    The Leksell Gamma Knife is a stereotactic radio-surgery unit for the treatment of small volumes (on the order of 25 mm{sup 3}) that employs a hemispherical configuration of 201 {sup 60}Co sources and appropriate configurations of collimation to form beams of 4, 8, 14 and 18 mm nominal diameter at the Unit Center Point (UCP). Although Monte Carlo (MC) simulation is well suited for narrow-beam dosimetry, experimental dosimetry is required at least for acceptance testing and quality assurance purposes. Besides other drawbacks of conventional point dosimeters, the main problems associated with narrow-beam dosimetry in stereotactic applications are accurate positioning and volume averaging. In this work, MCNPX and EGSnrc MC simulation dosimetry results for a Gamma Knife unit are benchmarked through their comparison to treatment planning software calculations based on radio-chromic film measurements. Then, MC dosimetry results are utilized to optimize the only three-dimensional experimental dosimetry method available; the polymer gel-Magnetic Resonance Imaging (MRI) method. MC results are used to select the spatial resolution in the imaging session of the irradiated gels and validate a mathematical tool for the localization of the UCP in the three-dimensional experimental dosimetry data acquired. Experimental results are compared with corresponding MC calculations and shown capable to provide accurate dosimetry, free of volume averaging and positioning uncertainties.

  16. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  17. kQ factors for ionization chamber dosimetry in clinical proton beams.

    Science.gov (United States)

    Vatnitsky, S M; Siebers, J V; Miller, D W

    1996-01-01

    We discuss a formalism for clinical proton beam dosimetry based on the use of ionization chamber absorbed dose-to-water calibration and beam quality correction factors. A quantity kQ, the beam quality correction factor, is defined which corrects the absorbed dose-to-water calibration factor ND,w in a reference beam of quality Q0 to that in a user's beam of quality Q1. This study of proton beam quality correction factors used 60Co (kQ gamma) and proton (kQp) reference beams. The kQ gamma factors were measured using combined water calorimetry and ionometry for PTW and Capintec-Farmer-type ionization chambers, and were computed from standard dosimetry protocols. Agreement between measured and calculated kQ gamma values for both chambers was found within 1.2% in the plateau region for a monoenergetic 250-MeV beam and within 1.8% at the spread-out Bragg peak for a 155-MeV range-modulated beam. Comparison of absorbed doses to water determined in the range-modulated 155-MeV beam was performed with the PTW chamber using three calibration methods: Ngas calibration (AAPM Report 16), ND,w,gamma calibration in a 60Co beam in conjunction with a kQ gamma factor, and ND,w,p calibration in a proton beam in conjunction with a kQp factor. Absorbed doses to water obtained with the three methods agreed within 2% when ionization chamber dosimetry data were analyzed using the proton W-value for air from the AAPM Report 16 and the ICRU 49 proton stopping powers. The use of the proton-calibrated reference ionization chamber, in conjunction with the beam quality correction factor kQp, significantly reduced the systematic uncertainty of the absorbed dose determination.

  18. Fluence measurements applied to 5-20 MeV/amu ion beam dosimetry by simultaneous use of a total-absorption calorimeter and a Faraday cup

    CERN Document Server

    Kojima, T; Takizawa, H; Tachibana, H; Tanaka, R

    1998-01-01

    A Faraday cup was fabricated for measuring the beam current of a few tens MeV/amu ion beams of the TIARA AVF cyclotron. It has been applied as a beam monitor for studying the characteristics of film dosimeters that are well-established for high doses of sup 6 sup 0 Co gamma-rays and 1 to 10 MeV electrons. A total absorption calorimeter designed to measure energy fluence has also been tested for estimating the uncertainty in fluence measurement of 5-20 MeV/amu ion beams, by simultaneous use of the calorimeter and the Faraday cup in a broad uniform fluence field. The estimated fluence was evaluated on the basis of nominal particle energy values derived from the cyclotron acceleration parameters. The average ratio of the measured fluence values to the estimated values is 1.024, and the average precision is within +-2% at a 68% confidence level, for most of the ion beams with a range of kinetic energy per nucleon, 5-20 MeV/amu, at an integrated charge above 5 nC/cm sup 2.

  19. Small Radiation Beam Dosimetry for Radiosurgery of Trigeminal Neuralgia: One Case Analysis

    Science.gov (United States)

    García-Garduño, O. A.; Lárraga-Gutiérrez, J. M.; Rodríguez-Villafuerte, M.; Martínez-Dávalos, A.; Moreno-Jiménez, S.; Suárez-Campos, J. J.; Celis, M. A.

    2008-08-01

    The use of small radiation beams for trigeminal neuralgia (TN) treatment requires high precision and accuracy in dose distribution calculations and delivery. Special attention must be kept on the type of detector to be used. In this work, the use of GafChromic EBT® radiochromic and X-OMAT V2 radiographic films for small radiation beam characterization is reported. The dosimetric information provided by the films (total output factors, tissue maximum ratios and off axis ratios) is compared against measurements with a shielded solid state (diode) reference detector. The film dosimetry was used for dose distribution calculations for the treatment of trigeminal neuralgia radiosurgery. Comparison of the isodose curves shows that the dosimetry produced with the X-OMAT radiographic film overestimates the dose distributions in the penumbra region.

  20. Radiation damage studies of a recycling integrator VLSI chip for dosimetry and control of therapeutical beams

    Science.gov (United States)

    Cirio, R.; Bourhaleb, F.; Degiorgis, P. G.; Donetti, M.; Marchetto, F.; Marletti, M.; Mazza, G.; Peroni, C.; Rizzi, E.; SanzFreire, C.

    2002-04-01

    A VLSI chip based on a recycling integrator has been designed and built to be used as front-end readout of detectors for dosimetry and beam monitoring. The chip is suitable for measurements with both conventional radiotherapy accelerators (photon or electron beams) and with hadron accelerators (proton or light ion beams). As the chips might be located at few centimeters from the irradiation area and they are meant to be used in routine hospital practice, it is mandatory to assert their damage to both electromagnetic and neutron irradiation. We have tested a few chips on a X-ray beam and on thermal and fast neutron beams. Results of the tests are reported and an estimate of the expected lifetime of the chip for routine use is given.

  1. Dosimetry for Total Skin Electron Beam Therapy in Skin Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Sung Sil; Loh, John J. K.; Kim, Gwi Eon [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1992-06-15

    Increasing frequency of skin cancer, mycosis fungoides, Kaposi sarcoma etc, it need to treatment dose planning for total skin electron beam (TSEB) therapy. Appropriate treatment planning for TSEB therapy is needed to give homogeneous dose distribution throughout the entire skin surface. The energy of 6 MeV electron from the 18 MeV medical linear accelerator was adapted for superficial total skin electron beam therapy. The energy of the electron beam was reduced to 4.2 MeV by a 0.5cmx90cmx180cm acryl screen placed in a feet front of the patient. Six dual field beam was adapted for total skin irradiation to encompass the entire body surface from head to toe simultaneously. The patients were treated behind the acryl screen plate acted as a beam scatterer and contained a parallel-plate shallow ion chamber for dosimetry and beam monitoring. During treatment, the patient was placed in six different positions due to be homogeneous dose distribution for whole skin around the body. One treatment session delivered 400 cGy to the entire skin surface and patients were treated twice a week for eight consecutive weeks, which is equivalent to TDF value 57. Instrumentation and techniques developed in determining the depth dose, dose distribution and bremsstrahlung dose are discussed.

  2. Monte Carlo physical dosimetry for small photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Perucha, M.; Rincon, M.; Leal, A.; Carrasco, E. [Sevilla Univ. (Spain). Dept. Fisiologia Medica y Biofisica; Sanchez-Doblado, F. [Sevilla Univ. (Spain). Dept. Fisiologia Medica y Biofisica]|[Hospital Univ. Virgen Macarena, Sevilla (Spain). Servicio de Oncologia Radioterapica; Nunez, L. [Clinica Puerta de Hierro, Madrid (Spain). Servicio de Radiofisica; Arrans, R.; Sanchez-Calzado, J.A.; Errazquin, L. [Hospital Univ. Virgen Macarena, Sevilla (Spain). Servicio de Oncologia Radioterapica

    2001-07-01

    Small field dosimetry is complicated due to the lack of electronic equilibrium and to the high steep dose gradients. This works compares PDD curves, profiles and output factors measured with conventional detectors (film, diode, TLD and ionisation chamber) and calculated with Monte Carlo. The 6 MV nominal energy from a Philips SL-18 linac has been simulated by using the OMEGA code. MC calculation reveals itself as a convenient method to validate OF and profiles in special conditions, such as small fields. (orig.)

  3. Investigation of practical approaches to evaluating cumulative dose for cone beam computed tomography (CBCT) from standard CT dosimetry measurements: a Monte Carlo study

    Science.gov (United States)

    Abuhaimed, Abdullah; Martin, Colin J.; Sankaralingam, Marimuthu; Gentle, David J.

    2015-07-01

    A function called Gx(L) was introduced by the International Commission on Radiation Units and Measurements (ICRU) Report-87 to facilitate measurement of cumulative dose for CT scans within long phantoms as recommended by the American Association of Physicists in Medicine (AAPM) TG-111. The Gx(L) function is equal to the ratio of the cumulative dose at the middle of a CT scan to the volume weighted CTDI (CTDIvol), and was investigated for conventional multi-slice CT scanners operating with a moving table. As the stationary table mode, which is the basis for cone beam CT (CBCT) scans, differs from that used for conventional CT scans, the aim of this study was to investigate the extension of the Gx(L) function to CBCT scans. An On-Board Imager (OBI) system integrated with a TrueBeam linac was simulated with Monte Carlo EGSnrc/BEAMnrc, and the absorbed dose was calculated within PMMA, polyethylene (PE), and water head and body phantoms using EGSnrc/DOSXYZnrc, where the body PE body phantom emulated the ICRU/AAPM phantom. Beams of width 40-500 mm and beam qualities at tube potentials of 80-140 kV were studied. Application of a modified function of beam width (W) termed Gx(W), for which the cumulative dose for CBCT scans f (0) is normalized to the weighted CTDI (CTDIw) for a reference beam of width 40 mm, was investigated as a possible option. However, differences were found in Gx(W) with tube potential, especially for body phantoms, and these were considered to be due to differences in geometry between wide beams used for CBCT scans and those for conventional CT. Therefore, a modified function Gx(W)100 has been proposed, taking the form of values of f (0) at each position in a long phantom, normalized with respect to dose indices f 100(150)x measured with a 100 mm pencil ionization chamber within standard 150 mm PMMA phantoms, using the same scanning parameters, beam widths and positions within the phantom. f 100(150)x averages the dose resulting from

  4. Evaluation of the Gafchromic{sup Registered-Sign} EBT2 film for the dosimetry of radiosurgical beams

    Energy Technology Data Exchange (ETDEWEB)

    Larraga-Gutierrez, Jose M. [Laboratorio de Fisica Medica, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, Mexico D.F. 14269 (Mexico) and Unidad de Radioneurocirugia, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, C.P. 14269, Mexico D.F. 14269 (Mexico); Garcia-Hernandez, Diana [Laboratorio de Fisica Medica, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, Mexico D.F. 14269 (Mexico); Garcia-Garduno, Olivia A. [Laboratorio de Fisica Medica, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, Mexico D.F. 14269 (Mexico) and Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Legaria 694, Mexico D.F. 11500 (Mexico); Galvan de la Cruz, Olga O. [Unidad de Radioneurocirugia, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, Mexico D.F. 14269 (Mexico); Ballesteros-Zebadua, Paola [Laboratorio de Fisica Medica, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, Mexico D.F. 14269 (Mexico) and Unidad de Radioneurocirugia, Instituto Nacional de Neurologia y Neurocirugia, Insurgentes Sur 3877, Mexico D.F. 14269 (Mexico); Esparza-Moreno, Karina P. [Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan, Toluca, Estado De Mexico 50180 (Mexico)

    2012-10-15

    Purpose: Radiosurgery uses small fields and high-radiation doses to treat intra- and extracranial lesions in a single session. The lack of a lateral electronic equilibrium and the presence of high-dose gradients in these fields are challenges for adequate measurements. The availability of radiation detectors with the high spatial resolution required is restricted to only a few. Stereotactic diodes and EBT radiochromic films have been demonstrated to be good detectors for small-beam dosimetry. Because the stereotactic diode is the standard measurement for the dosimetry of radiosurgical beams, the goal of this work was to perform measurements with the radiochromic film Gafchromic{sup Registered-Sign} EBT2 and compare its results with a stereotactic diode. Methods: Total scatter factors, tissue maximum, and off-axis ratios from a 6 MV small photon beams were measured using EBT2 radiochromic film in a water phantom. The film-measured data were evaluated by comparing it with the data measured with a stereotactic field diode (IBA-Dosimetry). Results: The film and diode measurements had excellent agreement. The differences between the detectors were less than or equal to 2.0% for the tissue maximum and the off-axis ratios. However, for the total scatter factors, there were significant differences, up to 4.9% (relative to the reference field), for field sizes less than 1.0 cm. Conclusions: This work found that the Gafchromic{sup Registered-Sign} EBT2 film is adequate for small photon beam measurements, particularly for tissue maximum and off-axis ratios. However, careful attention must be taken when measuring output factors of small beams below 1.0 cm due to the film's energy dependence. The measurement differences may be attributable to the film's active layer composition because EBT2 incorporates higher Z elements (i.e., bromide and potassium), hence revealing a potential energy dependence for the dosimetry of small photon beams.

  5. High electron beam dosimetry using ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lueza M, F.; Rivera M, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Azorin N, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Garcia H, M. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2009-10-15

    This paper reports the experimental results of studying the thermoluminescent (Tl) properties of ZrO{sub 2} powder embedded in polytetrafluorethylene (PTFE) exposed to high energy electron beam from linear accelerators (Linac). Structural and morphological characteristics were also reported. Irradiations were conducted using high energy electrons beams in the range from 2 to 18 MeV. Pellets of ZrO{sub 2}+PTFE were produced using polycrystalline powder grown by the precipitation method. These pellets presented a Tl glow curve exhibiting an intense glow peak centered at around 235 C. Tl response as a function of high electron absorbed dose was linear in the range from 2 to 30 Gy. Repeatability determined by exposing a set of pellets repeatedly to the same electron absorbed dose was 0.5%. Fading along 30 days was about 50%. Then, results obtained in this study suggest than ZrO{sub 2}+PTFE pellets could be used for high energy electron beam dosimetry provided fading correction is accounted for. (Author)

  6. Design and test of a scintillation dosimeter for dosimetry measurements of high energy radiotherapy beams; Conception et realisation d'un dosimetre a scintillation adapte a la dosimetrie de faisceaux de rayonnements ionisants en faisceaux de rayonnements ionisants en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Fontbonne, J.M

    2002-12-01

    This work describes the design and evaluation of the performances of a scintillation dosimeter developed for the dosimetry of radiation beams used in radiotherapy. The dosimeter consists in a small plastic scintillator producing light which is guided by means of a plastic optical fiber towards photodetectors. In addition to scintillation, high energy ionizing radiations produce Cerenkov light both in the scintillator and the optical fiber. Based on a wavelength analysis, we have developed a deconvolution technique to measure the scintillation light in the presence of Cerenkov light. We stress the advantages that are anticipated from plastic scintillator, in particular concerning tissue or water equivalence (mass stopping power, mass attenuation or mass energy absorption coefficients). We show that detectors based on this material have better characteristics than conventional dosimeters such as ionisation chambers or silicon detectors. The deconvolution technique is exposed, as well as the calibration procedure using an ionisation chamber. We have studied the uncertainty of our dosimeter. The electronics noise, the fiber transmission, the deconvolution technique and the calibration errors give an overall combined experimental uncertainty of about 0,5%. The absolute response of the dosimeter is studied by means of depth dose measurements. We show that absolute uncertainty with photons or electrons beams with energies ranging from 4 MeV to 25 MeV is less than {+-} 1 %. Last, at variance with other devices, our scintillation dosimeter does not need dose correction with depth. (author)

  7. TH-E-BRE-06: Challenges in the Dosimetry of Flattening Filter Free Beams

    Energy Technology Data Exchange (ETDEWEB)

    Czarnecki, D; Voigts-Rhetz, P von; Zink, K [Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen, Hesse (Germany)

    2014-06-15

    Purpose: In current dosimetry protocols [AAPM TG51, IAEA TRS-389] the beam quality correction factor kQ and the water-to-air restricted mass collision stopping-power ratio SPR are related to beam quality specifiers %dd(10){sub x} respectively TPR{sub 20,10} Determining kQ and SPR using these regular beam quality specifiers for conventional accelerators (WFF) and flattening filter free accelerators (FFF) similarly could lead to systemic bias.The influence of the flattening filter on the relationship between various beam quality specifiers and SPR respectively k{sub Q} was studied using Monte Carlo simulations with realistic beam sources. Methods: All Monte Carlo simulations were performed using the BEAMnrc/EGSnrc code system. Radiation transport through nine linear accelerator heads modeled according to technical drawings given by the manufactures and a {sup 60} Co therapy source was simulated with BEAMnrc and then used as a radiation source for further simulations. FFF beam sources were implemented by removing the fattening filter from the WFF model. SPR was calculated applying the user code SPRRZnrc. The mean photon energy below the accelerator head and the mean energies of photons and electrons at the measuring point within the water phantom were calculated using FLURZnrc. Dose calculations within a small water voxel and the thimble ionization chamber PTW-31010 in a water depth of 10 cm were made using the egs-chamber code. Results: SPR and k{sub Q} as a function of fluence spectra based beam quality specifiers as well as conventional beam quality specifiers differ systematically between FFF and WFF beams. According to the results the specifier %dd(10){sub x} revealed the smallest deviation (max. 0.4%) between FFF and WFF beams. Conclusion: The results show that %dd(10){sub x} is an acceptable beam quality specifier for FFF beams. Nevertheless the results confirm the expected bias between FFF and WFF beams which must by further investigated.

  8. The SUCIMA project: A status report on high granularity dosimetry and proton beam monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Caccia, M. [Dipartimento di Scienze CC.FF.MM., Universita dell' Insubria, Como (Italy)]. E-mail: Massimo.Caccia@uninsubria.it; Badano, L. [Fondazione per Adroterapia Oncologica, Novara (Italy); Berst, D. [Laboratoire d' Electronique et de Physique des Systemes Instrumentaux, Universite Luis Pasteur, Strasbourg (France); Centre National de la Recherce Scientifique/IN2P3 - Paris (France)] (and others)

    2006-05-01

    The SUCIMA collaboration has been developing instruments and methods for real-time, high granularity imaging of extended electron sources. In particular, dosimetry of intravascular brachytherapy {beta} sources has been intensively studied, together with monitoring of hadrontherapy beams by imaging of secondary electrons emitted by a non-disruptive target. The paper reports the latest results on absolute dosimetry with a large-area silicon strip detectors and on beam monitoring with a hybrid pad sensor.

  9. Real-time dosimetry in external beam radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Ramachandran; Prabhakar

    2013-01-01

    With growing complexity in radiotherapy treatment delivery,it has become mandatory to check each and every treatment plan before implementing clinically.This process is currently administered by an independent secondary check of all treatment parameters and as a pre-treatment quality assurance (QA) check for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy treatment plans.Although pre-treatment IMRT QA is aimed to ensure the correct dose is delivered to the patient,it does not necessarily predict the clinically relevant patient dose errors.During radiotherapy,treatment uncertainties can affect tumor control and may increase complications to surrounding normal tissues.To combat this,image guided radiotherapy is employed to help ensure the plan conditions are mimicked on the treatment machine.However,it does not provide information on actual delivered dose to the tumor volume.Knowledge of actual dose delivered during treatment aid in confirming the prescribed dose and also to replan/reassess the treatment in situations where the planned dose is not delivered as expected by the treating physician.Major accidents in radiotherapy would have been averted if real time dosimetry is incorporated as part of the routine radiotherapy procedure.Of late real-time dosimetry is becoming popular with complex treatments in radiotherapy.Realtime dosimetry can be either in the form of point doses or planar doses or projected on to a 3D image dataset to obtain volumetric dose.They either provide entrance dose or exit dose or dose inside the natural cavities of a patient.In external beam radiotherapy,there are four different established platforms whereby the delivered dose information can be obtained:(1)Collimator;(2)Patient;(3)Couch;and(4)Electronic Portal Imaging Device.Current real-time dosimetric techniques available in radiotherapy have their own advantages and disadvantages and a combination of one or more of these methods provide vital information

  10. Two-parametric model of electron beam in computational dosimetry for radiation processing

    Science.gov (United States)

    Lazurik, V. M.; Lazurik, V. T.; Popov, G.; Zimek, Z.

    2016-07-01

    Computer simulation of irradiation process of various materials with electron beam (EB) can be applied to correct and control the performances of radiation processing installations. Electron beam energy measurements methods are described in the international standards. The obtained results of measurements can be extended by implementation computational dosimetry. Authors have developed the computational method for determination of EB energy on the base of two-parametric fitting of semi-empirical model for the depth dose distribution initiated by mono-energetic electron beam. The analysis of number experiments show that described method can effectively consider random displacements arising from the use of aluminum wedge with a continuous strip of dosimetric film and minimize the magnitude uncertainty value of the electron energy evaluation, calculated from the experimental data. Two-parametric fitting method is proposed for determination of the electron beam model parameters. These model parameters are as follow: E0 - energy mono-energetic and mono-directional electron source, X0 - the thickness of the aluminum layer, located in front of irradiated object. That allows obtain baseline data related to the characteristic of the electron beam, which can be later on applied for computer modeling of the irradiation process. Model parameters which are defined in the international standards (like Ep- the most probably energy and Rp - practical range) can be linked with characteristics of two-parametric model (E0, X0), which allows to simulate the electron irradiation process. The obtained data from semi-empirical model were checked together with the set of experimental results. The proposed two-parametric model for electron beam energy evaluation and estimation of accuracy for computational dosimetry methods on the base of developed model are discussed.

  11. Development of Kilovoltage X-ray Dosimetry Methods and Their Application to Cone Beam Computed Tomography

    Science.gov (United States)

    Lawless, Michael J.

    The increase in popularity of pre-treatment imaging procedures in radiation therapy, such as kilovoltage cone beam computed tomography (CBCT), has been accompanied by an increase in the dose delivered to the patient from these imaging procedures. The measurement of dose from CBCT scans is complicated, as currently available kilovoltage dosimetry protocols are based on air-kerma standards and radiation detectors exhibit large energy responses at the low photon energies used in the imaging procedures. This work aims to provide the tools and methodology needed to measure the dose from these scans more accurately and precisely. Through the use of a validated Monte Carlo (MC) model of the moderately filtered (M-series) x-ray beams at the University of Wisconsin Accredited Dosimetry Calibration Laboratory, dose-to-water rates were obtained in a water phantom for the M-series x-ray beams with tube potentials from 40-250 kVp. The resulting dose-to-water rates were consistent with previously established methods, but had significantly reduced uncertainties. While detectors are commonly used to measure dose in phantom, previous investigations of the energy response of common detectors in the kilovoltage energy range have been limited to in-air geometries. The newly determined dose-to-water rates were used to characterize the in-phantom energy and depth response of thermoluminescent dosimeters and ionization chambers. When compared to previous investigations of the in-air detector response, the impact of scatter and absorption of the photon beam by the water medium was found to have a significant impact on the response of certain detectors. The dose to water in the NIST-traceable M-series x-ray beams was transferred to clinical CBCT beams and the resulting doses agreed with other dose-to-water measurement techniques. The dose to water in the CBCT beams was used to characterize the energy and depth responses of a number of detectors. The energy response in the CBCT beams agreed

  12. The effect of delta rays on the ionometric dosimetry of proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Casnati, E.; Baraldi, C.; Tartari, A. [Dipartimento di Fisica, Universita di Ferrara, I-44100 Ferrara (Italy); INFN, Sezione di Ferrara, I-44100 Ferrara (Italy); Boccaccio, P. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Bonifazzi, C. [Dipartimento di Scienze Biomediche e Terapie Avanzate, Sezione di Fisiologia Umana, Universita di Ferrara, I-44100 Ferrara (Italy); Singh, B. [Physics Department, Punjabi University, Patiala (India)

    1998-03-01

    The interface effects arising in the measurement of absorbed dose by ionization chambers, owing to the inhomogeneity between the walls and the gas, have been evaluated by an analytical model. The geometrical situation considered here is appropriate for representing the behaviour of a plane-parallel ionization chamber exposed to a radiotherapeutic beam of protons. Two gases, dry air and tissue equivalent gas (methane based), as well as six materials commonly used in ionization chamber walls, i.e. graphite, A-150 tissue equivalent plastic, C-522 air equivalent plastic, nylon type 6, polymethyl methacrylate and polystyrene, have been examined. The analysis of the results shows that, within the limits of the detector dimensions and proton energies commonly used in the dosimetry of radiotherapeutic beams, these effects, if not taken into account in the measurement interpretation, can entail deviations of up to about 2% with respect to the correct absorbed dose in gas. (author)

  13. Evaluation of ion chamber dependent correction factors for ionisation chamber dosimetry in proton beams using a Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Palmans, H. [Ghent Univ. (Belgium). Dept. of Biomedical Physics; Verhaegen, F.

    1995-12-01

    In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire`s multiple scattering theory and Vavilov`s energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program`s accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented.

  14. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosunen, A

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?){sup water} {sub air}, in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in {sup 60}Co gamma beams. In photon beam dosimetry (S I ?){sup water} {sub air} can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation

  15. Small-Field Dosimetry in A 6 MV Photon Beam Using Alanine and Liquid Ionisation Chamber

    DEFF Research Database (Denmark)

    Zimmermann, S.; Riis, H. L.; Hjelm-Hansen, M.

    2012-01-01

    Purpose/Objective: Dosimetry of small field sizes in MV photon beams is an increasingly important subject, and a generally accepted guideline for clinical measurements is still lacking. The present comparative study was carried out to further investigate the use of alanine and the PTW microLion i......, and this may explain part of the measured deviations. A practical difference between the two systems was that the alanine measurements were much more time consuming than the liquid ionization chamber measurements.......Lion ionisation chamber for small-field dosimetry in liquid water. Materials and Methods: The measurements were carried out on a Siemens Primus 58 leaves MLC. The alanine dosimeters were cylindric Ø4.9 mm × 3.0 mm and density of 1.2 g/cm3. The alanine dosimeters were placed on the top of a solid water stick of Ø4...... of each field and depth. This dose maximum was measured for each field using a Scanditronix Wellhöfer photon field diode. The same measurements were carried out using a liquid ionchamber, PTW microLion, irradiated by 500 MU. The output of the accelerator was controlled by a PTW semiflex ion chamber...

  16. Proton beam dosimetry: a comparison between a plastic scintillator, ionization chamber and Faraday cup.

    Science.gov (United States)

    Ghergherehchi, Mitra; Afarideh, Hossein; Ghannadi, Mohammad; Mohammadzadeh, Ahmad; Aslani, Golam Reza; Boghrati, Behzad

    2010-01-01

    In this study, a comparison was made between a plastic scintillator (BC400), a Faraday Cup (FC) and an ionization chamber (IC) used for routine proton dosimetry. Thin scintillators can be applied to proton dosimetry and consequently to proton therapy as relative dosimeters because of their water-equivalent nature, high energy-light conversion efficiency, low dimensions and good proportionality to the absorbed dose at low stopping powers. To employ such scintillators as relative dosimeters in proton therapy, the corrective factors must be applied to correct the quenching luminescence at the Bragg peak. A fine linear proportionality between the luminescence light yield Y and the proton flux in a thin (0.5 mm) scintillator for the 20 and 30 MeV proton beams were observed. The experimental peak/plateau ratios of Bragg Curve for 2, 1 and 0.5 mm scintillators with an accuracy of 0.5% were obtained to be 1.87, 1.91 and 2.30, respectively. With combination of the Markus chamber and the CR-39 detector, the peak/plateau ratio was improved to 3.26. The obtained data of the luminescence yield as a function of the specific energy loss is in agreement with the Craun-Birk's theory. Results show that the FC and Markus ionization chamber are in agreement within 4%, while the FC gives a lower dose evaluation. For a defined beam, the data for the fluence measurements are reproducible within a good accuracy.

  17. Radiological characterization and water equivalency of genipin gel for x-ray and electron beam dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Bosi, Stephen; Davies, Justin B; Baldock, Clive, E-mail: clive.baldock@sydney.edu.au [Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006 (Australia)

    2011-08-07

    The genipin radiochromic gel offers enormous potential as a three-dimensional dosimeter in advanced radiotherapy techniques. We have used several methods (including Monte Carlo simulation), to investigate the water equivalency of genipin gel by characterizing its radiological properties, including mass and electron densities, photon interaction cross sections, mass energy absorption coefficient, effective atomic number, collisional, radiative and total mass stopping powers and electron mass scattering power. Depth doses were also calculated for clinical kilovoltage and megavoltage x-ray beams as well as megavoltage electron beams. The mass density, electron density and effective atomic number of genipin were found to differ from water by less than 2%. For energies below 150 keV, photoelectric absorption cross sections are more than 3% higher than water due to the strong dependence on atomic number. Compton scattering and pair production interaction cross sections for genipin gel differ from water by less than 1%. The mass energy absorption coefficient is approximately 3% higher than water for energies <60 keV due to the dominance of photoelectric absorption in this energy range. The electron mass stopping power and mass scattering power differ from water by approximately 0.3%. X-ray depth dose curves for genipin gel agree to within 1% with those for water. Our results demonstrate that genipin gel can be considered water equivalent for kilovoltage and megavoltage x-ray beam dosimetry. For megavoltage electron beam dosimetry, however, our results suggest that a correction factor may be needed to convert measured dose in genipin gel to that of water, since differences in some radiological properties of up to 3% compared to water are observed. Our results indicate that genipin gel exhibits greater water equivalency than polymer gels and PRESAGE formulations.

  18. Comparison between the TRS-398 code of practice and the TG-51 dosimetry protocol for flattening filter free beams

    Science.gov (United States)

    Lye, J. E.; Butler, D. J.; Oliver, C. P.; Alves, A.; Lehmann, J.; Gibbons, F. P.; Williams, I. M.

    2016-07-01

    Dosimetry protocols for external beam radiotherapy currently in use, such as the IAEA TRS-398 and AAPM TG-51, were written for conventional linear accelerators. In these accelerators, a flattening filter is used to produce a beam which is uniform at water depths where the ionization chamber is used to measure the absorbed dose. Recently, clinical linacs have been implemented without the flattening filter, and published theoretical analysis suggested that with these beams a dosimetric error of order 0.6% could be expected for IAEA TRS-398, because the TPR20,10 beam quality index does not accurately predict the stopping power ratio (water to air) for the softer flattening-filter-free (FFF) beam spectra. We measured doses on eleven FFF linacs at 6 MV and 10 MV using both dosimetry protocols and found average differences of 0.2% or less. The expected shift due to stopping powers was not observed. We present Monte Carlo k Q calculations which show a much smaller difference between FFF and flattened beams than originally predicted. These results are explained by the inclusion of the added backscatter plates and build-up filters used in modern clinical FFF linacs, compared to a Monte Carlo model of an FFF linac in which the flattening filter is removed and no additional build-up or backscatter plate is added.

  19. Evaluation and characterization of parallel plate microchamber's functionalities in small beam dosimetry.

    Science.gov (United States)

    Lee, Heung-Rae; Pankuch, Mike; Chu, James C; Spokas, John J

    2002-11-01

    A parallel plate microchamber (PPMC) has been designed to specifically address the problems of small beam dosimetry. The chamber's extremely small volume and tissue equivalency theoretically make it possible for the chamber to perform an ideal measurement for small field dosimetry. Results show the PPMC to be a simple and reproducible detector for the measurements of total scattering factors, percentage depth doses, and off-axis ratios. Even with its unique geometry, the PPMC requires a correction factor when measuring total scatter factors of fields smaller than 2.5 cm in diameter. Results obtained with the PPMC for fields greater than 2.5 cm diameter closely match those of alternative measurement modalities. The exceptionally small volume of the chamber increases the effect of radiation-induced cable currents. With careful experimental technique, this problem can be resolved. Monte Carlo simulations of a Sun Nuclear QED low build-up diode were done to show that no correction factor is needed for the diode in measuring total scatter factors of small fields. However, the scattering factors measured with the PPMC should be corrected for cone fields smaller than 2.5 cm in diameter. With the correction factor, the scattering factor obtained with the PPMC matches that with the QED diode within 0.7%. The percent depth dose data taken with the PPMC for a 40 x 40 cm2 field closely matches that taken with the PTW chamber with the largest deviation being approximately 1.2% at a depth of 30 cm. For a measurement of the off-axis ratio with stereotactic cones of diameter 1.25 and 4.0 cm, the data obtained with the PPMC have a good agreement (less than 0.5% difference) with the film measurement.

  20. DOSIMETRY

    CERN Multimedia

    2001-01-01

    From the month of May on, the neutron dosimeter will be worn in an extra package distinct from the usual film-badge. We will give you more ample information in Weekly Bulletin No. 18/2001 of April 30, 2001. In the week following Easter (17 - 20. 4. 2001) the Individual Dosimetry Service will be opened in the mornings from 8:30 to 11:30 h only. The Service will be closed on April 30.

  1. Development of silicon monolithic arrays for dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bisello, Francesca, E-mail: francesca.bisello@iba-group.com [IBA Dosimetry GmbH, Schwarzenbruck (Germany); Friedrich-Alexander Universität Erlangen—Nürnberg, Erlangen (Germany); Menichelli, David [IBA Dosimetry GmbH, Schwarzenbruck (Germany); Scaringella, Monica [University of Florence, Firenze (Italy); INFN—Florence Division, Sesto Fiorentino (Italy); Talamonti, Cinzia; Zani, Margherita; Bucciolini, Marta [University of Florence, Firenze (Italy); Azienda Ospedaliera Unversitaria Careggi, Firenze (Italy); Bruzzi, Mara [University of Florence, Firenze (Italy); INFN—Florence Division, Sesto Fiorentino (Italy)

    2015-10-01

    New tools for dosimetry in external beam radiotherapy have been developed during last years in the framework of the collaboration among the University of Florence, INFN Florence and IBA Dosimetry. The first step (in 2007) was the introduction in dosimetry of detector solutions adopted from high energy physics, namely epitaxial silicon as the base detector material and a guard ring in diode design. This allowed obtaining state of the art radiation hardness, in terms of sensitivity dependence on accumulated dose, with sensor geometry particularly suitable for the production of monolithic arrays with modular design. Following this study, a 2D monolithic array has been developed, based on 6.3×6.3 cm{sup 2} modules with 3 mm pixel pitch. This prototype has been widely investigated and turned out to be a promising tool to measure dose distributions of small and IMRT fields. A further linear array prototype has been recently design with improve spatial resolution (1 mm pitch) and radiation hardness. This 24 cm long device is constituted by 4×64 mm long modules. It features low sensitivity changes with dose (0.2%/kGy) and dose per pulse (±1% in the range 0.1–2.3 mGy/pulse, covering applications with flattened and unflattened photon fields). The detector has been tested with very satisfactory results as a tool for quality assurance of linear accelerators, with special regards to small fields, and proton pencil beams. In this contribution, the characterization of the linear array with unflattened MV X-rays, {sup 60}Co radiation and 226 MeV protons is reported. - Highlights: • A silicon monolithic 1D array with 1 mm pixel pitch was developed. • The detector was characterized with {sup 60}Co, unflattened MV X-rays, 226 MeV protons. • Dose linearity in clinical relevance range and dose profiles were measured. • The detector performs good agreement with reference detectors. • The technology is suitable in dose profiling in MV X-ray and proton therapy.

  2. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry for carbon-ion beams

    CERN Document Server

    Kanematsu, Nobuyuki; Ogata, Risa

    2012-01-01

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. Ideally, such material should be water equivalent as well as that for dosimetry. In this study, we evaluated dosimetric water equivalency of four common plastics, HDPE, PMMA, PET, and POM, by uniformity of effective densities for carbon-ion-beam interactions. Methods: Using the Bethe formula for stopping, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, we calculated the effective densities of the plastics for these interactions. We tested HDPE, PMMA, and POM in carbon-ion-beam experiment and measured attenuations of carbon ions, which were compared with empirical linear-attenuation-model calculations. Results: The theoretical calculations resulted in reduced multiple scattering and increased nuclear interactions for HDPE compared to water, which ...

  3. Monte Carlo study of conversion factors for ionization chamber dosimetry in solid slab phantoms for MV photon beams

    Science.gov (United States)

    Park, Dong-wook; Lee, Jai-ki

    2016-08-01

    For high energy photon beams, solid phantom to water dose conversion factors were calculated by using a Monte Carlo method, and the result were compared with measurements and published data. Based on the absorbed dose to water dosimetry protocol, the conversion factor was theoretically divided into stopping powers ratios, perturbation factors and ratios of absorbed dose to water and that to solid phantom. Data for a Farmer-type chamber and a solid phantom based on polystyrene which is one of the most common material were applied to calculate the conversion factors for 6 MV and 15 MV photon beams. All measurements were conducted after 10 Gy pre-irradiation and thermal equilibrium had been established with solid slabs in a treatment room. The calculated and the measured conversion factors were in good agreement and could be used to confirm the feasibility of the solid phantom as a substitute for water for high energy photon beam.

  4. Gafchromic EBT3 film dosimetry in electron beams - energy dependence and improved film read-out.

    Science.gov (United States)

    Sipilä, Petri; Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti

    2016-01-01

    For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in 60Co gamma ray beam with addition of experimental and Monte Carlo (MC)-simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read-out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose-dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ± 50 pixel values (PVs). To improve the read-out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scan-ner glass can be detected and eliminated. Responses from red and green channels were averaged for read-out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k = 2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC-simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV-16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read-out procedure established

  5. In vivo dosimetry using a single diode for megavoltage photon beam radiotherapy: implementation and response characterization.

    Science.gov (United States)

    Colussi, V C; Beddar, A S; Kinsella, T J; Sibata, C H

    2001-01-01

    The AAPM Task Group 40 reported that in vivo dosimetry can be used to identify major deviations in treatment delivery in radiation therapy. In this paper, we investigate the feasibility of using one single diode to perform in vivo dosimetry in the entire radiotherapeutic energy range regardless of its intrinsic buildup material. The only requirement on diode selection would be to choose a diode with the adequate build up to measure the highest beam energy. We have tested the new diodes from Sun Nuclear Corporation (called QED and ISORAD-p--both p-type) for low-, intermediate-, and high-energy range. We have clinically used both diode types to monitor entrance doses. In general, we found that the dose readings from the ISORAD (p-type) are closer of the dose expected than QED diodes in the clinical setting. In this paper we report on the response of these newly available ISORAD (p-type) diode detectors with respect to certain radiation field parameters such as source-to-surface distance, field size, wedge beam modifiers, as well as other parameters that affect detector characteristics (temperature and detector-beam orientation). We have characterized the response of the high-energy ISORAD (p-type) diode in the low- (1-4 MV), intermediate- (6-12 MV), and high-energy (15-25 MV) range. Our results showed that the total variation of the response of high-energy ISORAD (p-type) diodes to all the above parameters are within +/-5% in most encountered clinical patient treatment setups in the megavoltage photon beam radiotherapy. The usage of the high-energy buildup diode has the additional benefit of amplifying the response of the diode reading in case the wrong energy is used for patient treatment. In the light of these findings, we have since then switched to using only one single diode type, namely the "red" diode; manufacturer designation of the ISORAD (p-type) high-energy (15-25 MV) range diode, for all energies in our institution and satellites.

  6. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms

    Science.gov (United States)

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2013-08-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264 keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6 cm × 6 cm to 20 cm × 20 cm, incident angles from 0° to 50°, and energies from 6 to 18 MeV. The Čerenkov images were compared with the estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2 = 0.97) with reference data of the known dose for energies from 6 to 18 MeV. When orthogonal delivery was carried out, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2-4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50°, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system had a larger error (OPT = ±1˜2%, diode = ±2˜3%, TPS = ±6-8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in a layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable method of superficial dosimetry imaging from incident radiotherapy beams of electrons.

  7. Characteristics of mobile MOSFET dosimetry system for megavoltage photon beams

    Directory of Open Access Journals (Sweden)

    A Sathish Kumar

    2014-01-01

    Full Text Available The characteristics of a mobile metal oxide semiconductor field effect transistor (mobile MOSFET detector for standard bias were investigated for megavoltage photon beams. This study was performed with a brass alloy build-up cap for three energies namely Co-60, 6 and 15 MV photon beams. The MOSFETs were calibrated and the performance characteristics were analyzed with respect to dose rate dependence, energy dependence, field size dependence, linearity, build-up factor, and angular dependence for all the three energies. A linear dose-response curve was noted for Co-60, 6 MV, and 15 MV photons. The calibration factors were found to be 1.03, 1, and 0.79 cGy/mV for Co-60, 6 MV, and 15 MV photon energies, respectively. The calibration graph has been obtained to the dose up to 600 cGy, and the dose-response curve was found to be linear. The MOSFETs were found to be energy independent both for measurements performed at depth as well as on the surface with build-up. However, field size dependence was also analyzed for variable field sizes and found to be field size independent. Angular dependence was analyzed by keeping the MOSFET dosimeter in parallel and perpendicular orientation to the angle of incidence of the radiation with and without build-up on the surface of the phantom. The maximum variation for the three energies was found to be within ± 2% for the gantry angles 90° and 270°, the deviations without the build-up for the same gantry angles were found to be 6%, 25%, and 60%, respectively. The MOSFET response was found to be independent of dose rate for all three energies. The dosimetric characteristics of the MOSFET detector make it a suitable in vivo dosimeter for megavoltage photon beams.

  8. Development and characterization of a new graphite ionization chamber for dosimetry of {sup 60}Co beams

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio Pereira; Perini, Ana Paula; Santos, William de Souza; Caldas, Linda V.E., E-mail: lpneves@ipen.br, E-mail: aperini@ipen.br, E-mail: wssantos@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    Ionization chambers are the most employed dosimeters for precise measurements, as those required in radiotherapy. In this work, a new graphite ionization chamber was developed and characterized in order to compose a primary standard system for the beam dosimetry of the {sup 60}Co sources. This dosimeter is a cylindrical type ionization chamber, with walls and collecting electrode made of high-purity graphite, and the insulators and stem made of Teflon®. The walls are 3.0 mm thick, and it has a sensitive volume of 1.40 cm{sup 3}. The characterization was divided in two steps: experimental and Monte Carlo evaluations. This new dosimeter was evaluated in relation to its saturation curve, ion collection efficiency, polarity effect, short- and medium-term stabilities, leakage current, stabilization time, linearity of response and angular dependence. All results presented values within the established limits. The second part of the characterization process involved the determination of the correction factors, obtained by Monte Carlo simulations. Comparing these correction factors values with those from other primary standard laboratories, the highest differences were those for the wall and stem correction factors. The air-kerma rate of the {sup 60}Co source was determined with this new dosimeter and with the IPEN standard system, presenting a difference of 1.7%. These results indicate that this new dosimeter may be used as a primary standard system for {sup 60}Co gamma beams. (author)

  9. Dosimetry for ion-beam therapy using fluorescent nuclear track detectors and an automated reader

    CERN Document Server

    Greilich, Steffen; Klimpki, Grischa M; Kouwenberg, Jasper J M; Neuholz, Alexander; Pfeiler, Tina; Rahmanian, Shirin; Stadler, Alexander; Ulrich, Leonie

    2016-01-01

    For the assessment of effects of clinical ion-beams, dosimetry has to be complemented by information on particle-energy distribution or related quantities. Fluorescence nuclear track detectors made from C,Mg-doped alumina single crystals allow for the quantification of ion track density and energy loss on a single-track basis. In this study, their feasibility and accuracy to quantify fluence, linear-energy-transfer (LET) distributions, and eventually dose for a spread-out carbon ion Bragg peak was investigated. We found that while for the primary ions track densities agreed within a percent range with the reference data generated by Monte-Carlo radiation transport, the number of low-LET fragments in the beam was largely underestimated by approximately a factor three - the effect was most pronounced for protons where the measured fluence deviates at least an order of magnitude. Nevertheless, due to the dose major contribution of carbon ions, the determination of the individual detector sensitivity could be ide...

  10. Reference dosimetry and small-field dosimetry in external beam radiotherapy: Results from a Danish intercomparison study

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Behrens, Claus F.; Sibolt, Patrik

    methods was performed by DTU Nutech at six Danish clinics. The first part of the intercompa-rison regarded the consistency of reference dosimetry. Absorbed dose to water under reference conditions was measured using a Farmer ionization chamber, and was found to agree within 1 % with the daily dose checks......-mators and the measured field sizes, although one clinic showed field dimensions that were down to 21 ± 3 % smaller than expected. Small-field correction factors were estimated for a PinPoint cham-ber and a diamond detector using a fibre-coupled organic scintilla-tor as reference, after correcting for volume averaging...

  11. Superficial and orthovoltage x-ray beam dosimetry.

    Science.gov (United States)

    Podgorsak, E B; Gosselin, M; Evans, M D

    1998-07-01

    Output of superficial and orthovoltage x-ray units may be measured with cylindrical or end-window parallel-plate ionization chambers. The air-kerma calibration factors for these chambers are usually determined free in air, and the x-ray machine output is stated as the air-kerma rate free in air, which, when multiplied with the appropriate backscatter factor, gives the air-kerma rate on the surface of a phantom or patient. For end-window chambers, especially when they are used for measurements of small fields or low x-ray energies, the air-kerma calibration factors may also be determined with the chamber embedded in a tissue-equivalent phantom. This results in field size dependent air-kerma in-air calibration factors but obviates the requirement for knowledge of back-scatter factors when determining the air-kerma rate on the surface of a phantom. Since there still is considerable uncertainty in tabulated backscatter factors as a function of field size and x-ray beam energy, the output measurement technique which determines the air-kerma rate on phantom surface with a phantom-embedded end-window ionization chamber offers a clear advantage over the in-air calibration method.

  12. Phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography

    Science.gov (United States)

    Ludlow, John B.; Walker, Cameron

    2013-01-01

    Introduction Increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern with the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Methods Effective doses resulting from various combinations of field size, and field location comparing child and adult anthropomorphic phantoms using the recently introduced i-CAT FLX cone-beam computed tomography unit were measured with Optical Stimulated Dosimetry using previously validated protocols. Scan protocols included High Resolution (360° rotation, 600 image frames, 120 kVp, 5 mA, 7.4 sec), Standard (360°, 300 frames, 120 kVp, 5 mA, 3.7 sec), QuickScan (180°, 160 frames, 120 kVp, 5 mA, 2 sec) and QuickScan+ (180°, 160 frames, 90 kVp, 3 mA, 2 sec). Contrast-to-noise ratio (CNR) was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Results Child phantom doses were on average 36% greater than Adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than Standard protocols for child (p=0.0167) and adult (p=0.0055) phantoms. 13×16 cm cephalometric fields of view ranged from 11–85 μSv in the adult phantom and 18–120 μSv in the child for QuickScan+ and Standard protocols respectively. CNR was reduced by approximately 2/3rds comparing QuickScan+ to Standard exposure parameters. Conclusions QuickScan+ effective doses are comparable to conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off may be acceptable for certain diagnostic tasks such as interim assessment of treatment results. PMID:24286904

  13. Proton beam dosimetry for radiosurgery: implementation of the ICRU Report 59 at the Harvard Cyclotron Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Newhauser, Wayne D. [Massachusetts General Hospital, Northeast Proton Therapy Center, Department of Radiation Oncology, Boston, MA (United States)]. E-mail: wnewhauser@mdanderson.org; Myers, Karla D.; Rosenthal, Stanley J.; Smith, Alfred R. [Massachusetts General Hospital, Northeast Proton Therapy Center, Department of Radiation Oncology, Boston, MA (United States)

    2002-04-21

    Recent proton dosimetry intercomparisons have demonstrated that the adoption of a common protocol, e.g. ICRU Report 59, can lead to improved consistency in absorbed dose determinations. We compared absorbed dose values, measured in the 160 MeV proton radiosurgery beamline at the Harvard Cyclotron Laboratory, based on ionization chamber methods with those from a Faraday cup technique. The Faraday cup method is based on a proton fluence determination that allows the estimation of absorbed dose with the CEMA approximation, under which the dose is equal to the fluence times the mean mass stopping power. The ionization chamber technique employs an air-kerma calibration coefficient for {sup 60}Co radiation and a calculated correction in order to take into account the differences in response to {sup 60}Co and proton beam radiations. The absorbed dose to water, based on a diode measurement calibrated with a Faraday cup technique, is approximately 2% higher than was obtained from an ionization chamber measurement. At the Bragg peak depth, the techniques agree to within their respective uncertainties, which are both approximately 4% (1 standard deviation). The ionization chamber technique exhibited superior reproducibility and was adopted in our standard clinical practice for radiosurgery. (author)

  14. Small field dose delivery evaluations using cone beam optical computed tomography-based polymer gel dosimetry

    Directory of Open Access Journals (Sweden)

    Timothy Olding

    2011-01-01

    Full Text Available This paper explores the combination of cone beam optical computed tomography with an N-isopropylacrylamide (NIPAM-based polymer gel dosimeter for three-dimensional dose imaging of small field deliveries. Initial investigations indicate that cone beam optical imaging of polymer gels is complicated by scattered stray light perturbation. This can lead to significant dosimetry failures in comparison to dose readout by magnetic resonance imaging (MRI. For example, only 60% of the voxels from an optical CT dose readout of a 1 l dosimeter passed a two-dimensional Low′s gamma test (at a 3%, 3 mm criteria, relative to a treatment plan for a well-characterized pencil beam delivery. When the same dosimeter was probed by MRI, a 93% pass rate was observed. The optical dose measurement was improved after modifications to the dosimeter preparation, matching its performance with the imaging capabilities of the scanner. With the new dosimeter preparation, 99.7% of the optical CT voxels passed a Low′s gamma test at the 3%, 3 mm criteria and 92.7% at a 2%, 2 mm criteria. The fitted interjar dose responses of a small sample set of modified dosimeters prepared (a from the same gel batch and (b from different gel batches prepared on the same day were found to be in agreement to within 3.6% and 3.8%, respectively, over the full dose range. Without drawing any statistical conclusions, this experiment gives a preliminary indication that intrabatch or interbatch NIPAM dosimeters prepared on the same day should be suitable for dose sensitivity calibration.

  15. Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Ottosson, Rickard; Lindvold, Lars René;

    2011-01-01

    field at 10 cm depth. The dose per pulse behaviour compared well with linac target current measurements and accumulated dose measurements, and the system was able to resolve transient dose delivery differences between two Varian linac builds. The system therefore shows promise for reference dosimetry...

  16. Narrow beam dosimetry for high-energy hadrons and electrons

    CERN Document Server

    Pelliccioni, M; Ulrici, Luisa

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10°— 400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formula should prove useful for dosimetric estimations in case of accidental exposures to high-energy beams.

  17. Narrow beam dosimetry for high energy hadrons and electrons.

    Science.gov (United States)

    Pelliccioni, M; Silari, M; Ulrici, L

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10-400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formulae should prove useful for dosimetric estimations in the case of accidental exposures to high energy beams.

  18. Fiber optic probes based on silver-only coated hollow glass waveguides for ionizing beam radiation dosimetry

    Science.gov (United States)

    Darafsheh, Arash; Liu, Haoyang; Melzer, Jeffrey E.; Taleei, Reza; Harrington, James A.; Kassaee, Alireza; Zhu, Timothy C.; Finlay, Jarod C.

    2016-03-01

    Čerenkov contamination is a significant issue in radiation detection by fiber-coupled scintillators. To enhance the scintillation signal transmission while minimizing Čerenkov contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG tip with inserted scintillator, embedded in tissue mimicking phantoms, was irradiated with clinical electron and photon beams. Optical spectra of irradiated tips were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in good agreement with measurements performed by an electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination. Compared with a silver/dielectric coated HWG fiber dosimeter design we observed higher signal transmission in our design based on the use of silver-only HWG.

  19. Collimator scatter and 2D dosimetry in small proton beams

    NARCIS (Netherlands)

    van Luijk, P.; van 't Veld, A.A.; Zelle, H.D.; Schippers, J.M.

    2001-01-01

    Monte Carlo simulations have been performed to determine the influence of collimator-scattered protons from a 150 MeV proton beam on the dose distribution behind a collimator. Slit-shaped collimators with apertures between 2 and 20 mm have been simulated. The Monte Carlo code GEANT 3.21 has been val

  20. New luminescence measurement facilities in retrospective dosimetry

    DEFF Research Database (Denmark)

    Lapp, Torben; Jain, Mayank; Thomsen, Kristina Jørkov

    2012-01-01

    thermoelectrically cooled NIR sensitive PMT (detection window peak at 855 nm, FWHM 27 nm). Software and electronics have been modified to allow standard TL and OSL measurements in the same sequence as RL measurements. Together with a new bleaching source based on a high-power UV LED (395 nm; 700 mW/cm2......This paper gives a review of recent developments in luminescence measurement facilities on the Risø TL/OSL reader including radio-luminescence (RL), exo-electron and violet stimulation attachments, and a method for characterising and if necessary correcting for beta irradiation source non......-uniformity.We first describe improvements to the existing RL option to allow near infra-red detection (NIR) during irradiation by the built-in 90Sr/90Y beta source. The RL optical signal is collected by a liquid light guide through an F34-901 interference filter and detection is based on a dedicated...

  1. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    Science.gov (United States)

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  2. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    Science.gov (United States)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S.; Guallini, F.; Vallazza, E.; Prest, M.

