WorldWideScience

Sample records for beam measurement dosimetry

  1. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  2. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  3. Relative output factor measurements of a 5 mm diameter radiosurgical photon beam using polymer gel dosimetry

    International Nuclear Information System (INIS)

    Besides the fine spatial resolution inherent in polymer gel-magnetic resonance imaging (MRI) dosimetry, the method also features the potential for multiple measurements of varying sensitive volume in a single experiment by integrating results in MRI voxels of finite dimensions (i.e., in plane resolution by slice thickness). This work exploits this feature of polymer gel dosimetry to propose an experimental technique for relative output factor (OF) measurements of small radiosurgical beams. Two gel vials were irradiated with a 5 and 30 mm diameter 6 MV radiosurgery beam and MR scanned with the same slice thickness and three different in plane resolutions. Using this experimental data set, 5 mm OF measurements with the PinPoint ion chamber are simulated by integrating results over a sensitive volume equal to that of the chamber. Results are found in agreement within experimental uncertainties with actual PinPoint measurements verifying the validity of the proposed experimental procedure. The polymer gel data set is subsequently utilized for OF measurements of the 5 mm beam with varying sensitive volume to discuss the magnitude of detector volume averaging effects. Seeking to correct for volume averaging, results are extrapolated to zero sensitive volume yielding a 5 mm OF measurement of (0.66±5%). This result compares reasonably with corresponding ionometric and radiographic film measurements of this work and corresponding, limited, data in the literature. Overall, results suggest that polymer gel dosimetry coupled with the proposed experimental procedure helps overcome not only tissue-equivalence and beam perturbation implications but also volume averaging and positioning uncertainties which constitute the main drawback in small radiosurgical beam dosimetry

  4. Dosimetry of pion beams

    International Nuclear Information System (INIS)

    Negative pion beams are probably the most esoteric and most complicated type of radiation which has been suggested for use in clinical radiotherapy. Because of the limited availability of pion beams in the past, even to nuclear physicists, there exist relatively fewer basic data for this modality. Pion dosimetry is discussed

  5. Dosimetry for electron beam sterilization

    International Nuclear Information System (INIS)

    According to ISO 11137-1 (sect 4.3.4) dosimetry used in the development, validation and routine control of the sterilization process shall have measurement traceability to national or international standards and shall have a known level of uncertainty. It can only be obtained through calibration of the dosimeters. In presented lecture different types of dosimeter systems for electron beams (calorimeters, radiochromic film dosimeters, alanine / EPR) and their calibration are described

  6. Dosimetry for electron beam application

    International Nuclear Information System (INIS)

    This report describes two aspects of electron beam dosimetry, on one hand development of film dosimeters and measurements of their properties, and on the other hand development of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film dosimeters have been developed in this department, and the properties of these and commercially available dosimeters have been measured and found to be comparable. Calorimeters which are in use for routine measurements, are being investigated with reference to their application as standardizing instruments, and new calorimeters are being developed. (author)

  7. Design and test of a scintillation dosimeter for dosimetry measurements of high energy radiotherapy beams

    International Nuclear Information System (INIS)

    This work describes the design and evaluation of the performances of a scintillation dosimeter developed for the dosimetry of radiation beams used in radiotherapy. The dosimeter consists in a small plastic scintillator producing light which is guided by means of a plastic optical fiber towards photodetectors. In addition to scintillation, high energy ionizing radiations produce Cerenkov light both in the scintillator and the optical fiber. Based on a wavelength analysis, we have developed a deconvolution technique to measure the scintillation light in the presence of Cerenkov light. We stress the advantages that are anticipated from plastic scintillator, in particular concerning tissue or water equivalence (mass stopping power, mass attenuation or mass energy absorption coefficients). We show that detectors based on this material have better characteristics than conventional dosimeters such as ionisation chambers or silicon detectors. The deconvolution technique is exposed, as well as the calibration procedure using an ionisation chamber. We have studied the uncertainty of our dosimeter. The electronics noise, the fiber transmission, the deconvolution technique and the calibration errors give an overall combined experimental uncertainty of about 0,5%. The absolute response of the dosimeter is studied by means of depth dose measurements. We show that absolute uncertainty with photons or electrons beams with energies ranging from 4 MeV to 25 MeV is less than ± 1 %. Last, at variance with other devices, our scintillation dosimeter does not need dose correction with depth. (author)

  8. Measurements and elimination of Cherenkov light in fiber-optic scintillating detector for electron beam therapy dosimetry

    International Nuclear Information System (INIS)

    In this study, a miniature fiber-optic radiation detector has been developed using a water-equivalent organic scintillator for electron beam therapy dosimetry. Usually, two kinds of light signals such as fluorescent and Cherenkov lights are generated in a fiber-optic radiation detector when a high-energy electron beam is irradiated. The fluorescent light signal is produced in the scintillator and is transmitted through a plastic optical fiber to a remote light-measuring device such as a PMT or a photodiode. The Cherenkov light could be also produced in the plastic optical fiber itself and be detected by a light-measuring device. Therefore, it could cause problems or limit the accuracy of the detection of a fluorescent light signal that is proportional to dose. The objectives of this study are to measure, characterize and eliminate Cherenkov light generated in a plastic optical fiber used as a component of a fiber-optic radiation detector and to detect a real fluorescent light signal from the scintillator. In this study, the intensity of Cherenkov light is measured and characterized as a function of the incident angle of an electron beam from a LINAC, as a function of the electron beam energy, and as a function of electron beam size. Also, a subtraction method using a background optical fiber without a scintillator and an optical discrimination method using optical filters are investigated to remove Cherenkov light

  9. Dosimetry for Electron Beam Applications

    DEFF Research Database (Denmark)

    Miller, Arne

    1983-01-01

    This report describes two aspects of electron bean dosimetry, on one hand developaent of thin fil« dosimeters and measurements of their properties, and on the other hand developaent of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film dosimet...

  10. Dosimetry of x-ray beams: The measure of the problem

    International Nuclear Information System (INIS)

    This document contains the text of an oral presentation on dosimetry of analytical x-ray equipment presented at the Denver X-Ray Conference. Included are discussions of sources of background radiation, exposure limits from occupational sources, and the relationship of these sources to the high dose source of x-rays found in analytical machines. The mathematical basis of x-ray dosimetry is reviewed in preparation for more detailed notes on personnel dosimetry and the selection of the most appropriate dosimeter for a specific application. The presentation concludes with a discussion common to previous x-ray equipment accidents. 2 refs

  11. Development and validation of a measurement-based source model for kilovoltage cone-beam CT Monte Carlo dosimetry simulations

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study is to adapt an equivalent source model originally developed for conventional CT Monte Carlo dose quantification to the radiation oncology context and validate its application for evaluating concomitant dose incurred by a kilovoltage (kV) cone-beam CT (CBCT) system integrated into a linear accelerator.Methods: In order to properly characterize beams from the integrated kV CBCT system, the authors have adapted a previously developed equivalent source model consisting of an equivalent spectrum module that takes into account intrinsic filtration and an equivalent filter module characterizing the added bowtie filtration. An equivalent spectrum was generated for an 80, 100, and 125 kVp beam with beam energy characterized by half-value layer measurements. An equivalent filter description was generated from bowtie profile measurements for both the full- and half-bowtie. Equivalent source models for each combination of equivalent spectrum and filter were incorporated into the Monte Carlo software package MCNPX. Monte Carlo simulations were then validated against in-phantom measurements for both the radiographic and CBCT mode of operation of the kV CBCT system. Radiographic and CBCT imaging dose was measured for a variety of protocols at various locations within a body (32 cm in diameter) and head (16 cm in diameter) CTDI phantom. The in-phantom radiographic and CBCT dose was simulated at all measurement locations and converted to absolute dose using normalization factors calculated from air scan measurements and corresponding simulations. The simulated results were compared with the physical measurements and their discrepancies were assessed quantitatively.Results: Strong agreement was observed between in-phantom simulations and measurements. For the radiographic protocols, simulations uniformly underestimated measurements by 0.54%–5.14% (mean difference =−3.07%, SD = 1.60%). For the CBCT protocols, simulations uniformly underestimated

  12. Measurement assurance in dosimetry

    International Nuclear Information System (INIS)

    The uses of radiation in medicine and industry are today wide in scope and diversity and there is a need for reliable dosimetry in most applications. In particular, high accuracy in dosimetry is required in the therapeutic use of radiation. Consequently, calibration procedures for radiotherapy generally meet also the accuracy requirements for applications in other fields, such as diagnostic radiology, radiation protection and industrial radiation processing. The emphasis at this symposium was therefore mainly or radiotherapy dosimetry, but the meeting also included one session devoted to dosimetry in diagnostic radiology. Refs, fig and tabs

  13. Reference dosimetry and measurement quality assurance

    International Nuclear Information System (INIS)

    Measurements of absorbed dose made by a reference dosimetry system, such as alanine, have been suggested for achieving quality assurance through traceability to primary standards. Such traceability can assist users of radiation worldwide in enhancing quality control in medicine, agriculture, and industry. International and national standards of absorbed dose are still needed for applications of γ-ray and electron dosimetry at high doses (e.g. radiation therapy, food irradiation and industrial radiation processing). Reference systems, such as ferrous sulfate dosimeters measured by spectrophotometry and alanine measured by electron spin resonance spectrometry are already well established. Another useful reference system for high doses is supplied as dichromate solutions measured by spectrophotometry. Reference dosimetry, particularly for electron beams, can be accomplished with thin alanine or radiochromic dye film dosemeters. (author)

  14. A set of dosimetry systems for electron beam irradiation

    International Nuclear Information System (INIS)

    To follow the rapid development of radiation processing with electron beams, it is urgent to set up a set of dosimetric standards to provide Quality Assurance (QA) of electron beam irradiation and unify the values of the quality of the absorbed dose measurements for electron beams. This report introduces a set of dosimetry systems established in Radiometrology Center of China Institute of Atomic Energy (RCCIAE), which have been or will be used as dosimetric standards in the Nuclear Industry System (NIS) in China. For instance, the potassium (silver) dichromate and ceric-cerous sulfate dosimetry systems will be used as standard dosimeters, while alanine-ESR dosimetry system as a transfer dosimeter, and FJL-01 CTA as a routine dosimeter. (author)

  15. Proceedings of the 5. symposium on neutron dosimetry. Beam dosimetry

    International Nuclear Information System (INIS)

    Proceedings of the fifth symposium on neutron dosimetry, organized at Neuherberg, 17-21 September 1984, by the Commission of the European Communities and the GSF Neuherberg, with the co-sponsorship of the US Department of Energy, Office of Health and Environmental Research. The proceedings deal with research on concepts, instruments and methods in radiological protection for neutrons and mixed neutron-gamma fields, including the generation, collection and evaluation of new dosimetric data, the derivation of relevant radiation protection quantitites, and the harmonization of experimental methods and instrumentation by intercomparison programmes. Besides radiation protection monitoring, the proceedings also report on the improvement of neutron beam dosimetry in the fields of radiobiology and radiation therapy

  16. Advances in kilovoltage x-ray beam dosimetry

    Science.gov (United States)

    Hill, Robin; Healy, Brendan; Holloway, Lois; Kuncic, Zdenka; Thwaites, David; Baldock, Clive

    2014-03-01

    This topical review provides an up-to-date overview of the theoretical and practical aspects of therapeutic kilovoltage x-ray beam dosimetry. Kilovoltage x-ray beams have the property that the maximum dose occurs very close to the surface and thus, they are predominantly used in the treatment of skin cancers but also have applications for the treatment of other cancers. In addition, kilovoltage x-ray beams are used in intra operative units, within animal irradiators and in on-board imagers on linear accelerators and kilovoltage dosimetry is important in these applications as well. This review covers both reference and relative dosimetry of kilovoltage x-ray beams and provides recommendations for clinical measurements based on the literature to date. In particular, practical aspects for the selection of dosimeter and phantom material are reviewed to provide suitable advice for medical physicists. An overview is also presented of dosimeters other than ionization chambers which can be used for both relative and in vivo dosimetry. Finally, issues related to the treatment planning and the use of Monte Carlo codes for solving radiation transport problems in kilovoltage x-ray beams are presented.

  17. Small field electron beam dosimetry using MOSFET detector.

    Science.gov (United States)

    Amin, Md Nurul; Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K

    2011-01-01

    The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth-dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high-sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm × 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also per-formed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ± 1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam. PMID:21330970

  18. NBS (National Bureau of Standards) measurement services: Fricke dosimetry in high-energy electron beams. Final report

    International Nuclear Information System (INIS)

    The NBS Fricke-Dosimetry Service (advertised in NBS Special Publication 250, 1986-1988 and earlier editions) is described in detail. After a brief historical introduction and description of the service, the theoretical basis (including what quantities are measured, how, and why) and the philosophy of internal quality checks are discussed in some detail. This is followed by a description of the physical setup and of the step-by-step operating and reporting procedures. Throughout the section, there is reference to sample records of past performance, in order to facilitate continuity of operation in the case of personnel changes. The document concludes with a discussion of the uncertainties involved in the measurement quality-assurance service, safety considerations, and an appendix containing samples of all form letters and of the final report mailed to the participants

  19. Proton beam dosimetry - Protocol and intercomparison in Japan

    International Nuclear Information System (INIS)

    Full text: A new protocol for dosimetry in external beam radiotherapy will be published by Japan Society of Medical Physics (JSMP) in this year. The protocol deals with not only photon and electron beams but also proton and heavy ion beams, since the number of proton and carbon beam therapy facilities increases recently in Japan. In this presentation, we report the results of a proton dosimetry intercomparison, which was held at Proton Medical Research Center (PMRC), University of Tsukuba in February 2002. The objectives of the intercomparison were to evaluate the differences in absorbed dose determination at various proton therapy facilities in Japan and to establish consistency in proton beam absorbed dose to water with the new protocol. The institutions participating the intercomparison were NIRS, PMRC, National Cancer Center (NCC), Hyogo Ion Beam Medical Center (HIBMC) and Wakasa Wan Energy Research Center (WERC). Dose measurements using different cylindrical ionization chambers were carried out in a water phantom at a position of 30 mm residual range for proton beams which had range of 155 mm and spread out Bragg peak (SOBP) of 60 mm width. Each institution evaluated the absorbed dose to water per monitor unit, using both the procedure routinely used at the institution and the new protocol. Before the proton beam measurements, all ionization chambers were calibrated with 60Co in terms of exposure. As a result, the intercomparison showed that the use of the new protocol would improve +/- 1.0% (one standard deviation) and 2.7 % (maximum discrepancy) differences in absorbed doses stated by the participating facilities to +/- 0.3% and 0.9 %, respectively. The new protocol will be adopted by the all participants after the publication. We also plan to compare the new protocol with IAEA and ICRU protocols for proton beam dosimetry. (author)

  20. Three-dimensional high dose rate dosimetry of pulsed electron beams: The combined radiochromic film and calorimetric measurments

    Directory of Open Access Journals (Sweden)

    Šećerov Bojana L.

    2004-01-01

    Full Text Available We present an evaluation of the precision and accuracy of image-based radiochromic film dosimetry. A stack of radiochromic film FWT-60 was used to map a radiation field produced by an electron pulse from a Febetron 707 accelerator (dose rate around 5•1011Gy/s; maximum dose around 160 kGy. The three-dimensional dose distribution was obtained by a He-Nescanning-laser microdensitometer and using image segmentation and correction for non-linear response of films. Calorimetry and electron paramagnetic resonance dosimetry were used to verify the results obtained with a FWT-60 film.

  1. Dosimetry with the scanned proton beam on the PSI gantry

    International Nuclear Information System (INIS)

    Full text: The irradiation facility at PSI is designed for the treatment of deep seated tumours with a proton beam energy of up to 270 MeV. The spot scanning technique, which uses a proton pencil beam applied to the patient, is performed on a compact isocentric gantry. An optimal three-dimensional conformation of the dose distribution to the target volume can be realized. A fast steering system and a redundant interlock system are in operation. The dose delivery is controlled by a parallel plate transmission chamber, which is calibrated in terms of number of protons per monitor unit. The therapy planning is based on an empirical model, which takes into account attenuation of primary protons and losses outside the primary beam through secondary products. The therapy plan predicts an absolute dose. The calibration of the primary monitor is done using a reference thimble ionization chamber inside a homogeneous geometrical dose volume. The reference system is calibrated in a cobalt field at the national office of metrology in terms of absorbed dose to water. The dosimetry protocol used up to last year was based on the ICRU Report Nr. 59, we have switched to the IAEA Code of Practice starting this beam period. Data on the monitor calibration for various energies and using two different reference systems will be shown. The calibration of the beam monitor using a Faraday Cup in the static pencil beam results in a good agreement with the ionization chamber measurements, with a deviation of less than 1%. Following the daily setup of the machine, an extensive quality control and safety check of the whole system is performed. The daily dosimetry quality assurance program includes: measurement of dose rate and monitor ratios; check of the beam position monitors; measurement of a depth dose curve; dose measurement in a regular dose field. The doses measured daily in a regular scanned field show a standard deviation of about 1 %. Further daily checks results, which illustrate

  2. Dosimetry for combustion flue gas treatment with electron beam

    International Nuclear Information System (INIS)

    The electron beam treatment of flue gas is one of the new technologies. There are several reasons for carrying out dosimetry at various phases of the project as understanding the process and optimizing the equipment, for process control and for troubleshooting in case of malfunction etc. The main challenge in measuring dose for flue gas applications is that the medium being irradiated is gaseous. Two general approaches for dose measurements are: adding/placing some dosimeters in the reaction vessel (gas) and using the components of the gas itself as a dosimeter. Various techniques and methods have been tried which are discussed in this paper. (author)

  3. Conceptual improvements and limitations in non-standard beam reference dosimetry

    International Nuclear Information System (INIS)

    Novel nonstandard beams improve target dose conformity as compared to conventional methods, but also increase the complexity of dosimetry procedures. As recent studies demonstrated the invalidity of absorbed dose-to-water-based protocols to nonstandard beams, a new workgroup of the IAEA, endorsed by AAPM, published a formalism in preparation of a new protocol applicable to nonstandard beams. Although applying correction factors (kQ) to nonstandard beam measurements is recommended in the upcoming protocol, conceptual problems in regards to nonstandard conditions are yet to be resolved. Furthermore, accurate measurements of kQ factors for nonstandard beams need to be performed. In such measurements, accurate uncertainty estimation is also essential, especially in the case where corrections factors are found below the percent level. Evaluations of uncertainties are also important in order to evaluate limiting factors in nonstandard beam dosimetry or to perform sensitivity studies in the design of suitable nonstandard reference fields in the lead up to the new protocol. One goal of the study is to isolate the factors responsible for non-unity corrections in modulated beams, and provide solutions to improve fundamental concepts to be used for nonstandard beams reference dosimetry protocols. Another goal is to provide methods to estimate uncertainties accurately in the measurements of nonstandard beam kQ factors, and complement experimental procedures as well as insights on the uncertainty levels achievable in nonstandard beam dosimetry

  4. Chemical vapour deposited diamonds for dosimetry of radiotherapeutical beams

    Energy Technology Data Exchange (ETDEWEB)

    Bucciolini, M.; Mazzocchi, S. [Firenze Univ., Firenze (Italy). Dipartimento di Fisiopatologia Clinica; INFN, Firenze (Italy); Borchi, E.; Bruzzi, M.; Pini, S.; Sciortino, S. [Firenze Univ., Firenze (Italy). Dipartimento di Energetica; INFN, Firenze (Italy); Cirrone, G.A.P.; Guttone, G.; Raffaele, L.; Sabini, M.G. [INFN, Catania (Italy). Laboratori Nazionali del Sud

    2002-07-01

    This paper deals with the application of synthetic diamond detectors to the clinical dosimetry of photon and electron beams. It has been developed in the frame of INFN CANDIDO project and MURST Cofin. Diamonds grown with CVD (Chemical Vapour Deposition) technique have been studied; some of them are commercial samples while others have been locally synthesised. Experiments have been formed using both on-line and off-line approaches. For the off-line measurements, TL (thermoluminescent) and TSC (thermally stimulated current) techniques have been used.

  5. Chemical vapour deposited diamonds for dosimetry of radiotherapeutical beams

    International Nuclear Information System (INIS)

    This paper deals with the application of synthetic diamond detectors to the clinical dosimetry of photon and electron beams. It has been developed in the frame of INFN CANDIDO project and MURST Cofin. Diamonds grown with CVD (Chemical Vapour Deposition) technique have been studied; some of them are commercial samples while others have been locally synthesised. Experiments have been formed using both on-line and off-line approaches. For the off-line measurements, TL (thermoluminescent) and TSC (thermally stimulated current) techniques have been used

  6. Pulsed beam dosimetry using fiber-coupled radioluminescence detectors

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2012-01-01

    The objective of this work was to review and discuss the potential application of fiber-coupled radioluminescence detectors for dosimetry in pulsed MV photon beams. Two types of materials were used: carbon-doped aluminium oxide (Al2O3:C) and organic plastic scintillators. Special consideration was...... given to the discrimination between radioluminescence signals from the phosphors and unwanted light induced in the optical fiber cables during irradiation (Cerenkov and fluorescence). New instrumentation for dose-per-pulse measurements with organic plastic scintillators was developed....

  7. In vivo dosimetry with thermoluminescent dosimeters in external photon beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alessandro M. [Departamento de Fisica e Matematica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, SP (Brazil)], E-mail: amcosta@usp.br; Barbi, Gustavo L.; Bertucci, Edenyse C.; Ferreira, Heberton; Sansavino, Simone Z.; Colenci, Beatriz [Servico de Radioterapia, Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes 3900, 14048-900 Ribeirao Preto, SP (Brazil); Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2010-04-15

    The ultimate check of the actual dose delivered to a patient in radiotherapy can only be achieved by using in vivo dosimetry. This work reports a pilot study to test the applicability of a thermoluminescent dosimetric system for performing in vivo entrance dose measurements in external photon beam radiotherapy. The measurements demonstrated the value of thermoluminescent dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in radiotherapy.

  8. In vivo dosimetry with thermoluminescent dosimeters in external photon beam radiotherapy

    International Nuclear Information System (INIS)

    The ultimate check of the actual dose delivered to a patient in radiotherapy can only be achieved by using in vivo dosimetry. This work reports a pilot study to test the applicability of a thermoluminescent dosimetric system for performing in vivo entrance dose measurements in external photon beam radiotherapy. The measurements demonstrated the value of thermoluminescent dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in radiotherapy.

  9. External beam and radioimmunotherapy dosimetry comparison of colorectal xenografts

    International Nuclear Information System (INIS)

    It is of little surprise to most experts in radiation dosimetry that the largest uncertainties associated with calculation of absorbed doses to tumor normal tissues after IV administration of radiolabeled antibodies, does not lie in the calculation methods but rather in the acquisition of time-dependent activity data. In comparison to external beam radiation dosimetry, the problems of temporal and spatial macroscopic and microscopic heterogeneities continue to confound one's best efforts. In fact in some clinical settings, only a radiobiological end-point such as hematopoietic depression is used exclusively with no reference made to absorbed dose quantitation at all. Hence in these cases, it is most practical to simply relate administered activity directly with radiobiological response. To help provide a correlation between activity, absorbed dose and radiobiological response, animal radioimmunotherapy (RIT) experiments were performed here in which the above parameters were measured and compared with multiple dose levels of external beam irradiation. Using the LS174T colorectal xenograft model in nude mice, administered activities of up to 18.5 MBq of I-131 labeled B72.3 delivered an average measured absorbed dose to tumor of 3.2 ± 0.5 cGy/3.7 x 104 Bq. This absorbed dose (1,440 cGy from a nominal 17 MBq administered activity) produced tumor growth delay values that were comparable to a dose of 2,250 cGy on average delivered by single fraction external beam radiation therapy. An average dose enhancement ratio was calculated at 1.6 for RIT as compared with external beam therapy. This enhancement ratio ranged from 1.0-2.4 for several experimental repetitions under a variety of initial conditions

  10. EPR/alanine dosimetry for two therapeutic proton beams

    Science.gov (United States)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a "quenching" effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for "in vivo" dosimetry in clinical proton beams.

  11. Fast 2D phantom dosimetry for scanning proton beams

    NARCIS (Netherlands)

    Boon, SN; van Luijk, P; Schippers, JM; Meertens, H; Denis, JM; Vynckier, S; Medin, J; Grusell, E

    1998-01-01

    A quality control system especially designed for dosimetry in scanning proton beams has been designed and tested. The system consists of a scintillating screen (Gd2O2S:Tb), mounted at the beam-exit side of a phantom, and observed by a low noise CCD camera with a long integration time. The purpose of

  12. Carbon beam dosimetry using VIP polymer gel and MRI

    DEFF Research Database (Denmark)

    Kantemiris, I; Petrokokkinos, L; Angelopoulos, A;

    2009-01-01

    VIP polymer gel dosimeter was used for Carbon ion beam dosimetry using a 150 MeV/n beam with 10 Gy plateau dose and a SOBP irradiation scheme with 5 Gy Bragg peak dose. The results show a decrease by 8 mm in the expected from Monte Carlo simulation range in water, suggesting that the dosimeter is...

  13. Application of spherical diodes for megavoltage photon beams dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Barbés, Benigno, E-mail: bbarbes@unav.es [Servicio de Oncología Radioterápica, Clínica Universidad de Navarra, Avda. Pío XII, 36, E-31008 Pamplona, Navarra (Spain); Azcona, Juan D. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Servicio de Oncología Radioterápica, Clínica Universidad de Navarra, Avda. Pío XII 36, E-31008 Pamplona, Navarra (Spain); Burguete, Javier [Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Navarra (Spain); Martí-Climent, Josep M. [Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Avda. Pío XII 36, E-31008 Pamplona, Navarra (Spain)

    2014-01-15

    Purpose: External beam radiation therapy (EBRT) usually uses heterogeneous dose distributions in a given volume. Designing detectors for quality control of these treatments is still a developing subject. The size of the detectors should be small to enhance spatial resolution and ensure low perturbation of the beam. A high uniformity in angular response is also a very important feature in a detector, because it has to measure radiation coming from all the directions of the space. It is also convenient that detectors are inexpensive and robust, especially to performin vivo measurements. The purpose of this work is to introduce a new detector for measuring megavoltage photon beams and to assess its performance to measure relative dose in EBRT. Methods: The detector studied in this work was designed as a spherical photodiode (1.8 mm in diameter). The change in response of the spherical diodes is measured regarding the angle of incidence, cumulated irradiation, and instantaneous dose rate (or dose per pulse). Additionally, total scatter factors for large and small fields (between 1 × 1 cm{sup 2} and 20 × 20 cm{sup 2}) are evaluated and compared with the results obtained from some commercially available ionization chambers and planar diodes. Additionally, the over-response to low energy scattered photons in large fields is investigated using a shielding layer. Results: The spherical diode studied in this work produces a high signal (150 nC/Gy for photons of nominal energy of 15 MV and 160 for 6 MV, after 12 kGy) and its angular dependence is lower than that of planar diodes: less than 5% between maximum and minimum in all directions, and 2% around one of the axis. It also has a moderated variation with accumulated dose (about 1.5%/kGy for 15 MV photons and 0.7%/kGy for 6 MV, after 12 kGy) and a low variation with dose per pulse (±0.4%), and its behavior is similar to commercial diodes in total scatter factor measurements. Conclusions: The measurements of relative dose

  14. Application of spherical diodes for megavoltage photon beams dosimetry

    International Nuclear Information System (INIS)

    Purpose: External beam radiation therapy (EBRT) usually uses heterogeneous dose distributions in a given volume. Designing detectors for quality control of these treatments is still a developing subject. The size of the detectors should be small to enhance spatial resolution and ensure low perturbation of the beam. A high uniformity in angular response is also a very important feature in a detector, because it has to measure radiation coming from all the directions of the space. It is also convenient that detectors are inexpensive and robust, especially to performin vivo measurements. The purpose of this work is to introduce a new detector for measuring megavoltage photon beams and to assess its performance to measure relative dose in EBRT. Methods: The detector studied in this work was designed as a spherical photodiode (1.8 mm in diameter). The change in response of the spherical diodes is measured regarding the angle of incidence, cumulated irradiation, and instantaneous dose rate (or dose per pulse). Additionally, total scatter factors for large and small fields (between 1 × 1 cm2 and 20 × 20 cm2) are evaluated and compared with the results obtained from some commercially available ionization chambers and planar diodes. Additionally, the over-response to low energy scattered photons in large fields is investigated using a shielding layer. Results: The spherical diode studied in this work produces a high signal (150 nC/Gy for photons of nominal energy of 15 MV and 160 for 6 MV, after 12 kGy) and its angular dependence is lower than that of planar diodes: less than 5% between maximum and minimum in all directions, and 2% around one of the axis. It also has a moderated variation with accumulated dose (about 1.5%/kGy for 15 MV photons and 0.7%/kGy for 6 MV, after 12 kGy) and a low variation with dose per pulse (±0.4%), and its behavior is similar to commercial diodes in total scatter factor measurements. Conclusions: The measurements of relative dose using the

  15. Pulsed beam dosimetry using fiber-coupled radioluminescence detectors

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2012-01-01

    The objective of this work was to review and discuss the potential application of fiber-coupled radioluminescence detectors for dosimetry in pulsed MV photon beams. Two types of materials were used: carbon-doped aluminium oxide (Al2O3:C) and organic plastic scintillators. Special consideration was...

  16. Characterization of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry

    International Nuclear Information System (INIS)

    Purpose: Assessment of the fundamental dosimetric characteristics of a novel gated fiber-optic-coupled dosimetry system for clinical electron beam irradiation. Methods: The response of fiber-optic-coupled dosimetry system to clinical electron beam, with nominal energy range of 6-20 MeV, was evaluated for reproducibility, linearity, and output dependence on dose rate, dose per pulse, energy, and field size. The validity of the detector system's response was assessed in correspondence with a reference ionization chamber. Results: The fiber-optic-coupled dosimetry system showed little dependence to dose rate variations (coefficient of variation ±0.37%) and dose per pulse changes (with 0.54% of reference chamber measurements). The reproducibility of the system was ±0.55% for dose fractions of ∼100 cGy. Energy dependence was within ±1.67% relative to the reference ionization chamber for the 6-20 MeV nominal electron beam energy range. The system exhibited excellent linear response (R2=1.000) compared to reference ionization chamber in the dose range of 1-1000 cGy. The output factors were within ±0.54% of the corresponding reference ionization chamber measurements. Conclusions: The dosimetric properties of the gated fiber-optic-coupled dosimetry system compare favorably to the corresponding reference ionization chamber measurements and show considerable potential for applications in clinical electron beam radiotherapy.

  17. Conceptual Improvements and Limitations in Non-Standard Beam Reference Dosimetry

    International Nuclear Information System (INIS)

    During the past decade, advances in technology have considerably transformed radiation therapy treatment techniques. New treatment modalities improve target dose conformity compared to conventional methods, but increase the complexity of dosimetry procedures because deliveries are composed of treatment fields using a combination of small fields. The complexities of reference dosimetry of deliveries involving non-standard beams have triggered efforts by the IAEA and AAPM towards the development of a new protocol applicable to these beams. This paper summarizes three studies in the scope of the development of the new protocol. The first part of the paper concerns the fundamentals of non-standard beam dosimetry, developing theoretical aspects and summarizing a study of ionization chamber perturbation factors in modulated beams. Conceptual solutions are proposed and a theoretical expression of correction factors is obtained for ideal non-standard reference fields (PCSR). Limitations in the calculation of the correction factors are discussed. A second part of the paper discusses the improvement in kQ experimental measurements in regard to direct absorbed dose to water measurements. Levels of uncertainty of the order of 0.3% are achieved with radiochromic film and show great potential in non-standard beam dosimetry. A third aspect of the paper represents experimental uncertainties to also be considered. A method of evaluation of uncertainties induced by positioning errors is summarized. Results suggest that experimental uncertainties in non-standard beam can be higher than for standard conditions. This is an important issue to consider both during daily QA routine and reference dosimetry, and could be a limiting factor in the new generation of protocols. (author)

  18. Small field dosimetry and analysis of flattening filter free beams in true beam system

    Directory of Open Access Journals (Sweden)

    K R Muralidhar

    2015-01-01

    Full Text Available Aim of Study: The purpose of this study was to report the dosimetric characteristics of the small fields in flattening filter free (FFF beams (output measurements, profile analysis, surface dose and consistency generated by medical linear accelerator and its variation with respect to flattened beams (FB. Materials and Methods: Surface doses were obtained for field sizes 1 × 1-40 × 40 cm 2 . Field width and penumbra were analyzed for field sizes 1 × 1-40 × 40 cm 2 . To take output factors for small fields, diode and micro chamber were used and data was taken at a source-to-surface distance (SSD and extended SSD. Consistency checked for the dosimetric data for 1 year. Results: Surface doses were higher in FFF compared with FB up to 20 × 20 cm 2 field size. Measured field sizes were slightly lesser in FFF and penumbra values were increased with respect to field size in both FB and FFF. For small fields, diode values have shown more promising results than micro chamber. Small field output measurements at nominal SSD and extended SSD were well in agreement with each other. FFF beams showed good data consistency in 1 year duration. Conclusion: Small field dosimetry, surface dose, profile analysis and consistency of FFF beams in FFF photon beams were derived and data shown good consistency during 1 year duration.

  19. Beam control and Dosimetry in Proton Therapy

    International Nuclear Information System (INIS)

    This thesis deals with beam control devices for scanned proton beams. The IBA society (Ion Beam Applications) has developed a new dynamic beam delivery system called Pencil Beam Scanning. IBA needed a monitor unit to equip its proton beam lines dedicated to the PBS system and called upon the medical applications group of the Laboratoire de Physique Corpusculaire de Caen. In 2008, this group realized, in collaboration with IBA, an ionization chamber monitor IC2/3 for the IBA dedicated PBS nozzle. This device verifies the agreement between planned and delivered particular fluence. The first part of this thesis focused on the characterization of this monitor unit. Proton beams of different clinical energies, positions and dose rates were used to check the specifications requested by IBA. After the introduction about the Proton Therapy, the validation step of IC2/3 is exposed. Information provided by IC2/3 makes it possible beam control in terms of fluence but does not ensure quality control in terms of spatial dose distribution. The second part of the work was devoted to the conception of a beam control device for scanned proton beams. Called Compass PT, it will allow a reconstruction of the spatial dose distribution delivered to the patient. The specifications definition and the conception studies are presented in this thesis. All this work has led to recommendations for the realization of this device and new research prospects. (author)

  20. In vivo dosimetry with thermoluminescent dosimeters in external photon beam radiotherapy

    International Nuclear Information System (INIS)

    Full text: The aim of this work was the implementation of in vivo dosimetry with thermoluminescent dosimeters for treatments of head and neck cancers at a radiotherapy department in a public hospital of Ribeirao Preto, Brazil. For the setting up of the thermoluminescent dosimetric system several tests and measurements were made including the initialization procedure, the determination of the batch homogeneity, the determination of relative intrinsic sensitivity of each dosimeter, the determination of linearity range of the system and its calibration coefficients. Thermoluminescent dosimeter measurements were carried out for the cobalt-60 teletherapy unit photon beams. Practical guidelines provided in the first of the European Society for Therapeutic Radiology and Oncology (ESTRO) booklet on in vivo dosimetry were followed in the determination of entrance doses. Dose verification with the thermoluminescent dosimeters placed on the patients was performed. These measurements demonstrated the value of thermoluminescent dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in radiotherapy

  1. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers

    International Nuclear Information System (INIS)

    Background and purpose: Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002 - 2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. Materials and Methods: The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. Results: The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside ±3% and 31% outside ±5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and

  2. Polymer gel dosimetry of an electron beam in the presence of a magnetic field

    Science.gov (United States)

    Vandecasteele, J.; De Deene, Y.

    2013-06-01

    The effect of a strong external magnetic field on 4 MeV electron beam was measured with polymer gel dosimetry. The measured entrance dose distribution was compared with a calculated fluence map. The magnetic field was created by use of two permanent Neodymium (NdFeB) magnets that were positioned perpendicular to the electron beam. The magnetic field between the magnets was measured with Hall sensors. Based on the magnetic field measurement and the law of Biot-Savart, the magnetic field distribution was extrapolated. Electron trajectories were calculated using a relativistic Lorentz force operator. Although the simplified computational model that was applied, the shape and position of the calculated entrance fluence map are found to be in good agreement with the measured dose distribution in the first layer of the phantom. In combination with the development of low density polymer gel dosimeters, these preliminary results show the potential of 3D gel dosimetry in MRI-linac applications.

  3. Dosimetry of medical proton beams at the JINR phasotron in Dubna

    International Nuclear Information System (INIS)

    The method for determination of the dose rate absorbed by tissue for JINR phasotron medical proton beams on a basis of clinical dosimeter calibration with the 60 Co γ-source, the main parameters of detectors used for measurements of spatial dose distributions, results of ion recombination correction factors in air thimble ionization chambers measurements are described. It is found that the error of JINR phasotron proton beams dosimetry is about 5%. This accuracy meets the international requirements for the therapeutic proton beams. 15 refs.; 4 figs

  4. Applied dosimetry to ionization techniques by electron beams

    International Nuclear Information System (INIS)

    After a general introduction about electron beam dosimetry, the second part is about the determination of treatment parameter for an electron ionization: are treated the problems of electron path determination, treatment depth of a product and finally, the radiation dose heterogeneities in all the volume of a treated product. The third part describes a process that greatly reduces radiation dose heterogeneity and then industrial interest is analyzed. The fourth part describes 2 applications of diffusion screen utilization. 66 figs

  5. Evaluation of thermoluminescent dosimeters using water equivalent phantoms for application in clinical electrons beams dosimetry

    International Nuclear Information System (INIS)

    The dosimetry in Radiotherapy provides the calibration of the radiation beam as well as the quality control of the dose in the clinical routine. Its main objective is to determine with greater accuracy the dose absorbed by the tumor. This study aimed to evaluate the behavior of three thermoluminescent dosimeters for the clinical electron beam dosimetry. The performance of the calcium sulfate detector doped with dysprosium (CaSO4: Dy) produced by IPEN was compared with two dosimeters commercially available by Harshaw. Both are named TLD-100, however they differ in their dimensions. The dosimeters were evaluated using water, solid water (RMI-457) and PMMA phantoms in different exposure fields for 4, 6, 9, 12 and 16 MeV electron beam energies. It was also performed measurements in photon beams of 6 and 15 MV (2 and 5 MeV) only for comparison. The dose-response curves were obtained for the 60Co gamma radiation in air and under conditions of electronic equilibrium, both for clinical beam of photons and electrons in maximum dose depths. The sensitivity, reproducibility, intrinsic efficiency and energy dependence response of dosimeters were studied. The CaSO4: Dy showed the same behavior of TLD-100, demonstrating only an advantage in the sensitivity to the beams and radiation doses studied. Thus, the dosimeter produced by IPEN can be considered a new alternative for dosimetry in Radiotherapy departments. (author)

  6. Fluence measurements applied to 5-20 MeV/amu ion beam dosimetry by simultaneous use of a total-absorption calorimeter and a Faraday cup

    International Nuclear Information System (INIS)

    A Faraday cup was fabricated for measuring the beam current of a few tens MeV/amu ion beams of the TIARA AVF cyclotron. It has been applied as a beam monitor for studying the characteristics of film dosimeters that are well-established for high doses of 60Co γ-rays and 1 to 10 MeV electrons. A total absorption calorimeter designed to measure energy fluence has also been tested for estimating the uncertainty in fluence measurement of 5-20 MeV/amu ion beams, by simultaneous use of the calorimeter and the Faraday cup in a broad uniform fluence field. The estimated fluence was evaluated on the basis of nominal particle energy values derived from the cyclotron acceleration parameters. The average ratio of the measured fluence values to the estimated values is 1.024, and the average precision is within ±2% at a 68% confidence level, for most of the ion beams with a range of kinetic energy per nucleon, 5-20 MeV/amu, at an integrated charge above 5 nC/cm2

  7. Fluence measurements applied to 5-20 MeV/amu ion beam dosimetry by simultaneous use of a total-absorption calorimeter and a Faraday cup

    CERN Document Server

    Kojima, T; Takizawa, H; Tachibana, H; Tanaka, R

    1998-01-01

    A Faraday cup was fabricated for measuring the beam current of a few tens MeV/amu ion beams of the TIARA AVF cyclotron. It has been applied as a beam monitor for studying the characteristics of film dosimeters that are well-established for high doses of sup 6 sup 0 Co gamma-rays and 1 to 10 MeV electrons. A total absorption calorimeter designed to measure energy fluence has also been tested for estimating the uncertainty in fluence measurement of 5-20 MeV/amu ion beams, by simultaneous use of the calorimeter and the Faraday cup in a broad uniform fluence field. The estimated fluence was evaluated on the basis of nominal particle energy values derived from the cyclotron acceleration parameters. The average ratio of the measured fluence values to the estimated values is 1.024, and the average precision is within +-2% at a 68% confidence level, for most of the ion beams with a range of kinetic energy per nucleon, 5-20 MeV/amu, at an integrated charge above 5 nC/cm sup 2.

  8. Calculation of uncertainties in the protocol of dosimetry for Co 60 beams in Radiotherapy

    International Nuclear Information System (INIS)

    The objective in this work is to show how the uncertainty is possible to know in the determination of the absorbed dose in Co 60 photon beams and to establish in a rational form, tolerance levels for this. It is took as base the spanish protocol of dosimetry in Radiotherapy. We have been centered in a Co 60 beam. We utilized the statistical theory of little samples. We allowed to suggest a new approach about the treatment of the tolerance levels and the uncertainty of the measurement. After two years of experience in the practical hospitable application we have gotten to put around 1 % uncertainty in the absolute dosimetry of the Co 60 beam. The presented protocol allows to execute the accuracy requirements in the determination of absorbed doses. (Author)

  9. Dosimetry measurements at the fast neutron therapy facility in Seattle

    International Nuclear Information System (INIS)

    The fast neutron therapy facility at the University of Washington has been in routine clinical use for 25 years. 50.5 MeV protons produce neutrons in a beryllium target mounted on an isocentric gantry. Beam shaping is accomplished with a 40-leaf collimator. Dosimetry measurements for treatment planning and calibration are performed with tissue equivalent ion chambers. A layered phantom of alternating Solid Water and Plastic Water slabs has been developed for rapid dose verification measurements. The neutron field in the room has been used for radiation testing of electronic components.

  10. BELdART: Implementation of a Quality Assurance Audit for Photon and Electron Beams Based on Alanine/EMR Dosimetry

    International Nuclear Information System (INIS)

    The Belgian dosimetry audit in radiotherapy, BELdART, was initiated to verify, on a national base, the compliance of the dose stated by the centre with the measured dose of all beams in clinical use. On-site visits comprise basic mechanical tests and dosimetric verification of the dose measured in reference and non-reference conditions, including irregular fields with a multileaf collimator for photon beams and beam output measurements for electron beams. To date, about 60% of the beams were audited comprising 101 clinical beams from 32 linacs. Overall, in 92% of the cases the ratio of the alanine measured to stated dose was within optimal level (|δ| ≤ 3%). In 7% of the results, deviations out of the optimal level but within the tolerance level (3% 10%). For the first time, alanine/electron magnetic resonance dosimetry was used as the transfer dosimeter in a large scale audit. (author)

  11. Medical reference dosimetry using EPR measurements of alanine

    DEFF Research Database (Denmark)

    Helt-Hansen, Jakob; Rosendal, F.; Kofoed, I.M.;

    2009-01-01

    beams. The typical difference between the dose measured with alanine in solid water and the dose measured with an ion chamber in a water tank was about 1%. A difference of 2% between 6 and 18 MV was found, possibly due to non-water equivalence of the applied phantom. Discussion. Compared to previously......Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...... on scaling of known spectra was developed to extract the alanine signal. Results. The dose accuracy, including calibration uncertainty, is less than 2% (k=1) above 4 Gy (n=4). The measurement uncertainty is fairly constant in absolute terms (30 mGy) and the relative uncertainty therefore rises for...

  12. Small Radiation Beam Dosimetry for Radiosurgery of Trigeminal Neuralgia: One Case Analysis

    Science.gov (United States)

    García-Garduño, O. A.; Lárraga-Gutiérrez, J. M.; Rodríguez-Villafuerte, M.; Martínez-Dávalos, A.; Moreno-Jiménez, S.; Suárez-Campos, J. J.; Celis, M. A.

    2008-08-01

    The use of small radiation beams for trigeminal neuralgia (TN) treatment requires high precision and accuracy in dose distribution calculations and delivery. Special attention must be kept on the type of detector to be used. In this work, the use of GafChromic EBT® radiochromic and X-OMAT V2 radiographic films for small radiation beam characterization is reported. The dosimetric information provided by the films (total output factors, tissue maximum ratios and off axis ratios) is compared against measurements with a shielded solid state (diode) reference detector. The film dosimetry was used for dose distribution calculations for the treatment of trigeminal neuralgia radiosurgery. Comparison of the isodose curves shows that the dosimetry produced with the X-OMAT radiographic film overestimates the dose distributions in the penumbra region.

  13. Small Radiation Beam Dosimetry for Radiosurgery of Trigeminal Neuralgia: One Case Analysis

    International Nuclear Information System (INIS)

    The use of small radiation beams for trigeminal neuralgia (TN) treatment requires high precision and accuracy in dose distribution calculations and delivery. Special attention must be kept on the type of detector to be used. In this work, the use of GafChromic EBT registered radiochromic and X-OMAT V2 radiographic films for small radiation beam characterization is reported. The dosimetric information provided by the films (total output factors, tissue maximum ratios and off axis ratios) is compared against measurements with a shielded solid state (diode) reference detector. The film dosimetry was used for dose distribution calculations for the treatment of trigeminal neuralgia radiosurgery. Comparison of the isodose curves shows that the dosimetry produced with the X-OMAT radiographic film overestimates the dose distributions in the penumbra region

  14. External audit of photon beams by mailed film dosimetry: feasibility study

    International Nuclear Information System (INIS)

    A feasibility study for mailed film dosimetry has been performed. The global reproducibility of the method is better than 2%. It is shown that the normalized sensitometric curve does not depend on photon beam quality in the range from Co-60 γ-rays to 18 MV x-rays, although the dose per optical density decreases when the energy increases. The fading of the latent image before film processing is only 3% per month and the normalized sensitometric curve is not modified after a period of 51 days between irradiation and processing. Sets of films were mailed to three different institutes for irradiation and returned for processing and evaluation after more than two months in order to verify that mailing of irradiated and unprocessed films does not produce unwanted artefacts. Finally the feasibility of external audits with mailed film dosimetry is illustrated by comparison of beam profiles measured with films and ionization chambers in a polystyrene phantom. (author)

  15. Proton therapy beam dosimetry with silicon CMOS image sensors

    International Nuclear Information System (INIS)

    In a previous publication, it has been shown how neutron and proton beams in a quite broad energy interval, could be simply monitored with a position sensitive CMOS image detector. The direct read out, the lack of pile up effects, the stability of the signal, the detector linear response with proton energy and current and the very low costs of the device could make the CMOS detector a good candidate in addition to other well established detectors for proton radiation dosimetry. (N.T.)

  16. Dosimetry in heavy ion beams using various detectors

    Czech Academy of Sciences Publication Activity Database

    Brabcová, Kateřina; Jadrníčková, Iva; Molokanov, A. G.; Spurný, František

    2010-01-01

    Roč. 45, č. 10 (2010), s. 1384-1386. ISSN 1350-4487. [Neutron and Ion Dosimetry Symposium /11./. Cape Town, 12.10.2009-16.10.2009] R&D Projects: GA ČR GA205/09/0171; GA AV ČR IAA100480902 Institutional research plan: CEZ:AV0Z10480505 Keywords : tack-etched detectors * LET spectra * TLD * heavy ion beams Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.019, year: 2010

  17. Reference dosimetry and small-field dosimetry in external beam radiotherapy: Results from a Danish intercomparison study

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Behrens, Claus F.; Sibolt, Patrik;

    A comparison of dosimetry methods at different clinics can be used as a means to uncover systematic uncertainties in ra-diotherapy. To assess the current status of reference dosimetry and small-field dosimetry in clinical practice, a collaborative compari-son study involving several dosimetry...... methods was performed by DTU Nutech at six Danish clinics. The first part of the intercompa-rison regarded the consistency of reference dosimetry. Absorbed dose to water under reference conditions was measured using a Farmer ionization chamber, and was found to agree within 1 % with the daily dose checks...... obtained routinely at each clinic. The second part of the study concerned the accuracy of small-field dosimetry and dose calculations. The geometric size of small fields down to 1 cm x 1 cm was measured using radiochromic film. Minor discre-pancies were seen between the nominal field sizes set by the colli...

  18. Skeletal dosimetry in cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Walters, B. R. B.; Ding, G. X.; Kramer, R.; Kawrakow, I. [Ionizing Radiation Standards, National Research Council of Canada, Ottawa K1A OR6 (Canada); Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-5671 (United States); Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Avenida Professor Luiz Freire 1000, Cidade Universitaria, CEP 50740-540, Recife, Pernambuco (Brazil); Ionizing Radiation Standards, National Research Council of Canada, Ottawa K1A OR6 (Canada)

    2009-07-15

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12x0.12x0.12 cm{sup 3}, with 17x17x17 {mu}m{sup 3} microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens ({approx}8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only {approx}50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment.

  19. Skeletal dosimetry in cone beam computed tomography.

    Science.gov (United States)

    Walters, B R B; Ding, G X; Kramer, R; Kawrakow, I

    2009-07-01

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12 x 0.12 x 0.12 cm3, with 17 x 17 x 17 microm3 microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/ MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens (approximately 8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only approximately 50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment. PMID:19673190

  20. Skeletal dosimetry in cone beam computed tomography

    International Nuclear Information System (INIS)

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12x0.12x0.12 cm3, with 17x17x17 μm3 microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens (∼8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only ∼50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment.

  1. Study on optical radiation of a relativistic electron beam for giving reasons for the impulse-dosimetry absolute method

    International Nuclear Information System (INIS)

    Spectral and amplitude-time characteristics of optical emission of a relativistic electron beam in air is stidied by the photoelectron method. Application of the optical method for absolute measurements of characteristics of the dose field of an impulse relativistic electron beam is considered. The distribution of the energy absorbed along the 1 MeV electron beam axis is experimentally investigated. The absolute method of impulse dosimetry of heightened accuracy is substantiated on the basis of the results obtained

  2. Monte Carlo physical dosimetry for small photon beams

    International Nuclear Information System (INIS)

    Small field dosimetry is complicated due to the lack of electronic equilibrium and to the high steep dose gradients. This works compares PDD curves, profiles and output factors measured with conventional detectors (film, diode, TLD and ionisation chamber) and calculated with Monte Carlo. The 6 MV nominal energy from a Philips SL-18 linac has been simulated by using the OMEGA code. MC calculation reveals itself as a convenient method to validate OF and profiles in special conditions, such as small fields. (orig.)

  3. Ferrous sulphate (Fricke) dosimetry in a fast neutron and a 60Co radiotherapeutical beams

    International Nuclear Information System (INIS)

    Ferrous sulphate (Fricke) dosimetry was performed in the fast neutron beam produced at the U-120 cyclotron of the Institute of Nuclear Physics and in a 60Co gamma-ray therapeutical beam at the Centre of Oncology in Krakow. The G-value was measured for the neutron component in the mixed (neutron + gamma) field of the fast neutron beam, where the mean neutron energy is 5.6 MeV. This value is Gn = 8.1 ± 0.8. Track structure theory calculations were made using energy spectra of charged secondary particles generated in water by the MRC Hammersmith fast neutron beam (mean neutron energy 7.6 MeV, measured value of Gn = 9.4 ± 0.6), yielding the calculated value of Gn = 8.61. Fricke dosimetry of the 60Co beam indicates that the absolute value of gamma-ray dose at the Centre of Oncology may be underestimated by about 3% . 19 refs., 1 tab. (author)

  4. Proton beam dosimetry: A comparison between the Faraday cup and an onization chamber

    International Nuclear Information System (INIS)

    From the theoretical point of view, the Faraday cup (FC) is an absolute instrument for fluence measurements of proton beams. As the FC is easily manufactured it can be considered an 'in-house' calibration system. Moreover, at the moment no national standards for proton dosimetry are available. Up to now the experimental tests of these instruments show that much study still has to be done to better understand their use in reference dosimetry. To investigate the possibility of using an FC as a secondary standard, an FC was jointly designed by the 'TERA Collaboration' and 'Centre Antoine-Lacassagne' Nice, France) to evaluate the main parameters of the instrument. A comparison between two FCs of different designs - the 'TERA FC' and the 'Nice C' - and an ionization chamber (IC) used for routine proton dosimetry was carried out. Results show that the two FCs agree to within 1.5 - 3.6%. While the differences between FC and IC are larger - 6% for the 'TERA FC' and 8.2% or the 'Nice FC', the FC giving a lower dose evaluation - they follow the same trend shown by the calorimetric measurements. The data show that once the beam characteristics are defined, the fluence measurements are reproducible and show a good accuracy. (author)

  5. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions)

  6. Small-Field Dosimetry in A 6 MV Photon Beam Using Alanine and Liquid Ionisation Chamber

    DEFF Research Database (Denmark)

    Zimmermann, S.; Riis, H. L.; Hjelm-Hansen, M.; Ottosson, Rickard; Andersen, Claus Erik; Helt-Hansen, Jakob

    Purpose/Objective: Dosimetry of small field sizes in MV photon beams is an increasingly important subject, and a generally accepted guideline for clinical measurements is still lacking. The present comparative study was carried out to further investigate the use of alanine and the PTW microLion...... each field and depth. This dose maximum was measured for each field using a Scanditronix Wellhöfer photon field diode. The same measurements were carried out using a liquid ionchamber, PTW microLion, irradiated by 500 MU. The output of the accelerator was controlled by a PTW semiflex ion chamber...

  7. Effect of ocular implants of different materials on the dosimetry of external beam radiation therapy

    International Nuclear Information System (INIS)

    Purpose: To study the attenuation and scattering effects of ocular implants, made from different materials, on the dose distributions of a 6 MV photon beam, and 6, 9, and 12 MeV electron beams used in orbital radiotherapy. Methods and Materials: Central axis depth-dose measurements were performed in a polystyrene phantom with embedded spherical ocular implants using film dosimetry of a 6 MV photon beam and electron beams of 6, 9, and 12 MeV energy. The isodose distributions were also calculated by a computerized treatment planning system using computerized tomography (CT) scans of a polystyrene phantom that had silicone, acrylic, and hydroxyapatite ocular implants placed into it. Results: Electron beam dose distributions display distortions both on the measured and calculated data. This effect is most accentuated for the hydroxyapatite implants, for which the transmissions through ocular implants are on the order of 93% for the 6 MV photon beam, and range from 60% for 6 MeV electrons to 90% for 12 MeV electrons. Conclusion: We studied the effect of ocular implants of various materials, embedded in a polystyrene phantom, on the dose distributions of a 6 MV photon beam, and 6, 9, and 12 MeV electron beams. Our investigations show that while 6 MV photons experience only a few percent attenuation, lower energy electron beam with 60% transmission is not a suitable choice of treating tumors behind the ocular implants

  8. The dosimetry of eye shields for kilovoltage X-ray beams

    International Nuclear Information System (INIS)

    The objective of this work was to evaluate the dosimetry of tungsten eye shields for use with kilovoltage X-ray beam treatments. The eye shields, originally designed for megavoltage electron beams, were made of 2 mm tungsten thickness and inside diameters of 11.6 and 15.0 mm with optional aluminium caps of 0.5 and 1 mm thickness. The relative dosimetry of the eye shields were examined by measurement of transmission doses with full scatter conditions, central axis depth doses and beam profiles underneath the eye shield. The X-ray beams used in this study ranged in energy from 50 to 280 kVp. Transmission measurements were performed using an Advanced Markus ionisation chamber located at the surface of an RMI457 Solid Water phantom with a 3 cm diameter applicator flush against the phantom surface. Depth doses and profiles measurements were performed in a PTW MP3 scanning water tank with a PTW diamond detector. Results for transmission doses for the medium size eye shield increased from 1 to 22 % for 50–280 kVp while for the smaller eye shield the percentage dose increased from 3.5 to 30 % for the same energy range. There were minimal differences between using the 0.5 and 1 mm aluminium caps. Central axis depth doses measured with and without the eye shields demonstrated the 125 and 180 kVp beams had higher peak doses behind the eye shields. These results show that these tungsten eye shields are suitable for use with kilovoltage X-ray beams. However, the clinical impact needs to be considered for the higher X-ray beam energies.

  9. Passively scattered proton beam entrance dosimetry with a plastic scintillation detector

    International Nuclear Information System (INIS)

    We tested the feasibility of using plastic scintillation detectors (PSDs) for proton entrance dosimetry. A PSD built with BCF-12 scintillating fiber was used to measure the absolute entrance dose of a passively scattered proton beam for energies ranging from 140 to 250 MeV, and for a range of spread out Bragg peak (SOBP) widths at two energies, to quantify the effect of ionization quenching on the response of the detector and to determine the necessity of Cerenkov radiation correction in proton beams. The overall accuracy and precision of the PSD was evaluated by measuring lateral beam profiles and comparing the results with profiles measured using film. The PSD under-responded owing to ionization quenching, exhibiting approximately a 7% loss of signal at the highest energy studied (250 MeV) and a 10% loss of signal at the lowest energy studied (140 MeV). For a given nominal energy, varying the SOBP width did not significantly alter the response of the PSD. Cerenkov radiation contributed negligibly to the PSD signal and can be safely ignored without introducing more than 1% error in the measured dose. Profiles measured with the PSD and film agreed to within the uncertainty of the detector, demonstrating good relative accuracy. Although correction factors were necessary to account for ionization quenching, the magnitude of the correction varied minimally over a broad range of energies; PSDs therefore represent a practical detector for proton entrance dosimetry. (paper)

  10. Performance studies of an optical fiber OSL/RL dosimetry system in pulsed high-intensity radiation beams

    CERN Document Server

    Ravotti, F; Dusseau, Laurent; Mukherjee, Bhaskar; Glaser, Maurice; Ravotti, Federico

    2010-01-01

    The SrS:Ce,Sm phosphor is suitable for operation in harsh radiation environments where real-time dosimetry measurements are needed to survey the Total Ionizing Dose (TID) damage in electronic components. For these applications, the OSL and RL emissions from this phosphor can be exploited by mounting the SrS crystal at the edge of a single, radiation-hard, optical fiber. In this work we present an exhaustive characterization of this real-time OSL/RL probe including stability, repeatability of the measured signals, dosimetry performance and measurements of the temporal behavior of the RI signal in pulsed particle beams. (C) 2009 Elsevier Ltd. All rights reserved.

  11. Application of miniature plastic scintillation detectors to proton therapy beam dosimetry

    International Nuclear Information System (INIS)

    Plastic scintillators have previously been used extensively in high energy nuclear spectroscopy experiments. Such scintillators were fairly large sized and were mainly applied for beam time structure, energy of events and time of flight measurements. Recently, miniature plastic scintillation detectors have been successfully applied to high energy photon and electron radiotherapy dosimetry and field mapping. Some of the principal advantages of using these detectors is that the usual conversion of dose from one medium to another can be avoided, the perturbation of the radiation field is minimal and small size permits accurate dose measurements in regions of high dose gradients. The technical advantages of scintillation dosimetry make them appealing to proton radiotherapy where high dose gradients produced by the Bragg peak are used. In this regard, we have investigated their use in the measurement of dose in clinical proton beams. Field mapping measurements in proton beams with different initial energies will be presented and compared to those obtained using a standard parallel plate ionization chamber. Among other dosimetric characteristics of these detectors, the radiation induced effects on optical fibers in such an environment will be presented and discussed

  12. Design and test of a scintillation dosimeter for dosimetry measurements of high energy radiotherapy beams; Conception et realisation d'un dosimetre a scintillation adapte a la dosimetrie de faisceaux de rayonnements ionisants en faisceaux de rayonnements ionisants en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Fontbonne, J.M

    2002-12-01

    This work describes the design and evaluation of the performances of a scintillation dosimeter developed for the dosimetry of radiation beams used in radiotherapy. The dosimeter consists in a small plastic scintillator producing light which is guided by means of a plastic optical fiber towards photodetectors. In addition to scintillation, high energy ionizing radiations produce Cerenkov light both in the scintillator and the optical fiber. Based on a wavelength analysis, we have developed a deconvolution technique to measure the scintillation light in the presence of Cerenkov light. We stress the advantages that are anticipated from plastic scintillator, in particular concerning tissue or water equivalence (mass stopping power, mass attenuation or mass energy absorption coefficients). We show that detectors based on this material have better characteristics than conventional dosimeters such as ionisation chambers or silicon detectors. The deconvolution technique is exposed, as well as the calibration procedure using an ionisation chamber. We have studied the uncertainty of our dosimeter. The electronics noise, the fiber transmission, the deconvolution technique and the calibration errors give an overall combined experimental uncertainty of about 0,5%. The absolute response of the dosimeter is studied by means of depth dose measurements. We show that absolute uncertainty with photons or electrons beams with energies ranging from 4 MeV to 25 MeV is less than {+-} 1 %. Last, at variance with other devices, our scintillation dosimeter does not need dose correction with depth. (author)

  13. Comparison between IAEA/TRS-277 and IAEA/TRS-398 protocols for electron beam dosimetry with cylindrical ionization chambers

    International Nuclear Information System (INIS)

    With the purpose to guarantee an uncertainty in the dosimetry in radiation therapy, the International Atomic Energy Agency (IAEA) published in 1987 the Technical Reports Series (TRS) number 277 - Absorbed Dose Determination in Photon and Electron Beams - An International Code of Practice -, updated in 1997, when was published its second edition. In 2000 was published the TRS number 398 - Absorbed Dose Determination in External Beam Radiotherapy - An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. The TRS number 398 brings a great conceptual change in relation to the basis of the formalism, before based on calibration factor in terms of air kerma, and now based on calibration factor in terms of absorbed dose in water. Since the TRS number 398 was published, the Secondary Standard Dosimetry Laboratories are calibrating the user's ionization chambers in terms of absorbed dose to water. However, nor all the clinics in Rio de Janeiro and Brazil have its ionization chambers calibrated in terms of absorbed dose to water. The National Cancer Institute, where the measurements were taken, was the first institution in the Rio de Janeiro to have its ionization chambers calibrated in terms of a new formalism. This work describes a comparison between dosimetry done with a cylindrical ionization chamber under electron beams utilizing the TRS number 277 formalism, based on air kerma, and the TRS number 398 formalism, based on absorbed dose to water, reporting the uncertainties variation of the dosimetry associated to each protocol. (author)

  14. High electron beam dosimetry using ZrO2

    International Nuclear Information System (INIS)

    This paper reports the experimental results of studying the thermoluminescent (Tl) properties of ZrO2 powder embedded in polytetrafluorethylene (PTFE) exposed to high energy electron beam from linear accelerators (Linac). Structural and morphological characteristics were also reported. Irradiations were conducted using high energy electrons beams in the range from 2 to 18 MeV. Pellets of ZrO2+PTFE were produced using polycrystalline powder grown by the precipitation method. These pellets presented a Tl glow curve exhibiting an intense glow peak centered at around 235 C. Tl response as a function of high electron absorbed dose was linear in the range from 2 to 30 Gy. Repeatability determined by exposing a set of pellets repeatedly to the same electron absorbed dose was 0.5%. Fading along 30 days was about 50%. Then, results obtained in this study suggest than ZrO2+PTFE pellets could be used for high energy electron beam dosimetry provided fading correction is accounted for. (Author)

  15. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films

    International Nuclear Information System (INIS)

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 μm thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1-15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media

  16. Dosimetry

    International Nuclear Information System (INIS)

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  17. Characterization of a new commercial single crystal diamond detector for photon- and proton-beam dosimetry

    International Nuclear Information System (INIS)

    A synthetic single crystal diamond detector (SCDD) is commercially available and is characterized for radiation dosimetry in various radiation beams in this study. The characteristics of the commercial SCDD model 60019 (PTW) with 6- and 15-MV photon beams, and 208-MeV proton beams, were investigated and compared with the pre-characterized detectors: Semiflex (model 31010) and PinPoint (model 31006) ionization chambers (PTW), the EDGE diode detector (Sun Nuclear Corp) and the SFD Stereotactic Dosimetry Diode Detector (IBA). To evaluate the effects of the pre-irradiation, the diamond detector, which had not been irradiated on the day, was set up in the water tank, and the response to 100 MU was measured every 20 s. The depth–dose and profiles data were collected for various field sizes and depths. For all radiation types and field sizes, the depth–dose data of the diamond chamber showed identical curves to those of the ionization chambers. The profile of the diamond detector was very similar to those of the EDGE and SFD detectors, although the Semiflex and PinPoint chambers showed volume-averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4–41°C. A dose of 900 cGy and 1200 cGy was needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. The PTW type 60019 SCDD detector showed suitable characteristics for radiation dosimetry, for relative dose, depth–dose and profile measurements for a wide range of field sizes. However, at least 1000 cGy of pre-irradiation will be needed for accurate measurements. (author)

  18. Evaluation of the response of thermoluminescent detectors in clinical beams dosimetry using different phantoms

    International Nuclear Information System (INIS)

    Radiotherapy is one of the three principal treatment modalities used in the treatment of malignant diseases such as cancer, the other two are chemotherapy and radiosurgery. In contrast to other medical specialties that rely mainly on the clinical knowledge and experience of medical specialists, radiotherapy, with its use of ionizing radiation in treatment of cancer, relies heavily on modern technology and the collaborative efforts of several professionals whose coordinated team approach greatly influences the outcome of the treatment. In the area of clinical dosimetry, an efficient and accurate calibration of the radiation beam ensures knowledge of the radiation dose delivered to the patient, allowing thus the success of radiotherapy. This study aims to compare the thermoluminescent response of calcium sulfate doped with dysprosium (CaSO4:Dy) dosimeters produced by IPEN (6 mm in diameter and 0,8 mm tick) with the response of lithium fluoride (3,15 x 3,15 x 0,9 mm3) doped with magnesium and titanium (LiF:Mg,Ti) in dosimetry of clinical photons (6 and 15 MV) and electrons beams (6 and 9 MeV) using solid water (RMI-457), water and PMMA phantoms. Initially, the dose-response curves were obtained for irradiation in cobalt-60 gamma radiation source in air (PMMA plates) and under electronic equilibrium conditions and for clinical electrons and photons beams at depth of maximum dose. The sensitivities of the thermoluminescent dosimeters were also evaluated and the values of their reproducibilities and intrinsic efficiency were determined for the response to different types of phantoms and radiation energy. The obtained results indicate that the main advantage of CaSO4:Dy dosimeters is the enhanced sensitivity to radiation doses measured for 60Co, photons and electrons beams, thus representing a viable alternative for application in dosimetry in the radiotherapy area. (author)

  19. Electron beam dosimetry. Calibration and use of plane parallel chambers following IAEA TRS-381 recommendations

    International Nuclear Information System (INIS)

    Using different plane parallel chamber types (NACP-02, PTW Roos and PTW Markus), and a cylindrical chamber NE-2571 as reference, the IAEA TRS-381 Code of Practice has been compared with the AAPM TG-39 dosimetry protocol for plane parallel chambers. ND,airpp was determined following the 60Co in-phantom method and the electron beam method described in TRS-381, using water, PMMA and RMI-457 Solid Water phantoms. Differences were smaller than 0.5% between the two methods except for the PTW Roos chamber where the discrepancy was about 1.5%. The absorbed dose to water was determined according to the procedures and data of each protocol for electron beams between 4 and 18 MeV. Differences in absorbed dose were less than 1% when measurements were made in water, but a deviation of up to 2% was found between TRS-381 and TG-39 when PMMA phantoms were used. To validate the results obtained and to investigate differences between plastic and water phantoms in electron beam dosimetry, the scaling factor Cpl and the fluence correction factor hm for PMMA and solid water RMI-457 were measured and compared to the data in TRS-381. Good agreement was found for Cpl, but only when the plastics density were taken into account. The experimental values of hm have a large uncertainty but for PMMA a trend for hm being lower than in TRS-381 has been obtained. (author)

  20. Two-parametric model of electron beam in computational dosimetry for radiation processing

    Science.gov (United States)

    Lazurik, V. M.; Lazurik, V. T.; Popov, G.; Zimek, Z.

    2016-07-01

    Computer simulation of irradiation process of various materials with electron beam (EB) can be applied to correct and control the performances of radiation processing installations. Electron beam energy measurements methods are described in the international standards. The obtained results of measurements can be extended by implementation computational dosimetry. Authors have developed the computational method for determination of EB energy on the base of two-parametric fitting of semi-empirical model for the depth dose distribution initiated by mono-energetic electron beam. The analysis of number experiments show that described method can effectively consider random displacements arising from the use of aluminum wedge with a continuous strip of dosimetric film and minimize the magnitude uncertainty value of the electron energy evaluation, calculated from the experimental data. Two-parametric fitting method is proposed for determination of the electron beam model parameters. These model parameters are as follow: E0 - energy mono-energetic and mono-directional electron source, X0 - the thickness of the aluminum layer, located in front of irradiated object. That allows obtain baseline data related to the characteristic of the electron beam, which can be later on applied for computer modeling of the irradiation process. Model parameters which are defined in the international standards (like Ep- the most probably energy and Rp - practical range) can be linked with characteristics of two-parametric model (E0, X0), which allows to simulate the electron irradiation process. The obtained data from semi-empirical model were checked together with the set of experimental results. The proposed two-parametric model for electron beam energy evaluation and estimation of accuracy for computational dosimetry methods on the base of developed model are discussed.

  1. Reference radiochromic film dosimetry in kilovoltage photon beams during CBCT image acquisition

    International Nuclear Information System (INIS)

    Purpose: A common approach for dose assessment during cone beam computed tomography (CBCT) acquisition is to use thermoluminescent detectors for skin dose measurements (on patients or phantoms) or ionization chamber (in phantoms) for body dose measurements. However, the benefits of a daily CBCT image acquisition such as margin reduction in planning target volume and the image quality must be weighted against the extra dose received during CBCT acquisitions. Methods: The authors describe a two-dimensional reference dosimetry technique for measuring dose from CBCT scans using the on-board imaging system on a Varian Clinac-iX linear accelerator that employs the XR-QA radiochromic film model, specifically designed for dose measurements at low energy photons. The CBCT dose measurements were performed for three different body regions (head and neck, pelvis, and thorax) using humanoid Rando phantom. Results: The authors report on both surface dose and dose profiles measurements during clinical CBCT procedures carried out on a humanoid Rando phantom. Our measurements show that the surface doses per CBCT scan can range anywhere between 0.1 and 4.7 cGy, with the lowest surface dose observed in the head and neck region, while the highest surface dose was observed for the Pelvis spot light CBCT protocol in the pelvic region, on the posterior side of the Rando phantom. The authors also present results of the uncertainty analysis of our XR-QA radiochromic film dosimetry system. Conclusions: Radiochromic film dosimetry protocol described in this work was used to perform dose measurements during CBCT acquisitions with the one-sigma dose measurement uncertainty of up to 3% for doses above 1 cGy. Our protocol is based on film exposure calibration in terms of ''air kerma in air,'' which simplifies both the calibration procedure and reference dosimetry measurements. The results from a full Monte Carlo investigation of the dose conversion of measured XR-QA film dose at the surface into

  2. Gamma-ray dosimetry measurements of the Little Boy replica

    International Nuclear Information System (INIS)

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis

  3. Gamma-ray dosimetry measurements of the Little Boy replica

    Energy Technology Data Exchange (ETDEWEB)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  4. Beam quality measure for vector beams.

    Science.gov (United States)

    Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2016-08-01

    Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580

  5. Evaluation of ion chamber dependent correction factors for ionisation chamber dosimetry in proton beams using a Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Palmans, H. [Ghent Univ. (Belgium). Dept. of Biomedical Physics; Verhaegen, F.

    1995-12-01

    In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire`s multiple scattering theory and Vavilov`s energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program`s accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented.

  6. Evaluation of ion chamber dependent correction factors for ionisation chamber dosimetry in proton beams using a Monte Carlo method

    International Nuclear Information System (INIS)

    In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire's multiple scattering theory and Vavilov's energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program's accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented

  7. Validating dose rate calibration of radiotherapy photon beams through IAEA/WHO postal audit dosimetry service

    International Nuclear Information System (INIS)

    In external beam radiation therapy (EBRT), the quality assurance (QA) of the radiation beam is crucial to the accurate delivery of the prescribed dose to the patient. One of the dosimetric parameters that require monitoring is the beam output, specified as the dose rate on the central axis under reference conditions. The aim of this project was to validate dose rate calibration of megavoltage photon beams using the International Atomic Energy Agency (IAEA)/World Health Organisation (WHO) postal audit dosimetry service. Three photon beams were audited: a 6 MV beam from the low-energy linac and 6 and 18 MV beams from a dual high-energy linac. The agreement between our stated doses and the IAEA results was within 1% for the two 6 MV beams and within 2% for the 18 MV beam. The IAEA/WHO postal audit dosimetry service provides an independent verification of dose rate calibration protocol by an international facility. (author)

  8. Postal dosimetry audit test for small photon beams

    International Nuclear Information System (INIS)

    Background and purpose: Small radiation beams (3) of TLD-100 inserted at 5 and 10 cm of depth in a cylindrical PMMA phantom designed for this purpose. This experimental system is mailed to the audited centres to be irradiated with beams of 1 and 3 cm of side or diameter. The prescribeddose is 1.5 Gy at 10 cm. The properties of this system were studied experimentally and by Monte Carlo (MC) simulation, before the external test. Results: Deviations between the prescribed and measured absorbed doses are below 5% for 69% (1 × 1 cm2 beam) and 64% (3 × 3 cm2 beam) of the audited centres. When deviations are above 5%, their causes have been investigated and led to corrections. Conclusion: The developed postal audit is suitable to verify the absorbed doses in small photon beams with an accuracy of 2.9% (1s).