    2014-09-01

    Radiotherapy treatments with high-energy (>8 MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the "in vivo" dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  3. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S. [Medical Physics - Sant' Anna Hospital, Como (Italy); Guallini, F. [EL.SE s.r.l. (Italy); Vallazza, E. [INFN, Trieste (Italy); Prest, M. [University of Insubria, Como (Italy)

    2014-09-21

    Radiotherapy treatments with high-energy (>8MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the “in vivo” dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  4. Evaluation of detectors for the small field measurements used for clinical radiation dosimetry

    Science.gov (United States)

    Markovic, Miljenko

    Advanced radiation therapy treatments with very small field sizes are complex. Increasingly higher doses delivered in single or few fractions are being commonly used for the treatments of the small target volume. Absolute or relative small field dosimetry is difficult due to radiation transport. Therefore it is very important to understand characteristics of the small field, detector selection as well as correction factors that have to be taken into account for the accurate measurements. Reducing uncertainty in relative dose measurement and modeling dose on treatment planning systems are factors contributing to the accuracy of the small field radiation treatments. Several challenges in small field dosimetry arise because of the lack of lateral charge particle equilibrium as well as the occlusion of the direct photon beam source and collimator settings. Presence of low-density media in irradiation geometry does complicate dosimetry even more. All those conditions are representing the challenge when it comes to dosimetric measurements. Size and construction are crucial when it comes to choice of the detector. Depending on beam energy, resolving the beam profile and penumbra for the small field sizes are a challenge and practically impossible with detectors commonly used in clinics. With decreasing field size and due to changes in particle spectrum, variations in radiological parameters have to be taken into account. To measure percent depth dose, tissue maximum ratios, tissue phantom ratios as well as output factors for the small field size experimental studies and Monte Carlo simulations have been conducted to determine appropriate detectors for the measurements. The primary goal of Specific Aim 1 was experimental quantification of the performance parameters for single detectors used for dosimetric verification of the small fields in radiotherapy. The proposed method and qualitative value for appropriate detectors selection defined by field size has been set. The

  5. Pencil beam scanning dosimetry for large animal irradiation.

    Science.gov (United States)

    Lin, Liyong; Solberg, Timothy D; Carabe, Alexandro; Mcdonough, James E; Diffenderfer, Eric; Sanzari, Jenine K; Kennedy, Ann R; Cengel, Keith

    2014-09-01

    The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event. These events consist primarily of low-energy protons that produce a highly inhomogeneous depth-dose distribution. Here we describe a novel technique that uses pencil beam scanning at extended source-to-surface distances and range shifter (RS) to provide robust but easily modifiable delivery of simulated solar particle event radiation to large animals. Thorough characterization of spot profiles as a function of energy, distance and RS position is critical to accurate treatment planning. At 105 MeV, the spot sigma is 234 mm at 4800 mm from the isocentre when the RS is installed at the nozzle. With the energy increased to 220 MeV, the spot sigma is 66 mm. At a distance of 1200 mm from the isocentre, the Gaussian sigma is 68 mm and 23 mm at 105 MeV and 220 MeV, respectively, when the RS is located on the nozzle. At lower energies, the spot sigma exhibits large differences as a function of distance and RS position. Scan areas of 1400 mm (superior-inferior) by 940 mm (anterior-posterior) and 580 mm by 320 mm are achieved at the extended distances of 4800 mm and 1200 mm, respectively, with dose inhomogeneity <2%. To treat large animals with a more sophisticated dose distribution, spot size can be reduced by placing the RS closer than 70 mm to the surface of the animals, producing spot sigmas below 6 mm.

  6. Recommendations for clinical electron beam dosimetry: supplement to the recommendations of Task Group 25.

    Science.gov (United States)

    Gerbi, Bruce J; Antolak, John A; Deibel, F Christopher; Followill, David S; Herman, Michael G; Higgins, Patrick D; Huq, M Saiful; Mihailidis, Dimitris N; Yorke, Ellen D; Hogstrom, Kenneth R; Khan, Faiz M

    2009-07-01

    The goal of Task Group 25 (TG-25) of the Radiation Therapy Committee of the American Association of.Physicists in Medicine (AAPM) was to provide a methodology and set of procedures for a medical physicist performing clinical electron beam dosimetry in the nominal energy range of 5-25 MeV. Specifically, the task group recommended procedures for acquiring basic information required for acceptance testing and treatment planning of new accelerators with therapeutic electron beams. Since the publication of the TG-25 report, significant advances have taken place in the field of electron beam dosimetry, the most significant being that primary standards laboratories around the world have shifted from calibration standards based on exposure or air kerma to standards based on absorbed dose to water. The AAPM has published a new calibration protocol, TG-51, for the calibration of high-energy photon and electron beams. The formalism and dosimetry procedures recommended in this protocol are based on the absorbed dose to water calibration coefficient of an ionization chamber at 60Co energy, N60Co(D,w), together with the theoretical beam quality conversion coefficient k(Q) for the determination of absorbed dose to water in high-energy photon and electron beams. Task Group 70 was charged to reassess and update the recommendations in TG-25 to bring them into alignment with report TG-51 and to recommend new methodologies and procedures that would allow the practicing medical physicist to initiate and continue a high quality program in clinical electron beam dosimetry. This TG-70 report is a supplement to the TG-25 report and enhances the TG-25 report by including new topics and topics that were not covered in depth in the TG-25 report. These topics include procedures for obtaining data to commission a treatment planning computer, determining dose in irregularly shaped electron fields, and commissioning of sophisticated special procedures using high-energy electron beams. The use of

  7. Electron Beam Dosimetry in Heterogeneous Phantoms Using a MAGIC Normoxic Polymer Gel

    Directory of Open Access Journals (Sweden)

    Ruhollah Ghahraman Asl

    2010-03-01

    Full Text Available Introduction: Nowadays radiosensitive polymer gels are used as a reliable dosimetry tool for verification of 3D dose distributions. Special characteristics of these dosimeters have made them useful for verification of complex dose distributions in clinical situations. The aim of this work was to evaluate the capability of a normoxic polymer gel to determine electron dose distributions in different slab phantoms in presence of small heterogeneities. Materials and Methods: Different cylindrical phantoms consisting gel were used under slab phantoms during each irradiation. MR images of irradiated gel phantoms were obtained to determine their R2 relaxation maps. 1D and 2D lateral dose profiles were acquired at depths of 1 cm for an 8 MeV beam and 1 and 4 cm for the 15 MeV energy, and then compared with the lateral dose profiles measured using a diode detector. In addition, 3D dose distributions around these heterogeneities for the same energies and depths were measured using a gel dosimeter. Results: Dose resolution for MR gel images at the range of 0-10 Gy was less than 1.55 Gy. Mean dose difference and distance to agreement (DTA for dose profiles were 2.6% and 2.2 mm, respectively. The results of the MAGIC-type polymer gel for bone heterogeneity at 8 MeV showed a reduction in dose of approximately 50%, and 30% and 10% at depths 1 and 4 cm at 15 MeV. However, for air heterogeneity increases in dose of approximately 50% at depth 1 cm under the heterogeneity at 8 MeV and 20% and 45% respectively at 15 MeV were observed. Discussion and Conclusion: Generally, electron beam distributions are significantly altered in the presence of tissue inhomogeneities such as bone and air cavities, this being related to mass stopping and mass scattering powers of heterogeneous materials. At the same time, hot and cold scatter lobes under heterogeneity regions due to scatter edge effects were also seen. However, these effects (increased dose, reduced dose, hot and

  8. Plasma Beam Measurements

    Science.gov (United States)

    1991-08-01

    GUN PLASMA BEAM / ,I 21 cm diameter = 0 GLASS DRIFT TUBE 50 cm diameter MCP CAMERA CLASS CROSSES (a) Gun muzzle /"- PLASA BEAM / TAROT z = 10 m MCP...discusses some of the hydrodynamic issues related to the calcula- tions. The reader may well wonder why hydrodynamics should be an issue in a 116 WL-TR-90...answer is yes for the slow beam cases and no for the fast beam cases. This is explained further. 118 WL-TR-90-83 The reader will recall the

  9. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F., E-mail: francesco.romano@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F.; Cirrone, G.A.P.; Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Scuderi, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Giordanengo, S.; Guarachi, L. Fanola [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Universita' di Torino, Dipartimento di Fisica, Via P. Giuria 1, Torino (Italy); Korn, G. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Larosa, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Leanza, R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Universita' di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R.; Marchese, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Margarone, D. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); and others

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  10. Beam emittance measurements at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  11. Apparatus to measure low level helium for neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Shuji; Takao, Yoshiyuki; Muramasu, Masatomo; Hida, Tomoya; Sou, Hirofumi; Nakashima, Hideki [Kyushu Univ., Fukuoka (Japan); Kanda, Yukinori

    1998-03-01

    An apparatus to measure low level helium in a solid sample for neutron dosimetry in the practical use such as area monitoring in the long-term and reactor surveillance was reported. In our previous work, the helium atoms measurement system (HAMS) was developed. A sample was evaporated in the furnace and the released gas from the sample was analyzed with the mass spectrometer of the system to determine the amount of helium contained in it. The system has been improved to advance the lower helium measurement limit in a solid sample for its application to an area monitoring system. The mass of a solid is up to 100mg. Two important points should be considered to advance the lower limit. One was to produce a high quality vacuum in the system chamber for suppressing background gases during the sample measurement. The other important point was to detect very small output from the mass spectrometer. A pulse counting system was used to get high sensitivity in the mass 4 analyzing. (author)

  12. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Rydhög, J. S.; Søndergaard, Rikke Vicki;

    2016-01-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver......-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive (106)Ag......, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy...

  13. A prototype fan-beam optical CT scanner for 3D dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Warren G.; Rudko, D. A.; Braam, Nicolas A.; Jirasek, Andrew [University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Wells, Derek M. [British Columbia Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

    2013-06-15

    Purpose: The objective of this work is to introduce a prototype fan-beam optical computed tomography scanner for three-dimensional (3D) radiation dosimetry. Methods: Two techniques of fan-beam creation were evaluated: a helium-neon laser (HeNe, {lambda} = 543 nm) with line-generating lens, and a laser diode module (LDM, {lambda} = 635 nm) with line-creating head module. Two physical collimator designs were assessed: a single-slot collimator and a multihole collimator. Optimal collimator depth was determined by observing the signal of a single photodiode with varying collimator depths. A method of extending the dynamic range of the system is presented. Two sample types were used for evaluations: nondosimetric absorbent solutions and irradiated polymer gel dosimeters, each housed in 1 liter cylindrical plastic flasks. Imaging protocol investigations were performed to address ring artefacts and image noise. Two image artefact removal techniques were performed in sinogram space. Collimator efficacy was evaluated by imaging highly opaque samples of scatter-based and absorption-based solutions. A noise-based flask registration technique was developed. Two protocols for gel manufacture were examined. Results: The LDM proved advantageous over the HeNe laser due to its reduced noise. Also, the LDM uses a wavelength more suitable for the PRESAGE{sup TM} dosimeter. Collimator depth of 1.5 cm was found to be an optimal balance between scatter rejection, signal strength, and manufacture ease. The multihole collimator is capable of maintaining accurate scatter-rejection to high levels of opacity with scatter-based solutions (T < 0.015%). Imaging protocol investigations support the need for preirradiation and postirradiation scanning to reduce reflection-based ring artefacts and to accommodate flask imperfections and gel inhomogeneities. Artefact removal techniques in sinogram space eliminate streaking artefacts and reduce ring artefacts of up to {approx}40% in magnitude. The

  14. Practical approach for pretreatment verification of IMRT with flattening filter free(FFF) beams using Varian Portal Dosimetry.

    Science.gov (United States)

    Min, Soonki; Choi, Young Eun; Kwak, Jungwon; Cho, Byungchul

    2014-01-08

    Patient-specific pretreatment verification of intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) is strongly recommended for all patients in order to detect any potential errors in treatment planning process and machine deliverability, and is thus performed routinely in many clinics. Portal dosimetry is an effective method for this purpose because of its prompt setup, easy data acquisition, and high spatial resolution. However, portal dosimetry cannot be applied to IMRT or VMAT with flattening filter-free (FFF) beams because of the high dose-rate saturation effect of the electronic portal imaging device (EPID). In our current report, we suggest a practical QA method of expanding the conventional portal dosimetry to FFF beams with a QA plan generated by the following three steps: 1) replace the FFF beams with flattening filtered (FF) beams of the same nominal energy; 2) reduce the dose rate to avoid the saturation effect of the EPID detector; and 3) adjust the total MU to match the gantry and MLC leaf motions. Two RapidArc plans with 6 and 10 MV FFF beams were selected, and QA plans were created by the aforementioned steps and delivered. The trajectory log files of TrueBeam obtained during the treatment and during the delivery of QA plan were analyzed and compared. The maximum discrepancies in the expected trajectories between the treatment and QA plans were within 0.002 MU for the MU, 0.06° for the motion of gantry rotation, and 0.006 mm for the positions of the MLC leaves, indicating much higher levels of accuracy compared to the mechanical specifications of the machine. For further validation of the method, direct comparisons of the delivered QA FF beam to the treatment FFF beam were performed using film dosimetry and show that gamma passing rates under 2%/2 mm criteria are 99.0%-100% for the all four arc beams. This method can be used on RapidArc plans with FFF beams without any additional procedure or modifications on the

  15. Reference dosimetry for light-ion beams based on graphite calorimetry.

    Science.gov (United States)

    Rossomme, S; Palmans, H; Thomas, R; Lee, N; Duane, S; Bailey, M; Shipley, D; Bertrand, D; Romano, F; Cirrone, P; Cuttone, G; Vynckier, S

    2014-10-01

    Developments in hadron therapy require efforts to improve the accuracy of the dose delivered to a target volume. Here, the determination of the absorbed dose under reference conditions was analysed. Based on the International Atomic Energy Agency TRS-398 code of practice, for hadron beams, the combined standard uncertainty on absorbed dose to water under reference conditions, derived from ionisation chambers, is too large. This uncertainty is dominated by the beam quality correction factors, [Formula: see text], mainly due to the mean energy to produce one ion pair in air, wair. A method to reduce this uncertainty is to carry out primary dosimetry, using calorimetry. A [Formula: see text]-value can be derived from a direct comparison between calorimetry and ionometry. Here, this comparison is performed using a graphite calorimeter in an 80-MeV A(-1) carbon ion beam. Assuming recommended TRS-398 values of water-to-graphite stopping power ratio and the perturbation factor for an ionisation chamber, preliminary results indicate a wair-value of 35.5 ± 0.9 J C(-1).

  16. K-band EPR dosimetry: small-field beam profile determination with miniature alanine dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Felipe [Departmento de Fisica e Matematica, FFCLRP-Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirao Preto-SP (Brazil); Department of Radiological Health, Caja de Seguro Social, Panama City (Panama); Department of Physics, Faculty of Natural and Exact Sciences and Technology, University of Panama, Panama City (Panama); Graeff, Carlos F.O. [Departmento de Fisica e Matematica, FFCLRP-Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirao Preto-SP (Brazil); Baffa, Oswaldo [Departmento de Fisica e Matematica, FFCLRP-Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirao Preto-SP (Brazil)

    2005-02-01

    The use of small-size alanine dosimeters presents a challenge because the signal intensity is less than the spectrometer sensitivity. K-band (24 GHz) EPR spectrometer seems to be a good compromise between size and sensitivity of the sample. Miniature alanine pellets were evaluated for small-field radiation dosimetry. Dosimeters of DL-alanine/PVC with dimensions of 1.5 mm diameter and 2.5 mm length with 5 mg mass were developed. These dosimeters were irradiated with 10 MV X-rays in the dose range 0.05-60 Gy and the first harmonic (1 h) spectra were recorded. Microwave power, frequency and amplitude of modulation were optimized to obtain the best signal-to-noise ratio (S/N). For beam profile determination, a group of 25 dosimeters were placed in an acrylic device with dimensions of (7.5x2.5x1) cm{sup 3} and irradiated with a (3x3) cm{sup 2} 10 MV X-rays beam field size. The dose at the central region of the beam was 20 Gy at a depth of 2.2 cm (build up for acrylic). The acrylic device was oriented perpendicular to the beam axis and to the gantry rotation axis. For the purposes of comparison of the spatial resolution, the beam profile was also determined with a radiographic film and 2 mm aperture optical densitometer; in this case the dose was 1 cGy. The results showed a similar spatial resolution for both types of dosimeters. The dispersion in dose reading was larger for alanine in comparison with the film, but alanine dosimeters can be read faster and more directly than film over a wide dose range.

  17. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    Science.gov (United States)

    Christensen, A. N.; Rydhög, J. S.; Søndergaard, R. V.; Andresen, T. L.; Holm, S.; Munck Af Rosenschöld, P.; Conradsen, K.; Jølck, R. I.

    2016-05-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively.Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The

  18. The energy dependence of the lateral dose response functions of detectors with various densities in photon-beam dosimetry

    Science.gov (United States)

    Khee Looe, Hui; Harder, Dietrich; Poppe, Björn

    2017-02-01

    The lateral dose response function is a general characteristic of the volume effect of a detector used for photon dosimetry in a water phantom. It serves as the convolution kernel transforming the true absorbed dose to water profile, which would be produced within the undisturbed water phantom, into the detector-measured signal profile. The shape of the lateral dose response function characterizes (i) the volume averaging attributable to the detector’s size and (ii) the disturbance of the secondary electron field associated with the deviation of the electron density of the detector material from the surrounding water. In previous work, the characteristic dependence of the shape of the lateral dose response function upon the electron density of the detector material was studied for 6 MV photons by Monte Carlo simulation of a wall-less voxel-sized detector (Looe et al 2015 Phys. Med. Biol. 60 6585-07). This study is here continued for 60Co gamma rays and 15 MV photons in comparison with 6 MV photons. It is found (1) that throughout these photon spectra the shapes of the lateral dose response functions are retaining their characteristic dependence on the detector’s electron density, and (2) that their energy-dependent changes are only moderate. This appears as a practical advantage because the lateral dose response function can then be treated as practically invariant across a clinical photon beam in spite of the known changes of the photon spectrum with increasing distance from the beam axis.

  19. Characterization of Al2O3 optically stimulated luminescence films for 2D dosimetry using a 6 MV photon beam

    Science.gov (United States)

    Ahmed, M. F.; Shrestha, N.; Schnell, E.; Ahmad, S.; Akselrod, M. S.; Yukihara, E. G.

    2016-11-01

    This work evaluates the dosimetric properties of newly developed optically stimulated luminescence (OSL) films, fabricated with either Al2O3:C or Al2O3:C,Mg, using a prototype laser scanning reader, a developed image reconstruction algorithm, and a 6 MV therapeutic photon beam. Packages containing OSL films (Al2O3:C and Al2O3:C,Mg) and a radiochromic film (Gafchromic EBT3) were irradiated using a 6 MV photon beam using different doses, field sizes, with and without wedge filter. Dependence on film orientation of the OSL system was also tested. Diode-array (MapCHECK) and ionization chamber measurements were performed for comparison. The OSLD film doses agreed with the MapCHECK and ionization chamber data within the experimental uncertainties (response was approximately linear from the MDD up to a few grays (the linearity correction was  response, resolution and dosimetric properties. The negligible background and potential simple calibration make these OSLD films suitable for remote audits. The characterization presented here may motivate further commercial development of a 2D dosimetry system based on the OSL from Al2O3:C or Al2O3:C,Mg.

  20. Spencer-Attix water/medium stopping-power ratios for the dosimetry of proton pencil beams.

    Science.gov (United States)

    Gomà, C; Andreo, P; Sempau, J

    2013-04-21

    This paper uses Monte Carlo simulations to calculate the Spencer-Attix water/medium stopping-power ratios (sw, med) for the dosimetry of scanned proton pencil beams. It includes proton energies from 30 to 350 MeV and typical detection materials such as air (ionization chambers), radiochromic film, gadolinium oxysulfide (scintillating screens), silicon and lithium fluoride. Track-ends and particles heavier than protons were found to have a negligible effect on the water/air stopping-power ratios (sw, air), whereas the mean excitation energy values were found to carry the largest source of uncertainty. The initial energy spread of the beam was found to have a minor influence on the sw, air values in depth. The water/medium stopping-power ratios as a function of depth in water were found to be quite constant for air and radiochromic film-within 2.5%. Also, the sw, med values were found to have no clinically relevant dependence on the radial distance-except for the case of gadolinium oxysulfide and proton radiography beams. In conclusion, the most suitable detection materials for depth-dose measurements in water were found to be air and radiochromic film active layer, although a small correction is still needed to compensate for the different sw, med values between the plateau and the Bragg peak region. Also, all the detection materials studied in this work-except for gadolinium oxysulfide-were found to be suitable for lateral dose profiles and field-specific dose distribution measurements in water.

  1. Comparison between a commercial and homemade ionization chamber for dosimetry of {sup 60}Co beams

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio P.; Perini, Ana P.; Caldas, Linda V.E., E-mail: lpneves@ipen.b, E-mail: aperini@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The Calibration Laboratory at IPEN/CNEN (LCI) has developed several ionization detectors for dosimetry in diagnostic radiology, radiation protection and radiotherapy. Recently, a cylindrical ionization chamber, with a sensitive volume of 1.06cm{sup 3}, was developed, and several tests were performed to characterize this ionization chamber for radiotherapy level. The results showed that its performance was within the recommended international limits. In order to complement the studies regarding the response of this ionization chamber, in this work, the chamber response was compared with that of a commercial ionization chamber Farmer PTW, model TN30011-1. The ionization chamber produced at LCI is made of PVC and PMMA. A special build-up cap for {sup 60}Co beams was made of acrylic, with 4.00 mm thickness. All tests of both ionization chambers were performed under the same conditions, allowing good geometrical reproducibility. The performed tests were: saturation, ion collection efficiency, polarity effect and chamber tilt. The results obtained in this comparison program were all within the international recommendations, and demonstrate a good agreement of the performance of the commercial and the homemade ionization chambers. From this comparison results and from previous data, it is possible to conclude that the ionization chamber produced at IPEN presents usefulness for dosimetric applications at radiotherapy level in {sup 60}Co beams.(author)

  2. Neutron dosimetry and radiation damage calculations for HFBR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., TN (United States)

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  3. Evaluation of thermoluminescent dosimeters using water equivalent phantoms for application in clinical electrons beams dosimetry; Avaliacao de dosimetros termoluminescentes empregando objetos simuladores equivalentes a agua para aplicacao na dosimetria de feixes clinicos de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Bravim, Amanda

    2010-07-01

    The dosimetry in Radiotherapy provides the calibration of the radiation beam as well as the quality control of the dose in the clinical routine. Its main objective is to determine with greater accuracy the dose absorbed by the tumor. This study aimed to evaluate the behavior of three thermoluminescent dosimeters for the clinical electron beam dosimetry. The performance of the calcium sulfate detector doped with dysprosium (CaSO{sub 4}: Dy) produced by IPEN was compared with two dosimeters commercially available by Harshaw. Both are named TLD-100, however they differ in their dimensions. The dosimeters were evaluated using water, solid water (RMI-457) and PMMA phantoms in different exposure fields for 4, 6, 9, 12 and 16 MeV electron beam energies. It was also performed measurements in photon beams of 6 and 15 MV (2 and 5 MeV) only for comparison. The dose-response curves were obtained for the {sup 60}Co gamma radiation in air and under conditions of electronic equilibrium, both for clinical beam of photons and electrons in maximum dose depths. The sensitivity, reproducibility, intrinsic efficiency and energy dependence response of dosimeters were studied. The CaSO{sub 4}: Dy showed the same behavior of TLD-100, demonstrating only an advantage in the sensitivity to the beams and radiation doses studied. Thus, the dosimeter produced by IPEN can be considered a new alternative for dosimetry in Radiotherapy departments. (author)

  4. Beam Measurements in Storage Rings

    Science.gov (United States)

    Hofmann, Albert

    1996-05-01

    Beam measurements in storage rings are made to diagnose performance limitations and to gain knowledge of the beam behavior in view of improvements and to the benefit for other machines. In beam optics the measurement of the orbit or the trajectory with beam position monitors distributed around the ring reveals deflection errors. The overall focusing is checked by measuring the betatron frequency (tune) using a pulse or continuous excitation of the oscillation. Observing this oscillation with all the beam position monitors around the ring the beta function and the betatron phase advance are obtained. This measurement done for different momenta, i.e. RF-frequencies, gives the local chromaticity and its correction. The tune dependence on quadrupole strength gives the value of the local beta function. Synchrotron radiation is a powerful diagnostics tool and can give the beam cross section. Beam instabilities are investigated with similar methods. The growth or damping rates and frequencies of betatron and synchrotron oscillations, observed as a function of intensity, give a convolution of the resistive and reactive part of the transverse and longitudinal impedance with the spectrum of the oscillation mode. Coupled bunch instabilities are caused by narrow band impedances at particular frequencies while single traversal effects, including energy loss and bunch lengthening, are due to a broad band impedance. A model of the impedance can be constructed from such measurements done with different bunch lengths, tunes and other parameters. In some cases the element causing an instability can be identified. The dependence of the orbit and phase advance around the ring on intensity can give the location of impedances. To probe the impedance at very high frequencies the effects on very short bunches or the energy loss of a continuous beam due to its Schottky noise are measured. The beam energy, usually known from magnetic measurements, can be obtained directly with high

  5. Proton therapy posterior beam approach with pencil beam scanning for esophageal cancer. Clinical outcome, dosimetry, and feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yue-Can [Shengjing Hospital of China Medical University, Department of Medical Oncology, Cancer Center, Shenyang (China); University of Washington Medical Center, Department of Radiation Oncology, 1959 NE Pacific Street, Campus Box 356043, Seattle, WA (United States); Vyas, Shilpa; Apisarnthanarax, Smith; Zeng, Jing [University of Washington Medical Center, Department of Radiation Oncology, 1959 NE Pacific Street, Campus Box 356043, Seattle, WA (United States); Dang, Quang; Schultz, Lindsay [Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA (United States); Bowen, Stephen R. [University of Washington Medical Center, Department of Radiation Oncology, 1959 NE Pacific Street, Campus Box 356043, Seattle, WA (United States); University of Washington Medical Center, Department of Radiology, Seattle, WA (United States); Shankaran, Veena [University of Washington Medical Center, Department of Medical Oncology, Seattle, WA (United States); Farjah, Farhood [University of Washington Medical Center, Department of Surgery, Division of Cardiothoracic Surgery, Seattle, WA (United States); University of Washington Medical Center, Department of Surgery, Surgical Outcomes Research Center, Seattle, WA (United States); Oelschlager, Brant K. [University of Washington Medical Center, Department of Surgery, Seattle, WA (United States)

    2016-12-15

    The aim of this study is to present the dosimetry, feasibility, and preliminary clinical results of a novel pencil beam scanning (PBS) posterior beam technique of proton treatment for esophageal cancer in the setting of trimodality therapy. From February 2014 to June 2015, 13 patients with locally advanced esophageal cancer (T3-4N0-2M0; 11 adenocarcinoma, 2 squamous cell carcinoma) were treated with trimodality therapy (neoadjuvant chemoradiation followed by esophagectomy). Eight patients were treated with uniform scanning (US) and 5 patients were treated with a single posterior-anterior (PA) beam PBS technique with volumetric rescanning for motion mitigation. Comparison planning with PBS was performed using three plans: AP/PA beam arrangement; PA plus left posterior oblique (LPO) beams, and a single PA beam. Patient outcomes, including pathologic response and toxicity, were evaluated. All 13 patients completed chemoradiation to 50.4 Gy (relative biological effectiveness, RBE) and 12 patients underwent surgery. All 12 surgical patients had an R0 resection and pathologic complete response was seen in 25 %. Compared with AP/PA plans, PA plans have a lower mean heart (14.10 vs. 24.49 Gy, P < 0.01), mean stomach (22.95 vs. 31.33 Gy, P = 0.038), and mean liver dose (3.79 vs. 5.75 Gy, P = 0.004). Compared to the PA/LPO plan, the PA plan reduced the lung dose: mean lung dose (4.96 vs. 7.15 Gy, P = 0.020) and percentage volume of lung receiving 20 Gy (V{sub 20}; 10 vs. 17 %, P < 0.01). Proton therapy with a single PA beam PBS technique for preoperative treatment of esophageal cancer appears safe and feasible. (orig.) [German] Wir stellen die Vergleichsdosimetrie, Realisierbarkeit und die vorlaeufigen klinischen Ergebnisse einer neuen Pencil-Beam-Scanning(-PBS)/Posterior-Beam-Methode innerhalb der Protonentherapie fuer Speiseroehrenkrebs im Setting einer trimodalen Therapie vor. Von Februar 2014 bis Juni 2015 erhielten 13 Patienten mit lokal fortgeschrittenem

  6. Evaluation of MRI-based Polymer Gel Dosimetry for Measurement of CT Dose Index (CTDI on 64 slices CT Scanners

    Directory of Open Access Journals (Sweden)

    Leaila Karimi-Afshar

    2009-06-01

    Full Text Available Introduction: Computed tomography (CT has numerous applications in clinical procedures but its main problem is its high radiation dose to the patients compared to other imaging modalities using x-ray. CT delivers approximately high doses to the nearby tissues due to the scattering effect, fan beam (beam divergence and limited collimator efficiency. The radiation dose from multi-slice scanners is greater than the single-slice scanners and since multi-slice scanners increasingly employ a wide beam, 100 mm ion chambers currently used in measuring the CTDI100, are not capable of accurately measuring the total dose profile of the slice width. Therefore, the CT dose is underestimated by using them. The purpose of this study is to measure the Computed Tomography Dose Index (CTDI of a GE multi-slice CT scanner (64-slice using polymer gel dosimetry based on MRI imaging (MRPD. CTDI is the sum of point doses along the central axis and estimates the average patient dose during CT scanning. Materials and Methods: For measuring CTDI, after designing and fabricating the phantom and preparing the MAGIC gel, MRI imaging using a 1.5 T Siemens MRI scanner was performed with the imaging parameters of ST = 2 mm, NEX = 1, TE = 20-640 ms and TR = 2000 ms. CTDI was measured with a 100 mm ion chamber (CTDI100 and also the MAGIC gel with MRPD method for 10 mm and 40 mm CT scan nominal widths. Results: Following the measurement of the CTDI100 for 10 mm and 40 mm nominal slice widths of the multi-slice scanner using both ion chamber and MAGIC gel, the results showed that the ion chamber underestimates CTDI100 by 28.71% and 14.03% compared to gel for 10 mm and 40 mm respectively. Discussion and Conclusion: It was concluded from this study that gel dosimeters have the capability to measure CTDI in wide beams of multi-slice CT scanners whereas 100 mm standard ion chamber due to its limited length is not reliable even for a 10 mm beam width. In addition, due to the 3

  7. Calculation of uncertainties in the protocol of dosimetry for Co 60 beams in Radiotherapy; Calculo de incertidumbres en el protocolo de dosimetria para haces de Co 60 en Radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez M, S.; Carrera M, F.; Sanchez S, J. [Hospital Juan Ramon Jimenez, Ronda Norte s/n 21005 Huelva (Spain)

    1998-12-31

    The objective in this work is to show how the uncertainty is possible to know in the determination of the absorbed dose in Co 60 photon beams and to establish in a rational form, tolerance levels for this. It is took as base the spanish protocol of dosimetry in Radiotherapy. We have been centered in a Co 60 beam. We utilized the statistical theory of little samples. We allowed to suggest a new approach about the treatment of the tolerance levels and the uncertainty of the measurement. After two years of experience in the practical hospitable application we have gotten to put around 1 % uncertainty in the absolute dosimetry of the Co 60 beam. The presented protocol allows to execute the accuracy requirements in the determination of absorbed doses. (Author)

  8. Measurement Error Effects of Beam Parameters Determined by Beam Profiles

    CERN Document Server

    Jang, Ji-Ho; Jeon, Dong-O

    2015-01-01

    A conventional method to determine beam parameters is using the profile measurements and converting them into the values of twiss parameters and beam emittance at a specified position. The beam information can be used to improve transverse beam matching between two different beam lines or accelerating structures. This work is related with the measurement error effects of the beam parameters and the optimal number of profile monitors in a section between MEBT (medium energy beam transport) and QWR (quarter wave resonator) of RAON linear accelerator.

  9. ESR response of phenol compounds for dosimetry of gamma photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Marrale, M., E-mail: maurizio.marrale@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN, Catania (Italy); Longo, A. [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN, Catania (Italy); Panzeca, S. [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gallo, S. [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN, Catania (Italy); Principato, F. [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Tomarchio, E.; Parlato, A. [Dipartimento Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Ed. 6, I-90128 Palermo (Italy); Buttafava, A.; Dondi, D.; Zeffiro, A. [Dipartimento di Chimica, Università di Pavia, V.le Taramelli, 12 Pavia, Italy and INFN, Sezione di Pavia, Pavia, Italy. (Italy)

    2014-11-15

    In the present paper we investigate the features of IRGANOX® 1076 phenols as a material for electron spin resonance (ESR) dosimetry. We experimentally analyzed the ESR response of pellets of IRGANOX® 1076 phenols irradiated with {sup 60}Co photons. The best experimental parameters (modulation amplitude and microwave power) for dosimetric applications have been obtained. The dependence of ESR signal as function of γ dose is found to be linear in the dose range studied (12–60 Gy) and the lowest measurable dose is found to be of the order of 1 Gy. The signal after irradiation is very stable in the first thirty days. From the point of view of the tissue equivalence, these materials have mass energy absorption coefficient values comparable with those of soft tissue.

  10. aSi EPIDs for the in-vivo dosimetry of static and dynamic beams

    Energy Technology Data Exchange (ETDEWEB)

    Piermattei, A. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, 00146 Roma (Italy); Istituto di Fisica e U.O.C. di Fisica Sanitaria, Università Cattolica del S. Cuore, 00168 Roma (Italy); Cilla, S. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, 00146 Roma (Italy); U.O. di Fisica Sanitaria, Fondazione per la Ricerca e Cura ‘Giovanni Paolo II’, 86100 Campobasso (Italy); Azario, L.; Greco, F. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, 00146 Roma (Italy); Istituto di Fisica e U.O.C. di Fisica Sanitaria, Università Cattolica del S. Cuore, 00168 Roma (Italy); Russo, M. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, 00146 Roma (Italy); U.O. di Fisica Sanitaria, Ospedale Belcolle, 01100 Viterbo (Italy); Grusio, M. [Istituto di Fisica e U.O.C. di Fisica Sanitaria, Università Cattolica del S. Cuore, 00168 Roma (Italy); Orlandini, L. [U.O. di Fisica Medica, Centro Oncologico Fiorentino, 50121 Firenze (Italy); Fidanzio, A., E-mail: andrea.fidanzio@rm.unicatt.it [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, 00146 Roma (Italy); Istituto di Fisica e U.O.C. di Fisica Sanitaria, Università Cattolica del S. Cuore, 00168 Roma (Italy)

    2015-10-01

    Portal imaging by amorphous silicon (aSi) photodiode is currently the most applied technology for in-vivo dosimetry (IVD) of static and dynamic radiotherapy beams. The strategy, adopted in this work to perform the IVD procedure by aSi EPID, is based on: in patient reconstruction of the isocenter dose and day to day comparison between 2D-portal images to verify the reproducibility of treatment delivery. About 20.000 tests have been carried out in this last 3 years in 8 radiotherapy centers using the SOFTDISO program. The IVD results show that: (i) the procedure can be implemented for linacs of different manufacturer, (ii) the IVD analysis can be obtained on a computer screen, in quasi real time (about 2 min after the treatment delivery) and (iii) once the causes of the discrepancies were eliminated, all the global IVD tests for single patient were within the acceptance criteria defined by: ±5% for the isocenter dose, and P{sub γ<1}≥90% of the checked points for the 2D portal image γ-analysis. This work is the result of a project supported by the Istituto Nazionale di Fisica Nucleare (INFN) and Università Cattolica del S.Cuore (UCSC)

  11. aSi EPIDs for the in-vivo dosimetry of static and dynamic beams

    Science.gov (United States)

    Piermattei, A.; Cilla, S.; Azario, L.; Greco, F.; Russo, M.; Grusio, M.; Orlandini, L.; Fidanzio, A.

    2015-10-01

    Portal imaging by amorphous silicon (aSi) photodiode is currently the most applied technology for in-vivo dosimetry (IVD) of static and dynamic radiotherapy beams. The strategy, adopted in this work to perform the IVD procedure by aSi EPID, is based on: in patient reconstruction of the isocenter dose and day to day comparison between 2D-portal images to verify the reproducibility of treatment delivery. About 20.000 tests have been carried out in this last 3 years in 8 radiotherapy centers using the SOFTDISO program. The IVD results show that: (i) the procedure can be implemented for linacs of different manufacturer, (ii) the IVD analysis can be obtained on a computer screen, in quasi real time (about 2 min after the treatment delivery) and (iii) once the causes of the discrepancies were eliminated, all the global IVD tests for single patient were within the acceptance criteria defined by: ±5% for the isocenter dose, and PγFisica Nucleare (INFN) and Università Cattolica del S.Cuore (UCSC).

  12. Monte Carlo modeling in CT-based geometries: dosimetry for biological modeling experiments with particle beam radiation.

    Science.gov (United States)

    Diffenderfer, Eric S; Dolney, Derek; Schaettler, Maximilian; Sanzari, Jenine K; McDonough, James; Cengel, Keith A

    2014-03-01

    The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event (SPE). These events consist primarily of low energy protons that produce a highly inhomogeneous dose distribution. Due to this inherent dose heterogeneity, experiments designed to investigate the radiobiological effects of SPE radiation present difficulties in evaluating and interpreting dose to sensitive organs. To address this challenge, we used the Geant4 Monte Carlo simulation framework to develop dosimetry software that uses computed tomography (CT) images and provides radiation transport simulations incorporating all relevant physical interaction processes. We found that this simulation accurately predicts measured data in phantoms and can be applied to model dose in radiobiological experiments with animal models exposed to charged particle (electron and proton) beams. This study clearly demonstrates the value of Monte Carlo radiation transport methods for two critically interrelated uses: (i) determining the overall dose distribution and dose levels to specific organ systems for animal experiments with SPE-like radiation, and (ii) interpreting the effect of random and systematic variations in experimental variables (e.g. animal movement during long exposures) on the dose distributions and consequent biological effects from SPE-like radiation exposure. The software developed and validated in this study represents a critically important new tool that allows integration of computational and biological modeling for evaluating the biological outcomes of exposures to inhomogeneous SPE-like radiation dose distributions, and has potential applications for other environmental and therapeutic exposure simulations.

  13. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  14. In-vivo dosimetry for field sizes down to 6 × 6 mm2 in shaped beam radiosurgery with microMOSFET.

    Science.gov (United States)

    Sors, A; Cassol, E; Latorzeff, I; Duthil, P; Sabatier, J; Lotterie, J A; Redon, A; Berry, I; Franceries, X

    2014-09-01

    The aim of this study is to evaluate microMOSFET as in-vivo dosimeter in 6 MV shaped-beam radiosurgery for field sizes down to 6 × 6 mm2. A homemade build-up cap was developed and its use with microMOSFET was evaluated down to 6 × 6 mm2. The study with the homemade build-up cap was performed considering its influence on field size over-cover occurring at surface, achievement of the overall process of electronic equilibrium, dose deposition along beam axis and dose attenuation. An optimized calibration method has been validated using MOSFET in shaped-beam radiosurgery for field sizes from 98 × 98 down to 18 × 18 mm2. The method was detailed in a previous study and validated in irregular field shapes series measurements performed on a head phantom. The optimized calibration method was applied to microMOSFET equipped with homemade build-up cap down to 6 × 6 mm2. Using the same irregular field shapes, dose measurements were performed on head phantom. MicroMOSFET results were compared to previous MOSFET ones. Additional irregular field shapes down to 8.8 × 8.8 mm2 were studied with microMOSFET. Isocenter dose attenuation due to the homemade build-up cap over the microMOSFET was near 2% irrespective of field size. Our results suggested that microMOSFET equipped with homemade build-up cap is suitable for in-vivo dosimetry in shaped-beam radiosurgery for field sizes down to 6 × 6 mm2 and therefore that the required build-up cap dimensions to perform entrance in-vivo dosimetry in small-fields have to ensure only partial charge particle equilibrium.

  15. The role of a microDiamond detector in the dosimetry of proton pencil beams

    Energy Technology Data Exchange (ETDEWEB)

    Goma, Carles [Paul Scherrer Institute, Villigen (Switzerland). Centre for Proton Therapy; Swiss Federal Institute of Technology Zurich (Switzerland). Dept. of Physics; Marinelli, Marco; Verona-Rinati, Gianluca [Roma Univ. ' ' Tor Vergata' ' (Italy). Dipt. di Ingegneria Industriale; INFN, Roma (Italy); Safai, Sairos [Paul Scherrer Institute, Villigen (Switzerland). Centre for Proton Therapy; Wuerfel, Jan [PTW-Freiburg, Freiburg (Germany)

    2016-05-01

    In this work, the performance of a microDiamond detector in a scanned proton beam is studied and its potential role in the dosimetric characterization of proton pencil beams is assessed. The linearity of the detector response with the absorbed dose and the dependence on the dose-rate were tested. The depth-dose curve and the lateral dose profiles of a proton pencil beam were measured and compared to reference data. The feasibility of calibrating the beam monitor chamber with a microDiamond detector was also studied. It was found the detector reading is linear with the absorbed dose to water (down to few cGy) and the detector response is independent of both the dose-rate (up to few Gy/s) and the proton beam energy (within the whole clinically-relevant energy range). The detector showed a good performance in depth-dose curve and lateral dose profile measurements; and it might even be used to calibrate the beam monitor chambers-provided it is cross-calibrated against a reference ionization chamber. In conclusion, the microDiamond detector was proved capable of performing an accurate dosimetric characterization of proton pencil beams.

  16. Epid Dosimetry

    Science.gov (United States)

    Greer, Peter B.; Vial, Philip

    2011-05-01

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  17. Study on dosimetry systems for a few tens MeV/u ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takuji; Sunaga, Hiromi; Takizawa, Haruki; Tachibana, Hiroyuki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A combined measurement system consisting of a total calorimeter, a Faraday cup and thin film dosimeters have been developed and tested using a simultaneous irradiation apparatus to measure absorbed dose for a few tens MeV/u ion beams of the TIARA AVF cyclotron. (author)

  18. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.;

    2003-01-01

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application.......Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  19. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-07-25

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption.

  20. The influence of neutron contamination on dosimetry in external photon beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Horst, Felix, E-mail: felix.ernst.horst@kmub.thm.de; Czarnecki, Damian [Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences Giessen, Giessen D-35390 (Germany); Zink, Klemens [Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences Giessen, Giessen D-35390, Germany and Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg D-35043 (Germany)

    2015-11-15

    Purpose: Photon fields with energies above ∼7 MeV are contaminated by neutrons due to photonuclear reactions. Their influence on dosimetry—although considered to be very low—is widely unexplored. Methods: In this work, Monte Carlo based investigations into this issue performed with FLUKA and EGSNRC are presented. A typical Linac head in 18 MV-X mode was modeled equivalently within both codes. EGSNRC was used for the photon and FLUKA for the neutron production and transport simulation. Water depth dose profiles and the response of different detectors (Farmer chamber, TLD-100, TLD-600H, and TLD-700H chip) in five representative depths were simulated and the neutrons’ impact (neutron absorbed dose relative to photon absorbed dose) was calculated. To take account of the neutrons’ influence, a theoretically required correction factor was defined and calculated for five representative water depths. Results: The neutrons’ impact on the absorbed dose to water was found to be below 0.1% for all depths and their impact on the response of the Farmer chamber and the TLD-700H chip was found to be even less. For the TLD-100 and the TLD-600H chip it was found to be up to 0.3% and 0.7%, respectively. The theoretical correction factors to be applied to absorbed dose to water values measured with these four detectors in a depth different from the reference/calibration depth were calculated and found to be below 0.05% for the Farmer chamber and the TLD-700H chip, but up to 0.15% and 0.35% for the TLD-100 and TLD-600H chips, respectively. In thermoluminescence dosimetry the neutrons’ influence (and therefore the additional inaccuracy in measurement) was found to be higher for TLD materials whose {sup 6}Li fraction is high, such as TLD-100 and TLD-600H, resulting from the thermal neutron capture reaction on {sup 6}Li. Conclusions: The impact of photoneutrons on the absorbed dose to water and on the response of a typical ionization chamber as well as three different types

  1. Fiber-coupled radioluminescence dosimetry with saturated Al{sub 2}O{sub 3}:C crystals: Characterization in 6 and 18 MV photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E., E-mail: clan@risoe.dtu.dk [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Damkjaer, S.M.S.; Kertzscher, G. [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Greilich, S. [Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), D-69120 Heidelberg (Germany); Aznar, M.C. [Department of Radiation Oncology, Copenhagen University Hospital, DK-2100 Copenhagen (Denmark)

    2011-10-15

    Radioluminescence (RL) and optically stimulated luminescence (OSL) from carbon-doped aluminum oxide crystals can be used for medical dosimetry in external beam radiotherapy and remotely afterloaded brachytherapy. The RL/OSL signals are guided from the treatment room to the readout instrumentation using optical fiber cables, and in vivo dosimetry can be carried out in real time while the dosimeter probes are in the patient. The present study proposes a new improved readout protocol based solely on the RL signal from Al{sub 2}O{sub 3}:C. The key elements in the protocol are that Al{sub 2}O{sub 3}:C is pre-dosed with {approx}20 Gy before each measurement session, and that the crystals are not perturbed by optical stimulation. Using 6 and 18 MV linear accelerator photon beams, the new RL protocol was found to have a linear dose-response from 7 mGy to 14 Gy, and dosimetry in this range could therefore be performed using a single calibration factor ({approx}6 x 10{sup 6} counts per Gy for a 2 mg crystal). The reproducibility of the RL dosimetry was 0.3% (one relative standard deviation) for doses larger than 0.1 Gy. The apparent RL sensitivity was found to change with accumulated dose ((-0.45 {+-} 0.03)% per 100 Gy), crystal temperature ((-0.21 {+-} 0.01)%/ deg. C), and dose-delivery rate ((-0.22 {+-} 0.01)% per 100 MU/min). A temporal gating technique was used for separation of RL and stem signals (i.e. Cerenkov light and fluorescence induced in the optical fiber cable during irradiation). The new readout protocol was a substantial improvement compared with the combined RL/OSL protocol, that required relatively long readout times and where the optical stimulation greatly affected the RL sensitivity. The only significant caveat was the apparent change in RL-response with accelerator dose-delivery rate. - Highlights: > New readout protocol based only on the RL signal from pre-dosed Al{sub 2}O{sub 3}:C. > Fast readout. > Linear dose-response. > High-dynamic range (7 mGy-14

  2. Automation of the particle dosimetry and the dose application for radiobiological experiments at a vertical proton beam

    CERN Document Server

    Moertel, H; Eyrich, W; Fritsch, M; Distel, L

    2002-01-01

    A facility with a vertical beam for radiobiological experiments with low-energy protons has been setup at the Tandem accelerator at Erlangen. This energy region is optimal to investigate the biological effects of the linear energy transfer in the Bragg region under physiological conditions. A new automated data acquisition system for dosimetry and monitoring based on a personal computer was developed and optimized for this setup. A specially designed sample holder offers possibilities of cooling or changing of atmosphere during irradiation. First irradiations of biological samples have shown the functionality of the setup.

  3. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    DEFF Research Database (Denmark)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus

    2013-01-01

    verification aimed at measuring a dose of 10 Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm3. In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle......Background and purpose In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic...... chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation...

  4. TU-F-201-00: Radiochromic Film Dosimetry Update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  5. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  6. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  7. Optical CT scanner for in-air readout of gels for external radiation beam 3D dosimetry.

    Science.gov (United States)

    Ramm, Daniel; Rutten, Thomas P; Shepherd, Justin; Bezak, Eva

    2012-06-21

    Optical CT scanners for a 3D readout of externally irradiated radiosensitive hydrogels currently require the use of a refractive index (RI) matching liquid bath to obtain suitable optical ray paths through the gel sample to the detector. The requirement for a RI matching liquid bath has been negated by the design of a plastic cylindrical gel container that provides parallel beam geometry through the gel sample for the majority of the projection. The design method can be used for various hydrogels. Preliminary test results for the prototype laser beam scanner with ferrous xylenol-orange gel show geometric distortion of 0.2 mm maximum, spatial resolution limited to beam spot size of about 0.4 mm and 0.8% noise (1 SD) for a uniform irradiation. Reconstruction of a star pattern irradiated through the cylinder walls demonstrates the suitability for external beam applications. The extremely simple and cost-effective construction of this optical CT scanner, together with the simplicity of scanning gel samples without RI matching fluid increases the feasibility of using 3D gel dosimetry for clinical external beam dose verifications.

  8. Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams.

    Science.gov (United States)

    Sánchez-Doblado, F; Andreo, P; Capote, R; Leal, A; Perucha, M; Arráns, R; Núñez, L; Mainegra, E; Lagares, J I; Carrasco, E

    2003-07-21

    Absolute dosimetry with ionization chambers of the narrow photon fields used in stereotactic techniques and IMRT beamlets is constrained by lack of electron equilibrium in the radiation field. It is questionable that stopping-power ratio in dosimetry protocols, obtained for broad photon beams and quasi-electron equilibrium conditions, can be used in the dosimetry of narrow fields while keeping the uncertainty at the same level as for the broad beams used in accelerator calibrations. Monte Carlo simulations have been performed for two 6 MV clinical accelerators (Elekta SL-18 and Siemens Mevatron Primus), equipped with radiosurgery applicators and MLC. Narrow circular and Z-shaped on-axis and off-axis fields, as well as broad IMRT configured beams, have been simulated together with reference 10 x 10 cm2 beams. Phase-space data have been used to generate 3D dose distributions which have been compared satisfactorily with experimental profiles (ion chamber, diodes and film). Photon and electron spectra at various depths in water have been calculated, followed by Spencer-Attix (delta = 10 keV) stopping-power ratio calculations which have been compared to those used in the IAEA TRS-398 code of practice. For water/air and PMMA/air stopping-power ratios, agreements within 0.1% have been obtained for the 10 x 10 cm2 fields. For radiosurgery applicators and narrow MLC beams, the calculated s(w,air) values agree with the reference within +/-0.3%, well within the estimated standard uncertainty of the reference stopping-power ratios (0.5%). Ionization chamber dosimetry of narrow beams at the photon qualities used in this work (6 MV) can therefore be based on stopping-power ratios data in dosimetry protocols. For a modulated 6 MV broad beam used in clinical IMRT, s(w,air) agrees within 0.1% with the value for 10 x 10 cm2, confirming that at low energies IMRT absolute dosimetry can also be based on data for open reference fields. At higher energies (24 MV) the difference in s

  9. Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Doblado, F [Radiofisica, Hospital Univ Virgen Macarena, Avda Dr Fedriani s/n, E-41009 Sevilla (Spain); Andreo, P [Division of Medical Radiation Physics, University of Stockholm, Karolinska Institute, PO Box 260, SE-171 76 Stockholm (Sweden); Capote, R [Radiofisica, Hospital Univ Virgen Macarena, Avda Dr Fedriani s/n, E-41009 Sevilla (Spain); Leal, A [Radiofisica, Hospital Univ Virgen Macarena, Avda Dr Fedriani s/n, E-41009 Sevilla (Spain); Perucha, M [Dpto Fisica Medica y Biofisica, F Medicina, Universidad Sevilla (Spain); Arrans, R [Radiofisica, Hospital Univ Virgen Macarena, Avda Dr Fedriani s/n, E-41009 Sevilla (Spain); Nunez, L [Radiofisica, Clinica Puerta de Hierro, Madrid (Spain); Mainegra, E [National Research Council, Ottawa (Canada); Lagares, J I [Radiofisica, Hospital Univ Virgen Macarena, Avda Dr Fedriani s/n, E-41009 Sevilla (Spain); Carrasco, E [Radiofisica, Hospital Univ Virgen Macarena, Avda Dr Fedriani s/n, E-41009 Sevilla (Spain)

    2003-07-21

    Absolute dosimetry with ionization chambers of the narrow photon fields used in stereotactic techniques and IMRT beamlets is constrained by lack of electron equilibrium in the radiation field. It is questionable that stopping-power ratio in dosimetry protocols, obtained for broad photon beams and quasi-electron equilibrium conditions, can be used in the dosimetry of narrow fields while keeping the uncertainty at the same level as for the broad beams used in accelerator calibrations. Monte Carlo simulations have been performed for two 6 MV clinical accelerators (Elekta SL-18 and Siemens Mevatron Primus), equipped with radiosurgery applicators and MLC. Narrow circular and Z-shaped on-axis and off-axis fields, as well as broad IMRT configured beams, have been simulated together with reference 10 x 10 cm{sup 2} beams. Phase-space data have been used to generate 3D dose distributions which have been compared satisfactorily with experimental profiles (ion chamber, diodes and film). Photon and electron spectra at various depths in water have been calculated, followed by Spencer-Attix ({delta} = 10 keV) stopping-power ratio calculations which have been compared to those used in the IAEA TRS-398 code of practice. For water/air and PMMA/air stopping-power ratios, agreements within 0.1% have been obtained for the 10 x 10 cm{sup 2} fields. For radiosurgery applicators and narrow MLC beams, the calculated s{sub w,air} values agree with the reference within {+-}0.3%, well within the estimated standard uncertainty of the reference stopping-power ratios (0.5%). Ionization chamber dosimetry of narrow beams at the photon qualities used in this work (6 MV) can therefore be based on stopping-power ratios data in dosimetry protocols. For a modulated 6 MV broad beam used in clinical IMRT, s{sub w,air} agrees within 0.1% with the value for 10 x 10 cm{sup 2}, confirming that at low energies IMRT absolute dosimetry can also be based on data for open reference fields. At higher energies (24

  10. The magic cube and the pixel ionization chamber: detectors for monitor and dosimetry of radiotherapy beams

    Science.gov (United States)

    Amerio, S.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Garelli, E.; Giordanengo, S.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Sanz Freire, C. J.; Sardo, A.; Trevisiol, E.