  9. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    International Nuclear Information System (INIS)

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?)waterair, in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in 60Co gamma beams. In photon beam dosimetry (S I ?)waterair can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation). To improve the accuracy of

  10. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosunen, A

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?){sup water} {sub air}, in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in {sup 60}Co gamma beams. In photon beam dosimetry (S I ?){sup water} {sub air} can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation

  11. Pertinence analysis of intensity-modulated radiation therapy dosimetry error and parameters of beams

    International Nuclear Information System (INIS)

    Objective: To study the relationship between parameter settings in the intensity-modulated radiation therapy (IMRT) planning in order to explore the effect of parameters on absolute dose verification. Methods: Forty-three esophageal carcinoma cases were optimized with Pinnacle 7.6c by experienced physicist using appropriate optimization parameters and dose constraints with a number of iterations to meet the clinical acceptance criteria. The plans were copied to water-phantom, 0.13 cc ion Farmer chamber and DOSE1 dosimeter was used to measure the absolute dose. The statistical data of the parameters of beams for the 43 cases were collected, and the relationships among them were analyzed. The statistical data of the dosimetry error were collected, and comparative analysis was made for the relation between the parameters of beams and ion chamber absolute dose verification results. Results: The parameters of beams were correlated among each other. Obvious affiliation existed between the dose accuracy and parameter settings. When the beam segment number of IMRT plan was more than 80, the dose deviation would be greater than 3%; however, if the beam segment number was less than 80, the dose deviation was smaller than 3%. When the beam segment number was more than 100, part of the dose deviation of this plan was greater than 4%. On the contrary, if the beam segment number was less than 100, the dose deviation was smaller than 4% definitely. Conclusions: In order to decrease the absolute dose verification error, less beam angles and less beam segments are needed and the beam segment number should be controlled within the range of 80. (authors)

  12. Characterization of a computed radiography system for external radiotherapy beam dosimetry

    Science.gov (United States)

    Aberle, Christoph; Kapsch, Ralf-Peter

    2016-06-01

    A commercial computed radiography (CR) system was studied as an option for quantitative dosimetry quality assurance of external radiotherapy beams. Following the examination of influencing quantities, practical measurement procedures are discussed. Corrections were derived for image fading, an observed long-term response drift and the image length scale, which was found to be off by up to 2–3%. It is known that energy dependence is important for CR measurements. Therefore, signal-to-dose calibration curves and the energy dependence of the response were studied extensively using multiple photon and electron beam qualities. Doses which yield the same signal vary by up to tens of percent for different beam qualities. Results on the directional response of the plates are presented. It was found that rotations of up to 30° to 40° relative to perpendicular irradiation yield no significant change in response. Finally, the homogeneity of the response over the measurement region was studied for electrons and photons and a correction method is described. In summary, relative dose measurements with uncertainties of a few percent are feasible in regions of constant beam energy.

  13. Evaluation of a computed radiography system for megavoltage photon beam dosimetry

    International Nuclear Information System (INIS)

    Computed radiography (CR) systems have been gaining adoption as digital replacements for film for diagnostic and therapy imaging. As a result, film processors are being removed from service, leaving a void for the medical physicists who use film and processors for two-dimensional megavoltage beam dosimetry. This is the first report to evaluate the ability of a commercial CR reader and storage phosphor plate system to accurately quantitate absolute dose and dose distributions from a 6 MV photon beam. There are potential advantages and disadvantages of current CR systems compared to film systems. CR systems inherently produce a linear dose-response over several logs of dose. However, the barium in the storage phosphor has a higher atomic number than the silver in film, resulting in significant energy sensitivity. The purpose of this work is to fully characterize the impact of these and other features of this CR system relevant to dosimetry. The tests performed and reported on in this study include uniformity of readout across a uniform field, geometrical accuracy, intra- and interday reproducibility, signal decay with time and with light exposure, dose-to-signal calibration, high dose effects, obliquity effects, perpendicular and parallel calibration results, field size and depth of measurement effects and the use of lead filters to minimize them, and intensity modulated radiation therapy quality assurance test results compared to that for film. Practical techniques are provided to optimize the accuracy of the system as a dosimetric replacement for film

  14. Evaluation of the EDR-2 film for relative dosimetry of high-energy photon and electron beams

    International Nuclear Information System (INIS)

    A sensitometric study of Kodak XV and EDR-2 radiographic films (Eastman Kodak Company, Rochester, NY) was performed using photons ranging from 75 kV to 18 MV and electrons ranging from 6 to 20 MeV. To investigate the applicability of the EDR-2 film for clinical radiation dosimetry, percentage depth-doses, profiles and distributions in open and dynamically wedged fields were measured using film and compared with data from a linear diode. Moreover, conventional quality assurance dose parameters were measured, including open-field dose profiles to determine flatness and symmetry of photon and electron beams. Finally, film was employed to validate dose distributions produced by complex computerised treatment planning techniques. Our conclusion is that the EDR-2 film is an effective tool for relative dosimetry of photon and electron beams. (authors)

  15. Characterization of the water-equivalent material WTe for use in electron beam dosimetry

    Science.gov (United States)

    McEwen, M. R.; Du Sautoy, A. R.

    2003-07-01

    This paper describes the characterization of the water-equivalent material WTe (produced by St Bartholomew's Hospital, London). The use of epoxy resin phantoms offers a number of advantages over water for radiotherapy dosimetry in terms of robustness and ease of use, but the published uncertainties in the fluence corrections for such phantoms significantly increase the overall uncertainty in the measurement of absorbed dose to water at the reference point. Depth-ionization data were obtained in water and WTe for electron beams in the range 4 MeV to 16 MeV and it was found that the measured fluence in the WTe phantom was approximately 0.4% higher than in a water phantom at the same depth. For measurements only at the reference depth this difference was less, with the fluence in the WTe phantom being 0.2% higher. The standard uncertainty on this value is estimated to be +/-0.12%, which represents a significant improvement over previous measurements. It was also found that the range scaling factor is not equal to unity, as previously recommended for this material, but that the data was best fitted by the relation 1 mm WTe = 1.01 mm water (with an uncertainty of +/-0.2%). The results obtained confirm previous investigations of WTe as to its suitability for reference ion chamber dosimetry in the radiotherapy clinic. However, the recommendation is still to use a water phantom wherever possible.

  16. Characterization of the water-equivalent material WTe for use in electron beam dosimetry

    International Nuclear Information System (INIS)

    This paper describes the characterization of the water-equivalent material WTe (produced by St Bartholomew's Hospital, London). The use of epoxy resin phantoms offers a number of advantages over water for radiotherapy dosimetry in terms of robustness and ease of use, but the published uncertainties in the fluence corrections for such phantoms significantly increase the overall uncertainty in the measurement of absorbed dose to water at the reference point. Depth-ionization data were obtained in water and WTe for electron beams in the range 4 MeV to 16 MeV and it was found that the measured fluence in the WTe phantom was approximately 0.4% higher than in a water phantom at the same depth. For measurements only at the reference depth this difference was less, with the fluence in the WTe phantom being 0.2% higher. The standard uncertainty on this value is estimated to be ±0.12%, which represents a significant improvement over previous measurements. It was also found that the range scaling factor is not equal to unity, as previously recommended for this material, but that the data was best fitted by the relation 1 mm WTe = 1.01 mm water (with an uncertainty of ±0.2%). The results obtained confirm previous investigations of WTe as to its suitability for reference ion chamber dosimetry in the radiotherapy clinic. However, the recommendation is still to use a water phantom wherever possible

  17. Recent Advances in Dosimetry in Reference Conditions for Proton and Light-Ion Beams

    International Nuclear Information System (INIS)

    Radiotherapy with proton and light-ion beams is a rapidly expanding modality with more than 50 facilities expected to be operational by 2015. Uniformity of dose specification is a prerequisite for comparing clinical data from different institutions and for undertaking collaborative clinical trials. In recent years, considerable effort has been devoted to the development and improvement of the accuracy and reproducibility of reference dosimetry and the calibration of proton and light-ion beams taking account of the different beam-delivery techniques used for treatment. This paper reviews the developments in dosimetry under reference conditions of proton and light-ion beams that have taken place since IAEA International Symposium on Standards and Codes of Practice in Medical Radiation Dosimetry in 2002. (author)

  18. Dosimetry

    International Nuclear Information System (INIS)

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source

  19. The effects of beam quality on EPR spectra and alanine dosimetry in mixed radiation fields

    International Nuclear Information System (INIS)

    Sensitization of L-Alanine dosimetry to neutrons showed that variations in the beam quality, resulting from adding boric acid to L-Alanine samples, affected the intensity and the shape of the lines in the EPR spectra of alanine following irradiation with thermal neutrons. Disintegration of 10B in the (n, α) process, enhances the EPR signal due to increase in the local dose deposition. The relative effectiveness of alanine dosimetry to neutrons was found to be about 0.5. (author)

  20. Optical-fiber guided Al2O3:C radioluminescence dosimetry for external beam radiotherapy

    International Nuclear Information System (INIS)

    Small luminescence point-detectors coupled to optical-fiber cables (typically 1 mm diameter and 15 m length) may be used for medical dosimetry. Currently, the main luminescence materials are Al2O3:C and organic scintillator materials. The potential applications include, for example, online in vivo dose verification during remotely afterloaded brachytherapy, in vivo time-resolved IMRT dosimetry and dose-per-pulse measurements in megavolt x-ray beams. In the present work, we specifically explored the use of a new readout protocol for Al2O3:C for accelerator characterization measurements, and eventually, small-field dosimetry in external beam radiotherapy. Al2O3:C can in principle be used for radioluminescence (RL) dosimetry as well as optically stimulated luminescence (OSL) dosimetry. In the new readout protocol, however, we have eliminated the OSL readout. The main advantage of this so-called saturated RL protocol compared with the combined RL/OSL readout protocol is that it provides an RL sensitivity which is almost constant. Furthermore, the new readout protocol is much simpler and faster to use in the clinic. In contract to the main organic scintillators, it is noteworthy that the RL signal from Al2O3:C has a long luminescence life-time which allows for almost complete removal of any interference from light generated in the optical fiber cable due to stray radiation from pulsed beams. Measurements were conducted in a 6 MV beam (Varian iX linear accelerator, USA) using a solid- water phantom (type 457, Gammex, USA) and a 2 mg Al2O3:C crystal (Landauer Inc, USA) attached to a PMMA optical-fiber cable. The data acquisition system recorded both the RL signal from the Al2O3:C and the number of accelerator gun pulses (deduced from the so-called target current signal). The new RL-protocol with saturated Al2O3:C was found to be highly sensitive (-5x106 counts pr. Gy) and doses in the range from 10 mGy to above 15 Gy could be measured using a single calibration factor

  1. The impact of MLC transmitted radiation on EPID dosimetry for dynamic MLC beams

    International Nuclear Information System (INIS)

    The purpose of this study was to experimentally quantify the change in response of an amorphous silicon (a-Si) electronic portal imaging device (EPID) to dynamic multileaf collimator (dMLC) beams with varying MLC-transmitted dose components and incorporate the response into a commercial treatment planning system (TPS) EPID prediction model. A combination of uniform intensity dMLC beams and static beams were designed to quantify the effect of MLC transmission on EPID response at the central axis of 10x10 cm2 beams, at off-axis positions using wide dMLC beam profiles, and at different field sizes. The EPID response to MLC transmitted radiation was 0.79±0.02 of the response to open beam radiation at the central axis of a 10x10 cm2 field. The EPID response to MLC transmitted radiation was further reduced relative to the open beam response with off-axis distance. The EPID response was more sensitive to field size changes for MLC transmitted radiation compared to open beam radiation by a factor of up to 1.17 at large field sizes. The results were used to create EPID response correction factors as a function of the fraction of MLC transmitted radiation, off-axis distance, and field size. Software was developed to apply the correction factors to each pixel in the TPS predicted EPID image. The corrected images agreed more closely with the measured EPID images in areas of intensity modulated fields with a large fraction of MLC transmission and, as a result the accuracy of portal dosimetry with a-Si EPIDs can be improved. Further investigation into the detector response function and the radiation source model are required to achieve improvements in accuracy for the general case

  2. Proton dosimetry intercomparison using parallel plate ion chambers in a proton eye therapy beam

    International Nuclear Information System (INIS)

    A four-centre proton dosimetry intercomparison was performed at the Paul Scherrer Institute on the OPTIS 62 MeV clinical proton beam line. The participating centres were: a) Paul Scherrer Institute (CH) b) Clatterbridge Centre for Oncology (UK) c) INFN - Laboratori Nazionali del Sud, Catania (I) d) TERA - Fondazione per adroterapia oncologica (Milano) (I) There were several aims to this study. The first, to intercompare small, parallel-plate ion chambers (IC) in the entrance region of an unmodulated proton beam and the centre-depth of a modulated beam using flat chambers from each centre (MARKUS, graphite windows, 0.055 cm-3) in terms of dose-to-water. The physical parameters are drawn from ECHED protocols ('91,'94) and ICRU Report Nos.49 and 59. The method of obtaining dose-to-air varied at each centre, using either electrons or 60Co photon beams and comparing with chambers traceable to international or national standards laboratories. Each centre also used conventional thimble ICs for further comparison (T1, Farmer-PTW and FWT IC-18). Provisional results show that the mean of the Markus IC dose measurements was slightly higher than that obtained from thimble chambers, but not significantly so. The deviation of the Markus IC measurements is small, taking into account the different calibration and traceability procedures

  3. The performance of a multi-guard ring structure (MGR) diode for dosimetry in clinical photon and electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, H.J.; Nascimento, C.R. [Nuclear Energy Department, UPFE, Recife-PE (Brazil); Kalil, L.F. [CECAN, Natal-RN (Brazil); Camargo, F.; Bueno, C.C. [Pontificia Universidade Catolica de Sao Paulo, Depto. de Fisica (Brazil)]. e-mail: hjkhoury@ufpe.br

    2007-07-01

    Full text: In clinical dosimetry the accuracy of the dose delivery on the radiotherapy procedures must be as accurate as +5%. This fact demands sophisticated dose planning systems and tools for dose verifications. Currently the ionization chamber is used for a dosimetry of photon and electron beams. However, measurements of doses in radiation fields with steep dose gradients and interface doses are quite complicated to be done with ionization chambers due to their physical size and limited spatial resolution. Diode detectors are used in areas of strong gradients to achieve better spatial resolution. The semiconductor detectors are attractive for applications in radiation dosimetry due to their high sensitivity, high density, small dimensions and its ability to operate in passive (unbiased) and active (biased) mode. The most suitable semiconductor for room temperature radiation dosimetry is silicon. These detectors yield a resolution of the order of a few millimeters. One of the problems of the use of these detectors in high rate radiation fields is the damage produced by the radiation in their response. This work examines the possibility of using a rad-hard silicon diode with a multi-guard ring structure (MGR), developed in the framework of R and D programs for the future CMS experiment at Large Hadron Collider (LHC) for clinical photon and electron beam dosimetry. This silicon diode presents a low leakage current and excellent timing properties. The diode was encapsulated in a polymer plastic and it was connected in the photovoltaic mode to the input of an integrating electrometer, Standard Imaging model CDX 2000A. The response of the diode was evaluated for the a 6MV and 1 5MV photon beam and 6MeV, MeV, 9MeV, 12MeV and 15MeV electron beam from a Clinac 2100-C accelerator of Varian Medical Systems. The results showed an excellent linear behavior of the dose-response curves, with a correlation coefficient of 0.99999, for all the beam energies studied. The results

  4. Fiber-optic detector for real time dosimetry of a micro-planar x-ray beam

    International Nuclear Information System (INIS)

    Purpose: Here, the authors describe a dosimetry measurement technique for microbeam radiation therapy using a nanoparticle-terminated fiber-optic dosimeter (nano-FOD). Methods: The nano-FOD was placed in the center of a 2 cm diameter mouse phantom to measure the deep tissue dose and lateral beam profile of a planar x-ray microbeam. Results: The continuous dose rate at the x-ray microbeam peak measured with the nano-FOD was 1.91 ± 0.06 cGy s−1, a value 2.7% higher than that determined via radiochromic film measurements (1.86 ± 0.15 cGy s−1). The nano-FOD-determined lateral beam full-width half max value of 420 μm exceeded that measured using radiochromic film (320 μm). Due to the 8° angle of the collimated microbeam and resulting volumetric effects within the scintillator, the profile measurements reported here are estimated to achieve a resolution of ∼0.1 mm; however, for a beam angle of 0°, the theoretical resolution would approach the thickness of the scintillator (∼0.01 mm). Conclusions: This work provides proof-of-concept data and demonstrates that the novel nano-FOD device can be used to perform real-time dosimetry in microbeam radiation therapy to measure the continuous dose rate at the x-ray microbeam peak as well as the lateral beam shape

  5. Comparison between the TRS-398 code of practice and the TG-51 dosimetry protocol for flattening filter free beams

    Science.gov (United States)

    Lye, J. E.; Butler, D. J.; Oliver, C. P.; Alves, A.; Lehmann, J.; Gibbons, F. P.; Williams, I. M.

    2016-07-01

    Dosimetry protocols for external beam radiotherapy currently in use, such as the IAEA TRS-398 and AAPM TG-51, were written for conventional linear accelerators. In these accelerators, a flattening filter is used to produce a beam which is uniform at water depths where the ionization chamber is used to measure the absorbed dose. Recently, clinical linacs have been implemented without the flattening filter, and published theoretical analysis suggested that with these beams a dosimetric error of order 0.6% could be expected for IAEA TRS-398, because the TPR20,10 beam quality index does not accurately predict the stopping power ratio (water to air) for the softer flattening-filter-free (FFF) beam spectra. We measured doses on eleven FFF linacs at 6 MV and 10 MV using both dosimetry protocols and found average differences of 0.2% or less. The expected shift due to stopping powers was not observed. We present Monte Carlo k Q calculations which show a much smaller difference between FFF and flattened beams than originally predicted. These results are explained by the inclusion of the added backscatter plates and build-up filters used in modern clinical FFF linacs, compared to a Monte Carlo model of an FFF linac in which the flattening filter is removed and no additional build-up or backscatter plate is added.

  6. Impact of thermoplastic mask on dosimetry of different radiotherapeutic beams

    International Nuclear Information System (INIS)

    Objective: To determine the influence of auxiliary thermoplastic mask on dose distribution of photon or electron beams. Methods: Using the PTW Marcus 23343 type fixed-separation parallel-plate ionization chamber in a special phantom(PMMA), the change of photon dose buildup region was measured with rectification of Bruce empirical formula. Using 3-D water phantom, the central axis percentage depth doses (PDD) of electron beams were measured with verification of the parallel-plate ionization chamber at several given depths. Results: When 8 MV X-ray was delivered through the added facial mask, the buildup region doses were increased obviously with a 25% relative increment beneath near the surface. When 8, 12, 15 MeV electron beams and mask were used, all PDD curves moved to the surface. Conclusions: The impact of thermoplastic mask on the dose increase in the X-ray buildup region, and on the PDD decrease in the electron beam target region should be paid much more attention. And the dose distribution, with an added mask, will have to be re-evaluated in 3-D conformal radiotherapy

  7. Optically stimulated luminescence for diagnostic and therapeutic low to medium energy X-Ray beams experimental dosimetry

    International Nuclear Information System (INIS)

    Optically stimulated luminescence (OSL) using aluminium oxide crystals (Al2O3:C) is a dosimetry technique, already validated in radiation therapy. The aim of this study was to characterize the OSL detectors in terms of energy dependence using monochromatic beams in the low-medium energy range (25-85 keV); and to evaluate their potential for experimental dosimetry in therapeutic applications at these energies. The OSL system is composed of a multichannel reader and alumina crystals (Al2O3:C, 0.09 mm3) that are remotely read by laser light. The OSL signal is directly linked to the absorbed dose. Irradiations in were performed at 8 energy points from 25 to 90 keV using a synchrotron source. Absolute OSL dose measurements were also performed at 80 keV at 2 cm depth in water equivalent phantoms (1-8 Gy range). The detectors have been read over 300 s to collect all the light available from the trapped electrons. The OSL detector show a lower energy dependence (≤ 10%) in the 25 to 50 keV range than at higher energies (∼ 45% from 50 to 90 keV). OSL is a reproducible absolute dosimetry technique at 80 keV (σ≤5 %). The field size has no other influence on the OSL signal than the one due to phantom scatter output factors. We demonstrated that the OSL energy dependence decreases with the beam energy. The conventional models of OSL response in function of beam energy and delivered dose were confronted to our results. The next step of this study is to use OSL for beam penumbra characterisation, where conventional detectors exhibit a severe energy dependence due to low energy spectra. In vivo dosimetry applications in low-medium energy radiotherapy are foreseen due to the good reproducibility in OSL signal for absolute dose measurements. (authors)

  8. Mixed field dosimetry at U-120 cyclotron neutron therapy beam: a comparison of two dosimetry systems

    International Nuclear Information System (INIS)

    At the place where neutron therapy is carried out with the use of the U-120 cyclotron the comparison of two dosimetric systems was made for fast neutron beam of mean energy 5.5 MeV. The Dn component as well as the Dγ one were measured with dosimeters used at the Institute of Nuclear Physics in Cracow and with the dosimetric set used at the Radiotherapy Institute of Technical University of Muenich. At the same time both dosimetric systems were compared by means of the 60Co source at the Institute of Oncology in Cracow. The measurements have shown a good compatibility of the two systems. (author)

  9. BELdART: Organization of a quality assurance audit for photon and electron beams based on alanine/EMR dosimetry

    International Nuclear Information System (INIS)

    The Belgian dosimetry audit in radiotherapy (BELdART) project was set up by the Federal Agency of Nuclear Control (FANC) to verify, on a national base, the compliance of the dose stated by the center with the measured dose. The visitation encompasses a basic mechanical test and a dosimetric verification of the dose measured in reference and non-reference conditions, including irregular fields with MLC. Absorbed dose to water is measured with alanine/ EMR dosimetry. The number of monitor units (MU) to deliver 4 Gy at the detector is calculated by the participating centre according to the clinical procedure. Dose measurements are traceable to the water calorimeter standard at PTB and in addition alanine/EMR dosimetry is compared at regular intervals against ionometry as part of the auditing performed by the Belgian Hospital Physicist Association (BHPA). The audit started in feb. 2009 and all photon beams and two electron beams per linac in clinical use will be audited within a period of three years

  10. Quality control and patient dosimetry in dental cone beam CT

    International Nuclear Information System (INIS)

    This paper presents the initial experience in performing quality control and patient dose measurements in a cone beam computed tomography (CT) scanner (ILUMATM Ultra, IMTEC Imaging, USA) for oral and maxillofacial radiology. The X-ray tube and the generator were tested first, including the kVp accuracy and precision, and the half-value layer (HVL). The following tests specific for panoramic dental systems were also performed: tube output, beam size and beam alignment to the detector. The tests specific for CT included measurements of noise and CT numbers in water and in air, as well as the homogeneity of CT numbers. The most appropriate dose quantity was found to be the air kerma-area product (KAP) measured with a KAP-metre installed at the tube exit. KAP values were found to vary from 110 to 185 μGy m2 for available adult protocols and to be 54 μGy m2 for the paediatric protocol. The effective dose calculated with the software PCXMC (STUK (Finland)) was 0.05 mSv for children and 0.09-0.16 mSv for adults. (authors)

  11. Updating the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams

    International Nuclear Information System (INIS)

    It is now more than ten years since the TG-51 protocol was published. The AAPM has set up a Working Group to review TG-51 and provide some much-needed information on the present situation of reference dosimetry for megavoltage photon and electron beams. The two modalities are being discussed separately, and this presentation deals only with photon beams. An addendum to TG-51 has been drafted and the highlights are described here. Photon beam addendum highlights. i) Calculated kQ factors for new chambers developed after the publication of TG-51. kQ factors for all chambers currently available were calculated using the approach of TG-51. Example data are shown. ii) A comparison of these (and similar) calculations with measured kQ factors obtained at primary standards laboratories. Absorbed-dose beam-quality conversion factors were obtained for 27 different types of cylindrical ionization chamber. The objective was to determine if each chamber met the requirements of a reference-class instrument. Chamber settling, leakage current, ion recombination and polarity, and waterproofing-sleeve effects were investigated, and absorbed dose calibration coefficients were obtained for 60Co and 6, 10 and 25 MV photon beams (%dd(10)x ≤ 84 %). As might be expected, 0.6 cm''3 thimble chambers showed the most predictable performance, and experimental kQ factors were obtained with a relative uncertainty of 0.1 %. The performance of scanning and micro chambers was somewhat variable. Some chambers showed very good behaviour but others showed anomalous polarity and recombination corrections that are not fully explained at present. For the well-behaved chambers, agreement between measured and calculated kQ factors was within 0.4 %; for some chambers differences of more than 1 % were seen. iii) Best-practice recommendations to minimize errors and ensure consistent dosimetric reporting. Reference chambers - based on the experimental evidence reviewed, the specification for a reference

  12. Development of silicon monolithic arrays for dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bisello, Francesca, E-mail: francesca.bisello@iba-group.com [IBA Dosimetry GmbH, Schwarzenbruck (Germany); Friedrich-Alexander Universität Erlangen—Nürnberg, Erlangen (Germany); Menichelli, David [IBA Dosimetry GmbH, Schwarzenbruck (Germany); Scaringella, Monica [University of Florence, Firenze (Italy); INFN—Florence Division, Sesto Fiorentino (Italy); Talamonti, Cinzia; Zani, Margherita; Bucciolini, Marta [University of Florence, Firenze (Italy); Azienda Ospedaliera Unversitaria Careggi, Firenze (Italy); Bruzzi, Mara [University of Florence, Firenze (Italy); INFN—Florence Division, Sesto Fiorentino (Italy)

    2015-10-01

    New tools for dosimetry in external beam radiotherapy have been developed during last years in the framework of the collaboration among the University of Florence, INFN Florence and IBA Dosimetry. The first step (in 2007) was the introduction in dosimetry of detector solutions adopted from high energy physics, namely epitaxial silicon as the base detector material and a guard ring in diode design. This allowed obtaining state of the art radiation hardness, in terms of sensitivity dependence on accumulated dose, with sensor geometry particularly suitable for the production of monolithic arrays with modular design. Following this study, a 2D monolithic array has been developed, based on 6.3×6.3 cm{sup 2} modules with 3 mm pixel pitch. This prototype has been widely investigated and turned out to be a promising tool to measure dose distributions of small and IMRT fields. A further linear array prototype has been recently design with improve spatial resolution (1 mm pitch) and radiation hardness. This 24 cm long device is constituted by 4×64 mm long modules. It features low sensitivity changes with dose (0.2%/kGy) and dose per pulse (±1% in the range 0.1–2.3 mGy/pulse, covering applications with flattened and unflattened photon fields). The detector has been tested with very satisfactory results as a tool for quality assurance of linear accelerators, with special regards to small fields, and proton pencil beams. In this contribution, the characterization of the linear array with unflattened MV X-rays, {sup 60}Co radiation and 226 MeV protons is reported. - Highlights: • A silicon monolithic 1D array with 1 mm pixel pitch was developed. • The detector was characterized with {sup 60}Co, unflattened MV X-rays, 226 MeV protons. • Dose linearity in clinical relevance range and dose profiles were measured. • The detector performs good agreement with reference detectors. • The technology is suitable in dose profiling in MV X-ray and proton therapy.

  13. Utilization of thermoluminescent dosimetry in total skin electron beam radiotherapy of mycosis fungoides

    International Nuclear Information System (INIS)

    Purpose: The purpose of this report is to discuss the utilization of thermoluminescent dosimetry (TLD) in total skin electron beam (TSEB) radiotherapy to: (a) compare patient dose distributions for similar techniques on different machines, (b) confirm beam calibration and monitor unit calculations, (c) provide data for making clinical decisions, and (d) study reasons for variations in individual dose readings. Methods and Materials: We report dosimetric results for 72 cases of mycosis fungoides, using similar irradiation techniques on two different linear accelerators. All patients were treated using a modified Stanford 6-field technique. In vivo TLD was done on all patients, and the data for all patients treated on both machines was collected into a database for analysis. Means and standard deviations (SDs) were computed for all locations. Scatter plots of doses vs. height, weight, and obesity index were generated, and correlation coefficients with these variables were computed. Results: The TLD results show that our current TSEB implementation is dosimetrically equivalent to the previous implementation, and that our beam calibration technique and monitor unit calculation is accurate. Correlations with obesity index were significant at several sites. Individual TLD results allow us to customize the boost treatment for each patient, in addition to revealing patient positioning problems and/or systematic variations in dose caused by patient variability. The data agree well with previously published TLD results for similar TSEB techniques. Conclusion: TLD is an important part of the treatment planning and quality assurance programs for TSEB, and routine use of TLD measurements for TSEB is recommended

  14. Volume dose ratios relevant for alanine dosimetry in small, 6 MV photon beams

    International Nuclear Information System (INIS)

    The overall objective of this work is to establish alanine dosimetry for traceable measurements in clinical radiotherapy beams, in particular for non-reference situations such as small field sizes and composite beam delivery (e.g. intensity modulated radiotherapy and volumetric modulated arc therapy). To this end, we here present the results of a Monte Carlo simulation study with DOSRZnrc that investigated the influence of field and detector size for small 6 MV photon beams. The study focusses on doses averaged over the volume of the detector rather than point doses. The ratio of volume averaged doses to water (D¯W) and alanine (D¯det) was found to be approximately 1.025 for most situations studied, and a constant ratio is likely to be representative for many applications in radiation therapy. However, D¯W/D¯det was found to be as low as 0.9908 ± 0.0037 in situations where one might expect significant deviations from charged particle equilibrium (i.e. at shallow depths and when the field size was smaller than the range of the secondary electrons). These effects therefore need consideration when finite-size alanine dosimeters are used under such conditions.

  15. Absolute and secondary dosimetry at the cyclotron ion beam radiation experiments

    International Nuclear Information System (INIS)

    One of the characteristic features of ion beam radiation experiments is that the absolute methods of dosimetry are more convenient than secondary ones. In this paper the absolute method used in the course of the radiation experiments performed on the U-400 Dubna cyclotron is presented in detail. Some remarks dealing with the secondary methods are also given. (author)

  16. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry for carbon-ion beams

    CERN Document Server

    Kanematsu, Nobuyuki; Ogata, Risa

    2012-01-01

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. Ideally, such material should be water equivalent as well as that for dosimetry. In this study, we evaluated dosimetric water equivalency of four common plastics, HDPE, PMMA, PET, and POM, by uniformity of effective densities for carbon-ion-beam interactions. Methods: Using the Bethe formula for stopping, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, we calculated the effective densities of the plastics for these interactions. We tested HDPE, PMMA, and POM in carbon-ion-beam experiment and measured attenuations of carbon ions, which were compared with empirical linear-attenuation-model calculations. Results: The theoretical calculations resulted in reduced multiple scattering and increased nuclear interactions for HDPE compared to water, which ...

  17. 2D dosimetry in a proton beam with a scintillating GEM detector

    International Nuclear Information System (INIS)

    A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for pre-treatment verification of dose distributions in particle therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two gas electron multiplier (GEM) structures are mounted (Seravalli et al 2008b Med. Phys. Biol. 53 4651-65). Photons emitted by the excited Ar/CF4 gas molecules during the gas multiplication in the GEM holes are detected by a mirror-lens-CCD camera system. The intensity distribution of the measured light spot is proportional to the 2D dose distribution. In this work, we report on the characterization of the scintillating GEM detector in terms of those properties that are of particular importance in relative dose measurements, e.g. response reproducibility, dose dependence, dose rate dependence, spatial and time response, field size dependence, response uniformity. The experiments were performed in a 150 MeV proton beam. We found that the detector response is very stable for measurements performed in succession (σ = 0.6%) and its response reproducibility over 2 days is about 5%. The detector response was found to be linear with the dose in the range 0.05-19 Gy. No dose rate effects were observed between 1 and 16 Gy min-1 at the shallow depth of a water phantom and 2 and 38 Gy min-1 at the Bragg peak depth. No field size effects were observed in the range 120-3850 mm2. A signal rise and fall time of 2 μs was recorded and a spatial response of ≤1 mm was measured.

  18. 2D dosimetry in a proton beam with a scintillating GEM detector

    Science.gov (United States)

    Seravalli, E.; de Boer, M. R.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.

    2009-06-01

    A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for pre-treatment verification of dose distributions in particle therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two gas electron multiplier (GEM) structures are mounted (Seravalli et al 2008b Med. Phys. Biol. 53 4651-65). Photons emitted by the excited Ar/CF4 gas molecules during the gas multiplication in the GEM holes are detected by a mirror-lens-CCD camera system. The intensity distribution of the measured light spot is proportional to the 2D dose distribution. In this work, we report on the characterization of the scintillating GEM detector in terms of those properties that are of particular importance in relative dose measurements, e.g. response reproducibility, dose dependence, dose rate dependence, spatial and time response, field size dependence, response uniformity. The experiments were performed in a 150 MeV proton beam. We found that the detector response is very stable for measurements performed in succession (σ = 0.6%) and its response reproducibility over 2 days is about 5%. The detector response was found to be linear with the dose in the range 0.05-19 Gy. No dose rate effects were observed between 1 and 16 Gy min-1 at the shallow depth of a water phantom and 2 and 38 Gy min-1 at the Bragg peak depth. No field size effects were observed in the range 120-3850 mm2. A signal rise and fall time of 2 µs was recorded and a spatial response of <=1 mm was measured.

  19. Cone beam optical computed tomography for gel dosimetry I: scanner characterization

    Energy Technology Data Exchange (ETDEWEB)

    Olding, Tim; Holmes, Oliver; Schreiner, L John, E-mail: tim.olding@krcc.on.c [Department of Physics, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2010-05-21

    The ongoing development of easily accessible, fast optical readout tools promises to remove one of the barriers to acceptance of gel dosimetry as a viable tool in cancer clinics. This paper describes the characterization of a number of basic properties of the Vista(TM) cone beam CCD-based optical scanner, which can obtain high resolution reconstructed data in less than 20 min total imaging and reconstruction time. The suitability of a filtered back projection cone beam reconstruction algorithm is established for optically absorbing dosimeters using this scanner configuration. The system was then shown to be capable of imaging an optically absorbing media-filled 1 L polyethylene terephthalate (PETE) jar dosimeter to a reconstructed voxel resolution of 0.5 x 0.5 x 0.5 mm{sup 3}. At this resolution, more than 60% of the imaged volume in the dosimeter exhibits minimal spatial distortion, a measurement accuracy of 3-4% and the mean to standard deviation signal-to-noise ratio greater than 100 over an optical absorption range of 0.06-0.18 cm{sup -1}. An inter-day scan precision of 1% was demonstrated near the upper end of this range. Absorption measurements show evidence of stray light perturbation causing artifacts in the data, which if better managed would improve the accuracy of optical readout. Cone beam optical attenuation measurements of scattering dosimeters, on the other hand, are nonlinearly affected by angled scatter stray light. Scatter perturbation leads to significant cupping artifacts and other inaccuracies that greatly limit the readout of scattering polymer gel dosimeters with cone beam optical CT.

  20. Measurement uncertainty. A practical guide for Secondary Standards Dosimetry Laboratories

    International Nuclear Information System (INIS)

    The need for international traceability for radiation dose measurements has been understood since the early nineteen-sixties. The benefits of high dosimetric accuracy were recognized, particularly in radiotherapy, where the outcome of treatments is dependent on the radiation dose delivered to patients. When considering radiation protection dosimetry, the uncertainty may be greater than for therapy, but proper traceability of the measurements is no less important. To ensure harmonization and consistency in radiation measurements, the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) created a Network of Secondary Standards Dosimetry Laboratories (SSDLs) in 1976. An SSDL is a laboratory that has been designated by the competent national authorities to undertake the duty of providing the necessary link in the traceability chain of radiation dosimetry to the international measurement system (SI, for Systeme International) for radiation metrology users. The role of the SSDLs is crucial in providing traceable calibrations; they disseminate calibrations at specific radiation qualities appropriate for the use of radiation measuring instruments. Historically, although the first SSDLs were established mainly to provide radiotherapy level calibrations, the scope of their work has expanded over the years. Today, many SSDLs provide traceability for radiation protection measurements and diagnostic radiology in addition to radiotherapy. Some SSDLs, with the appropriate facilities and expertise, also conduct quality audits of the clinical use of the calibrated dosimeters - for example, by providing postal dosimeters for dose comparisons for medical institutions or on-site dosimetry audits with an ion chamber and other appropriate equipment. The requirements for traceable and reliable calibrations are becoming more important. For example, for international trade where radiation products are manufactured within strict quality control systems, it is

  1. Proton therapy beam dosimetry with silicon CMOS image sensors

    International Nuclear Information System (INIS)

    A 16 mm2 CMOS Image Sensor with more than 100 000 pixels and with a standard video output was irradiated with 48, 95 and 180 MeV protons. Proton-induced nuclear reactions in silicon were detected as bright spots or tracks in the images. The angular and energy-dependent response of the detector were studied. The application to proton dosimetry is discussed

  2. High resolution polymer gel dosimetry for small beam irradiation using a 7T micro-MRI scanner

    Energy Technology Data Exchange (ETDEWEB)

    Ding Xuanfeng; Olsen, John; Best, Ryan; Bennett, Marcus; McGowin, Inna; Dorand, Jennifer; Link, Kerry; Bourland, J Daniel, E-mail: dingx6@wfu.ed

    2010-11-01

    The use of small field radiation beams has greatly increased with advanced radiation therapy techniques such as IMRT, rotational IMRT, and stereotactic body radiotherapy. In this work small field 3D dose distributions have been measured with high spatial resolution using polymer gels and 7T micro-MR imaging. A MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) polymer gel {sup [1]} phantom was used to capture the 3D dose distributions for two small field (5 x 5 mm{sup 2} and 10 x 10 mm{sup 2}) for a 6MV x-ray beam. High resolution 3D T2 maps were obtained with 7T micro-MRI (0.156mm x 0.156mm x 1mm, MSME pulse sequence). For comparison T2 maps, the gel phantom was scanned in a 3T MRI clinical scanner (0.254mm x 0.254mm x 2mm, FSE pulse sequence). Normalized 3D dose maps were calculated in Matlab. Results show that 7T micro-MRI 3D gel dosimetry measurements are much more stable, less noisy, and have higher spatial resolution than those obtained using a 3T clinical scanner for the same amount of scan time. In general, 3D gel dosimetry results also agree with simultaneously-obtained radiochromic film dosimetry. This study indicates that the MAGIC polymer gel with 7T micro-MRI for 3D dose readout could potentially be used for small radiation beams, including measurements for micro-beams (field size {approx} 100um).