    2003-09-01

    Tumor therapy takes advantage of the energy deposition of radiation to concentrate high doses in the target while sparing healthy tissue. Elective pathologies for highly conformal radiotherapies such as photon Intensity Modulated Radiotherapy (IMRT) and radiotherapy with hadrons are head and neck, eye, prostate and in general all tumors that are either deep or located close to critical organs. In the world there are several centers that are using such techniques and a common problem that is being experienced is the verification of treatment plans and monitoring of the beam. We have designed and built two detectors that allow 2D and 3D measurements of dose and fluence of such beams. The detectors allow measurements on big surfaces, up to 25∗25 cm2. The active media are parallel plate, strip and pixel segmented ionization chambers with front-end Very Large Scale Integration (VLSI) readout and PC based data acquistion. The description of dosimeter, chamber and electronics will be given with results from beam tests and therapy plan verification.

  11. The magic cube and the pixel ionization chamber: detectors for monitor and dosimetry of radiotherapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Amerio, S.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Garelli, E.; Giordanengo, S.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Sanz Freire, C.J.; Sardo, A.; Trevisiol, E

    2003-09-01

    Tumor therapy takes advantage of the energy deposition of radiation to concentrate high doses in the target while sparing healthy tissue. Elective pathologies for highly conformal radiotherapies such as photon Intensity Modulated Radiotherapy (IMRT) and radiotherapy with hadrons are head and neck, eye, prostate and in general all tumors that are either deep or located close to critical organs. In the world there are several centers that are using such techniques and a common problem that is being experienced is the verification of treatment plans and monitoring of the beam. We have designed and built two detectors that allow 2D and 3D measurements of dose and fluence of such beams. The detectors allow measurements on big surfaces, up to 25*25 cm{sup 2}. The active media are parallel plate, strip and pixel segmented ionization chambers with front-end Very Large Scale Integration (VLSI) readout and PC based data acquistion. The description of dosimeter, chamber and electronics will be given with results from beam tests and therapy plan verification.

  12. Why diamond dimensions and electrode geometry are crucial for small photon beam dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Marsolat, F.; Tromson, D.; Tranchant, N.; Pomorski, M.; Bergonzo, P. [CEA, LIST, Diamond Sensors Laboratory, 91191 Gif-sur-Yvette (France); Bassinet, C.; Huet, C. [IRSN, PRP-HOM/SDE/LDRI, 31 Av. de la Division Leclerc, 92260 Fontenay-aux-Roses (France); Derreumaux, S. [IRSN, PRP-HOM/SER/UEM, 31 Av. de la Division Leclerc, 92260 Fontenay-aux-Roses (France); Chea, M.; Cristina, K.; Boisserie, G. [Pitié Salpêtrière Hospital, 47-83 Blvd de l' Hôpital, 75013 Paris (France); Buchheit, I.; Marchesi, V. [Institut de Cancérologie de Lorraine, 6 Av. de Bourgogne, 54500 Vandoeuvre-lès-Nancy (France); Gaudaire-Josset, S.; Lisbona, A. [Institut de Cancérologie de l' Ouest, Blvd Prof. Jacques Monod, 44805 Saint-Herblain (France); Lazaro, D.; Hugon, R. [CEA, LIST, LM2S, 91191 Gif-sur-Yvette (France)

    2015-12-21

    Recent use of very small photon beams (down to 4 mm) in stereotactic radiotherapy requires new detectors to accurately determine the delivered dose. Diamond detectors have been presented in the literature as an attractive candidate for this application, due to their small detection volume and the diamond atomic number (Z = 6) which is close to water effective atomic number (Zeff ∼ 7.42). However, diamond exhibits a density 3.51 times greater than that of water and recent studies using Monte Carlo simulations have demonstrated the drawback of a high-density detector on small beam output factors. The current study focuses on geometrical parameters of diamond detector, namely, the diamond dimensions and the electrode geometry, in order to solve the dosimetric issues still observed in small photon beams with diamond detectors. To give better insights to these open questions, we have used both computational method and experimental analysis. This study highlighted that reducing diamond dimensions is crucial for small beam output factor measurements and to limit the influence of its high density. Furthermore, electrodes covering the whole diamond surface were essential for a dose rate independence of the diamond detector. The optimal dosimeter derived from this work presented small diamond dimensions of approximately 1 × 1 × 0.15 mm{sup 3}, with diamond-like-carbon electrodes covering the whole diamond surface. A dose rate independence of this diamond detector (better than 0.5% over a wide range of dose rates available on a stereotactic dedicated facility) was obtained due to the electrode geometry. Concerning the output factor measurements, a good agreement (better than 1.1%) was observed between this carbon material detector and two types of passive dosimeters (LiF microcubes and EBT2 radiochromic films) for all beam sizes except the smallest field of 0.6 × 0.6 cm{sup 2} with a deviation of 2.6%. This new study showed the high performance

  13. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  14. Beam energy online measurement of BEPCII LINAC

    CERN Document Server

    Wang, Shao-Zhe; Chi, Yun-Long

    2015-01-01

    This paper describes beam energy online measurement of BEPCII linac, presents the calculation formula and some of the results. The method mentioned here measures the beam energy by acquiring beam positions in the horizontal direction with three beam position monitors (BPM) eliminating the effect of orbit fluctuation, which is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in the end of this paper.

  15. Comparison between IAEA/TRS-277 and IAEA/TRS-398 protocols for electron beam dosimetry with cylindrical ionization chambers; Comparacao entre os protocolos IAEA/TRS-277 e IAEA/TRS-398 para dosimetria em feixes de eletrons com camaras de ionizacao cilindricas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Roberto Salomon de

    2004-07-01

    With the purpose to guarantee an uncertainty in the dosimetry in radiation therapy, the International Atomic Energy Agency (IAEA) published in 1987 the Technical Reports Series (TRS) number 277 - Absorbed Dose Determination in Photon and Electron Beams - An International Code of Practice -, updated in 1997, when was published its second edition. In 2000 was published the TRS number 398 - Absorbed Dose Determination in External Beam Radiotherapy - An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. The TRS number 398 brings a great conceptual change in relation to the basis of the formalism, before based on calibration factor in terms of air kerma, and now based on calibration factor in terms of absorbed dose in water. Since the TRS number 398 was published, the Secondary Standard Dosimetry Laboratories are calibrating the user's ionization chambers in terms of absorbed dose to water. However, nor all the clinics in Rio de Janeiro and Brazil have its ionization chambers calibrated in terms of absorbed dose to water. The National Cancer Institute, where the measurements were taken, was the first institution in the Rio de Janeiro to have its ionization chambers calibrated in terms of a new formalism. This work describes a comparison between dosimetry done with a cylindrical ionization chamber under electron beams utilizing the TRS number 277 formalism, based on air kerma, and the TRS number 398 formalism, based on absorbed dose to water, reporting the uncertainties variation of the dosimetry associated to each protocol. (author)

  16. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.; RECINIELLO,R.N.; HU,J.P.; RORER,D.C.

    2002-08-18

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex{trademark} polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup.

  17. Sensitive beam current measurement for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schwickert, Marcus; Kurian, Febin; Reeg, Hansjoerg [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Seidel, Paul; Neubert, Ralf [Friedrich-Schiller-Universitaet Jena (Germany); Geithner, Rene; Vodel, Wolfgang [Helmholtz-Institut Jena (Germany)

    2012-07-01

    Presently FAIR, the Facility for Antiproton and Ion Research, entered the final planning phase at GSI. The new accelerator facility requires precise devices for beam current measurements due to the large dynamics in beam intensities for the various synchrotrons, transport lines and storage rings. We report on the actual developments of beam diagnostic devices for the measurement of beam intensities ranging from 5 x 10{sup 11} uranium ions down to the detection of less than 10{sup 4} antiprotons. This contribution gives an overview of the planned instruments with a focus on non-intercepting beam current transformers, and summarizes the on-going development of a cryogenic current comparator.

  18. SU‐C‐105‐05: Reference Dosimetry of High‐Energy Electron Beams with a Farmer‐Type Ionization Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B; Rogers, D [Carleton University, Ottawa, ON (Canada)

    2013-06-15

    Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber in high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.

  19. A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Guillot, Mathieu; Beaulieu, Luc; Archambault, Louis; Beddar, Sam; Gingras, Luc [Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec, Quebec G1R 2J6 (Canada); Department of Radiation Physics, Unit 94, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec, Quebec G1R 2J6 (Canada)

    2011-12-15

    Purpose: The objective of this work is to present a new 2D plastic scintillation detectors array (2D-PSDA) designed for the dosimetry of megavoltage (MV) energy photon beams in radiation therapy and to characterize its basic performance. Methods: We developed a 2D detector array consisting of 781 plastic scintillation detectors (PSDs) inserted into a plane of a water-equivalent phantom. The PSDs were distributed on a 26 x 26 cm{sup 2} grid, with an interdetector spacing of 10 mm, except for two perpendicular lines centered on the detection plane, where the spacing was 5 mm. Each PSD was made of a 1 mm diameter by 3 mm long cylindrical polystyrene scintillating fiber coupled to a clear nonscintillating plastic optical fiber. All of the light signals emitted by the PSDs were read simultaneously with an optical system at a rate of one measurement per second. We characterized the performance of the optical system, the angular dependency of the device, and the perturbation of dose distributions caused by the hundreds of PSDs inserted into the phantom. We also evaluated the capacity of the system to monitor complex multileaf collimator (MLC) sequences such as those encountered in step-and-shoot intensity modulated radiation therapy (IMRT) plans. We compared our results with calculations performed by a treatment planning system and with measurements taken with a 2D ionization chamber array and with a radiochromic film. Results: The detector array that we developed allowed us to measure doses with an average precision of better than 1% for cumulated doses equal to or greater than 6.3 cGy. Our results showed that the dose distributions produced by the 6-MV photon beam are not perturbed (within {+-}1.1%) by the presence of the hundreds of PSDs located into the phantom. The results also showed that the variations in the beam incidences have little effect on the dose response of the device. For all incidences tested, the passing rates of the gamma tests between the 2D-PSDA and

  20. Absolute and relative dosimetry for ELIMED

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Leonora, E.; Randazzo, N. [INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Presti, D. Lo [INFN-Sezione di Catania, Via Santa Sofia 64, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Raffaele, L. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Cirio, R.; Sacchi, R.; Monaco, V. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino, Italy and Università di Torino, Dipartimento di Fisica, Via P.Giuria, 1 10125 Torino (Italy); Marchetto, F.; Giordanengo, S. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy)

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  1. Absolute and relative dosimetry for ELIMED

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Candiano, G.; Carpinelli, M.; Leonora, E.; Lo Presti, D.; Musumarra, A.; Pisciotta, P.; Raffaele, L.; Randazzo, N.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Cirio, R.; Marchetto, F.; Sacchi, R.; Giordanengo, S.; Monaco, V.

    2013-07-01

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  2. Evaluation of the response of thermoluminescent detectors in clinical beams dosimetry using different phantoms; Avaliacao da resposta de detectores termoluminescentes na dosimetria de feixes clinicos utilizando diferentes objetos simuladores

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Luciana Cardoso

    2010-07-01

    Radiotherapy is one of the three principal treatment modalities used in the treatment of malignant diseases such as cancer, the other two are chemotherapy and radiosurgery. In contrast to other medical specialties that rely mainly on the clinical knowledge and experience of medical specialists, radiotherapy, with its use of ionizing radiation in treatment of cancer, relies heavily on modern technology and the collaborative efforts of several professionals whose coordinated team approach greatly influences the outcome of the treatment. In the area of clinical dosimetry, an efficient and accurate calibration of the radiation beam ensures knowledge of the radiation dose delivered to the patient, allowing thus the success of radiotherapy. This study aims to compare the thermoluminescent response of calcium sulfate doped with dysprosium (CaSO{sub 4}:Dy) dosimeters produced by IPEN (6 mm in diameter and 0,8 mm tick) with the response of lithium fluoride (3,15 x 3,15 x 0,9 mm{sup 3}) doped with magnesium and titanium (LiF:Mg,Ti) in dosimetry of clinical photons (6 and 15 MV) and electrons beams (6 and 9 MeV) using solid water (RMI-457), water and PMMA phantoms. Initially, the dose-response curves were obtained for irradiation in cobalt-60 gamma radiation source in air (PMMA plates) and under electronic equilibrium conditions and for clinical electrons and photons beams at depth of maximum dose. The sensitivities of the thermoluminescent dosimeters were also evaluated and the values of their reproducibilities and intrinsic efficiency were determined for the response to different types of phantoms and radiation energy. The obtained results indicate that the main advantage of CaSO{sub 4}:Dy dosimeters is the enhanced sensitivity to radiation doses measured for {sup 60}Co, photons and electrons beams, thus representing a viable alternative for application in dosimetry in the radiotherapy area. (author)

  3. Evaluation of the vidar`s VXR-12 digitizer performances for film dosimetry of beams delimited by multileaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Julia, F. [Centre de Lutte Contre le Cancer Gustave-Roussy, 94 - Villejuif (France); Briot, E.

    1995-12-01

    The development of new irradiation techniques such as conformal radiotherapy increasingly implies the use of a multileaf collimator. The measurement of dose gradients in the penumbra region, and of dose distributions at the edge of complex shaped fields defined by multileaf collimators requires a high definition dosimetric method. Nowadays film digitizers have been notably improved and allow the film dosimetry to be faster, more accurate, presenting a sensitivity and high spatial resolution. To be able to perform the study of physical and dosimetric specifications of a multileaf collimator, we have evaluated the performances of the Vidar VCR-12 digitizer, with respect to its sensitivity, linearity, optical density range and the resolution. These performances were compared with the performances of different systems already in use in our department, either manual or automatic, using specific patterns. The main limitation for dosimetric use is the detection threshold that can introduce errors in isodose calculation, especially for the lowest values. The result of the intercomparisons have allowed corrections to be added, taking into account this Vidar problem. The results obtained after correction for the dose profiles of squared fields are in good agreement with ionization chamber measurements in a water phantom. It is concluded that Vidar digitizer is suitable for the use of film dosimetry for the dose distributions in fields defined by multileaf collimator.

  4. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Farah, J., E-mail: jad.farah@irsn.fr; Trompier, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l’Homme, BP17, Fontenay-aux-Roses 92260 (France); Mares, V.; Schinner, K.; Wielunski, M. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764 (Germany); Romero-Expósito, M.; Domingo, C. [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra E-08193 (Spain); Trinkl, S. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764, Germany and Physik-Department, Technische Universität München, Garching 85748 (Germany); Dufek, V. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and National Radiation Protection Institute, Bartoškova 28, Prague 140 00 (Czech Republic); Klodowska, M.; Liszka, M.; Stolarczyk, L.; Olko, P. [Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow 31-342 (Poland); Kubancak, J. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and Department of Radiation Dosimetry, Nuclear Physics Institute, Řež CZ-250 68 (Czech Republic); and others

    2015-05-15

    Purpose: To characterize stray radiation around the target volume in scanning proton therapy and study the performance of active neutron monitors. Methods: Working Group 9 of the European Radiation Dosimetry Group (EURADOS WG9—Radiation protection in medicine) carried out a large measurement campaign at the Trento Centro di Protonterapia (Trento, Italy) in order to determine the neutron spectra near the patient using two extended-range Bonner sphere spectrometry (BSS) systems. In addition, the work focused on acknowledging the performance of different commercial active dosimetry systems when measuring neutron ambient dose equivalents, H{sup ∗}(10), at several positions inside (8 positions) and outside (3 positions) the treatment room. Detectors included three TEPCs—tissue equivalent proportional counters (Hawk type from Far West Technology, Inc.) and six rem-counters (WENDI-II, LB 6411, RadEye™ NL, a regular and an extended-range NM2B). Meanwhile, the photon component of stray radiation was deduced from the low-lineal energy transfer part of TEPC spectra or measured using a Thermo Scientific™ FH-40G survey meter. Experiments involved a water tank phantom (60 × 30 × 30 cm{sup 3}) representing the patient that was uniformly irradiated using a 3 mm spot diameter proton pencil beam with 10 cm modulation width, 19.95 cm distal beam range, and 10 × 10 cm{sup 2} field size. Results: Neutron spectrometry around the target volume showed two main components at the thermal and fast energy ranges. The study also revealed the large dependence of the energy distribution of neutrons, and consequently of out-of-field doses, on the primary beam direction (directional emission of intranuclear cascade neutrons) and energy (spectral composition of secondary neutrons). In addition, neutron mapping within the facility was conducted and showed the highest H{sup ∗}(10) value of ∼51 μSv Gy{sup −1}; this was measured at 1.15 m along the beam axis. H{sup ∗}(10) values

  5. A comparison of TPS and different measurement techniques in small-field electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Donmez Kesen, Nazmiye, E-mail: nazo94@gmail.com; Cakir, Aydin; Okutan, Murat; Bilge, Hatice

    2015-04-01

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for nominal energies of 6, 9, and 15 MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15 MeV and 32% for 9 MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.

  6. Dosimetry of cone beam computed tomography scanning for diagnosis and planning in implant dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Santos Pinto de A, E. L.; Manzi, F. R.; Goncalves Z, E. [Pontifical Catholic University of Minas Gerais, Av. Jose Gaspar 500, 30535-901 Belo Horizonte, Minas Gerais (Brazil); Nogueira, M. S.; Fernandes Z, M. A., E-mail: madelon@cdtn.br [Development Center of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Full text: The radiation dose and estimate the radiation induced risk of cancer and morpho functional alterations according to BEIR VII (2006) and recommendations of the ICRP 103 (2007) were measured in cone beam computed tomography (CBCT) scanning (Tc Kodak 9000C 3D) in different oral and maxillofacial regions for diagnosis and planning in implant dentistry for each examination protocol: jaw full, maxilla full and jaw and maxilla full associated. Thermoluminescent dosimeters (TLD- 100 H) were placed in an Alderson-Rando in regions corresponding to the crystalline, parotid, submandibular and thyroid glands and ovaries. The highest values for entrance skin dose were observed in the region of the parotid and submandibular glands, 9.612 mGy to 7.912 mGy and 8.818 mGy to 0.483 mGy, respectively. All examination protocols presented on the right and left sides in the region of the submandibular gland the highest values for absorbed dose (D). In the jaw full exam the thyroid glands on both sides presented highest dose values than maxilla full exam. This study allowed measuring the entrance skin dose and the absorbed dose (D) highlighting a dosimetric preponderance to the salivary glands. With danger of to radiation that induces cancer risk was observed that the age group most likely to have to risk of cancer was 20 years, compared to 30, 40, 50, 60,70 and 80 years. (Author)

  7. Characterization of neutron beams for boron neutron capture therapy: in-air radiobiological dosimetry.

    Science.gov (United States)

    Yamamoto, Tetsuya; Matsumura, Akira; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Hori, Naohiko; Torii, Yoshiya; Shibata, Yasushi; Nose, Tadao

    2003-07-01

    The survival curves and the RBE for the dose components generated in boron neutron capture therapy (BNCT) were determined separately in neutron beams at Japan Research Reactor No. 4. The surviving fractions of V79 Chinese hamster cells with or without 10B were obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal (TNB-2) neutron beam; these beams were used or are planned for use in BNCT clinical trials. The cell killing effect of the neutron beam in the presence or absence of 10B was highly dependent on the neutron beam used and depended on the epithermal and fast-neutron content of the beam. The RBEs of the boron capture reaction for ENB, TNB-1 and TNB-2 were 4.07 +/- 0.22, 2.98 +/- 0.16 and 1.42 +/- 0.07, respectively. The RBEs of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50 +/- 0.32, 2.34 +/- 0.30 and 2.17 +/- 0.28 for ENB, TNB-1 and TNB-2, respectively. The RBEs of the neutron and photon components were 1.22 +/- 0.16, 1.23 +/- 0.16, and 1.21 +/- 0.16 for ENB, TNB-1 and TNB-2, respectively. The approach to the experimental determination of RBEs outlined in this paper allows the RBE-weighted dose calculation for each dose component of the neutron beams and contributes to an accurate inter-beam comparison of the neutron beams at the different facilities employed in ongoing and planned BNCT clinical trials.

  8. A device for measuring electron beam characteristics

    Directory of Open Access Journals (Sweden)

    M. Andreev

    2017-01-01

    Full Text Available This paper presents a device intended for diagnostics of electron beams and the results obtained with this device. The device comprises a rotating double probe operating in conjunction with an automated probe signal collection and processing system. This provides for measuring and estimating the electron beam characteristics such as radius, current density, power density, convergence angle, and brightness.

  9. Cyberknife Relative Output Factor measurements using fiber-coupled luminescence, MOSFETS and RADPOS dosimetry system

    DEFF Research Database (Denmark)

    Ploquin, N.; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Vandervoort, E.

    2012-01-01

    corrections applied) yielded ROFs of 0.650 ± 1.9%, 0.811 ± 0.9% and 0.843 ± 1.7% for the 5, 7.5 and 10 mm cones, respectively, and were in excellent agreement with radiochromic film values (averaged for EBT1 and EBT2) of 0.645 ± 1.4%, 0.806 ± 1.1% and 0.859 ± 1.1%. Monte‐Carlo calculated correction factors......Novel dosimetry systems based on Al2O3:C radioluminescence (RL) and a 4D dosimetry system (RADPOS) from Best Medical Canada were used to measure the relative output factor (ROF) on Cyberknife. Measurements were performed in a solid water phantom at the depth of 1.5 cm and SSD = 78.5 cm for cones...... were applied to the RL readings to correct for excessive scatter due to the relatively high effective atomic number of Al2O3 (Z=10.2) compared to water for the 5, 7.5 and 10 mm cones. When these corrections are applied to our RL detector measurements, we obtain ROFs of 0.656 ± 0.3% and 0.815 ± 0.3...

  10. Monte Carlo investigation into feasibility and dosimetry of flat Flattening Filter Free beams

    CERN Document Server

    Zavgorodni, Sergei

    2013-01-01

    Flattening filter free (FFF) beams due to their non-uniformity, are sub-optimal for larger field sizes. The purpose of this study was to investigate the incident electron beam distributions that would produce flat FFF beams without the use of flattening filter. Monte Carlo (MC) simulations with BEAMnrc and DOSXYZnrc codes have been performed to evaluate the feasibility of this approach. The dose distributions in water for open 6MV beams were simulated using Varian 21EX linac head model, which will be called flattening filter (FF) model. Flattening filter has then been removed from FF model, and MC simulations were performed using (1) 6 MeV electrons incident on the target, (2) 6 MeV electron beam with electron angular distributions optimized to provide as flat dose profiles as possible. Configuration (1) represents FFF beam while configuration (2) allowed producing a flat FFF (F4) beam. Optimizations have also been performed to produce flattest profiles for a set of dose rates (DRs) in the range from 1.25 to ...

  11. Overview of LHC Beam Loss Measurements

    CERN Document Server

    Dehning, B; Effinger, E; Emery, J; Fadakis, E; Holzer, E B; Jackson, S; Kruk, G; Kurfuerst, C; Marsili, A; Misiowiec, M; Nebot Del Busto, E; Nordt, A; Priebe, A; Roderick, C; Sapinski, M; Zamantzas, C; Grishin, V; Griesmayer, E

    2011-01-01

    The LHC beam loss monitoring system provides measurements with an update rate of 1 Hz and high time resolution data by event triggering. These informations are used for the initiation of beam aborts, fixed displays and the off line analysis. The analysis of fast and localized loss events resulted in the determination of its rate, duration, peak amplitudes, its scaling with intensity, number of bunches and beam energy. The calibration of the secondary shower beam loss signal in respect to the needed beam energy deposition to quench the magnet coil is addressed at 450GeV and 3.5T eV . The adjustment of collimators is checked my measuring the loss pattern and its variation in the collimation regions of the LHC. Loss pattern changes during a fill allow the observation of non typical fill parameters.

  12. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring.

    Science.gov (United States)

    Kumar, Pradeep; Ghodke, A D; Karnewar, A K; Holikatti, A C; Yadav, S; Puntambekar, T A; Singh, G; Singh, P

    2013-12-01

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  13. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    Science.gov (United States)

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-01

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  14. Radiation dosimetry.

    OpenAIRE

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists.

  15. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    Science.gov (United States)

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-07

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  16. Nuclear Astrophysics Measurements with Radioactive Beams

    Science.gov (United States)

    Smith, Michael S.; Ernst Rehm, K.

    Radioactive nuclei play an important role in a diverse range of astrophysical phenomena including the early universe, the sun, red giant stars, nova explosions, X-ray bursts, supernova explosions, and supermassive stars. Measurements of reactions with beams of short-lived radioactive nuclei can, for the first time, probe the nuclear reactions occurring in these cosmic phenomena. This article describes the astrophysical motivation for experiments with radioactive beams, the techniques to produce these beams and perform astrophysically relevant measurements, results from recent experiments, and plans for future facilities.

  17. Cross-Sectional Measuring of Optical Beam

    Directory of Open Access Journals (Sweden)

    Tomas David

    2011-01-01

    Full Text Available This article deals with problematic of measuring of optical beam in free space optics (FSO. The professional FSO link was created between two buildings standing 1,5 kilometers apart from each other. Signal passing through the atmospheric media between optical heads is affected. This happens due to effects in atmospheric media. This article describes creating of the device for measuring the intensity of optical beam in 2D space and its subsequent rendering into 3D graph.

  18. Dosimetry of Strontium eye applicator: Comparison of Monte Carlo calculations and radiochromic film measurements

    Science.gov (United States)

    Laoues, M.; Khelifi, R.; Moussa, A. S.

    2015-01-01

    Strontium-90 eye applicators are a beta-ray emitter with a relatively high-energy (maximum energy about 2.28 MeV and average energy about 0.9 MeV). These applicators come in different shapes and dimensions; they are used for the treatment of eye diseases. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The main aim of our study is to simulate the dosimetry of the SIA.20 eye applicator with Monte Carlo GATE 6.1 platform and to compare the calculated results with those measured with EBT2 films. This means that GATE and EBT2 were used to quantify the surface and depths dose- rate, the relative dose profile and the dosimetric parameters in according to international recommendations. Calculated and measured results are in good agreement and they are consistent with the ICRU and NCS recommendations.

  19. TU-F-201-01: General Aspects of Radiochromic Film Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Niroomand-Rad, A.

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  20. Resonant cavity monitors for charged beam measurements.

    Science.gov (United States)

    Rutledge, Gary A.

    2003-04-01

    The G_zero experiment at Jefferson Lab, will measure the strange quark content of the proton as it contributes to the proton's charge and magnetic properties. Parity violating elastic electron scattering is being used to measure the physics asymmetry to better than 1 part in 10^7. Helicity correlated properties of the electron beam used in this experiment must be measured to better than 1 in 10^7 over the course of the experiment. G_zero employs two types of beam monitors for this purpose. Standard, 4-wire, ``strip-line'' monitors measure beam positions with a resolution of 20microns. Another type of monitor, Beam Resonant Cavities are being tested. Two sets of three cavities are used to measure beam position in X and Y, as well as beam current. Presented will be the performance and evaluation of these cavities including their theoretical versus actual operation, their noise characteristics, and signal resolution. These cavities can be paired with either linear or logarithmic amplifier electronics. Overall performance of these cavity systems including amplifiers will be compared with standard 'strip-line' monitors.

  1. The FiR 1 photon beam model adjustment according to in-air spectrum measurements with the Mg(Ar) ionization chamber.

    Science.gov (United States)

    Koivunoro, H; Schmitz, T; Hippeläinen, E; Liu, Y-H; Serén, T; Kotiluoto, P; Auterinen, I; Savolainen, S

    2014-06-01

    The mixed neutron-photon beam of FiR 1 reactor is used for boron-neutron capture therapy (BNCT) in Finland. A beam model has been defined for patient treatment planning and dosimetric calculations. The neutron beam model has been validated with an activation foil measurements. The photon beam model has not been thoroughly validated against measurements, due to the fact that the beam photon dose rate is low, at most only 2% of the total weighted patient dose at FiR 1. However, improvement of the photon dose detection accuracy is worthwhile, since the beam photon dose is of concern in the beam dosimetry. In this study, we have performed ionization chamber measurements with multiple build-up caps of different thickness to adjust the calculated photon spectrum of a FiR 1 beam model.

  2. Dosimetry at the Portuguese research reactor using thermoluminescence measurements and Monte Carlo calculations.

    Science.gov (United States)

    Fernandes, A C; Gonçalves, I C; Santos, J; Cardoso, J; Santos, L; Ferro Carvalho, A; Marques, J G; Kling, A; Ramalho, A J G; Osvay, M

    2006-01-01

    This work presents an extensive study on Monte Carlo radiation transport simulation and thermoluminescent (TL) dosimetry for characterising mixed radiation fields (neutrons and photons) occurring in nuclear reactors. The feasibility of these methods is investigated for radiation fields at various locations of the Portuguese Research Reactor (RPI). The performance of the approaches developed in this work is compared with dosimetric techniques already existing at RPI. The Monte Carlo MCNP-4C code was used for a detailed modelling of the reactor core, the fast neutron beam and the thermal column of RPI. Simulations using these models allow to reproduce the energy and spatial distributions of the neutron field very well (agreement better than 80%). In the case of the photon field, the agreement improves with decreasing intensity of the component related to fission and activation products. (7)LiF:Mg,Ti, (7)LiF:Mg,Cu,P and Al(2)O(3):Mg,Y TL detectors (TLDs) with low neutron sensitivity are able to determine photon dose and dose profiles with high spatial resolution. On the other hand, (nat)LiF:Mg,Ti TLDs with increased neutron sensitivity show a remarkable loss of sensitivity and a high supralinearity in high-intensity fields hampering their application at nuclear reactors.

  3. Beam Loss Diagnostics Based on Pressure Measurements

    CERN Document Server

    Weinrich, U

    2003-01-01

    The GSI is operating a heavy ion synchrotron, which is currently undergoing an upgrade towards higher beam intensities. It was discovered that beam losses induce a significant pressure increase in the vacuum system. In order to detect the time constants of the pressure increase and decrease, fast total pressure measurements were put into operation. With the recently installed partial pressure diagnostics it is also possible to follow up which types of molecules are released. The presentation will focus on the different techniques applied as well as on some measurement results. The potential and difficulties of this diagnostic tool will also be discussed.

  4. Measurement uncertainty analysis of low-dose-rate prostate seed brachytherapy: post-implant dosimetry.

    Science.gov (United States)

    Gregory, Kent J; Pattison, John E; Bibbo, Giovanni

    2015-03-01

    The minimal dose covering 90 % of the prostate volume--D 90--is arguably the most important dosimetric parameter in low-dose-rate prostate seed brachytherapy. In this study an analysis of the measurement uncertainties in D 90 from low-dose-rate prostate seed brachytherapy was conducted for two common treatment procedures with two different post-implant dosimetry methods. The analysis was undertaken in order to determine the magnitude of D 90 uncertainty, how the magnitude of the uncertainty varied when D 90 was calculated using different dosimetry methods, and which factors were the major contributors to the uncertainty. The analysis considered the prostate as being homogeneous and tissue equivalent and made use of published data, as well as original data collected specifically for this analysis, and was performed according to the Guide to the expression of uncertainty in measurement (GUM). It was found that when prostate imaging and seed implantation were conducted in two separate sessions using only CT images for post-implant analysis, the expanded uncertainty in D 90 values were about 25 % at the 95 % confidence interval. When prostate imaging and seed implantation were conducted during a single session using CT and ultrasound images for post-implant analysis, the expanded uncertainty in D 90 values were about 33 %. Methods for reducing these uncertainty levels are discussed. It was found that variations in contouring the target tissue made the largest contribution to D 90 uncertainty, while the uncertainty in seed source strength made only a small contribution. It is important that clinicians appreciate the overall magnitude of D 90 uncertainty and understand the factors that affect it so that clinical decisions are soundly based, and resources are appropriately allocated.

  5. Dose and Position Measurements using a Novel Four-Dimensional In Vivo Dosimetry System

    Science.gov (United States)

    Cherpak, Amanda

    This work presents a comprehensive characterization of the dosimetric and position measurement characteristics as well as clinical implementation of a novel four-dimensional in vivo dosimetry system, RADPOS. Preliminary dose and position measurements were first conducted to evaluate any deviation from known characteristics of metal-oxide semiconductor field-effect transistors, MOSFETs, and electromagnetic positioning systems when they are used alone. The system was then combined with a deformable tissue equivalent lung phantom to simulate respiratory-induced tumour motion and lung deformation and to evaluate the potential use of the system as an effective quality assurance tool for 4D conformal radiotherapy. The final phase of testing involved using the RADPOS 4D in vivo dosimetry system in two different clinical trials. The first involved characterizing the breathing patterns of lung cancer patients throughout the course of treatment and measuring inter-fraction variations in skin dose. Within this framework, the feasibility of general use of the RADPOS system on patients during daily treatment fractions was also assessed. The second trial involved a modified RADPOS detector that contained a MOSFET array, allowing for dose measurements at five different points. This detector was used to measure dose and position in the prostatic urethra throughout seed implantation for transperineal interstitial permanent prostate brachytherapy. It has been found that the dosimetric response is similar to that of a microMOSFET, when used alone, aside from a slightly higher variation in angular response. Position measurements can be obtained with an uncertainty of +/- 2 mm when the detector remains within a specific optimal volume with respect to the magnetic field transmitter and when interfering metal objects are kept at least 200 mm away. Combining the RADPOS system with a deformable lung equivalent phantom allowed for efficient quality assurance of 4D radiation therapy, as

  6. Interest of numerical dosimetry in radiation protection: mean of substitution or measurements consolidation?; Interet de la dosimetrie numerique en radioprotection: moyen de substitution ou de consolidation des mesures?

    Energy Technology Data Exchange (ETDEWEB)

    Lahaye, T.; Chau, Q. [Institut de Radioprotection et de Surete Nucleaire (IRSN/DPHD/SDOS), Service Dosimetrie, 92 - Fontenay-aux-Roses (France); Ferragut, A.; Gillot, J.Y. [SAPHYMO, 91 - Massy (France)

    2003-07-01

    The use of calculation codes allows to reduce the costs and the time limits. These codes brings to operators elements to reinforce their projected dosimetry. In the cases of accidental overexposure, the numerical dosimetry comes in complement of clinical and biological investigations to give an estimation as precise as possible of the received dose. For particular situations where it does not exist an adapted instrumentation, the numerical dosimetry can substitute to conventional techniques used by regulatory dosimetry (project for aviation personnel). (N.C.)

  7. Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams

    Science.gov (United States)

    Doucet, R.; Olivares, M.; DeBlois, F.; Podgorsak, E. B.; Kawrakow, I.; Seuntjens, J.

    2003-08-01

    Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 × 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid WaterTM (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.

  8. Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Doucet, R [Medical Physics Unit, McGill University, Montreal General Hospital, 1650 Ave Cedar, Montreal H3G 1A4 (Canada); Olivares, M [Medical Physics Unit, McGill University, Montreal General Hospital, 1650 Ave Cedar, Montreal H3G 1A4 (Canada); DeBlois, F [Medical Physics Unit, McGill University, Montreal General Hospital, 1650 Ave Cedar, Montreal H3G 1A4 (Canada); Podgorsak, E B [Medical Physics Unit, McGill University, Montreal General Hospital, 1650 Ave Cedar, Montreal H3G 1A4 (Canada); Kawrakow, I [National Research Council Canada, Ionizing Radiation Standards Group, Ottawa K1A 0R6, Canada (Canada); Seuntjens, J [Medical Physics Unit, McGill University, Montreal General Hospital, 1650 Ave Cedar, Montreal H3G 1A4 (Canada)

    2003-08-07

    Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 x 10 cm{sup 2} applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid Water{sup TM} (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.

  9. Radiation protection in medicine (542) comparison of different dosimetry systems for dose measurements in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Milkovic, D. [Srebrnjak, Specialized Hospital for Respiratory System Diseases in Children and Youth, Zagreb (Croatia); Ranogajec-Komor, M.; Miljanic, S.; Knezevic, Z.; Krpan, K. [Ruder Boskovic Institute, Zagreb (Croatia)

    2006-07-01

    The dose measurement on patients in X-ray diagnostic is not simple, because low doses with low and various energies have to be measured. The aim of this preliminary study was to compare high sensitivity thermoluminescent dosimeter (T.L.D.) (LiF:Mg,Cu,P) and radio-photoluminescent (R.P.L.) glass dosimeters for dose measurements in routine X-ray diagnostic of chest of children. The energy dependence of the dosimeters was investigated in Secondary Standard Dosimetry Laboratory (SSDL). The energy range was 33- 65 keV mean energy, the dosimeters were placed free in air and on the water phantom. The results were compared to calculated values of Hp(10). The next step was the irradiation in a routine X-ray diagnostic unit. Irradiations were performed by the Shimadzu X-ray unit. The selected irradiation conditions were the same as that most commonly used for baby examinations. Doses were measured with dosimeters placed free-in-air and also with the dosimeters placed on the water phantom and baby phantom. The results show that the R.P.L. glass dosimeters and LiF:Mg,Cu,P based T.L.D. are suitable for low dose measurements in X-ray diagnostic. The uncertainty of dose determination is mainly caused by the energy dependence of dosimeters. (authors)

  10. Dose measurements in dental radiology using thermoluminescent dosimetry;Medicoes de dose em radiodiagnostico odontologico utilizando dosimetria termoluminescente

    Energy Technology Data Exchange (ETDEWEB)

    Chiara, Ana Claudia M. de; Costa, Alessandro M. [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras; Pardini, Luiz Carlos [Universidade de Sao Paulo (FORP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Odontologia

    2009-07-01

    The aim of this work was the implementation of a code of practice for dosimetry in dental radiology using the technique of thermoluminescent dosimetry. General principles for the use of thermoluminescent dosimeters were followed. The irradiations were performed using ten X-ray equipment for intra-oral radiography and an X-ray equipment for panoramic radiography. The incident air kerma was evaluated for five different exposure times used in clinical practice for intra-oral radiographs. Using a backscatter factor of 1.2, it was observed that approximately 40% of the entrance skin dose values found for intra-oral radiographs are above the diagnostic reference level recommended in national regulation. Different configurations of voltage and current were used representing the exposure as a child, woman and man for panoramic radiographs. The results obtained for the air kerma area product were respectively 53.3 +- 5.2 mGy.cm{sup 2}, 101.5 +- 9.5 mGy.cm{sup 2} and 116.8 +- 10.4 mGy.cm{sup 2}. The use of thermoluminescent dosimetry requires several procedures before a result is recorded. The use of dosimeters with ionization chambers or semiconductors provides a simple and robust method for routine measurements. However, the use of thermoluminescent dosimetry can be of great value to large-scale surveys to establish diagnostic reference levels. (author)

  11. Statistical analysis of IMRT dosimetry quality assurance measurements for local delivery guideline

    Directory of Open Access Journals (Sweden)

    Ye Sung-Joon

    2011-03-01

    Full Text Available Abstract Purpose To establish our institutional guideline for IMRT delivery, we statistically evaluated the results of dosimetry quality assurance (DQA measurements and derived local confidence limits using the concept confidence limit of |mean|+1.96σ. Materials and methods From June 2006 to March 2009, 206 patients with head and neck cancer, prostate cancer, liver cancer, or brain tumor were treated using LINAC-based IMRT technique. In order to determine site specific DQA tolerances at a later stage, a hybrid plan with the same fluence maps as in the treatment plan was generated on CT images of a cylindrical phantom of acryl. Points of measurement using a 0.125 cm3 ion-chamber were typically located in the region of high and uniform doses. The planar dose distributions perpendicular to the central axis were measured by using a diode array in solid water with all fields delivered, and assessed using gamma criteria of 3%/3 mm. The mean values and standard deviations were used to develop the local confidence and tolerance limits. The dose differences and gamma pass rates for the different treatment sites were also evaluated in terms of total monitor uints (MU, MU/cGy, and the number of PTV's pieces. Results The mean values and standard deviations of ion-chamber dosimetry differences between calculated and measured doses were -1.6 ± 1.2% for H&N cancer, -0.4 ± 1.2% for prostate and abdominal cancer, and -0.6 ± 1.5% for brain tumor. Most of measured doses (92.2% agreed with the calculated doses within a tolerance limit of ±3% recommended in the literature. However, we found some systematic under-dosage for all treatment sites. The percentage of points passing the gamma criteria, averaged over all treatment sites was 97.3 ± 3.7%. The gamma pass rate and the agreement of ion-chamber dosimetry generally decreased with increasing the number of PTV's pieces, the degree of modulation (MU/cGy, and the total MU beyond 700. Our local confidence limits

  12. Diffusion measurement from observed transverse beam echoes

    Science.gov (United States)

    Sen, Tanaji; Fischer, Wolfram

    2017-01-01

    We study the measurement of transverse diffusion through beam echoes. We revisit earlier observations of echoes in the Relativistic Heavy Ion Collider and apply an updated theoretical model to these measurements. We consider three possible models for the diffusion coefficient and show that only one is consistent with measured echo amplitudes and pulse widths. This model allows us to parameterize the diffusion coefficients as functions of the bunch charge. We demonstrate that echoes can be used to measure diffusion much quicker than present methods and could be useful to a variety of hadron synchrotrons.

  13. EPID dosimetry for pretreatment quality assurance with two commercial systems.

    Science.gov (United States)

    Bailey, Daniel W; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Malhotra, Harish K; Podgorsak, Matthew B

    2012-07-05

    This study compares the EPID dosimetry algorithms of two commercial systems for pretreatment QA, and analyzes dosimetric measurements made with each system alongside the results obtained with a standard diode array. 126 IMRT fields are examined with both EPID dosimetry systems (EPIDose by Sun Nuclear Corporation, Melbourne FL, and Portal Dosimetry by Varian Medical Systems, Palo Alto CA) and the diode array, MapCHECK (also by Sun Nuclear Corporation). Twenty-six VMAT arcs of varying modulation complexity are examined with the EPIDose and MapCHECK systems. Optimization and commissioning testing of the EPIDose physics model is detailed. Each EPID IMRT QA system is tested for sensitivity to critical TPS beam model errors. Absolute dose gamma evaluation (3%, 3 mm, 10% threshold, global normalization to the maximum measured dose) yields similar results (within 1%-2%) for all three dosimetry modalities, except in the case of off-axis breast tangents. For these off-axis fields, the Portal Dosimetry system does not adequately model EPID response, though a previously-published correction algorithm improves performance. Both MapCHECK and EPIDose are found to yield good results for VMAT QA, though limitations are discussed. Both the Portal Dosimetry and EPIDose algorithms, though distinctly different, yield similar results for the majority of clinical IMRT cases, in close agreement with a standard diode array. Portal dose image prediction may overlook errors in beam modeling beyond the calculation of the actual fluence, while MapCHECK and EPIDose include verification of the dose calculation algorithm, albeit in simplified phantom conditions (and with limited data density in the case of the MapCHECK detector). Unlike the commercial Portal Dosimetry package, the EPIDose algorithm (when sufficiently optimized) allows accurate analysis of EPID response for off-axis, asymmetric fields, and for orthogonal VMAT QA. Other forms of QA are necessary to supplement the limitations of the

  14. Radiation dosimetry

    CERN Document Server

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  15. Transverse beam shape measurements of intense proton beams using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  16. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    Science.gov (United States)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  17. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  18. Precision dosimetry system suited for low temperature radiation damage experiments

    DEFF Research Database (Denmark)

    Andersen, H.H.; Hanke, C.C.; Sørensen, H.

    1967-01-01

    A calorimetric system for dosimetry on a beam of charged particles is described. The calorimeter works at liquid helium temperature. The total dose may be measured with an accuracy of 0.3%, and the dose per area with 0.4%. No theoretical corrections are needed. © 1967 The American Institute...

  19. Dosimetry study for a new in vivo X-ray fluorescence (XRF) bone lead measurement system

    Science.gov (United States)

    Nie, Huiling; Chettle, David; Luo, Liqiang; O'Meara, Joanne

    2007-10-01

    A new 109Cd γ-ray induced bone lead measurement system has been developed to reduce the minimum detectable limit (MDL) of the system. The system consists of four 16 mm diameter detectors. It requires a stronger source compared to the "conventional" system. A dosimetry study has been performed to estimate the dose delivered by this system. The study was carried out by using human-equivalent phantoms. Three sets of phantoms were made to estimate the dose delivered to three age groups: 5-year old, 10-year old and adults. Three approaches have been applied to evaluate the dose: calculations, Monte Carlo (MC) simulations, and experiments. Experimental results and analytical calculations were used to validate MC simulation. The experiments were performed by placing Panasonic UD-803AS TLDs at different places in phantoms that representing different organs. Due to the difficulty of obtaining the organ dose and the whole body dose solely by experiments and traditional calculations, the equivalent dose and effective dose were calculated by MC simulations. The result showed that the doses delivered to the organs other than the targeted lower leg are negligibly small. The total effective doses to the three age groups are 8.45/9.37 μSv (female/male), 4.20 μSv, and 0.26 μSv for 5-year old, 10-year old and adult, respectively. An approval to conduct human measurements on this system has been received from the Research Ethics Board based on this research.

  20. Microbeam radiation therapy: Tissue dose penetration and BANG-gel dosimetry of thick-beams' array interlacing

    Energy Technology Data Exchange (ETDEWEB)

    Dilmanian, F. Avraham [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Department of Radiation Oncology, State University of New York, Stony Brook, NY 11794 (United States)], E-mail: dilmanian@bnl.gov; Romanelli, Pantaleo [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Department of Neurology, State University of New York, Stony Brook, NY 11794 (United States); Department of Neurosurgery, NEUROMED IRCCS, Pozzilli, IS 86077 (Italy)], E-mail: radiosurgery2000@yahoo.com; Zhong Zhong [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: Zhong@bnl.gov; Wang Ruiliang [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: rlwang@bnl.gov; Wagshul, Mark E. [Department of Radiology, State University of New York, Stony Brook, NY 11794 (United States)], E-mail: mark.Wagshul@stonybrook.edu; Kalef-Ezra, John [University of Ioannina, Medical School, Medical Physics Laboratory, Ioannina 45110 (Greece)], E-mail: jkalef@cc.uoi.gr; Maryanski, Marek J. [MGS Research, Inc., Madison, CT 06443 (United States)], E-mail: mgsr@snet.net; Rosen, Eliot M. [Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States)], E-mail: emr36@georgetown.edu; Anschel, David J. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: danschel@bnl.gov

    2008-12-15

    The tissue-sparing effect of parallel, thin (narrower than 100 {mu}m) synchrotron-generated X-ray planar beams (microbeams) in healthy tissues including the central nervous system (CNS) is known since early 1990s. This, together with a remarkable preferential tumoricidal effect of such beam arrays observed at high doses, has been the basis for labeling the method microbeam radiation therapy (MRT). Recent studies showed that beams as thick as 0.68 mm ('thick microbeams') retain part of their sparing effect in the rat's CNS, and that two such orthogonal microbeams arrays can be interlaced to produce an unsegmented field at the target, thus producing focal targeting. We measured the half-value layer (HVL) of our 120-keV median-energy beam in water phantoms, and we irradiated stereotactically bis acrylamide nitrogen gelatin (BANG)-gel-filled phantoms, including one containing a human skull, with interlaced microbeams and imaged them with MRI. A 43-mm water HVL resulted, together with an adequately large peak-to-valley ratio of the microbeams' three-dimensional dose distribution in the vicinity of the 20 mm x 20 mm x 20 mm target deep into the skull. Furthermore, the 80-20% dose falloff was a fraction of a millimeter as predicted by Monte Carlo simulations. We conclude that clinical MRT will benefit from the use of higher beam energies than those used here, although the current energy could serve certain neurosurgical applications. Furthermore, thick microbeams particularly when interlaced present some advantages over thin microbeams in that they allow the use of higher beam energies and they could conceivably be implemented with high power orthovoltage X-ray tubes.

  1. Hematological dosimetry. Dosimetrie hematologique

    Energy Technology Data Exchange (ETDEWEB)

    Fluery-Herard, A. (CEA Centre d' Etudes de Fontenay-aux-Roses, 92 (FR). Direction des Sciences du Vivant)

    1991-01-01

    The principles of hematological dosimetry after acute or protracted whole-body irradiation are reviewed. In both cases, over-exposure is never homogeneous and the clinical consequences, viz medullary aplasia, are directly associated with the mean absorbed dose and the seriousness and location of the overexposure. The main hematological data required to assess the seriousness of exposure are the following: repeated blood analysis, blood precursor cultures, as indicators of whole-body exposure; bone marrow puncture, medullary precursor cultures and medullary scintigraphy as indicators of the importance of a local over-exposure and capacity for spontaneous repair. These paraclinical investigations, which are essential for diagnosis and dosimetry, are also used for surveillance and for the main therapeutic issues.

  2. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  3. 3D dosimetry in patients with early breast cancer undergoing Intraoperative Avidination for Radionuclide Therapy (IART {sup registered}) combined with external beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Mahila E.; Cremonesi, Marta; Di Dia, Amalia; Botta, Francesca; Pedroli, Guido [European Institute of Oncology, Division of Medical Physics, Milan (Italy); De Cicco, Concetta; Calabrese, Michele; Paganelli, Giovanni [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); Sarnelli, Anna [IRCCS Istituto Romagnolo per lo Studio e la Cura dei Tumori, Medical Physics Unit, Meldola, FC (Italy); Pedicini, Piernicola [Centro Regionale Oncologico Basilicata (IRCCS-CROB), Department of Radiation Oncology, Rionero in Vulture, PZ (Italy); Orecchia, Roberto [European Institute of Oncology, Division of Radiotherapy, Milan (Italy)

    2012-11-15

    Intraoperative Avidination for Radionuclide Therapy (IART {sup registered}) is a novel targeted radionuclide therapy recently used in patients with early breast cancer. It is a radionuclide approach with {sup 90}Y-biotin combined with external beam radiotherapy (EBRT) to release a boost of radiation in the tumour bed. Two previous clinical trials using dosimetry based on the calculation of mean absorbed dose values with the hypothesis of uniform activity distribution (MIRD 16 method) assessed the feasibility and safety of IART {sup registered}. In the present retrospective study, a voxel dosimetry analysis was performed to investigate heterogeneity in distribution of the absorbed dose. The aim of this work was to compare dosimetric and radiobiological evaluations derived from average absorbed dose vs. voxel absorbed dose approaches. We evaluated 14 patients who were injected with avidin into the tumour bed after conservative surgery and 1 day later received an intravenous injection of 3.7 GBq of {sup 90}Y-biotin (together with 185 MBq {sup 111}In-biotin for imaging). Sequential images were used to estimate the absorbed dose in the target region according to the standard dosimetry method (SDM) and the voxel dosimetry method (VDM). The biologically effective dose (BED) distribution was also evaluated. Dose/volume and BED volume histograms were generated to derive equivalent uniform BED (EUBED) and equivalent uniform dose (EUD) values. No ''cold spots'' were highlighted by voxel dosimetry. The median absorbed-dose in the target region was 20 Gy (range 15-27 Gy) by SDM, and the median EUD was 20.4 Gy (range 16.5-29.4 Gy) by the VDM; SDM and VDM estimates differed by about 6 %. The EUD/mean voxel absorbed dose ratio was >0.9 in all patients, indicative of acceptable uniformity in the target. The median BED and EUBED values were 21.8 Gy (range 15.9-29.3 Gy) and 22.8 Gy (range 17.3-31.8 Gy), respectively. VDM highlighted the absence of significant

  4. Turbulence measurements using six lidar beams

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob

    2012-01-01

    The use of wind lidars for measuring wind has increased significantly for wind energy purposes. The mean wind speed measurement using the velocity azimuth display (VAD) technique can now be carried out as reliably as the traditional instruments like the cup and sonic anemometers. Using the VAD...... technique the turbulence measurements are far from being reliable. Two mechanisms contribute to systematic errors in the measurement of turbulence. One is the averaging of small scales of turbulence due to the volume within which lidars measure wind speed. The other is the contamination by the cross...... components of the Reynolds stress tensor, which arises because, in a VAD scan the lidar beams are combined to obtain different components of the wind field. In this work we demonstrate theoretically, how the contamination by the cross components can be avoided by using the measured variances of the line...

  5. Impact of beam-beam effects on precision luminosity measurements at the ILC

    CERN Document Server

    Rimbault, C; Mönig, K; Schulte, D

    2007-01-01

    In this paper, the impact of beam-beam effects on the precision luminosity measurement at the International Linear Collider is investigated quantitatively for the first time. GUINEA-PIG, a beam-beam interaction simulation tool, is adapted to treat the space charge effects affecting the Bhabha events used in this measurement. The biases due to the resulting changes in kinematics are evaluated for different center-of-mass energies and beam parameters.

  6. Definition and measurement of the beam propagation factor M2 for chromatic laser beams

    Institute of Scientific and Technical Information of China (English)

    Tao Fang; Xin Ye; Jinfu Niu; Jianqiu Xu

    2006-01-01

    The concept of the beam propagation factor M2 is extended for chromatic laser beams. The definition of the beam propagation factor can be generalized with the weighted effective wavelength. Using the new definition of factor M2, the propagation of chromatic beams can be analyzed by the beam propagation factor M2 as same as that of monochromatic beams. A simple method to measure the chromatic beam factor M2 is demonstrated. The chromatic factor M2 is found invariable while the laser beam propagates through the dispersion-free ABCD system.

  7. Measurement of HL-2A NBI Beam Profile and Beam Power

    Institute of Scientific and Technical Information of China (English)

    LIU He; CAO Jianyong; JIANG Shaofeng; LUO Cuiwen; TANG Lixin; LEI Guangjiu; RAO Jun; LI Bo

    2009-01-01

    To optimize the operation parameters of the beam line of NBI on HL-2A,features of the beam line,including the beam profile and the power deposited on components and injected into the tokamak plasma,were measured.The operational parameters of the four sources on the beam line were optimized with the monitor of the beam profile and beam power,and the transmission efficiency of the NBI injected power was therefore increased.A beam diagnostic system for the beam line of the NBI system on HL-2A as well as the diagnosed results was also presented.

  8. Beam Emittance Measurement with Laser Wire Scanners in the ILC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, I.; /CERN; Blair, G.A.; /Royal Holloway, U. of London; Woodley, M.; /SLAC

    2008-02-01

    Accurate measurement of the beam phase-space is essential for the next generation of electron accelerators. A scheme for beam optics optimization and beam matrix reconstruction algorithms for the diagnostics section of the beam delivery system of the International Linear Collider based on laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system together with their corresponding performance are presented. Based on these results, prospects for reconstructing the ILC beam emittance from representative laser-wire beam size measurements are evaluated.

  9. Research on Brightness Measurement of Intense Electron Beam

    CERN Document Server

    Wang, Yuan; Zhang, Huang; Yang, GuoJun; Li, YiDing; Li, Jin

    2015-01-01

    The mostly research fasten on high emission density of injector to study electron beam's brightness in LIA. Using the injector(2MeV) was built to research brightness of multi-pulsed high current(KA) electron beam, and researchs three measurement method (the pepper-pot method, beam collimator without magnetic field, beam collimator with magnetic field method) to detect beam's brightness with time-resolved measurement system.

  10. Response different of MAGIC-f gel in clinical electron and photon beams dosimetry;Estabilidade de resposta do gel MAGIC-f na dosimetria de feixes clinicos: eletrons e fotons

    Energy Technology Data Exchange (ETDEWEB)

    Pianoschi, Thatiane; Marques, Tatiana; Goncalves, Leandro; Alva, Mirko; Baffa, Oswaldo [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Dept. de Fisica e Matematica; Nicolucci, Patricia [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Centro de Instrumentacao, Dosimetria e Radioprotecao

    2009-07-01

    The dosimetry with polymeric gel has been widely used in the clinic routines of the quality control in Radiotherapy since it allows one to verify volumetric dose distributions. Due to its capacity in detecting very high dose gradients with high spatial resolution, the MAGIC-f dosimeter is shown as an accurate tool in the 3D dosimetry aspects. Although the amount of information on gel dosimetry for photon beams is large in the literature, simple properties of its response to electron beams are not set yet. In this work we present experimental results of dose deposited in MAGIC-f gel for 9 and 15 MeV electron beams and 6 and 10 MV photon beams. The analysis of its stability for these clinical beams was set by the comparison between the signal curves and the dose for each energy. The DDP curves showed a difference less than 4% to the 9 MeV beam. The MAGIC-f gel is shown as an accurate dosimeter for clinical electron beams, being equivalent to tissue composition, linearity and stability in the response. (author)

  11. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields.

    Science.gov (United States)

    Ploquin, N; Kertzscher, G; Vandervoort, E; Cygler, J E; Andersen, C E; Francescon, P

    2015-01-07

    A dosimetry system based on Al2O3:C radioluminescence (RL), and RADPOS, a novel 4D dosimetry system using microMOSFETs, were used to measure total scatter factors, (S(c,p))(f(clin))(det), for the CyberKnife robotic radiosugery system. New Monte Carlo calculated correction factors are presented and applied for the RL detector response for the 5, 7.5 and 10 mm collimators in order to correct for the detector geometry and increased photoelectric cross section of Al2O3:C relative to water. For comparison, measurements were also carried out using a micro MOSFET, PTW60012 diode and GAFCHROMIC(®) film (EBT and EBT2). Uncorrected (S(c,p))(f(clin))(det) were obtained by taking the ratio of the detector response for each collimator to that for the 60 mm diameter reference field. Published Monte Carlo calculated correction factors were applied to the RADPOS, microMOSFET and diode detector measurements to yield corrected field factors, Ω(f(clin),f(msr))(Q(clin),Q(msr)), following the terminology of a recent formalism introduced for small and composite field relative dosimetry. With corrections, the RL measured Ω(f(clin),f(msr))(Q(clin),Q(msr)) were 0.656  ±  0.002, 0.815  ±  0.002 and 0.865  ±  0.003 for the 5, 7.5 and 10 mm collimators, respectively. This was in good agreement with RADPOS corrected field factors of 0.650  ±  0.010, 0.816  ±  0.024 and 0.867  ±  0.010 for the 5, 7.5 and 10 mm collimators, respectively. Both RL and RADPOS total scatter factors agreed within approximately two standard deviations of the GAFCHROMIC film values (average of EBT and EBT2) of 0.640  ±  0.006, 0.806  ±  0.007 and 0.859  ±  0.09. Corrected total scatter factors for all dosimetry systems agreed within one standard deviation for collimator sizes 10-60 mm. Our study suggests that the microMOSFET/RADPOS and optical fibre-coupled RL dosimetry system are well suited for total scatter factor measurements over the entire range of field

  12. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields

    Science.gov (United States)

    Ploquin, N.; Kertzscher, G.; Vandervoort, E.; Cygler, J. E.; Andersen, C. E.; Francescon, P.

    2015-01-01

    A dosimetry system based on Al2O3:C radioluminescence (RL), and RADPOS, a novel 4D dosimetry system using microMOSFETs, were used to measure total scatter factors, ≤ft({{S}c,p}\\right)\\text{det}{{f\\text{clin}}}, for the CyberKnife robotic radiosugery system. New Monte Carlo calculated correction factors are presented and applied for the RL detector response for the 5, 7.5 and 10 mm collimators in order to correct for the detector geometry and increased photoelectric cross section of Al2O3:C relative to water. For comparison, measurements were also carried out using a micro MOSFET, PTW60012 diode and GAFCHROMIC® film (EBT and EBT2). Uncorrected ≤ft({{S}c,p}\\right)\\text{det}{{f\\text{clin}}}, were obtained by taking the ratio of the detector response for each collimator to that for the 60 mm diameter reference field. Published Monte Carlo calculated correction factors were applied to the RADPOS, microMOSFET and diode detector measurements to yield corrected field factors, Ω {{Q\\text{clin}},{{Q}\\text{msr}}}{{f\\text{clin}},{{f}\\text{msr}}}, following the terminology of a recent formalism introduced for small and composite field relative dosimetry. With corrections, the RL measured Ω {{Q\\text{clin}},{{Q}\\text{msr}}}{{f\\text{clin}},{{f}\\text{msr}}}, were 0.656  ±  0.002, 0.815  ±  0.002 and 0.865  ±  0.003 for the 5, 7.5 and 10 mm collimators, respectively. This was in good agreement with RADPOS corrected field factors of 0.650  ±  0.010, 0.816  ±  0.024 and 0.867  ±  0.010 for the 5, 7.5 and 10 mm collimators, respectively. Both RL and RADPOS total scatter factors agreed within approximately two standard deviations of the GAFCHROMIC film values (average of EBT and EBT2) of 0.640  ±  0.006, 0.806  ±  0.007 and 0.859  ±  0.09. Corrected total scatter factors for all dosimetry systems agreed within one standard deviation for collimator sizes 10-60 mm. Our study suggests that the micro

  13. The Fricke Xylenol Gel (FXG) dosimetry in the mycosis fungoides radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zaias, Herofen; Petchevist, Paulo C.D.; Parada, Marco A.; Almeida, Adelaide de; Costa, Alessandro M. da [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica]. E-mail: dalmeida@ffclrp.usp.br; Rocha, Jose Renato de Oliveira [Universidade Estadual de Campinas, SP (Brazil). Centro de Engenharia Biomedica]. E-mail: renato@ceb.unicamp.br

    2005-07-01

    We used chemical dosimetry with the Fricke Xylenol Gel (FXG) dosimeter to verify the dose distribution in an electron therapy of mycosis fungoides. Anatomically shaped phantoms were developed and filled with the FXG. The phantoms were inserted in a Rando anthropomorphic phantom and submitted to the Stanford irradiation technique with a 6 MeV electron beam. The absorbances of the FXG after the irradiation were measured with a special FXG reader developed for this purpose. The preliminary results show that the FXG dosimetry system is a promising dosimetry technique. (author)

  14. Microstructure cantilever beam for current measurement

    Directory of Open Access Journals (Sweden)

    M.T.E. Khan

    2010-01-01

    Full Text Available Most microelectromechanical systems (MEMS sensors are based on the microcantilever technology, which uses a broad range of design materials and structures. The benefit ofMEMStechnology is in developing devices with a lower cost, lower power consumption, higher performance and greater integration. A free-end cantilever beam with a magnetic material mass has been designed using MEMS software tools. The magnetic material was used to improve the sensitivity of the cantilever beam to an externally-applied magnetic field. The cantilever was designed to form a capacitance transducer, which consisted of variable capacitance where electrical and mechanical energies were exchanged. The aim of this paper was to analyse the system design of the microcantilever when subjected to a magnetic field produced by a current-carrying conductor. When the signal, a sinusoidal current with a constant frequency, was applied, the cantilever beam exhibited a vibration motion along the vertical axis when placed closer to the line current. This motion created corresponding capacitance changes and generated a voltage output proportional to the capacitive change in the signal-processing circuitry attached to the microcantilever. The equivalent massspring system theory was used to describe and analyse the effect of the natural frequency of the system vibrations and motion due to the applied magnetic field, in a single-degree of freedom. The main application of this microcantilever is in current measurements to develop a non-contact current sensor mote.

  15. PERMEABILITY OF SALTSTONE MEASUREMENT BY BEAM BENDING

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Tommy Edwards, T; Vickie Williams, V

    2008-01-30

    One of the goals of the Saltstone variability study is to identify (and, quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. A performance property for Saltstone mixes that is important but not routinely measured is the liquid permeability or saturated hydraulic conductivity of the cured Saltstone mix. The value for the saturated hydraulic conductivity is an input into the Performance Assessment for the SRS Z-Area vaults. Therefore, it is important to have a method available that allows for an accurate and reproducible measurement of permeability quickly and inexpensively. One such method that could potentially meet these requirements for the measurement of saturated hydraulic conductivity is the technique of beam bending, developed by Professor George Scherer at Princeton University. In order to determine the feasibility of this technique for Saltstone mixes, a summer student, David Feliciano, was hired to work at Princeton under the direction of George Scherer. This report details the results of this study which demonstrated the feasibility and applicability of the beam bending method to measurement of permeability of Saltstone samples. This research effort used samples made at Princeton from a Modular Caustic side solvent extraction Unit based simulant (MCU) and premix at a water to premix ratio of 0.60. The saturated hydraulic conductivities for these mixes were measured by the beam bending technique and the values determined were of the order of 1.4 to 3.4 x 10{sup -9} cm/sec. These values of hydraulic conductivity are consistent with independently measured values of this property on similar MCU based mixes by Dixon and Phifer. These values are also consistent with the hydraulic conductivity of a generic Saltstone mix measured by Langton in 1985. The high water to premix ratio used for Saltstone along with the relatively low degree of hydration for

  16. Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams

    DEFF Research Database (Denmark)

    Andersen, Claus Erik; Damkjær, Sidsel Marie Skov; Kertzscher Schwencke, Gustavo Adolfo Vladimir

    2011-01-01

    Radioluminescence (RL) and optically stimulated luminescence (OSL) from carbon-doped aluminum oxide crystals can be used for medical dosimetry in external beam radiotherapy and remotely afterloaded brachytherapy. The RL/OSL signals are guided from the treatment room to the readout instrumentation...... using optical fiber cables, and in vivo dosimetry can be carried out in real time while the dosimeter probes are in the patient. The present study proposes a new improved readout protocol based solely on the RL signal from Al2O3:C. The key elements in the protocol are that Al2O3:C is pre-dosed with 20...... ((−0.21 ± 0.01)%/ °C), and dose-delivery rate ((−0.22 ± 0.01)% per 100 MU/min). A temporal gating technique was used for separation of RL and stem signals (i.e. Cerenkov light and fluorescence induced in the optical fiber cable during irradiation). The new readout protocol was a substantial improvement...

  17. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    Science.gov (United States)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  18. A new standard cylindrical graphite-walled ionization chamber for dosimetry in 60Co beams at calibration laboratories

    Science.gov (United States)

    Neves, Lucio P.; Perini, Ana P.; Caldas, Linda V. E.

    2014-11-01

    60Co sources are used mostly at dosimetry laboratories for calibration of ionization chambers utilized for radiotherapy dosimetry, mainly in those laboratories where there is no linear accelerator available. In this work, a new cylindrical ionization chamber was developed and characterized to be used as a reference dosimeter at the Calibration Laboratory of the IPEN. The characterization tests were performed according to the IEC 60731 standard, and all tests presented results within its recommended limits. Furthermore, the correction factors for the wall, stem, central collecting electrode, nonaxial uniformity and the mass-energy absorption coefficient were determined using the EGSnrc Monte Carlo code. The air kerma rate determined with this new dosimeter was compared to the one obtained with the IPEN standard, presenting a difference of 1.5%. Therefore, the new ionization chamber prototype developed and characterized in this work presents potential use as a primary standard dosimeter at radiation metrology laboratories.

  19. Laser beam complex amplitude measurement by phase diversity.

    Science.gov (United States)

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  20. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    data, damage correlations. Two-dimensional mapping of the calculated fission power for the full-size fuel plate experiment irradiated in the advanced test reactor / G. S. Chang and M. A. Lillo. The radiation safety information computational center: a resource for reactor dosimetry software and nuclear data / B. L. Kirk. Irradiated xenon isotopic ratio measurement for failed fuel detection and location in fast reactor / C. Ito, T. Iguchi and H. Harano. Characterization of dosimetry of the BMRR horizontal thimble tubes and broad beam facility / J.-P. Hu, R. N. Reciniello and N. E. Holden. 2007 nuclear data review / N. E. Holden. Further dosimetry studies at the Rhode Island nuclear science / R. N. Reciniello ... [et al.]. Characterization of neutron fields in the experimental fast reactor Joyo MK-III core / S. Maeda ... [et al.]. Measuring [symbol]Li(n, t) and [symbol]B(n, [symbol]) cross sections using the NIST alpha-gamma apparatus / M. S. Dewey ... [et al.]. Improvement of neutron/gamma field evaluation for restart of JMTR / Y. Nagao ... [et al.]. Monitoring of the irradiated neutron fluence in the neutron transmutation doping process of HANARO / M.-S. Kim and S.-J. Park.Training reactor VR-l neutron spectrum determination / M. Vins, A. Kolros and K. Katovsky. Differential cross sections for gamma-ray production by 14 MeV neutrons on iron and bismuth / V. M. Bondar ... [et al.]. The measurements of the differential elastic neutron cross-sections of carbon for energies from 2 to 133 ke V / O. Gritzay ... [et al.]. Determination of neutron spectrum by the dosimetry foil method up to 35 Me V / S. P. Simakov ... [et al.]. Extension of the BGL broad group cross section library / D. Kirilova, S. Belousov and Kr. Ilieva. Measurements of neutron capture cross-section for tantalum at the neutron filtered beams / O. Gritzayand V. Libman. Measurements of microscopic data at GELINA in support of dosimetry / S. Kopecky ... [et al.]. Nuclide guide and international chart of

  1. Emittance measurements of the CLIO electron beam

    Science.gov (United States)

    Chaput, R.; Devanz, G.; Joly, P.; Kergosien, B.; Lesrel, J.

    1997-02-01

    We have designed a setup to measure the transverse emittance at the CLIO accelerator exit, based on the "3 gradients" method. The beam transverse size is measured simply by scanning it with a steering coil across a fixed jaw and recording the transmitted current, at various quadrupole strengths. A code then performs a complete calculation of the emittance using the transfer matrix of the quadrupole instead of the usual classical lens approximation. We have studied the influence of various parameters on the emittance: Magnetic field on the e-gun and the peak current. We have also improved a little the emittance by replacing a mismatched pipe between the buncher and accelerating section to avoid wake-field effects; The resulting improvements of the emittance have led to an increase in the FEL emitted power.

  2. Online fibre optic OSL in vivo dosimetry for quality assurance of external beam radiation therapy treatments: The ANR-TECSAN Codofer Project; Dosimetrie in vivo par OSL, en ligne par fibre optique, pour l'assurance qualite des traitements par radiotherapie externe: le projet ANR-TECSAN Codofer

    Energy Technology Data Exchange (ETDEWEB)

    Magne, S.; Ferdinand, P. [CEA Saclay, Laboratoire de mesures optiques, CEA LIST, 91191 Gif-sur-Yvette (France); De Carlan, L. [CEA Saclay, Laboratoire national Henri-Becquerel, CEA LIST, 91191 Gif-sur-Yvette (France); Bridier, A.; Isambert, A. [Service de physique, institut Gustave-Roussy, 39, rue Camille-Desmoulins, 94805 Villejuif (France); Hugon, R. [CEA Saclay, Departement capteur, signal et informations, CEA LIST, 91191 Gif-sur-Yvette (France); Guillon, J. [Societe Fimel, 18, rue Marie-et-Pierre-Curie, 92260 Fontenay-aux-Roses (France)

    2010-05-15

    The Codofer Project (2007-2009), led under the ANR-TECSAN Call, was coordinated by CEA LIST, in partnership with IGR and the Fimel company. The aim of the project was to design and test both metrologically and in clinical conditions OSL optical fiber sensors dedicated to in vivo dosimetry during external beam radiation therapy treatment with high-energy electrons. This study, combined with the results of clinical tests obtained within the European Project Maestro, has demonstrated the advantages of OSL/FO dosimetry for providing quality assurance of treatments. However, the French market for dosimetry has greatly changed as a result of the rules decreed by the French government in 2007. The OSL/FO product is now targeted for other treatment modalities lacking suitable dosimeters (ANR-INTRADOSE Project [2009-2011]). (authors)

  3. Faraday Cup - it is used to measure beam intensities at low energy beams.

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    A Faraday Cup is used to measure beam intensities at low energy beams. An electrically isolated metallic electrode intercepts the beam and captures all its charges. These charges are integrated using an current sensitive amplifier. When the beam impinges onto the electrode surface low energy electrons are liberated. In order to prevent these electrons from escaping the cup and thus falsifying the measurement, a repeller electrode with negative potential pushes the electrons back onto the electrode.

  4. On the property of measurements with the PTW microLion chamber in continuous beams

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jonas; Johansson, Erik; Toelli, Heikki [Department of Radiation Sciences, Radiation Physics, Umea University, SE-901 85 Umea (Sweden); Swedish Defense Research Agency, FOI CBRN Defense and Security, SE-901 82 Umea (Sweden); Department of Radiation Sciences, Radiation Physics, Umea University, SE-901 85 Umea (Sweden)

    2012-08-15

    Purpose: The performance of liquid ionization chambers, which may prove to be useful tools in the field of radiation dosimetry, is based on several chamber and liquid specific characteristics. The present work investigates the performance of the PTW microLion liquid ionization chamber with respect to recombination losses and perturbations from ambient electric fields at various dose rates in continuous beams. Methods: In the investigation, experiments were performed using two microLion chambers, containing isooctane (C{sub 8}H{sub 18}) and tetramethylsilane [Si(CH{sub 3}){sub 4}] as the sensitive media, and a NACP-02 monitor chamber. An initial activity of approximately 250 GBq {sup 18}F was employed as the radiation source in the experiments. The initial dose rate in each measurement series was estimated to 1.0 Gy min{sup -1} by Monte Carlo simulations and the measurements were carried out during the decay of the radioactive source. In the investigation of general recombination losses, employing the two-dose-rate method for continuous beams, the liquid ionization chambers were operated at polarizing voltages 25, 50, 100, 150, 200, and 300 V. Furthermore, measurements were also performed at 500 V polarizing voltage in the investigation of the sensitivity of the microLion chamber to ambient electric fields. Results: The measurement results from the liquid ionization chambers, corrected for general recombination losses according to the two-dose-rate method for continuous beams, had a good agreement with the signal to dose linearity from the NACP-02 monitor chamber for general collection efficiencies above 70%. The results also displayed an agreement with the theoretical collection efficiencies according to the Greening theory, except for the liquid ionization chamber containing isooctane operated at 25 V. At lower dose rates, perturbations from ambient electric fields were found in the microLion chamber measurement results. Due to the perturbations, measurement

  5. Ion beam measurements at the superconducting ECR ion source SECRAL

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Jan; Rossbach, Jon; Lang, Ralf; Maimone, Fabio; Spaedtke, Peter; Tinschert, Klaus [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Sun, Liangting; Cao, Yun; Zhao, Hongwei [Institute of Modern Physics, Lanzhou, GS (China)

    2009-08-15

    Measurement of the charge-state distribution, the beam profile, the beam emittance of the named ion source are presented. Furthermore computer simulations of the magnetic flux-density distribution in this source are described. (HSI)

  6. Alternative techniques for beam halo measurements

    CERN Document Server

    Welsch, CP; Burel, B; Lefèvre, T; Chapman, T; Pilon, MJ

    2006-01-01

    In future high intensity, high energy accelerators it must be ensured that particle losses are minimized, as activation of the vacuum chambers or other components makes maintenance and upgrade work time consuming and costly. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Measurements based on optical transition radiation (OTR) are a well-established technique for measurements of the transverse beam profile. However, in order to be suitable for halo measurements as well, the dynamic range of the final image acquisition system needs to be high, being able to cover at least five orders of magnitude in intensity changes. Here, the performance of a standard acquisition system as it is used in the CLIC test facility (CTF3) is compared to a step-by-step measurement with a small movable photo multiplier tube and an innovative camera system based on charge injection de...

  7. Computational dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  8. Comparison between rad-hard standard float zone (FZ) and magnetic Czochralski (MCZ) silicon diodes in radiotherapy electron beam dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, T.C. dos; Goncalves, J.A.C.; Vasques, M.M.; Tobias, C.C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes; Neves-Junior, W.F.P.; Haddad, C.M.K. [Hospital Sirio Libanes, Sao Paulo, SP (Brazil). Sociedade Beneficente de Senhoras; Harkonen, J. [Helsinki University of Technology (Denmark). Helsinki Inst. of Physics

    2010-07-01

    Full text. The use of semiconductor detectors has increased in radiotherapy practice since 1980s due to mainly their fast processing time, small sensitive volume and high relative sensitivity to ionizing radiation. Other major advantages of Si devices are excellent repeatability, good mechanical stability, high spatial resolution and the energy independence of mass collision stopping powers ratios (between silicon and water for electron beams with energy from 4 up to 20 MeV). However, ordinary silicon devices are very prone to radiation damage effects. In the last years, the development of radiation tolerant silicon detectors for High Energy Physics experiments has overcome this drawback. In this work we present the preliminary results obtained with a rad-hard epitaxial silicon diode as on-line clinical electron beam dosimeter. The diodes with 25 mm{sup 2} active area, were housed in a PMMA probe and connected, in a photovoltaic mode, to a Keithley 6517B electrometer. During all measurements, the diodes were held between PMMA plates, placed at Zref and centered in a radiation field of 10 cm x 10 cm, with the SSD kept at 100 cm. The devices dosimetric response was evaluated for 6, 9, 12, 15, 18 e 21 MeV electron beams from a Siemens KD 2 Radiotherapy Linear Accelerator, located at Sirio-Libanes Hospital. The radiation induced current in the diodes was registered as a function of the exposure time during 60 s for a fixed 300 MU. To study the short term repeatability, current signals were registered for the same radiation dose, for all energies. The dose-response of the diodes was achieved through the integration of the current signals as a function of the exposure time. The results obtained in the energy range of 6 up to 21 MeV evidenced that, for the same average dose rate of 5.0 cGy/s, the current signals are very stable and repeatable in both cases. For all energies, data shows good instantaneous repeatability with a percentage variation coefficient better than 2

  9. Intercomparisons of neutron dosimeters in support of dosimetry measurements in containment

    Energy Technology Data Exchange (ETDEWEB)

    Auman, L.E.; Miller, W.H. (Univ. of Missouri, Columbia (United States)); Graham, C.C.; Stretch, C.D. (Union Electric Co., Fulton, MO (United States)); Welty, T.J.; West, L. (Univ. of Arkansas, Fayetteville (United States))

    1991-01-01

    In support of neutron dosimetry needs at Union Electric's Callaway nuclear plant, an intercomparison of a variety of neutron detection systems was performed. Eight different neutron detection systems were tested in four different neutron fields, utilizing facilities at the Missouri University research reactor (MURR) and the Southwest Radiation Calibration Center at the University of Arkansas. In general, all results agreed within a factor of 2 in predicting the neutron dose equivalent.

  10. Improvement of Varian a-Si EPID dosimetry measurements using a lead-shielded support-arm.

    Science.gov (United States)

    Rowshanfarzad, Pejman; Sabet, Mahsheed; O'Connor, Daryl J; Greer, Peter B

    2012-01-01

    Dosimetry measurements with Varian amorphous silicon electronic portal imaging devices (a-Si EPIDs) are affected by the backscattered radiation from the EPID support arm. In this study, the nonuniform backscatter from an E-type support arm was reduced by fixing a thick (12.2 × 10.5 × 0.5 cm(3)) piece of lead on top of the arm, and the remaining backscatter was modeled and included in an existing dose prediction algorithm. The applied backscatter kernel was the average of kernels on different regions of the EPID over the arm. The lead-shielded arm reduced the nonuniform backscatter component by about 50% for field sizes ranging from 3 × 3 to 30 × 30 cm(2) and the field symmetry improved for medium to large fields up to 3%. Gamma evaluation of the measured and modeled doses (2%, 2-mm criteria) showed that using the lead-shielded arm in the model increased the number of points with Gamma index <1 by 5.7% and decreased the mean Gamma by 0.201. Even using the lead alone (no modeling) could increase the number of points with Gamma index <1 by 4.7% and decrease the mean Gamma by 0.153. This is a simple and easy method to decrease the nonuniform arm backscatter and improve the accuracy of dosimetry measurements with the existing EPIDs used for clinical applications.

  11. A measurement-based X-ray source model characterization for CT dosimetry computations.

    Science.gov (United States)

    Sommerville, Mitchell; Poirier, Yannick; Tambasco, Mauro

    2015-11-08

    The purpose of this study was to show that the nominal peak tube voltage potential (kVp) and measured half-value layer (HVL) can be used to generate energy spectra and fluence profiles for characterizing a computed tomography (CT) X-ray source, and to validate the source model and an in-house kV X-ray dose computation algorithm (kVDoseCalc) for computing machine- and patient-specific CT dose. Spatial variation of the X-ray source spectra of a Philips Brilliance and a GE Optima Big Bore CT scanner were found by measuring the HVL along the direction of the internal bow-tie filter axes. Third-party software, Spektr, and the nominal kVp settings were used to generate the energy spectra. Beam fluence was calculated by dividing the integral product of the spectra and the in-air NIST mass-energy attenuation coefficients by in-air dose measurements along the filter axis. The authors found the optimal number of photons to seed in kVDoseCalc to achieve dose convergence. The Philips Brilliance beams were modeled for 90, 120, and 140 kVp tube settings. The GE Optima beams were modeled for 80, 100, 120, and 140 kVp tube settings. Relative doses measured using a Capintec Farmer-type ionization chamber (0.65 cc) placed in a cylindrical polymethyl methacrylate (PMMA) phantom and irradiated by the Philips Brilliance, were compared to those computed with kVDoseCalc. Relative doses in an anthropomorphic thorax phantom (E2E SBRT Phantom) irradiated by the GE Optima were measured using a (0.015 cc) PTW Freiburg ionization chamber and compared to computations from kVDoseCalc. The number of photons required to reduce the average statistical uncertainty in dose to < 0.3% was 2 × 105. The average percent difference between calculation and measurement over all 12 PMMA phantom positions was found to be 1.44%, 1.47%, and 1.41% for 90, 120, and 140 kVp, respectively. The maximum percent difference between calculation and measurement for all energies, measurement positions, and phantoms was

  12. Linac4 low energy beam measurements with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Scrivens, R., E-mail: richard.scrivens@cern.ch; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T. [CERN, 1211 Geneva 23 (Switzerland)

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  13. Linac4 Low Energy Beam Measurements with Negative Hydrogen

    CERN Document Server

    Scrivens, R; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J B; Lettry, J; Lombardi, A; Midttun, O; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-01-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  14. Linac4 low energy beam measurements with negative hydrogen ions.

    Science.gov (United States)

    Scrivens, R; Bellodi, G; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J-B; Lettry, J; Lombardi, A; Midttun, Ø; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-02-01

    Linac4, a 160 MeV normal-conducting H(-) linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H(-) beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  15. Local Neutron Flux Distribution Measurements by Wire-Dosimetry in the AMMON Experimental Program in the EOLE Reactor

    Directory of Open Access Journals (Sweden)

    Gruel A.

    2016-01-01

    Full Text Available Dosimetry measurements were carried out during the AMMON experimental program, in the EOLE facility. Al-0.1 wt% Au wires were positioned along curved fuel plates of JHR-type assemblies to investigate the azimuthal and axial gold capture rate profiles, directly linked to the thermal and epithermal flux. After irradiation, wires were cut into small segments (a few mm, and the gold capture rate of each part was measured by gamma spectrometry on the MADERE platform. This paper presents results in the “hafnium” configuration, and more specifically the azimuthal flux profile characterization. The final uncertainty on each measured wire lies below 1% (at 2 standard deviations. Experimental profiles are in a good agreement against Monte Carlo calculations, and the 4% capture rate increase at the plate edge is well observed. The flux dissymmetry due to assembly position in the core is also measured, and shows a 10% discrepancy between the two edges of the plate.

  16. LHC Beam Instrumentation: Beam Loss and Tune Measurements (3/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  17. LHC Beam Instrumentation: Beam Position and Intensity Measurements (1/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  18. Beam induced vacuum measurement error in BEPC II

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    When the beam in BEPCII storage ring aborts suddenly, the measured pressure of cold cathode gauges and ion pumps will drop suddenly and decrease to the base pressure gradually. This shows that there is a beam induced positive error in the pressure measurement during beam operation. The error is the difference between measured and real pressures. Right after the beam aborts, the error will disappear immediately and the measured pressure will then be equal to real pressure. For one gauge, we can fit a non-linear pressure-time curve with its measured pressure data 20 seconds after a sudden beam abortion. From this negative exponential decay pumping-down curve, real pressure at the time when the beam starts aborting is extrapolated. With the data of several sudden beam abortions we have got the errors of that gauge in different beam currents and found that the error is directly proportional to the beam current, as expected. And a linear data-fitting gives the proportion coefficient of the equation, which we derived to evaluate the real pressure all the time when the beam with varied currents is on.

  19. An evaluation of semiconductor and ionization chamber detectors for diagnostic x-ray dosimetry measurements.

    Science.gov (United States)

    Martin, C J

    2007-08-07

    Dosemeters for performance testing of x-ray equipment may utilize semiconductor technology or ionization chambers (ICs). Semiconductor dosemeters incorporate several elements into the detectors from which compensation for variations in response with photon energy is derived. The design of the detectors influences their response with angle and this is different from that of ICs. The responses of semiconductor detectors (SDs) and ICs to x-ray beams with a variety of radiation qualities have been measured in order to assess differences in response. Measurements have been made with experimental arrangements simulating use of the detectors in performance testing of digital radiography and fluoroscopy equipment. Results show that differences in photon energy responses between the detectors are small, but because ICs are sensitive to radiation incident from all angles, they record more scattered radiation than SDs. Implications of differences in detector responses are discussed and recommendations made about their use. SDs are more appropriate for measurements of image receptor doses and are recommended for setting up automatic exposure control devices for digital radiography. ICs are suitable for assessment of patient entrance surface dose rate measurements. Correction factors that could be applied to allow comparisons between measurements with different dosemeters are proposed.

  20. SU-E-T-778: Use of the 2D MatriXX Detector for Measuring Scanned Ion Beam Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Anvar, M Varasteh; Monaco, V; Sacchi, R; Guarachi, L Fanola; Cirio, R [Istituto Nazionale di Fisica Nucleare (INFN), Division of Turin, TO (Italy); University of Torino, Turin, TO (Italy); Giordanengo, S; Marchetto, F; Vignati, A [Istituto Nazionale di Fisica Nucleare (INFN), Division of Turin, TO (Italy); Donetti, M [Istituto Nazionale di Fisica Nucleare (INFN), Division of Turin, TO (Italy); Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, PV (Italy); Ciocca, M; Panizza, D [Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, PV (Italy)

    2015-06-15

    Purpose: The quality assurance (QA) procedure has to check the most relevant beam parameters to ensure the delivery of the correct dose to patients. Film dosimetry, which is commonly used for scanned ion beam QA, does not provide immediate results. The purpose of this work is to answer whether, for scanned ion beam therapy, film dosimetry can be replaced with the 2D MatriXX detector as a real-time tool. Methods: MatriXX, equipped with 32×32 parallel plate ion-chambers, is a commercial device intended for pre-treatment verification of conventional radiation therapy.The MatriXX, placed at the isocenter, and GAFCHROMIC films, positioned on the MatriXX entrance, were exposed to 131.44 MeV proton and 221.45 MeV/u Carbon-ion beams.The OmniPro-I’mRT software, applied for the data taking of MatriXX, gives the possibility of acquiring consecutive snapshots. Using the NI LabVIEW, the data from snapshots were logged as text files for further analysis. Radiochromic films were scanned with EPSON scanner and analyzed using software programs developed in-house for comparative purposes. Results: The field dose uniformity, flatness, beam position and beam width were investigated. The field flatness for the region covering 6×6 cm{sup 2} square field was found to be better than 2%. The relative standard deviations, expected to be constant over 2×2, 4×4 and 6×6 pixels from MatriXX measurement gives a uniformity of 1.5% in good agreement with the film results.The beam center position is determined with a resolution better than 200 µm for Carbon and less than 100 µm for proton beam.The FWHM determination for a beam wider than 10 mm is satisfactory, whilst for smaller beams the determination is uncertain. Conclusion: Precise beam position and fast 2D dose distribution can be determined in real-time using MatriXX detector. The results show that MatriXX is quick and accurate enough to be used in charged-particle therapy QA.

  1. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once every month. A regular read-out is indispensable to ensure periodic monitoring of your personal dose. You must read your dosimeter even if you have not visited the controlled areas. Film badges are no longer valid at CERN and holders of film badges are no longer allowed to enter the controlled radiation areas or work with a source. Dosimetry Service Tel. 72155 http://cern.ch/rp-dosimetry

  2. Dosimetry for SIRT; Dosimetrie bei der SIRT

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S.P. [Universitatesklinikum Essen (Germany). Klinik fuer Nuklearmedizin

    2011-09-15

    Dosimetry is only one aspect of treatment planning for 'Selective internal radiotherapy' (SIRT) or 'transarterial radioembolization' (TARE) with Yttrium-90 Microspheres is an emerging palliative therapy for malignant hepatoma. Dosimetric considerations, together with interventional, oncological and hepatological aspects need to be considered for optimal treatment stratification. The product-specific dosimetric calculations for 2 commercially available microsphere products are compared and set in relation to the average doses to liver and tumor. Ostensible discrepancies between the dose-response of Y-90-microspheres and external beam radiation therapy are discussed in the context of radiobiological concepts. (orig.)

  3. Feasibility of portal dosimetry for flattening filter-free radiotherapy.

    Science.gov (United States)

    Chuter, Robert W; Rixham, Philip A; Weston, Steve J; Cosgrove, Vivian P

    2016-01-08

    The feasibility of using portal dosimetry (PD) to verify 6 MV flattening filter-free (FFF) IMRT treatments was investigated. An Elekta Synergy linear accelerator with an Agility collimator capable of delivering FFF beams and a standard iViewGT amorphous silicon (aSi) EPID panel (RID 1640 AL5P) at a fixed SSD of 160 cm were used. Dose rates for FFF beams are up to four times higher than for conventional flattened beams, meaning images taken at maximum FFF dose rate can saturate the EPID. A dose rate of 800 MU/min was found not to saturate the EPID for open fields. This dose rate was subsequently used to characterize the EPID for FFF portal dosimetry. A range of open and phantom fields were measured with both an ion chamber and the EPID, to allow comparison between the two. The measured data were then used to create a model within The Nederlands Kanker Instituut's (NKI's) portal dosimetry software. The model was verified using simple square fields with a range of field sizes and phantom thicknesses. These were compared to calculations performed with the Monaco treatment planning system (TPS) and isocentric ion chamber measurements. It was found that the results for the FFF verification were similar to those for flattened beams with testing on square fields, indicating a difference in dose between the TPS and portal dosimetry of approximately 1%. Two FFF IMRT plans (prostate and lung SABR) were delivered to a homogeneous phantom and showed an overall dose difference at isocenter of ~0.5% and good agreement between the TPS and PD dose distributions. The feasibility of using the NKI software without any modifications for high-dose-rate FFF beams and using a standard EPID detector has been investigated and some initial limitations highlighted.

  4. Quality control for X-ray dosimetry with Fricke dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne Lucia Bormann de [Centro Regional de Cincias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)]. E-mail: lsouza@cnen.gov.br; Austerlitz, C. [East Carolina University, NC (United States)]. E-mail: camposc@ecu.edu

    2007-07-01

    It is a well-established fact that the success of radiation therapy is dependent on the accurate dosimetry of the radiation beam used. This dosimetry must include equipment performance as well. A system for Fricke dosimetry was used for this purpose. The Fricke solution and a parallel ionization chamber (used for comparison) were irradiated with an X-ray beam from a Pantak X-ray equipment. The ionization chamber was positioned at a distance of 500 mm of the focal point, in the central axis of the X-ray field which is defined as 100x100 mm{sup 2} at the calibration distance. A plexiglas phantom appropriate to hold the polypropylene tube was used to irradiate the vials with the Fricke solution. The irradiated solutions were transferred directly from the polypropylene vials to 10 mm length cuvettes and the optical densities were measured in 304 nm using a Beckman Counter Model DU 640 spectrophotometer. Three institutions were visited to verify their procedures and two were in accordance with the lAEA recommended procedures for soft X-ray dosimetry. The results of the measurements performed in the institutions visited show that the Fricke dosimeter system developed can be used for quality control for soft X-ray equipment. (author)

  5. Design of measurement equipment for high power laser beam shapes

    DEFF Research Database (Denmark)

    Hansen, K. S.; Olsen, F. O.; Kristiansen, Morten;

    2013-01-01

    To analyse advanced high power beam patterns, a method, which is capable of analysing the intensity distribution in 3D is needed. Further a measuring of scattered light in the same system is preferred. This requires a high signal to noise ratio. Such a system can be realised by a CCD......-chip implemented in a camera system. Most available CCD-based systems do however suffer from a low maximum intensity threshold. Therefore attenuation is needed. This paper describes the construction of such a beam analysing system where beam patterns produced by single mode fiber laser on a diffractic optical...... element can be evaluated using a CCD based camera. The system is tested with various DOE’s for evaluation of efficiency and measurement of scattered light with success. Also tests with capturing beam caustics of focused laser beams from which beam parameters has been fitted and compared with measurements...

  6. Beam-Profile Instrumentation for a Beam-Halo Measurement Overall Description, Operation, and Beam Data

    CERN Document Server

    Gilpatrick, J D; Day, L; Kerstiens, D; Stettler, M; Valdiviez, R

    2001-01-01

    The halo experiment presently being conducted at the Low Energy Demonstration Accelerator (LEDA) at Los Alamos National Laboratory (LANL) has specific instruments that acquire horizontally and vertically projected particle-density beam distributions out to greater than 105:1 dynamic range. We measure the core of the distributions using traditional wire scanners, and the tails of the distribution using water-cooled graphite scraping devices. The wire scanner and halo scrapers are mounted on the same moving frame whose location is controlled with stepper motors. A sequence within the Experimental Physics and Industrial Control System (EPICS) software communicates with a National Instrument LabVIEW virtual instrument to control the movement and location of the scanner/scraper assembly. Secondary electrons from the wire scanner 33 μm carbon wire and protons impinging on the scraper are both detected with a lossy-integrator electronic circuit. Algorithms implemented within EPICS and in Research Systems Interactiv...

  7. Luminosity measurement and beam condition monitoring at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Zeuthen (Germany)

    2015-07-01

    The BRIL system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. In expectation of higher luminosity and denser proton bunch spacing during LHC Run II, many of the BRIL subsystems are being upgraded and others are being added to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) will deliver an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. Data from each of the subsystems will be collected and combined in the BRIL DAQ framework, which will publish it to CMS and LHC. The current status of installation and commissioning results for the BRIL subsystems are given.

  8. On the way to high dynamic range beam profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Egberts, Jan; Artikova, Sayyora [Max-Planck-Institut fuer Kernphysik (Germany); Welsch, Carsten [University of Liverpool (United Kingdom); Cockcroft Institute of Accelerator Science and Technology (United Kingdom)

    2009-07-01

    A thorough understanding of halo formation and its possible control is highly desirable for essentially all particle accelerators. Particles outside the beam core are not only lost for further experiments, they are also likely to hit the drift chamber and thereby activate the beam pipe, which makes work on the accelerator costly and time consuming. A well-established technique for transverse beam profile measurements is synchrotron radiation (SR) for high energy and high luminosity accelerators like the LHC or CTF3. At much lower beam energies, an alternative for transverse beam profile measurements based on the direct measurement of light is optical transition radiation (OTR) or the insertion of a luminescent screen. What applies for essentially all these light generation processes, is that the light intensity is over a wide range proportional to the particle density, which makes the optical analysis of such light an ideal tool for beam profile measurements. A particular challenge, however, is to distinguish the particles in the tail regions of the beam distribution from the much more intense beam core. In this contribution, we present results from laboratory measurements on two different devices that might form the technical base of a future beam halo monitor: the novel SpectraCam XDR camera system and a flexible masking technique based on a DMD micro mirror array.

  9. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700.

    Science.gov (United States)

    Gambarini, G; Magni, D; Regazzoni, V; Borroni, M; Carrara, M; Pignoli, E; Burian, J; Marek, M; Klupak, V; Viererbl, L

    2014-10-01

    Gamma dose and thermal neutron fluence in a phantom exposed to an epithermal neutron beam for boron neutron capture therapy (BNCT) can be measured by means of a single thermoluminescence dosemeter (TLD-700). The method exploits the shape of the glow curve (GC) and requires the gamma-calibration GC (to obtain gamma dose) and the thermal-neutron-calibration GC (to obtain neutron fluence). The method is applicable for BNCT dosimetry in case of epithermal neutron beams from a reactor because, in most irradiation configurations, thermal neutrons give a not negligible contribution to the TLD-700 GC. The thermal neutron calibration is not simple, because of the impossibility of having thermal neutron fields without gamma contamination, but a calibration method is here proposed, strictly bound to the method itself of dose separation.

  10. Beam diffusion measurements using collimator scans in the LHC

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giuliov; Valishev, Alexander

    2013-01-01

    The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  11. Theoretical analysis of some problems in the measurement of beam divergence angle for EAST neutral beam injector

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Beam angular divergence is one of the indicators to evaluate the beam quality. Operating parameters of the beam extraction system could be adjusted to gain better beam quality following the measurement results, which will be helpful not only to study the transmission characteristics of the beam and the power distribution on the heat load components, but also to understand the real-time working condition of the ion source and beam extraction system. This study includes: (1) the theoretical analysis of beam extraction pulse duration for measurement of beam angular divergence; (2) the theoretical analysis of beam intensity distribution during beam transmission for Experimental Advanced Superconducting Tokomak (EAST) neutral beam injector. Those theoretical analyses could point the way to the measurement of beam divergence angle for EAST neutral beam injector.

  12. Measurements and simulations of focused beam for orthovoltage therapy

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Hassan, E-mail: Hassan.Abbas@Yale.Edu [Department of Therapeutic Radiology, Yale University School of Medicine, Yale-New Haven Hospital, New Haven, 344 Lane Street Hamden, Connecticut 06514 (United States); Mahato, Dip N., E-mail: dip.n.mahato@intel.com [Intel Corporation, Mail-Stop RA3-410, 2501 NW 229th Avenue, Hillsboro, Oregon 97124 (United States); Satti, Jahangir, E-mail: sattij@mail.amc.edu [Department of Radiation Oncology, Albany Medical Center, 43 New Scotland Avenue, Albany, New York 12208 (United States); MacDonald, C. A., E-mail: c.macdonald@albany.edu [Department of Physics, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222 (United States)

    2014-04-15

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface.

  13. Measuring the electron beam energy in a magnetic bunch compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-09-15

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 {mu}m precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  14. Contribution to the planning and dosimetry of photon beams applied to radiosurgery and stereotactic radiotherapy; Contribuicao ao planejamento e a dosimetria de feixes de fotons aplicados a radiocirurgia e a radioterapia estereotaxica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Walter Menezes

    2003-08-15

    radiosurgery. Measurements were also performed with thermoluminescent dosimeters in order to verify the degree of compliance between the doses calculated through the Radionics{sup TM} Planning System and the actual treatment dose. This was accomplished by using a Rando(R) anthropomorphic phantom. The results showed that the two doses agree within {+-} 2%. The influence of the presence of inhomogeneities within the irradiated volume, due to the presence of air or bone in the radiation path was assessed. The results showed that these inhomogeneities significantly affect both the dose distribution pattern and the beam profiles in the treatment volume. The results of this study show that the dosimetry of small diameter radiation beams is still challenging, due mainly to the limited resolution of available detectors and to the lack of lateral equilibrium in small diameter radiation beams. (author)

  15. Measurement of diagnostic neutral beam parameters on J-TEXT

    Science.gov (United States)

    Wang, J. R.; Cheng, Z. F.; Li, Z.; Li, Y.; Luo, J.; Zhang, X. L.; Zhuang, G.

    2016-11-01

    A Doppler frequency shift spectrum (DFSS) system composed of two spectrometers has been developed for the joint Texas experimental tokamak to measure diagnostic neutral beam parameters including the beam energy fractions, intensity distributions, and divergences. The beam energy fractions are derived from measurements of H-alpha (Hα) emission using collisional excitation cross sections. The beam intensity distributions are obtained using an 11-channel measurement with a reconstruction technique. The beam divergences are obtained from spectrum broadening and geometric calculations. The results of preliminary investigations indicate that the DFSS system works well and can be used to obtain all of these parameters simultaneously. According to the preliminary experiment, the one-third energy fraction has the largest proportion (about 45%) of the beam energy and the full energy fraction is about 10%. The beam diameter is about 8.1 cm at a distance of 2.04 m from the accelerator. The beam divergence angle is about 3.3°. The current beam parameters are insufficient for charge-exchange measurements.

  16. Beam Parameters Measurement Based On Tv Methods

    CERN Document Server

    Klimenkov, E; Milichenko, Yu; Voevodin, V

    2004-01-01

    The paper describes hardware and software used to control TV-cameras and to process TV-images of luminescent screens placed along the beam transfer lines. Industrial devices manually control the movements and focusing of the cameras. All devices are linked to PC via PCI interfaces with homemade drivers for Linux OS and provide both selection of camera and digitizing of video signal synchronized with beam. One part of software provides means to set initial parameters using PC consol. Thus an operator can choose contrast, brightness, some number of significant points on TV-image to calculate beam position and its size. Second part supports remote TV controls and data processing from Control Rooms of U-70 complex using set initial parameters. First experience and results of the method realization are discussed.

  17. Diagnostic radiology dosimetry: status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  18. Monte Carlo simulations to replace film dosimetry in IMRT verification

    OpenAIRE

    Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig

    2011-01-01

    Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assu...

  19. Measuring hydrogen peroxide due to water radiolysis using a modified horseradish peroxidase based biosensor as an alternative dosimetry method.

    Science.gov (United States)

    Tavakoli, Hassan; Baghbanan, Amin Azam

    2015-08-01

    H2O2 generated during water radiolysis was measured electrochemically as an alternative dosimetry method. A biosensor was fabricated by immobilising modified horseradish peroxidase (HRP) on a glassy carbon electrode (GCE) followed by evaluation of its analytical parameters. Anthraquinone 2-carboxylic acid was used to modify HRP. To assess sensor performance, phosphate buffer solutions were irradiated with 0.510 Gy of gamma ray emitted from (60)Co. The results showed that this sensor can detect low quantities of hydrogen peroxide in water radiolysis. Sensitivity, detection limit and linear range of the biosensor were 260 nA/Gy, 0.392 Gy and 0.5-5 Gy, respectively. Long term stability studies showed that sensor responses were stable for at least a month. The cathodic peak current, as biosensor response, subsequently decreased to 20% of its initial value.

  20. Dosimetry characteristics of multi-leaf collimator field for TrueBeam%TrueBeam加速器多叶准直器射野剂量学特性

    Institute of Scientific and Technical Information of China (English)

    熊绮丽; 石勇; 徐刚; 顾强

    2015-01-01

    医用电子直线加速器未均整射束的剂量学特征和优势早已被证明,但是随着三维适形和调强放射治疗技术的发展,临床治疗的射野(Field)主要是由多叶准直器射野形成,而有关未均整射束的多叶准直器射野剂量特征的研究很少。本文研究TrueBeam加速器6 MV-X未均整射束的多叶准直器射野剂量特征。利用蒙特卡罗(Monte Carlo, MC)模拟和三维剂量扫描系统临床测量,对比和分析射野离轴比曲线剂量特征。结果表明:蒙特卡罗模拟和临床测量未均整射束下多叶准直器叶片到位精度、X和Y方向的漏射量、射野半影、叶片间凹凸结构对射野剂量的影响大体一致。多叶准直器形成不规则射野的几何学、蒙特卡罗模拟和临床测量的不符合度(MC 或临床测量50%等剂量曲线的面积与射野几何面积的差值相对于射野实际面积的百分数)分别为3.629%、3.2626%和2.0394%。圆形射野、具有凹凸边界射野几何学和蒙特卡罗模拟的不符合度分别为0.8662%、0.8794%和0.2314%、0.8170%。为未均整射束条件下多叶准直器的临床合理使用提供可靠的依据。%Background: The dose distribution of the Flatting-Filter-Free (FFF) of medical linear accelerator (LINACS) has been proved to have its advantages in clinical use. With the recent development of three-dimensional conformal radiotherapy and intensity-modulated radiation therapy, field of clinical treatment is mainly achieved by using Multi-leaf Collimator (MLC). Because of the rare researches on dosimetry characteristics of MLC field under FFF beam, it is interesting to note the importance of its further development.Purpose:For the TureBeam accelerator of 6 MV-X, the dose characteristics of the MLC are studied in the presence of the FFF beam.Methods:The off-axis dose curve characteristics are analyzed by using the Monte Carlo (MC) method, combined with three-dimensional dose scanning data

  1. Generalized EPID calibration for in vivo transit dosimetry.

    Science.gov (United States)

    Fidanzio, Andrea; Cilla, Savino; Greco, Francesca; Gargiulo, Laura; Azario, Luigi; Sabatino, Domenico; Piermattei, Angelo

    2011-01-01

    Many researchers are studying new in vivo dosimetry methods based on the use of Elelctronic portal imaging devices (EPIDs) that are simple and efficient in their daily use. However the need of time consuming implementation measurements with solid water phantoms for the in vivo dosimetry implementation can discourage someone in their use. In this paper a procedure has been proposed to calibrate aSi EPIDs for in vivo transit dosimetry. The dosimetric equivalence of three aSi Varian EPIDs has been investigated in terms of signal reproducibility and long term stability, signal linearity with MU and dose per pulse and signal dependence on the field dimensions. The signal reproducibility was within ± 0.5% (2SD), while the long term signal stability has been maintained well within ± 2%. The signal linearity with the monitor units (MU) was within ± 2% and within ± 0.5% for the EPIDs controlled by the IAS 2, and IAS 3 respectively. In particular it was verified that the correction factor for the signal linearity with the monitor units, k(lin), is independent of the beam quality, and the dose per pulse absorbed by the EPID. For 6, 10 and 15 MV photon beams, a generalized set of correlation functions F(TPR,w,L) and empirical factors f(TPR,d,L) as a function of the Tissue Phantom Ratio (TPR), the phantom thickness, w, the square field side, L, and the distance, d, between the phantom mid-plane and the isocentre were determined to reconstruct the isocenter dose. The tolerance levels of the present in vivo dosimetry method ranged between ± 5% and ± 6% depending on the tumor body location. In conclusion, the procedure proposed, that use generalized correlation functions, reduces the effort for the in vivo dosimetry method implementation for those photon beams with TPR within ± 0.3% as respect those here used.

  2. Electron Beam Lifetime in SPEAR3: Measurement and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, J.; Huang, X.; Lee, M.; Lui, P.; /SLAC; Sayyar-Rodsari, B.; /Pavilon Tech., Austin

    2007-12-19

    In this paper we report on electron beam lifetime measurements as a function of scraper position, RF voltage and bunch fill pattern in SPEAR3. We then outline development of an empirical, macroscopic model using the beam-loss rate equation. By identifying the dependence of loss coefficients on accelerator and beam parameters, a numerically-integrating simulator can be constructed to compute beam decay with time. In a companion paper, the simulator is used to train a parametric, non-linear dynamics model for the system [1].

  3. Measuring the Orbital Angular Momentum of Electron Beams

    CERN Document Server

    Guzzinati, Giulio; Béché, Armand; Verbeeck, Jo

    2014-01-01

    The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, diffraction from a knife-edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.

  4. Laser Beam Caustic Measurement with Focal Spot Analyser

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Gong, Hui; Bagger, Claus

    2005-01-01

    In industrial applications of high power CO2-lasers the caustic characteristics of the laser beam have great effects on the performance of the lasers. A welldefined high intense focused spot is essential for reliable production results. This paper presents a focal spot analyser that is developed...... for measuring the beam profiles of focused high power CO2-lasers....

  5. Compact Measurement Station for Low Energy Proton Beams

    CERN Document Server

    Yildiz, H; Oz, S; Yasatekin, B; Turemen, G; Ogur, S; Sunar, E; Aydin, Y A; Dimov, V A; Unel, G; Alacakir, A

    2016-01-01

    A compact, remote controlled, cost efficient diagnostic station has been developed to measure the charge, the profile and the emittance for low energy proton beams. It has been installed and tested in the proton beam line of the Project Prometheus at SANAEM of the Turkish Atomic Energy Authority.

  6. In vivo dosimetry with silicon diodes in total body irradiation

    Science.gov (United States)

    Oliveira, F. F.; Amaral, L. L.; Costa, A. M.; Netto, T. G.

    2014-02-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments.

  7. Beam Loss Patterns at the LHC Collimators Measurements & Simulations

    CERN Document Server

    Böhlen, Till Tobias

    2008-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) detects particle losses of circulating beams and initiates an emergency extraction of the beam in case that the BLM thresholds are exceeded. This protection is required as energy deposition in the accelerator equipment due to secondary shower particles can reach critical levels; causing damage to the beam-line components and quenches of superconducting magnets. Robust and movable beam line elements, so-called collimators, are the aperture limitations of the LHC. Consequently, they are exposed to the excess of lost beam particles and their showers. Proton loss patterns at LHC collimators have to be determined to interpret the signal of the BLM detectors and to set adequate BLM thresholds for the protection of collimators and other equipment in case of unacceptably increased loss rates. The first part of this work investigates the agreement of BLM detector measurements with simulations for an LHC-like collimation setup. The setup consists ...