  3. Gafchromic EBT3 film dosimetry in electron beams - energy dependence and improved film read-out.

    Science.gov (United States)

    Sipilä, Petri; Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti

    2016-01-01

    For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in 60Co gamma ray beam with addition of experimental and Monte Carlo (MC)-simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read-out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose-dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ± 50 pixel values (PVs). To improve the read-out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scan-ner glass can be detected and eliminated. Responses from red and green channels were averaged for read-out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k = 2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC-simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV-16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read-out procedure established

  4. Characteristics of mobile MOSFET dosimetry system for megavoltage photon beams

    Directory of Open Access Journals (Sweden)

    A Sathish Kumar

    2014-01-01

    Full Text Available The characteristics of a mobile metal oxide semiconductor field effect transistor (mobile MOSFET detector for standard bias were investigated for megavoltage photon beams. This study was performed with a brass alloy build-up cap for three energies namely Co-60, 6 and 15 MV photon beams. The MOSFETs were calibrated and the performance characteristics were analyzed with respect to dose rate dependence, energy dependence, field size dependence, linearity, build-up factor, and angular dependence for all the three energies. A linear dose-response curve was noted for Co-60, 6 MV, and 15 MV photons. The calibration factors were found to be 1.03, 1, and 0.79 cGy/mV for Co-60, 6 MV, and 15 MV photon energies, respectively. The calibration graph has been obtained to the dose up to 600 cGy, and the dose-response curve was found to be linear. The MOSFETs were found to be energy independent both for measurements performed at depth as well as on the surface with build-up. However, field size dependence was also analyzed for variable field sizes and found to be field size independent. Angular dependence was analyzed by keeping the MOSFET dosimeter in parallel and perpendicular orientation to the angle of incidence of the radiation with and without build-up on the surface of the phantom. The maximum variation for the three energies was found to be within ± 2% for the gantry angles 90° and 270°, the deviations without the build-up for the same gantry angles were found to be 6%, 25%, and 60%, respectively. The MOSFET response was found to be independent of dose rate for all three energies. The dosimetric characteristics of the MOSFET detector make it a suitable in vivo dosimeter for megavoltage photon beams.

  5. Characteristics of mobile MOSFET dosimetry system for megavoltage photon beams.

    Science.gov (United States)

    Kumar, A Sathish; Sharma, S D; Ravindran, B Paul

    2014-07-01

    The characteristics of a mobile metal oxide semiconductor field effect transistor (mobile MOSFET) detector for standard bias were investigated for megavoltage photon beams. This study was performed with a brass alloy build-up cap for three energies namely Co-60, 6 and 15 MV photon beams. The MOSFETs were calibrated and the performance characteristics were analyzed with respect to dose rate dependence, energy dependence, field size dependence, linearity, build-up factor, and angular dependence for all the three energies. A linear dose-response curve was noted for Co-60, 6 MV, and 15 MV photons. The calibration factors were found to be 1.03, 1, and 0.79 cGy/mV for Co-60, 6 MV, and 15 MV photon energies, respectively. The calibration graph has been obtained to the dose up to 600 cGy, and the dose-response curve was found to be linear. The MOSFETs were found to be energy independent both for measurements performed at depth as well as on the surface with build-up. However, field size dependence was also analyzed for variable field sizes and found to be field size independent. Angular dependence was analyzed by keeping the MOSFET dosimeter in parallel and perpendicular orientation to the angle of incidence of the radiation with and without build-up on the surface of the phantom. The maximum variation for the three energies was found to be within ± 2% for the gantry angles 90° and 270°, the deviations without the build-up for the same gantry angles were found to be 6%, 25%, and 60%, respectively. The MOSFET response was found to be independent of dose rate for all three energies. The dosimetric characteristics of the MOSFET detector make it a suitable in vivo dosimeter for megavoltage photon beams. PMID:25190992

  6. Measurements of Spatial Dose Distributions of Proton Beam with the Use of Radiochromic Films

    CERN Document Server

    Mumot, M; Mytsin, G V

    2006-01-01

    A radiochromic film (RCF) is investigated for use in proton beam dosimetry in a water phantom. Investigations have been performed to measure the sensitivity of the RCF and its dependence on changing energy of the beam and on linear energy transfer (LET). Experiments were carried out with both unmodulated and modulated proton beams. The results show that the sensitivity of the RCF decreases with increasing LET and this effect increases errors of measurements for lower energies of the beam. Nevertheless, the radiochromic film seems to be an adequate detector for dosimetry in phantom measurements where high spatial resolution is required. The correction of the film sensitivity in the Bragg peak region is advisable.

  7. Advanced dosimetry techniques for accurate verification of non-standard beams

    International Nuclear Information System (INIS)

    residual gradient effects on the smaller chambers, i.e., Exradin A1SL, Exradin A14 and PinPoint (registered) 31006. As shown, the correction factor kQpcsr,Qfpcsr,fref for the TomoTherapy (registered)-based IMRT delivery is very similar for the Exradin A12 and NE2571 Farmer-type chambers (1.0043 and 1.0037, respectively) and the smaller chambers (1.0071-1.0076) with a measurement uncertainty of 0.3 %. However, the correction factor differs by 0.33 % between the Farmer-type and smaller chambers. The measured correction factors for the Farmer-type chambers agree well with the predicted ones, whereas those for the smaller chambers are 0.5-0.6 % greater than the expected correction factors. We speculate that the lower gradient integration effect to the smaller chambers may lead to more significant and variable correction factor. Further study is required to investigate the difference of the pcsr correction factors between the measurement and expectation in idealized conditions, especially for the smaller chambers. The four independent dosimetry techniques demonstrated in this work carried out the relative dose measurement in the pcsr fields to within 0.3 % 1σ uncertainty level. These nonstandard field dosimetry techniques will be helpful to improve dosimetric accuracy for other nonstandard beams

  8. Experimental assessment of gold nanoparticle-mediated dose enhancement in radiation therapy beams using electron spin resonance dosimetry

    International Nuclear Information System (INIS)

    In this work, we aim to experimentally assess increments of dose due to nanoparticle-radiation interactions via electron spin resonance (ESR) dosimetry performed with a biological-equivalent sensitive material.We employed 2-Methyl-Alanine (2MA) in powder form to compose the radiation sensitive medium embedding gold nanoparticles (AuNPs) 5 nm in diameter. Dosimeters manufactured with 0.1% w/w of AuNPs or no nanoparticles were irradiated with clinically utilized 250 kVp orthovoltage or 6 MV linac x-rays in dosimetric conditions. Amplitude peak-to-peak (App) at the central ESR spectral line was used for dosimetry. Dose-response curves were obtained for samples with or without nanoparticles and each energy beam. Dose increments due to nanoparticles were analyzed in terms of absolute dose enhancements (DEs), calculated as App ratios for each dose/beam condition, or relative dose enhancement factors (DEFs) calculated as the slopes of the dose-response curves.Dose enhancements were observed to present an amplified behavior for small doses (between 0.1–0.5 Gy), with this effect being more prominent with the kV beam. For doses between 0.5–5 Gy, dose-independent trends were observed for both beams, stable around (2.1   ±   0.7) and (1.3   ±   0.4) for kV and MV beams, respectively. We found DEFs of (1.62   ±   0.04) or (1.27   ±   0.03) for the same beams. Additionally, we measured no interference between AuNPs and the ESR apparatus, including the excitation microwaves, the magnetic fields and the paramagnetic radicals.2MA was demonstrated to be a feasible paramagnetic radiation-sensitive material for dosimetry in the presence of AuNPs, and ESR dosimetry a powerful experimental method for further verifications of increments in nanoparticle-mediated doses of biological interest. Ultimately, gold nanoparticles can cause significant and detectable dose enhancements in biological-like samples irradiated at both

  9. Dose measurements in dental radiology using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    The aim of this work was the implementation of a code of practice for dosimetry in dental radiology using the technique of thermoluminescent dosimetry. General principles for the use of thermoluminescent dosimeters were followed. The irradiations were performed using ten X-ray equipment for intra-oral radiography and an X-ray equipment for panoramic radiography. The incident air kerma was evaluated for five different exposure times used in clinical practice for intra-oral radiographs. Using a backscatter factor of 1.2, it was observed that approximately 40% of the entrance skin dose values found for intra-oral radiographs are above the diagnostic reference level recommended in national regulation. Different configurations of voltage and current were used representing the exposure as a child, woman and man for panoramic radiographs. The results obtained for the air kerma area product were respectively 53.3 +- 5.2 mGy.cm2, 101.5 +- 9.5 mGy.cm2 and 116.8 +- 10.4 mGy.cm2. The use of thermoluminescent dosimetry requires several procedures before a result is recorded. The use of dosimeters with ionization chambers or semiconductors provides a simple and robust method for routine measurements. However, the use of thermoluminescent dosimetry can be of great value to large-scale surveys to establish diagnostic reference levels. (author)

  10. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms

    Science.gov (United States)

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2013-08-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264 keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6 cm × 6 cm to 20 cm × 20 cm, incident angles from 0° to 50°, and energies from 6 to 18 MeV. The Čerenkov images were compared with the estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2 = 0.97) with reference data of the known dose for energies from 6 to 18 MeV. When orthogonal delivery was carried out, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2-4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50°, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system had a larger error (OPT = ±1˜2%, diode = ±2˜3%, TPS = ±6-8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in a layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable method of superficial dosimetry imaging from incident radiotherapy beams of electrons.

  11. NCRP Program Area Committee 6: Radiation Measurements and Dosimetry.

    Science.gov (United States)

    Simon, Steven L; Zeman, Gary H

    2016-02-01

    Program Area Committee (PAC) 6 of the National Council on Radiation Protection and Measurements provides guidance for radiation measurements and dosimetry--one of the most fundamental scientific areas of the Council's expertise. Seminal reports published by PAC 6 over many decades have documented the scientific and technical foundations of radiation measurements and dosimetry for generations of radiation scientists and radiation protection professionals. Ongoing work of PAC 6 is driven by advancing technology, such as development of new types of instruments, biodosimetry and nanotechnology; by evolving understanding of radiation hazards, such as effects on the lens of the eye and risks as from some high-dose medical imaging procedures; and by new situations faced in the modern socio-political environment including radiological and nuclear threats. The activities of PAC 6 are intended to formulate and document the dosimetric framework for radiological science to address these ever-emerging challenges. PMID:26717161

  12. In vivo dosimetry using radiochromic films during intraoperative electron beam radiation therapy in early-stage breast cancer

    International Nuclear Information System (INIS)

    Background and purpose: To check the dose delivered to patients during intraoperative electron beam radiation therapy (IOERT) for early breast cancer and also to define appropriate action levels. Patients and methods: Between December 2000 and June 2001, 54 patients affected by early-stage breast cancer underwent exclusive IOERT to the tumour bed using a Novac7 mobile linac, after quadrantectomy. Electron beams (5, 7, 9 MeV) at high dose per pulse values (0.02-0.09 Gy/pulse) were used. The prescribed single dose was 21 Gy at the depth of 90% isodose (14-22 mm). In 35 cases, in vivo dosimetry was performed. The entrance dose was derived from the surface dose measured with thin and calibrated MD-55-2 radiochromic films, wrapped in sterile envelopes. Films were analysed 24-72 h after the irradiation using a charge-coupled-device imaging system. Field disturbance caused by the film envelope was negligible. Results: The mean deviation between measured and expected doses was 1.8%, with one SD equal to 4.7%. Deviations larger than 7% were found in 23% of cases, never consecutively, not correlated with beam energy or field size and with no evidence of linac daily output variation or serious malfunctioning or human mistake. The estimated overall uncertainty of dose measurement was about 4%. In vivo dosimetry appeared both reliable and feasible. Two action levels, for unexplained observed deviations larger than 7 and 10%, were preliminary defined. Conclusions: Satisfactory agreement between measured and expected doses was found. The implementation of in vivo dosimetry in IOERT is suggested, particularly for patients enrolled in a clinical trial

  13. Verification of the absorbed dose values determined with plane parallel ionization chambers in therapeutic electron beams using ferrous sulfate dosimetry

    International Nuclear Information System (INIS)

    Absolute and relative dosimetry measurements in clinical electron beams using different detectors were performed at a Philips SL18 accelerator. For absolute dosimetry, ionization chamber measurements with the PTW Markus and PTW Roos plane parallel chambers were performed in water following the recommendations of the TRS-381 Code of Practice, using different options for chamber calibration. The dose results obtained with these ionization chambers using the electron beam calibration method were compared with the dose response of the ferrous sulphate (Fricke) chemical dosimeter. The influence of the choice of detector type on the determination of physical quantities necessary for absolute dose determination was investigated and discussed. Results for dmax, R50 and Rp were in agreement within statistical uncertainties when using a diode, diamond or plane parallel chamber. The effective point of measurement for the Markus chamber is found to be shifted 0.5 mm from the front surface of the cavity. Fluence correction factors, hm, for dose determination in electron beams using a PMMA phantom were determined experimentally for both plane parallel chamber types. (author)

  14. Optical tomographic in-air scanner for external radiation beam 3D gel dosimetry

    International Nuclear Information System (INIS)

    Full text: Optical CT scanners are used to measure 3D radiation dose distributions in radiosensitive gels. For radiotherapy dose verification, 3D dose measurements are useful for verification of complex linear accelerator treatment planning and delivery techniques. Presently optical CTs require the use of a liquid bath to match the refractive index of the gel to minimise refraction of the light rays leading to distortion and artifacts. This work aims to develop a technique for scanning gel samples in free-air, without the requirement for a matching liquid bath. The scanner uses a He-Ne laser beam, fanned across the acrylic cylindrical gel container by a rotating mirror. The gel container was designed to produce parallel light ray paths through the gel. A pin phantom was used to quantify geometrical distortion of the reconstructed image, while uniform field exposures were used to consider noise, uniformity and artifacts. Small diameter wires provided an indication of the spatial resolution of the scanner. Pin phantom scans show geometrical distortion comparable to scanners using matching fluid baths. Noise, uniformity and artifacts were not found to be major limitations for this scanner approach. Spatial resolution was limited by laser beam spot size, typically 0.4 mm full width half maximum. A free-air optical CT scanner has been developed with the advantage of scanning without a matching fluid bath. Test results show it has potential to provide suitable quality 3D dosimetry measurements for external beam dose verification, while offering significant advantages in convenience and efficiency for routine use.

  15. Development and characterization of a new graphite ionization chamber for dosimetry of 60Co beams

    International Nuclear Information System (INIS)

    Ionization chambers are the most employed dosimeters for precise measurements, as those required in radiotherapy. In this work, a new graphite ionization chamber was developed and characterized in order to compose a primary standard system for the beam dosimetry of the 60Co sources. This dosimeter is a cylindrical type ionization chamber, with walls and collecting electrode made of high-purity graphite, and the insulators and stem made of Teflon®. The walls are 3.0 mm thick, and it has a sensitive volume of 1.40 cm3. The characterization was divided in two steps: experimental and Monte Carlo evaluations. This new dosimeter was evaluated in relation to its saturation curve, ion collection efficiency, polarity effect, short- and medium-term stabilities, leakage current, stabilization time, linearity of response and angular dependence. All results presented values within the established limits. The second part of the characterization process involved the determination of the correction factors, obtained by Monte Carlo simulations. Comparing these correction factors values with those from other primary standard laboratories, the highest differences were those for the wall and stem correction factors. The air-kerma rate of the 60Co source was determined with this new dosimeter and with the IPEN standard system, presenting a difference of 1.7%. These results indicate that this new dosimeter may be used as a primary standard system for 60Co gamma beams. (author)

  16. Use of aluminium plates to simulate the dosimetry of gems during e-beam irradiation

    International Nuclear Information System (INIS)

    The e-beam technology is used in the industrial irradiation of several products like turf, sterilization of medical products, cosmetics, polymers, food, and gems. More than 70% of the gems commercialized in the world receive treatments similar to those present in nature, including heat, and irradiation, in order to improve their value. Since aluminum has a density similar to that of several commercial gems, this paper presents a study of the penetration of electrons in calibrated aluminum plates simulating several different thicknesses ranging from 5 to 30 mm, and comparing with the one obtained in gems. This allows the monitoring of the dose received by gems during irradiation with e-beam systems measuring the delivered surface dose. This procedure is very important for industrial processing of stones due to the irregularities present on most gems, what makes dosimetry a very complex task. The determination of the thicknesses of the gems for which the surface dose is the lowest dose on the whole product assures the precise determination of the minimum dose received by the gems during industrial processing. (author)

  17. Use of aluminium plates to simulate the dosimetry of gems during e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, Marcio Z.; Sousa, Fernando N.C. de; Boente, Otavio C., E-mail: mzamboti@aceletron.com.b, E-mail: fernando.nuno@aceletron.com.b, E-mail: otavio@aceletron.com.b [Aceletron Irradiacao Industrial, Rio de Janeiro, RJ (Brazil); Sousa, Nuno R.A., E-mail: engenheiro.nuno.sousa@gmail.co [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica

    2009-07-01

    The e-beam technology is used in the industrial irradiation of several products like turf, sterilization of medical products, cosmetics, polymers, food, and gems. More than 70% of the gems commercialized in the world receive treatments similar to those present in nature, including heat, and irradiation, in order to improve their value. Since aluminum has a density similar to that of several commercial gems, this paper presents a study of the penetration of electrons in calibrated aluminum plates simulating several different thicknesses ranging from 5 to 30 mm, and comparing with the one obtained in gems. This allows the monitoring of the dose received by gems during irradiation with e-beam systems measuring the delivered surface dose. This procedure is very important for industrial processing of stones due to the irregularities present on most gems, what makes dosimetry a very complex task. The determination of the thicknesses of the gems for which the surface dose is the lowest dose on the whole product assures the precise determination of the minimum dose received by the gems during industrial processing. (author)

  18. Development of a calorimetric system for electron beam dosimetry in radiation processing

    International Nuclear Information System (INIS)

    A calorimetric system for electron beam dosimetry in radiation processing was developed. The system is composed of a graphite core calorimeter, the temperature measuring and electrical calibrating instrumentation, a microcomputer and the software for the system automation. The research aimed at the optimization of the project parameters, the development of advanced methodologies for calibrating the temperature sensor, the determination of the thermal capacity as a function of the temperature, the measurement of the absorbed dose, and the development of the software needed for the system operation. The operating range extends from 0.1 kGy to 30 kGy. The uncertainty in the measurement of the absorbed dose was estimated to be ± 1.8% at the 95% confidence level. Comparative tests of the absorbed dose measurements were made using the IPEN electron accelerator. The results obtained showed an excellent agreement between the absorbed dose determined by the calorimeter and the absorbed dose calculated from the nominal power delivered by the accelerator. (author). 67 refs, 63 figs, 2 tabs

  19. Albedo neutron dosimetry and monitoring around the RECH-1 reactor neutron radiographic beam

    International Nuclear Information System (INIS)

    This paper describes the neutrons and gamma monitoring and albedo neutron dosimetry in a field around the RECH-1 neutron beam. Two kind of albedo dosimeters were used: Hankins and KfK Alnor. The calibration procedures and comparison of these albedo dosimeters performance were done. The dose equivalent results agree between 28%. The neutron dose distribution for person working near the beam, was obtained by routine monitoring with albedo dosimeter developed by Hankins. A monthly neutron dose with a maximum of 0,8 mSv and arithmetic mean of 0,4 mSv were found. The beam's gamma energy spectrum and its related dose were also studied. (author)

  20. Calibration of Monte Carlo simulation code to low voltage electron beams through radiachromic dosimetry

    International Nuclear Information System (INIS)

    A simple multilayer slab model of an electron beam using the ITS/TIGER code can consistently account for about 80% of the actual dose delivered by a low voltage electron beam. The difference in calculated values is principally due to the 3D hibachi structure which blocks 22% of the beam. A 3D model was constructed using the ITS/ACCEPT code to improve upon the TIGER simulations. A rectangular source description update to the code and reproduction of all key geometric elements involved, including the hibachi, accounted for 90-95% of the dose received by routine dosimetry

  1. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    International Nuclear Information System (INIS)

    Background and purpose: In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation of the biological dose is out of scope of the current work. Materials and methods: The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm3). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose verification aimed at measuring a dose of 10 Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm3. In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). Results: The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was −2.4 ± 0.9% (1σ) for protons and −2.2 ± 1.1% (1σ) for carbon ions. The measurements performed with the ionisation chamber indicate this slight underdosage with a dose difference of −1.7% for protons and −1.0% for carbon ions. The profiles measured by radiochromic films showed an acceptable homogeneity of about 3%. Conclusions: Alanine dosimeters are suitable detectors for dosimetry audits in ion beam therapy and the presented end-to-end test is

  2. Optical dosimetry of radiotherapy beams using Cherenkov radiation: the relationship between light emission and dose

    International Nuclear Information System (INIS)

    Recent studies have proposed that light emitted by the Cherenkov effect may be used for a number of radiation therapy dosimetry applications. There is a correlation between the captured light and expected dose under certain conditions, yet discrepancies have also been observed and a complete examination of the theoretical differences has not been done. In this study, a fundamental comparison between the Cherenkov emission and absorbed dose was explored for x-ray photons, electrons, and protons using both a theoretical and Monte Carlo-based analysis. Based on the findings of where dose correlates with Cherenkov emission, it was concluded that for x-ray photons the light emission would be optimally suited for narrow beam stereotactic radiation therapy and surgery validation studies, for verification of dynamic intensity-modulated and volumetric modulated arc therapy treatment plans in water tanks, near monoenergetic sources (e.g., Co-60 and brachy therapy sources) and also for entrance and exit surface imaging dosimetry of both narrow and broad beams. For electron use, Cherenkov emission was found to be only suitable for surface dosimetry applications. Finally, for proton dosimetry, there exists a fundamental lack of Cherenkov emission at the Bragg peak, making the technique of little use, although post-irradiation detection of light emission from radioisotopes could prove to be useful. (paper)

  3. Proton beam dosimetry for radiosurgery: implementation of the ICRU Report 59 at the Harvard Cyclotron Laboratory

    International Nuclear Information System (INIS)

    Recent proton dosimetry intercomparisons have demonstrated that the adoption of a common protocol, e.g. ICRU Report 59, can lead to improved consistency in absorbed dose determinations. We compared absorbed dose values, measured in the 160 MeV proton radiosurgery beamline at the Harvard Cyclotron Laboratory, based on ionization chamber methods with those from a Faraday cup technique. The Faraday cup method is based on a proton fluence determination that allows the estimation of absorbed dose with the CEMA approximation, under which the dose is equal to the fluence times the mean mass stopping power. The ionization chamber technique employs an air-kerma calibration coefficient for 60Co radiation and a calculated correction in order to take into account the differences in response to 60Co and proton beam radiations. The absorbed dose to water, based on a diode measurement calibrated with a Faraday cup technique, is approximately 2% higher than was obtained from an ionization chamber measurement. At the Bragg peak depth, the techniques agree to within their respective uncertainties, which are both approximately 4% (1 standard deviation). The ionization chamber technique exhibited superior reproducibility and was adopted in our standard clinical practice for radiosurgery. (author)

  4. Evaluation of a lithium formate EPR dosimetry system for dose measurements around Ir-192 brachytherapy sources

    OpenAIRE

    Antonovic, Laura; Gustafsson, Håkan; Alm Carlsson, Gudrun; Carlsson Tedgren, Åsa

    2009-01-01

    A dosimetry system using lithium formate monohydrate (HCO2Li center dot H2O) as detector material and electron paramagnetic resonance (EPR) spectroscopy for readout has been used to measure absorbed dose distributions around clinical Ir-192 sources. Cylindrical tablets with diameter of 4.5 mm, height of 4.8 mm, and density of 1.26 g/cm(3) were manufactured. Homogeneity test and calibration of the dosimeters were performed in a 6 MV photon beam. Ir-192 irradiations were performed in a PMMA pha...

  5. Contribution to the planning and dosimetry of photon beams applied to radiosurgery and stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Radiosurgery and stereotactic radiotherapy are irradiation techniques that use small diameter photon beams for treating intracranial lesions such as pituitary adenomas, acoustic tumors and arterio-venous malformations which are inaccessible for surgery. These treatment techniques are characterized by the use of very small radiation beams which deliver a precisely measured dose to the target volume, while sparing the surrounding healthy tissue. Treatment can be performed by using multiple 60Co gamma-ray sources (in the so-called 'Gamma Knife'), charged particles or X-ray beams produced by linear accelerators. The prescribed dose can be given in a single session or in multiple fractions, as in conventional radiotherapy. The success of the treatment depends, among other factors, of the accurate determination of the parameters that characterize the radiation beam produced by the equipment, as well as, of a well designed quality assurance program. In this study, the dosimetric parameters of a set of collimating cones of a RadionicsTM treatment system applied to two 6 MV- photon beams (Clinac 600C - VarianTM, and Mevatron MD2 - SiemensTM) were evaluated by using a water filled PMMA simulator. Measurements were carried out for photon beam diameters ranging from 12.5 to 40.0 mm for the Clinac-600C and from 5.0 to 50.0 mm for the Mevatron MD2. The parameters were evaluated by using a parallel plate ionization chamber (Markus), Kodak X-Omat V dosimetric films, thermoluminescent dosemeters (Harschaw, TLD-100) and photodiodes. The maximum tissue-ratio, the off-axis profile and the output factors were determined and the results were compared to those reported elsewhere. A study of the dosimetric characteristics of some commercially available phototransistors was also carried out. The results showed that these electronic components can be successfully used for measuring the dosimetric parameters of small diameter photon beans used in radiosurgery. Measurements were also

  6. Diode In-vivo Dosimetry for External Beam Radiotherapy: Patient Data Analysis

    International Nuclear Information System (INIS)

    In-vivo dosimetry is known as simple and reliable method for checking the final accuracy of the dose delivered in external radiotherapy making a supplement to the regular quality control. Entrance dose measurements in the beginning of the treatment assure detection of major errors that can affect the therapy outcome. Silicon diodes are often the detectors of choice for their ability of real time dose measurements and the simplicity of use. There are many publications describing the procedures for the implementation of in-vivo dosimetry. Routine in-vivo dosimetry has been introduced in our department after initial procedures including physical characterization, calibration and determination of correction factors for the detectors in use. This work presents patient data analysis with more than 700 field measurements taken in last 2 years period

  7. SU-E-T-597: Parameterization of the Photon Beam Dosimetry for a Commercial Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lebron, S; Lu, B; Yan, G; Kahler, D; Li, J; Barraclough, B; Liu, C [Univ Florida, Gainesville, FL (United States)

    2015-06-15

    Purpose: In radiation therapy, accurate data acquisition of photon beam dosimetric quantities is important for (1) beam modeling data input into a treatment planning system (TPS), (2) comparing measured and TPS modelled data, (3) a linear accelerator’s (linac) beam characteristics quality assurance process, and (4) establishing a standard data set for data comparison, etcetera. Parameterization of the photon beam dosimetry creates a portable data set that is easy to implement for different applications such as those previously mentioned. The aim of this study is to develop methods to parameterize photon percentage depth doses(PDD), profiles, and total scatter output factors(Scp). Methods: Scp, PDDs and profiles for different field sizes (from 2×2 to 40×40cm{sup 2}), depths and energies were measured in a linac using a three-dimensional water tank. All data were smoothed and profile data were also centered, symmetrized and geometrically scaled. The Scp and PDD data were analyzed using exponential functions. For modelling of open and wedge field profiles, each side was divided into three regions described by exponential, sigmoid and Gaussian equations. The model’s equations were chosen based on the physical principles described by these dosimetric quantities. The equations’ parameters were determined using a least square optimization method with the minimal amount of measured data necessary. The model’s accuracy was then evaluated via the calculation of absolute differences and distance–to–agreement analysis in low gradient and high gradient regions, respectively. Results: All differences in the PDDs’ buildup and the profiles’ penumbra regions were less than 2 mm and 0.5 mm, respectively. Differences in the low gradient regions were 0.20 ± 0.20% and 0.50 ± 0.35% for PDDs and profiles, respectively. For Scp data, all differences were less than 0.5%. Conclusion: This novel analytical model with minimum measurement requirements proved to accurately

  8. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    DEFF Research Database (Denmark)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus;

    2013-01-01

    Background and purpose In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic...... chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation...... of about 3%. Conclusions Alanine dosimeters are suitable detectors for dosimetry audits in ion beam therapy and the presented end-to-end test is feasible. If further studies show similar results, this dosimetric audit could be implemented as a credentialing procedure for clinical proton and carbon beam...

  9. New luminescence measurement facilities in retrospective dosimetry

    DEFF Research Database (Denmark)

    Lapp, Torben; Jain, Mayank; Thomsen, Kristina Jørkov;

    2012-01-01

    This paper gives a review of recent developments in luminescence measurement facilities on the Risø TL/OSL reader including radio-luminescence (RL), exo-electron and violet stimulation attachments, and a method for characterising and if necessary correcting for beta irradiation source non...

  10. Narrow beam dosimetry for high-energy hadrons and electrons

    CERN Document Server

    Pelliccioni, M; Ulrici, Luisa

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10°— 400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formula should prove useful for dosimetric estimations in case of accidental exposures to high-energy beams.

  11. Ball phantom for dosimetry of surface and build-up region in megavoltage photon beam of oblique incidence through the couch

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu-Chuan [Department of Radiation Oncology, Tainan Sin-Lau Hospital, The Presbyterian Church in, Taiwan (China); Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Chen, Hsin-Hsiung [Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Ho, Sheng-Yow [Department of Radiation Oncology, Tainan Sin-Lau Hospital, The Presbyterian Church in, Taiwan (China); Kuo, Chung-Ming [Department of Information Engineering, I-Shou University, Taiwan (China); Chen, Ching-Jiang [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan (China); Min Chao, Max [Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Niu, H.; Chao, J.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, Jia-Ming, E-mail: rtojmwu@gmail.com [Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Department of Radiation Oncology, E-Da Hospital, Kaohsiung, Taiwan (China); Chen, Tzong-Jer [Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Taiwan (China); Wu, Jin-Tze [Department of Radiation Oncology, E-Da Hospital, Kaohsiung, Taiwan (China)

    2011-10-01

    This study investigates surface dose and build-up region dosimetry as well as beam attenuation by ball phantom for coplanar and non-coplanar oblique photon beam incidence through a treatment couch in radiation therapy. The dosimetry of the surface and build-up region and attenuating incidence of true posterior and maximum oblique incidence (15{sup 0} below surface) beams on the treatment couch are measured and compared with an open field. Photon calculation kernels of the computerized treatment planning system do not include the factor of scatter doses induced by the couch in the build-up region. These scatter doses can have some implications for skin reactions. Therefore, monitor unit calculation is necessary in posterior oblique angles or non-coplanar incidence of the treatment couch.

  12. The use of an electronic portal imaging device for exit dosimetry and quality control measurements

    International Nuclear Information System (INIS)

    Purpose: To determine ways in which electronic portal imaging devices (EPIDs) could be used to (a) measure exit doses for external beam radiotherapy and (b) perform quality control checks on linear accelerators. Methods and Materials: When imaging, our fluoroscopic EPID adjusts the gain, offset, and frame acquisition time of the charge coupled device (CCD) camera automatically, to allow for the range of photon transmissions through the patient, and to optimize the signal-to-noise ratio. However, our EPID can be programmed to act as an integrating dosemeter. EPID dosemeter measurements were made for 20 MV photons, for different field sizes and thicknesses of unit density phantom material placed at varying exit surface to detector distances. These were compared with simultaneous Silicon diode exit dose measurements. Our exit dosimetry technique was verified using an anthropomorphic type phantom, and some initial measurements have been made for patients treated with irregularly shaped 20 MV x-ray fields. In this dosimetry mode, our EPID was also used to measure certain quality control parameters, x-ray field flatness, and the verification of segmented intensity modulated field prescriptions. Results: Configured for dosimetry, our EPID exhibited a highly linear response, capable of resolving individual monitor units. Exit doses could be measured to within about 3% of that measured using Silicon diodes. Field flatness was determined to within 1.5% of Farmer dosemeter measurements. Segmented intensity modulated fields can be easily verified. Conclusions: Our EPID has the versatility to assess a range of parameters pertinent to the delivery of high quality, high precision radiotherapy. When configured appropriately, it can measure exit doses in vivo, with reasonable accuracy, perform certain quick quality control checks, and analyze segmented intensity modulated treatment fields

  13. Fiber optic probes based on silver-only coated hollow glass waveguides for ionizing beam radiation dosimetry

    Science.gov (United States)

    Darafsheh, Arash; Liu, Haoyang; Melzer, Jeffrey E.; Taleei, Reza; Harrington, James A.; Kassaee, Alireza; Zhu, Timothy C.; Finlay, Jarod C.

    2016-03-01

    Čerenkov contamination is a significant issue in radiation detection by fiber-coupled scintillators. To enhance the scintillation signal transmission while minimizing Čerenkov contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG tip with inserted scintillator, embedded in tissue mimicking phantoms, was irradiated with clinical electron and photon beams. Optical spectra of irradiated tips were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in good agreement with measurements performed by an electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination. Compared with a silver/dielectric coated HWG fiber dosimeter design we observed higher signal transmission in our design based on the use of silver-only HWG.

  14. IAEA/WHO TLD postal dose audit service and high precision measurements for radiotherapy level dosimetry

    International Nuclear Information System (INIS)

    Since 1969 the International Atomic Energy Agency, together with the World Health Organization, has performed postal TLD audits to verify calibration of radiotherapy beams in developing countries. The TLD programme also monitors activities of Secondary Standard Dosimetry Laboratories (SSDLs). The programme has checked approximately 4000 clinical beams in over 1100 hospitals, and in many instances significant errors have been detected in the beam calibration. Subsequent follow-up actions help to resolve the discrepancies, thus preventing further mistreatment of patients. The audits for SSDLs check the implementation of the dosimetry protocol in order to assure proper dissemination of dosimetry standards to the end-users. The TLD audit results for SSDLs show good consistency in the basic dosimetry worldwide. New TLD procedures and equipment have recently been introduced by the IAEA that include a modified TLD calibration methodology and computerised tools for automation of dose calculation from TLD readings. (author)

  15. Beam emittance measurements at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  16. Calibration in medical diagnostic beams at the Swedish secondary standard dosimetry laboratory

    International Nuclear Information System (INIS)

    New diagnostic X-ray beams based on the IEC standard no. 1267 are now available at the Secondary Standard Dosimetry Laboratory in Sweden. These beams are alternatives to the ISO narrow qualities and BIPM qualities that until now have been used for calibration of diagnostic instruments. A procedure differing somewhat from the IEC standard but following the primary radiation standards laboratory at PTB has been used for defining the radiation quality. This report describes the characteristics of the new radiation beams and the estimated effect on calibration factors due to the change in radiation quality. The effect on existing calibration beams due to the reconstruction of filter wheels has been investigated concerning scattered radiation, half-value layers and air kerma rates

  17. Feasibility study on the verification of actual beam delivery in a treatment room using EPID transit dosimetry

    International Nuclear Information System (INIS)

    The aim of this study is to evaluate the ability of transit dosimetry using commercial treatment planning system (TPS) and an electronic portal imaging device (EPID) with simple calibration method to verify the beam delivery based on detection of large errors in treatment room. Twenty four fields of intensity modulated radiotherapy (IMRT) plans were selected from four lung cancer patients and used in the irradiation of an anthropomorphic phantom. The proposed method was evaluated by comparing the calculated dose map from TPS and EPID measurement on the same plane using a gamma index method with a 3% dose and 3 mm distance-to-dose agreement tolerance limit. In a simulation using a homogeneous plastic water phantom, performed to verify the effectiveness of the proposed method, the average passing rate of the transit dose based on gamma index was high enough, averaging 94.2% when there was no error during beam delivery. The passing rate of the transit dose for 24 IMRT fields was lower with the anthropomorphic phantom, averaging 86.8% ± 3.8%, a reduction partially due to the inaccuracy of TPS calculations for inhomogeneity. Compared with the TPS, the absolute value of the transit dose at the beam center differed by −0.38% ± 2.1%. The simulation study indicated that the passing rate of the gamma index was significantly reduced, to less than 40%, when a wrong field was erroneously irradiated to patient in the treatment room. This feasibility study suggested that transit dosimetry based on the calculation with commercial TPS and EPID measurement with simple calibration can provide information about large errors for treatment beam delivery

  18. Response characterization of a diode system for in vivo dosimetry during megavoltage photon beam radiotherapy

    International Nuclear Information System (INIS)

    The response of a diode system to be used for in vivo dosimetry was investigated. The study included short-term reproducibility, dose linearity, sensitivity variation with source-to-surface distance (SSD), field size, temperature, beam incident direction and the presence of wedge, multi-leaf collimator (MLC), blocks and block tray. The analysis allows us to obtain the entrance dose in a phantom/patient in terms of the diode reading and the correction factors. The Radiation Therapy Department at the ''Prof. Dr. Juan P. Garrahan'' Children's Hospital has a linear accelerator Varian Clinac 23 EX-S, which operates at a single Rx energy of nominal 6 MV. The dosimetry system consists on n-type hemispherical diodes Nuclear Associates Model 30-472-8000 and an electrometer Nuclear Associates VeriDose Model 37-705

  19. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    International Nuclear Information System (INIS)

    Radiotherapy treatments with high-energy (>8MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the “in vivo” dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented

  20. PRESAGE 3D dosimetry accurately measures Gamma Knife output factors

    Science.gov (United States)

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-12-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and 2D detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ±0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors.