  8. Beta Beams for Precision Measurements of Neutrino Oscillation Parameters

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Damjanovic, S; Payet, J; Chancé, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, V; Gramegna, F; Marchi, T; Collazuol, G; Mezzetto, M; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Burt, G; Dexter, A; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Moro, R; De Rosa, G; Palladino, V

    2012-01-01

    Neutrino oscillations have implications for the Standard Model of particle physics. The CERN Beta Beam has outstanding capabilities to contribute to precision measurements of the parameters governing neutrino oscillations. The FP7 collaboration EUROnu (2008-2012) is a design study that will review three facilities (Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make decisions on future European neutrino oscillation facilities. ”Beta Beams” produce collimated pure electron (anti)neutrinos by accelerating beta active ions to high energies and having them decay in a storage ring. Using existing machines and infrastructure is an advantage for the cost evaluation; however, this choice is also constraining the Beta Beams. Recent work to make the Beta Beam facility a solid option will be described: production of Beta Beam isotopes, the 60 GHz pulsed ECR source development, integratio...

  9. TU-F-201-04: Applications in Small Fields and Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Das, I. [Indiana University School of Medicine (United States)

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  10. Beam diagnostics measurements at 3 MeV of the LINAC4 H- beam at CERN

    CERN Document Server

    Zocca, F; Duraffourg, M; Focker, G J; Gerard, D; Kolad, B; Lenardon, F; Ludwig, M; Raich, U; Roncarolo, F; Sordet, M; Tan, J; Tassan-Viol, J; Vuitton, C; Feshenko, A

    2014-01-01

    As part of the CERN LHC injector chain upgrade, LINAC4 [1, 2] will accelerate H- ions to 160 MeV, replacing the old 50 MeV proton linac. The ion source, the Low Energy Beam Transfer (LEBT) line, the 3 MeV Radio Frequency Quadrupole and the Medium Energy Beam Transfer (MEBT) line hosting a chopper, have been commissioned in the LINAC4 tunnel. Diagnostic devices are installed in the LEBT and MEBT line and in a movable diagnostics test bench which is temporarily added to the MEBT exit. The paper gives an overview of all the instruments used, including beam current transformers, beam position monitors, wire scanners and wire grids for transverse profile measurements, a longitudinal bunch shape monitor and a slit-and-grid emittance meter. The instrumentation performance is discussed and the measurement results that allowed characterizing the 3 MeV beam in the LINAC4 tunnel are summarized.

  11. Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams

    DEFF Research Database (Denmark)

    Aznar, M.C.; Andersen, C.E.; Bøtter-Jensen, L.;

    2004-01-01

    A new optical-fibre radiation dosimeter system, based on radioluminescence and optically stimulated luminescence from carbon-doped aluminium oxide, was developed and tested in clinical photon beams. This prototype offers several features, such as a small detector (1 x 1 x 2 mm), high sensitivity...

  12. Dosimetry of cosmic radiation in the troposphere based on the measurements at the summit of Mt. Fuji

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, H.; Yajima, K.; Yoshida, S. [National Insitute of Radiological Sciences, Chiba (Japan). Research Center for Radiation Protection

    2011-07-01

    Dose rate of cosmic-ray origin neutrons (abbreviated to ''cosmic neutrons'') at aviation altitude was estimated based on the measurements at Mt. Fuji. Cosmic neutrons were measured in a facility of the Mt. Fuji Weather Station located at the summit of Mt. Fuji, the highest mountain in Japan (3776m in altitude), in the summer of 2008 and 2009. The average of 1 cm ambient dose equivalent H*(10) for two measurements was verified by numerical model simulation and then used to empirically estimate the solar force field potential (FFP). The H*(10) rates at aviation altitude estimated from the measurements at Mt. Fuji were compared to those obtained in in-flight measurements onboard a civilian aircraft flying near Mt. Fuji at the time between the two measurements at the mountain. According to the results obtained, we expect that the empirical estimation based on the measurements at Mt. Fuji will work effectively for dosimetry of cosmic radiation in troposphere. (orig.)

  13. EURAMET.RI(I)-S7 comparison of alanine dosimetry systems for absorbed dose to water measurements in gamma- and x-radiation at radiotherapy levels

    Science.gov (United States)

    Garcia, Tristan; Anton, Mathias; Sharpe, Peter

    2012-01-01

    The National Physical Laboratory (NPL), the Physikalisch-Technische Bundesanstalt (PTB) and the Laboratoire National Henri Becquerel (LNE-LNHB) are involved in the European project 'External Beam Cancer Therapy', a project of the European Metrology Research Programme. Within this project, the electron paramagnetic resonance (EPR)/alanine dosimetric method has been chosen for performing measurements in small fields such as those used in IMRT (intensity modulated radiation therapy). In this context, these three National Metrology Institutes (NMI) wished to compare the result of their alanine dosimetric systems (detector, modus operandi etc) at radiotherapy dose levels to check their consistency. This EURAMET.RI(I)-S7 comparison has been performed with the support of the Bureau International des Poids et Mesures (BIPM) which collected and distributed the results as a neutral organization, to ensure the comparison was 'blind'. Irradiations have been made under reference conditions by each laboratory in a 60Co beam and in an accelerator beam (10 MV or 12 MV) in a water phantom of 30 cm × 30 cm × 30 cm in a square field of 10 cm × 10 cm at the reference depth. Irradiations have been performed at known values of absorbed dose to water (Dw) within 10% of nominal doses of 5 Gy and 10 Gy, i.e. between 4.5 Gy and 5.5 Gy and between 9 Gy and 11 Gy, respectively. Each participant read out their dosimeters and assessed the doses using their own protocol (calibration curve, positioning device etc) as this comparison aims at comparing the complete dosimetric process. The results demonstrate the effectiveness of the EPR/alanine dosimetry systems operated by National Metrology Institutes as a method of assuring therapy level doses with the accuracy required. The maximum deviation in the ratio of measured to applied dose is less than 1%. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key

  14. Production, Characterization, and Measurement of H(D) Beams on the ORNL Merged-Beams Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J. D. [University of Toledo, Toledo, OH; Kvale, Thomas Jay [University of Toledo, Toledo, OH; Strasser, S. M. [Albion College; Seely, D. G. [Albion College; Havener, Charles C [ORNL

    2009-01-01

    Total cross section measurements of electron capture processes are being studied for low-energy, Aq++H(D) collisions using the Ion-Atom Merged-Beams apparatus at the Multicharged Ion Research Facility (MIRF) at Oak Ridge National Laboratory (ORNL). On this apparatus, a modified Faraday cup detector is used to measure the intensity of the neutral beam. The conversion of the measured electrical current to the true neutral particle beam current is necessary to accurately determine the true cross section values. Inherent in this conversion process is the number of secondary electrons (gamma) emitted from the surface of the detector upon impact of an atom. The method employed to determine gamma and its role in the absolute electron capture measurements at ORNL-MIRF are presented. With a recent upgrade to the apparatus, the neutral beam H(D) production technique has been improved and is discussed in detail in this paper.

  15. Beam Optics Measurements Through Turn by Turn Beam Position Data in the SLS

    CERN Document Server

    Zisopoulos, P; Streun, A; Ziemann, v

    2013-01-01

    Refined Fourier analysis of turn-by-turn (TBT) transverse position data measurements can be used for determining several beam properties of a ring, such as transverse tunes, optics functions, phases, chromatic properties and coupling. In particular, the Numerical Analysis of Fundamental Frequencies (NAFF) algorithm is used to analyse TBT data from the Swiss Light Source (SLS) storage ring in order to estimate on and off-momentum beam characteristics. Of particular interest is the potential of using the full position information within one turn in order to measure beam optics properties.

  16. Beam Emittance Measurement for PLS-II Linac

    CERN Document Server

    Lee, Byung-Joon; Park, Chong do; Chunjarean, SomJai; Kim, Changbum

    2016-01-01

    The PLS-II has a 100 MeV pre-injector for the 3 GeV Linac. A thermionic gun produces electron charge of 200 pC with a bunch duration of 500 ps by a 250 ps triggering pulser. At the pre-injector, one of the most important beam parameters to identify the beam quality is a transverse emittance of electron bunches. Therefore we measure the beam emittance and twiss functions at 100 MeV in order to match the beam optics to beam transport line and go through it to the storage ring. To get the transverse emittance measurement, well-known technique, quadrupole scan, is used at the pre-injector. The emittance were 0.591 mm-mrad in horizontal and 0.774 mm-mrad in vertical direction.

  17. (Biological dosimetry)

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  18. Statistical differences and systematic effect on measurement procedure in thermoluminescent dosimetry of the Iodine-125 brachytherapy seed

    Energy Technology Data Exchange (ETDEWEB)

    Zeituni, Carlos A.; Moura, Eduardo S.; Rostelato, Maria Elisa C.M.; Manzoli, Jose E.; Moura, Joao Augusto; Feher, Anselmo, E-mail: czeituni@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil); Karam, Dib [Universidade de Sao Paulo (USP Leste), Sao Paulo, SP (Brazil). Escola de Artes, Ciencias e Humanidades

    2009-07-01

    In order to provide the dosimetry for Iodine-125 seed production in Brazil, Harshaw thermoluminescent dosimeters (TLD-100) will be used. Even if measurements with TLD-100 of the same batch of fabrication are performed, the response will not be the same. As a consequence, they must be measured one by one. These dosimeters are LiF type with a micro-cube (1 mm x 1 mm x 1 mm) shape. Irradiations were performed using Iodine-125 seeds to guarantee the same absorbed dose of 5 Gy in each dosimeter. It has been used a Solid Water Phantom with three concentrically circle with 20 mm, 50 mm and 70 mm diameters. The angle of positions used was 0 deg, 30 deg, 60 deg and 90 deg. Of course there are 2 positions in 0 deg and 90 deg and 4 positions in 30 deg and 60 deg. These complete procedures were carried out five times in order to compare the data and minimize the systematic error. The iodine-125 seed used in the experiment was take off in each measure and put again turning his position 180 deg to guarantee the systematic error was minimized. This paper presents also a little discussion about the statistical difference in the measurement and the calculation procedure to determine the systematic error in these measurements. (author)

  19. Comparison of vidar dosimetry advantage pro and epson perfection V700 scanner in densitometry of radiochomic EBT2 film in measurement of high dose gradient

    Science.gov (United States)

    Bura, W.; Tangboonduangjit, P.; Damrongkijudom, N.

    2016-03-01

    Nowadays the radiochromic film is widely used to obtain dose distribution in two dimensions with high spatial resolution, less energy dependence and near tissue equivalent. It can be a commissioning tool to verify high dose gradient of dose distribution for IMRT and VMAT techniques. However, the film scanner could affect the accuracy of dose distribution if lack of precaution. In this study, the comparison between Epson perfection V700 and Vidar Dosimetry Pro Advantage (RED) is evaluated in terms of the capability to verify the 2D dose distribution for conventional and VMAT techniques. The Gafchromic® EBT2 films were read from two types of scanners (Epson perfection V700 and Vidar Dosimetry Pro Advantage) for volumetric modulated radiation therapy (VMAT) dosimetry. The software for analyzing the results of Epson perfection V700 and Vidar Dosimetry Pro Advantage are SNC Patient software and Omnipro’ IMRT software, respectively. Comparisons between measured and calculated dose distributions are reported as %passing rate and the gamma index for tolerance parameters of 3% and 3mm. The study found that the %passing rate obtained from Vidar scanner and Epson V700 scanner compared with Eclipse treatment planning system is more than 98% with the criteria of (3%/3mm).

  20. Entrance dose measurements for in-vivo diode dosimetry: Comparison of correction factors for two types of commercial silicon diode detectors.

    Science.gov (United States)

    Zhu, X R

    2000-01-01

    Silicon diode dosimeters have been used routinely for in-vivo dosimetry. Despite their popularity, an appropriate implementation of an in-vivo dosimetry program using diode detectors remains a challenge for clinical physicists. One common approach is to relate the diode readout to the entrance dose, that is, dose to the reference depth of maximum dose such as d(max) for the 10x10 cm(2) field. Various correction factors are needed in order to properly infer the entrance dose from the diode readout, depending on field sizes, target-to-surface distances (TSD), and accessories (such as wedges and compensate filters). In some clinical practices, however, no correction factor is used. In this case, a diode-dosimeter-based in-vivo dosimetry program may not serve the purpose effectively; that is, to provide an overall check of the dosimetry procedure. In this paper, we provide a formula to relate the diode readout to the entrance dose. Correction factors for TSD, field size, and wedges used in this formula are also clearly defined. Two types of commercial diode detectors, ISORAD (n-type) and the newly available QED (p-type) (Sun Nuclear Corporation), are studied. We compared correction factors for TSDs, field sizes, and wedges. Our results are consistent with the theory of radiation damage of silicon diodes. Radiation damage has been shown to be more serious for n-type than for p-type detectors. In general, both types of diode dosimeters require correction factors depending on beam energy, TSD, field size, and wedge. The magnitudes of corrections for QED (p-type) diodes are smaller than ISORAD detectors.

  1. Measurements of Beam Ion Loss from the Compact Helical System

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan

    2010-02-03

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  2. Measurements of Terahertz Generation in a Metallic, Corrugated Beam Pipe

    CERN Document Server

    Bane, K L F; Fedurin, M; Kusche, K; Swinson, C; Xiang, D

    2016-01-01

    A method for producing narrow-band THz radiation proposes passing an ultra-relativistic beam through a metallic pipe with small periodic corrugations. We present results of a measurement of such an arrangement at Brookhaven's Accelerator Test Facility (ATF). Our pipe was copper and was 5 cm long; the aperture was cylindrically symmetric, with a 1 mm (radius) bore and a corrugation depth (peak-to-peak) of 60 um. In the experiment we measured both the effect on the beam of the structure wakefield and the spectral properties of the radiation excited by the beam. We began by injecting a relatively long beam compared to the wavelength of the radiation to excite the structure, and then used a downstream spectrometer to infer the radiation wavelength. This was followed by injecting a shorter bunch, and then using an interferometer (also downstream of the corrugated pipe) to measure the spectrum of the induced THz radiation.

  3. Dosimetry and microdosimetry using LET spectrometer based on the track-etch detector: radiotherapy Bremsstrahlung beam, onboard aircraft radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Jadrnickova, I. [Dept. of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 180 86 Prague 8 (Czech Republic); Dept. of Dosimetry and Application of Ionizing Radiation, Czech Technical University, Brehova 7, 115 19 Prague 1 (Czech Republic); Spurny, F. [Dept. of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 180 86 Prague 8 (Czech Republic)

    2006-07-01

    The spectrometer of linear energy transfer (Let) based on the chemically etched poly-allyl-diglycol-carbonate (P.A.D.C.) track-etch detector was developed several years ago in our institute. This Let spectrometer enables determining Let of particles approximately from 10 to 700 keV/{mu}m. From the Let spectra, dose characteristics can be calculated. The contribution presents the Let spectra and other dosimetric characteristics obtained onboard a commercial aircraft during more than 6 months long exposure and in the 18 MV radiotherapy Bremsstrahlung beam. (authors)

  4. Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements

    CERN Document Server

    Rihl, Mariana; Baglin, Vincent; Barschel, Colin; Bay, Aurelio; Blanc, Frederic; Bravin, Enrico; Bregliozzi, Giuseppe; Chritin, Nicolas; Dehning, Bernd; Ferro-Luzzi, Massimiliano; Gaspar, Clara; Gianì, Sebastiana; Giovannozzi, Massimo; Greim, Roman; Haefeli, Guido; Hopchev, Plamen; Jacobsson, Richard; Jensen, Lars; Jones, Owain Rhodri; Jurado, Nicolas; Kain, Verena; Karpinski, Waclaw; Kirn, Thomas; Kuhn, Maria; Luthi, Berengere; Magagnin, Paolo; Matev, Rosen; Nakada, Tatsuya; Neufeld, Niko; Panman, Jaap; Rakotomiaramanana, Barinjaka; Salustino Guimaraes, Valdir; Salvant, Benoit; Schael, Stefan; Schneider, Olivier; Schwering, Georg; Tobin, Mark; Veness, Raymond; Veyrat, Quentin; Vlachos, Sotiris; Wlochal, Michael; Xu, Zhirui; von Dratzig, Arndt

    2016-01-01

    Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.

  5. Laser alignment measurement model with double beam

    Science.gov (United States)

    Mo, Changtao; Zhang, Lili; Hou, Xianglin; Wang, Ming; Lv, Jia; Du, Xin; He, Ping

    2012-10-01

    Double LD-Double PSD schedule.employ a symmetric structure and there are a laser and a PSD receiver on each axis. The Double LD-Double PSD is used, and the rectangular coordinate system is set up by use of the relationship of arbitrary two points coordinates, and then the parameter formula is deduced by the knowledge of solid geometry. Using the data acquisition system and the data processing model of laser alignment meter with double laser beam and two detector , basing on the installation parameter of the computer, we can have the state parameter between the two shafts by more complicated calculation and correction. The correcting data of the four under chassis of the adjusted apparatus moving on the level and the vertical plane can be calculated using the computer. This will instruct us to move the apparatus to align the shafts.

  6. MO-D-BRD-02: In Memoriam of Bengt Bjarngard: SBRT II: Small Field Dosimetry - TG155

    Energy Technology Data Exchange (ETDEWEB)

    Das, I [Indiana University- School of Medicine, Indianapolis, IN (United States); Reft, C [University Chicago, Chicago, IL (United States)

    2014-06-15

    Specialized radiation treatment such as SRS/SRT. SBRT, IMRT, VMAT, Tomotherapy, CyberKnife and Gamma Knife use small fields or combination of small fields where dosimetry is challenging and uncertain due to non-equilibrium conditions such as longitudinal and lateral disequilibrium. Additionally the primary photon fluence is greatly affected by the obstruction of the source size by the jaws creating a large dose gradient across the field. Electronic equilibrium is a phenomenon associated with the range of secondary particles which depend on the beam energy, photon spectrum and the composition of the medium. Additionally, the finite size of detectors creates volume averaging and fluence perturbations especially in small fields. The IAEA/AAPM has provided a frame work for non-compliant reference dosimetry in small fields1. The AAPM TG-1552 has adopted this frame work to provide guidelines in relative dosimetry. This course provides the insight of TG-155 that defines small field, provides recommendations for suitable detectors and associated correction factors to convert reading to dose. Recommendations of a good working practice for relative dosimetry measurements (PDD, TMR, output factor, etc.) and dose calculations based on the new formulation is are elaborated. It also discusses beam modeling and dose calculations as a critical step in clinical utilization of small field radiotherapy. Small errors in beam data, approximations in dose algorithms, or misaligned of detectors and field settings can propagate into large errors in planned and delivered dose. The modeling and treatment planning aspects of small field dosimetry are reviewed with emphasis on the most critical parts for ensuring accurate and safe radiation therapy. Discussion on k(fmsr, fclin) for commercially available detectors are also provided.1 P. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjall, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich and S. Vatnitsky, “A new

  7. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  8. Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, Malcolm, E-mail: malcolm.mcewen@nrc-cnrc.gc.ca [National Research Council, 1200 Montreal Road, Ottawa, Ontario (Canada); DeWerd, Larry [University of Wisconsin, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Ibbott, Geoffrey [Department of Radiation Physics, M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Followill, David [IROC Houston QA Center, Radiological Physics Center, 8060 El Rio Street, Houston, Texas 77054 (United States); Rogers, David W. O. [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario (Canada); Seltzer, Stephen [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Seuntjens, Jan [Medical Physics Unit, McGill University, 1650 Cedar Avenue, Montreal, Québec (Canada)

    2014-04-15

    An addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water in megavoltage photon beams is presented. This addendum continues the procedure laid out in TG-51 but new k{sub Q} data for photon beams, based on Monte Carlo simulations, are presented and recommendations are given to improve the accuracy and consistency of the protocol's implementation. The components of the uncertainty budget in determining absorbed dose to water at the reference point are introduced and the magnitude of each component discussed. Finally, the consistency of experimental determination of N{sub D,w} coefficients is discussed. It is expected that the implementation of this addendum will be straightforward, assuming that the user is already familiar with TG-51. The changes introduced by this report are generally minor, although new recommendations could result in procedural changes for individual users. It is expected that the effort on the medical physicist's part to implement this addendum will not be significant and could be done as part of the annual linac calibration.

  9. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields

    DEFF Research Database (Denmark)

    Ploquin, N.; Kertzscher, Gustavo; Vandervoort, E.

    2015-01-01

    for the RL detector response for the 5, 7.5 and 10 mm collimators in order to correct for the detector geometry and increased photoelectric cross section of Al2O3:C relative to water. For comparison, measurements were also carried out using a micro MOSFET, PTW60012 diode and GAFCHROMIC® film (EBT and EBT2......). Uncorrected (Sc,p)fclindet, were obtained by taking the ratio of the detector response for each collimator to that for the 60 mm diameter reference field. Published Monte Carlo calculated correction factors were applied to the RADPOS, microMOSFET and diode detector measurements to yield corrected field...... factors, Ωfclin,fmsrQclin,Qmsrfollowing the terminology of a recent formalism introduced for small and composite field relative dosimetry. With corrections, the RL measured Ωfclin,fmsrQclin,Qmsr were 0.656 ± 0.002, 0.815 ± 0.002 and 0.865 ± 0.003 for the 5, 7.5 and 10 mm collimators, respectively...

  10. Measurement and simulation of the TRR BNCT beam parameters

    Science.gov (United States)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad

    2016-09-01

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  11. Measurement and simulation of the TRR BNCT beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bavarnegin, Elham [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Sadremomtaz, Alireza [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Khalafi, Hossein [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Kasesaz, Yaser, E-mail: ykasesaz@aeoi.org.ir [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2016-09-11

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  12. Reference dosimetry at the Australian Synchrotron's imaging and medical beamline using free-air ionization chamber measurements and theoretical predictions of air kerma rate and half value layer

    Energy Technology Data Exchange (ETDEWEB)

    Crosbie, Jeffrey C.; Rogers, Peter A. W. [Department of Obstetrics and Gynaecology, University of Melbourne, The Royal Women' s Hospital, Parkville, Victoria 3052 (Australia); Stevenson, Andrew W. [CSIRO Materials Science and Engineering, Clayton, Victoria 3169 (Australia); Hall, Christopher J. [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168 (Australia); Lye, Jessica E. [Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085 (Australia); Nordstroem, Terese [KTH Royal Institute of Technology, Stockholm SE-100 44 (Sweden); Midgley, Stewart M. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Lewis, Robert A. [Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria 3800 (Australia)

    2013-06-15

    Purpose: Novel, preclinical radiotherapy modalities are being developed at synchrotrons around the world, most notably stereotactic synchrotron radiation therapy and microbeam radiotherapy at the European Synchrotron Radiation Facility in Grenoble, France. The imaging and medical beamline (IMBL) at the Australian Synchrotron has recently become available for preclinical radiotherapy and imaging research with clinical trials, a distinct possibility in the coming years. The aim of this present study was to accurately characterize the synchrotron-generated x-ray beam for the purposes of air kerma-based absolute dosimetry. Methods: The authors used a theoretical model of the energy spectrum from the wiggler source and validated this model by comparing the transmission through copper absorbers (0.1-3.0 mm) against real measurements conducted at the beamline. The authors used a low energy free air ionization chamber (LEFAC) from the Australian Radiation Protection and Nuclear Safety Agency and a commercially available free air chamber (ADC-105) for the measurements. The dimensions of these two chambers are different from one another requiring careful consideration of correction factors. Results: Measured and calculated half value layer (HVL) and air kerma rates differed by less than 3% for the LEFAC when the ion chamber readings were corrected for electron energy loss and ion recombination. The agreement between measured and predicted air kerma rates was less satisfactory for the ADC-105 chamber, however. The LEFAC and ADC measurements produced a first half value layer of 0.405 {+-} 0.015 and 0.412 {+-} 0.016 mm Cu, respectively, compared to the theoretical prediction of 0.427 {+-} 0.012 mm Cu. The theoretical model based upon a spectrum calculator derived a mean beam energy of 61.4 keV with a first half value layer of approximately 30 mm in water. Conclusions: The authors showed in this study their ability to verify the predicted air kerma rate and x-ray attenuation

  13. Upgrade of Beam Energy Measurement System at BEPC-II

    CERN Document Server

    Zhang, Jian-Yong; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M N; Krasnov, A A; Muchnoi, N Yu; Pyata, E E; Mamoshkina, E V; Harris, F A

    2015-01-01

    The beam energy measurement system is of great importance and profit for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. Many advanced techniques and precise instruments are employed to realize the highly accurate measurement of positron/electron beam energy. During five year's running period, in order to meet the requirement of data taking and improve the capacity of measurement itself, the upgradation of system is continued, which involve the component reformation of laser and optics subsystem, replacement of view-port of the laser to vacuum insertion subsystem, the purchase of electric cooling system for high purity germanium detector, and the improvement of data acquisition and processing subsystem. The upgrading of system guarantees the smooth and efficient measuring of beam energy at BEPC-II and accommodates the accurate offline energy values for further physics analysis at BES-III.

  14. Turbulence measurement with a two-beam nacelle lidar

    OpenAIRE

    Wagner, Rozenn; Sathe, Ameya; Mioullet, A.; Courtney, Michael

    2013-01-01

    The analysis of the turbulence intensity measurement is performed for a lidar measuring horizontally with two beams. First the turbulence intensity measured by such a system was evaluated theoretically. The Mann model of turbulence was used to evaluate the true value of the turbulence intensity of the wind speed and the main effects of the lidar measurement principles on turbulence intensity measurement were modeled:- A lidar senses the wind speed over the probe volume acting as a low pass-fi...

  15. Effective shielding to measure beam current from an ion source

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, H., E-mail: bayle@bergoz.com [Bergoz Instrumentation, Saint-Genis-Pouilly (France); Delferrière, O.; Gobin, R.; Harrault, F.; Marroncle, J.; Senée, F.; Simon, C.; Tuske, O. [CEA, Saclay (France)

    2014-02-15

    To avoid saturation, beam current transformers must be shielded from solenoid, quad, and RFQ high stray fields. Good understanding of field distribution, shielding materials, and techniques is required. Space availability imposes compact shields along the beam pipe. This paper describes compact effective concatenated magnetic shields for IFMIF-EVEDA LIPAc LEBT and MEBT and for FAIR Proton Linac injector. They protect the ACCT Current Transformers beyond 37 mT radial external fields. Measurements made at Saclay on the SILHI source are presented.

  16. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter every month at least once and preferably during the first week. A regular read-out is indispensable in order to ensure a periodic monitoring of the personal dose. You should read your dosimeter even if you have not visited the controlled areas. If you still have the old dosimeter (film badge), please send it immediately for evaluation to us (Bdg 24 E-011). After January 2005 there will be no developing process for the old film system. Information for Contractors: Please remember also to bring the form ‘Confirm Reception of a CERN Dosimeter' signed with ‘Feuille d'enregistrement du CERN'. Without these forms the dosimeter cannot be assigned. Thank you for your cooperation. Dosimetry Service Tel 767 2155 http://cern.ch/rp-dosimetry

  17. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cardin, A; Avery, S; Ding, X; Kassaee, A; Lin, L [University of Pennsylvania, Philadelphia, PA (United States); Maryanski, M [MGS Research, Inc., Madison, CT (United States)

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulated proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a

  18. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg

    fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risø DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference......This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic...

  19. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: -> Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. -> Deconvolution of the luminosity spectrum distortion due to the ISR emission. -> Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  20. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: - Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. - Deconvolution of the luminosity spectrum distortion due to the ISR emission. - Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  1. Potential errors in relative dose measurements in kilovoltage photon beams due to polarity effects in plane-parallel ionisation chambers

    Science.gov (United States)

    Dowdell, S.; Tyler, M.; McNamara, J.; Sloan, K.; Ceylan, A.; Rinks, A.

    2016-12-01

    Plane-parallel ionisation chambers are regularly used to conduct relative dosimetry measurements for therapeutic kilovoltage beams during commissioning and routine quality assurance. This paper presents the first quantification of the polarity effect in kilovoltage photon beams for two types of commercially available plane-parallel ionisation chambers used for such measurements. Measurements were performed at various depths along the central axis in a solid water phantom and for different field sizes at 2 cm depth to determine the polarity effect for PTW Advanced Markus and Roos ionisation chambers (PTW-Freiburg, Germany). Data was acquired for kilovoltage beams between 100 kVp (half-value layer (HVL)  =  2.88 mm Al) and 250 kVp (HVL  =  2.12 mm Cu) and field sizes of 3-15 cm diameter for 30 cm focus-source distance (FSD) and 4  ×  4 cm2-20  ×  20 cm2 for 50 cm FSD. Substantial polarity effects, up to 9.6%, were observed for the Advanced Markus chamber compared to a maximum 0.5% for the Roos chamber. The magnitude of the polarity effect was observed to increase with field size and beam energy but was consistent with depth. The polarity effect is directly influenced by chamber design, with potentially large polarity effects for some plane-parallel ionisation chambers. Depending on the specific chamber used, polarity corrections may be required for output factor measurements of kilovoltage photon beams. Failure to account for polarity effects could lead to an incorrect dose being delivered to the patient.

  2. Potential errors in relative dose measurements in kilovoltage photon beams due to polarity effects in plane-parallel ionisation chambers.

    Science.gov (United States)

    Dowdell, S; Tyler, M; McNamara, J; Sloan, K; Ceylan, A; Rinks, A

    2016-11-15

    Plane-parallel ionisation chambers are regularly used to conduct relative dosimetry measurements for therapeutic kilovoltage beams during commissioning and routine quality assurance. This paper presents the first quantification of the polarity effect in kilovoltage photon beams for two types of commercially available plane-parallel ionisation chambers used for such measurements. Measurements were performed at various depths along the central axis in a solid water phantom and for different field sizes at 2 cm depth to determine the polarity effect for PTW Advanced Markus and Roos ionisation chambers (PTW-Freiburg, Germany). Data was acquired for kilovoltage beams between 100 kVp (half-value layer (HVL)  =  2.88 mm Al) and 250 kVp (HVL  =  2.12 mm Cu) and field sizes of 3-15 cm diameter for 30 cm focus-source distance (FSD) and 4  ×  4 cm(2)-20  ×  20 cm(2) for 50 cm FSD. Substantial polarity effects, up to 9.6%, were observed for the Advanced Markus chamber compared to a maximum 0.5% for the Roos chamber. The magnitude of the polarity effect was observed to increase with field size and beam energy but was consistent with depth. The polarity effect is directly influenced by chamber design, with potentially large polarity effects for some plane-parallel ionisation chambers. Depending on the specific chamber used, polarity corrections may be required for output factor measurements of kilovoltage photon beams. Failure to account for polarity effects could lead to an incorrect dose being delivered to the patient.

  3. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source.

    Science.gov (United States)

    Granton, Patrick V; Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-04-07

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light's spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  4. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source

    Science.gov (United States)

    Granton, Patrick V.; Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light’s spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  5. Application of a new dosimetry formalism to volumetric modulated arc therapy (VMAT).

    Science.gov (United States)

    Rosser, Karen E; Bedford, James L

    2009-12-07

    Volumetric modulated arc therapy (VMAT) offers a challenge to classical dosimetry protocols as the beams are dynamic in orientation and aperture shape and may include small apertures. The aim of this paper is to apply a formalism to VMAT beams that has recently been published by the International Atomic Energy Agency (IAEA) working party to improve the dosimetry for small and non-standard fields. We investigated three possible fields and assessed their suitability as plan class specific reference (pcsr) fields. The factors in the new dosimetry formalism were investigated: the conversion of dose to water from the conventional reference field to the pcsr and then from the pcsr to a treatment plan, using a PTW semiflex chamber, two Farmer chambers and an electron diode. Finally, the dose was compared for Alanine, the new formalism and calculated using Pinnacle(3) (Philips Radiation Oncology Systems) for two typical clinical VMAT beams. Correction factors between the reference field and the pcsr determined with Alanine range from 0.1% to 2.3% for the three pcsr fields. Dose to water measured using the calibrated ionization chambers is less than 2% different to the dose calculated by Pinnacle(3). VMAT planning and delivery procedures have been successfully implemented and a new dosimetry protocol has been investigated for this new technique. Calibration factors for pcsr fields are found to be up to 2.3% different when using the new formalism, compared to using a standard dosimetry protocol. Using the calibration factors determined in the pcsr fields, the ionization chambers and electron diode agree to within 1% with Alanine dosimetry for two clinical VMAT plans. Good agreements between calculations and measurements are found for these two plans when the new formalism is used.

  6. SU-E-T-645: Qualification of a 2D Ionization Chamber Array for Beam Steering and Profile Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Gao, S [MD Anderson Cancer Ctr., Houston, TX (United States); Balter, P [UT MD Anderson Cancer Center, Houston, TX (United States); Rose, M [Sun Nuclear Inc., Melbourne, FL (Australia); Simon, W [Sun Nuclear Corp, Melbourne, FL (Australia)

    2015-06-15

    Purpose: Establish a procedure for beam steering and profile measurement using a 2D ionization chamber array and show equivalence to a water scanning system. Methods: Multiple photon beams (30×30cm{sup 2} field) and electron beams (25×25cm{sup 2} cone) were steered in the radial and transverse directions using Sun Nuclear’s IC PROFILER (ICP). Solid water was added during steering to ensure measurements were beyond the buildup region. With steering complete, servos were zeroed and enabled. Photon profiles were collected in a 30×30cm{sup 2} field at dmax and 2.9 cm depth for flattened and FFF beams respectively. Electron profiles were collected with a 25×25cm{sup 2} cone and effective depth (solid water + 0.9 cm intrinsic buildup) as follows: 0.9 cm (6e), 1.9 cm (9e), 2.9 cm (12e, 16e, 20e). Profiles of the same energy, field size and depth were measured in water with Sun Nuclear’s 3D SCANNER (3DS). Profiles were re-measured using the ICP after the in-water scans. Profiles measured using the ICP and 3DS were compared by (a) examining the differences in Varian’s “Point Difference Symmetry” metric, (b) visual inspection of the overlaid profile shapes and (c) calculation of point-by-point differences. Results: Comparing ICP measurements before and after water scanning showed very good agreement indicating good stability of the linac and measurement system. Comparing ICP Measurements to water phantom measurements using Varian’s symmetry metric showed agreement within 0.5% for all beams. The average magnitude of the agreement was within 0.2%. Comparing ICP Measurements to water phantom measurements using point-by-point difference showed agreement within 0.5% inside of 80% area of the field width. Conclusion: Profile agreement to within 0.5% was observed between ICP and 3DS after steering multiple energies with the ICP. This indicates that the ICP may be used for steering electron beams, and both flattened and FFF photon beams. Song Gao: Sun Nuclear

  7. Relative dosimetry by Ebt-3; Dosimetria relativa por EBT3

    Energy Technology Data Exchange (ETDEWEB)

    De Leon A, M. A.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico); Hernandez O, J. O., E-mail: madla16@hotmail.com [Hospital General de Mexico, Dr. Balmis 148, Col. Doctores, 06726 Mexico D. F. (Mexico)

    2015-10-15

    In the present work relative dosimetry in two linear accelerator for radiation therapy was studied. Both Varian Oncology systems named Varian Clinac 2100-Cd and MLC Varian Clinac i X were used. Gaf Chromic Ebt-3 film was used. Measurements have been performed in a water equivalent phantom, using 6 MV and 18 MV photon beams on both Linacs. Both calibration and Electron irradiations were carried out with the ionization chamber placed at the isocenter, below a stack of solid water slabs, at the depth of dose maximum (D max), with a Source-to-Surface Distance (SSD) of 100 cm and a field size of 10 cm x 10 cm. Calibration and dosimetric measurements photons were carried out under IAEA-TRS 398 protocol. Results of relative dosimetry in the present work are discussed. (Author)

  8. Cherenkov Detector for Beam Quality Measurement

    CERN Document Server

    Orfanelli, Stella

    2015-01-01

    A new detector to measure the machine induced background at larger radiihas been developed and installed in the CMS experiment at LHC. Itconsists of 40 modules, each comprising a quartz bar read out by aphotomultiplier. Since Cerenkov radiation is emitted in a forward conearound the charged particle trajectory, these detectors can distinguishthe directions of the machine induced background.The back-end consists of a microTCA readout with excellent time resolution.The performance of the detector modules measured in several test-beamcampaigns will be reported. The installation in CMS will be described, andfirst results about operating the detector during data taking will begiven.

  9. Introduction to radiological physics and radiation dosimetry

    CERN Document Server

    Attix, Frank Herbert

    2004-01-01

    A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem

  10. A toolkit for epithermal neutron beam characterisation in BNCT.

    Science.gov (United States)

    Auterinen, Iiro; Serén, Tom; Uusi-Simola, Jouni; Kosunen, Antti; Savolainen, Sauli

    2004-01-01

    Methods for dosimetry of epithermal neutron beams used in boron neutron capture therapy (BNCT) have been developed and utilised within the Finnish BNCT project as well as within a European project for a code of practise for the dosimetry of BNCT. One outcome has been a travelling toolkit for BNCT dosimetry. It consists of activation detectors and ionisation chambers. The free-beam neutron spectrum is measured with a set of activation foils of different isotopes irradiated both in a Cd-capsule and without it. Neutron flux (thermal and epithermal) distribution in phantoms is measured using activation of Mn and Au foils, and Cu wire. Ionisation chamber (IC) measurements are performed both in-free-beam and in-phantom for determination of the neutron and gamma dose components. This toolkit has also been used at other BNCT facilities in Europe, the USA, Argentina and Japan.

  11. Measurements of output factors with different detector types and Monte Carlo calculations of stopping-power ratios for degraded electron beams.

    Science.gov (United States)

    Björk, Peter; Knöös, Tommy; Nilsson, Per

    2004-10-07

    The aim of the present study was to investigate three different detector types (a parallel-plate ionization chamber, a p-type silicon diode and a diamond detector) with regard to output factor measurements in degraded electron beams, such as those encountered in small-electron-field radiotherapy and intraoperative radiation therapy (IORT). The Monte Carlo method was used to calculate mass collision stopping-power ratios between water and the different detector materials for these complex electron beams (nominal energies of 6, 12 and 20 MeV). The diamond detector was shown to exhibit excellent properties for output factor measurements in degraded beams and was therefore used as a reference. The diode detector was found to be well suited for practical measurements of output factors, although the water-to-silicon stopping-power ratio was shown to vary slightly with treatment set-up and irradiation depth (especially for lower electron energies). Application of ionization-chamber-based dosimetry, according to international dosimetry protocols, will introduce uncertainties smaller than 0.3% into the output factor determination for conventional IORT beams if the variation of the water-to-air stopping-power ratio is not taken into account. The IORT system at our department includes a 0.3 cm thin plastic scatterer inside the therapeutic beam, which furthermore increases the energy degradation of the electrons. By ignoring the change in the water-to-air stopping-power ratio due to this scatterer, the output factor could be underestimated by up to 1.3%. This was verified by the measurements. In small-electron-beam dosimetry, the water-to-air stopping-power ratio variation with field size could mostly be ignored. For fields with flat lateral dose profiles (>3 x 3 cm2), output factors determined with the ionization chamber were found to be in close agreement with the results of the diamond detector. For smaller field sizes the lateral extension of the ionization chamber hampers

  12. ILC beam energy measurement by means of laser Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Muchnoi, N. [Budker Inst. for Nuclear Physics, Novosibirsk (Russian Federation); Schreiber, H.J.; Viti, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-10-15

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered {gamma}-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10{sup -4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  13. Beam parametr measurements for the SLAC linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, J.E.; Blocker, C.; Breidenbach, M.

    1981-01-01

    A stable, closely-controlled, high-intensity, single-bunch beam will be required for the SLAC Linear Collider. The characteristics of short-pulse, low-intensity beams in the SLAC linac have been studied. A new, high-intensity thermionic gun, subharmonic buncher and S-band buncher/accelerator section were installed recently at SLAC. With these components, up to 10/sup 11/ electrons in a single S-band bunch are available for injection into the linac. the first 100-m accelerator sector has been modified to allow control of short-pulse beams by a model-driven computer program. Additional instrumentation, including a computerized energy analyzer and emittance monitor have been added at the end of the 100-m sector. The beam intensity, energy spectrum, emittance, charge distribution and the effect of wake fields in the first accelerator sector have been measured. The new source and beam control system are described and the most recent results of the beam parameter measurements are discussed.

  14. Antiproton beam profile measurements using Gas Electron Multipliers

    CERN Document Server

    Pinto, Serge Duarte; Spanggaard, Jens; Tranquille, Gerard

    2011-01-01

    The new beam profile measurement for the Antiproton Decelerator (AD) at CERN is based on a single Gas Electron Multiplier (GEM) with a 2D readout structure. This detector is very light, ~0.4% X_0, as required by the low energy of the antiprotons, 5.3 MeV. This overcomes the problems previously encountered with multi-wire proportional chambers (MWPC) for the same purpose, where beam interactions with the detector severely affect the obtained profiles. A prototype was installed and successfully tested in late 2010, with another five detectors now installed in the ASACUSA and AEgIS beam lines. We will provide a detailed description of the detector and discuss the results obtained. The success of these detectors in the AD makes GEM-based detectors likely candidates for upgrade of the beam profile monitors in all experimental areas at CERN. The various types of MWPC currently in use are aging and becoming increasingly difficult to maintain.

  15. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    1995-01-01

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...

  16. Measuring beam intensity and lifetime in BESSY II

    CERN Document Server

    Bakker, R; Kuske, P; Kuszynski, J

    2000-01-01

    The measurement of the intensity of the beam in the transfer lines and the storage ring are based on current transformers. The pulsed current in the transfer lines is measured with passive Integrating Beam Current Transformers (ICT). The bunch charge is transferred to a DC-voltage and sampled with a multifunction I/O-board of a PC. The beam current of the storage ring is measured with a high precision Parametric Current Transformer (PCT) and sampled by a high quality digital volt meter (DVM). A stand alone PC is used for synchronisation, real-time data acquisition and signal processing. Current and lifetime data are updated every second and send via CAN- bus to the BESSY II control system. All PC programs are written in LabVIEW.

  17. Absolute beam emittance measurements at RHIC using ionization profile monitors

    Energy Technology Data Exchange (ETDEWEB)

    Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Connolly, R [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Summers, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  18. Intercalibration of radiological measurements for surveillance purposes of the internal dosimetry laboratory coordinated by the IAEA; Intercalibracion de mediciones radiologicas para fines de vigilancia del laboratorio de dosimetria interna coordinada por el OIEA

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro L, M.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2002-07-15

    The ININ of Mexico participated in this intercomparison organized by the IAEA in 2000. The objective of this activity is that the dosimetry laboratories that participate can validate the programs of internal dosimetry, with the purpose of improving its capacity in the evaluation of the internal dose and have access to a mechanism to evaluate its dosimetry system under real conditions. The specific objectives of this intercomparison were: 1. To evaluate the participant's capacity to manage the measurements of individual monitoring in terms of the activity in the phantom. 2. To provide the access to the unique calibration resources that otherwise would not be available. 3. To compare the operation of several detection systems, the geometry, phantoms, calibration methods and methods for the evaluation of activity of the radionuclide used by each institution. 4. To provide the independent verification of the direct measurement methods of the dosimetry service. (Author)

  19. Three-dimensional measurement of a tightly focused laser beam

    Directory of Open Access Journals (Sweden)

    Xiangsheng Xie

    2013-02-01

    Full Text Available The spatial structure of a tightly focused light field is measured with a double knife-edge scanning method. The measurement method is based on the use of a high-quality double knife-edge fabricated from a right-angled silicon fragment mounted on a photodetector. The reconstruction of the three-dimensional structures of tightly focused spots is carried out with both uniform and partially obstructed linearly polarized incident light beams. The optical field distribution is found to deviate substantially from the input beam profile in the tightly focused region, which is in good agreement with the results of numerical simulations.

  20. Measuring the phase of the scattering amplitude with vortex beams

    CERN Document Server

    Ivanov, I P

    2012-01-01

    We show that colliding vortex beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the scattering amplitude changes with the scattering angle. Since the overall phase is inaccessible in a plane wave collision, this measurement would be of great importance for a number of topics in hadronic physics, for example, for meson production in the resonance region and for the physics of nucleon resonances. Although the required parameters of the vortex beams have not yet been achieved experimentally, they deserves further dedicated experimental research due to the high expected physics pay-off.

  1. Calibration of Laser Beam Direction for Inner Diameter Measuring Device

    Directory of Open Access Journals (Sweden)

    Tongyu Yang

    2017-02-01

    Full Text Available The laser triangulation method is one of the most advanced methods for large inner diameter measurement. Our research group proposed a kind of inner diameter measuring device that is principally composed of three laser displacement sensors known to be fixed in the same plane measurement position. It is necessary to calibrate the direction of the laser beams that are emitted by laser displacement sensors because they do not meet the theoretical model accurately. For the purpose of calibrating the direction of laser beams, a calibration method and mathematical model were proposed. The inner diameter measuring device is equipped with the spindle of the machine tool. The laser beams rotate and translate in the plane and constitute the rotary rays which are driven to scan the inner surface of the ring gauge. The direction calibration of the laser beams can be completed by the sensors’ distance information and corresponding data processing method. The corresponding error sources are analyzed and the validity of the method is verified. After the calibration, the measurement error of the inner diameter measuring device reduced from ± 25 μ m to ± 15 μ m and the relative error was not more than 0.011%.

  2. Nuclear accident dosimetry intercomparison studies.

    Science.gov (United States)

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.

  3. Evaluation of a new pencil-type ionization chamber for dosimetry in computerized tomography beams; Avaliacao de uma nova camara de ionizacao tipo lapis para dosimetria em feixes de tomografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maysa C. de; Neves, Lucio P.; Silva, Natalia F. da; Santos, William de S.; Caldas, Linda V.E., E-mail: maysadecastro@gmail.com, E-mail: lpneves@ipen.br, E-mail: na.fiorini@gmail.com, E-mail: wssantos@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    For performing dosimetry in computed tomography beams (CT), use is made of a pencil-type ionization chamber, since this has a uniform response to this type of beam. The common commercial chambers in Brazil have a sensitive volume length of 10 cm. Several studies of prototypes of this type of ionization chamber have been conducted, using different materials and geometric configurations, in the Calibration Laboratory Instruments of the Institute of Nuclear and Energy Research (LCI) and these showed results within internationally acceptable limits. These ion chambers of 10 cm are widely used nowadays, however studies have revealed that they have underestimated the dose values. In order to solve this problem, we developed a chamber with sensitive volume length of 30 cm. As these are not yet very common and no study has yet been performed on LCI conditions on their behavior, is important that the characteristics of these dosemeters are known, and the influence of its various components. For your review, we will use the Monte Carlo code Penelope, freely distributed by the IAEA. This method has revealed results consistent with other codes. The results for this new prototype can be used in dosimetry of the CT of the hospitals and calibration laboratories as the LCI.

  4. Effect of beam quality on tilt measurement using cyclic interferometer

    Science.gov (United States)

    Pretheesh Kumar, V. C.; Ganesan, A. R.; Joenathan, C.; Somasundaram, U.

    2016-08-01

    Accurate measurement of angles is extremely important in various metrological applications. Interferometry has always been an excellent technique for accurate measurements. Several methods have been proposed for accurate tilt measurement using interferometric techniques. Almost all of them use the Michelson configuration which is extremely sensitive to environmental vibrations and turbulences. We know that a cyclic interferometer is extremely stable. Even though it is not sensitive to displacement changes, it is twice sensitive to tilt compared to that of a Michelson interferometer. We have enhanced the sensitivity to measure tilt using multiple reflections in a cyclic interferometer. Since the input beam is collimated, we have studied the effect of aberration of the input beam on the accuracy of tilt measurement. Experimental results on this study are presented in this paper.

  5. Beam asymmetry $\\Sigma$ measurements on the $\\pi^-$ photoproduction off neutrons

    CERN Document Server

    Mandaglio, G; Manganaro, M; Bellini, V; Bocquet, J P; Casano, L; D'Angelo, A; Di Salvo, R; Fantini, A; Franco, D; Gervino, G; Ghio, F; Giardina, G; Girolami, B; Giusa, A; Ignatov, A; Lapik, A; Sandri, P Levi; Lleres, A; Moricciani, D; Mushkarenkov, A N; Nedorezov, V; Randieri, C; Rebreyend, D; Rudnev, N V; Russo, G; Schaerf, C; Sperduto, M L; Sutera, M C; Turinge, A; Vegna, V; Briscoe, W J; Strakovsky, I I

    2010-01-01

    The $\\Sigma$ beam asymmetry in the photoproduction of negative pions from quasi-free neutrons in a deuterium target was measured at Graal in the energy interval 700 - 1500 MeV and a wide angular range, using polarized and tagged photons. The results are compared with recent partial wave analyses.

  6. Emittance Measurements of Space Charge Dominated Electron Beam.

    Science.gov (United States)

    2014-09-26

    measurement 2,3 have been introduced in the past, especially in particle accelerator physics. In free space, the envelope of a non -neutral charged...density no and thickness 2d is located on the y-axis. Let us assume that the velocity space distribution is a Maxwellian with a temperature T and the beam

  7. Beam Current Measurement and Adjustment System on AMS

    Institute of Scientific and Technical Information of China (English)

    WUShao-yong; HEMING; SUSheng-yong; WANGZhen-jun; JIANGShan

    2003-01-01

    The beam current measurement and adjustment system of HI-13 tandem accelerator mass spectrometry detector system is consisted of the faraday cup, fluorescent target and a series of adjustable vertical slits(Fig. 1). The system's operation is very complicated and the transmission is low for the old system. A new system is instalated for improvement. We put the adjustable vertical slit, Faraday cup.

  8. Random coincidences during in-beam PET measurements at microbunched therapeutic ion beams

    Science.gov (United States)

    Parodi, K.; Crespo, P.; Eickhoff, H.; Haberer, T.; Pawelke, J.; Schardt, D.; Enghardt, W.

    2005-06-01

    At the experimental carbon ion tumour therapy facility at GSI Darmstadt, in-beam positron emission tomography (PET) is used to monitor the dose delivery precision. A dual head positron camera has been assembled from commercial detector components in order to measure the β+-activity, induced by the irradiation, simultaneously to the dose application. Despite the positive clinical impact, the image quality is limited by the low counting statistics, orders of magnitude below that in standard PET applications to nuclear medicine. This paper investigates the origin for the noisy acquisition during particle extraction from the synchrotron of GSI. The results demonstrate the failure of standard random correction techniques due to a γ-ray background correlated in time with the carbon ion beam microstructure. This prevents the use of data acquired during beam extraction for imaging. The loss of counting statistics is expected to rise further at the future hospital-based facility at Heidelberg, due to a more efficient utilisation of the accelerator resulting in shorter beam pauses and a reduced treatment time. In this respect, this paper provides the basis for a new data acquisition concept tailored to the unconventional application of in-beam PET imaging to therapy monitoring at radiofrequency pulsed radiation sources.

  9. Dosimetry requirements derived from the sterilization standards

    DEFF Research Database (Denmark)

    Miller, A.

    1998-01-01

    The main standards for radiation sterilization, ISO 11137 and EN 552, rest the documentation for the properly executed sterilization process on dosimetry. Both standards describe general requirements to the dosimetry system: The dose measurements must be traceable to national standards, the uncer...

  10. In vivo dosimetry during tangential breast treatment

    Energy Technology Data Exchange (ETDEWEB)

    Heukelom, S.; Lanson, J.H.; Tienhoven, G. van; Mijnheer, B.J. (Nederlands Kanker Inst. ' Antoni van Leeuwenhoekhuis' , Amsterdam (Netherlands))

    1991-12-01

    Three-dimensional (3-D) dose distribution as calculated in clinical practice for tangential breast treatment was verified through in vivo dosimetry. Clinical practice at Netherlands Cancer Institute implies use of 8MV X-ray beams, 2-D treatment planning system, collimator rotation and a limited set of patient data for dose calculations. By positioning diodes at the central beam axes as well as in the periphery of the breast the magnitude of dose values at the isocentre and in points situated in high-dose regions behind the lung could be assessed. The position of diodes was verified by means of an on-line portal imaging device. Reproducibility of these in vivo dose measurements was better than 2% (1SD). This study shows that on the average dose delivery at the isocentre is 2% less at the points behind the lung, 5.7% higher with respect to the calculated dose values. Detailed analysis of these in vivo dosimetry results, based on dose measurements performed with a breast shaped phantom, yielded the magnitudes of errors in predicted dose due to several limitations in dose calculation algorithms and dose calculation procedure. These limitations are each introducing an error of several percent but are compensating each other for the dose calculation at the isocentre. It is concluded that dose distribution in patient for this treatment technique and dose calculation procedure can be predicted with a 2-D treatment planning system in an acceptable way. A more accurate prediction of dose distribution can be performed but requires an estimation of the lack of scatter due to missing tissue, the change in the dose distribution due to oblique incident beams and incorporation of the actual output of the treatment machine in the assessment of the number of monitor units. (author). 28 refs.; 3 figs.; 4 tabs.

  11. Pulsed beams as field probes for precision measurement

    OpenAIRE

    Hudson, J. J.; Ashworth, H. T.; Kara, D. M.; Tarbutt, M. R.; Sauer, B.E.; Hinds, E. A.

    2007-01-01

    We describe a technique for mapping the spatial variation of static electric, static magnetic, and rf magnetic fields using a pulsed atomic or molecular beam. The method is demonstrated using a beam designed to measure the electric dipole moment of the electron. We present maps of the interaction region, showing sensitivity to (i) electric field variation of 1.5 V/cm at 3.3 kV/cm with a spatial resolution of 15 mm; (ii) magnetic field variation of 5 nT with 25 mm resolution; (iii) radio-frequ...

  12. A Measure of Flow Vorticity with Helical Beams of Light

    CERN Document Server

    Rosales-Guzmán, Aniceto Belmonte Carmelo

    2015-01-01

    Vorticity describes the spinning motion of a fluid, i.e., the tendency to rotate, at every point in a flow. The interest in performing accurate and localized measurements of vorticity reflects the fact that many of the quantities that characterize the dynamics of fluids are intimately bound together in the vorticity field, being an efficient descriptor of the velocity statistics in many flow regimes. It describes the coherent structures and vortex interactions that are at the leading edge of laminar, transitional, and turbulent flows in nature. The measurement of vorticity is of paramount importance in many research fields as diverse as biology microfluidics, complex motions in the oceanic and atmospheric boundary layers, and wake turbulence on fluid aerodynamics. However, the precise measurement of flow vorticity is difficult. Here we put forward an optical sensing technique to obtain a direct measurement of vorticity in fluids using Laguerre-Gauss (LG) beams, optical beams which show an azimuthal phase vari...

  13. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images and measur......Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k...

  14. Research into the sampling methods of digital beam position measurement

    Institute of Scientific and Technical Information of China (English)

    邬维浩; 赵雷; 陈二雷; 刘树彬; 安琪

    2015-01-01

    A fully digital beam position monitoring system (DBPM) has been designed for SSRF (Shanghai Synchrotron Radiation Facility). As analog-to-digital converter (ADC) is a crucial part in the DBPM system, the sampling methods should be studied to achieve optimum performance. Different sampling modes were used and com-pared through tests. Long term variation among four sampling channels, which would introduce errors in beam position measurement, is investigated. An interleaved distribution scheme was designed to address this issue. To evaluate the sampling methods, in-beam tests were conducted in SSRF. Test results indicate that with proper sampling methods, a turn-by-turn (TBT) position resolution better than 1 µm is achieved, and the slow-acquisition (SA) position resolution is improved from 4.28 µm to 0.17 µm.

  15. Development of High Intensity Beam Emittance Measurement Unit

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Three sets of High Intensity Beam Emittance Measurement Units (HIBEMUs) are being developed at Peking University. They are HIBEMU-2 (slit-wire type, one direction), HIBEMU-3 (Allison scanner type, one direction) and HIBEMU-4 (slit-wire type, two directions). For HIBEMU-2 and HIBEMU-3, more recent work has been done on software redesign in order to measure beam emittance and to draw phase diagram more efficiently and precisely. Software for control and data processing of them were developed in Labveiw environment, trying to improve calculation rationality and to offer user-friendly interface. Mechanical modification was also done for HIBEMU-3, mainly concentrating on the protection of Faraday cups from being overheated by the high intensity beam and also from interference of secondary electrons. This paper will also cover the mechanical structure as well as the software development of HIBEMU-4, which is a two-direction emittance scanner newly designed and manufactured for the high energy beam transport (HEBT) of Peking University Neutron Imaging FaciliTY (PKUNIFTY). At the end of this paper, comparison and analysis of the three HIBEMUs are given to draw forth better design of the future emittance measurement facility.

  16. Film dosimetry in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Danciu, C.; Proimos, B.S. [Patras Univ. (Greece). Dept. of Medical Physics

    1995-12-01

    Dosimetry, through a film sandwiched in a transverse cross-section of a solid phantom, is a method of choice in Conformal Radiotherapy because: (a) the blackness (density) of the film at each point offers a measure of the total dose received at that point, and (b) the film is easily calibrated by exposing a film strip in the same cross-section, through a stationary field. The film must therefore have the following properties: (a) it must be slow, in order not to be overexposed, even at a therapeutic dose of 200 cGy, and (b) the response of the film (density versus dose curve) must be independent of the photon energy spectrum. A few slow films were compared. It was found that the Kodak X-Omat V for therapy verification was the best choice. To investigate whether the film response was independent of the photon energy, response curves for six depths, starting from the depth of maximum dose to the depth of 25 cm, in solid phantom were derived. The vertical beam was perpendicular to the anterior surface of the phantom, which was at the distance of 100 cm from the source and the field was 15x15 cm at that distance. This procedure was repeated for photon beams emitted by a Cobalt-60 unit, two 6 MV and 15 MV Linear Accelerators, as well as a 45 MV Betatron. For each of those four different beams the film response was the same for all six depths. The results, as shown in the diagrams, are very satisfactory. The response curve under a geometry similar to that actually applied, when the film is irradiated in a transverse cross-section of the phantom, was derived. The horizontal beam was almost parallel (angle of 85) to the plane of the film. The same was repeated with the central ray parallel to the film (angle 90) and at a distance of 1.5 cm from the horizontal film. The field size was again 15x15 at the lateral entrance surface of the beam. The response curves remained the same, as when the beam was perpendicular to the films.

  17. Dosimetry intercomparisons in European medical device sterilization plants

    DEFF Research Database (Denmark)

    Miller, A.; Sharpe, P.H.G.

    2000-01-01

    Dosimetry intercomparisons have been carried out involving two-thirds of all European radiation sterilization facilities. Dosimeters for the intercomparisons were supplied by two accredited calibration laboratories. The results show good agreement, and indicate overall dosimetry accuracy of the o...... of the order of +/-5% (1 sigma) for both Co-60 and electron beam plants. (C) 2000 Elsevier Science Ltd. All rights reserved....

  18. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Science.gov (United States)

    Hu, J.-P.; Holden, N. E.; Reciniello, R. N.

    2016-02-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than

  19. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Directory of Open Access Journals (Sweden)

    Hu J.-P.

    2016-01-01

    Full Text Available Radiation dosimetry for Neutron Capture Therapy (NCT has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR. In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1 in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2 out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3 beam shutter upgrade to reduce strayed neutrons and gamma dose, (4 beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5 beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates to reduce prompt gamma and fast neutron doses, (6 sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7 holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4–7

  20. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  1. Surface and buildup region dose measurements with Markus parallel-plate ionization chamber, Gafchromic EBT3 film and MOSFET detector for high energy photon beams

    CERN Document Server

    Akbas, Ugur; Koksal, Canan; Bilge, Hatice

    2016-01-01

    The aim of the study was to investigate surface and buildup region doses for 6 MV photon beams using a Markus parallel-plate ionization chamber, GafChromic EBT3 film and MOSFET detector for different field sizes and beam angles. The measurements were made in a water equivalent solid phantom at the surface and in the buildup region of the 6 MV photon beams at 100 cm source-detector distance (SDD) for 5x5, 10x10 and 20x20 cm2 field sizes and 0, 30, 60, 80 and 90 beam angles. The surface doses for 10x10 cm2 field size were found to be 20.33%, 18.80% and 25.48% for Markus chamber, EBT3 film and MOSFET detector, respectively. The surface dose increased with field size for all dosimeters. As the angle of the incident radiation beam became more oblique, the surface dose increased. The effective measurement depths of dosimeters vary, thus the results of the measurements could be different. This issue can lead to mistakes at surface and buildup dosimetry, and must be taken into account.

  2. A study on the real-time radiation dosimetry measurement system based on optically stimulated luminescence

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-Ping; CHEN Zhao-Yang; BA Wei-Zhen; FAN Yan-Wei; DU Yan-Zhao; PAN Shi-Lie; GUO Qi

    2008-01-01

    The optically stimulated luminescent (OSL) radiation dosimeter technically surveys a wide dynamic measurement range and a high sensitivity.Optical fiber dosimeters provide capability for remote monitoring of the radiation in the locations which are difficult-to-acoess and hazardous.In addition.optical fiber dosimeters are immune to electrical and radio-frequency interference.In this paper,a novel remote optical fiber radiation dosimeter is described.The optical fiber dosimeter takes advantage of the charge trapping materials CaS:Ce, Sm that exhibit OSL.The measuring range of the dosimeter is from 0.1 to 100 Gy.The equipment is relatively simple and small in size,and has low power consumption.This device is suitable for measuring the space radiation dose and also can be used in high radiation dose condition and other dangerous radiation occasions.

  3. Dosimetry measurements during the commissioning of the GJ-2 electron accelerator

    DEFF Research Database (Denmark)

    Chosdu, R.; Hilmy, N.; Tobing, R.;

    1995-01-01

    The GJ-2 electron accelerator (made in China, Sanghai) was put into operation at the Centre for Application of Isotopes and Radiation in Jakarta, Indonesia. In the course of the commissioning of the machine its main technical parameters were measured under different operating conditions. The elec......The GJ-2 electron accelerator (made in China, Sanghai) was put into operation at the Centre for Application of Isotopes and Radiation in Jakarta, Indonesia. In the course of the commissioning of the machine its main technical parameters were measured under different operating conditions...

  4. Measurement of microwave radiation from electron beam in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, I.S.; Akimune, H. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Fukushima, M.; Ikeda, D. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Inome, Y. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Matthews, J.N. [University of Utah, Salt Lake City, UT 4112-0830 (United States); Ogio, S. [Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan); Sagawa, H. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Sako, T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Shibata, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Yamamoto, T., E-mail: tokonatu@konan-u.ac.jp [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan)

    2016-02-21

    We report the use of an electron light source (ELS) located at the Telescope Array Observatory in Utah, USA, to measure the isotropic microwave radiation from air showers. To simulate extensive air showers, the ELS emits an electron beam into the atmosphere and a parabola antenna system for the satellite communication is used to measure the microwave radiation from the electron beam. Based on this measurement, an upper limit on the intensity of a 12.5 GHz microwave radiation at 0.5 m from a 10{sup 18} eV air shower was estimated to be 3.96×10{sup −16} W m{sup −2} Hz{sup −1} with a 95% confidence level.

  5. Impact of TGF for aircrew dosimetry: analysis of continuous onboard measurements

    Science.gov (United States)

    Trompier, Francois; Fuller, Nicolas; Bonnotte, Frank; Desmaris, Gérard; Musso, Angelica; Cale, Eric; Bottollier-Depois, Jean-François

    2014-05-01

    The actual assessment of the occupational exposure of aircrew to cosmic radiation is performed in routine by software based on the crossing of route flight data with dose rate maps of the atmosphere obtained by simulation or elaborated with model based on measured data. In addition of the galactic component, some of these softwares take into account also the possible increase of dose from solar flares. In several publications, terrestrial gamma-rays flashes (TGF) are also investigated as a possible source of exposure of aircrew. Up to now, the evaluation of the impact of TGF in terms of dose onboard aircraft has been performed only by calculation. According to these publications, if the airplane is located in or near the high-field region during the lightning discharge, doses could reach the order of 100 of mSv, which far exceed the annual dose limit for workers (1). To our knowledge, no measured data has been yet reported for such phenomena that could confirm or not the order of magnitude of dose from TGF or the frequency or the probability of occurrence of such phenomena. To investigate further the TGF effect, it is recommended to perform measurements onboard airplanes. Since the beginning of 2013, the Institute of Radiation Protection and nuclear Safety (IRSN) in cooperation with Air France is running a campaign of continuous measurements with active devices aiming to measure effect on dose rate of solar flare. These measurements are used to improve models used to estimate the doses from Ground Level Event (GLE). In addition, passive dosimeters were historically installed in Air France airplanes and read out every three months constituting a very large database of dose measurements. All these data will be analyzed to better characterize the possible influence on dose from TGF. The statistical analysis of these data offers the possibility to estimate the order of magnitude of possible additional doses to aircrew due to TGF and/or to evaluate the probability of

  6. Beam Measurement Systems for the CERN Antiproton Decelerator (AD)

    CERN Document Server

    Angoletta, Maria Elena; Ludwig, M; Marqversen, O; Odier, P; Pedersen, F; Raich, U; Søby, L; Tranquille, G; Spickermann, T

    2001-01-01

    The new, low-energy antiproton physics facility at CERN has been successfully commissioned and has been delivering decelerated antiprotons at 100 MeV/c since July 2000. The AD consists of one ring where the 3.5 GeV/c antiprotons produced from a production target are injected, rf manipulated, stochastically cooled, decelerated (with further stages involving additional stochastic and electron cooling and rf manipulation) and extracted at 100 MeV/c. While proton test beams of sufficient intensity could be used for certain procedures in AD commissioning, this was not possible for setting-up and routine operation. Hence, special diagnostics systems had to be developed to obtain the beam and accelerator characteristics using the weak antiproton beams of a few 10E7 particles at all momenta from 3.5 GeV/c down to 100 MeV/c. These include systems for position measurement, intensity, beam size measurements using transverse aperture limiters and scintillators and Schottky-based tools. This paper gives an overall view of...

  7. Turbulence measurement with a two-beam nacelle lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Sathe, Ameya; Mioullet, A.

    The analysis of the turbulence intensity measurement is performed for a lidar measuring horizontally with two beams. First the turbulence intensity measured by such a system was evaluated theoretically. The Mann model of turbulence was used to evaluate the true value of the turbulence intensity...... of the wind speed and the main effects of the lidar measurement principles on turbulence intensity measurement were modeled: - A lidar senses the wind speed over the probe volume acting as a low pass-filter and thus cannot resolve high frequency turbulence; - The horizontal wind speed is retrieved from...... the combination of the radial speeds measured along two line-of-sights with different orientations; this results in the contamination of the lidar turbulence intensity measurement from the transverse component of the wind field. Secondly, the theoretical results were compared to experimental measurements. A two...

  8. Comparison between the calculated and measured dose distributions for four beams of 6 MeV linac in a human-equivalent phantom

    Directory of Open Access Journals (Sweden)

    Reda Sonia M.

    2006-01-01

    Full Text Available Radiation dose distributions in various parts of the body are of importance in radiotherapy. Also, the percent depth dose at different body depths is an important parameter in radiation therapy applications. Monte Carlo simulation techniques are the most accurate methods for such purposes. Monte Carlo computer calculations of photon spectra and the dose ratios at surfaces and in some internal organs of a human equivalent phantom were performed. In the present paper, dose distributions in different organs during bladder radiotherapy by 6 MeV X-rays were measured using thermoluminescence dosimetry placed at different points in the human-phantom. The phantom was irradiated in exactly the same manner as in actual bladder radiotherapy. Four treatment fields were considered to maximize the dose at the center of the target and minimize it at non-target healthy organs. All experimental setup information was fed to the MCNP-4b code to calculate dose distributions at selected points inside the proposed phantom. Percent depth dose distribution was performed. Also, the absorbed dose as ratios relative to the original beam in the surrounding organs was calculated by MCNP-4b and measured by thermoluminescence dosimetry. Both measured and calculated data were compared. Results indicate good agreement between calculated and measured data inside the phantom. Comparison between MCNP-4b calculations and measurements of depth dose distribution indicated good agreement between both.

  9. Retrospective dosimetry: Preliminary use of the single aliquot regeneration (SAR) protocol for the measurement of quartz dose in young house bricks

    DEFF Research Database (Denmark)

    Banerjee, D.; Bøtter-Jensen, L.; Murray, A.S.

    1999-01-01

    In retrospective dosimetry, the total dose absorbed by some pre-existing dosemeters, such as house bricks or tiles, is used to derive the dose to the population arising from a nuclear accident. This paper uses the newly developed SAR protocol to determine the total dose in young house bricks from...... the vicinity of the Chernobyl reactor site and from Roskilde, Denmark. For these samples, it is shown that high precision (similar to 1%) on the mean estimates of total dose can be achieved with similar to 20 independent measurements. The SAR total dose estimates of two Danish house bricks agree...

  10. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The CMS beam and radiation monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be shown, including results from the January 201...

  11. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Novgorodova, Olga; Penno, Marek; Walsh, Roberval; Dabrowski, Anne; Guthoff, Moritz; Loos, R; Ryjov, Vladimir; Burtowy, Piotr; Lokhovitskiy, Arkady; Odell, Nathaniel; Przyborowski, Dominik; Stickland, David P; Zagozdzinska, Agnieszka

    2014-01-01

    The CMS beam condition monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be discussed, including results from the January 201...

  12. Measurements of the $^{12}$C Ion Beam Microdosimetric Characteristics

    CERN Document Server

    Molokanov, A G

    2005-01-01

    The results of experimental studies of the $^{12}$C ion beam with the primary energy of 500 MeV/amu from the JINR Nuclotron are presented. Depth-dose distributions have been measured by means of a diamond detector. The spectra of the linear energy transfer (LET) were studied at various beam penetration depths at several points from the beam entrance up to the region behind the Bragg peak by means of chemically etched track detectors. The track parameters were measured by means of an automatic optical image analyzer LUCIA-G based on a Leitz microscope. The value of the relative biological weighted effectiveness (RBWE), characterizing the value of the RBE during tumours radiotherapy, was calculated from the measured LET spectra on the basis of a biological weighting function. RBWE increases with the depth in the phantom, reaching the maximum value of about 3 just before the Bragg peak. Afterwards it decreases rather rapidly, which is to be considered when extended tumours are to be treated.

  13. A pixel detector asic for dosimetry using time-over-threshold energy measurements

    CERN Document Server

    Wong, W S; Ballabriga, R; Bohnel, M; Campbell, M; Heijne, E; Llopart, X; Michel, T; Munster, I; Plackett, R; Sievers, P; Takoukam, P; Tlustos, L; Valerio, P

    2011-01-01

    In this work we present the design of a chip which provides the readout of a highly segmented diode array, in which signals induced by individual X-ray photons are processed discretely. There are several benefits to this approach, including the ability to achieve a high signal to noise ratio due to the inherently low sensor capacitance, and the suppression of background noise (e.g. dark current) using an analogue threshold. The segmentation also ensures a linear behaviour even at very high dose rates. A time over threshold (ToT) energy measurement technique provides an immediate digital value corresponding to the energy deposited onto the diode by each individual photon. Deadtime-free operation is achieved by reading out a subset of the detector segments at a time while the rest of the detector continues to process signals. This paper describes the application-specific integrated circuit (ASIC) chip which was designed to provide pre-processing of photo-induced signals in the detector and readout of the proces...

  14. Mayak Worker Dosimetry System 2008 (MWDS-2008): assessment of internal dose from measurement results of plutonium activity in urine.

    Science.gov (United States)

    Khokhryakov, Victor V; Khokhryakov, Valentin F; Suslova, Klara G; Vostrotin, Vadim V; Vvedensky, Vladimir E; Sokolova, Alexandra B; Krahenbuhl, Melinda P; Birchall, Alan; Miller, Scott C; Schadilov, Anatoly E; Ephimov, Alexander V

    2013-04-01

    A new modification of the prior human lung compartment plutonium model, Doses-2005, has been described. The modified model was named "Mayak Worker Dosimetry System-2008" (MWDS-2008). In contrast to earlier models developed for workers at the Mayak Production Association (Mayak PA), the new model more correctly describes plutonium biokinetics and metabolism in pulmonary lymph nodes. The MWDS-2008 also provides two sets of doses estimates: one based on bioassay data and the other based on autopsy data, where available. The algorithm of internal dose calculation from autopsy data will be described in a separate paper. Results of comparative analyses of Doses-2005 and MWDS-2008 are provided. Perspectives on the further development of plutonium dosimetry are discussed.

  15. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  16. Current Measurements of Low-Intensity Beams at CRYRING

    CERN Document Server

    Paál, A; Källberg, A

    2003-01-01

    The demand for new ion species leads to an increasing number of cases in which the ions can only be produced in small quantities. Thus, weak ion currents quite often have to be handled in low energy ion storage ring, like CRYRING. Various detector systems have been developed to measure such low intensity coasting and bunched beams by using the overlapping ranges of those systems. We have extended the RMS resolution to 1 nA of the Bergoz Beam Charge Monitor (BCM) by using a low noise 60 dB preamplifier for the Integrating Current Transformer. The sum signal of a capacitive pick-up is integrated by a second gated integrator and the BCM output signal is used for calibration. The RMS resolution is about 100 pA.. To measure the coasting beam intensity, neutral particle detectors have been built. The fast Microchannel plate detector can handle 1 Mc/s, and a 50 Mc/s Secondary Electron Multiplier based detector is under construction. On the magnetic flat top, a time of 100 ms is available to calibrate the count r...

  17. EPR/PTFE dosimetry for test reactor environments

    Energy Technology Data Exchange (ETDEWEB)

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J. [Sandia National Laboratories, Albuquerque, NM 87185-1146 (United States)

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement of absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in

  18. Detector to detector corrections: A comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Azangwe, Godfrey, E-mail: g.azangwe@iaea.org; Grochowska, Paulina; Izewska, Joanna; Meghzifene, Ahmed [International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna (Austria); Georg, Dietmar; Hopfgartner, Johannes; Lechner, Wolfgang [Department of Radiation Oncology, Medical University Vienna/AKH Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University Vienna, Vienna, Währinger Gürtel 18-20, A-1090 Vienna (Austria); Andersen, Claus E.; Beierholm, Anders R.; Helt-Hansen, Jakob [Center for Nuclear Technologies, Technical University of Denmark, Risø Campus, DK-4000 Roskilde (Denmark); Mizuno, Hideyuki; Fukumura, Akifumi [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan); Yajima, Kaori [Association for Nuclear Technology in Medicine, 7-16, Nihonbashikodenmacho, chuou-ku, Tokyo 103-0001 (Japan); Gouldstone, Clare; Sharpe, Peter [National Physical Laboratory, Acoustics and Ionising Radiation Division, Teddington TW11 0LW (United Kingdom); Palmans, Hugo [National Physical Laboratory, Acoustics and Ionising Radiation Division, Teddington TW11 0LW, United Kingdom and EBG MedAustron GmbH, Medical Physics Department, A-2700 Wiener Neustadt (Austria)

    2014-07-15

    Purpose: The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements. Methods: Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm{sup 2} to 4.2 × 4.2 cm{sup 2} and the measurements were extended to larger fields of up to 10 × 10 cm{sup 2}. Measurements were performed at 5 cm depth, in a 6 MV photon beam. Detectors used included alanine, thermoluminescent dosimeters (TLDs), stereotactic diode, electron diode, photon diode, radiophotoluminescent dosimeters (RPLDs), radioluminescence detector based on carbon-doped aluminium oxide (Al{sub 2}O{sub 3}:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm{sup 3} to 0.3 cm{sup 3}). All detector measurements were corrected for volume averaging effect and compared with dose ratios determined from alanine to derive a detector correction factors that account for beam perturbation related to nonwater equivalence of the detector materials. Results: For the detectors used in this study, volume averaging corrections ranged from unity for the smallest detectors such as the diodes, 1.148 for the 0.14 cm{sup 3} air filled ionization chamber and were as high as 1.924 for the 0.3 cm{sup 3} ionization chamber. After applying volume averaging corrections, the detector readings were consistent among themselves and with alanine measurements for several small detectors but they differed for larger detectors, in particular for some small ionization chambers with volumes larger than 0.1 cm{sup 3}. Conclusions: The results demonstrate

  19. Dynamic steering beams for efficient force measurement in optical manipulation

    Institute of Scientific and Technical Information of China (English)

    Xiaocong Yuan; Yuquan Zhang; Rui Cao; Xing Zhao; Jing Bu; Siwei Zhu

    2011-01-01

    @@ An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported.Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium.The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force.The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead.The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.%An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported. Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium. The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force. The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead. The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.

  20. Online measurement of fluence and position for protontherapy beams

    Science.gov (United States)

    Benati, C.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cornelius, I.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Guérin, L.; La Rosa, A.; Luparia, A.; Marchetto, F.; Martin, F.; Meyroneinc, S.; Peroni, C.; Pittà, G.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2004-09-01

    Tumour therapy with proton beams has been used for several decades in many centres with very good results in terms of local control and overall survival. Typical pathologies treated with this technique are located in head and neck, eye, prostate and in general at big depths or close to critical organs. The Experimental Physics Department of the University of Turin and the local Section of INFN, in collaboration with INFN Laboratori Nazionali del Sud Catania and Centre de Protontherapie de Orsay Paris, have developed detector systems that allow the measurement of beam position and fluence, obtained in real time during beam delivery. The centre in Catania (CATANA: Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been treating patients with eye pathologies since spring 2002 using a superconducting cyclotron accelerating protons up to 62 MeV.This kind of treatments need high-resolution monitor systems and for this reason we have developed a 256-strip segmented ionisation chamber, each strip being 400 μm wide, with a total sensitive area 13×13 cm2. The Centre de Protontherapie de Orsay (CPO) has been operational since 1991 and features a synchrocyclotron used for eye and head and neck tumours with proton beams up to 200 MeV. The monitor system has to work on a large surface and for this purpose we have designed a pixel-segmented ionisation chamber, each pixel being 5×5 mm2, for a total active area of 16×16 cm2. The results obtained with two prototypes of the pixel and strip chambers demonstrate that the detectors allow the measurement of fluence and centre of gravity as requested by clinical specifications.

  1. In vivo dosimetry in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Beddar, Sam; Andersen, Claus Erik;

    2013-01-01

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and th...

  2. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  3. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Science.gov (United States)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  4. Beam lifetime measurement and analysis in Indus-2 electron storage ring

    Indian Academy of Sciences (India)

    Pradeep Kumar; A D Ghodke; Gurnam Singh

    2013-05-01

    In this paper, the beam lifetime measurement and its theoretical analysis are presented using measured vacuum pressure and applied radio frequency (RF) cavity voltage in Indus-2 electron storage ring at 2 GeV beam energy. Experimental studies of the effect of RF cavity voltage and bunched beam filling pattern on beam lifetime are also presented. An equation of stable beam current decay is evolved and this equation closely follows the observed beam current decay pattern. It shows that the beam is stable and the beam current decay is due to the beam–residual gas interaction (vacuum lifetime) and electron–electron interaction within a bunch (Touschek lifetime). The estimated vacuum, Touschek and total beam lifetimes from analytical formulations are also compared with the measured beam lifetime.

  5. Surface and Buildup Region Dose Measurements with Markus Parallel-Plate Ionization Chamber, GafChromic EBT3 Film, and MOSFET Detector for High-Energy Photon Beams

    Directory of Open Access Journals (Sweden)

    Ugur Akbas

    2016-01-01

    Full Text Available The aim of the study was to investigate surface and buildup region doses for 6 MV and 15 MV photon beams using a Markus parallel-plate ionization chamber, GafChromic EBT3 film, and MOSFET detector for different field sizes and beam angles. The measurements were made in a water equivalent solid phantom at the surface and in the buildup region of the 6 MV and 15 MV photon beams at 100 cm source-detector distance for 5 × 5, 10 × 10, and 20 × 20 cm2 field sizes and 0°, 30°, 60°, and 80° beam angles. The surface doses using 6 MV photon beams for 10 × 10 cm2 field size were found to be 20.3%, 18.8%, and 25.5% for Markus chamber, EBT3 film, and MOSFET detector, respectively. The surface doses using 15 MV photon beams for 10 × 10 cm2 field size were found to be 14.9%, 13.4%, and 16.4% for Markus chamber, EBT3 film, and MOSFET detector, respectively. The surface dose increased with field size for all dosimeters. As the angle of the incident radiation beam became more oblique, the surface dose increased. The effective measurement depths of dosimeters vary; thus, the results of the measurements could be different. This issue can lead to mistakes at surface and buildup dosimetry and must be taken into account.

  6. Performance measurement of broadband, wide-angle polarizing beam splitter

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei-bin; ZHENG Zhen-rong; GU Pei-fu; ZHANG Yue-guang

    2007-01-01

    Polarizing beam splitter (PBS) is a critical optical component in projection display system because PBS performance greatly influences the contrast and brightness of the system. PBS performance is usually measured by spectrophotometer after coating and cementing, but the measured result cannot represent the actual performance in practice because people usually change the incident angle in one plane (horizontal plane) and do not consider the other plane (vertical plane). Geometrical polarization rotation occurring at reduced F-number influences the measuring precision of s-polarization transmittance (Ts) and p-polarization reflectance (Rp). A more accurate and practical way to measure the performance of broadband, wide-angle PBS is presented in this paper.

  7. Nondestructive Measurement of Orbital Angular Momentum for an Electron Beam

    Science.gov (United States)

    Larocque, Hugo; Bouchard, Frédéric; Grillo, Vincenzo; Sit, Alicia; Frabboni, Stefano; Dunin-Borkowski, Rafal E.; Padgett, Miles J.; Boyd, Robert W.; Karimi, Ebrahim

    2016-10-01

    Free electrons with a helical phase front, referred to as "twisted" electrons, possess an orbital angular momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction. This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have numerous potential applications in materials science. Measuring this quantity often relies on a series of projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we propose a nondestructive way of measuring an electron beam's OAM through the interaction of this associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced currents within the loop, which are found to be directly proportional to the electron's OAM value. Moreover, the electron experiences no OAM variations and only minimal energy losses upon the measurement, and, hence, the nondestructive nature of the proposed technique.

  8. Substrate heating measurements in pulsed ion beam film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.C.; Davis, H.A.; Rej, D.J.; Waganaar, W.J. [Los Alamos National Lab., NM (United States); Tallant, D.R. [Cornell Univ., Ithaca, NY (United States). Materials Science and Engineering Dept.; Thompson, M.O. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented.

  9. Measurement of the Vector and Tensor Polarisation of Proton and Deuteron Beams

    CERN Document Server

    Lesiak, M; Budzanowski, A; Chatterjee, A; Ernst, J; Gebel, R; Hawranek, P; Jahn, R; Jha, V; Kilian, K; Kliczewski, S; Kirillov, Da; Kirillov, Di; Kolev, D; Kravcikova, M; Kutsarova, T; Lieb, J; Machner, H; Magiera, A; Maier, R; Martinská, G; Nedev, S; Piskunov, N; Prasuhn, D; Protic, D; Rossen, P; Roy, B J; Sitnik, I; Siudak, R; Tsenov, R V; Ulicny, M; Urbán, J; Vankova, G; Wilkin, C

    2005-01-01

    Measurement of the d + d -> 4He + eta reaction using vector and tensor polarised beam has been performed at COSY using Big Karl magnetic spectrograph. The beam polarisation necessary for obtaining the vector and tensor analysing power for this reaction was measured. The method and the results of the tensor polarisation measurement of the deuteron beam are presented.

  10. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    Science.gov (United States)

    Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martínez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P.

    2016-10-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of ∼106 has been successfully demonstrated and confirmed for the first time in simultaneous beam core (∼109 electrons) and beam halo (∼103 electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an α source, as well as using the electron beams at PHIL, a low energy < 5 MeV photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.

  11. Beam Spin Asymmetry Measurements for Two Pion Photoproduction at CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark D. [Univ. of Glasgow, Scotland (United Kingdom)

    2015-09-01

    The overarching goal of this analysis, and many like it, is to develop our understanding of the strong force interactions within the nucleon by examining the nature of their excitation spectra. As the resonances of these spectra have very short lifetimes (tau = 1x10-23 s) and often have very similar masses, it is often impossible to directly observe resonances in the excitation spectra of nucleons. Polarization observables allow us to study the resonances by looking at how they affect the spin state of final state particles. The beam asymmetry is a polarization observable that allows us to detect the sensitivity of these resonances, and other transition mechanisms, to the electric vector orientation of incident photons. Presented in this thesis are first measurements of the beam asymmetries in the resonant region for the reaction channel pgamma p --> p π+ π-focusing on the intermediate mesonic states rho^0 and f^0, and the final state pions. The analysis used data from the g8b experiment undertaken at the Thomas Jefferson National Accelerator Facility (JLab), the first experiment at JLab to use a linearly polarized photon beam. Using the coherent Bremsstrahlung facility and the CLAS detector of Hall B at JLab allowed for many multi-channel reactions to be detected and the first measurements of many polarization observables including those presented here. A brief overview of the theoretical framework used to undertake this analysis is given, followed by a description of the experimental details of the facilities used, then a description of the calibration of the Bremsstrahlung tagging facility which the author undertook, and finally the analysis is presented and the resulting measurements.

  12. Direct reaction measurements with a 132Sn radioactive ion beam

    OpenAIRE

    Jones, K L; Adekola, A. S.; Bardayan, D. W.; Blackmon, J. C.; Chae, K. Y.; K.A. Chipps; Cizewski, J. A.; Erikson, L.; Harlin, C.; Hatarik, R.; Kapler, R.; Kozub, R.L.; Liang, J. F.; Livesay, R.; Ma, Z.

    2011-01-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the cross section. The magnitude of the nuclear effects was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-t...

  13. LIF Diagnostic for Measuring Beam-Transport Magnetic Fields

    Science.gov (United States)

    Jones, T. G.; Hinshelwood, D. D.; Neri, J. M.; Ottinger, P. F.; Noonan, W. A.

    1997-11-01

    A novel, spatially-resolved diagnostic is being developed to measure magnetic fields associated with intense ion beam propagation through a low-pressure gas, as is envisioned for light ion-driven ICF. The diagnostic technique uses laser-induced fluorescence (LIF) spectroscopy, and can be varied to measure either small or large fields. Small fields, as expected in ballistic transport with solenoidal lens focusing using ~ 1 Torr gas, produce Zeeman shifts, Δ λ_Z, smaller than the transition linewidth, Δ λ. High sensitivity to measure these shifts is achieved by a variation on the Babcock technique.^1 Large fields, as expected in self-pinched transport using 1--100 mTorr gas, produce Δ λZ larger than Δ λ. These Δ λZ will be resolved using an etalon as a narrowband, high-throughput optical filter. Available results from benchtop experiments using calibrated B-fields for both the small- and large-field techniques, and progress in fielding this diagnostic on the Gamble-II accelerator for beam-transport studies will be presented. Work supported by DOE through Sandia National Laboratories. ^ National Research Council Research Associate. ^ Present address University of Maryland, College Park, MD. ^1 W.A. Noonan, et al., Rev. Sci. Instrum. 68, 1032 (1997).

  14. Measurement and Simulation of Beam Centering on CYCIAE-10

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The beam centering is very important for the compact cyclotron, especially for the cyclotrons with the axial injection. It is critical that the cyclotron has a good beam centering to increase the beam current and reduce the beam loss. In the accelerating process,

  15. Protocol for emergency EPR dosimetry in fingernails

    OpenAIRE

    Trompier, F; Kornak, L.; Calas, C.; Romanyukha, A.; LeBlanc, B.; Mitchell, C. A.; Swartz, H M; Clairand, I.

    2007-01-01

    There is an increased need for after-the-fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effective medical triage. Dosimetry based on EPR measurements of fingernails potentially could be an effective tool for this purpose. This paper presents the first operational protocols for EPR fingernail...

  16. In aqua vivo EPID dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Igor; Pecharroman-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; Herk, Marcel J.; Mijnheer, Ben van [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2012-01-15

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D {gamma} evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D {gamma} evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by

  17. Experimental analysis of a novel and low-cost pin photodiode dosimetry system for diagnostic radiology

    Science.gov (United States)

    Nazififard, Mohammad; Suh, Kune Y.; Mahmoudieh, Afshin

    2016-07-01

    Silicon PIN photodiode has recently found broad and exciting applications in the ionizing radiation dosimetry. In this study a compact and novel dosimetry system using a commercially available PIN photodiode (BPW34) has been experimentally tested for diagnostic radiology. The system was evaluated with clinical beams routinely used for diagnostic radiology and calibrated using a secondary reference standard. Measured dose with PIN photodiode (Air Kerma) varied from 10 to 430 μGy for tube voltages from 40 to 100 kVp and tube current from 0.4 to 40 mAs. The minimum detectable organ dose was estimated to be 10 μGy with 20% uncertainty. Results showed a linear correlation between the PIN photodiode readout and dose measured with standard dosimeters spanning doses received. The present dosimetry system having advantages of suitable sensitivity with immediate readout of dose values, low cost, and portability could be used as an alternative to passive dosimetry system such as thermoluminescent dosimeter for dose measurements in diagnostic radiology.

  18. Dosimetry of a cone beam CT device for oral and maxillofacial radiology using Monte Carlo techniques and ICRP adult reference computational phantoms

    Science.gov (United States)

    Morant, JJ; Salvadó, M; Hernández-Girón, I; Casanovas, R; Ortega, R; Calzado, A

    2013-01-01

    Objectives: The aim of this study was to calculate organ and effective doses for a range of available protocols in a particular cone beam CT (CBCT) scanner dedicated to dentistry and to derive effective dose conversion factors. Methods: Monte Carlo simulations were used to calculate organ and effective doses using the International Commission on Radiological Protection voxel adult male and female reference phantoms (AM and AF) in an i-CAT CBCT. Nine different fields of view (FOVs) were simulated considering full- and half-rotation modes, and also a high-resolution acquisition for a particular protocol. Dose–area product (DAP) was measured. Results: Dose to organs varied for the different FOVs, usually being higher in the AF phantom. For 360°, effective doses were in the range of 25–66 μSv, and 46 μSv for full head. Higher contributions to the effective dose corresponded to the remainder (31%; 27–36 range), salivary glands (23%; 20–29%), thyroid (13%; 8–17%), red bone marrow (10%; 9–11%) and oesophagus (7%; 4–10%). The high-resolution protocol doubled the standard resolution doses. DAP values were between 181 mGy cm2 and 556 mGy cm2 for 360°. For 180° protocols, dose to organs, effective dose and DAP were approximately 40% lower. A conversion factor (DAP to effective dose) of 0.130 ± 0.006 μSv mGy−1 cm−2 was derived for all the protocols, excluding full head. A wide variation in dose to eye lens and thyroid was found when shifting the FOV in the AF phantom. Conclusions: Organ and effective doses varied according to field size, acquisition angle and positioning of the beam relative to radiosensitive organs. Good positive correlation between calculated effective dose and measured DAP was found. PMID:22933532

  19. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Gawad, M Abdel; Elgohary, M; Hassaan, M; Emam, M [Al Azhar University, Cairo Egypt (Egypt); Desouky, O [National center for radiation research and technology-Egyptian atomic energy, Cairo (Egypt); Eldib, A [Al Azhar University, Cairo Egypt (Egypt); Fox Chase Cancer Center, Philadelphia, PA (United States); Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolus was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric

  20. A transverse emittance and acceptance measurement system in a low-energy beam transport line

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, H., E-mail: kashiwagi.hirotsugu@jaea.go.jp; Miyawaki, N.; Kurashima, S.; Okumura, S. [Department of Advanced Radiation Technology, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A transverse beam emittance and acceptance measurement system has been developed to visualize the relationship between the injected beam emittance and the acceptance of a cyclotron. The system is composed of a steering magnet, two pairs of slits to limit the horizontal and vertical phase-space, a beam intensity detector just behind the slits for the emittance measurement, and a beam intensity detector in the cyclotron for the acceptance measurement. The emittance is obtained by scanning the slits and measuring the beam intensity distribution. The acceptance is obtained by measuring the distribution of relative beam transmission by injecting small emittance beams at various positions in a transverse phase-space using the slits. In the acceptance measurement, the beam from an ion source is deflected to the defined region by the slits using the steering magnet so that measurable acceptance area covers a region outside the injection beam emittance. Measurement tests were carried out under the condition of accelerating a beam of {sup 16}O{sup 6+} from 50.2 keV to 160 MeV. The emittance of the injected beam and the acceptance for accelerating and transporting the beam to the entrance of the extraction deflector were successfully measured. The relationship between the emittance and acceptance is visualized by displaying the results in the same phase-plane.

  1. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam.

    Science.gov (United States)

    Groetz, J-E; Ounoughi, N; Mavon, C; Belafrites, A; Fromm, M

    2014-08-01

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™ and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  2. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Groetz, J.-E., E-mail: jegroetz@univ-fcomte.fr; Mavon, C.; Fromm, M. [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex (France); Ounoughi, N. [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex (France); Laboratoire de Physique des Rayonnements et Applications, Université de Jijel, B.P. 98 Ouled Aissa, Jijel 18000 (Algeria); Belafrites, A. [Laboratoire de Physique des Rayonnements et Applications, Université de Jijel, B.P. 98 Ouled Aissa, Jijel 18000 (Algeria)

    2014-08-15

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  3. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    Science.gov (United States)

    Groetz, J.-E.; Ounoughi, N.; Mavon, C.; Belafrites, A.; Fromm, M.

    2014-08-01

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  4. Measurements of the luminosity and normalised beam-induced background using the CMS Fast Beam Condition Monitor

    CERN Document Server

    Odell, Nathaniel Jay

    2012-01-01

    The CMS Beam Conditions and Radiation Monitoring system (BRM) is installed to protect the CMS detector from high beam losses and to provide feedback to the LHC and CMS on the beam conditions. The Fast Beam Condition Monitor (BCM1F), one of the sub-detectors in the BRM system, is installed inside the pixel volume close to the beam pipe and consists of two planes of 4 modules each located 1.8 m away from the IP, on both ends. It uses single-crystal CVD diamond sensors, radiation hard front-end electronics and an optical transmission of the signal. It is designed for single particle rate measurements, detecting both machine induced beam background and collision products on a bunch-by-bunch basis. Presented is the implementation of the normalized online beam-induced background measurement and the online instantaneous luminosity measurement. The method for determining the luminosity from the measured rates, including the absolute calibration using the Van der Meer scan, and the measurement performance will be d...

  5. Fundamentals of Radiation Dosimetry

    Science.gov (United States)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  6. Beam Measurements of a CLOUD (Cosmics Leaving OUtdoor Droplets) Chamber

    CERN Document Server

    Kirkby, Jasper

    2001-01-01

    A striking correlation has recently been observed between global cloud cover and the flux of incident cosmic rays. The effect of natural variations in the cosmic ray flux is large, causing estimated changes in the Earth's energy radiation balance that are comparable to those attributed to greenhouse gases from the burning of fossil fuels since the Industrial Revolution. However a direct link between cosmic rays and cloud formation has not been unambiguously established. We therefore propose to experimentally measure cloud (water droplet) formation under controlled conditions in a test beam at CERN with a CLOUD chamber, duplicating the conditions prevailing in the troposphere. These data, which have never been previously obtained, will allow a detailed understanding of the possible effects of cosmic rays on clouds and confirm, or otherwise, a direct link between cosmic rays, global cloud cover and the Earth's climate. The measurements will, in turn, allow more reliable calculations to be made of the residual e...

  7. SU-D-304-03: Small Field Proton Dosimetry Using MicroDiamond and Gafchromic Film

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A; Das, I [Indiana University School of Medicine, Indianapolis, IN (United States); Coutinho, L [Procure Proton Therapy Center, Somerset, NJ, Pittstown, NJ (United States)

    2015-06-15

    Purpose: Certain dosimetric characteristics continue to make proton beam therapy an appealing modality for cancer treatment. The proton Bragg peak allows for conformal radiation dose delivery to the target while reducing dose to normal tissue and organs. As field sizes become very small the benefit of the Bragg peak is diminished due to loss of transverse equilibrium along the central beam axis. Furthermore, aperture scattering contributes additional dose along the central axis. These factors warrant the need for accurate small field dosimetry. In this study small field dosimetry was performed using two different methods. Methods: Small field dosimetry measurements were performed using a PTW microdiamond detector and Gafchromic EBT2 film for aperture sizes ranging from 0.5cm to 10cm and a proton range in water of 10cm to 27cm. The measurements were analyzed and then compared to each other and to reference dosimetry data acquired with a Markus chamber. Results: A decrease in normalized output is observed at small field sizes and at larger ranges in water using both measurement methods. Also, a large variation is observed between the output measurements by microdiamond and film at very small field sizes. At the smallest aperture, normalized output ranged from 0.16 to 0.72 and the percent difference between both measurement methods ranged from 36% to 70% depending on proton range. At field sizes above 5cm the film and microdiamond agree within 3%. Conclusion: Although both measurement methods exhibit a general decrease in output factor at small field sizes, dosimetric measurements for small fields using these two methods can vary significantly. Dosimetry under standard conditions is not sufficient to correctly model the dose distributions and outputs factors for small field sizes, additional small field measurements should be performed.

  8. Analysis of the Influence of Fibre Diameter on Wirescanner Beam Profile Measurements

    CERN Document Server

    King, Quentin

    1988-01-01

    It is often important to be able to measure beam profiles in regions where the beam size is very small. Following concern that the profile measurement might be affected by having a beam size of the same order as the diameter of the wirescanner fibre, the effect was analysed numerically, and the results are presented.

  9. Evaluation the implementation of volumetric modulated arc therapy QA in the radiation therapy treatment according to various factors by using the portal dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Hyeon; Bae, Sun Myung; Seo, Dong Rin; Kang, Tae Young; Baek, Geum Mun [Dept. of Radiation Oncology, ASAN Medical Center, Seoul (Korea, Republic of)

    2015-12-15

    The pre-treatment QA using Portal dosimetry for Volumetric Arc Therapy To analyze whether maintaining the reproducibility depending on various factors. Test was used for TrueBeam STx{sup TM} (Ver.1.5, Varian, USA). Varian Eclipse Treatment planning system(TPS) was used for planning with total of seven patients include head and neck cancer, lung cancer, prostate cancer, and cervical cancer was established for a Portal dosimetry QA plan. In order to measure these plans, Portal Dosimetry application (Ver.10) (Varian) and Portal Vision aS1000 Imager was used. Each Points of QA was determined by dividing, before and after morning treatment, and the after afternoon treatment ended (after 4 hours). Calibration of EPID(Dark field correction, Flood field correction, Dose normalization) was implemented before Every QA measure points. MLC initialize was implemented after each QA points and QA was retried. Also before QA measurements, Beam Ouput at the each of QA points was measured using the Water Phantom and Ionization chamber(IBA dosimetry, Germany). The mean values of the Gamma pass rate(GPR, 3%, 3mm) for every patients between morning, afternoon and evening was 97.3%, 96.1%, 95.4% and the patient's showing maximum difference was 95.7%, 94.2% 93.7%. The mean value of GPR before and after EPID calibration were 95.94%, 96.01%. The mean value of Beam Output were 100.45%, 100.46%, 100.59% at each QA points. The mean value of GPR before and after MLC initialization were 95.83%, 96.40%. Maintain the reproducibility of the Portal Dosimetry as a VMAT QA tool required management of the various factors that can affect the dosimetry.

  10. SU-E-T-624: Portal Dosimetry Commissioning of Multiple (6) Varian TrueBeam Linacs Equipped with PortalVision DMI MV Imager

    Energy Technology Data Exchange (ETDEWEB)

    Weldon, M; DiCostanzo, D; Grzetic, S; Hessler, J [OH State University, Columbus, OH (United States)

    2015-06-15

    Purpose: To show that a single model for Portal Domisetry (PD) can be established for beam-matched TrueBeam™ linacs that are equipped with the DMI imager (43×43cm effective area). Methods: Our department acquired 6 new TrueBeam™s, 4 “Slim” and 2 “Edge” models. The Slims were equipped with 6 and 10MV photons, and the Edges with 6MV. MLCs differed between the Slims and Edges (Millennium 120 vs HD-MLC respectively). PD model was created from data acquired using a single linac (Slim). This includes maximum field size profile, as well as output factors and acquired measured fluence using the DMI imager. All identical linacs were beam-matched, profiles were within 1% at maximum field size at a variety of depths. The profile correction file was generated from 40×40 profile acquired at 5cm depth, 95cm SSD, and was adjusted for deviation at the field edges and corners. The PD model and profile correction was applied to all six TrueBeam™s and imagers. A variety of jaw only and sliding window (SW) MLC test fields, as well as TG-119 and clinical SW and VMAT plans were run on each linac to validate the model. Results: For 6X and 10X, field by field comparison using 3mm/3% absolute gamma criteria passed 90% or better for all cases. This was also true for composite comparisons of TG-199 and clinical plans, matching our current department criteria. Conclusion: Using a single model per photon energy for PD for the TrueBeam™ equipped with a DMI imager can produce clinically acceptable results across multiple identical and matched linacs. It is also possible to use the same PD model despite different MLCs. This can save time during commissioning and software updates.

  11. Method and apparatus for measuring properties of particle beams using thermo-resistive material properties

    Science.gov (United States)

    Degtiarenko, Pavel V.; Dotson, Danny Wayne

    2007-10-09

    A beam position detector for measuring the properties of a charged particle beam, including the beam's position, size, shape, and intensity. One or more absorbers are constructed of thermo-resistive material and positioned to intercept and absorb a portion of the incoming beam power, thereby causing local heating of each absorber. The local temperature increase distribution across the absorber, or the distribution between different absorbers, will depend on the intensity, size, and position of the beam. The absorbers are constructed of a material having a strong dependence of electrical resistivity on temperature. The beam position detector has no moving parts in the vicinity of the beam and is especially suited to beam areas having high ionizing radiation dose rates or poor beam quality, including beams dispersed in the transverse direction and in their time radio frequency structure.

  12. Beam Spot Measurement on a 400 keV Electron Accelerator

    DEFF Research Database (Denmark)

    Miller, Arne

    1979-01-01

    A line probe is used to measure the beam spot radius and beam divergence at a 400 keV ICT electron accelerator, and a method is shown for reducing the line probe data in order to get the radial function.......A line probe is used to measure the beam spot radius and beam divergence at a 400 keV ICT electron accelerator, and a method is shown for reducing the line probe data in order to get the radial function....

  13. A generalized calibration procedure for in vivo transit dosimetry using siemens electronic portal imaging devices.

    Science.gov (United States)

    Fidanzio, Andrea; Greco, Francesca; Gargiulo, Laura; Cilla, Savino; Sabatino, Domenico; Cappiello, Massimo; Di Felice, Cinzia; Di Castro, Elisabetta; Azario, Luigi; Russo, Mariateresa; Pompei, Luciano; D'Onofrio, Guido; Piermattei, Angelo

    2011-03-01

    A practical and accurate generalized in vivo dosimetry procedure has been implemented for Siemens linacs supplying 6, 10, and 15 MV photon beams, equipped with aSi electronic portal imaging devices (EPIDs). The in vivo dosimetry method makes use of correlation ratios between EPID transit signal, s (t) (0) (TPR,w,L), and phantom mid-plane dose, D (0)(TPR,w,L), as functions of phantom thickness, w, square field dimensions, L, and tissue-phantom ratio TPR(20,10). The s (t) (0) (TPR,w,L) and D (0)(TPR,w,L) values were defined to be independent of the EPID sensitivity and monitor unit calibration, while their dependence on TPR(20,10) was investigated to determine a set of generalized correlation ratios to be used for beams with TPR(20,10) falling in the examined range. This way, other radiotherapy centers can use the method with no need to locally perform the whole set of measurements in solid water phantoms, required to implement it. Tolerance levels for 3D conformal treatments, ranging between ±5 and ±6% according to tumor type and location, were estimated for comparison purposes between reconstructed isocenter dose, D (iso), and treatment planning system (TPS) computed dose D (iso,TPS). Finally a dedicated software, interfaceable with record and verify (R&V) systems used in the centers, was developed to obtain in vivo dosimetry results in less than 2 min after beam delivery.

  14. Investigations in CO2 laser beam caustics measuring techniques

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Bagger, Claus

    2004-01-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 which are describing test methods for laser beam parameters have been approved.......The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 which are describing test methods for laser beam parameters have been approved....

  15. The determination of phantom and collimator scatter components of the output of megavoltage photon beams; Measurement of the collimator scatter part with a beam-coaxial narrow cylindrical phantom

    Energy Technology Data Exchange (ETDEWEB)

    Gasteren, J.J.M. van (Catholic University Nijmegen, St. Radboud Hospital (Netherlands). Department of Radiotherapy); Heukelom, S. (Nederlands Kanker Inst. ' Antoni van Leeuwenhoekhuis' , Amsterdam (Netherlands)); Kleffens, H.J. van (Dr. Daniel den Hoed Cancer Center, Rotterdam (Netherlands)); Laarse, R. van der (Nucletron Research BV, Leersum (Netherlands)); Venselaar, J.L.M. (Dr. Bernard Verbeeten Institute, Tilburg (Netherlands)); Westermann, C.F. (Westeinde Hospital, The Hague (Netherlands). Department of Clinical Physics)

    1991-04-01

    The separation of the total scatter correction factor S{sub c,p} in a collimator scatter component, S{sub c}, and a phantom scatter component, S{sub p}, has proven to be a useful concept in megavoltage photon beam dose calculations in situations which differ from the standard treatment geometry. A clinically applicable method to determine S{sub c} is described. Measurements are carried out with an ionization chamber, placed at a depth beyond the range of contaminant electrons, in a narrow cylindrical polystyrene phantom with a diameter of 4 cm of which the axis coincides with the beam axis. S{sub c,p} is measured in a full-scatter phantom and S{sub p} can be derived from S{sub c,p} and S{sub c}. In order to obtain a reliable separation, i.e. excluding the influence of contaminant electrons, measurements of S{sub c,p} have been carried out at depths of 5 cm for photon beams with a quality (QI) index up to and including 0.75 and a depth of 10 cm with QI larger than 0.75. These depths are in accordance with recommendations given in recent dosimetry protocols. The consistency of the method was checked by comparing calculated and measured values of S{sub c,p} for a set of blocked fields for a range of photon beam energies from {sup 60}Co up to 25 MV showing a maximum deviation of 2 percent. The method can easily be implemented in existing procedures for the calculation of the number of monitor units to deliver a specified dose to a target volume. (author). 27 refs.; 7 figs.; 2 tabs.

  16. Thermoluminescence in medical dosimetry; Termoluminiscencia en dosimetria medica

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2011-10-15

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  17. Plunger lifetime measurements after Coulomb excitation at intermediate beam energies

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, Matthias; Dewald, Alfred; Fransen, Christoph; Ilie, Gabriela; Jolie, Jan; Melon, Barbara; Pissulla, Thomas; Rother, Wolfram; Zell, Karl-Oskar [University of Cologne (Germany); Petkov, Pavel [University of Cologne (Germany); INRNE (Bulgaria); Chester, Aaron; Adrich, Przemyslaw; Bazin, Daniel; Bowen, Matt; Gade, Alexandra; Glasmacher, Thomas; Miller, Dave; Moeller, Victoria; Starosta, Krzysztof; Stolz, Andreas; Vaman, Constantin; Voss, Philip; Weissharr, Dirk [Michigan State Univerity (United States); Moeller, Oliver [TU Darmstadt (Germany)

    2008-07-01

    Two recoil-distance-doppler-shift (RDDS) experiments were performed at the NSCL/MSU using Coulomb excitations of the projectile nuclei {sup 110}Pd, {sup 114}Pd at beam energies of 54 MeV/u in order to investigate the evolution of deformation of neutron rich paladium isotopes. The experimental set-up consisted of a dedicated plunger device, developed at the University of Cologne, the SEGA Ge-array and the S800 spectrometer. Lifetimes of the 2{sub 1}{sup +}-states in {sup 110}Pd and {sup 114}Pd were derived from the analysis of the {gamma}-line-shapes as well as from the measured decay-curves. Special features of the data analysis, e.g. features originating from the very high recoil velocities, are discussed.