  1. Designing and evaluating a simple small phantom for dosimetry intercomparison of linacs photon beams

    International Nuclear Information System (INIS)

    This paper evaluate the functionality of a designed small phantom for determining the accuracy and performance of megavoltage radiotherapy machines through an external quality audit. The small phantom was designed to check the photon beams at the reference and some non-reference conditions on a linac at two radiotherapy centers in Tehran, LiF TLDs were used for experimental dosimetry. A standard phantom with an ionization chamber and the Monte Carlo code were used to calculate the conversion factor of the doses in the small phantom to the conventional condition. The result of this study showed that the dose conversion factors derived from the measurements made in the designed and standard phantoms are in good agreement with those calculated from the MCNPX simulations. At the reference condition, the amount of difference between the simulation and measurement were 0.5 at 6 and 18 MV. The differences for the 7 cm x 7 cm field were 0.2Percentand 0.3Percentrespectively, while for the 20 cm x 20 cm field were 0.1Percentand 0.6Percent, respectively for the above energy. Using the designed phantom, two similar Varian linacs were checked at the reference conditions and amounts of their deviation between the planned and measured doses were estimated. The amount of variations of the phantom dose conversion factor with the field size indicates that the small designed phantom is not only appropriate for the small field sizes but also for the large ones. The results confirmed the functionality of the designed simple phantom with TLDs as an appropriate mailing system to carry out dosimetric intercomparison among different radiotherapy centers.

  2. Beam emittance measurements in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski,A.; Bazilevsky, A.; Bunce, G.; Gill, R.; Huang, H.; Makdisi, Y.; Morozov, B.; Nemesure, S.; Russo, t.; Steski, D.; Sivertz, M.

    2009-05-04

    The RHIC proton polarimeters can operate in scanning mode, giving polarization profiles and transverse beam intensity profile (beam emittance) measurements. The polarimeters function as wire scanners, providing a very good signal/noise ratio and high counting rate. This allows accurate bunch-by-bunch emittance measurements during fast target sweeps (<1 s) through the beam. Very thin carbon strip targets make these measurements practically non-destructive. Bunch by bunch emittance measurements are a powerful tool for machine set-up; in RHIC, individual proton beam transverse emittances can only be measured by CNI polarimeter scans. We discuss the consistency of these measurements with Ionization Profile Monitors (IPMs) and vernier scan luminosity measurements. Absolute accuracy limitations and cross-calibration of different techniques are also discussed.

  3. Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, Marianne C [Radiation Research Department, Risoe National Laboratory, Roskilde (Denmark); Andersen, Claus E [Radiation Research Department, Risoe National Laboratory, Roskilde (Denmark); Boetter-Jensen, Lars [Radiation Research Department, Risoe National Laboratory, Roskilde (Denmark); Baeck, Sven A J [Department of Medical Radiation Physics, Lund University, Malmoe University Hospital, Malmoe (Sweden); Mattsson, Soeren [Department of Medical Radiation Physics, Lund University, Malmoe University Hospital, Malmoe (Sweden); Kjaer-Kristoffersen, Flemming [Department of Radiation Physics, Rigshospitalet, National University Hospital, Copenhagen (Denmark); Medin, Joakim [Department of Medical Radiation Physics, Lund University, Malmoe University Hospital, Malmoe (Sweden)

    2004-05-07

    A new optical-fibre radiation dosimeter system, based on radioluminescence and optically stimulated luminescence from carbon-doped aluminium oxide, was developed and tested in clinical photon beams. This prototype offers several features, such as a small detector (1 x 1 x 2 mm{sup 3}), high sensitivity, real-time read-out and the ability to measure both dose rate and absorbed dose. The measurements describing reproducibility and output dependence on dose rate, field size and energy all had standard deviations smaller than 1%. The signal variation with the angle of incidence was smaller than 2% (1 SD). Measurements performed in clinical situations suggest the potential of using this real-time system for in vivo dosimetry in radiotherapy.

  4. An investigation of dose and beam profile dosimetry with an amorphous silicon epid

    International Nuclear Information System (INIS)

    Full text: There is much current interest in the use of electronic portal imaging devices (EPIDs) for dosimetric applications such as accelerator quality assurance, in-vivo dosimetry, and verification of IMRT. However, the use of EPID for these purposes requires that the images can be used to obtain accurate dose measurements. The aim of this work is to investigate the accuracy and reproducibility of dose and beam profile measurements with an amorphous silicon EPID. The Varian aS500 detector produces a 'frame-averaged' image that is the image pixel values are the average of all acquired frames. By averaging frames throughout the delivery and then multiplying the result by the number of frames, an integrated pixel value can be obtained. The reproducibility of EPID response to the same incident dose was assessed by weekly measurement of the mean value of a 9x9 pixel region at the central axis, for a 100 monitor unit irradiation of a 10x10 cm field under the same set-up conditions. At each session, three images were acquired. The EPID dose response was obtained by multiplying the pixel value by the number of acquired frames. Images were acquired for both 6 MV and 18 MV at 105 cm to the EPID detector surface with 4 cm added solid water build-up. The linearity of the EPID response with linear change in dose was measured. Images were acquired for MLJ settings of 5, 10, 25, 50, 100, 200 and 300 MU for both 6 and 18 MV. Three images were acquired for each MU setting and the pixel values multiplied by the number of frames acquired. The reproducibility of open field profiles measured with the EPID with dose (MU) settings of 20, 50, 100, 200 and 300 MU was investigated. Additional solid water build-up of 0.5 cm and 2 cm was used for 6 and 18 MV to give dmax build-up. The field size was 30x30 cm. Open field profiles were compared to water-tank measurements with and without flood-field corrections to the EPID image. A correction image was developed to convert EPlD profiles to

  5. Multiple-measurement beam probe

    International Nuclear Information System (INIS)

    Particle accelerators are becoming smaller and are producing more intense beams; therefore, it is critical that beam-diagnostic instrumentation provide accelerator operators and automated control systems with a complete set of beam information. Traditionally, these beam data were collected and processed using limited-bandwidth interceptive techniques. For the new-generation accelerators, we are developing a multiple-measurement microstrip probe to obtain broadband beam data from inside a drift tube without perturbing the beam. The cylindrical probe's dimensions are 6-cm OD by 1.0 m long, and the probe is mounted inside a drift tube. The probe (and its associated electronics) monitors bunched-beam current, energy, and transverse position by sensing the beam's electromagnetic fields through the annular opening in the drift tube. The electrical impedance is tightly controlled through the full length of the probe and transmission lines to maintain beam-induced signal fidelity. The probe's small, cylindrical structure is matched to beam-bunch characteristics at specific beamline locations so that signal-to-noise ratios are optimized. Surrounding the probe, a mechanical structure attaches to the drift-tube interior and the quadrupole magnets; thus, the entire assembly's mechanical and electrical centers can be aligned and calibrated with respect to the rest of the linac

  6. Pencil beam scanning dosimetry for large animal irradiation

    International Nuclear Information System (INIS)

    The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event. These events consist primarily of low-energy protons that produce a highly inhomogeneous depth-dose distribution. Here we describe a novel technique that uses pencil beam scanning at extended source-to-surface distances and range shifter (RS) to provide robust but easily modifiable delivery of simulated solar particle event radiation to large animals. Thorough characterization of spot profiles as a function of energy, distance and RS position is critical to accurate treatment planning. At 105 MeV, the spot sigma is 234 mm at 4800 mm from the isocentre when the RS is installed at the nozzle. With the energy increased to 220 MeV, the spot sigma is 66 mm. At a distance of 1200 mm from the isocentre, the Gaussian sigma is 68 mm and 23 mm at 105 MeV and 220 MeV, respectively, when the RS is located on the nozzle. At lower energies, the spot sigma exhibits large differences as a function of distance and RS position. Scan areas of 1400 mm (superior-inferior) by 940 mm (anterior-posterior) and 580 mm by 320 mm are achieved at the extended distances of 4800 mm and 1200 mm, respectively, with dose inhomogeneity < 2%. To treat large animals with a more sophisticated dose distribution, spot size can be reduced by placing the RS closer than 70 mm to the surface of the animals, producing spot sigmas below 6 mm. (author)

  7. LEDA beam diagnostics instrumentation: Beam current measurement

    International Nuclear Information System (INIS)

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7 MeV and current of 100 mA operating in either a pulsed or cw mode. Two types of current measurements are used. The first is an AC or pulsed-current measurement which uses three LANL built toroids. They are placed in the beamline in such a way as to measure important transmission parameters and act as a differential current-loss machine protection system. The second system is a DC current measurement used to measure cw beam characteristics and uses toroids from Bergoz Inc. There are two of these systems, so they can also be used for transmission measurements. The AC system uses custom processing electronics whereas the DC system uses a modified Bergoz registered electronics system. Both systems feature data acquisition via a series of custom TMS320C40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of these systems, the calibration technique, the differential current loss measurements and fast-protection processing, current droop characteristics for the AC system, and existing system noise levels. This paper will also cover the DSP system operations and their interaction with the main accelerator control system

  8. SU-E-T-637: Age and Batch Dependence of Gafchromic EBT Films in Photon and Proton Beam Dosimetry

    International Nuclear Information System (INIS)

    Purpose: Gafchrmoic films have undergone significant changes in characteristic over time reflected by HS, EBT, EBT2, EBT3 name. Interand intra- EBT film variability have been studied and found to be significant. However, age and lot/batch type have not been studied in various radiation beams that are investigated in this study. Methods: Thirteen sets of films; 2 EBT, 6 EBT2 and 5 EBT3 films with different lot number and expiration date were acquired. Films were cut longitudinally in 3 cm width and sandwiched between two solid water slabs that were placed in a water phantom to eliminate air gap. Each set of films were irradiated longitudinally at dmax with 6 and 15 MV photon beams as well as in reference condition (16 cm range, 10 cm SOBP) in our uniform scanning proton beam. Films were scanned using an Epson flatbed scanner (ES-10000G) after 48 hours to achieve full polymerization. The profiles were compared with the depth-dose measured with ionization chamber and net optical density (net OD) were calculated. Results: The net OD versus dose for EBT, EBT2 and EBT3 films of different age showed similar trend but with different slope. Even after calibration, differences are clearly visible in net OD in proton and photon beams. A net OD difference of nearly 0.5 is observed in photon but this was limited to 0.2–0.3 in proton beam. This relates to 20% and 15% dosimetric difference in photon and proton beam respectively over age and type of film. Conclusion: Net OD related to dose is dependent on the age and lot of the film in both photon and proton beams. It is concluded that before any set of film is used, a calibration film should be used for a meaningful dosimetry. The expired films showed larger OD variation compared to unexpired films

  9. Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of Task Group 25

    International Nuclear Information System (INIS)

    The goal of Task Group 25 (TG-25) of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM) was to provide a methodology and set of procedures for a medical physicist performing clinical electron beam dosimetry in the nominal energy range of 5-25 MeV. Specifically, the task group recommended procedures for acquiring basic information required for acceptance testing and treatment planning of new accelerators with therapeutic electron beams. Since the publication of the TG-25 report, significant advances have taken place in the field of electron beam dosimetry, the most significant being that primary standards laboratories around the world have shifted from calibration standards based on exposure or air kerma to standards based on absorbed dose to water. The AAPM has published a new calibration protocol, TG-51, for the calibration of high-energy photon and electron beams. The formalism and dosimetry procedures recommended in this protocol are based on the absorbed dose to water calibration coefficient of an ionization chamber at 60Co energy, ND,w60Co, together with the theoretical beam quality conversion coefficient kQ for the determination of absorbed dose to water in high-energy photon and electron beams. Task Group 70 was charged to reassess and update the recommendations in TG-25 to bring them into alignment with report TG-51 and to recommend new methodologies and procedures that would allow the practicing medical physicist to initiate and continue a high quality program in clinical electron beam dosimetry. This TG-70 report is a supplement to the TG-25 report and enhances the TG-25 report by including new topics and topics that were not covered in depth in the TG-25 report. These topics include procedures for obtaining data to commission a treatment planning computer, determining dose in irregularly shaped electron fields, and commissioning of sophisticated special procedures using high-energy electron beams. The use of

  10. Investigation of the applicability of a special parallel-plate ionization chamber for x-ray beam dosimetry

    Science.gov (United States)

    Perini, Ana P.; P. Neves, Lucio; E. Caldas, Linda V.

    2014-02-01

    Diagnostic x-rays are the greatest source of exposition to ionizing radiation of the population worldwide. In order to obtain accurate and lower-cost dosimeters for quality control assurance of medical x-ray facilities, a special ionization chamber was designed at the Calibration Laboratory of the IPEN, for dosimetry in diagnostic radiology beams. For the chamber characterization some tests were undertaken. Monte Carlo simulations were proposed to evaluate the distribution of the deposited energy in the sensitive volume of the ionization chamber and the collecting electrode effect on the chamber response. According to the obtained results, this special ionization chamber presents potential use for dosimetry of conventional diagnostic radiology beams.

  11. Development of an external Faraday cup for beam current measurements

    International Nuclear Information System (INIS)

    In general, beam current measurements are very important for many kinds of experiments using highly energetic particle beams at accelerators, such as cyclotrons, linacs, etc. The Faraday cup is known to be one of the most popular beam current measurement tools. We developed an external Faraday cup to measure the beam current at a dedicated beam line for low-flux experiments installed at the MC-50 cyclotron of Korea Institute of Radiological and Medical Sciences (KIRAMS). It was designed for external beam current measurements and is composed of a vacuum chamber, an entrance window, a collimator, a electrostatic suppressor ring, and a cup. The window is made of 75-um-thick Kapton film, and the diameter of the collimator is 10 mm or 20 mm. The ring and the cup has 5-cm inner diameters, and the thickness of the bottom of the cup is 2 cm, which is enough to absorb the total proton energy up to 45 MeV. Using this external Faraday cup, we measured the beam current from the cyclotron, and we compared measured flux to the results from film dosimetry using GAF films.

  12. Dosimetry study comparing NCS report-2 versus IAEA TRS-398 protocol for high energy photon beams

    International Nuclear Information System (INIS)

    In this work a dosimetry study is presented in which the results of absorbed dose determined at reference condition according to the IAEA TRS-398 protocol and the NCS report-2 are compared. The IAEA TRS-398 protocol for absorbed dose calibration is based on ionization chamber having absorbed dose to water calibration factor Ndw, while the NCS-2 dosimetry report for absorbed dose calibration is based on an ionization chamber having air- kerma calibration factor Nk. This study shows that the absorbed dose which is calculated with The IAEA TRS-398 formalisms is higher than that calculated with NCS report-2 formalisms within range from 0.4 to 0.9% in cobalt-60 beam as sensed by different ionization chambers, and from 0.2 to 1.1% for different higher energy photon beams of 6, 8 and 18 MV. The chambers used are PTW 30001, 30004, and NE-2571; which have calibration factors Nk and Ndw traceable to the BIPM (Bureau International des Poids et Mesures)

  13. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    Science.gov (United States)

    Romano, F.; Schillaci, F.; Cirrone, G. A. P.; Cuttone, G.; Scuderi, V.; Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G.; Giordanengo, S.; Guarachi, L. Fanola; Korn, G.; Larosa, G.; Leanza, R.; Manna, R.; Marchese, V.; Marchetto, F.; Margarone, D.; Milluzzo, G.; Petringa, G.; Pipek, J.; Pulvirenti, S.; Rizzo, D.; Sacchi, R.; Salamone, S.; Sedita, M.; Vignati, A.

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  14. In-core dosimetry in CAGR - measurements on power reactors and laboratory facilities

    International Nuclear Information System (INIS)

    The problem of radiolytic corrosion of the graphite moderator in CAGR has led to a need for more accurate information on the radiation dose to the coolant gas in the pores of the graphite. An experimental in-core dosimetry programme is in progress to acquire this data. The problems of in-core dosimetry, particularly that of measuring gamma dose in the presence of high thermal neutron fluences, are described with reference to calorimetry, ionisation chambers and thermoluminescence dosimeters. Progress made in the refinement of these techniques for reactor dosimetry is described. An experiment is described in which dosimetry measurements in components of a Heysham Power Station reactor were made during its commissioning. The major facility of this dosimetry programme is a zero-energy research reactor constructed from CAGR components; this reactor and its experimental facilities are described, together with the results of some of the first experiments. (author)

  15. Apparatus to measure low level helium for neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Shuji; Takao, Yoshiyuki; Muramasu, Masatomo; Hida, Tomoya; Sou, Hirofumi; Nakashima, Hideki [Kyushu Univ., Fukuoka (Japan); Kanda, Yukinori

    1998-03-01

    An apparatus to measure low level helium in a solid sample for neutron dosimetry in the practical use such as area monitoring in the long-term and reactor surveillance was reported. In our previous work, the helium atoms measurement system (HAMS) was developed. A sample was evaporated in the furnace and the released gas from the sample was analyzed with the mass spectrometer of the system to determine the amount of helium contained in it. The system has been improved to advance the lower helium measurement limit in a solid sample for its application to an area monitoring system. The mass of a solid is up to 100mg. Two important points should be considered to advance the lower limit. One was to produce a high quality vacuum in the system chamber for suppressing background gases during the sample measurement. The other important point was to detect very small output from the mass spectrometer. A pulse counting system was used to get high sensitivity in the mass 4 analyzing. (author)

  16. COMPASS measurements with hadron beams

    International Nuclear Information System (INIS)

    Muon and hadron beams from the CERN Super Proton Synchrotron are used in the COMPASS experiment for high-energy scattering reactions off fixed targets, aiming at measurements of non-perturbative aspects of quantum chromodynamics. With pion beams, the meson spectrum can be examined via diffractive dissociation, where the existence of hybrid or exotic states is a much discussed issue. The double-diffractive process of central production, which can be measured also with a proton beam, is a promising approach for the search for glueballs. At extremely small momentum transfer, electromagnetic processes are accessible via the Primakoff effect and aim at the determination of QCD low energy constants as the pion polarisability and the chiral anomaly. The muon program, focused on deep inelastic scattering, took place in the years 2002 to 2007. During this time, in autumn 2004, also a first pilot run with a pion beam was taken with the focus on diffractive and Primakoff measurements. Preliminary results and conclusions are presented. Data taking with a pion beam was resumed in 2008, where large statistics for diffractive scattering was collected. First insights, also in view of the findings of previous experiments, are presented, as well as the planning for continuation of data taking in 2009.

  17. Small-Field Dosimetry in A 6 MV Photon Beam Using Alanine and Liquid Ionisation Chamber

    DEFF Research Database (Denmark)

    Zimmermann, S.; Riis, H. L.; Hjelm-Hansen, M.;

    2012-01-01

    of each field and depth. This dose maximum was measured for each field using a Scanditronix Wellhöfer photon field diode. The same measurements were carried out using a liquid ionchamber, PTW microLion, irradiated by 500 MU. The output of the accelerator was controlled by a PTW semiflex ion chamber...... procedures. Conclusions: The study confirms the difficulty related with small dosimetry and the importance of detector choice (material and size) and positioning procedure. No corrections for volume averaging and spatial sensitivity of the EPR spectrometer over the volume of alanine dosimeter were applied...

  18. The Role of Dosimetry Audits in Radiotherapy Quality Assurance: Eight Years of Experience in Greek External Beam Radiotherapy and Brachytherapy Centres

    International Nuclear Information System (INIS)

    The Greek Atomic Energy Commission (GAEC) runs dosimetry audits through on-site visits for photon and electron beams and for 192Ir brachytherapy high dose rate systems in all Greek radiotherapy centres. In audits, absolute and relative dosimetry measurements are being performed. The deviation, expressed as the percentage difference of the measured values by the GAEC to the respective stated values by the radiotherapy centre of absorbed dose to water or air kerma strength were recorded and compared to the action levels of ±3% (preventive actions needed) and ±5% (immediate corrective actions needed). The results of the subsequent audit rounds, each one lasting for approximately four years, are presented in this work. During the first round, 79.2% of photon beams exhibited deviations of less than 3%, while during the second round this photon beam percentage increased to 96.9%. During the first round, 76.4% of the electron beams recorded deviations less than 3% and 12.9% higher than 5%. All brachytherapy sources showed deviations less than 3%. An improvement in dose accuracy was recorded during the subsequent rounds of the audits. (author)

  19. A dosimetry study comparing NCS report-2, IAEA TRS-381, AAPM TG-51 and IAEA TRS-398 for high energy photon beams

    International Nuclear Information System (INIS)

    In the last 5 years the American Association of Physicists in Medicine Task group 51 (AAPM TG-51) and the International Atomic Energy Agency (IAEA) published a new high-energy photon and electron dosimetry protocol. These protocols are based on the use of an ion chamber having an absorbed-dose to water calibration factor. These are different from the previous NCS report-2 and IAEA TRS-277 protocols, which require air kerma calibration factor, the aim of this study is to present the dose comparison between various dosimetry protocols and the IAEA TRS-398 protocol for clinical reference dosimetry of high energy photon beams. The absorbed-dose to water measured according to the NCS Report-2, International Atomic Energy Agency technical Report Series No. 277 (IAEA TRS-277) and, TG-51 are compared to that measured using the TRS-398 protocol. This study shows that the absorbed dose which is measured with The IAEA TRS-398 formalisms is higher than that calculated with NCS Report-2 and IAEA TRS-277 formalisms within range from 0.4 to 1.3% and from 0.7 to 2.1% respectively for different higher energy photon beams of Co-60, 6, 8 and 18 MV. as sensed by different ionization chambers, The chambers used are PTW 30001, 30004, and NE-2571; which have calibration factors NK and ND,W traceable to the Bureau International des Poids et Measures (BIPM). In contrast, the absorbed-dose to water measured according to TG-51 is in good agreement with TRS-398 within about 0.3% for photon beams

  20. Verification of intensity modulated radiation therapy beams using a tissue equivalent plastic scintillator dosimetry system

    Science.gov (United States)

    Petric, Martin Peter

    This thesis describes the development and implementation of a novel method for the dosimetric verification of intensity modulated radiation therapy (IMRT) fields with several advantages over current techniques. Through the use of a tissue equivalent plastic scintillator sheet viewed by a charge-coupled device (CCD) camera, this method provides a truly tissue equivalent dosimetry system capable of efficiently and accurately performing field-by-field verification of IMRT plans. This work was motivated by an initial study comparing two IMRT treatment planning systems. The clinical functionality of BrainLAB's BrainSCAN and Varian's Helios IMRT treatment planning systems were compared in terms of implementation and commissioning, dose optimization, and plan assessment. Implementation and commissioning revealed differences in the beam data required to characterize the beam prior to use with the BrainSCAN system requiring higher resolution data compared to Helios. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. The dose optimization and plan assessment comparisons revealed that while both systems use considerably different optimization algorithms and user-control interfaces, they are both capable of producing substantially equivalent dose plans. The extensive use of dosimetric verification techniques in the IMRT treatment planning comparison study motivated the development and implementation of a novel IMRT dosimetric verification system. The system consists of a water-filled phantom with a tissue equivalent plastic scintillator sheet built into the top surface. Scintillation light is reflected by a plastic mirror within the phantom towards a viewing window where it is captured using a CCD camera. Optical photon spread is removed using a micro-louvre optical collimator and by deconvolving a glare kernel from the raw images. Characterization of this

  1. A prototype fan-beam optical CT scanner for 3D dosimetry

    International Nuclear Information System (INIS)

    Purpose: The objective of this work is to introduce a prototype fan-beam optical computed tomography scanner for three-dimensional (3D) radiation dosimetry. Methods: Two techniques of fan-beam creation were evaluated: a helium-neon laser (HeNe, λ = 543 nm) with line-generating lens, and a laser diode module (LDM, λ = 635 nm) with line-creating head module. Two physical collimator designs were assessed: a single-slot collimator and a multihole collimator. Optimal collimator depth was determined by observing the signal of a single photodiode with varying collimator depths. A method of extending the dynamic range of the system is presented. Two sample types were used for evaluations: nondosimetric absorbent solutions and irradiated polymer gel dosimeters, each housed in 1 liter cylindrical plastic flasks. Imaging protocol investigations were performed to address ring artefacts and image noise. Two image artefact removal techniques were performed in sinogram space. Collimator efficacy was evaluated by imaging highly opaque samples of scatter-based and absorption-based solutions. A noise-based flask registration technique was developed. Two protocols for gel manufacture were examined. Results: The LDM proved advantageous over the HeNe laser due to its reduced noise. Also, the LDM uses a wavelength more suitable for the PRESAGETM dosimeter. Collimator depth of 1.5 cm was found to be an optimal balance between scatter rejection, signal strength, and manufacture ease. The multihole collimator is capable of maintaining accurate scatter-rejection to high levels of opacity with scatter-based solutions (T < 0.015%). Imaging protocol investigations support the need for preirradiation and postirradiation scanning to reduce reflection-based ring artefacts and to accommodate flask imperfections and gel inhomogeneities. Artefact removal techniques in sinogram space eliminate streaking artefacts and reduce ring artefacts of up to ∼40% in magnitude. The flask registration

  2. K-band EPR dosimetry: small-field beam profile determination with miniature alanine dosimeter

    International Nuclear Information System (INIS)

    The use of small-size alanine dosimeters presents a challenge because the signal intensity is less than the spectrometer sensitivity. K-band (24 GHz) EPR spectrometer seems to be a good compromise between size and sensitivity of the sample. Miniature alanine pellets were evaluated for small-field radiation dosimetry. Dosimeters of DL-alanine/PVC with dimensions of 1.5 mm diameter and 2.5 mm length with 5 mg mass were developed. These dosimeters were irradiated with 10 MV X-rays in the dose range 0.05-60 Gy and the first harmonic (1 h) spectra were recorded. Microwave power, frequency and amplitude of modulation were optimized to obtain the best signal-to-noise ratio (S/N). For beam profile determination, a group of 25 dosimeters were placed in an acrylic device with dimensions of (7.5x2.5x1) cm3 and irradiated with a (3x3) cm2 10 MV X-rays beam field size. The dose at the central region of the beam was 20 Gy at a depth of 2.2 cm (build up for acrylic). The acrylic device was oriented perpendicular to the beam axis and to the gantry rotation axis. For the purposes of comparison of the spatial resolution, the beam profile was also determined with a radiographic film and 2 mm aperture optical densitometer; in this case the dose was 1 cGy. The results showed a similar spatial resolution for both types of dosimeters. The dispersion in dose reading was larger for alanine in comparison with the film, but alanine dosimeters can be read faster and more directly than film over a wide dose range

  3. Thermoluminescent dosimetry in veterinary diagnostic radiology

    International Nuclear Information System (INIS)

    This paper presents the results of Environmental and Personnel Dosimetry made in a radiology area of a veterinary hospital. Dosimetry was realized using thermoluminescent (TL) materials. Environmental Dosimetry results show that areas closer to the X-ray equipment are safe. Personnel Dosimetry shows important measurements of daily workday in some persons near to the limit established by ICRP. TL results of radiation measurement suggest TLDs are good candidates as a dosimeter to radiation dosimetry in veterinary radiology. - Highlights: ► Personnel dosimetry in laboratory veterinary diagnostic was determined. ► Student workplaces are safe against radiation. ► Efficiency value of apron lead was determined. ► X-ray beams distribution into veterinarian laboratory was measured.

  4. Beam current measurement and beam positioning for baby-ebm

    International Nuclear Information System (INIS)

    This paper describes the electron beam detection of Baby EBM. The detection is divided by two categories; beam current measurement and beam positioning under the scanning window. The beam detector system was completely fabricated and tested and the detector was able to detect the electron beam of Baby EBM. It has been found that the beam current of this EBM is 1.62 mA for energy of 0.14 MeV. A higher beam current can be obtained if a proper cooling system to the window foil is installed. (Author)

  5. Calibration of activation detectors in a monoenergetic neutron beam. Contribution to criticality dosimetry

    International Nuclear Information System (INIS)

    Activation detectors have been calibrated for critical dosimetry applications. Measurements are made using a monoenergetic neutron flux. 14 MeV neutrons obtained par (D-T) reaction are produced by 150 kV accelerator. Neutron flux determined by different methods leads us to obtain an accuracy better than 6%. The present dosimetric system (Activation Neutron Spectrometer - SNAC) gives few informations in the (10 keV - 2 MeV) energetic range. The system has been improved and modified so that SNAC detectors must be read out by gamma spectrometer

  6. In vivo dosimetry in electron beam teletherapy using electron paramagnetic resonance in L-alanine

    International Nuclear Information System (INIS)

    The aim of this study was to compare radiation doses measured in vivo with the use of ERP/alanine dosimetry with doses calculated using the Cad Plan R.3.1.2 treatment planning system. The doses were measured in vivo using electron paramagnetic resonance (EPR) in L alanine. The detectors consisted of small polyethylene bags filled with crystalline L-alanine. Clinical research was performed on a group of patients undergoing radical and palliative treatment at the Department of Oncology and Radiotherapy of the Medical University of Gdansk. The planned doses were calculated by the Cad Plan R.3.1.2 radiotherapy treatment planning system. The average difference between the measured doses and those calculated by the treatment planning system was, for all 50 fields, 0.6% with a data scatter of 6.3% (standard deviation of a single measurement). The results of in vivo dosimetry showed apt concordance between the prescribed and the actually delivered doses. The 0.6% average difference may be considered satisfactory in routine radiotherapy treatment. (author)

  7. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    Science.gov (United States)

    Christensen, A. N.; Rydhög, J. S.; Søndergaard, R. V.; Andresen, T. L.; Holm, S.; Munck Af Rosenschöld, P.; Conradsen, K.; Jølck, R. I.

    2016-05-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively.Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The

  8. Alanine-EPR dosimetry in 10 MeV electron beam to optimize process parameters for food irradiation

    International Nuclear Information System (INIS)

    Absorbed dose in a food product is determined and controlled by several components of the LINAC irradiation facility as well as the product. Standardization of the parameters characterizing the facility components, process load and the irradiation conditions collectively termed as 'process parameters' are of paramount importance for successful dose delivery to the food products. In the present study alanine-EPR dosimetry system was employed to optimize the process parameters of 10 MeV electron beam of a LINAC facility for commercial irradiation of food. Three sets of experiments were carried out with different food commodities namely, mango, potato and rawa with the available product conveying system of different irradiation geometry like one sided or both sided mode of irradiation. Three dimensional dose distributions into the process load for low dose requiring food commodities (0.25 to 1 kGy) were measured in each experiment. The actual depth dose profile in food product and useful scan width of the electron beam were found out to be satisfactory for commercial radiation processing of food. Finally a scaled up experiment with commercial food product (packets of Rawa) exhibited adequate dose uniformity ratio of 3 proving the feasibility of the facility for large scale radiation processing of food commodities. (author)

  9. Intercalibration of radiological measurements for surveillance purposes of the internal dosimetry laboratory coordinated by the IAEA

    International Nuclear Information System (INIS)

    The ININ of Mexico participated in this intercomparison organized by the IAEA in 2000. The objective of this activity is that the dosimetry laboratories that participate can validate the programs of internal dosimetry, with the purpose of improving its capacity in the evaluation of the internal dose and have access to a mechanism to evaluate its dosimetry system under real conditions. The specific objectives of this intercomparison were: 1. To evaluate the participant's capacity to manage the measurements of individual monitoring in terms of the activity in the phantom. 2. To provide the access to the unique calibration resources that otherwise would not be available. 3. To compare the operation of several detection systems, the geometry, phantoms, calibration methods and methods for the evaluation of activity of the radionuclide used by each institution. 4. To provide the independent verification of the direct measurement methods of the dosimetry service. (Author)

  10. Dosimetry and monitoring of thin X-ray beam produced by linear particle accelerator, for application in radiography

    International Nuclear Information System (INIS)

    The dosimetry and monitoring characteristics of thin X-ray beams, and the application of 4MeV linear particle accelerator to radiosurgery are studied. An addition collimation system, consisted of 3 lead collimators, which allows to obtain thin beams of 6,10 and 15 mm of diameter, was fabricated. The stereo taxic system, together with modifications in dispositives, provide the accuracy required in volum-targed location. The dosimetric informations were determined with silicon detector inserted into water simulator. The isodose curves for each beam, and total isodoses simulating the treatment were established using radiographic emulsions in conditions which reproduce real circunstances of pacient irradiation. (M.C.K.)

  11. Dosimetry in diagnostic and interventional radiology: international commission on radiation units and measurements and IAEA activities

    International Nuclear Information System (INIS)

    Dosimetric quantities are used in diagnostic and interventional radiology for the establishment of guidance or diagnostic reference levels and for the assessment of comparative risk; only a limited number of measurements serve for the assessment of potential risk. An additional objective of dosimetry in medical imaging is the assessment of equipment performance. The present situation in dosimetry for medical X ray imaging clearly indicates the need for international recommendations on appropriate radiation quantities and units. In addition, guidance on the calibration of instruments and measurements in hospitals is also needed.This has been recognized by the International Commission on Radiation Units and Measurements (ICRU) and resulted in the establishment of an ICRU report committee on patient dosimetry in medical imaging. The ICRU proposes a harmonized system of quantities and units for patient dosimetry in medical X ray imaging. New symbols are proposed for various quantities. General information is provided on measurement methods, the calibration of dosimeters and methods of determining organ and tissue doses. The IAEA is developing an international code of practice for dosimetry in X ray diagnostic radiology.The main objective is to help to achieve and maintain a high level of quality in dosimetry, to improve the implementation of traceable standards at the national level and to ensure the control of dose in X ray medical imaging worldwide. Compared with the ICRU, the IAEA puts more emphasis on the practical aspects of establishing proper calibration facilities, for example at the secondary standards dosimetry laboratories, and provides more detailed recommendations for clinical dosimetry. Coordination between ICRU and IAEA activities is considered important by both organizations. This has been taken into account in part by having a person who is a member of both committees.The intention is to have a restricted overlap between both documents and to harmonize

  12. SU-E-T-423: TrueBeam Small Field Dosimetry Using Commercial Plastic Scintillation and Other Stereotactic Detectors

    International Nuclear Information System (INIS)

    Purpose: To perform dose profile and output factor (OF) measurements with the Exradin W1 plastic scintillation detector (PSD) for small fields made by the high-definition multi-leaf collimator (MLC) on the TrueBeam STx system and to compare them to values measured with an IBA CC01 ionization chamber and a Sun Nuclear Edge detector diode for 6 MV photon beams. Methods: The Exradin W1 is a new small volume near-water equivalent and energy independent PSD manufactured by Standard Imaging, Inc. All measurements were performed in an IBA Blue Phantom water tank. Square MLC-shaped fields with sides ranging from 0.5 cm to 2 cm and jawshaped fields with sides ranging from 1 cm to 40 cm were measured using an SAD setup at 10 cm depth. Dose profile and percent depth dose (PDD) measurements were also taken under the same conditions for MLC fields 0.5×0.5 and 1×1 cm2 in size with jaws at 2×2cm2. The CC01 and W1 were vertically mounted. Results: OFs measured with the W1 for jaw only square fields were consistent with the ones measured with a Farmers PTW TN33013 ion chamber (1.8% maximum deviation). OF and penumbra measurement results are presented below. PDDs measured for all detectors are within 1.5% for the 0.5×0.5 cm2 and within 1% for the 1×1 cm2 MLC fields.Output factors:MLC size W1 CC01 EDGE0.5cm 0.555 0.541 0.5851.0cm 0.716 0.702 0.7331.5cm 0.779 0.761 0.7772.0cm 0.804 0.785 0.796Penumbras (mm):MLC size W1 CC01 EDGE0.5cm 2.7 2.9 2.51.0cm 3.0 3.4 2. Conclusion: OFs measured for small MLC fields were consistent with the ones measured with the other stereotactic detectors. Measured penumbras are consistent with detector size. The Exradin W1 PSD is an excellent choice for characterizing MLC-shaped small beam dosimetry used for stereotactic radiosurgery and body radiation therapy. Sam Beddar would like to disclose a NIH/NCI SBIR Phase II grant (2R44CA153824-02A1) with Standard Imaging, Title: “Water-Equivalent Plastic Scintillation Detectors for Small Field

  13. Evaluation of TL response and intrinsic efficiency of TL dosimeters irradiated using different phantoms in clinical electron beam dosimetry

    International Nuclear Information System (INIS)

    The TL response of LiF:Mg,Ti microdosimeters and CaSO4:Dy dosimeters were studied for 12 MeV electron beams using PMMA, liquid water and solid water (SW) phantoms. The different phantom materials affect the electron spectrum incident on the detector and it can alter the response of dosimeters to different radiation types, so this fact should be considered in clinical dosimetry. The dosimeters were irradiated with doses ranging from 0.1 up to 5 Gy using a Varian Clinac 2100C linear accelerator of Hospital Israelita Albert Einstein – HIAE using a 10 × 10 cm2 field size and 100 cm source-phantom surface distance, with the dosimeters positioned at the depth of maximum dose. The TL readings were carried out 24 h after irradiation using a Harshaw 3500 TL reader. This paper aims to compare the TL response relative to 60Co of the dosimeters for different phantoms used in radiotherapy dosimetry. CaSO4:Dy dosimeters presented higher TL sensitivity relative to 60Co and intrinsic efficiency than microLiF:Mg,Ti dosimeters for all phantoms. - Highlights: • TL dose response curves of the dosimeters for clinical electron beams. • Evaluation of dosimeters for different phantoms. • Sensitivity and intrinsic TL efficiency of the dosimeters for clinical electron beams. • Effect of phantom materials in clinical electron beam dosimetry

  14. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography.