  18. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    Science.gov (United States)

    Brady, Samuel L.; Gunasingha, Rathnayaka; Yoshizumi, Terry T.; Howell, Calvin R.; Crowell, Alexander S.; Fallin, Brent; Tonchev, Anton P.; Dewhirst, Mark W.

    2010-09-01

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the 2H(d,n)3He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  19. ESR dosimetry: achievements and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Baffa, O., E-mail: baffa@usp.br [Universidade de Sao Paulo, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Electron Spin Resonance (ESR), also known as Electron Paramagnetic Resonance (EPR) and more recently as Electron Magnetic Resonance (Emr), is a spectroscopy technique able to detect unpaired electrons such as those created by the interaction ionizing radiation with matter. When the unpaired electrons created by ionizing radiation are stable over some reasonable time, ESR can be used to measure the radiation dose deposited in the material under study. In principle, any insulating material that satisfies this requisite can be used as a dosimeter. ESR has been used in retrospective dosimetry in case of radiological accidents using natural constituents of human body such as teeth, bones and nails as well as fortuitous materials as sugar, sweeteners and plastics. When using teeth the typical detected dose is 0.5 Gy for, for X-Band spectrometers (9 GHz) and even lower doses if higher frequency spectrometers are used. Clinical dosimetry is another area of potential use of this dosimetric modality. In this application the amino acid alanine has been proposed and being used. Alanine dosimeters are very easy to prepare and require no complicated treatments for use. Alanine/ESR dosimetry satisfies many of the required properties for clinical applications such as water equivalent composition, independence of response for the energy range used in therapy and high precision. Other organic materials such as ammonium tartrate are being investigated to increase the sensitivity of ESR for clinical applications. Finally, industrial applications can also benefit from this dosimetry. The challenges to expand applications, the number of users and research groups of ESR dosimetry will be discussed. (Author)

  20. Synthetic diamond devices for medical dosimetry applied to radiotherapy; Etude et developpement de dispositifs en diamant synthetique pour la dosimetrie medicale: applications en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, C

    2007-06-15

    The aim of this thesis, lead in the framework of an integrated European project entitled M.A.E.S.T.R.O. for ' Methods and Advanced Equipment for Simulation and Treatment in Radio Oncology', was to develop and test synthetic diamond detector in clinical environment for new modalities used in radiotherapy. Diamond is a good candidate for the detection of high energy beams in medical fields. It can be used for passive dosimetry, as thermoluminescent dosimeters or for active dosimetry as ionisation chambers. These two applications are presented here. Concerning the thermoluminescence, several impurities or dopants (boron, phosphorus, and nitrogen) have been incorporated in the diamond films during growth, in order to modify the material dosimetric properties and a detailed study of nitrogen-containing films is proposed. The second part presents the results obtained in active dosimetry. Two guide lines were followed: the measurement set-up optimisation and the material modification. The first dosimetric studies under radiotherapy beams concerning nitrogen-containing polycrystalline diamond as well as high purity single crystal diamond are conclusive. The detectors behaviours are in agreement with the recommendations of the International Atomic Energy Agency (IAEA). (author)

  1. Monte Carlo simulations to replace film dosimetry in IMRT verification.

    Science.gov (United States)

    Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig

    2011-01-01

    Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase.

  2. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, J., E-mail: julianna.szabo@energia.mta.hu [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary); Palfalvi, J.K. [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary)

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  3. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    CERN Document Server

    Liu, Shan; Cornebise, Patrick; Faus-Golfe, Angeles; Fuster-Martínez, Nuria; Griesmayer, Erich; Guler, Hayg; Kubytskyi, Viacheslav; Sylvia, Christophe; Toshiaki, Tauchi; Terunuma, Nobuhiro; Bambade, Philip

    2015-01-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of $\\sim10^6$ has been successfully demonstrated and confirmed for the first time by simultaneous beam core ($\\sim10^9$ electrons) and beam halo ($\\sim10^3$ electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of the diamond sensors using an $\\alpha$ source as well as using the electron beams at PHIL, a low energy ($< 10$ MeV) photo-injector at LAL, and at ATF2. First beam halo measurement results ...

  4. Dosimetry of iodoantipyrine.

    Science.gov (United States)

    Chu, R Y; Ekeh, S; Basmadjian, G

    1989-01-01

    Dosimetry of iodoantipyrine labeled with radioactive iodine was determined by measuring the biodistribution of 131I-iodoantipyrine in 41 female rabbits. Following administration of the radiopharmaceutical, subjects were killed at 0.5, 6, 12, 17, 24, 36, and 48 h. Organs and samples of tissues and body fluids were assayed. Results were corrected for physical decay. Exponential functions were employed to describe the time-concentration curves; representative value would be the biological half life of 9.96 +/- 0.55 h for blood. Cumulated activity estimates for 123I, 125I and 131I were then computed. Extrapolation to absorbed dose in humans followed the formulation of the Medical International Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The whole body absorbed doses are 7 mu Gray, 5 mu Gray and 29 mu Gray per MBq of 123I, 125I, and 131I administered respectively.

  5. Measuring the polarization of a rapidly precessing deuteron beam

    Science.gov (United States)

    Bagdasarian, Z.; Bertelli, S.; Chiladze, D.; Ciullo, G.; Dietrich, J.; Dymov, S.; Eversmann, D.; Fanourakis, G.; Gaisser, M.; Gebel, R.; Gou, B.; Guidoboni, G.; Hejny, V.; Kacharava, A.; Kamerdzhiev, V.; Lehrach, A.; Lenisa, P.; Lorentz, B.; Magallanes, L.; Maier, R.; Mchedlishvili, D.; Morse, W. M.; Nass, A.; Oellers, D.; Pesce, A.; Prasuhn, D.; Pretz, J.; Rathmann, F.; Shmakova, V.; Semertzidis, Y. K.; Stephenson, E. J.; Stockhorst, H.; Ströher, H.; Talman, R.; Thörngren Engblom, P.; Valdau, Yu.; Weidemann, C.; Wüstner, P.

    2014-05-01

    This paper describes a time-marking system that enables a measurement of the in-plane (horizontal) polarization of a 0.97-GeV/c deuteron beam circulating in the Cooler Synchrotron (COSY) at the Forschungszentrum Jülich. The clock time of each polarimeter event is used to unfold the 120-kHz spin precession and assign events to bins according to the direction of the horizontal polarization. After accumulation for one or more seconds, the down-up scattering asymmetry can be calculated for each direction and matched to a sinusoidal function whose magnitude is proportional to the horizontal polarization. This requires prior knowledge of the spin tune or polarization precession rate. An initial estimate is refined by resorting the events as the spin tune is adjusted across a narrow range and searching for the maximum polarization magnitude. The result is biased toward polarization values that are too large, in part because of statistical fluctuations but also because sinusoidal fits to even random data will produce sizable magnitudes when the phase is left free to vary. An analysis procedure is described that matches the time dependence of the horizontal polarization to templates based on emittance-driven polarization loss while correcting for the positive bias. This information will be used to study ways to extend the horizontal polarization lifetime by correcting spin tune spread using ring sextupole fields and thereby to support the feasibility of searching for an intrinsic electric dipole moment using polarized beams in a storage ring. This paper is a combined effort of the Storage Ring EDM collaboration and the JEDI collaboration.

  6. Beam Parameter Measurement and Control at the SNS Target

    CERN Document Server

    Plum, Michael; McManamy, Tom

    2005-01-01

    The spallation neutron production target at the SNS facility is designed for 1.4 MW beam power. Both beam position and profile must be carefully controlled within narrow margins to avoid damage to the target. The position must be within 2 mm of the target center, and 90% of the beam must be within the nominal 70 mm x 200 mm spot size, without exceeding 0.18 A/m2

  7. Measurements of an ion beam diameter extracted into air through a glass capillary

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Natsuko, E-mail: fujita.natsuko@jaea.go.jp [Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630 8506 (Japan); Yamaki, Atsuko [Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630 8506 (Japan); Ishii, Kunikazu; Ogawa, Hidemi [Department of Physics, Nara Women’s University, Nara, 630 8506 (Japan)

    2013-11-15

    To establish techniques for in-air materials analysis using a glass capillary, we studied the beam distribution extracted in air as a function of the distance between the exit of the capillary and the target. We measured three-dimensional intensity distributions of the extracted beams, and compared the observed results with the model calculation. The comparison showed that the glass capillary technique is designed to reduce a divergence of the beam extracted into the air by a beam-focusing effect.

  8. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    OpenAIRE

    2016-01-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation f...

  9. Dose intercomparison studies for 60Co gamma-ray and electron beam irradiation in the year 2002

    Institute of Scientific and Technical Information of China (English)

    LIN Min; Takuji KOJIMA; Zofia PEIMEL-STUGLIK; CHEN Yun-Dong; CUI Ying; CHEN Ke-Sheng; LI Hua-Zhi; XIAO Zhen-Hong; Slawomir FABISIAK

    2004-01-01

    Dose inter-comparison studies for 60Co γ-ray and 10MeV electron beam irradiation were carried out from July to October in 2002. The purpose of the studies was to check the reliability of the alanine-PE film dosimeters made by CIAE, which will be used as transfer standard dosimetry system mainly for electron beam irradiation.The expanded uncertainty of CIAE alanine/EPR dosimetry system was 4.1% for doses not higher than 10 kGy and 5.4% for those above 10 kGy (k=2). CIAE alanine-PE film dosimeters were sent to JAERI, RISO (National Laboratory in Denmark) and INCT respectively, which were irradiated by 60Co gamma-rays or electron beams in each laboratory. The irradiated dosimeters were then sent back to CIAE for electron paramagnetic resonance (EPR) analysis.The agreements were obtained to be ±1.9% for gamma-ray dose measurement and ±4.3% for electron beam dose measurement, which were all within the combined uncertainty of the reference and CIAE alanine/EPR dosimetry system. Furthermore, the overall mean ratio was found to be 0.995 with 1.8% in the coefficient of variation (CV). The preliminary inter-comparison studies indicated that CIAE film alanine/EPR dosimetry system had the potential to be used as a transfer dosimetry system for high dose measurement.

  10. Space Charge Correction on Emittance Measurement of Low Energy Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Treado, Colleen J.; /Massachusetts U., Amherst

    2012-09-07

    The goal of any particle accelerator is to optimize the transport of a charged particle beam along a set path by confining the beam to a small region close to the design trajectory and directing it accurately along the beamline. To do so in the simplest fashion, accelerators use a system of magnets that exert approximately linear electromagnetic forces on the charged beam. These electromagnets bend the beam along the desired path, in the case of bending magnets, and constrain the beam to the desired area through alternating focusing and defocusing effects, in the case of quadrupole magnets. We can model the transport of such a beam through transfer matrices representing the actions of the various beamline elements. However, space charge effects, produced from self electric fields within the beam, defocus the beam and must be accounted for in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the emittance of a beam under space charge effects using a least square fit to determine the initial properties of the beam given the beam size measured at a specific point after transport.

  11. Dosimetry service removal

    CERN Multimedia

    Safety Commission

    2010-01-01

    Dear personal dosimeter user, Please note that the Dosimetry service has moved in building 55, the service is now located in the main floor: 55-R-004. Main floor instead of second floor. On your right hand when accessing in the building. Thank you Dosimetry Service

  12. LogAmp electronics and optical transmission for the new SPS beam position measurement system

    Science.gov (United States)

    Bogey, T.; Deplano, C.; Gonzalez, J. L.; Savioz, J. J.

    2013-12-01

    A new front-end board is under development for the CERN SPS Multi ORbit Position System (MOPOS). Based on logarithmic amplifiers, it measures the beam position over a large dynamic range of beam intensities and resolves the multi-batch structure of the SPS beams. Analogue data are digitized at 10 MS/s, packed in frames by an FPGA and on every turn sent to the readout board, via a 2.4 Gb/s optical transmission link. A first prototype has been successfully tested with several SPS beams. This paper presents an overall description of the system and its capabilities highlighted by the first beam measurements.

  13. LogAmp electronics and Optical Transmission for the new SPS Beam Position Measurement System

    CERN Document Server

    Deplano, C; Gonzalez, J L; Savioz, J J

    2013-01-01

    A new front-end board is under development for the CERN SPS Multi ORbit Position System (MOPOS). Based on logarithmic amplifiers, it measures the beam position over a large dynamic range of beam intensities and resolves the multi-batch structure of the SPS beams. Analogue data are digitized at 10 MS/s, packed in frames by an FPGA and on every turn sent to the readout board, via a 2.4 Gb/s optical transmission link. A first prototype has been successfully tested with several SPS beams. This paper presents an overall description of the system and its capabilities highlighted by the first beam measurements.

  14. Latest developments in silica fibre luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D. A.; Abdul S, S. F.; Jafari, S. M.; Alanazi, A. [University of Surrey, Department of Physics, GU2 7XH Guildford, Surrey (United Kingdom); Amouzad M, G. [University of Malaya, Faculty of Engineering, Department of Electrical Engineering, Integrated Lightwave Research Group, 50603 Kuala Lumpur (Malaysia); Addul R, H. A.; Mizanur R, A. K. M.; Zubair, H. T.; Begum, M.; Yusoff, Z.; Omar, N. Y. M. [Multimedia University, Faculty of Engineering, 2010 Cyberjaya, Selangor (Malaysia); Maah, M. J. [University of Malaya, Department of Chemistry, 50603 Kuala Lumpur (Malaysia); Collin, S. [National Physical Laboratory, Hampton Road, Teddington, TW11 OLW Middlesex (United Kingdom); Mat-Sharif, K. A.; Muhd-Yassin, S. Z.; Zulkifli, M. I., E-mail: d.a.bradley@surrey.ac.uk [Telekom Malaysia Research and Development Sdn Bhd., 63000 Cyberjaya, Selangor (Malaysia)

    2015-10-15

    Full text: Using tailor made sub-mm diameter doped-silica fibres, we are carrying out luminescence dosimetry studies for a range of situations, including thermoluminescence (Tl)investigations on a liquid alpha source formed of {sup 223}RaCl (the basis of the Bayer Health care product Xofigo), the Tl response to a 62 MeV proton source and Tl response to irradiation from an {sup 241}Am-Be neutron source. In regard to the former, in accord with the intrinsic high linear energy transfer (Let) and short path length (<100 um) of the α-particles in calcified tissue, the product is in part intended as a bone-seeking radionuclide for treatment of metastatic cancer, offering high specificity and efficacy. The Tl yield of Ge-doped SiO{sub 2} fibres has been investigated including for photonic crystal fibre un collapsed, flat fibres and single mode fibres, these systems offering many advantages over conventional passive dosimetry types. In particular, one can mention comparable and even superior sensitivity, an effective atomic number Z{sub eff} of the silica dosimetric material close to that of bone, and the glassy nature of the fibres offering the additional advantage of being able to place such dosimeters directly into liquid environments. Finally we review the use of our tailor made fibres for on-line radioluminescence measurements of radiotherapy beams. The outcome from these various lines of research is expected to inform development of doped fiber radiation dosimeters of versatile utility, ranging from clinical applications through to industrial studies and environmental evaluations. (Author)

  15. Measurement of Velocity Distribution in Atomic Beam by Diode Laser with Narrow Line width

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; WANG Fengzhi; YANG Donghai; WANG YiQiu

    2001-01-01

    In this paper, by using the detecting laser beam interacts with the atomic beam at a sharp angle and the Doppler frequency shift effect, the velocity distribution in cesium atomic beam is measured with a diode laser of narrow linewidth of 1 MHz. The effects of the atomic natural line width and cycling transition detecting factor on the measured results have been analyzed. Finally, the measured results have been compared with the theoretical calculation.

  16. Non-perturbative measurement of low-intensity charged particle beams

    Science.gov (United States)

    Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.

    2017-01-01

    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.

  17. First Measurement of Beam-Recoil Observables Cx and Cz

    Energy Technology Data Exchange (ETDEWEB)

    R. Bradford; R.A. Schumacher; G. Adams; M.J. Amaryan; P. Ambrozewicz; E. Anciant; M. Anghinolfi; B. Asavapibhop; G. Asryan; G. Audit; H. Avakian; H. Bagdasaryan; N. Baillie; J.P. Ball; N.A. Baltzell; S. Barrow; V. Batourine; M. Battaglieri; K. Beard; I. Bedlinskiy; M. Bektasoglu; M. Bellis; N. Benmouna; B.L. Berman; N. Bianchi; A.S. Biselli; B.E. Bonner; S. Bouchigny; S. Boiarinov; D. Branford; W.J. Briscoe; W.K. Brooks; S. B¨ultmann; V.D. Burkert; C. Butuceanu; J.R. Calarco; S.L. Careccia; D.S. Carman; B. Carnahan; S. Chen; P.L. Cole; A. Coleman; P. Collins; P. Coltharp; D. Cords; † P. Corvisiero; D. Crabb; H. Crannell; V. Crede; J.P. Cummings; R. De Masi; E. De Sanctis; R. De Vita; P.V. Degtyarenko; H. Denizli; L. Dennis; A. Deur; K.V. Dharmawardane; R. Dickson; C. Djalali; G.E. Dodge; J. Donnelly; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; O.P. Dzyubak; H. Egiyan; ; K.S. Egiyan; L. El Fassi; L. Elouadrhiri; A. Empl; P. Eugenio; R. Fatemi; G. Fedotov; G. Feldman; R.J. Feuerbach; T.A. Forest; H. Funsten; M. Garcon; G. Gavalian; ; G.P. Gilfoyle; K.L. Giovanetti; F.X. Girod; J.T. Goetz; A. Gonenc; R.W. Gothe; K.A. Griffioen; M. Guidal; M. Guillo; N. Guler; L. Guo; V. Gyurjyan; C. Hadjidakis; K. Hafidi; H. Hakobyan; R.S. Hakobyan; J. Hardie; D. Heddle; F.W. Hersman; K. Hicks; I. Hleiqawi; M. Holtrop; J. Hu; M. Huertas; C.E. Hyde-Wright; Y. Ilieva; D.G. Ireland; B.S. Ishkhanov; E.L. Isupov; M.M. Ito; D. Jenkins; H.S. Jo; K. Joo; H.G. Juengst; N. Kalantarians; J.D. Kellie; M. Khandaker; K.Y. Kim; K. Kim; W. Kim; A. Klein; F.J. Klein; M. Klusman; M. Kossov; L.H. Kramer; V. Kubarovsky; J. Kuhn; S.E. Kuhn; S.V. Kuleshov; J. Lachniet; J.M. Laget; J. Langheinrich; D. Lawrence; A.C.S. Lima; K. Livingston; H.Y. Lu; K. Lukashin; M. MacCormick; J.J. Manak; C. Marchand; N. Markov; S. McAleer; B. McKinnon; J.W.C. McNabb; B.A. Mecking; M.D. Mestayer; C.A. Meyer; T. Mibe; K. Mikhailov; M. Mirazita; R. Miskimen; V. Mokeev; K. Moriya; S.A. Morrow; M. Moteabbed; V. Muccifora; J. Mueller; G.S. Mutchler; P. Nadel-Turonski; J. Napolitano; R. Nasseripour; N. Natasha; S. Niccolai; G. Niculescu; I. Niculescu; B.B. Niczyporuk; M.R. Niroula; R.A. Niyazov; M. Nozar; G.V. O’Rielly; M. Osipenko; A.I. Ostrovidov; K. Park; E. Pasyuk; C. Paterson; S.A. Philips; J. Pierce; N. Pivnyuk; D. Pocanic; O. Pogorelko; E. Polli; I. Popa; S. Pozdniakov; B.M. Preedom; J.W. Price; Y. Prok; D. Protopopescu; L.M. Qin; B.P. Quinn; B.A. Raue; G. Riccardi; G. Ricco; M. Ripani; B.G. Ritchie; F. Ronchetti; G. Rosner; P. Rossi; D. Rowntree; P.D. Rubin; F. Sabatie; J. Salamanca; C. Salgado; J.P. Santoro; ; V. Sapunenko; V.S. Serov; A. Shafi; Y.G. Sharabian; J. Shaw; N.V. Shvedunov; S. Simionatto; A.V. Skabelin; E.S. Smith; L.C. Smith; D.I. Sober; D. Sokhan; M. Spraker; A. Stavinsky; S.S. Stepanyan; S. Stepanyan; B.E. Stokes; P. Stoler; I.I. Strakovsky; S. Strauch; M. Taiuti; S. Taylor; D.J. Tedeschi; U. Thoma; R. Thompson; A. Tkabladze; S. Tkachenko; L. Todor; C. Tur; M. Ungaro; M.F. Vineyard; A.V. Vlassov; K. Wang; D.P. Watts; L.B. Weinstein; H. Weller; D.P. Weygand; M. Williams; E. Wolin; M.H. Wood; A. Yegneswaran; J. Yun; L. Zana; J. Zhang; B. Zhao; and Z.W. Zhao

    2007-03-01

    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\\vec\\gamma + p \\to K^+ + \\vec\\Lambda$ and $\\vec\\gamma + p \\to K^+ + \\vec\\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\\cos\\theta_{K^+}^{c.m.}< +0.95$. For the $\\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\\it total} $\\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

  18. Measuring Broadband IR Irradiance in the Direct Solar Beam (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 um and 50 um, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and are calibrated with traceability to consensus reference, yet are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degrees to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  19. Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Konings, J.; Xie, Y.; Dooraghi, M.; Sengupta, M.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 micrometers to 3 micrcometers, while the present photovoltaic cells are limited to approximately 0.3 micrometers to 1 micrometers. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus reference, yet calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degres to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  20. Subtraction of beam-associated background in R measurement

    CERN Document Server

    Yan Wen Biao; Chi Shao Peng; Huang Guang Shun; Zhang Lei; Zhang Li; Zhao Zheng Gu; Dai Yu Mei; Li Hui; Wang Zhi Yong

    2002-01-01

    Using R scan data collected at BES II detector, the authors study the character of beam-associated background. The authors use the method of f factor and the fitting of event vertices to subtract the residual beam-associated background. The difference between the R values obtained by using these two methods is between 0.3% and 2.3%

  1. Towards a mechanistic analysis of Benkelman beam deflection measurements

    NARCIS (Netherlands)

    Visser, A.F.H.M.; Priambodo Koesrindartono, D.

    2000-01-01

    This paper introduces and describes the Benkelman beam deflection test. Furthermore Benkelman beam tests are simulated using two multi-layer programs, based on an elastic and visco-elastic material model for asphalt. The results of these two programs are compared with each other. Finally, using the

  2. Measurement of the polarisation of a high energy muon beam

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Ahmad, S.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, G.; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjoerkholm, P.; Bonner, B.E.; Botton, N. de; Boutemeur, M.; Bradamante, F.; Bressan, A.; Bruell, A.; Buchanan, J.; Bueltmann, S.; Burtin, E.; Cavata, C.; Chen, J.P.; Clement, J.; Clocchiatti, M.; Corcoran, M.D.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Dalla Torre, S.; Dantzig, R. van; Day, D.; Demolis, J.M.; Dhawan, S.; Dulya, C.; Dupont, J.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Frois, B.; Garabatos, C.; Garzon, J.A.; Gatignon, L.; Gaussiran, T.; Giorgi, M.; Goeler, E. von; Gomez, A.; Gracia, G.; Grosse Perdekamp, M.; Harrach, D. von; Hasegawa, T.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Jong, M. de; Kabuss, E.M.; Kaiser, R.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kishi, A.; Kisselev, Yu.; Klostermann, L.; Krivokhijine, V.; Kukhtin, V.; Kyynaeraeinen, J.; La; Spin Muon Collaboration (SMC)

    1994-04-11

    A muon beam polarimeter has been built for the SMC experiment at the CERN SPS, for muon energies of 100 to 200 GeV. The beam polarisation is determined from the energy spectrum of positrons from the decay [mu][sup +][yields]e[sup +][nu][sub e] anti [nu][sub [mu

  3. Use of a liquid ionization chamber for stereotactic radiotherapy dosimetry.

    Science.gov (United States)

    Wagner, A; Crop, F; Lacornerie, T; Vandevelde, F; Reynaert, N

    2013-04-21

    Liquid ionization chambers (LICs) offer an interesting tool in the field of small beam dosimetry, allowing better spatial resolution and reduced perturbation effects. However, some aspects remain to be addressed, such as the higher recombination and the effects from the materials of the detector. Our aim was to investigate these issues and their impact. The first step was the evaluation of the recombination effects. Measurements were performed at different SSDs to vary the dose per pulse, and the collection efficiency was obtained. The BEAMnrc code was then used to model the Cyberknife head. Finally, the liquid ionization chamber itself was modelled using the EGSnrc-based code Cavity allowing the evaluation of the influence of the volume and the chamber materials. The liquid ionization charge collection efficiency is approximately 0.98 at 1.5 mGy pulse(-1), the highest dose per pulse that we have measured. Its impact on the accuracy of output factors is less than half a per cent. The detector modelling showed a significant contribution from the graphite electrode, up to 6% for the 5 mm collimator. The dependence of the average electronic mass collision stopping power of iso-octane with beam collimation is negligible and thus has no influence on output factor measurements. Finally, the volume effect reaches 5% for the small 5 mm collimator and becomes much smaller (<0.5%) for diameters above 10 mm. LICs can effectively be used for small beam relative dosimetry as long as adequate correction factors are applied, especially for the electrode and volume effects.

  4. Micrometer-resolved film dosimetry using a microscope in microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bartzsch, Stefan, E-mail: stefan.bartzsch@icr.ac.uk; Oelfke, Uwe [The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG (United Kingdom); Lott, Johanna; Welsch, Katrin [Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Bräuer-Krisch, Elke [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, Grenoble Cedex 9 38043 (France)

    2015-07-15

    Purpose: Microbeam radiation therapy (MRT) is a still preclinical tumor therapy approach that uses arrays of a few tens of micrometer wide parallel beams separated by a few 100 μm. The production, measurement, and planning of such radiation fields are a challenge up to now. Here, the authors investigate the feasibility of radiochromic film dosimetry in combination with a microscopic readout as a tool to validate peak and valley doses in MRT, which is an important requirement for a future clinical application of the therapy. Methods: Gafchromic{sup ®} HD-810 and HD-V2 films are exposed to MRT fields at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF) and are afterward scanned with a microscope. The measured dose is compared with Monte Carlo calculations. Image analysis tools and film handling protocols are developed that allow accurate and reproducible dosimetry. The performance of HD-810 and HD-V2 films is compared and a detailed analysis of the resolution, noise, and energy dependence is carried out. Measurement uncertainties are identified and analyzed. Results: The dose was measured with a resolution of 5 × 1000 μm{sup 2} and an accuracy of 5% in the peak and between 10% and 15% in the valley region. As main causes for dosimetry uncertainties, statistical noise, film inhomogeneities, and calibration errors were identified. Calibration errors strongly increase at low doses and exceeded 3% for doses below 50 and 70 Gy for HD-V2 and HD-810 films, respectively. While the grain size of both film types is approximately 2 μm, the statistical noise in HD-V2 is much higher than in HD-810 films. However, HD-810 films show a higher energy dependence at low photon energies. Conclusions: Both film types are appropriate for dosimetry in MRT and the microscope is superior to the microdensitometer used before at the ESRF with respect to resolution and reproducibility. However, a very careful analysis of the image data is required

  5. The stability of liquid-filled matrix ionization chamber electronic portal imaging devices for dosimetry purposes.

    Science.gov (United States)

    Louwe, R J W; Tielenburg, R; van Ingen, K M; Mijnheer, B J; van Herk, M B

    2004-04-01

    This study was performed to determine the stability of liquid-filled matrix ionization chamber (LiFi-type) electronic portal imaging devices (EPID) for dosimetric purposes. The short- and long-term stability of the response was investigated, as well as the importance of factors influencing the response (e.g., temperature fluctuations, radiation damage, and the performance of the electronic hardware). It was shown that testing the performance of the electronic hardware as well as the short-term stability of the imagers may reveal the cause of a poor long-term stability of the imager response. In addition, the short-term stability was measured to verify the validity of the fitted dose-response curve immediately after beam startup. The long-term stability of these imagers could be considerably improved by correcting for room temperature fluctuations and gradual changes in response due to radiation damage. As a result, the reproducibility was better than 1% (1 SD) over a period of two years. The results of this study were used to formulate recommendations for a quality control program for portal dosimetry. The effect of such a program was assessed by comparing the results of portal dosimetry and in vivo dosimetry using diodes during the treatment of 31 prostate patients. The improvement of the results for portal dosimetry was consistent with the deviations observed with the reproducibility tests in that particular period. After a correction for the variation in response of the imager, the average difference between the measured and prescribed dose during the treatment of prostate patients was -0.7%+/-1.5% (1 SD), and -0.6%+/-1.1% (1 SD) for EPID and diode in vivo dosimetry, respectively. It can be concluded that a high stability of the response can be achieved for this type of EPID by applying a rigorous quality control program.

  6. Measuring the Polarization of a Rapidly Precessing Deuteron Beam

    CERN Document Server

    Bagdasarian, Z; Chiladze, D; Ciullo, G; Dietrich, J; Dymov, S; Eversmann, D; Fanourakis, G; Gaisser, M; Gebel, R; Gou, B; Guidoboni, G; Hejny, V; Kacharava, A; Kamerdzhiev, V; Lehrach, A; Lenisa, P; Lorentz, B; Magallanes, L; Maier, R; Mchedlishvili, D; Morse, W M; Nass, A; Oellers, D; Pesce, A; Prasuhn, D; Pretz, J; Rathmann, F; Shmakova, V; Semertzidis, Y K; Stephenson, E J; Stockhorst, H; Ströher, H; Talman, R; Engblom, P Thörngren; Valdau, Yu; Weidemann, C; Wüstner, P

    2014-01-01

    This paper describes a time-marking system that enables a measurement of the in-plane (horizontal) polarization of a 0.97-GeV/c deuteron beam circulating in the Cooler Synchrotron (COSY) at the Forschungszentrum J\\"ulich. The clock time of each polarimeter event is used to unfold the 120-kHz spin precession and assign events to bins according to the direction of the horizontal polarization. After accumulation for one or more seconds, the down-up scattering asymmetry can be calculated for each direction and matched to a sinusoidal function whose magnitude is proportional to the horizontal polarization. This requires prior knowledge of the spin tune or polarization precession rate. An initial estimate is refined by re-sorting the events as the spin tune is adjusted across a narrow range and searching for the maximum polarization magnitude. The result is biased toward polarization values that are too large, in part because of statistical fluctuations but also because sinusoidal fits to even random data will prod...

  7. Direct reaction measurements with a 132Sn radioactive ion beam

    CERN Document Server

    Jones, K L; Bardayan, D W; Blackmon, J C; Chae, K Y; Chipps, K A; Cizewski, J A; Erikson, L; Harlin, C; Hatarik, R; Kapler, R; Kozub, R L; Liang, J F; Livesay, R; Ma, Z; Moazen, B H; Nesaraja, C D; Nunes, F M; Pain, S D; Patterson, N P; Shapira, D; Shriner, J F; Smith, M S; Swan, T P; Thomas, J S

    2011-01-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the cross section. The magnitude of the nuclear effects was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p1/2 state expected above the N=82 shell closure. The data were analyzed using finite range adiabatic wave calculations and the results compared with the previous analysis using the distorted wave Born approximation. Angular distributions for the ground and first excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sect...

  8. Direct reaction measurements with a 132Sn radioactive ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Katherine L.; Nunes, Filomena M.; Adekola, Aderemi S.; Bardayan, Dan W.; Blackmon, Jeff; Chae, K. Y.; Chipps, Kelly A.; Cizewski, Jolie A.; Erikson, Luke E.; Harlin, C.; Hatarik, R.; Kapler, R.; Kozub, Raymond L.; Liang, J. F.; Livesay, Ronald J.; Ma, Zhongguo J.; Moazen, B. H.; Nesaraja, Caroline D.; Pain, Steven D.; Patterson, N. P.; Shapira, Dan; Shriner, Jr., John F.; Smith, Michael S.; Swan, Thomas P.; Thomas, Jeff S.

    2011-09-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the elastic scattering cross section. The magnitude of the nuclear effects, in the angular range studied, was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p1/2 state expected above the N = 82 shell closure. The data were analyzed using finite-range adiabatic-wave calculations and the results compared with the previous analysis using the distorted-wave Born approximation. Angular distributions for the ground and first-excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one-neutron states beyond the benchmark doubly magic nucleus 208Pb.

  9. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  10. Electron Cloud Density Measurements in Accelerator Beam-pipe Using Resonant Microwave Excitation

    CERN Document Server

    Sikora, John P

    2013-01-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. This paper describes a technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length, as well as greatly improving the signal to noise ratio.

  11. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  12. Studies on space charge neutralization and emittance measurement of beam from microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com [Variable Energy Cyclotron Centre, 1-AF, Bidhannagar, Kolkata 700 064 (India)

    2015-11-15

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  13. Dosimetry studies in Zaborie village.

    Science.gov (United States)

    Takada, J; Hoshi, M; Endo, S; Stepanenko, V F; Kondrashov, A E; Petin, D; Skvortsov, V; Ivannikov, A; Tikounov, D; Gavrilin, Y; Snykov, V P

    2000-05-01

    Dosimetry studies in Zaborie, a territory in Russia highly contaminated by the Chernobyl accident, were carried out in July, 1997. Studies on dosimetry for people are important not only for epidemiology but also for recovery of local social activity. The local contamination of the soil was measured to be 1.5-6.3 MBq/m2 of Cs-137 with 0.7-4 microSv/h of dose rate. A case study for a villager presently 40 years old indicates estimations of 72 and 269 mSv as the expected internal and external doses during 50 years starting in 1997 based on data of a whole-body measurement of Cs-137 and environmental dose rates. Mean values of accumulated external and internal doses for the period from the year 1986 till 1996 are also estimated to be 130 mSv and 16 mSv for Zaborie. The estimation of the 1986-1996 accumulated dose on the basis of large scale ESR teeth enamel dosimetry provides for this village, the value of 180 mSv. For a short term visitor from Japan to this area, external and internal dose are estimated to be 0.13 mSv/9d (during visit in 1997) and 0.024 mSv/50y (during 50 years starting from 1997), respectively.

  14. LHCb: A novel method for an absolute luminosity measurement at LHCb using beam-gas imaging

    CERN Multimedia

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used van der Meer scan method (VDM). This poster presents the principles of the Beam Gas Imaging method used to measure the beam overlap integral. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch.

  15. Electron beam dispersion measurements in nitrogen using two-dimensional imaging of N2(+) fluorescence

    Science.gov (United States)

    Clapp, L. H.; Twiss, R. G.; Cattolica, R. J.

    Experimental results are presented related to the radial spread of fluorescence excited by 10 and 20 KeV electron beams passing through nonflowing rarefied nitrogen at 293 K. An imaging technique for obtaining species distributions from measured beam-excited fluorescence is described, based on a signal inversion scheme mathematically equivalent to the inversion of the Abel integral equation. From fluorescence image data, measurements of beam radius, integrated signal intensity, and spatially resolved distributions of N2(+) first-negative-band fluorescence-emitting species have been made. Data are compared with earlier measurements and with an heuristic beam spread model.

  16. Linearly polarised photon beams at ELSA and measurement of the beam asymmetry in pi^0-photoproduction off the proton

    CERN Document Server

    Elsner, D; Bartholomy, O; Bayadilov, D E; Beck, R; Beloglasov, Yu A; Castelijns, R; Credé, V; Ehmanns, A; Essig, K; Ewald, R; Fabry, I; Fornet-Ponse, K; Fuchs, M; Funke, C; Gridnev, A B; Gutz, E; Hoeffgen, S; Hoffmeister, P; Horn, I; Jaegle, I; Junkersfeld, J; Kalinowsky, H; Klein, Frank; Klein, Friedrich; Klempt, E; Konrad, M; Kotulla, M; Krusche, B; Löhner, H; Lopatin, I V; Lotz, J; Lugert, S; Menze, D; Mertens, T; Messchendorp, J G; Metag, V; Morales, C; Nanova, M; Novinski, D V; Novotny, R; Ostrick, M; Pant, L M; Van Pee, H; Pfeiffer, M; Sarantsev, A V; Schmidt, C; Schmieden, H; Schoch, B; Shende, S; Suele, A; Sumachev, V V; Szczepanek, T; Thoma, U; Trnka, D; Walther, D; Weinheimer, C; Wendel, C

    2008-01-01

    At the electron accelerator ELSA a linearly polarised tagged photon beam is produced by coherent bremsstrahlung off a diamond crystal. Orientation and energy range of the linear polarisation can be deliberately chosen by accurate positioning of the crystal with a goniometer. The degree of polarisation is determined by the form of the scattered electron spectrum. Good agreement between experiment and expectations on basis of the experimental conditions is obtained. Polarisation degrees of P = 40% are typically achieved at half of the primary electron energy. The determination of P is confirmed by measuring the beam asymmetry, \\Sigma, in pi^0 photoproduction and a comparison of the results to independent measurements using laser backscattering.

  17. Comparison of pencil-type ionization chamber calibration results and methods between dosimetry laboratories.

    Science.gov (United States)

    Hourdakis, Costas J; Büermann, Ludwig; Ciraj-Bjelac, Olivera; Csete, Istvan; Delis, Harry; Gomola, Igor; Persson, Linda; Novak, Leos; Petkov, Ivailo; Toroi, Paula

    2016-01-01

    A comparison of calibration results and procedures in terms of air kerma length product, PKL, and air kerma, K, was conducted between eight dosimetry laboratories. A pencil-type ionization chamber (IC), generally used for computed tomography dose measurements, was calibrated according to three calibration methods, while its residual signal and other characteristics (sensitivity profile, active length) were assessed. The results showed that the "partial irradiation method" is the preferred method for the pencil-type IC calibration in terms of PKL and it could be applied by the calibration laboratories successfully. Most of the participating laboratories achieved high level of agreement (>99%) for both dosimetry quantities (PKL and K). Estimated relative standard uncertainties of comparison results vary among laboratories from 0.34% to 2.32% depending on the quantity, beam quality and calibration method applied. Detailed analysis of the assigned uncertainties have been presented and discussed.

  18. ElectroOptical measurements of ultrashort 45 MeV electron beam bunch

    CERN Document Server

    Nikas, D; Kowalski, L A; Larsen, R; Lazarus, D M; Ozben, C; Semertzidis, Y K; Tsang, Thomas; Srinivasan-Rao, T

    2001-01-01

    We have made an observation of 45 MeV electron beam bunches using the nondestructive electro-optical (EO) technique. The amplitude of the EO modulation was found to increase linearly with electron beam charge and decrease inversely with the optical beam path distance from the electron beam. The risetime of the signal was bandwidth limited by our detection system to \\~70ps. An EO signal due to ionization caused by the electrons traversing the EO crystal was also observed. The EO technique may be ideal for the measurement of bunch structure with femtosecond resolution of relativistic charged particle beam bunches.

  19. [Instrumental radiofrequency electromagnetic radiation dosimetry: general principals and modern methodology].

    Science.gov (United States)

    Perov, S Iu; Kudriashov, Iu B; Rubtsova, N B

    2012-01-01

    The modern experimental radiofrequency electromagnetic field dosimetry approach has been considered. The main principles of specific absorbed rate measurement are analyzed for electromagnetic field biological effect assessment. The general methodology of specific absorbed rate automated dosimetry system applied to establish the compliance of radiation sources with the safety standard requirements (maximum permissible levels and base restrictions) is described.

  20. Measurement of the muon beam direction and muon flux for the T2K neutrino experiment

    CERN Document Server

    Suzuki, K; Ariga, A; Ariga, T; Bay, F; Bronner, C; Ereditato, A; Friend, M; Hartz, M; Hiraki, T; Ichikawa, A K; Ishida, T; Ishii, T; Juget, F; Kikawa, T; Kobayashi, T; Kubo, H; Matsuoka, K; Maruyama, T; Minamino, A; Murakami, A; Nakadaira, T; Nakaya, T; Nakayoshi, K; Oyama, Y; Pistillo, C; Sakashita, K; Sekiguchi, T; Suzuki, S Y; Tada, S; Yamada, Y; Yamamoto, K; Yokoyama, M

    2014-01-01

    The Tokai-to-Kamioka (T2K) neutrino experiment measures neutrino oscillations by using an almost pure muon neutrino beam produced at the J-PARC accelerator facility. The T2K muon monitor was installed to measure the direction and stability of the muon beam which is produced together with the muon neutrino beam. The systematic error in the muon beam direction measurement was estimated, using data and MC simulation, to be 0.28 mrad. During beam operation, the proton beam has been controlled using measurements from the muon monitor and the direction of the neutrino beam has been tuned to within 0.3 mrad with respect to the designed beam-axis. In order to understand the muon beam properties,measurement of the absolute muon yield at the muon monitor was conducted with an emulsion detector. The number of muon tracks was measured to be $(4.06\\pm0.05)\\times10^4$ cm$^{-2}$ normalized with $4\\times10^{11}$ protons on target with 250 kA horn operation. The result is in agreement with the prediction which is corrected ba...

  1. Fluorescence-based knife-edge beam diameter measurement to characterize X-ray beam profiles in reflection geometry

    Science.gov (United States)

    Bassel, Léna; Tauzin, Xavier; Queffelec, Alain; Ferrier, Catherine; Lacanette, Delphine; Chapoulie, Rémy; Bousquet, Bruno

    2016-04-01

    The diameter of an X-ray beam was determined, using the knife-edge technique, widely applied for beam profiling, by taking advantage of the fluorescence emission generated by the X-ray beam. The knife-edge has to be appropriate to the configuration of the device, in our case a double-material target made of plastic and cardboard was scanned in a transversal plane compared to the beam propagation direction. Along the scanning axis, for each position, the intensity of the Kα line of chlorine was recorded. The first derivative of the intensity evolution as a function of the edge position, fitted by a Gaussian function, makes it possible to obtain the beam diameter along the scan direction. We measured a slightly elliptic diameter close to 3 mm. In this note we underline the significance of the knife-edge technique which represents a useful tool, easy to be set up, to control X-ray beam dimensions in portable devices often routinely used by non-specialists.

  2. Individual dosimetry of workers and patients: implementation and perspectives; La dosimetrie individuelle des travailleurs et de patients: mise en oeuvre et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E

    2008-07-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  3. Radiation dosimetry by potassium feldspar

    Indian Academy of Sciences (India)

    Arun Pandya; S G Vaijapurkar; P K Bhatnagar

    2000-04-01

    The thermoluminescence (TL) properties of raw and annealed feldspar have been studied for their use in gamma dosimetry. The raw gamma exposed feldspar shows glow peaks at 120°C and 319°C. Gamma dose beyond 500 cGy can be measured without any significant fading even after 40 days of termination of exposure. The annealed feldspar shows a glow peak at 120°C after gamma exposure. This peak can be used to measure gamma doses beyond 25 cGy when the TL is measured after 24 h from termination of exposure.

  4. A new formalism for reference dosimetry of small and nonstandard fields.

    Science.gov (United States)

    Alfonso, R; Andreo, P; Capote, R; Huq, M Saiful; Kilby, W; Kjäll, P; Mackie, T R; Palmans, H; Rosser, K; Seuntjens, J; Ullrich, W; Vatnitsky, S

    2008-11-01

    The use of small fields in radiotherapy techniques has increased substantially, in particular in stereotactic treatments and large uniform or nonuniform fields that are composed of small fields such as for intensity modulated radiation therapy (IMRT). This has been facilitated by the increased availability of standard and add-on multileaf collimators and a variety of new treatment units. For these fields, dosimetric errors have become considerably larger than in conventional beams mostly due to two reasons; (i) the reference conditions recommended by conventional Codes of Practice (CoPs) cannot be established in some machines and (ii) the measurement of absorbed dose to water in composite fields is not standardized. In order to develop standardized recommendations for dosimetry procedures and detectors, an international working group on reference dosimetry of small and nonstandard fields has been established by the International Atomic Energy Agency (IAEA) in cooperation with the American Association of Physicists in Medicine (AAPM) Therapy Physics Committee. This paper outlines a new formalism for the dosimetry of small and composite fields with the intention to extend recommendations given in conventional CoPs for clinical reference dosimetry based on absorbed dose to water. This formalism introduces the concept of two new intermediate calibration fields: (i) a static machine-specific reference field for those modalities that cannot establish conventional reference conditions and (ii) a plan-class specific reference field closer to the patient-specific clinical fields thereby facilitating standardization of composite field dosimetry. Prior to progressing with developing a CoP or other form of recommendation, the members of this IAEA working group welcome comments from the international medical physics community on the formalism presented here.

  5. I-124 Imaging and Dosimetry

    Directory of Open Access Journals (Sweden)

    Russ Kuker

    2017-02-01

    Full Text Available Although radioactive iodine imaging and therapy are one of the earliest applications of theranostics, there still remain a number of unresolved clinical questions as to the optimization of diagnostic techniques and dosimetry protocols. I-124 as a positron emission tomography (PET radiotracer has the potential to improve the current clinical practice in the diagnosis and treatment of differentiated thyroid cancer. The higher sensitivity and spatial resolution of PET/computed tomography (CT compared to standard gamma scintigraphy can aid in the detection of recurrent or metastatic disease and provide more accurate measurements of metabolic tumor volumes. However the complex decay schema of I-124 poses challenges to quantitative PET imaging. More prospective studies are needed to define optimal dosimetry protocols and to improve patient-specific treatment planning strategies, taking into account not only the absorbed dose to tumors but also methods to avoid toxicity to normal organs. A historical perspective of I-124 imaging and dosimetry as well as future concepts are discussed.

  6. EPR Dosimetry - Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Regulla, D.F. [GSF - National Research Centre for Environment and Health, Institute of Radiation Protection, 85764 Neuherberg (Germany)

    1999-07-01

    In the past, IAEA has played a central role in stipulating research and development in EPR high-dose standardisation as well as in coordinating and organising international dose intercomparison programs, within the Member States of the United Nations from the mid-seventies till today. The future tasks of EPR dosimetry seem to tend towards different subjects such as bio markers, biological radiation effects, post-accident dose reconstruction in the environment, and retrospective human dosimetry. The latter may be considered a promising tool for epidemiology on the way to re-define radiation risk of man for chronicle radiation exposures, based on e.g. South Ural civil population and radiation workers. There are on-going international activities in the field of standardising high-level dosimetry by the American Standards on Testing and Materials (Astm), and by the International Organisation of Standards (ISO). The International Commission on Radiation Units and Measurements (ICRU) is considering the establishment of relevant recommendations concerning industrial radiation processing, but also human dose reconstruction. (Author)

  7. Protocol for emergency EPR dosimetry in fingernails.

    Science.gov (United States)

    Trompier, F; Kornak, L; Calas, C; Romanyukha, A; Leblanc, B; Mitchell, C A; Swartz, H M; Clairand, I

    2007-08-01

    There is an increased need for after-the-fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effective medical triage. Dosimetry based on EPR measurements of fingernails potentially could be an effective tool for this purpose. This paper presents the first operational protocols for EPR fingernail dosimetry, including guidelines for collection and storage of samples, parameters for EPR measurements, and the method of dose assessment. In a blinded test of this protocol application was carried out on nails freshly sampled and irradiated to 4 and 20 Gy; this protocol gave dose estimates with an error of less than 30%.

  8. ESR dosimetry of fossil enamel: some comments about measurement precision, long-term signal fading and dose-response curve fitting.

    Science.gov (United States)

    Duval, M; Guilarte Moreno, V; Grün, R

    2013-12-01

    This work deals with the specific studies of three main sources of uncertainty in electron spin resonance (ESR) dosimetry/dating of fossil tooth enamel: (1) the precision of the ESR measurements, (2) the long-term signal fading the selection of the fitting function. They show a different influence on the equivalent dose (D(E)) estimates. Repeated ESR measurements were performed on 17 different samples: results show a mean coefficient of variation of the ESR intensities of 1.20 ± 0.23 %, inducing a mean relative variability of 3.05 ± 2.29 % in the D(E) values. ESR signal fading over 5 y was also observed: its magnitude seems to be quite sample dependant but is nevertheless especially important for the most irradiated aliquots. This fading has an apparent random effect on the D(E) estimates. Finally, the authors provide new insights and recommendations about the fitting of ESR dose-response curves of fossil enamel with a double saturating exponential (DSE) function. The potential of a new variation of the DSE was also explored. Results of this study also show that the choice of the fitting function is of major importance, maybe more than the other sources previously mentioned, in order to get accurate final D(E) values.

  9. Neutron dosimetry, damage calculations, and helium measurements for the HFIR-MFE-60J-1 and MFE-330J-1 spectral tailoring experiments

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R. [Pacific Northwest Laboratory, Richland, WA (United States); Baldwin, C.A. [Oak Ridge National Lab., TN (United States); Oliver, B.M.

    1995-04-01

    The objective is to provide dosimetry and damage analysis for fusion materials irradiation experiments. Neutron fluence measurements and radiation damage calculations are reported for the joint US -Japanese MFE-60J-1 and MFE-330J-1 experiments in the hafnium-lined removable beryllium (RB{sup *}) position of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. These experiments were continuations of the ORR-6J and 7J irradiations performed in the Oak Ridge Research Reactor. The combination of irradiations was designed to tailor the neutron spectrum in order to achieve fusion reactor helium/dpa levels in stainless steel. These experiments produced maximum helium (appm)/dpa(displacement per atom) levels of 10.2 at 18.5 dpa for the ORR-6J and HFIR-MFE-60J-1 combination and 11.8 at 19.0 dpa for the ORR-7J and HFIR-MFE-330J-1 combination. A helium measurement in one JPCA sample was in good agreement with helium calculations.

  10. Photon and fast neutron dosimetry using aluminium oxide thermoluminescence dosemeters.

    Science.gov (United States)

    Santos, J P; Fernandes, A C; Gonçalves, I C; Marques, J G; Carvalho, A F; Santos, L; Cardoso, J; Osvay, M

    2006-01-01

    Al(2)O(3):Mg,Y thermoluminescence (TL) dosemeters were used to measure photon and fast neutron doses in a fast neutron beam recently implemented at the Portuguese Research Reactor, Nuclear and Technological Institute, Portugal. The activation of Al(2)O(3):Mg,Y by fast neutrons provides information about the fast neutron component by measuring the activity of the reaction products and the self-induced TL signal. Additionally, the first TL reading after irradiation determines the photon dose. The elemental composition of the dosemeters was determined by instrumental neutron activation analysis and by particle induced X-ray emission. Results demonstrate that Al(2)O(3):Mg,Y is an adequate material to discriminate photon and fast neutron fields for reactor dosimetry purposes.

  11. Relative electron dosimetry using a synthetic diamond probe

    CERN Document Server

    Merwe, D G

    1999-01-01

    Implementation of Bragg-Gray Cavity Theory in electron dosimetry is complicated by the fact that most commercial detector volumes behave as small field inhomogeneities. Several correction factors are necessary to establish the absorbed dose at a particular point in a homogenous tissue-equivalent phantom. The energy dependence of air and the replacement effects introduced as a result of air ionization chambers' construction and size, increase the uncertainty of electron beam calibrations. Preliminary relative dose measurements performed with a prototype synthetic diamond are presented here. Theoretically, the radiation response of diamond, synthetic or natural, has negligible energy dependence. The sensitivity and small size of the probe makes it an excellent candidate for measurements in fields of high dose gradient.

  12. Dosimetry of interface region near closed air cavities for Co-60, 6 MV and 15 MV photon beams using Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Joshi Chandra

    2010-01-01

    Full Text Available Underdosing of treatment targets can occur in radiation therapy due to electronic disequilibrium around air-tissue interfaces when tumors are situated near natural air cavities. These effects have been shown to increase with the beam energy and decrease with the field size. Intensity modulated radiation therapy (IMRT and tomotherapy techniques employ combinations of multiple small radiation beamlets of varying intensities to deliver highly conformal radiation therapy. The use of small beamlets in these techniques may therefore result in underdosing of treatment target in the air-tissue interfaces region surrounding an air cavity. This work was undertaken to investigate dose reductions near the air-water interfaces of 1x1x1 and 3x3x3 cm 3 air cavities, typically encountered in the treatment of head and neck cancer utilizing radiation therapy techniques such as IMRT and tomotherapy using small fields of Co-60, 6 MV and 15 MV photons. Additional investigations were performed for larger photon field sizes encompassing the entire air-cavity, such as encountered in conventional three dimensional conformal radiation therapy (3DCRT techniques. The EGSnrc/DOSXYZnrc Monte Carlo code was used to calculate the dose reductions (in water in air-water interface region for single, parallel opposed and four field irradiations with 2x2 cm 2 (beamlet, 10x2 cm 2 (fan beam, 5x5 and 7x7 cm 2 field sizes. The magnitude of dose reduction in water near air-water interface increases with photon energy; decreases with distance from the interface as well as decreases as the number of beams are increased. No dose reductions were observed for large field sizes encompassing the air cavities. The results demonstrate that Co-60 beams may provide significantly smaller interface dose reductions than 6 MV and 15 MV irradiations for small field irradiations such as used in IMRT and tomotherapy.

  13. Comparison of beam simulations with measurements for a 1.25-MeV, CW RFQ

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.V. Jr.; Bolme, G.O.; Sherman, J.D.; Stevens, R.R. Jr.; Young, L.M.; Zaugg, T.J.

    1998-12-31

    The Low-Energy Demonstration Accelerator (LEDA) injector is tested using the Chalk River Injector Test Stand (CRITS) radio-frequency quadrupole (RFQ) as a diagnostic instrument. Fifty-keV, dc proton beams are injected into the 1.25-MeV, CW RFQ and transported to a beamstop. Computer-simulation-code predictions of the expected beam performance are compared with the measured beam currents and beam profiles. Good agreement is obtained between the measurements and the simulations at the 75-mA design RFQ output current.