    Science.gov (United States)

    Christensen, A N; Rydhög, J S; Søndergaard, R V; Andresen, T L; Holm, S; Munck Af Rosenschöld, P; Conradsen, K; Jølck, R I

    2016-06-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive (106)Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively. PMID:27174233

  15. MODIFIED LIULIN DETECTOR CALIBRATION FOR ONBOARD AIRCRAFT DOSIMETRY MEASUREMENTS

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Iva; Krist, Pavel; Kubančák, Ján; Ploc, Ondřej; Kyselová, Dagmar

    Vol. 34. Bratislava: SMU - Faculty of Public Health, 2014. s. 60-60. ISBN 978-80-89384-08-2. [XXXVI.Dny radiační ochrany. 10.11.2014-14.11.2014, Poprad] Institutional support: RVO:61389005 Keywords : dosimetry * aircraft * detector Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  16. Methods for implementation of in vivo dosimetry (entrance dose) using thermoluminescent dosimeters during radiotherapy treatment with photon beam

    International Nuclear Information System (INIS)

    Selection, calibration procedure to convert TLD signal into absorbed dose and physical characteristics at the thermoluminescent dosimeters, as well as the determination of correction factors and the methodology to determine expected entrance dose, are described in this work. Practical aspects and the utility of entrance dose measures with thermoluminescent dosimeters were investigated, as well as the exactness and the reproducibility of the daily dose release. The entrance dose measures were performed in five patients with diagnosis of breast cancer treated with a 6 MV photon beam. The measured dose and the expected dose values agreed in ± 5%, due to excellent treatment equipment stability, to automatic verification system and the good exactness in the daily treatment adjustment. Good precision can be achieved when the correction factors for each parameter of influence in the dosimeter response are carefully determined and applied to convert the thermoluminescent signal into absorbed dose. The study demonstrates the viability of thermoluminescent dosimeters use for in vivo dosimetry and its utility as part of a quality assurance program in a radiation therapy service. (author)

  17. Measurement and analysis of high energy radiation through activation detectors. Application in dosimetry

    International Nuclear Information System (INIS)

    This work is concerned with the possibility of measurement and analysis of radiation fluences within objects of small volume submitted to a high energy proton beam. The first part, consecrated to the establishment of a method of analysis, comprises a detailed study of the radiation nature and energy spectra as well as of the various dosimetry methods. In order to select a group of detectors, high energy nuclear reactions were systematically studied and for some of them cross sections were measured or calculated: for example the cross section of the reaction 11B (p,n) 11C between 150 and 3000 MeV and of the reaction 34S (p,2pn) 32P between 50 and 3000 MeV. The second part is relative to the application of the fore-mentioned analysis to radiation within a tissue equivalent phantom irradiated by 3 GeV protons. This analysis is sufficiently detailed to allow the reconstitution of the absorbed doses, the dose equivalent and, contingent on a better knowledge of the dose due to heavy particles, the quality factors. It allowed also to follow the evolution of the various dosimetric data as a function of the depth inside the phantom and to verify calculations already done by other researchers. The comparison of the measured doses and the corresponding detector activities revealed the possibility that some detectors could give directly the absorbed dose, or even the dose equivalent, by a simple activity measurement. (author)

  18. Fluence-based dosimetry of proton and heavier ion beams using single track detectors.

    Science.gov (United States)

    Klimpki, G; Mescher, H; Akselrod, M S; Jäkel, O; Greilich, S

    2016-02-01

    Due to their superior spatial resolution, small and biocompatible fluorescent nuclear track detectors (FNTDs) open up the possibility of characterizing swift heavy charged particle fields on a single track level. Permanently stored spectroscopic information such as energy deposition and particle field composition is of particular importance in heavy ion radiotherapy, since radiation quality is one of the decisive predictors for clinical outcome. Findings presented within this paper aim towards single track reconstruction and fluence-based dosimetry of proton and heavier ion fields. Three-dimensional information on individual ion trajectories through the detector volume is obtained using fully automated image processing software. Angular distributions of multidirectional fields can be measured accurately within  ±2° uncertainty. This translates into less than 5% overall fluence deviation from the chosen irradiation reference. The combination of single ion tracking with an improved energy loss calibration curve based on 90 FNTD irradiations with protons as well as helium, carbon and oxygen ions enables spectroscopic analysis of a detector irradiated in Bragg peak proximity of a 270 MeV u(-1) carbon ion field. Fluence-based dosimetry results agree with treatment planning software reference. PMID:26757791

  19. Fluence-based dosimetry of proton and heavier ion beams using single track detectors

    Science.gov (United States)

    Klimpki, G.; Mescher, H.; Akselrod, M. S.; Jäkel, O.; Greilich, S.

    2016-02-01

    Due to their superior spatial resolution, small and biocompatible fluorescent nuclear track detectors (FNTDs) open up the possibility of characterizing swift heavy charged particle fields on a single track level. Permanently stored spectroscopic information such as energy deposition and particle field composition is of particular importance in heavy ion radiotherapy, since radiation quality is one of the decisive predictors for clinical outcome. Findings presented within this paper aim towards single track reconstruction and fluence-based dosimetry of proton and heavier ion fields. Three-dimensional information on individual ion trajectories through the detector volume is obtained using fully automated image processing software. Angular distributions of multidirectional fields can be measured accurately within  ±2° uncertainty. This translates into less than 5% overall fluence deviation from the chosen irradiation reference. The combination of single ion tracking with an improved energy loss calibration curve based on 90 FNTD irradiations with protons as well as helium, carbon and oxygen ions enables spectroscopic analysis of a detector irradiated in Bragg peak proximity of a 270 MeV u-1 carbon ion field. Fluence-based dosimetry results agree with treatment planning software reference.

  20. Critical dosimetry measures and surrogate tools that can facilitate clinical success in PDT (Conference Presentation)

    Science.gov (United States)

    Pogue, Brian W.; Davis, Scott C.; Kanick, Stephen C.; Maytin, Edward V.; Pereira, Stephen P.; Palanisami, Akilan; Hasan, Tayyaba

    2016-03-01

    Photodynamic therapy can be a highly complex treatment with more than one parameter to control, or in some cases it is easily implemented with little control other than prescribed drug and light values. The role of measured dosimetry as related to clinical adoption has not been as successful as it could have been, and part of this may be from the conflicting goals of advocating for as many measurements as possible for accurate control, versus companies and clinical adopters advocating for as few measurements as possible, to keep it simple. An organized approach to dosimetry selection is required, which shifts from mechanistic measurements in pre-clinical and early phase I trials, towards just those essential dose limiting measurements and a focus on possible surrogate measures in phase II/III trials. This essential and surrogate approach to dosimetry should help successful adoption of clinical PDT if successful. The examples of essential dosimetry points and surrogate dosimetry tools which might be implemented in phase II and higher trials are discussed for solid tissue PDT with verteporfin and skin lesion treatment with aminolevulinc acid.

  1. SU-D-19A-01: Can Farmer-Type Ionization Chambers Be Used to Improve the Accuracy of Low-Energy Electron Beam Reference Dosimetry?

    International Nuclear Information System (INIS)

    Purpose: To investigate the use of cylindrical Farmer-type ionization chambers to improve the accuracy of low-energy electron beam calibration. Historically, these chamber types have not been used in beams with incident energies less than 10 MeV (R50 < 4.3 cm) because early investigations suggested large (up to 5 %) fluence perturbation factors in these beams, implying that a significant component of uncertainty would be introduced if used for calibration. More recently, the assumptions used to determine perturbation corrections for cylindrical chambers have been questioned. Methods: Measurements are made with cylindrical chambers in Elekta Precise 4, 8 and 18 MeV electron beams. Several chamber types are investigated that employ graphite walls and aluminum electrodes with very similar specifications (NE2571, NE2505/3, FC65-G). Depth-ionization scans are measured in water in the 8 and 18 MeV beams. To reduce uncertainty from chamber positioning, measurements in the 4 MeV beam are made at the reference depth in Virtual Water™. The variability of perturbation factors is quantified by comparing normalized response of various chambers. Results: Normalized ion chamber response varies by less than 0.7 % for similar chambers at average electron energies corresponding to that at the reference depth from 4 or 6 MeV beams. Similarly, normalized measurements made with similar chambers at the reference depth in the 4 MeV beam vary by less than 0.4 %. Absorbed dose calibration coefficients derived from these results are stable within 0.1 % on average over a period of 6 years. Conclusion: These results indicate that the uncertainty associated with differences in fluence perturbations for cylindrical chambers with similar specifications is only 0.2 %. The excellent long-term stability of these chambers in both photon and electron beams suggests that these chambers might offer the best performance for all reference dosimetry applications

  2. SU-D-19A-01: Can Farmer-Type Ionization Chambers Be Used to Improve the Accuracy of Low-Energy Electron Beam Reference Dosimetry?

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B R; McEwen, M R [Measurement Science and Standards, National Research Council, Ottawa, ON (Canada)

    2014-06-01

    Purpose: To investigate the use of cylindrical Farmer-type ionization chambers to improve the accuracy of low-energy electron beam calibration. Historically, these chamber types have not been used in beams with incident energies less than 10 MeV (R{sub 5} {sub 0} < 4.3 cm) because early investigations suggested large (up to 5 %) fluence perturbation factors in these beams, implying that a significant component of uncertainty would be introduced if used for calibration. More recently, the assumptions used to determine perturbation corrections for cylindrical chambers have been questioned. Methods: Measurements are made with cylindrical chambers in Elekta Precise 4, 8 and 18 MeV electron beams. Several chamber types are investigated that employ graphite walls and aluminum electrodes with very similar specifications (NE2571, NE2505/3, FC65-G). Depth-ionization scans are measured in water in the 8 and 18 MeV beams. To reduce uncertainty from chamber positioning, measurements in the 4 MeV beam are made at the reference depth in Virtual Water™. The variability of perturbation factors is quantified by comparing normalized response of various chambers. Results: Normalized ion chamber response varies by less than 0.7 % for similar chambers at average electron energies corresponding to that at the reference depth from 4 or 6 MeV beams. Similarly, normalized measurements made with similar chambers at the reference depth in the 4 MeV beam vary by less than 0.4 %. Absorbed dose calibration coefficients derived from these results are stable within 0.1 % on average over a period of 6 years. Conclusion: These results indicate that the uncertainty associated with differences in fluence perturbations for cylindrical chambers with similar specifications is only 0.2 %. The excellent long-term stability of these chambers in both photon and electron beams suggests that these chambers might offer the best performance for all reference dosimetry applications.

  3. The influence of neutron contamination on dosimetry in external photon beam radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Photon fields with energies above ∼7 MeV are contaminated by neutrons due to photonuclear reactions. Their influence on dosimetry—although considered to be very low—is widely unexplored. Methods: In this work, Monte Carlo based investigations into this issue performed with FLUKA and EGSNRC are presented. A typical Linac head in 18 MV-X mode was modeled equivalently within both codes. EGSNRC was used for the photon and FLUKA for the neutron production and transport simulation. Water depth dose profiles and the response of different detectors (Farmer chamber, TLD-100, TLD-600H, and TLD-700H chip) in five representative depths were simulated and the neutrons’ impact (neutron absorbed dose relative to photon absorbed dose) was calculated. To take account of the neutrons’ influence, a theoretically required correction factor was defined and calculated for five representative water depths. Results: The neutrons’ impact on the absorbed dose to water was found to be below 0.1% for all depths and their impact on the response of the Farmer chamber and the TLD-700H chip was found to be even less. For the TLD-100 and the TLD-600H chip it was found to be up to 0.3% and 0.7%, respectively. The theoretical correction factors to be applied to absorbed dose to water values measured with these four detectors in a depth different from the reference/calibration depth were calculated and found to be below 0.05% for the Farmer chamber and the TLD-700H chip, but up to 0.15% and 0.35% for the TLD-100 and TLD-600H chips, respectively. In thermoluminescence dosimetry the neutrons’ influence (and therefore the additional inaccuracy in measurement) was found to be higher for TLD materials whose 6Li fraction is high, such as TLD-100 and TLD-600H, resulting from the thermal neutron capture reaction on 6Li. Conclusions: The impact of photoneutrons on the absorbed dose to water and on the response of a typical ionization chamber as well as three different types of TLD chips

  4. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  5. Absorbed dose measurements in the build-up region of flattened versus unflattened megavoltage photon beams.

    Science.gov (United States)

    De Puysseleyr, Annemieke; Lechner, Wolfgang; De Neve, Wilfried; Georg, Dietmar; De Wagter, Carlos

    2016-06-01

    This study evaluated absorbed dose measurements in the build-up region of conventional (FF) versus flattening filter-free (FFF) photon beams. The absorbed dose in the build-up region of static 6 and 10MV FF and FFF beams was measured using radiochromic film and extrapolation chamber dosimetry for single beams with a variety of field sizes, shapes and positions relative to the central axis. Removing the flattening filter generally resulted in slightly higher relative build-up doses. No considerable impact on the depth of maximum dose was found. PMID:27020966

  6. Neutron dosimetry and radiation damage calculations for HFBR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., TN (United States)

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  7. Calculation of uncertainties in the protocol of dosimetry for Co 60 beams in Radiotherapy; Calculo de incertidumbres en el protocolo de dosimetria para haces de Co 60 en Radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez M, S.; Carrera M, F.; Sanchez S, J. [Hospital Juan Ramon Jimenez, Ronda Norte s/n 21005 Huelva (Spain)

    1998-12-31

    The objective in this work is to show how the uncertainty is possible to know in the determination of the absorbed dose in Co 60 photon beams and to establish in a rational form, tolerance levels for this. It is took as base the spanish protocol of dosimetry in Radiotherapy. We have been centered in a Co 60 beam. We utilized the statistical theory of little samples. We allowed to suggest a new approach about the treatment of the tolerance levels and the uncertainty of the measurement. After two years of experience in the practical hospitable application we have gotten to put around 1 % uncertainty in the absolute dosimetry of the Co 60 beam. The presented protocol allows to execute the accuracy requirements in the determination of absorbed doses. (Author)

  8. aSi EPIDs for the in-vivo dosimetry of static and dynamic beams

    Energy Technology Data Exchange (ETDEWEB)

    Piermattei, A. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, 00146 Roma (Italy); Istituto di Fisica e U.O.C. di Fisica Sanitaria, Università Cattolica del S. Cuore, 00168 Roma (Italy); Cilla, S. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, 00146 Roma (Italy); U.O. di Fisica Sanitaria, Fondazione per la Ricerca e Cura ‘Giovanni Paolo II’, 86100 Campobasso (Italy); Azario, L.; Greco, F. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, 00146 Roma (Italy); Istituto di Fisica e U.O.C. di Fisica Sanitaria, Università Cattolica del S. Cuore, 00168 Roma (Italy); Russo, M. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, 00146 Roma (Italy); U.O. di Fisica Sanitaria, Ospedale Belcolle, 01100 Viterbo (Italy); Grusio, M. [Istituto di Fisica e U.O.C. di Fisica Sanitaria, Università Cattolica del S. Cuore, 00168 Roma (Italy); Orlandini, L. [U.O. di Fisica Medica, Centro Oncologico Fiorentino, 50121 Firenze (Italy); Fidanzio, A., E-mail: andrea.fidanzio@rm.unicatt.it [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, 00146 Roma (Italy); Istituto di Fisica e U.O.C. di Fisica Sanitaria, Università Cattolica del S. Cuore, 00168 Roma (Italy)

    2015-10-01

    Portal imaging by amorphous silicon (aSi) photodiode is currently the most applied technology for in-vivo dosimetry (IVD) of static and dynamic radiotherapy beams. The strategy, adopted in this work to perform the IVD procedure by aSi EPID, is based on: in patient reconstruction of the isocenter dose and day to day comparison between 2D-portal images to verify the reproducibility of treatment delivery. About 20.000 tests have been carried out in this last 3 years in 8 radiotherapy centers using the SOFTDISO program. The IVD results show that: (i) the procedure can be implemented for linacs of different manufacturer, (ii) the IVD analysis can be obtained on a computer screen, in quasi real time (about 2 min after the treatment delivery) and (iii) once the causes of the discrepancies were eliminated, all the global IVD tests for single patient were within the acceptance criteria defined by: ±5% for the isocenter dose, and P{sub γ<1}≥90% of the checked points for the 2D portal image γ-analysis. This work is the result of a project supported by the Istituto Nazionale di Fisica Nucleare (INFN) and Università Cattolica del S.Cuore (UCSC)

  9. aSi EPIDs for the in-vivo dosimetry of static and dynamic beams

    International Nuclear Information System (INIS)

    Portal imaging by amorphous silicon (aSi) photodiode is currently the most applied technology for in-vivo dosimetry (IVD) of static and dynamic radiotherapy beams. The strategy, adopted in this work to perform the IVD procedure by aSi EPID, is based on: in patient reconstruction of the isocenter dose and day to day comparison between 2D-portal images to verify the reproducibility of treatment delivery. About 20.000 tests have been carried out in this last 3 years in 8 radiotherapy centers using the SOFTDISO program. The IVD results show that: (i) the procedure can be implemented for linacs of different manufacturer, (ii) the IVD analysis can be obtained on a computer screen, in quasi real time (about 2 min after the treatment delivery) and (iii) once the causes of the discrepancies were eliminated, all the global IVD tests for single patient were within the acceptance criteria defined by: ±5% for the isocenter dose, and Pγ<1≥90% of the checked points for the 2D portal image γ-analysis. This work is the result of a project supported by the Istituto Nazionale di Fisica Nucleare (INFN) and Università Cattolica del S.Cuore (UCSC)

  10. aSi EPIDs for the in-vivo dosimetry of static and dynamic beams

    Science.gov (United States)

    Piermattei, A.; Cilla, S.; Azario, L.; Greco, F.; Russo, M.; Grusio, M.; Orlandini, L.; Fidanzio, A.

    2015-10-01

    Portal imaging by amorphous silicon (aSi) photodiode is currently the most applied technology for in-vivo dosimetry (IVD) of static and dynamic radiotherapy beams. The strategy, adopted in this work to perform the IVD procedure by aSi EPID, is based on: in patient reconstruction of the isocenter dose and day to day comparison between 2D-portal images to verify the reproducibility of treatment delivery. About 20.000 tests have been carried out in this last 3 years in 8 radiotherapy centers using the SOFTDISO program. The IVD results show that: (i) the procedure can be implemented for linacs of different manufacturer, (ii) the IVD analysis can be obtained on a computer screen, in quasi real time (about 2 min after the treatment delivery) and (iii) once the causes of the discrepancies were eliminated, all the global IVD tests for single patient were within the acceptance criteria defined by: ±5% for the isocenter dose, and PγFisica Nucleare (INFN) and Università Cattolica del S.Cuore (UCSC).

  11. Use achromatic beam line for Hall C beam energy measurement

    International Nuclear Information System (INIS)

    There are several different methods to measure accelerator beam energy, for example, from frequency spectrum measurement and calculation of orbit length from accurate measurement of magnetic field in a reference dipole magnet from high precision floating wire analogue, and from detecting the synchrotron radiation emitted from kicker magnets. In this report an achromatic spectrometer method combined with calibrating a reference magnet and determining the deflection angle of spectrometer is proposed. The similar method will be used to measure beam energy in Bates Linear Accelerator Center, a 10-3 accuracy of beam energy measurement is expected

  12. The role of a microDiamond detector in the dosimetry of proton pencil beams

    Energy Technology Data Exchange (ETDEWEB)

    Goma, Carles [Paul Scherrer Institute, Villigen (Switzerland). Centre for Proton Therapy; Swiss Federal Institute of Technology Zurich (Switzerland). Dept. of Physics; Marinelli, Marco; Verona-Rinati, Gianluca [Roma Univ. ' ' Tor Vergata' ' (Italy). Dipt. di Ingegneria Industriale; INFN, Roma (Italy); Safai, Sairos [Paul Scherrer Institute, Villigen (Switzerland). Centre for Proton Therapy; Wuerfel, Jan [PTW-Freiburg, Freiburg (Germany)

    2016-05-01

    In this work, the performance of a microDiamond detector in a scanned proton beam is studied and its potential role in the dosimetric characterization of proton pencil beams is assessed. The linearity of the detector response with the absorbed dose and the dependence on the dose-rate were tested. The depth-dose curve and the lateral dose profiles of a proton pencil beam were measured and compared to reference data. The feasibility of calibrating the beam monitor chamber with a microDiamond detector was also studied. It was found the detector reading is linear with the absorbed dose to water (down to few cGy) and the detector response is independent of both the dose-rate (up to few Gy/s) and the proton beam energy (within the whole clinically-relevant energy range). The detector showed a good performance in depth-dose curve and lateral dose profile measurements; and it might even be used to calibrate the beam monitor chambers-provided it is cross-calibrated against a reference ionization chamber. In conclusion, the microDiamond detector was proved capable of performing an accurate dosimetric characterization of proton pencil beams.

  13. Dosimetry of beta-ray ophthalmic applicators: Comparison of different measurement methods

    International Nuclear Information System (INIS)

    An international intercomparison of the dosimetry of three beta particle emitting ophthalmic applicators was performed, which involved measurements with radiochromic film, thermoluminescence dosimeters (TLDs), alanine pellets, plastic scintillators, extrapolation ionization chambers, a small fixed-volume ionization chambers, a diode detector and a diamond detector. The sources studied were planar applicators of 90Sr-90Y and 106Ru-106Rh, and a concave applicator of 106Ru-106Rh. Comparisons were made of absolute dosimetry determined at 1 mm from the source surface in water or water-equivalent plastic, and relative dosimetry along and perpendicular to the source axes. The results of the intercomparison indicate that the various methods yield consistent absolute dosimetry results at the level of 10%-14% (one standard deviation) depending on the source. For relative dosimetry along the source axis at depths of 5 mm or less, the agreement was 3%-9% (one standard deviation) depending on the source and the depth. Crucial to the proper interpretation of the measurement results is an accurate knowledge of the detector geometry, i.e., sensitive volume and amount of insensitive covering material. From the results of these measurements, functions which describe the relative dose rate along and perpendicular to the source axes are suggested

  14. The quenching effect in PRESAGE® dosimetry of proton beams: Is an empirical correction feasible?

    International Nuclear Information System (INIS)

    Chemical dosimeters, including PRESAGE® as used in optical CT, exhibit significant quenching effects in response to proton irradiation and this may limit their widespread uptake. This study performs careful measurements of the observed quenching of a recently developed variant of PRESAGE® in a 60 MeV proton beam and uses them to attempt an empirical correction of a simple superposition of two unmodulated beams

  15. 2D dosimetry in a proton beam with a scintillating GEM detector

    NARCIS (Netherlands)

    Seravalli, E.; De Boer, M.R.; Geurink, F.; Huizinga, J.; Kreuger, R.; Schippers, J.M.; Van Eijk, C.W.E.

    2009-01-01

    A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for pre-treatment verification of dose distributions in particle therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two gas el

  16. Super Phenix. Monitoring of structures subject to irradiation. Neutron dosimetry measurement and calculation program

    International Nuclear Information System (INIS)

    For the Super Phenix reactor, the evolution, versus the irradiation of the mechanical properties of the core diagrid steel is the object of studies and is particularly monitored. The specimens irradiated, now in PHENIX and will be later irradiated in SUPER PHENIX as soon as the first operating cycles. An important dosimetry program coupling calculation and measurement, is parallely carried out. This paper presents the reasons, the definition of the structure, of the development and of materials used in this program of dosimetry, as also the first results of a calculation-measurement comparison

  17. Study on dosimetry systems for a few tens MeV/u ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takuji; Sunaga, Hiromi; Takizawa, Haruki; Tachibana, Hiroyuki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A combined measurement system consisting of a total calorimeter, a Faraday cup and thin film dosimeters have been developed and tested using a simultaneous irradiation apparatus to measure absorbed dose for a few tens MeV/u ion beams of the TIARA AVF cyclotron. (author)

  18. A feasibility study of a phototransistor for the dosimetry of computerized tomography and stereotactic radiosurgery beams

    International Nuclear Information System (INIS)

    Phototransistors have already been discussed in the literature as radiation detectors for measurements in the low energy range. If they are used in high energy X-ray beams, there is a certain loss of sensitivity to the ionizing radiation. although this effect occurs it is possible to extract the dose information from the response curve. The aim of this work is to present methods to apply phototransistors as detectors in standardized radiation beam qualities that are used in diagnostic radiology and stereotactic radiosurgery. A Pantak X-ray unit is used to generate radiodiagnostic beams and Siemens-Primus linear accelerator launches 6 MV photon radiotherapy beams under the detector. The results from thermoluminiscent dosimeter (TLD) detectors. Surface mount technology (SMT) phototransistor devices and an ionization chamber are presented to make a comparison

  19. A feasibility study of a phototransistor for the dosimetry of computerized tomography and stereotactic radiosurgery beams

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luiz A.P. [CNEN - CRCN, Av. Prof. Luiz Freire, 200, Cidade Universitaria, Recife - PE, CEP 50740-540 (Brazil)], E-mail: lasantos@cnen.gov.br; Magalhaes, Cinthia M.S.; Silva, Jonas O. [CNEN - CRCN, Av. Prof. Luiz Freire, 200, Cidade Universitaria, Recife - PE, CEP 50740-540 (Brazil); Depto. Energia Nuclear - UFPE, Av. Prof. Luiz Freire, 1000, Cidade Universitaria, Recife - PE, CEP 50740-540 (Brazil); Filho, Joao A. [Depto. Energia Nuclear - UFPE, Av. Prof. Luiz Freire, 1000, Cidade Universitaria, Recife - PE, CEP 50740-540 (Brazil); Depto. Fisica - UNICAP, Rua do Principe, 526, Boa Vista, Recife - PE, CEP 50050-900 (Brazil); Silva, Eronides F. Jr. [Depto. Fisica - UFPE, Av. Prof. Luiz Freire, s/n, Cidade Universitaria, Recife - PE, CEP 50740-540 (Brazil); Santos, Walter M. [Hospital Gov. Joao Alves Filho - Setor Fisica Medica, Av. Tancredo Neves, 7501, Aracaju - SE, CEP 49095-000 (Brazil)

    2008-02-15

    Phototransistors have already been discussed in the literature as radiation detectors for measurements in the low energy range. If they are used in high energy X-ray beams, there is a certain loss of sensitivity to the ionizing radiation. although this effect occurs it is possible to extract the dose information from the response curve. The aim of this work is to present methods to apply phototransistors as detectors in standardized radiation beam qualities that are used in diagnostic radiology and stereotactic radiosurgery. A Pantak X-ray unit is used to generate radiodiagnostic beams and Siemens-Primus linear accelerator launches 6 MV photon radiotherapy beams under the detector. The results from thermoluminiscent dosimeter (TLD) detectors. Surface mount technology (SMT) phototransistor devices and an ionization chamber are presented to make a comparison.

  20. Detector density and small field dosimetry: Integral versus point dose measurement schemes

    International Nuclear Information System (INIS)

    Purpose: TheAlfonso et al. [Med. Phys.35, 5179–5186 (2008)] formalism for small field dosimetry proposes a set of correction factors (kQclin,Qmsrfclin,fmsr) which account for differences between the detector response in nonstandard (clinical) and machine-specific-reference fields. In this study, the Monte Carlo method was used to investigate the viability of such small field correction factors for four different detectors irradiated under a variety of conditions. Because kQclin,Qmsrfclin,fmsr values for single detector position measurements are influenced by several factors, a new theoretical formalism for integrated-detector-position [dose area product (DAP)] measurements is also presented and was tested using Monte Carlo simulations. Methods: A BEAMnrc linac model was built and validated for a Varian Clinac iX accelerator. Using the egs++ geometry package, detailed virtual models were built for four different detectors: a PTW 60012 unshielded diode, a PTW 60003 Diamond detector, a PTW 31006 PinPoint (ionization chamber), and a PTW 31018 MicroLion (liquid-filled ionization chamber). The egs-chamber code was used to investigate the variation ofkQclin,Qmsrfclin,fmsr with detector type, detector construction, field size, off-axis position, and the azimuthal angle between the detector and beam axis. Simulations were also used to consider the DAP obtained by each detector: virtual detectors and water voxels were scanned through high resolution grids of positions extending far beyond the boundaries of the fields under consideration. Results: For each detector, the correction factor (kQclin,Qmsrfclin,fmsr) was shown to depend strongly on detector off-axis position and detector azimuthal angle in addition to field size. In line with previous studies, substantial interdetector variation was also observed. However, it was demonstrated that by considering DAPs rather than single-detector-position dose measurements the high level of interdetector variation could be

  1. Beam energy online measurement of BEPCII LINAC

    CERN Document Server

    Wang, Shao-Zhe; Chi, Yun-Long

    2015-01-01

    This paper describes beam energy online measurement of BEPCII linac, presents the calculation formula and some of the results. The method mentioned here measures the beam energy by acquiring beam positions in the horizontal direction with three beam position monitors (BPM) eliminating the effect of orbit fluctuation, which is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in the end of this paper.

  2. Results of the argentinian intercomparison on internal dosimetry 2014. Measurement of thyroid burden

    International Nuclear Information System (INIS)

    Internal dosimetry intercomparisons are essential for the verification of the capability to perform direct measurements of “1”3”1I thyroid burden and the expertise in the interpretation of these data for dose assessment. To that aim, in 2014 the National Intercomparison Exercise was organized and coordinated by the Internal Dosimetry Laboratory of the Autoridad Regulatoria Nuclear (ARN) of Argentina. The exercise counted with the participation of six internal dosimetry services: nuclear power plants (NA-SA CNA and NA-SA CNE), CNEA Atomic Centres: Bariloche (CAB) and Ezeiza (CAE), Roffo Institute (UBA – CNEA) and ARN. This report shows a complete analysis of the participant’s results in this exercise. (authors)

  3. Characterization of a parallel-beam CCD optical-CT apparatus for 3D radiation dosimetry

    Science.gov (United States)

    Krstajic, Nikola; Doran, Simon J.

    2007-07-01

    3D measurement of optical attenuation is of interest in a variety of fields of biomedical importance, including spectrophotometry, optical projection tomography (OPT) and analysis of 3D radiation dosimeters. Accurate, precise and economical 3D measurements of optical density (OD) are a crucial step in enabling 3D radiation dosimeters to enter wider use in clinics. Polymer gels and Fricke gels, as well as dosimeters not based around gels, have been characterized for 3D dosimetry over the last two decades. A separate problem is the verification of the best readout method. A number of different imaging modalities (magnetic resonance imaging (MRI), optical CT, x-ray CT and ultrasound) have been suggested for the readout of information from 3D dosimeters. To date only MRI and laser-based optical CT have been characterized in detail. This paper describes some initial steps we have taken in establishing charge coupled device (CCD)-based optical CT as a viable alternative to MRI for readout of 3D radiation dosimeters. The main advantage of CCD-based optical CT over traditional laser-based optical CT is a speed increase of at least an order of magnitude, while the simplicity of its architecture would lend itself to cheaper implementation than both MRI and laser-based optical CT if the camera itself were inexpensive enough. Specifically, we study the following aspects of optical metrology, using high quality test targets: (i) calibration and quality of absorbance measurements and the camera requirements for 3D dosimetry; (ii) the modulation transfer function (MTF) of individual projections; (iii) signal-to-noise ratio (SNR) in the projection and reconstruction domains; (iv) distortion in the projection domain, depth-of-field (DOF) and telecentricity. The principal results for our current apparatus are as follows: (i) SNR of optical absorbance in projections is better than 120:1 for uniform phantoms in absorbance range 0.3 to 1.6 (and better than 200:1 for absorbances 1.0 to

  4. The influence of neutron contamination on dosimetry in external photon beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Horst, Felix, E-mail: felix.ernst.horst@kmub.thm.de; Czarnecki, Damian [Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences Giessen, Giessen D-35390 (Germany); Zink, Klemens [Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences Giessen, Giessen D-35390, Germany and Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg D-35043 (Germany)

    2015-11-15

    Purpose: Photon fields with energies above ∼7 MeV are contaminated by neutrons due to photonuclear reactions. Their influence on dosimetry—although considered to be very low—is widely unexplored. Methods: In this work, Monte Carlo based investigations into this issue performed with FLUKA and EGSNRC are presented. A typical Linac head in 18 MV-X mode was modeled equivalently within both codes. EGSNRC was used for the photon and FLUKA for the neutron production and transport simulation. Water depth dose profiles and the response of different detectors (Farmer chamber, TLD-100, TLD-600H, and TLD-700H chip) in five representative depths were simulated and the neutrons’ impact (neutron absorbed dose relative to photon absorbed dose) was calculated. To take account of the neutrons’ influence, a theoretically required correction factor was defined and calculated for five representative water depths. Results: The neutrons’ impact on the absorbed dose to water was found to be below 0.1% for all depths and their impact on the response of the Farmer chamber and the TLD-700H chip was found to be even less. For the TLD-100 and the TLD-600H chip it was found to be up to 0.3% and 0.7%, respectively. The theoretical correction factors to be applied to absorbed dose to water values measured with these four detectors in a depth different from the reference/calibration depth were calculated and found to be below 0.05% for the Farmer chamber and the TLD-700H chip, but up to 0.15% and 0.35% for the TLD-100 and TLD-600H chips, respectively. In thermoluminescence dosimetry the neutrons’ influence (and therefore the additional inaccuracy in measurement) was found to be higher for TLD materials whose {sup 6}Li fraction is high, such as TLD-100 and TLD-600H, resulting from the thermal neutron capture reaction on {sup 6}Li. Conclusions: The impact of photoneutrons on the absorbed dose to water and on the response of a typical ionization chamber as well as three different types

  5. Automation of the particle dosimetry and the dose application for radiobiological experiments at a vertical proton beam

    CERN Document Server

    Moertel, H; Eyrich, W; Fritsch, M; Distel, L

    2002-01-01

    A facility with a vertical beam for radiobiological experiments with low-energy protons has been setup at the Tandem accelerator at Erlangen. This energy region is optimal to investigate the biological effects of the linear energy transfer in the Bragg region under physiological conditions. A new automated data acquisition system for dosimetry and monitoring based on a personal computer was developed and optimized for this setup. A specially designed sample holder offers possibilities of cooling or changing of atmosphere during irradiation. First irradiations of biological samples have shown the functionality of the setup.

  6. Automation of the particle dosimetry and the dose application for radiobiological experiments at a vertical proton beam

    Science.gov (United States)

    Mörtel, H.; Georgi, J.; Eyrich, W.; Fritsch, M.; Distel, L.

    2002-08-01

    A facility with a vertical beam for radiobiological experiments with low-energy protons has been setup at the Tandem accelerator at Erlangen. This energy region is optimal to investigate the biological effects of the linear energy transfer in the Bragg region under physiological conditions. A new automated data acquisition system for dosimetry and monitoring based on a personal computer was developed and optimized for this setup. A specially designed sample holder offers possibilities of cooling or changing of atmosphere during irradiation. First irradiations of biological samples have shown the functionality of the setup.

  7. Fiber-coupled radioluminescence dosimetry with saturated Al{sub 2}O{sub 3}:C crystals: Characterization in 6 and 18 MV photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E., E-mail: clan@risoe.dtu.dk [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Damkjaer, S.M.S.; Kertzscher, G. [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Greilich, S. [Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), D-69120 Heidelberg (Germany); Aznar, M.C. [Department of Radiation Oncology, Copenhagen University Hospital, DK-2100 Copenhagen (Denmark)

    2011-10-15

    Radioluminescence (RL) and optically stimulated luminescence (OSL) from carbon-doped aluminum oxide crystals can be used for medical dosimetry in external beam radiotherapy and remotely afterloaded brachytherapy. The RL/OSL signals are guided from the treatment room to the readout instrumentation using optical fiber cables, and in vivo dosimetry can be carried out in real time while the dosimeter probes are in the patient. The present study proposes a new improved readout protocol based solely on the RL signal from Al{sub 2}O{sub 3}:C. The key elements in the protocol are that Al{sub 2}O{sub 3}:C is pre-dosed with {approx}20 Gy before each measurement session, and that the crystals are not perturbed by optical stimulation. Using 6 and 18 MV linear accelerator photon beams, the new RL protocol was found to have a linear dose-response from 7 mGy to 14 Gy, and dosimetry in this range could therefore be performed using a single calibration factor ({approx}6 x 10{sup 6} counts per Gy for a 2 mg crystal). The reproducibility of the RL dosimetry was 0.3% (one relative standard deviation) for doses larger than 0.1 Gy. The apparent RL sensitivity was found to change with accumulated dose ((-0.45 {+-} 0.03)% per 100 Gy), crystal temperature ((-0.21 {+-} 0.01)%/ deg. C), and dose-delivery rate ((-0.22 {+-} 0.01)% per 100 MU/min). A temporal gating technique was used for separation of RL and stem signals (i.e. Cerenkov light and fluorescence induced in the optical fiber cable during irradiation). The new readout protocol was a substantial improvement compared with the combined RL/OSL protocol, that required relatively long readout times and where the optical stimulation greatly affected the RL sensitivity. The only significant caveat was the apparent change in RL-response with accelerator dose-delivery rate. - Highlights: > New readout protocol based only on the RL signal from pre-dosed Al{sub 2}O{sub 3}:C. > Fast readout. > Linear dose-response. > High-dynamic range (7 mGy-14

  8. Technical Note: PRESAGE three-dimensional dosimetry accurately measures Gamma Knife output factors

    OpenAIRE

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-01-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and two-dimensional detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma...

  9. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.; Mehta, K. K.

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application.......Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  10. Electron beam coherence measurements using diffracted beam interferometry/holography.

    Science.gov (United States)

    Herring, Rodney A

    2009-06-01

    The intensity and coherence of elastically and inelastically scattered electrons have been studied by the interference of electron-diffracted beams using a method of diffracted beam interferometry/holography (DBI/H). In the interferograms produced, fringes were found to exist from low to high scattering angles. The intensity and coherence of the fringes are useful for understanding the contrast mismatch between experimental and simulated images found in atomic resolution images of crystals produced by transmission electron microscopy (TEM) and annular dark-field (ADF) scanning transmission electron microscopy (STEM). The fringes disappear when the interfering beams are separated from an exact overlay position, which produces a measurement of the beam's lateral coherence and holds promise for measuring the coherence of the respective quasi-particles associated with the energy loss electrons. PMID:19141592

  11. ESR and TL dosimetry systems: comparative measurements for human phantom

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, V.F.; Skvortsov, V.G.; Ivannikov, A.I. [Medical Radiological Research Center RAMS, Obninsk (Russian Federation)] [and others

    1997-01-01

    Mixtures of small fragments of tooth enamel as well as thermoluminescence (TL) dosimeters were placed into the tissue-equivalent phantom of the human head with skeleton (approximately at the level of the jaws) and irradiated using {sup 137}Cs low dose-rate gamma therapeutic sources (``SELEKTRON`` LDR {sup 137}Cs). Phantom, samples of teeth and TL detectors were irradiated behind water tank to produce scattered irradiation. The same irradiation with the same geometry was performed in air too. For gamma-spectrometry {sup 137}Cs sources with very low activity were used but with the same geometry as therapeutic sources. The absorbed dose in enamel was estimated with the help of ESR spectrometer ``ESP-300 E`` (Brusker). The samples of tooth enamel were partially used for preliminary dose evaluation by ESR signal before starting of experiment. TL dosimetry was performed by TL reader model 8800 (HARSHAW) using TL dosimeters calibrated with {sup 137}Cs. The paper presents data obtained in comparative aspects. (Author).

  12. Refinement of the dual ionisation chamber dosimetry carried out at the accelerator-based epithermal neutron beam facility of the University of Birmingham

    International Nuclear Information System (INIS)

    The paper presents the refined dual ionisation chamber technique used for in-air and in-phantom measurements in the Birmingham epithermal neutron beam. The study includes the derivation of the spectrum-dependent relative neutron sensitivity of the tissue-equivalent ionisation chamber. The average values over shallow depths for the kt parameter in A150 is 0.85 +/- 0.04, corresponding to an average value of 0.80 for water. For photon dosimetry in mixed fields, the formalism initially proposed by Munck af Rosenschold et al has been applied at a specific depth of 3 cm using MCNP4C as the radiation transport tool in the mixed beam and the reference calibration beam to generate electron fluence profiles in the detector gas cavities. The BEAMnrc code was used to generate the starting photon spectrum for the 8MV photon beam. The effect of the chosen energy-indexing algorithm on the in-cavity electron dose using the MNCP4C *F8 tally was also investigated. (author)

  13. Calorimetric approach for 3D dosimetry of high intensity therapeutic electron beams

    Science.gov (United States)

    Lamanna, E.; Fiorillo, A. S.; Vena, R.; Berdondini, A.; Bettuzzi, M.; Brancaccio, R.; Casali, F.; Morigi, M. P.; Bilokon, H.; Barca, G.; Castrovillari, F.; Siaka, Y. F. T.

    2009-12-01

    The technique of High Dose Rate Intra-Operative Radiation Therapy (HDR-IORT) consists in the delivery of irradiation immediately after the removal of a cancerous mass, where the same incision is used to focalize the radiation to the tumour bed. Given its particular characteristics, IORT requires dose measurements that are different from those requested in external radiotherapy treatments. The main reason lies in the fact that in this case a single high dose must be delivered to a target volume whose extension and depth will be determined directly during the operation. Because of this peculiar characteristics, until now there is not a dosimetric system able to detect the electron beam giving at once a realtime response and an extensive spatial measure of the absorbed dose. Within the framework of a research project of the INFN (Italian National Institute of Nuclear Physics), we proposed a new system to overcome the problems, Dosiort. The final set-up is a solid phantom having a density approximately 1 g/cm3 with sensitive layers of scintillating fibres at fixed positions in a calorimetric configuration for the containment of electrons of energy 4-12 MeV. The prototype will be able to define the physical and geometrical characteristics of the electron beam (energy, isotropy, homogeneity, etc) and to measure the parameters needed to select the energy, the intensity and the Monitor Units (MU) for the exposition: percentage Depth Dose; beam profiles; isodose curves; values of dose per MU. In this work we present the results obtained by using two orthogonal layers of the calorimetric phantom Dosiort, in particular we report the measurement of the dynamic range of the read-out system and the first qualitative study of the results which can be extracted from the measurements taken in a test beam.

  14. Energy correction factors of LiF powder TLDs irradiated in high-energy electron beams and applied to mailed dosimetry for quality assurance networks.

    Science.gov (United States)

    Marre, D; Ferreira, I H; Bridier, A; Björeland, A; Svensson, H; Dutreix, A; Chavaudra, J

    2000-12-01

    Absorbed dose determination with thermoluminescent dosimeters (TLDs) generally relies on calibration in 60Co gamma-ray reference beams. The energy correction factor fCo(E) for electron beams takes into account the difference between the response of the TLD in the beam of energy E and in the 60Co gamma-ray beam. In this work, fCo(E) was evaluated for an LiF powder irradiated in electron beams of 6 to 20 MeV (Varian 2300C/D) and 10 to 50 MeV (Racetrack MM50), and its variation with electron energy, TLD size and nature of the surrounding medium was also studied for LiF powder. The results have been applied to the ESTRO-EQUAL mailed dosimetry quality assurance network. Monte Carlo calculations (EGS4, PENELOPE) and experiments have been performed for the LiF powder (rho = 1.4 g cm3) (DTL937, Philitech, France), read on a home made reader and a PCL3 automatic reader (Fimel, France). The TLDs were calibrated using Fricke dosimetry and compared with three ionization chambers (NE2571, NACP02, ROOS). The combined uncertainties in the experimental fCo(E) factors determined in this work are less than about 0.4% (1 SD), which is appreciably smaller than the uncertainties up to 1.4% (1 SD) reported for other calculated values in the literature. Concerning the Varian 2300C/D beams, the measured fCo(E) values decrease from 1.065 to 1.049 +/- 0.004 (1 SD) when the energy at depth in water increases from 2.6 to 14.1 MeV; the agreement with Monte Carlo calculations is better than 0.5%. For the Racetrack MM50 pulsed-scanned beams, the average experimental value of fCo(E) is 1.071 +/- 0.005 (1 SD) for a mean electron energy at depth Ez ranging from 4.3 to 36.3 MeV: fCo(E) is up to 2% higher for the MM50 beams than for the 2300C/D beams in the range of the tested energies. The energy correction factor for LiF powder (3 mm diameter and 15 mm length) varies with beam quality and type (pulsed or pulsed-scanning), cavity size and nature of the surrounding medium. The fCo(E) values obtained

  15. Monte Carlo Study of the Dosimetry of Small-Photon Beams Using CMOS Active Pixel Sensors

    OpenAIRE

    Jimenez Spang, F.

    2014-01-01

    Stereotactic radiosurgery is an increasingly common treatment modality that uses very small photon fields. This technique imposes high dosimetric standards and complexities that remain unsolved. In this work the dosimetric performance of CMOS active pixel sensors is presented for the measurement of small-photons beams. A novel CMOS active pixel sensor called Vanilla developed for scientific applications was used. The detector is an array of 520 × 520 pixels on a 25 μm pitch which allows up to...

  16. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    Science.gov (United States)

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study. PMID:16475772

  17. Experience with E-beam process dosimetry at the Whiteshell irradiator

    International Nuclear Information System (INIS)

    Currently a quality assurance (QA) programme at the Whiteshell Irradiator is being established, designed to encompass the Good Manufacturing Practices regulations of the US Food and Drug Administration. The paper reports on preliminary experiences in implementing this programme. Robust devices are being developed that can measure on-line electron energy and current density by intercepting the electron beam. These measurements, combined with continuous automated recording of the operating parameters of the Whiteshell industrial electron accelerator I-10/1 (10 MeV, 1 kW) throughout the entire radiation process cycle, provide a high degree of assurance that all the product units receive the correct dose. Also, daily measurements of absorbed dose and electron energy with a standard irradiation geometry are used to demonstrate that the irradiator performance remains under control over long time of periods. To hold the surface dose constant during a production run, the speed of the conveyor in the beam path is slaved to the beam current to counteract fluctuations in the beam current. Dosimeters are presently calibrated in a Gamma-Cell 220 60Co irradiator manufactured by Nordion International, Canada. However, a graphite calorimeter is being developed as an in-house reverence standard for use in calibrating routine dosimeters in electron fields. Several types of products have been qualified at Whiteshell for processing with 10 MeV electrons: medical disposables, Petri dishes, sample bottles, and rubber/metal laminates. On occasion, substantiating dose-mapping results with computer modelling has been found to be helpful in qualifying the process. Experience at the Whiteshell Irradiator suggests that an effective QA programme is very relevant to radiation processing and must be an integral part of each electron radiation facility. (author). 4 refs, 4 figs

  18. Dosimetry of High-Energy Protons by Measurement of Beryllium-7 Formed in the Tissues

    International Nuclear Information System (INIS)

    In the course of biological experiments at the CERN cyclotron at Geneva (using 600 MeV protons) and the Saturne synchrotron at the Saclay Nuclear Studies Centre, the radioactivity induced in living beings was investigated by gamma-spectrography. Whereas most of the induced radioisotopes (gamma emitters) are short-lived, the beryllium-7 produced by spallation reactions on, in particular, oxygen, carbon and nitrogen atoms, has an activity peak which stands out abruptly from the spectrum as a whole at the 479-keV level. As its half-life is 54. 5 d, it can be recorded for a sufficiently long time. An experiment carried out with Whitsar rats given whole-body exposures of between 400 and 800 rad with 600-MeV protons and of 200 to 1000 rad with 3-GeV protons, disclosed a linear response of the Be7 activity in relation to the dose absorbed per gram of tissue. The authors compare their experimental results with the activities calculated in terms of energy on the basis of published cross-sections. The accidental exposure of human beings to proton beams can only be local. Exposure of the heads of Fauve de Bourgogne rabbits weighing approximately 2 kg show that the activity measured on the head, in relation to the rest of the body, is of the order of 1.8 ± 5. Be7 can be detected during the first days in spite of some diffusion. Relative dosimetry, indicating the scale of the accidental exposure received, is therefore possible. (author)

  19. Measurement accuracy and Cerenkov removal for high performance, high spatial resolution scintillation dosimetry

    International Nuclear Information System (INIS)

    With highly conformal radiation therapy techniques such as intensity-modulated radiation therapy, radiosurgery, and tomotherapy becoming more common in clinical practice, the use of these narrow beams requires a higher level of precision in quality assurance and dosimetry. Plastic scintillators with their water equivalence, energy independence, and dose rate linearity have been shown to possess excellent qualities that suit the most complex and demanding radiation therapy treatment plans. The primary disadvantage of plastic scintillators is the presence of Cerenkov radiation generated in the light guide, which results in an undesired stem effect. Several techniques have been proposed to minimize this effect. In this study, we compared three such techniques--background subtraction, simple filtering, and chromatic removal--in terms of reproducibility and dose accuracy as gauges of their ability to remove the Cerenkov stem effect from the dose signal. The dosimeter used in this study comprised a 6-mm3 plastic scintillating fiber probe, an optical fiber, and a color charge-coupled device camera. The whole system was shown to be linear and the total light collected by the camera was reproducible to within 0.31% for 5-s integration time. Background subtraction and chromatic removal were both found to be suitable for precise dose evaluation, with average absolute dose discrepancies of 0.52% and 0.67%, respectively, from ion chamber values. Background subtraction required two optical fibers, but chromatic removal used only one, thereby preventing possible measurement artifacts when a strong dose gradient was perpendicular to the optical fiber. Our findings showed that a plastic scintillation dosimeter could be made free of the effect of Cerenkov radiation

  20. A prototype compton camera for in-vivo dosimetry of ion beam cancer irradiation

    International Nuclear Information System (INIS)

    Three-dimensional in-vivo dose monitoring of ion beam cancer irradiation can improve the quality of treatment. For this purpose we investigate the feasibility of imaging the single photon emissions due to nuclear reactions of projectiles with target nuclei (in-beam SPECT). A suitable imaging technique in the energy range of the emitted gamma rays is the Compton camera. A prototype based on prior simulations is currently under construction. Te system comprises two CdZnTe cross-strip detectors with steering grid and depth-of-interaction capability and one segmented LSO scintillator crystal with modified Anger light readout. We present the concept of the system including the front-end and DAQ electronics as well as first measurements. (authors)

  1. A prototype compton camera for in-vivo dosimetry of ion beam cancer irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kormoll, T. [Technische Universitaet Dresden, OncoRay, PF 86, 013307 Dresden (Germany); Fiedler, F. [Helmholtzzentrum Dresden-Rossendorf, Inst. of Radiation Physics, PF 5103119, 013314 Dresden (Germany); Golnik, C. [Technische Universitaet Dresden, OncoRay, PF 86, 013307 Dresden (Germany); Heidel, K.; Kempe, M. [Helmholtzzentrum Dresden-Rossendorf, Inst. of Radiation Physics, PF 5103119, 013314 Dresden (Germany); Schoene, S.; Sobiella, M. [Helmholtzzentrum Dresden-Rossendorf, Inst. of Radiation Physics, PF 5103119, 013314 Dresden (Germany); Zuber, K. [Technische Universitaet Dresden, Inst. of Nuclear and Particle Physics, Zellescher Weg 19, 013069 Dresden (Germany); Enghardt, W. [Technische Universitaet Dresden, OncoRay, PF 86, 013307 Dresden (Germany); Helmholtzzentrum Dresden-Rossendorf, Inst. of Radiation Physics, PF 5103119, 013314 Dresden (Germany)

    2011-07-01

    Three-dimensional in-vivo dose monitoring of ion beam cancer irradiation can improve the quality of treatment. For this purpose we investigate the feasibility of imaging the single photon emissions due to nuclear reactions of projectiles with target nuclei (in-beam SPECT). A suitable imaging technique in the energy range of the emitted gamma rays is the Compton camera. A prototype based on prior simulations is currently under construction. Te system comprises two CdZnTe cross-strip detectors with steering grid and depth-of-interaction capability and one segmented LSO scintillator crystal with modified Anger light readout. We present the concept of the system including the front-end and DAQ electronics as well as first measurements. (authors)

  2. Why diamond dimensions and electrode geometry are crucial for small photon beam dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Marsolat, F.; Tromson, D.; Tranchant, N.; Pomorski, M.; Bergonzo, P. [CEA, LIST, Diamond Sensors Laboratory, 91191 Gif-sur-Yvette (France); Bassinet, C.; Huet, C. [IRSN, PRP-HOM/SDE/LDRI, 31 Av. de la Division Leclerc, 92260 Fontenay-aux-Roses (France); Derreumaux, S. [IRSN, PRP-HOM/SER/UEM, 31 Av. de la Division Leclerc, 92260 Fontenay-aux-Roses (France); Chea, M.; Cristina, K.; Boisserie, G. [Pitié Salpêtrière Hospital, 47-83 Blvd de l' Hôpital, 75013 Paris (France); Buchheit, I.; Marchesi, V. [Institut de Cancérologie de Lorraine, 6 Av. de Bourgogne, 54500 Vandoeuvre-lès-Nancy (France); Gaudaire-Josset, S.; Lisbona, A. [Institut de Cancérologie de l' Ouest, Blvd Prof. Jacques Monod, 44805 Saint-Herblain (France); Lazaro, D.; Hugon, R. [CEA, LIST, LM2S, 91191 Gif-sur-Yvette (France)

    2015-12-21

    Recent use of very small photon beams (down to 4 mm) in stereotactic radiotherapy requires new detectors to accurately determine the delivered dose. Diamond detectors have been presented in the literature as an attractive candidate for this application, due to their small detection volume and the diamond atomic number (Z = 6) which is close to water effective atomic number (Zeff ∼ 7.42). However, diamond exhibits a density 3.51 times greater than that of water and recent studies using Monte Carlo simulations have demonstrated the drawback of a high-density detector on small beam output factors. The current study focuses on geometrical parameters of diamond detector, namely, the diamond dimensions and the electrode geometry, in order to solve the dosimetric issues still observed in small photon beams with diamond detectors. To give better insights to these open questions, we have used both computational method and experimental analysis. This study highlighted that reducing diamond dimensions is crucial for small beam output factor measurements and to limit the influence of its high density. Furthermore, electrodes covering the whole diamond surface were essential for a dose rate independence of the diamond detector. The optimal dosimeter derived from this work presented small diamond dimensions of approximately 1 × 1 × 0.15 mm{sup 3}, with diamond-like-carbon electrodes covering the whole diamond surface. A dose rate independence of this diamond detector (better than 0.5% over a wide range of dose rates available on a stereotactic dedicated facility) was obtained due to the electrode geometry. Concerning the output factor measurements, a good agreement (better than 1.1%) was observed between this carbon material detector and two types of passive dosimeters (LiF microcubes and EBT2 radiochromic films) for all beam sizes except the smallest field of 0.6 × 0.6 cm{sup 2} with a deviation of 2.6%. This new study showed the high performance

  3. Topics under debate - The use of computerised glow curve analysis will optimise personal thermoluminescence dosimetry measurements

    International Nuclear Information System (INIS)

    Personal dosimetry is normally a regulated activity whose results must comply with established accuracy requirements. Although these requirements may not be extremely stringent, it is important to note that there are many factors influencing accuracy and therefore influencing results. These include the energy and angular dependence of dose equivalent response, signal reproducibility, stability and fading, along with other influence factors that tend to complicate the correct measurement of the low doses usually encountered in the monitoring of radiation workers. The statistical uncertainty associated with the measurement of dose equivalent in the workplace is dependent upon the reproducibility of the many conditions, and in the case of the readings produced by thermoluminescence (TL) dosemeters the analysis of the rather complex TL signals can be a source of uncertainty. Glow curve analysis may offer a method for reducing uncertainties, but it must be considered whether such an analysis can be accomplished in the context of a large scale worker dosimetry programme. (author)

  4. Analysis of patient specific dosimetry quality assurance measurements in intensity modulated radiotherapy: A multi centre study

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2014-01-01

    Conclusion: IMRT centers are having random and biased (skewed towards over or under dose distribution of the percentage variation in difference between measured and planned doses. The analysis of results of the IMRT pre-treatment dose verification reveals that there are systematic errors in the chain of IMRT treatment process at a few centers. The dosimetry quality audit prior to commissioning of IMRT may play an important role in avoiding such discrepancies.

  5. Spectrometry of linear energy transfer and dosimetry measurements onboard spacecrafts and aircrafts

    Czech Academy of Sciences Publication Activity Database

    Spurný, František; Ploc, Ondřej; Jadrníčková, Iva

    2009-01-01

    Roč. 6, č. 1 (2009), s. 70-77. ISSN 1547-4771 R&D Projects: GA MŠk 1P05OC032; GA ČR(CZ) GD202/05/H031 Grant ostatní: Evropské společenství(XE) ILSRA - 2004 - 248 Institutional research plan: CEZ:AV0Z10480505 Keywords : spectrometry * dosimetry * measurements Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  6. Overview of LHC Beam Loss Measurements

    CERN Document Server

    Dehning, B; Effinger, E; Emery, J; Fadakis, E; Holzer, E B; Jackson, S; Kruk, G; Kurfuerst, C; Marsili, A; Misiowiec, M; Nebot Del Busto, E; Nordt, A; Priebe, A; Roderick, C; Sapinski, M; Zamantzas, C; Grishin, V; Griesmayer, E

    2011-01-01

    The LHC beam loss monitoring system provides measurements with an update rate of 1 Hz and high time resolution data by event triggering. These informations are used for the initiation of beam aborts, fixed displays and the off line analysis. The analysis of fast and localized loss events resulted in the determination of its rate, duration, peak amplitudes, its scaling with intensity, number of bunches and beam energy. The calibration of the secondary shower beam loss signal in respect to the needed beam energy deposition to quench the magnet coil is addressed at 450GeV and 3.5T eV . The adjustment of collimators is checked my measuring the loss pattern and its variation in the collimation regions of the LHC. Loss pattern changes during a fill allow the observation of non typical fill parameters.

  7. Dosimetry of the low fouence fast neutron beams for boron neutron capture therapy

    International Nuclear Information System (INIS)

    For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, EIC-1 ion chambers manufactured by A-150 plastic and used IC-17M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was 5 cc per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and, there results were compared with measured results. The absorbed dose of fast neutron beams was 6.47 x 10-3 cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was 65.2±0.9% at the same depth. In the dose distribution according to the depth or water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, D20/DI0, of the total dose was 0.718. Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma

  8. LINAC4 low energy beam measurements

    CERN Document Server

    Hein, L M; Lallement, J B; Lombardi, A M; Midttun, O; Posocco, P; Scrivens, R

    2012-01-01

    Linac4 is a 160 MeV normal-conducting linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton Linac (Linac2) as linear injector for the CERN accelerators. The low energy part, comprising a 45 keV Low Energy Beam Transport system (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) is being assembled in a dedicated test stand for pre-commissioning with a proton beam. During 2011 extensive measurements were done after the source and after the LEBT with the aim of preparing the RFQ commissioning and validating the simulation tools, indispensable for future source upgrades. The measurements have been thoroughly simulated with a multi-particle code, including 2D magnetic field maps, error studies, steering studies and the generation of beam distribution from measurements. Emittance, acceptance and transmission measurements will be presented and compared to the results of the simulations.

  9. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  10. Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams

    DEFF Research Database (Denmark)

    Andersen, Claus Erik; Damkjær, Sidsel Marie Skov; Kertzscher Schwencke, Gustavo Adolfo Vladimir;

    2011-01-01

    Radioluminescence (RL) and optically stimulated luminescence (OSL) from carbon-doped aluminum oxide crystals can be used for medical dosimetry in external beam radiotherapy and remotely afterloaded brachytherapy. The RL/OSL signals are guided from the treatment room to the readout instrumentation...

  11. Cyberknife Relative Output Factor measurements using fiber-coupled luminescence, MOSFETS and RADPOS dosimetry system

    DEFF Research Database (Denmark)

    Ploquin, N.; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Vandervoort, E.;

    2012-01-01

    from 5 to 60 mm. ROFs were also measured using a mobileMOSFET system (Best Medical Canada) and EBT1 and EBT2 GAFCHROMIC® (ISP, Ashland) radiochromic films. For cone sizes 12.5–60 mm all detector results were in agreement within the measurement uncertainty. The microMOSFET/RADPOS measurements (published...... 0.865 ± 0.3% for 5, 7.5 and 10 mm cones. Our study shows that the microMOSFET/RADPOS and optical fiber‐coupled RL dosimetry system are well suited for Cyberknife cone output factors measurements over the entire range of field sizes, provided that appropriate correction factors are applied for the...

  12. Turbulence measurements using six lidar beams

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob

    2012-01-01

    components of the Reynolds stress tensor, which arises because, in a VAD scan the lidar beams are combined to obtain different components of the wind field. In this work we demonstrate theoretically, how the contamination by the cross components can be avoided by using the measured variances of the line......-of-sight velocities of six lidar beams. Under certain assumptions the volume averaging can then be avoided using the ensemble averaged line-ofsight Doppler velocity spectra. In this way, we can then in principle measure the true turbulence using six lidar beams....

  13. Ambient dose measurement and personal dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    The dose measurements reported were performed with TLD dosemeters consisting of two glass tubes filled with CaSO4:TM powder. The measurements were done around a positron emission tomograph, in a nuclear medicine outpatient department, and in a hospital (therapy with unsealed radioactive substances). The personal doses measured during the campaign reported did not exceed the range of radiation doses and its fluctuations due to natural radiation exposure of the population. (DG)

  14. Photon beam dosimetry with EBT3 film in heterogeneous regions: application to the evaluation of dose-calculation algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyunuk; Han, Youngyih [Sungkyunkwan University, Seoul (Korea, Republic of); Kum, Oyeon [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Park, Byungdo [Samsung Changwon Hospital, Changwon (Korea, Republic of); Sungkyunkwan University, Changwon (Korea, Republic of); Cheong, Kwangho [Hallym University, Anyang (Korea, Republic of)

    2014-12-15

    For a better understanding of the accuracy of state-of-the-art-radiation therapies, 2-dimensional dosimetry in a patient-like environment will be helpful. Therefore, the dosimetry of EBT3 films in non-water-equivalent tissues was investigated, and the accuracy of commercially-used dose calculation algorithms was evaluated with EBT3 measurement. Dose distributions were measured with EBT3 films for an in-house-designed phantom that contained a lung or a bone substitute, i.e., an air cavity (3 x 3 x 3 cm{sup 3}) or teflon (2 x 2 x 2 cm{sup 3} or 3 x 3 x 3 cm{sup 3}), respectively. The phantom was irradiated with 6-MV X-rays with field sizes of 2 x 2, 3 x 3, and 5 x 5 cm{sup 2}. The accuracy of EBT3 dosimetry was evaluated by comparing the measured dose with the dose obtained from Monte Carlo (MC) simulations. A dose-to-bone-equivalent material was obtained by multiplying the EBT3 measurements by the stopping power ratio (SPR). The EBT3 measurements were then compared with the predictions from four algorithms: Monte Carlo (MC) in 0iPlan, acuros XB (AXB), analytical anisotropic algorithm (AAA) in Eclipse, and superposition-convolution (SC) in Pinnacle. For the air cavity, the EBT3 measurements agreed with the MC calculation to within 2% on average. For teflon, the EBT3 measurements differed by 9.297% (±0.9229%) on average from the Monte Carlo calculation before dose conversion, and by 0.717% (±0.6546%) after applying the SPR. The doses calculated by using the MC, AXB, AAA, and SC algorithms for the air cavity differed from the EBT3 measurements on average by 2.174, 2.863, 18.01, and 8.391%, respectively; for teflon, the average differences were 3.447, 4.113, 7.589, and 5.102%. The EBT3 measurements corrected with the SPR agreed with 2% on average both within and beyond the heterogeneities with MC results, thereby indicating that EBT3 dosimetry can be used in heterogeneous media. The MC and the AXB dose calculation algorithms exhibited clinically-acceptable accuracy

  15. Clinical characterization of OSL dosimeters for use in dosimetry of teletherapy beams in conventional fractionation

    International Nuclear Information System (INIS)

    Optically stimulated materials are increasingly used for dosimetry in clinical settings; to be sure of the obtained reading their proper clinical characterization is necessary. Is important to know the homogeneity of a batch, reproducibility, be exposed to the same conditions of irradiation repeatedly and other dependences that could present such as energy, angular, the type of radiation which are exposed and the dose deposited in them. For characterization they were designed and implemented tests for each of the factors of interest, taking into account the need for them (calculations, manufacture of mannequins, conditions, practicality, etc.) It was shown that we can apply this dosimetry in clinical practice within a radiotherapy center, relying on the readings and practicality. (Author)

  16. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Rydhög, J. S.; Søndergaard, Rikke Vicki;

    2016-01-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver......, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy...

  17. Study of the response of phenol compounds exposed to thermal neutrons beams for Electron Paramagnetic Resonance dosimetry

    International Nuclear Information System (INIS)

    This paper reports the results regarding a new organic compound (IRGANOX® 1076 phenols) with and without low content (5% by weight) of gadolinium oxide (Gd2O3) for Electron Paramagnetic Resonance (EPR) dosimetry of neutron beams. The dependence of EPR signal as function of neutron dose was investigated in the fluence range studied between 1011 cm−2 to 1014 cm−2. We evaluated also the effect of gadolinium on 60Co gamma photon sensitivity of this organic compound. Our analysis showed that a low concentration of gadolinium oxide (of the order of 5% of the total mass of the dosimeter) can enhance the thermal neutron sensitivity more than 10 times with a small reduction of photon tissue equivalence. The free radicals produced after irradiation of photons and neutrons are stable for more than first 300 h after irradiation. The presence of additives does not substantially modify the fading of the EPR signal induced by photons and neutrons in the first 15 days after exposure. - Highlights: • Linearity of the EPR response of phenol compound with gadolinium exposed to photons. • Linearity of the EPR response of phenol compound with and without gadolinium exposed to neutrons. • Stability of the signal in the first 300 h after irradiations. • Possibility of using this material for EPR dosimetry

  18. Nuclear accident dosimetry: Los Alamos measurements at the seventeenth nuclear accident dosimetry intercomparison study at the Oak Ridge National Lab., DOSAR Facility, August 1980

    International Nuclear Information System (INIS)

    Teams from various US and foreign organizations participated in the Seventeenth Nuclear Accident Dosimetry Study held at the Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research (DOSAR) facility August 11 to 15, 1980. Criticality dosimeters were simultaneously exposed to pulses of mixed neutron and gamma radiation from the Health Physics Research Reactor (HPRR). This report summarizes the experimental work conducted by the Los Alamos team. In-air and phantom measurements were conducted by the Los Alamos team using area and personnel dosimeters. Combined blood sodium and sulfur fluence measurements of absorbed dose were also made. In addition, indium foils placed on phantoms were evaluated for the purpose of screening personnel for radiation exposure. All measurements were conducted for unshielded, 5-cm steel and 20-cm concrete shielding configurations. All participant dosimeters were exposed at 3 m from the center of the HPRR core

  19. Measuring emittance using beam position monitors

    International Nuclear Information System (INIS)

    The Los Alamos Advanced Free Electron Laser uses a high charge (greater than InC), low emittance (normalized rams emittance less than 5π mm mrad) photoinjector driven accelerator. The high brightness achieved is due, in large part, to the rapid acceleration of the electrons to relativistic velocities. As a result, the beam does not have time to thermalize its distribution and its universe profile is, in general, non-Gaussian. This, coupled with the very high brightness, makes it difficult to measure the transverse emittance. Techniques used must be able to withstand the rigors of very intense electron beams, and not be reliant on Gaussian assumptions. Beam position monitors are ideal for this. They are not susceptible to beam damage, and it has been shown previously that they can be used to measure the transverse emittance of a beam with a Gaussian profile. However, this Gaussian restriction is not necessary and, in fact, a transverse emittance measurement using beam position monitors is independent of the beam's distribution

  20. Deformable and posture-changeable computational phantoms and dosimetry data for standard external-beam irradiations

    International Nuclear Information System (INIS)

    For many radiation dosimetry studies, whole-body phantoms representing workers and patients are used to perform Monte Carlo calculations of organ doses. Since the 1960's, approximately 121 computational phantoms have been reported in the literatures for studies involving ionizing and non-ionizing radiations. There is a barrier currently in developing and in applying person-specific phantoms that are anatomically different from the ICRP reference individuals. We recently adopted the novel-surface modeling method to systematically design a set of pregnant female phantoms by manual work. Now, the automatically algorithm has been systematically developed to develop computational human phantom by all mesh-based organ files. Using this approach we have now developed a pair of mesh-based adult phantoms, RPI-AM and RP1-AF, representing ICRP 89 50.-percentile adult males and adult females. A software has also been developed to develop the phantoms representing different percentile populations and different postures based on this pair of phantoms. The absorbed organ dose results for the external photon exposures using this pair of phantoms were calculated and compared with the ICRP Phantoms. These results demonstrated that, although both sets of phantoms have the same organ volumes and masses, the anatomical differences can cause to dosimetry differences in terms of the effective doses as well as organ absorbed doses. The posture-changing ability has potential applications in many areas of radiation dosimetry. (authors)

  1. Neutron dosimetry and spectral measurements in PWR containment

    International Nuclear Information System (INIS)

    The neutron spectra and absorbed dose rates in reactor containment were measured. These measurements were related to personnel dosimeter response and measurements taken with the neutron monitoring instruments at the nuclear plants. Two different systems were used to measure the neutron spectra. One system, called the multisphere or Bonner shpere system, was composed of 6LiI detector which was placed inside a set of polyethylene spheres of various sizes. The multisphere system is a low resolution system which estimates the spectrum over the full range of neutron energies. The other spectrometer system was composed of a 3He proportional counter filled to 4 psi 3He and 26 psi argon. These 3He counters have a relatively high resolution (2.5 to 3.0%) but cover the more restricted energy range from about 30 keV to > 1 MeV. A pulse shape discrimination system was used to help minimize interference from 3He recoil reactions. A tissue equivalent proportional counter system was used for absorbed dose measurements. Because of the relatively low dose rates at many of the work locations in containment, a 5''-diameter spherical counter was used for most of these measurements. In areas of relatively high dose rate a 2'' spherical counter was used. Measurements were also taken with portable neutron monitoring instruments to determine the accuracy of these devices compared to the more sophisticated sytems. Finally, several types of personnel neutron dosimeters were exposed at all the selected work locations and their responses evaluated in terms of a calibration exposure to unmoderated neutrons. (In most cases a bare 252Cf neutron source.) Measurement locations were selected to represent typical work locations during entries at full power. All measurements for this study were conducted with the reactors at or near 100% power. Usually, at least 8 allocations were selected for spectrum and dose measurements

  2. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G. [Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Singh, P. [Bhabha Atomic Research Centre, Mumbai (India)

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  3. Walking beam pumping unit system efficiency measurements

    International Nuclear Information System (INIS)

    The cost of electricity used by walking beam pumping units is a major expense in producing crude oil. However, only very limited information is available on the efficiency of beam pumping systems and less is known about the efficiency of the various components of the pumping units. This paper presents and discusses measurements that have been made on wells at several Shell locations and on a specially designed walking beam pump test stand at Lufkin Industries. These measurements were made in order to determine the overall system efficiency and efficiency of individual components. The results of this work show that the overall beam pumping system efficiency is normally between 48 and 58 percent. This is primarily dependent on the motor size, motor type, gearbox size, system's age, production, pump size, tubing size, and rod sizes

  4. TFTR neutral beam injected power measurement

    International Nuclear Information System (INIS)

    Energy flow within TFTR neutral beamlines is measured with a waterflow calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source on the well-instrumented test stand, 99.5±3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12 degree, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations in the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water

  5. SU‐C‐105‐05: Reference Dosimetry of High‐Energy Electron Beams with a Farmer‐Type Ionization Chamber

    International Nuclear Information System (INIS)

    Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber in high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R50) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols

  6. Dosimetry, measurement and properties of radon daughters and thoron daughters

    International Nuclear Information System (INIS)

    Various properties of radon and thoron daughter products are examined. Dosimeter methods and instrumentation (TLD and personal alpha dosimeters) are investigated as to performance under varying conditions such as humidity and pure or mixed atmospheric conditions. Optimized counting schemes are determined for the daughters of radon and thoron. An optimized counting scheme was experimentally examined under mine conditions. The optimization procedure takes into account the uncertainties associated with concentration, flow rate and radioactive decay. Measurements were made in two uranium mines at Elliot Lake, Ontario of the charged and unattached fractions of radon daughters in the mines. The physicochemical state of 218Po in air was determined by measurement of rate of neutralization, diffusion coefficient and fraction born charge. Careful control of experimental conditions made it possible to obtain more precise and detailed quantitative data than previously possible

  7. Monte Carlo investigation into feasibility and dosimetry of flat flattening filter free beams

    Science.gov (United States)

    Zavgorodni, Sergei

    2013-11-01

    Flattening filter free (FFF) beams due to their non-uniformity, are sub-optimal for larger field sizes. The purpose of this study was to investigate the incident electron beam distributions that would produce flat FFF (F4) beams without the use of a flattening filter (FF). Monte Carlo (MC) simulations with BEAMnrc and DOSXYZnrc codes have been performed to evaluate feasibility of this approach. The dose distributions in water for open 6 MV beams were simulated using the Varian 21EX linac head model, which will be called the FF model. The FF was then removed from the FF model, and MC simulations were performed using (1) 6 MeV electrons incident on the target and (2) a 6 MeV electron beam with electron angular distributions optimized to provide as flat dose profiles as possible. Configuration (1) represents FFF beam while configuration (2) allowed producing a F4 beam. Optimizations have also been performed to produce flattest profiles for a set of dose rates (DRs) in the range from 1.25 to 2.4 of the DR of FF beam. Profiles and percentage depth doses (PDDs) from 6 MV F4 beams have been calculated and compared to those from the FF beam. Calculated profiles demonstrated improved flatness of the FFF beams. In fact, up to field sizes within the circle of 35 cm diameter the flatness of F4 beam at dmax was better or comparable to that of FF beam. At 20 cm off-axis the dose increased from 52% for FFF to 92% for F4 beam. Also, profiles of F4 beams did not change considerably with depth. PDDs from F4 beams were similar to those of the FFF beam. The DR for the largest modeled (44 cm diameter) F4 beam was higher than the DR from FF beam by a factor of 1.25. It was shown that the DR can be increased while maintaining beam flatness, but at the cost of reduced field size.