  14. Measurements of an ion beam diameter extracted into air through a large-bore metal capillary

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y.; Umigishi, M. [Graduate School of Humanities and Sciences, Nara Women’s University, Nara 630-8506 (Japan); Ishii, K.; Ogawa, H. [Department of Physics, Nara Women’s University, Nara 630-8506 (Japan)

    2015-07-01

    To extract an ion beam into air, the technique using a single macro-capillary has been paid attention. We have expanded the bore of the metal capillary up to 500 μm∅ inlet diameter to increase the beam intensity and have measured the intensity distributions of the extracted 3 MeV proton beam. Furthermore, we have tilted the capillary angle and measured the intensity distributions of the ion beam. In this article, we will present the experimental results together with the simulation which takes the tilt angles of the capillary into account.

  15. Optimization of MOSFET calibration for in vivo dosimetry in radiosurgery: reduction of measurement uncertainties in pre-clinical conditions; Optimisation de la calibration de MOSFET pour la dosimetrie in vivo en radiochirurgie: reduction des incertitudes de mesure en conditions precliniques

    Energy Technology Data Exchange (ETDEWEB)

    Sors, A.; Berry, I.; Franceries, X. [UMR 825 ' imagerie cerebrale et handicaps neurologiques' , Inserm, Toulouse (France); Cassol, E.; Duthil, P. [Unite de radiophysique et de radioprotection, CHU de Toulouse, Toulouse (France); Hallil, A. [Best medical Canada, Ottawa (Canada); Latorzeff, I.; Lotterie, J.A. [Centre de radiochirurgie stereotaxique, CHU Rangueil, Toulouse (France); Redon, A. [Groupe Oncorad Garonne, Montauban (France)

    2011-10-15

    The objective of this study is to assess the conventional formulas of equivalent square for fields with irregular geometry, by transposing the optimized calibration method which has been previously developed, to micro-MOSFET. The study has been performed on a 6 MV Novalis apparatus equipped with micro-multi-blades collimators (BrainLab). The average dose bias reaches 2.66 per cent for all field sizes. Therefore, it appears that the joint use of the square inverse of distances and of conventional formulas of equivalent square results in an acceptable in vivo dosimetry precision. Short communication

  16. SU-E-T-146: Beam Energy Spread Estimate Based On Bragg Peak Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Anferov, V; Derenchuk, V; Moore, R [ProNova Solutions, Knoxville, TN (United States); Schreuder, A [Provision Healthcare Partners, Knoxville, TN (United States)

    2015-06-15

    Purpose: ProNova is installing and commissioning a two room proton therapy system in Knoxville, TN. Beam energy out of the 230MeV cyclotron was measured on Jan 24, 2015. Cyclotron beam was delivered into a Zebra multi layered IC detector calibrated in terms of penetration range in water. The analysis of the measured Bragg peak determines penetration range in water which can be subsequently converted into proton beam energy. We extended this analysis to obtain an estimate of the beam energy spread out of the cyclotron. Methods: Using Monte Carlo simulations we established the correlation between Bragg peak shape parameters (width at 50% and 80% dose levels, distal falloff) and penetration range for a monoenergetic proton beam. For large uniform field impinging on a small area detector, we observed linear dependence of each Bragg peak parameter on beam penetration range as shown in Figure A. Then we studied how this correlation changes when the shape of Bragg peak is distorted by the beam focusing conditions. As shown in Figure B, small field size or diverging beam cause Bragg peak deformation predominantly in the proximal region. The distal shape of the renormalized Bragg peaks stays nearly constant. This excludes usage of Bragg peak width parameters for energy spread estimates. Results: The measured Bragg peaks had an average distal falloff of 4.86mm, which corresponds to an effective range of 35.5cm for a monoenergetic beam. The 32.7cm measured penetration range is 2.8cm less. Passage of a 230MeV proton beam through a 2.8cm thick slab of water results in a ±0.56MeV energy spread. As a final check, we confirmed agreement between shapes of the measured Bragg peak and one generated by Monte-Carlo code for proton beam with 0.56 MeV energy spread. Conclusion: Proton beam energy spread can be estimated using Bragg peak analysis.

  17. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE/optical-CT 3D dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Clift, Corey; Thomas, Andrew; Chang Zheng; Oldham, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Adamovics, John [Department of Chemistry, Rider University, Lawrenceville, NJ 08648 (United States); Das, Indra [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)], E-mail: cclift@montefiore.org

    2010-03-07

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (S{sub c,p}), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT film was used for independent verification. Measurements of S{sub c,p} made with PRESAGE and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE. The advantages of the PRESAGE (registered) system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.

  18. Measuring coalignment of retroreflectors with large lateral incoming-outgoing beam offset

    Energy Technology Data Exchange (ETDEWEB)

    Schütze, Daniel, E-mail: Daniel.Schuetze@aei.mpg.de; Sheard, Benjamin S.; Heinzel, Gerhard; Danzmann, Karsten [Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and Institute for Gravitational Physics, Leibniz Universität Hannover, Callinstr. 38, 30167 Hanover (Germany); Farrant, David [Commonwealth Scientific and Industrial Research Organisation, Bradfield Road, Lindfield, NSW 2070 (Australia); Shaddock, Daniel A. [Centre for Gravitational Physics, Australian National University, Acton, ACT 0200 (Australia)

    2014-03-15

    A method based on phase-shifting Fizeau interferometry is presented with which retroreflectors with large incoming-outgoing beam separations can be tested. The method relies on a flat Reference Bar that is used to align two auxiliary mirrors parallel to each other to extend the aperture of the interferometer. The method is applied to measure the beam coalignment of a prototype Triple Mirror Assembly of the GRACE Follow-On Laser Ranging Interferometer, a future satellite-to-satellite tracking device for Earth gravimetry. The Triple Mirror Assembly features a lateral beam offset of incoming and outgoing beam of 600 mm, whereas the acceptance angle for the incoming beam is only about ±2 mrad. With the developed method, the beam coalignment of the prototype Triple Mirror Assembly was measured to be 9 μrad with a repeatability of below 1 μrad.

  19. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  20. Measurements of Variable-Shaped Electron Beams with Solid-State Detector and Scattering Aperture

    Science.gov (United States)

    Sakakibara, Makoto; Ohta, Hiroya; Kanosue, Tadashi; Sohda, Yasunari; Ban, Naoma

    2007-09-01

    A highly accurate method for measuring beam properties in a variable-shaped electron beam (VSB) system has been developed. This method is based on a knife-edge method with a solid-state detector (SSD) and scattering apertures. In VSB system, it is necessary to measure both beam profile and beam position for a long time. To meet this requirement, many aperture marks on a silicon membrane were prepared in a measurement unit. Using this unit, the accuracy and stability of beam-size and beam position measurements were evaluated in VBS system (HL-7000D, Hitachi-HITEC). As a result, the repeatability error for beam size was obtained to be smaller than 2 nm (3σ) and the repeatability error for beam position was obtained to be 0.82 nm (3σ). Moreover, a multitude of repeat experiments showed that this measurement unit can be used for more than ten years. Consequently, it was confirmed that this measurement method is useful for the high accuracy of a VSB system.

  1. The use of gel dosimetry to measure the 3D dose distribution of a {sup 90}Sr/{sup 90}Y intravascular brachytherapy seed

    Energy Technology Data Exchange (ETDEWEB)

    Massillon-JL, G; Minniti, R; Mitch, M G; Soares, C G [Ionizing Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Maryanski, M J [MGS Research, Inc., Madison, CT 06443 (United States)], E-mail: massillon@fisica.unam.mx

    2009-03-21

    Absorbed dose distributions in 3D imparted by a single {sup 90}Sr/{sup 90}Y beta particle seed source of the type used for intravascular brachytherapy were investigated. A polymer gel dosimetry medium was used as a dosemeter and phantom, while a special high-resolution laser CT scanner with a spatial resolution of 100 {mu}m in all dimensions was used to quantify the data. We have measured the radial dose function, g{sub L}(r), observing that g{sub L}(r) increases to a maximum value and then decreases as the distance from the seed increases. This is in good agreement with previous data obtained with radiochromic film and thermoluminescent dosemeters (TLDs), even if the TLDs underestimate the dose at distances very close to the seed. Contrary to the measurements, g{sub L}(r) calculated through Monte Carlo simulations and reported previously steadily decreases without a local maximum as a function of the distance from the seed. At distances less than 1.5 mm, differences of more than 20% are observed between the measurements and the Monte Carlo calculations. This difference could be due to a possible underestimation of the energy absorbed into the seed core and encapsulation in the Monte Carlo simulation, as a consequence of the unknown precise chemical composition of the core and its respective density for this seed. The results suggest that g{sub L}(r) can be measured very close to the seed with a relative uncertainty of about 1% to 2%. The dose distribution is isotropic only at distances greater than or equal to 2 mm from the seed and is almost symmetric, independent of the depth. This study indicates that polymer gel coupled with the special small format laser CT scanner are valid and accurate methods for measuring the dose distribution at distances close to an intravascular brachytherapy seed.

  2. The use of gel dosimetry to measure the 3D dose distribution of a 90Sr/90Y intravascular brachytherapy seed.

    Science.gov (United States)

    Massillon-Jl, G; Minniti, R; Mitch, M G; Maryanski, M J; Soares, C G

    2009-03-21

    Absorbed dose distributions in 3D imparted by a single (90)Sr/(90)Y beta particle seed source of the type used for intravascular brachytherapy were investigated. A polymer gel dosimetry medium was used as a dosemeter and phantom, while a special high-resolution laser CT scanner with a spatial resolution of 100 microm in all dimensions was used to quantify the data. We have measured the radial dose function, g(L)(r), observing that g(L)(r) increases to a maximum value and then decreases as the distance from the seed increases. This is in good agreement with previous data obtained with radiochromic film and thermoluminescent dosemeters (TLDs), even if the TLDs underestimate the dose at distances very close to the seed. Contrary to the measurements, g(L)(r) calculated through Monte Carlo simulations and reported previously steadily decreases without a local maximum as a function of the distance from the seed. At distances less than 1.5 mm, differences of more than 20% are observed between the measurements and the Monte Carlo calculations. This difference could be due to a possible underestimation of the energy absorbed into the seed core and encapsulation in the Monte Carlo simulation, as a consequence of the unknown precise chemical composition of the core and its respective density for this seed. The results suggest that g(L)(r) can be measured very close to the seed with a relative uncertainty of about 1% to 2%. The dose distribution is isotropic only at distances greater than or equal to 2 mm from the seed and is almost symmetric, independent of the depth. This study indicates that polymer gel coupled with the special small format laser CT scanner are valid and accurate methods for measuring the dose distribution at distances close to an intravascular brachytherapy seed.

  3. Comment on ‘Proton beam monitor chamber calibration’

    Science.gov (United States)

    Palmans, Hugo; Vatnitsky, Stanislav M.

    2016-09-01

    We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that {{k}Q} -values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961-71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication.

  4. Analytic modeling, simulation and interpretation of broadband beam coupling impedance bench measurements

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, U., E-mail: niedermayer@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); Eidam, L. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); GSI Helmholzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2015-03-11

    First, a generalized theoretical approach towards beam coupling impedances and stretched-wire measurements is introduced. Applied to a circular symmetric setup, this approach allows to compare beam and wire impedances. The conversion formulas for TEM scattering parameters from measurements to impedances are thoroughly analyzed and compared to the analytical beam impedance solution. A proof of validity for the distributed impedance formula is given. The interaction of the beam or the TEM wave with dispersive material such as ferrite is discussed. The dependence of the obtained beam impedance on the relativistic velocity β is investigated and found as material property dependent. Second, numerical simulations of wakefields and scattering parameters are compared. The applicability of scattering parameter conversion formulas for finite device length is investigated. Laboratory measurement results for a circularly symmetric test setup, i.e. a ferrite ring, are shown and compared to analytic and numeric models. The optimization of the measurement process and error reduction strategies are discussed.

  5. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    Energy Technology Data Exchange (ETDEWEB)

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  6. Dosimetry of Low-Energy Beta Radiation

    DEFF Research Database (Denmark)

    Borg, Jette

    Useful techniques and procedures for derermination of absorbed doses from exposure in a low-energy beta radiation were studied and evaluated. The four techniques included were beta spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical...... low-energy beta radiation field a moderated spectrum from a carbon-14 source was used. The measured responce of a Si(Li) detector to photons (bremsstrahlung) showed fine agreemant with the MC calculated photon response, whereas the difference between measured and MC calculated response to electrons...

  7. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  8. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  9. Measurement of the Beam Size and Emittance for the CRC Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae Hoon; Kim, Yu Seok [Dongguk University, Gyeongju (Korea, Republic of)

    2012-05-15

    The purpose of the present study was to confirm beam property for regional Cyclotron Research Center (CRC) installed at Chosun University Hospital. The regional CRC has been developed to produce radioisotope for positron emission tomography (PET). The original radioisotope production cyclotron had a large beam size, which need to be reduced by collimator. In order to construct the proton-induced X-ray emission and proton-induced gamma-ray emission (PIXE-PIGE) beam line, ion beam will be transported to PIXE-PIGE chamber that we have identified the beam size decreased by collimator and beam emittance. There are several methods to measure the emittace, such as the slit and collector method, the pepper-pot method, and the quad scan method. These methods use a slit and monitor to measure the beam profiles, which depend on the field gradient of the quadrupole magnet. In this study, we did not use magnet and monitor. The emittance calculation based on simulated data by previously proven program is approached to consider various methods. Beam emittance was calculated in two methods. The two methods were classical method and ion beam position with divergence method. We found that the beam sizes of x, y-direction are reduced very well

  10. Intercomparison of dispersed radiation readings among film dosimetry, electronic and OSL with X-rays for low dose; Intercomparacion de lecturas de radiacion dispersa entre dosimetria film, electronica y OSL con rayos X para dosis bajas

    Energy Technology Data Exchange (ETDEWEB)

    Andisco, D. [Universidad de Buenos Aires, Facultad de Medicina, Paraguay 2155, C1121AAA Buenos Aires (Argentina); Blanco, S. [CONICET, Saavedra 15, C1083ACA Buenos Aires (Argentina); Bourel, V.; Schmidt, L. [Universidad Favaloro, Facultad de Ciencias e Ingenieria, Solis 453, C1078AAI, Buenos Aires (Argentina); Di Risio, C., E-mail: dandisco@fmed.uba.ar [Universidad de Belgrano, Facultad de Ingenieria, Zabala 1837, C1426DQG, Buenos Aires (Argentina)

    2014-08-15

    One of the personal dosimetry methods more used for several decades is the dosimetry type film, characterized to possess readings with certain margin of trust. Today other methods exist that many times are presupposed more reliable due to the nature of the detection like the electronic dosimeters or the OSL (Optically Stimulated Luminescence) dosimetry. With the purpose of comparing different methods and to can determining the existent differences among each method has been carried out an intercomparison assay. The different dosimeters have been exposed to dispersed radiation generated by a Hemodynamics equipment of the type -arch in C- and a dispersing system of the primary beam. Film dosimeters have been used; OSL (In Light), OSL (Nano Dots) and Electronic with the purpose of knowing and to valorize the existent differences among its readings. Always, the intercomparison exercises have demonstrated to be an useful tool when establishing the measurement capacity and the quality of the results emitted by the laboratories of personal dosimetry services. Also, this type of assays allows obtaining quality indicators of the laboratory performance and they are habitual part of the procedures for accreditation of the same ones. The Optically Stimulated Luminescence is a technology that has grown in Argentina so much in the area of personal dosimetry as in dosimetry in vivo (radiotherapy area). In this intercomparison study, the answers corresponding to each technology were looked for oneself irradiation of the disperse type, that is to say, of very low energy. (Author)

  11. Instrumentation for the individual dosimetry of workers

    CERN Document Server

    Thévenin, J C

    2003-01-01

    The control of the radiation dose exposure of workers and personnel exposed to ionizing radiations (nuclear industry, nuclear medicine, army, university laboratories etc..) is ensured by individual dosemeters. This dosimetry is mandatory for all workers susceptible to be exposed to more than 30% of the regulatory dose limit. dosemeters are worn on the chest and in some particular cases, on the finger (dosemeter rings) or on the wrist. Passive dosemeters allow to measure the dose a posteriori, while electronic dosemeters allow a direct reading and recording of the dose. This article presents successively: 1 - the general principles of individual dosimetry: situations of exposure, radiation detection, operational data, standardization, calibration and quality assurance, measurement uncertainties; 2 - goals and regulatory framework of individual dosimetry: regulation and recommendations, optimization, respect of dose limits, accidental situations; 3 - passive dosemeters: film, thermoluminescent, radio-photolumin...

  12. Secondary standard dosimetry laboratory at INFLPR

    Energy Technology Data Exchange (ETDEWEB)

    Scarlat, F.; Minea, R.; Scarisoreanu, A.; Badita, E.; Sima, E.; Dumitrascu, M.; Stancu, E.; Vancea, C., E-mail: scarlat.f@gmail.com [National Institute for Laser, Plasma and Radiation Physics - INFLPR, Bucharest (Romania)

    2011-07-01

    National Institute for Laser, Plasma and Radiation Physics (INFLPR) has constructed a High Energy Secondary Standard Dosimetry Laboratory SSDL-STARDOOR - for performing dosimetric calibrations according to ISO IEC SR/EN 17025:2005 standards. This is outfitted with UNIDOS Secondary Standard Dosimeter from PTW (Freiburg Physikalisch-Technische Werksttaten) calibrated at the PTB-Braunschweig (German Federal Institute of Physics and Metrology). A radiation beam of the quality of Q used by our laboratory as calibration source are provided by INFLPR 7 MeV electron beam linear accelerator mounted in our facility. (author)

  13. Pulse-mode measurement of electron beam halo using diamond-based detector

    Science.gov (United States)

    Aoyagi, Hideki; Asano, Yoshihiro; Itoga, Toshiro; Nariyama, Nobuteru; Bizen, Teruhiko; Tanaka, Takashi; Kitamura, Hideo

    2012-02-01

    Using a diamond-based detector, the electron beam halo in a high-energy accelerator can be measured with a lower detection limit than that using other instruments, such as a core monitor, a dose meter, or an optical fiber. We have successfully measured an electron beam halo using diamond-based detectors operating in the ionization mode, which were installed in the beam duct to measure the intensity of the beam halo directly. Pulse-by-pulse measurements were adopted to suppress the background noise efficiently. Feasibility tests on the diamond-based detector and beam halo monitor were performed in the beam dump area of the 8 GeV SPring-8 synchrotron booster and at the 250 MeV SPring-8 Compact SASE Source test accelerator for the SPring-8 Angstrom Compact free electron LAser (SACLA), respectively. We achieved a lower detection limit of 2×103electrons/pulse for single-shot measurement, which corresponds to a ratio of about 10-6 relative to the typical charge of the beam core of 0.3 pC. We also confirmed the feasibility of the electron beam halo monitor for use as an interlock sensor to protect undulator permanent magnets used in SACLA from radiation damage.

  14. Multipass beam position, profile, and polarization measurements using intense photon target

    Energy Technology Data Exchange (ETDEWEB)

    Karabekov, I.P.; Neil, G.R. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Karabekian, S.; Musakhanian, V. [Yerevan Physics Inst., Erevan (Armenia)

    1994-05-01

    The Compton scattering of a circularly polarized laser beam condensed by an optical resonator can be used for multipass measurement of beam profile, position, and polarization in CEBAF`s 250-m-long linac straight sections. The position and profile of the beam will be measured with an accuracy of {approximately}10 {mu}m in about 200 seconds and beam polarization with 10% accuracy in 100 seconds when the lowest beam energy is 500 MeV and the beam current is 100 {mu}A. For higher energies the times for measurement are much less. The photon target is within an optical resonator having a quality factor of 50. The Nd:Yag 5 W CW laser photon beam at wavelength {lambda} = 0.532 nm will have a waist {omega}{sub o} {approximately}30 {mu}m and a Rayleigh range of about 10 mm. Scanning the electron beams in the linac sections by this photon beam at a crossing angle of 0.1 rad will send to a proportional detector installed after the spreader magnet scattered photons with energies sharply correlated with the energy of the electrons.

  15. Improving Multi-Beam Echo Sounder Depth Measurements

    NARCIS (Netherlands)

    Snellen, M.; Ameele, J.J.P. van den; Biersteker, R.; Simons, D.G.

    2006-01-01

    An important research question is how to adequately correct multi-beam echo sounder (MBES) bathymetric data for refraction effects. This is especially relevant for survey areas, like the Maasgeul area off the Dutch coast, where the water column properties and thus the prevailing sound speed profile

  16. Measurement of Beam Loss at the Australian Synchrotron

    CERN Document Server

    Holzer, EB; Kastriotou, M; Boland, MJ; Jackson, PD; Rasool, RP; Schmidt, J; Welsch, CP

    2014-01-01

    The unprecedented requirements that new machines are setting on their diagnostic systems is leading to the development of new generation of devices with large dynamic range, sensitivity and time resolution. Beam loss detection is particularly challenging due to the large extension of new facilities that need to be covered with localized detector. Candidates to mitigate this problem consist of systems in which the sensitive part of the radiation detectors can be extended over long distance of beam lines. In this document we study the feasibility of a BLM system based on optical fiber as an active detector for an electron storage ring. The Australian Synchrotron (AS) comprises a 216m ring that stores electrons up to 3GeV. The Accelerator has recently claimed the world record ultra low transverse emittance (below pm rad) and its surroundings are rich in synchrotron radiation. Therefore, the AS provides beam conditions very similar to those expected in the CLIC/ILC damping rings. A qualitative benchmark of beam l...

  17. Two-dimensional and quasi-three-dimensional dosimetry of hadron and photon beams with the Magic Cube and the Pixel Ionization Chamber

    Science.gov (United States)

    Cirio, R.; Garelli, E.; Schulte, R.; Amerio, S.; Boriano, A.; Bourhaleb, F.; Coutrakon, G.; Donetti, M.; Giordanengo, S.; Koss, P.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Santuari, D.; Sardo, A.; Scielzo, G.; Stasi, M.; Trevisiol, E.

    2004-08-01

    Two detectors for fast two-dimensional (2D) and quasi-three-dimensional (quasi-3D) verification of the dose delivered by radiotherapy beams have been developed at University and Istituto Nazionale di Fisica Nucleare (INFN) of Torino. The Magic Cube is a stack of strip-segmented ionization chambers interleaved with water-equivalent slabs. The parallel plate ionization chambers have a sensitive area of 24 × 24 cm2, and consist of 0.375 cm wide and 24 cm long strips. There are a total of 64 strips per chamber. The Magic Cube has been tested with the clinical proton beam at Loma Linda University Medical Centre (LLUMC), and was shown to be capable of fast and precise quasi-3D dose verification. The Pixel Ionization Chamber (PXC) is a detector with pixel anode segmentation. It is a 32 × 32 matrix of 1024 cylindrical ionization cells arranged in a square 24 × 24 cm2 area. Each cell has 0.4 cm diameter and 0.55 cm height, at a pitch of 0.75 cm separates the centre of adjacent cells. The sensitive volume of each single ionization cell is 0.07 cm3. The detectors are read out using custom designed front-end microelectronics and a personal computer-based data acquisition system. The PXC has been used to verify dynamic intensity-modulated radiotherapy for head-and-neck and breast cancers.

  18. Dosimetry of industrial sources; Dosimetria de fuentes industriales

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Rodriguez J, R.; Manzanares A, E.; Hernandez V, R.; Ramirez G, J. [Universidad Autonoma de Zacatecas, 98068 Zacatecas (Mexico); Rivera M, T. [CICATA-IPN, 11500 Mexico D.F. (Mexico)]. e-mail: fermineutron@yahoo.com

    2007-07-01

    The gamma rays are produced during the disintegration of the atomic nuclei, its high energy allows them to cross thick materials. The capacity to attenuate a photons beam allows to determine the density, in line, of industrial interest materials as the mining. By means of two active dosemeters and a TLDs group (passive dosimetry) the dose rates of two sources of Cs-137 used for determining in line the density of mining materials were determined. With the dosemeters the dose levels in diverse points inside the grave that it harbors the sources and by means of calculations the isodoses curves were determined. In the phase of calculations was supposed that both sources were punctual and the isodose curves were calculated for two situations: naked sources and in their Pb packings. The dosimetry was carried out around two sources of {sup 137}Cs. The measured values allowed to develop a calculation procedure to obtain the isodoses curves in the grave where the sources are installed. (Author)

  19. Diamond dosimetry: Outcomes of the CANDIDO and CONRAD INFN projects

    Energy Technology Data Exchange (ETDEWEB)

    Bucciolini, M. [Dipartimento di Fisiopatologia dell' Universita and INFN, Florence (Italy)]. E-mail: marta@dfc.unifi.it; Borchi, E. [Dipartimento di Energetica dell' Universita and INFN, Florence (Italy); Bruzzi, M. [Dipartimento di Energetica dell' Universita and INFN, Florence (Italy); Casati, M. [Dipartimento di Fisiopatologia dell' Universita and INFN, Florence (Italy); Cirrone, P. [Laboratori Nazionali del SUD, INFN, Catania (Italy); Cuttone, G. [Laboratori Nazionali del SUD, INFN, Catania (Italy); De Angelis, C. [Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanita and INFN, Rome (Italy); Lovik, I. [Dipartimento di Fisiopatologia dell' Universita and INFN, Florence (Italy); Onori, S. [Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanita and INFN, Rome (Italy); Raffaele, L. [Laboratori Nazionali del SUD, INFN, Catania (Italy); Sciortino, S. [Dipartimento di Energetica dell' Universita and INFN, Florence (Italy)

    2005-10-21

    This paper reviews the main results of the study, carried out in the framework of the Italian National Institute of Nuclear Physics (INFN, Istituto Nazionale di Fisica Nucleare) projects, namely CANDIDO and CONRAD, on natural and synthetic diamond-based dosimeters for clinical radiotherapy. Characteristics of diamond such as radiation hardness, high sensitivity, tissue equivalence, etc., make this material interesting for dosimetry applications. For some years, natural diamonds have been commercially available for on-line radiotherapy dosimetry. Nevertheless, recent developments in the 'Chemical Vapour Deposition' (CVD) technique have addressed the attention on synthetic samples that potentially could be grown at low cost and with features suitable for dosimetric use. Several samples, differently grown and with different electrical contacts, have been compared by measuring their current response during irradiation with high-energy photon, electron and proton beams. Properties of dosimetric interest such as linearity, pre-irradiation dose, dose rate dependence, stability and rise time have been investigated. The results obtained so far within the INFN collaboration demonstrate the suitability of natural diamond detectors for many radiotherapy applications and the great potential of CVD diamond-based devices even though, at present, the commercial natural diamond dosimeters have a better behaviour with respect to the synthetic samples. Further efforts have to be made mainly to improve the dynamic of response and performance stability.

  20. Diamond dosimetry: Outcomes of the CANDIDO and CONRAD INFN projects

    Science.gov (United States)

    Bucciolini, M.; Borchi, E.; Bruzzi, M.; Casati, M.; Cirrone, P.; Cuttone, G.; De Angelis, C.; Lovik, I.; Onori, S.; Raffaele, L.; Sciortino, S.

    2005-10-01

    This paper reviews the main results of the study, carried out in the framework of the Italian National Institute of Nuclear Physics (INFN, Istituto Nazionale di Fisica Nucleare) projects, namely CANDIDO and CONRAD, on natural and synthetic diamond-based dosimeters for clinical radiotherapy. Characteristics of diamond such as radiation hardness, high sensitivity, tissue equivalence, etc., make this material interesting for dosimetry applications. For some years, natural diamonds have been commercially available for on-line radiotherapy dosimetry. Nevertheless, recent developments in the "Chemical Vapour Deposition" (CVD) technique have addressed the attention on synthetic samples that potentially could be grown at low cost and with features suitable for dosimetric use. Several samples, differently grown and with different electrical contacts, have been compared by measuring their current response during irradiation with high-energy photon, electron and proton beams. Properties of dosimetric interest such as linearity, pre-irradiation dose, dose rate dependence, stability and rise time have been investigated. The results obtained so far within the INFN collaboration demonstrate the suitability of natural diamond detectors for many radiotherapy applications and the great potential of CVD diamond-based devices even though, at present, the commercial natural diamond dosimeters have a better behaviour with respect to the synthetic samples. Further efforts have to be made mainly to improve the dynamic of response and performance stability.

  1. Dosimetry of the patient and occupational in interventional procedures; Dosimetria del paciente y ocupacional en procedimientos intervencionistas

    Energy Technology Data Exchange (ETDEWEB)

    Andisco, D. [Universidad de Buenos Aires, Facultad de Medicina, Paraguay 2155, C1121AAA Buenos Aires (Argentina); Bourel, V.; Schmidt, L.; Fernandez, N., E-mail: dandisco@fmed.uba.ar [Universidad Favaloro, Facultad de Ciencias e Ingenieria, Solis 453, C1078AAI, Buenos Aires (Argentina)

    2014-08-15

    The big necessity to estimate the entrance doses in skin that the patients receive when are exposed to interventional procedures and the personal dosimetry of the professionals that work in these procedures in operating room, has taken to the analysis of different possibilities that allow to carry out these estimates. The objective of this work was to analyze the possibility of using Optically Stimulated Luminescence dosimeters; comparing the results with ionizing cameras and electronic personal dosimeters. To carry out these estimates, we work with a X-ray equipment Phillips Allure, acrylic phantoms, a dosimetry system formed by ionization camera and dosimeter UNIDOS E, OSL (Nano dots) dosimeters and electronic lavalieres Aloka brand, PDM 117 models. To estimate the doses that the patients receive, entrance dose was measured in skin and in personal dosimetry inside places where the medical professionals are habitually located in different situations among 5 and 60 irradiation min. In the case of direct radiation, the OSL (Nano dots) present reliable readings and only were dispersed values for the measurements of secondary radiation. The measured values and the linking among them were also analyzed. The OSL (Nano dot) dosimetry behaves reliable way when is located in the ranges of more dose to 0,1 mGy, according to the maker indications and fundamentally for direct beams of the hemodynamics equipment being ideal for the measurement of entrance dose in skin. For the Nano dots use in personal dosimetry the results should be read carefully for values major to 0,1 mGy and being completely inappropriate for minor values. (Author)

  2. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Rodriguez, M.A. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave, Edmonton, AB T6G 1Z2 (Canada); Unidad PET/CT-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (Mexico)], E-mail: avilarod@uwalumni.com; Wilson, J.S.; McQuarrie, S.A. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave, Edmonton, AB T6G 1Z2 (Canada)

    2009-11-15

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8 MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired.

  3. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators.

    Science.gov (United States)

    Avila-Rodriguez, M A; Wilson, J S; McQuarrie, S A

    2009-11-01

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired.

  4. Maximum entropy algorithm and its implementation for the neutral beam profile measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Wook; Cho, Gyu Seong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cho, Yong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A tomography algorithm to maximize the entropy of image using Lagrangian multiplier technique and conjugate gradient method has been designed for the measurement of 2D spatial distribution of intense neutral beams of KSTAR NBI (Korea Superconducting Tokamak Advanced Research Neutral Beam Injector), which is now being designed. A possible detection system was assumed and a numerical simulation has been implemented to test the reconstruction quality of given beam profiles. This algorithm has the good applicability for sparse projection data and thus, can be used for the neutral beam tomography. 8 refs., 3 figs. (Author)

  5. Impact of beam ions on α-particle measurements by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Egedal, J.; Bindslev, H.; Budny, R.V.;

    2005-01-01

    Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask...... the measurements of the fusion products. We apply a new technique for calculating the orbit averaged source, (S), of beam ions for various ITER scenarios. With the known (S) Fokker-Planck modelling is applied to characterize the beam ions during the slowing down process. Theoretical CTS signals for both beam ions...

  6. Measurement of the beam asymmetry in eta photoproduction off the proton

    NARCIS (Netherlands)

    Elsner, D.; Anisovich, A. V.; Anton, G.; Bacelar, J. C. S.; Bantes, B.; Bartholomy, O.; Bayadilov, D. E.; Beck, R.; Beloglazov, Y. A.; Bogendoerfer, R.; Castelijns, R.; Crede, V.; Dutz, H.; Ehmanns, A.; Essig, K.; Ewald, R.; Fabry, I.; Flemming, H.; Fornet-Ponse, K.; Fuchs, M.; Funke, C.; Gothe, R.; Gregor, R.; Gridnev, A. B.; Gutz, E.; Hoeffgen, S.; Hoffmeister, P.; Horn, I.; Hoessl, J.; Jaegle, I.; Junkersfeld, J.; Kammer, H. Kalinowsky S.; Klein, V. Kleber Frank; Klein, Friedrich; Klempt, E.; Koch, H.; Konrad, M.; Kopf, B.; Kotulla, M.; Krusche, B.; Lang, M.; Langheinrich, J.; Löhner, H.; Lopatin, I. V.; Lotz, J.; Ay, S. Lugert H. Matth; Menze, D.; Mertens, T.; Messchendorp, J. G.; Metag, V.; Morales, C.; Nanova, M.; Nikonov, V. A.; Novinski, D. V.; Novotny, R.; Ostrick, M.; Pant, L. M.; Van Pee, H.; Pfeiffer, M.; Radkov, A. K.; Sarantsev, A. V.; Schadmand, S.; Schmidt, C.; Schmieden, H.; Schoch, B.; Shende, S.; Ule, A. S.; Sumachev, V. V.; Szczepanek, T.; Thoma, U.; Trnka, D.; Walther, D.; Weinheimer, C.; Wendel, C.; Suft, G.; Suele, A.; Sumachev, V. V.; Szczepanek, T.; Thoma, U.; Trnka, D.; Walther, D.; Weinheimer, C.; Wendel, C.

    2007-01-01

    The beam asymmetry, Sigma, was measured at ELSA in the reaction gamma p -> eta p using linearly polarised tagged photon beams, produced by coherent bremsstrahlung o ff a diamond. The crystal was oriented to provide polarised photons in the energy range E-gamma = 800 to 1400MeV with the maximum polar

  7. Development of atomic-beam resonance method to measure the nuclear moments of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, T., E-mail: sugimoto@ribf.riken.jp [SPring-8 (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Kawamura, H.; Murata, J. [Rikkyo University, Department of Physics (Japan); Nagae, D.; Shimada, K. [Tokyo Institute of Technology, Department of Physics (Japan); Ueno, H.; Yoshimi, A. [RIKEN Nishina Center (Japan)

    2008-01-15

    We have been working on the development of a new technique of atomic-beam resonance method to measure the nuclear moments of unstable nuclei. In the present study, an ion-guiding system to be used as an atomic-beam source have been developed.

  8. Measurement of M²-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor.

    Science.gov (United States)

    Du, Yongzhao

    2016-11-29

    For asymmetric laser beams, the values of beam quality factor M x 2 and M y 2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M²-curve is developed. The M²-curve not only contains the beam quality factor M x 2 and M y 2 in the x-direction and y-direction, respectively; but also introduces a curve of M x α 2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M²-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS). The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts.

  9. Measurement of M2-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor

    Directory of Open Access Journals (Sweden)

    Yongzhao Du

    2016-11-01

    Full Text Available For asymmetric laser beams, the values of beam quality factor M x 2 and M y 2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M2-curve is developed. The M2-curve not only contains the beam quality factor M x 2 and M y 2 in the x-direction and y-direction, respectively; but also introduces a curve of M x α 2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M2-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS. The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts.

  10. Modelling and calibration of the laser beam-scanning triangulation measurement system

    NARCIS (Netherlands)

    Wang, Guoyu; Zheng, Bing; Li, Xin; Houkes, Z.; Regtien, P.P.L.

    2002-01-01

    We present an approach of modelling and calibration of an active laser beam-scanning triangulation measurement system. The system works with the pattern of two-dimensional beam-scanning illumination and one-dimensional slit-scanning detection with a photo-multiplier tube instead of a CCD camera. By

  11. Update of computer applications associated to measuring equipment of the services of internal dosimetry of NPPS and Tecnatom; Actualizacion de las aplicaciones informaticas asociadas a los equipos de medida de los Servicios de Dosimetria Interna de las CCNN y de Tecnatom

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, B.; Sollet, E.; Serrano, E.

    2014-07-01

    Within the continuous improvement processes that take place in all the activities taking place in the Spanish nuclear power plants, and as a result of implementation of ISO Standards for Internal Dosimetry, has undertaken a review, improvement and updating INDAC ALEDIN and applications associated with measuring equipment and DIYs Quicky kind Personal Internal Dosimetry Services of the Spanish nuclear power plants and Tecnatom This paper presents updates capacities both tools. (Author)

  12. NOTE Thyroid volume measurement in external beam radiotherapy patients using CT imaging: correlation with clinical and anthropometric characteristics

    Science.gov (United States)

    Veres, C.; Garsi, J. P.; Rubino, C.; Pouzoulet, F.; Bidault, F.; Chavaudra, J.; Bridier, A.; Ricard, M.; Ferreira, I.; Lefkopoulos, D.; de Vathaire, F.; Diallo, I.

    2010-11-01

    The aim of this study is to define criteria for accurate representation of the thyroid in human models used to represent external beam radiotherapy (EBRT) patients and evaluate the relationship between the volume of this organ and clinical and anthropometric characteristics. From CT images, we segmented the thyroid gland and calculated its volume for a population of 188 EBRT patients of both sexes, with ages ranging from 1 to 89 years. To evaluate uncertainties linked to measured volumes, experimental studies on the Livermore anthropomorphic phantom were performed. For our population of EBRT patients, we observed that in children, thyroid volume increased rapidly with age, from about 3 cm3 at 2 years to about 16 cm3 at 20. In adults, the mean thyroid gland volume was 23.5 ± 9 cm3 for males and 17.5 ± 8 cm3 for females. According to anthropometric parameters, the best fit for children was obtained by modeling the log of thyroid volume as a linear function of body surface area (BSA) (p < 0.0001) and age (p = 0.04) and for adults, as a linear function of BSA (p < 0.0001) and gender (p = 0.01). This work enabled us to demonstrate that BSA was the best indicator of thyroid volume for both males and females. These results should be taken into account when modeling the volume of the thyroid in human models used to represent EBRT patients for dosimetry in retrospective studies of the relationship between the estimated dose to the thyroid and long-term follow-up data on EBRT patients.

  13. Thyroid volume measurement in external beam radiotherapy patients using CT imaging: correlation with clinical and anthropometric characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Veres, C; Garsi, J P; Rubino, C; De Vathaire, F; Diallo, I [Inserm, CESP Centre for research in Epidemiology and Population Health, U1018, Radiation Epidemiology Team, F 94807, Villejuif (France); Pouzoulet, F; Bidault, F; Chavaudra, J; Bridier, A; Ricard, M; Ferreira, I; Lefkopoulos, D, E-mail: ibrahim.diallo@igr.f [Institut Gustave Roussy, F-94805, Villejuif (France)

    2010-11-07

    The aim of this study is to define criteria for accurate representation of the thyroid in human models used to represent external beam radiotherapy (EBRT) patients and evaluate the relationship between the volume of this organ and clinical and anthropometric characteristics. From CT images, we segmented the thyroid gland and calculated its volume for a population of 188 EBRT patients of both sexes, with ages ranging from 1 to 89 years. To evaluate uncertainties linked to measured volumes, experimental studies on the Livermore anthropomorphic phantom were performed. For our population of EBRT patients, we observed that in children, thyroid volume increased rapidly with age, from about 3 cm{sup 3} at 2 years to about 16 cm{sup 3} at 20. In adults, the mean thyroid gland volume was 23.5 {+-} 9 cm{sup 3} for males and 17.5 {+-} 8 cm{sup 3} for females. According to anthropometric parameters, the best fit for children was obtained by modeling the log of thyroid volume as a linear function of body surface area (BSA) (p < 0.0001) and age (p = 0.04) and for adults, as a linear function of BSA (p < 0.0001) and gender (p = 0.01). This work enabled us to demonstrate that BSA was the best indicator of thyroid volume for both males and females. These results should be taken into account when modeling the volume of the thyroid in human models used to represent EBRT patients for dosimetry in retrospective studies of the relationship between the estimated dose to the thyroid and long-term follow-up data on EBRT patients. (note)

  14. Modeled and Measured Dynamics of a Composite Beam with Periodically Varying Foam Core

    Science.gov (United States)

    Cabell, Randolph H.; Cano, Roberto J.; Schiller, Noah H.; Roberts Gary D.

    2012-01-01

    The dynamics of a sandwich beam with carbon fiber composite facesheets and foam core with periodic variations in material properties are studied. The purpose of the study is to compare finite element predictions with experimental measurements on fabricated beam specimens. For the study, three beams were fabricated: one with a compliant foam core, a second with a stiffer core, and a third with the two cores alternating down the length of the beam to create a periodic variation in properties. This periodic variation produces a bandgap in the frequency domain where vibrational energy does not readily propagate down the length of the beam. Mode shapes and natural frequencies are compared, as well as frequency responses from point force input to velocity response at the opposite end of the beam.

  15. Interferometric measurement of the beam size in the compact storage ring

    CERN Document Server

    Yamamoto, Y; Mitsuhashi, T; Amano, D; Iwasaki, H

    2001-01-01

    The beam size in the compact superconducting storage ring AURORA at Ritsumeikan University was measured using the SR-interferometer. The radiation beam from the bending magnet was passed through the double-slit and an interferogram formed in the visible spectral region was recorded using a CCD camera. The spatial coherence of the beam was derived from the analysis of the intensity profile and its dependence on the spatial frequency has yielded the beam size of 10.5 mu m in the vertical direction. It is unexpectedly small, indicating a high accuracy in the design of magnetic field in the magnet. The beam size could be varied by applying an rf kick electric field and the dependence of the beam lifetime on the size has shown that it is primarily governed by the Tauschek effect.

  16. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    CERN Document Server

    Yu, Deyang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-01-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking the advantages of high electric potential and narrow bandwidth in DC energetic charged beam measurements, current resolution better than 5 fA can be achieved. Two 128-channel Faraday cup arrays are built, and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  17. Measurements of Linac4 H(-) ion source beam with a magnetized Einzel lens electron dump.

    Science.gov (United States)

    Midttun, Øystein; Lettry, Jacques; Scrivens, Richard

    2014-02-01

    Linac4 is a part of the upgrade of CERN's accelerator complex for increased luminosity in the Large Hadron Collider (LHC). A new system to extract the ion beam from the plasma generator has been designed and tested, in order to improve the reliability and beam optics of the pulsed H(-) ion source. This paper presents the successfully implemented extraction system and three different beam measurements. The simulations compare well to the measurements and show that the plasma density was too low for the extraction system design during the measurements.

  18. Measurements of Linac4 H$^{-}$ ion source beam with a magnetized Einzel lens electron dump

    CERN Document Server

    Midttun, O; Scrivens, R

    2014-01-01

    Linac4 is a part of the upgrade of CERN’s accelerator complex for increased luminosity in the LHC. A new system to extract the ion beam from the plasma generator has been designed and tested, in order to improve the reliability and beam optics of the pulsed H- ion source. This paper presents the successfully implemented extraction system and three different beam measurements. The simulations compare well to the measurements and show that the plasma density was too low for the extraction system design during the measurements.

  19. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Deyang, E-mail: d.yu@impcas.ac.cn; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Xin [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2015-11-15

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O{sup 3+} ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  20. Dosimetry of iodoantipyrine

    Energy Technology Data Exchange (ETDEWEB)

    Chu, R.Y.L.; Ekeh, S. (Oklahoma Univ., Oklahoma City, OK (USA). Dept. of Radiological Sciences; Veterans Administration Medical Center, Oklahoma City, OK (USA)); Basmadjian, G. (Oklahoma Univ., Oklahoma City, OK (USA). Dept. of Pharmaceutical Sciences)

    1989-12-01

    Dosimetry of iodoantipyrine labeled with radioactive iodine was determined by measuring the biodistribution of {sup 131}I-iodoantipyrine in 41 female rabbits. Following administration of the radiopharmaceutical, subjects were killed at 0.5, 6, 12, 17, 24, 36, and 48 h. Organs and samples of tissues and body fluids were assayed. Results were corrected for physical decay. Exponential functions were employed to describe the time-concentration curves; representative value would be the biological half life of 9.96+-0.55 h for blood. Cumulated activity estimates for {sup 123}I, {sup 125}I and {sup 131}I were then computed. Extrapolation to absorbed dose in humans followed the formulation of the Medical International Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The whole body absorbed doses are 0.7 {mu}Gray, 0.5 {mu}Gray and 2.9 {mu}Gray per MBq of {sup 123}I, {sup 123}I, and {sup 131}I administered respectively. (orig.).

  1. Commissioning of Portal Dosimetry and characterization of an EPID; Comissionamento de Portal Dosimetry e caracterizacao de EPID

    Energy Technology Data Exchange (ETDEWEB)

    Olbi, D.S.; Sales, C.P. [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina; Nakandakari, M.V.N., E-mail: diego.olbi@hc.fm.usp.br [Instituto do Cancer do Estado de Sao Paulo, SP (Brazil). Servico de Radioterapia

    2016-07-01

    The development of technologies compensator blocks, MLC, high dose rate accelerators, treatment planning systems, among others, permitted that new treatment techniques in radiotherapy were created. Such techniques have the capacity to modulate radiation beam fluency (IMRT, VMAT), or to deliver high doses in few fractions or unique fractions (SRS). Following the same tendency, quality control of planning became more complex. It is necessary to evaluate the fluency delivered by the accelerator. Its levels of does and its spatial distribution should co-occur with the fluency calculated by TPS. Acquisition of new detector devices in quality control of treatments is fundamental to apply techniques. Portal Vision is a device EPID has the capacity to operate either in image mode or dosimetry mode, with the allowance of Portal Dosimetry. To evaluated planning in IMRT, the device is irradiated using planning e, therefore, the fluency measured is compared with calculated fluency, through gamma analysis. The aim of this work was to perform tests of commissioning of this device. (author)

  2. A novel optical calorimetry dosimetry approach applied to an HDR Brachytherapy source

    Science.gov (United States)

    Cavan, A.; Meyer, J.

    2013-06-01

    The technique of Digital Holographic Interferometry (DHI) is applied to the measurement of radiation absorbed dose distribution in water. An optical interferometer has been developed that captures the small variations in the refractive index of water due to the radiation induced temperature increase ΔT. The absorbed dose D is then determined with high temporal and spatial resolution using the calorimetric relation D=cΔT (where c is the specific heat capacity of water). The method is capable of time resolving 3D spatial calorimetry. As a proof-of-principle of the approach, a prototype DHI dosimeter was applied to the measurement of absorbed dose from a High Dose Rate (HDR) Brachytherapy source. Initial results are in agreement with modelled doses from the Brachyvision treatment planning system, demonstrating the viability of the system for high dose rate applications. Future work will focus on applying corrections for heat diffusion and geometric effects. The method has potential to contribute to the dosimetry of diverse high dose rate applications which require high spatial resolution such as microbeam radiotherapy (MRT) or small field proton beam dosimetry but may potentially also be useful for interface dosimetry.

  3. Dosimetry procedures for an industrial irradiation plant

    Science.gov (United States)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  4. SU-E-T-133: Assessing IMRT Treatment Delivery Accuracy and Consistency On a Varian TrueBeam Using the SunNuclear PerFraction EPID Dosimetry Software

    Energy Technology Data Exchange (ETDEWEB)

    Dieterich, S [UC Davis Medical Center, Sacramento, CA (United States); Trestrail, E; Holt, R [Pacific Crest Medical Physics, Chico, CA (United States); Saini, S [Sun Nuclear Corporation, Melbourne, FL (Australia); Pfeiffer, I [VMTH, UC Davis, Davis, CA (United States); Kent, M; Hansen, K [Surgical and Radiological Sciences, UC Davis, Davis, CA (United States)

    2015-06-15

    Purpose: To assess if the TrueBeam HD120 collimator is delivering small IMRT fields accurately and consistently throughout the course of treatment using the SunNuclear PerFraction software. Methods: 7-field IMRT plans for 8 canine patients who passed IMRT QA using SunNuclear Mapcheck DQA were selected for this study. The animals were setup using CBCT image guidance. The EPID fluence maps were captured for each treatment field and each treatment fraction, with the first fraction EPID data serving as the baseline for comparison. The Sun Nuclear PerFraction Software was used to compare the EPID data for subsequent fractions using a Gamma (3%/3mm) pass rate of 90%. To simulate requirements for SRS, the data was reanalyzed using a Gamma (3%/1mm) pass rate of 90%. Low-dose, low- and high gradient thresholds were used to focus the analysis on clinically relevant parts of the dose distribution. Results: Not all fractions could be analyzed, because during some of the treatment courses the DICOM tags in the EPID images intermittently change from CU to US (unspecified), which would indicate a temporary loss of EPID calibration. This technical issue is still being investigated. For the remaining fractions, the vast majority (7/8 of patients, 95% of fractions, and 96.6% of fields) are passing the less stringent Gamma criteria. The more stringent Gamma criteria caused a drop in pass rate (90 % of fractions, 84% of fields). For the patient with the lowest pass rate, wet towel bolus was used. Another patient with low pass rates experienced masseter muscle wasting. Conclusion: EPID dosimetry using the PerFraction software demonstrated that the majority of fields passed a Gamma (3%/3mm) for IMRT treatments delivered with a TrueBeam HD120 MLC. Pass rates dropped for a DTA of 1mm to model SRS tolerances. PerFraction pass rates can flag missing bolus or internal shields. Sanjeev Saini is an employee of Sun Nuclear Corporation. For this study, a pre-release version of PerFRACTION 1

  5. Dosimetry of ionising radiation in modern radiation oncology

    Science.gov (United States)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  6. Wide-aperture laser beam measurement using transmission diffuser: errors modeling

    Science.gov (United States)

    Matsak, Ivan S.

    2015-06-01

    Instrumental errors of measurement wide-aperture laser beam diameter were modeled to build measurement setup and justify its metrological characteristics. Modeled setup is based on CCD camera and transmission diffuser. This method is appropriate for precision measurement of large laser beam width from 10 mm up to 1000 mm. It is impossible to measure such beams with other methods based on slit, pinhole, knife edge or direct CCD camera measurement. The method is suitable for continuous and pulsed laser irradiation. However, transmission diffuser method has poor metrological justification required in field of wide aperture beam forming system verification. Considering the fact of non-availability of a standard of wide-aperture flat top beam modelling is preferred way to provide basic reference points for development measurement system. Modelling was conducted in MathCAD. Super-Lorentz distribution with shape parameter 6-12 was used as a model of the beam. Using theoretical evaluations there was found that the key parameters influencing on error are: relative beam size, spatial non-uniformity of the diffuser, lens distortion, physical vignetting, CCD spatial resolution and, effective camera ADC resolution. Errors were modeled for 90% of power beam diameter criteria. 12-order Super-Lorentz distribution was primary model, because it precisely meets experimental distribution at the output of test beam forming system, although other orders were also used. The analytic expressions were obtained analyzing the modelling results for each influencing data. Attainability of <1% error based on choice of parameters of expression was shown. The choice was based on parameters of commercially available components of the setup. The method can provide up to 0.1% error in case of using calibration procedures and multiple measurements.

  7. Beam emittance measurements and simulations of injector line for radio frequency quadrupole

    Science.gov (United States)

    Mathew, Jose V.; Rao, S. V. L. S.; Pande, Rajni; Singh, P.

    2015-07-01

    A 400 keV deuteron (D+) radio frequency quadrupole (RFQ) accelerator has been designed, built, and commissioned at the Bhabha Atomic Research Centre, India. A beam line has been developed for injecting deuterons into the 400 keV RFQ. This comprises of a RF plasma ion source and a low energy beam transport (LEBT) system, consisting of two solenoid magnets and two steerer magnets. The ion source is characterized in terms of transverse beam emittance. A slit-wire scanner based emittance measurement setup has been developed for the transverse emittance measurements of H+ and D+ beams. The measured emittance values are found to be well within the acceptance value for the RFQ. These measured emittance parameters are used to optimize the solenoid fields in LEBT to match the beam from the ion source to RFQ. TRACEWIN simulation code is used for the beam transport simulations. The simulations show 99% transmission of D+ beam through the RFQ, while 95% transmission has been measured experimentally.

  8. Linearly polarised photon beams at ELSA and measurement of the beam asymmetry in π0_{} photoproduction off the proton

    Science.gov (United States)

    Elsner, D.; Bantes, B.; Bartholomy, O.; Bayadilov, D. E.; Beck, R.; Beloglazov, Y. A.; Castelijns, R.; Crede, V.; Ehmanns, A.; Essig, K.; Ewald, R.; Fabry, I.; Frommberger, F.; Fornet-Ponse, K.; Fuchs, M.; Funke, C.; Gridnev, A. B.; Gutz, E.; Hillert, W.; Höffgen, S.; Hoffmeister, P.; Horn, I.; Jaegle, I.; Junkersfeld, J.; Kalinowsky, H.; Klein, Frank; Klein, Friedrich; Klempt, E.; Konrad, M.; Kotulla, M.; Krusche, B.; Löhner, H.; Lopatin, I. V.; Lotz, J.; Lugert, S.; Menze, D.; Mertens, T.; Messchendorp, J. G.; Metag, V.; Morales, C.; Nanova, M.; Novinski, D. V.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Sarantsev, A. V.; Schmidt, C.; Schmieden, H.; Schoch, B.; Shende, S.; Süle, A.; Sumachev, V. V.; Szczepanek, T.; Thoma, U.; Trnka, D.; Walther, D.; Weinheimer, C.; Wendel, C.

    2009-03-01

    At the electron accelerator ELSA a linearly polarised tagged photon beam is produced by coherent bremsstrahlung off a diamond crystal. Orientation and energy range of the linear polarisation can be deliberately chosen by accurate positioning of the crystal with a goniometer. The degree of polarisation is determined by the form of the scattered electron spectrum. Good agreement between experiment and expectations on the basis of the experimental conditions is obtained. Polarisation degrees of ensuremath P_{γ}=40 % are typically achieved at half of the primary electron energy. The determination of ensuremath P_{γ} is confirmed by measuring the beam asymmetry, Σ , in π0_