  8. Time-resolved optically stimulated luminescence of Al2O3:C for ion beam therapy dosimetry.

    Science.gov (United States)

    Yukihara, Eduardo G; Doull, Brandon A; Ahmed, Md; Brons, Stephan; Tessonnier, Thomas; Jäkel, Oliver; Greilich, Steffen

    2015-09-01

    The objective of this study was to characterize the time-resolved (TR) optically stimulated luminescence (OSL) from Al2O3:C detectors and investigate methodologies to improve the accuracy of these detectors in ion beam therapy dosimetry, addressing the reduction in relative response to high linear energy transfer (LET) particles common to solid-state detectors. Al2O3:C OSL detectors (OSLDs) were exposed to proton, (4)He, (12)C and (16)O beams in 22 particle/energy combinations and read using a custom-built TR-OSL reader. The OSL response rOSL, relative to (60)Co gamma dose to water, and the ratio between the UV and blue OSL emission bands of Al2O3:C (UV/blue ratio) were determined as a function of the LET. Monte-Carlo simulations with the multi-purpose interaction and transport code FLUKA were used to estimate the absorbed doses and particle energy spectra in the different irradiation conditions. The OSL responses rOSL varied from 0.980 (0.73 keV μm(-1)) to 0.288 (120.8 keV μm(-1)). The OSL UV/blue ratio varied by a factor of two in the investigated LET range, but the variation for (12)C beams was only 11%. OSLDs were also irradiated at different depths of carbon ion spread-out Bragg peaks (SOBPs), where it was shown that doses could be obtained with an accuracy of ± 2.0% at the entrance channel and within the SOBP using correction factors calculated based on the OSL responses obtained in this study. The UV/blue ratio did not allow accurate estimation of the dose-averaged LET for (12)C SOBPs, although the values obtained can be explained with the data obtained in this study and the additional information provided by the Monte-Carlo simulations. The results demonstrate that accurate OSLD dosimetry can be performed in ion beam therapy using appropriate corrections for the OSL response. PMID:26270884

  9. A scintillating gas detector for 2D dose measurements in clinical carbon beams

    International Nuclear Information System (INIS)

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies

  10. A scintillating gas detector for 2D dose measurements in clinical carbon beams

    Science.gov (United States)

    Seravalli, E.; de Boer, M.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.; Voss, B.

    2008-09-01

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  11. Dosimetry standards

    International Nuclear Information System (INIS)

    The following leaflets are contained in this folder concerning the National Physical Laboratory's measurement services available in relation to dosimetry standards: Primary standards of X-ray exposure and X-ray irradiation facilities, X-ray dosimetry at therapy levels, Protection-level X-ray calibrations, Therapy-level gamma-ray facility, Fricke dosemeter reference service, Low-dose-rate gamma-ray facility, Penetrameter and kV meter calibration, Measurement services for radiation processing, Dichromate dosemeter reference service, Electron linear accelerator. (U.K.)

  12. Evaluation on the effect of dosimetry using a depth of calibration point or a depth of temporary dose maximum in high energy electron beams

    International Nuclear Information System (INIS)

    The Japan Society of Medical Physics (JSMP) has published a new dosimetry protocol ''JSMP-01'' for the calibration of radiotherapy beams. This protocol provides a new definition of the calibration point (depth) in order to obtain the absorbed dose at a reference point (Dr) by the calculation in high energy electron beams. This study evaluated the difference in the absorbed dose at the depth dose maximum (Ddmax) and Dr calculated from the absorbed dose at the calibration point. Further, the difference in the absorbed dose (Ddmax) at ''measured maximum depth (dmax)'' was evaluated using ''temporary maximum depth (dmax*)''. In the experiment at a depth interval of 0.1 g cm2, no difference was observed between Ddmax and Dr. However, in the experiment at a depth interval of 0.3 g cm-2 the differences between Ddmax and Dr increased to 6.4% and 5.2% at 4 MeV and 6 MeV, respectively. Subsequently, at all energy levels the difference between Ddmax and Dr of all energy was more than 3% at a depth interval of 0.4 g cm-2. The differences between Ddmax and Ddmax* were 2.68% and 4.50% at 6 MeV and 9 MeV, respectively, for this depth interval. (author)

  13. Development of a diamond dosimeter for measuring the absorbed dose in small beams used in stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Stereotactic radiotherapy is a relatively recent technique used for the treatment of small benign and malignant tumors with small radiation beams. The clinical efficiency of this technique has been proved. However, the measurement of absolute and relative dose in small beams is not possible currently due to the lack of suited detectors for these measurements. In small beam dosimetry, the detector has to be as close as possible to tissue equivalence and exhibit a small detection volume due to the lack of lateral electronic equilibrium. Characteristics of diamond (water equivalent material Z=6, high density) make it an ideal candidate to fulfil most of small beam dosimetry requirements. In this thesis, we developed a dosimeter prototype for small beams, based on CVD synthetic single crystal diamond. The diamond samples were characterized optically and their detection properties were investigated under X-rays and alpha-particles. First diamond dosimeter prototypes were tested with small beams produced by several stereotactic machines. Studies using Monte Carlo simulations were performed in order to optimize the parameters involved in the detector response in small beams. This leaded to a final diamond dosimeter prototype that respects all radiotherapy centers requirements, in both standard and small beams. (author)

  14. Analysis of the power system from an electron beam accelerator and the correlation with the theoretical dosimetry for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir Luiz; Somessari, Elizabeth S. Ribeiro; Silveira, Carlos Gaia da; Calvo, Wilson Aparecido Parejo, E-mail: somessar@ipen.br, E-mail: esomessa@ipen.br, E-mail: cgsilvei@ipen.br, E-mail: wapcalvo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiation Technology Center at IPEN/CNEN-SP to simulate the energy efficiency of this industrial accelerator. Finally, it is also targeted to compare theoretical dosimetry using parameters of energy and beam current with data from the accelerator power system. This knowledge and technology will be very useful and essential for the control system upgrade of EBA, mainly Dynamitron DC1500/25/04, in view that radiation processing technology for industrial and environmental applications has been developed and used worldwide. (author)

  15. Analysis of the power system from an electron beam accelerator and the correlation with the theoretical dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Radiation Technology Center at IPEN/CNEN-SP to simulate the energy efficiency of this industrial accelerator. Finally, it is also targeted to compare theoretical dosimetry using parameters of energy and beam current with data from the accelerator power system. This knowledge and technology will be very useful and essential for the control system upgrade of EBA, mainly Dynamitron DC1500/25/04, in view that radiation processing technology for industrial and environmental applications has been developed and used worldwide. (author)

  16. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Farah, J., E-mail: jad.farah@irsn.fr; Trompier, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l’Homme, BP17, Fontenay-aux-Roses 92260 (France); Mares, V.; Schinner, K.; Wielunski, M. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764 (Germany); Romero-Expósito, M.; Domingo, C. [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra E-08193 (Spain); Trinkl, S. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764, Germany and Physik-Department, Technische Universität München, Garching 85748 (Germany); Dufek, V. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and National Radiation Protection Institute, Bartoškova 28, Prague 140 00 (Czech Republic); Klodowska, M.; Liszka, M.; Stolarczyk, L.; Olko, P. [Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow 31-342 (Poland); Kubancak, J. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and Department of Radiation Dosimetry, Nuclear Physics Institute, Řež CZ-250 68 (Czech Republic); and others

    2015-05-15

    Purpose: To characterize stray radiation around the target volume in scanning proton therapy and study the performance of active neutron monitors. Methods: Working Group 9 of the European Radiation Dosimetry Group (EURADOS WG9—Radiation protection in medicine) carried out a large measurement campaign at the Trento Centro di Protonterapia (Trento, Italy) in order to determine the neutron spectra near the patient using two extended-range Bonner sphere spectrometry (BSS) systems. In addition, the work focused on acknowledging the performance of different commercial active dosimetry systems when measuring neutron ambient dose equivalents, H{sup ∗}(10), at several positions inside (8 positions) and outside (3 positions) the treatment room. Detectors included three TEPCs—tissue equivalent proportional counters (Hawk type from Far West Technology, Inc.) and six rem-counters (WENDI-II, LB 6411, RadEye™ NL, a regular and an extended-range NM2B). Meanwhile, the photon component of stray radiation was deduced from the low-lineal energy transfer part of TEPC spectra or measured using a Thermo Scientific™ FH-40G survey meter. Experiments involved a water tank phantom (60 × 30 × 30 cm{sup 3}) representing the patient that was uniformly irradiated using a 3 mm spot diameter proton pencil beam with 10 cm modulation width, 19.95 cm distal beam range, and 10 × 10 cm{sup 2} field size. Results: Neutron spectrometry around the target volume showed two main components at the thermal and fast energy ranges. The study also revealed the large dependence of the energy distribution of neutrons, and consequently of out-of-field doses, on the primary beam direction (directional emission of intranuclear cascade neutrons) and energy (spectral composition of secondary neutrons). In addition, neutron mapping within the facility was conducted and showed the highest H{sup ∗}(10) value of ∼51 μSv Gy{sup −1}; this was measured at 1.15 m along the beam axis. H{sup ∗}(10) values

  17. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems

    International Nuclear Information System (INIS)

    Purpose: To characterize stray radiation around the target volume in scanning proton therapy and study the performance of active neutron monitors. Methods: Working Group 9 of the European Radiation Dosimetry Group (EURADOS WG9—Radiation protection in medicine) carried out a large measurement campaign at the Trento Centro di Protonterapia (Trento, Italy) in order to determine the neutron spectra near the patient using two extended-range Bonner sphere spectrometry (BSS) systems. In addition, the work focused on acknowledging the performance of different commercial active dosimetry systems when measuring neutron ambient dose equivalents, H∗(10), at several positions inside (8 positions) and outside (3 positions) the treatment room. Detectors included three TEPCs—tissue equivalent proportional counters (Hawk type from Far West Technology, Inc.) and six rem-counters (WENDI-II, LB 6411, RadEye™ NL, a regular and an extended-range NM2B). Meanwhile, the photon component of stray radiation was deduced from the low-lineal energy transfer part of TEPC spectra or measured using a Thermo Scientific™ FH-40G survey meter. Experiments involved a water tank phantom (60 × 30 × 30 cm3) representing the patient that was uniformly irradiated using a 3 mm spot diameter proton pencil beam with 10 cm modulation width, 19.95 cm distal beam range, and 10 × 10 cm2 field size. Results: Neutron spectrometry around the target volume showed two main components at the thermal and fast energy ranges. The study also revealed the large dependence of the energy distribution of neutrons, and consequently of out-of-field doses, on the primary beam direction (directional emission of intranuclear cascade neutrons) and energy (spectral composition of secondary neutrons). In addition, neutron mapping within the facility was conducted and showed the highest H∗(10) value of ∼51 μSv Gy−1; this was measured at 1.15 m along the beam axis. H∗(10) values significantly decreased with distance

  18. Comparison between thermoluminiscence dosimetry and transmission ionization chamber measurements

    International Nuclear Information System (INIS)

    Radiofrequency catheter ablation is an effective option to treat life-threatening arrhythmias. Among the risks of this type of procedure are the high radiation doses to patients. The major concern for monitoring of doses has been related to skin damage. Skin dose can be measured directly with thermoluminescence dosimeters (TLDs) or can be determined from the dose-area product (DAP). In this work these two different methods are discussed. The radiation doses have been estimated in more than 20 patients with the two types of monitoring. In order to find the location of the maximum dose from the procedure with TLDs, dosimeter arrays can be placed on the patient. Unfortunately TLDs do not allow immediate feedback to the fluoroscopist. They require a fair amount of handling, calibrating, processing and annealing. On the other hand, the DAP provides immediate feedback of the cumulative dose. To obtain the skin dose from DAP the area of the radiation field on the skin must be determined, and it is necessary to correct the result by a factor that includes the variation of geometry during the procedure. Nevertheless, these and other factors can lead to significant errors in dose estimation. (author)

  19. Evaluation of the response of thermoluminescent detectors in clinical beams dosimetry using different phantoms; Avaliacao da resposta de detectores termoluminescentes na dosimetria de feixes clinicos utilizando diferentes objetos simuladores

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Luciana Cardoso

    2010-07-01

    Radiotherapy is one of the three principal treatment modalities used in the treatment of malignant diseases such as cancer, the other two are chemotherapy and radiosurgery. In contrast to other medical specialties that rely mainly on the clinical knowledge and experience of medical specialists, radiotherapy, with its use of ionizing radiation in treatment of cancer, relies heavily on modern technology and the collaborative efforts of several professionals whose coordinated team approach greatly influences the outcome of the treatment. In the area of clinical dosimetry, an efficient and accurate calibration of the radiation beam ensures knowledge of the radiation dose delivered to the patient, allowing thus the success of radiotherapy. This study aims to compare the thermoluminescent response of calcium sulfate doped with dysprosium (CaSO{sub 4}:Dy) dosimeters produced by IPEN (6 mm in diameter and 0,8 mm tick) with the response of lithium fluoride (3,15 x 3,15 x 0,9 mm{sup 3}) doped with magnesium and titanium (LiF:Mg,Ti) in dosimetry of clinical photons (6 and 15 MV) and electrons beams (6 and 9 MeV) using solid water (RMI-457), water and PMMA phantoms. Initially, the dose-response curves were obtained for irradiation in cobalt-60 gamma radiation source in air (PMMA plates) and under electronic equilibrium conditions and for clinical electrons and photons beams at depth of maximum dose. The sensitivities of the thermoluminescent dosimeters were also evaluated and the values of their reproducibilities and intrinsic efficiency were determined for the response to different types of phantoms and radiation energy. The obtained results indicate that the main advantage of CaSO{sub 4}:Dy dosimeters is the enhanced sensitivity to radiation doses measured for {sup 60}Co, photons and electrons beams, thus representing a viable alternative for application in dosimetry in the radiotherapy area. (author)

  20. Dosimetry of cone beam computed tomography scanning for diagnosis and planning in implant dentistry

    International Nuclear Information System (INIS)

    Full text: The radiation dose and estimate the radiation induced risk of cancer and morpho functional alterations according to BEIR VII (2006) and recommendations of the ICRP 103 (2007) were measured in cone beam computed tomography (CBCT) scanning (Tc Kodak 9000C 3D) in different oral and maxillofacial regions for diagnosis and planning in implant dentistry for each examination protocol: jaw full, maxilla full and jaw and maxilla full associated. Thermoluminescent dosimeters (TLD- 100 H) were placed in an Alderson-Rando in regions corresponding to the crystalline, parotid, submandibular and thyroid glands and ovaries. The highest values for entrance skin dose were observed in the region of the parotid and submandibular glands, 9.612 mGy to 7.912 mGy and 8.818 mGy to 0.483 mGy, respectively. All examination protocols presented on the right and left sides in the region of the submandibular gland the highest values for absorbed dose (D). In the jaw full exam the thyroid glands on both sides presented highest dose values than maxilla full exam. This study allowed measuring the entrance skin dose and the absorbed dose (D) highlighting a dosimetric preponderance to the salivary glands. With danger of to radiation that induces cancer risk was observed that the age group most likely to have to risk of cancer was 20 years, compared to 30, 40, 50, 60,70 and 80 years. (Author)

  1. Dosimetry of cone beam computed tomography scanning for diagnosis and planning in implant dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Santos Pinto de A, E. L.; Manzi, F. R.; Goncalves Z, E. [Pontifical Catholic University of Minas Gerais, Av. Jose Gaspar 500, 30535-901 Belo Horizonte, Minas Gerais (Brazil); Nogueira, M. S.; Fernandes Z, M. A., E-mail: madelon@cdtn.br [Development Center of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Full text: The radiation dose and estimate the radiation induced risk of cancer and morpho functional alterations according to BEIR VII (2006) and recommendations of the ICRP 103 (2007) were measured in cone beam computed tomography (CBCT) scanning (Tc Kodak 9000C 3D) in different oral and maxillofacial regions for diagnosis and planning in implant dentistry for each examination protocol: jaw full, maxilla full and jaw and maxilla full associated. Thermoluminescent dosimeters (TLD- 100 H) were placed in an Alderson-Rando in regions corresponding to the crystalline, parotid, submandibular and thyroid glands and ovaries. The highest values for entrance skin dose were observed in the region of the parotid and submandibular glands, 9.612 mGy to 7.912 mGy and 8.818 mGy to 0.483 mGy, respectively. All examination protocols presented on the right and left sides in the region of the submandibular gland the highest values for absorbed dose (D). In the jaw full exam the thyroid glands on both sides presented highest dose values than maxilla full exam. This study allowed measuring the entrance skin dose and the absorbed dose (D) highlighting a dosimetric preponderance to the salivary glands. With danger of to radiation that induces cancer risk was observed that the age group most likely to have to risk of cancer was 20 years, compared to 30, 40, 50, 60,70 and 80 years. (Author)

  2. Electron-beam diagnostic for space-charge measurement of an ion beam

    OpenAIRE

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2003-01-01

    An electron beam diagnostic system for measuring the charge distribution of an ion beam without changing its properties is presently under development for Heavy Ion Fusion (HIF) beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but these capture it, or significantly alter its properties. In this new diagnostic a low energy, low current electron beam is scanned transversely across the ion beam; the measured electron beam deflection is use...

  3. Alanine - ESR dosimetry, feasibility and possible applications

    International Nuclear Information System (INIS)

    Alanine ESR dosimetry presents a great interest for quality controls in radiotherapy. This new developed water equivalent alanine dosimeter allows a reproducible dose measurement, by a non-destructive readout technique in a large dose range. In this paper the stability of the dosimeter response has been shown but also its independence with the energy or the dose rate of the absorbed radiation. Through this different studies, one can broaden the application field of alanine / ESR dosimetry especially for in-vivo dosimetry. The results of the experiments and the intra operative treatment, indicate that this kind of dosimetry seems to be a promising technique for in-vivo quality controls in electron beam, γ ray or X ray radiotherapy. (authors)

  4. Spectrometry of linear energy transfer and dosimetry measurements on board space-and aircrafts

    Czech Academy of Sciences Publication Activity Database

    Spurný, František; Ploc, Ondřej; Jadrníčková, Iva

    2009-01-01

    Roč. 6, č. 1 (2009), s. 113-123. ISSN 1814-5957 R&D Projects: GA ČR GA202/04/0795; GA AV ČR KSK2067107 Grant ostatní: Evropské společenství(XE) FIGM-CT2000-00068; Evropské společenství(XE) ILSRA Institutional research plan: CEZ:AV0Z10480505 Keywords : spectrometry of linear energy transfer * dosimetry measurements * detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  5. The measuring and modelling of strontium-90: an integrated retrospective dosimetry issue

    International Nuclear Information System (INIS)

    Dose reconstruction for internal exposure is generally structured on a paradigm of release-transport-intake-uptake-dose. In some cases when it is necessary to reconstruct individual dose for the long time after intake and historical information on the releases is limited, bioassay measurements can be used for retrospective dosimetry of long-lived radionuclides with long biological residence times. Internal dose is related to the time integral of the body burden, therefore, individual measurements of body burden, metabolic model and some general suggestions on intake pattern are three necessary parts for dose reconstruction process in such cases. 90Sr is long-lived bone-seeking radionuclide with a long biological residence time in the body. The world list of data on strontium in man was restricted to a few experimental findings with a single intake, information on global fallout and the measurements of dial painters. A large multitude of measurements of 90Sr in human body for the residents of the Techa river (Southern Urals, Russia) contaminated by fission products in 1949-1956 has been published in open literature only recently (Kozheurov, 1994; Degteva et al., 1994). The necessity of dose reconstruction from long-lived radionuclides for the population living on the territories contaminated as a result of Chernobyl Accident calls the utilization of the Urals experience to optimize the efforts. An analysis of a unique and abundant Urals data set on strontium in humans presents also a great interest for general purposes of retrospective dosimetry. (author)

  6. AAPM protocol for 40-300 kV x-ray beam dosimetry in radiotherapy and radiobiology

    International Nuclear Information System (INIS)

    The American Association of Physicists in Medicine (AAPM) presents a new protocol, developed by the Radiation Therapy Committee Task Group 61, for reference dosimetry of low- and medium-energy x rays for radiotherapy and radiobiology (40 kV≤tube potential≤300 kV). It is based on ionization chambers calibrated in air in terms of air kerma. If the point of interest is at or close to the surface, one unified approach over the entire energy range shall be used to determine absorbed dose to water at the surface of a water phantom based on an in-air measurement (the 'in-air' method). If the point of interest is at a depth, an in-water measurement at a depth of 2 cm shall be used for tube potentials ≥100 kV (the 'in-phantom' method). The in-phantom method is not recommended for tube potentials <100 kV. Guidelines are provided to determine the dose at other points in water and the dose at the surface of other biological materials of interest. The protocol is based on an up-to-date data set of basic dosimetry parameters, which produce consistent dose values for the two methods recommended. Estimates of uncertainties on the final dose values are also presented

  7. Evaluation of the vidar`s VXR-12 digitizer performances for film dosimetry of beams delimited by multileaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Julia, F. [Centre de Lutte Contre le Cancer Gustave-Roussy, 94 - Villejuif (France); Briot, E.

    1995-12-01

    The development of new irradiation techniques such as conformal radiotherapy increasingly implies the use of a multileaf collimator. The measurement of dose gradients in the penumbra region, and of dose distributions at the edge of complex shaped fields defined by multileaf collimators requires a high definition dosimetric method. Nowadays film digitizers have been notably improved and allow the film dosimetry to be faster, more accurate, presenting a sensitivity and high spatial resolution. To be able to perform the study of physical and dosimetric specifications of a multileaf collimator, we have evaluated the performances of the Vidar VCR-12 digitizer, with respect to its sensitivity, linearity, optical density range and the resolution. These performances were compared with the performances of different systems already in use in our department, either manual or automatic, using specific patterns. The main limitation for dosimetric use is the detection threshold that can introduce errors in isodose calculation, especially for the lowest values. The result of the intercomparisons have allowed corrections to be added, taking into account this Vidar problem. The results obtained after correction for the dose profiles of squared fields are in good agreement with ionization chamber measurements in a water phantom. It is concluded that Vidar digitizer is suitable for the use of film dosimetry for the dose distributions in fields defined by multileaf collimator.

  8. Practice for dosimetry in an electron-beam facility for radiation processing at energies between 300 keV and 25 MeV. 1. ed.

    International Nuclear Information System (INIS)

    This practice covers dosimetric procedures to be followed in facility characterization, process qualification and routine processing using electron beam radiation to ensure that the entire product has been treated with an acceptable range of absorbed doses. Other procedures related to facility characterization (including equipment documentation), process qualification and routine product processing that may influence and may be used to monitor absorbed dose in the product are also discussed. For guidance in the selection and calibration of dosimeters, see Guide E 1261. For further guidance in the selection, calibration and use of specific dosimeters and interpretation of absorbed dose in the product from dosimetry, see also Practices E 668, E 1275, E 1276, E 1431, E 1607, E 1631 and E 1650. For use with electron energies above 5 MeV, see Practices E 1026, E 1205, E 1401, E 1538 and E 1540 for discussions of specific large volume dosimeters. For discussions of radiation dosimetry for pulsed radiation, see ICRU Report 34. When considering a dosimeter type, be cautious of influences from dose rates and accelerator pulse rates and widths (if applicable). The electron energy range covered in this practice is between 300 keV and 25 MeV, although there are some discussions for other energies. For application of dosimetry in the characterization and operation of electron beam and X-ray (bremsstrahlung) irradiation facilities for food processing, see Practice E 1431. For application of dosimetry in the characterization and operation of irradiation facilities using X-ray radiation (bremsstrahlung), see Practice E 1608. Dosimetry is one component of a total quality assurance program for adherence to good manufacturing practices. Specific applications of electron beam radiation processing may require additional controls

  9. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  10. Vertical Beam Size Measurement by Streak Camera under Colliding and Single Beam Conditions in KEKB

    CERN Document Server

    Ikeda, Hitomi; Fukuma, Hitoshi; Funakoshi, Yoshihiro; Hiramatsu, Shigenori; Mitsuhashi, Toshiyuki; Ohmi, Kazuhito; Uehara, Sadaharu

    2005-01-01

    Beam behavior of KEKB was studied by measurement of the beam size using a streak camera. Effect of the electron-cloud and the parasitic collision on the vertical beam size was examined in beam collision. We intentionally injected a test bunch of positrons after 2 rf buckets of a bunch to enhance the electron cloud effect and changed electron beam conditions to see the beam-beam effect. The beam size was also measured with a single positron beam and compared with that during collision. The result of the measurement is reported in this paper.

  11. Dosimetry measurements at close range to high dose-rate brachytherapy for endovascular irradiation

    International Nuclear Information System (INIS)

    Purpose/Objective: Transluminal angioplasty in peripheral as well as coronary arteries has been an important treatment approach for arterial occlusive diseases. However, the major limitation seems to be that more than 40% of the treated arteries undergo restenosis or reocclusion within the first year. There have been some reports that endovascular brachytherapy may be useful to prevent arterial restenosis. According to the recently organized randomized study, the dose will be prescribed at the depth of one-half the luminal diameter plus 0.2 mm (round up to the nearest half millimeter) for 14 Gray using the Ir-192 high dose-rate (HDR) remote afterloading device. There is no reliable dosimetry data measured at millimeter range. The purpose of this paper is to accurately measure the specific dose rate per curie at close millimeter range for high activity iridium-192 source in HDR machine. Material and Methods: A plastic tissue-equivalent phantom was specially designed and built for this experiment. A small hole was drilled into the phantom to simulate the artery and big enough to fit a 6F luminal catheter used to position the radiation source in phantom. The high activity iridiu source from the Nucletron remote afterloading device was used and programmed to the predetermined positions. Since the measurements were required for high spatial resolutions, both low sensitivity films and mini-thermoluminescent dosimeters (TLD) of 1 mm3 in size were used for dose measurements. The measurements were performed repeatedly for better statistical accuracy. Prior to exposure, the films were cut in an appropriate size and sandwiched between two halves of the phantom sealed with light-proof tape. The source was run to the preset dwell position and dwell time to expose the film to a density of between 2 to 3. The exposed films were then developed and scanned with an automatic optical density scanner and then the results were converted to absorbed doses. The aperture size effect is

  12. Electron beam dosimetry for a thin-layer absorber irradiated by 300-keV electrons

    International Nuclear Information System (INIS)

    Depth-dose distributions in thin-layer absorbers were measured for 300-keV electrons from a scanning-type irradiation system, the electrons having penetrated through a Ti-window and an air gap. Irradiations of stacks of cellulose triacetate(CTA) film were carried out using either a conveyor (i.e. dynamic irradiation) or fixed (i.e. static) irradiation. The sample was irradiated using various angles of incidence of electrons, in order to examine the effect of obliqueness of electron incidence at low-energy representative of routine radiation curing of thin polymeric or resin layers. Dynamic irradiation gives broader and shallower depth-dose distributions than static irradiation. Greater obliqueness of incident electrons gives results that can be explained in terms of broader and shallower depth-dose distributions. The back-scattering of incident electrons by a metal(Sn) backing material enhances the absorbed dose in a polymeric layer and changes the overall distribution. It is suggested that any theoretical estimations of the absorbed dose in thin layers irradiated in electron beam curing must be accomplished and supported by experimental data such as that provided by this investigation. (Author)

  13. Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams

    DEFF Research Database (Denmark)

    Azangwe, Godfrey; Grochowska, Paulina; Georg, Dietmar;

    2014-01-01

    -doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm3 to 0.3 cm3). All detector measurements were corrected for volume averaging effect and compared with dose ratios......Purpose: The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially...... useful as a reference data set for small beam dosimetry measurements. Methods: Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm2 to 4.2 × 4.2 cm2 and the measurements were extended to larger fields...

  14. ABSOLUTE MEASUREMENT OF THE GANIL BEAM ENERGY

    NARCIS (Netherlands)

    CASANDJIAN, JM; MITTIG, W; BEUNARD, R; GAUDARD, L; LEPINESZILY, A; VILLARI, ACC; AUGER, G; BIANCHI, L; CUNSOLO, A; FOTI, A; LICHTENTHALER, R; PLAGNOL, E; SCHUTZ, Y; SIEMSSEN, RH; WIELECZKO, JP

    1993-01-01

    The energy of the GANIL cyclotron beam was measured on-line during the Pb-208 + Pb-208 elastic scattering experiment ''Search for Color van der Waals Force in the Pb-208 + Pb-208 Mott scattering'' with an absolute precision of 7 x 10(-5) at approximately 1.0 GeV, which represents an improvement of o

  15. Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry

    International Nuclear Information System (INIS)

    The aim of this study was to measure entrance skin doses on patients undergoing cone-beam computed tomography (CBCT) examinations, to establish conversion factors between skin and organ doses, and to estimate cancer risk from CBCT exposures. 266 patients (age 8–83) were included, involving three imaging centres. CBCT scans were acquired using the SCANORA 3D (Soredex, Tuusula, Finland) and NewTom 9000 (QR, Verona, Italy). Eight thermoluminescent dosimeters were attached to the patient's skin at standardized locations. Using previously published organ dose estimations on various CBCTs with an anthropomorphic phantom, correlation factors to convert skin dose to organ doses were calculated and applied to estimate patient organ doses. The BEIR VII age- and gender-dependent dose-risk model was applied to estimate the lifetime attributable cancer risk. For the SCANORA 3D, average skin doses over the eight locations varied between 484 and 1788 µGy. For the NewTom 9000 the range was between 821 and 1686 µGy for Centre 1 and between 292 and 2325 µGy for Centre 2. Entrance skin dose measurements demonstrated the combined effect of exposure and patient factors on the dose. The lifetime attributable cancer risk, expressed as the probability to develop a radiation-induced cancer, varied between 2.7 per million (age >60) and 9.8 per million (age 8–11) with an average of 6.0 per million. On average, the risk for female patients was 40% higher. The estimated radiation risk was primarily influenced by the age at exposure and the gender, pointing out the continuing need for justification and optimization of CBCT exposures, with a specific focus on children. (paper)

  16. Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry

    Science.gov (United States)

    Pauwels, Ruben; Cockmartin, Lesley; Ivanauskaité, Deimante; Urbonienė, Ausra; Gavala, Sophia; Donta, Catherine; Tsiklakis, Kostas; Jacobs, Reinhilde; Bosmans, Hilde; Bogaerts, Ria; Horner, Keith; SEDENTEXCT Project Consortium, The

    2014-07-01

    The aim of this study was to measure entrance skin doses on patients undergoing cone-beam computed tomography (CBCT) examinations, to establish conversion factors between skin and organ doses, and to estimate cancer risk from CBCT exposures. 266 patients (age 8-83) were included, involving three imaging centres. CBCT scans were acquired using the SCANORA 3D (Soredex, Tuusula, Finland) and NewTom 9000 (QR, Verona, Italy). Eight thermoluminescent dosimeters were attached to the patient's skin at standardized locations. Using previously published organ dose estimations on various CBCTs with an anthropomorphic phantom, correlation factors to convert skin dose to organ doses were calculated and applied to estimate patient organ doses. The BEIR VII age- and gender-dependent dose-risk model was applied to estimate the lifetime attributable cancer risk. For the SCANORA 3D, average skin doses over the eight locations varied between 484 and 1788 µGy. For the NewTom 9000 the range was between 821 and 1686 µGy for Centre 1 and between 292 and 2325 µGy for Centre 2. Entrance skin dose measurements demonstrated the combined effect of exposure and patient factors on the dose. The lifetime attributable cancer risk, expressed as the probability to develop a radiation-induced cancer, varied between 2.7 per million (age >60) and 9.8 per million (age 8-11) with an average of 6.0 per million. On average, the risk for female patients was 40% higher. The estimated radiation risk was primarily influenced by the age at exposure and the gender, pointing out the continuing need for justification and optimization of CBCT exposures, with a specific focus on children.

  17. Monte Carlo investigation into feasibility and dosimetry of flat Flattening Filter Free beams

    CERN Document Server

    Zavgorodni, Sergei

    2013-01-01

    Flattening filter free (FFF) beams due to their non-uniformity, are sub-optimal for larger field sizes. The purpose of this study was to investigate the incident electron beam distributions that would produce flat FFF beams without the use of flattening filter. Monte Carlo (MC) simulations with BEAMnrc and DOSXYZnrc codes have been performed to evaluate the feasibility of this approach. The dose distributions in water for open 6MV beams were simulated using Varian 21EX linac head model, which will be called flattening filter (FF) model. Flattening filter has then been removed from FF model, and MC simulations were performed using (1) 6 MeV electrons incident on the target, (2) 6 MeV electron beam with electron angular distributions optimized to provide as flat dose profiles as possible. Configuration (1) represents FFF beam while configuration (2) allowed producing a flat FFF (F4) beam. Optimizations have also been performed to produce flattest profiles for a set of dose rates (DRs) in the range from 1.25 to ...

  18. PRESAGE 3D dosimetry accurately measures Gamma Knife output factors

    International Nuclear Information System (INIS)

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and 2D detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ±0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors. (note)

  19. A reference current source for the calibration of current measuring systems in dosimetry using ionisation chambers

    International Nuclear Information System (INIS)

    This work describes a newly developed, easily handled current source containing one 90Sr + 90Y Y beta emitter. Four different currents from 7x10-11A to 4x10-14A are supplied. From 5 to 10 control measurements were performed for each of the four currents during a period of eight months. The standard deviation of the values of these control measurements, corrected to a reference air density and for radioactive decay, was between 0,07% and 0,4% with respect to the mean values obtained during the eight months. The relative standard deviation of the single values belonging to a control measurement carried out on one day under constant ambient conditions amounts to approximately one fourth of the values quoted above. The current source was utilized in a number of laboratories in the PTB and proved its reliability for checking current measuring systems in dosimetry with ionization chambers. (orig.)

  20. Signal processing for beam position measurement

    CERN Document Server

    Vos, L

    1997-01-01

    The spectrum of the signals generated by beam position monitors can be very large. It is the convolution product of the bunch spectrum and the transfer function of the monitor including the transmission cable. The rate of information flow is proportional to the bandwidth and the maximum amplitude rating of monitor complex. Technology is progressing at a good pace and modern acquisition capabilities are such that nearly all the information contained in the spectrum can be acquired with a reasonable resolution [1]. However, the cost of such a system is enormous and a major part of the information is superfluous. The objective of a beam position measurement system is generally restricted to trajectory measurements of a portion of the beam that is much larger than the finer details that can be observed with the bare signal generated by the position monitor. Closed orbit measurements are a simple derivation product of the trajectory and will not be considered further. The smallest beam portion that is of practical...

  1. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  2. Calculation of dose in quartz for comparison with thermoluminescence dosimetry measurements

    International Nuclear Information System (INIS)

    Gamma radiation from the atomic bombs detonated over Hiroshima and Nagasaki left a record in the quartz grains constituent to the tile and brick in city structures. That record has been read to determine the gamma-ray dose deposited in these grains, using thermoluminescence (TL) dosimetry techniques. Because the quartz grains are imbedded in dense tile and brick material located on structures of complex geometry, the dose in quarts is not an exact measure of the free-field kerma. Therefore, calculations of dose deposition in the quartz grains were performed, using the same free-field fluence data and shielding computation methods as those incorporated in the dosimetry system delivered to the Radiation Effects Research Foundation (RERF) in 1986. This report presents a summary description of the experimental results, including total dose and background dose, as well as the salient features of the tiles and brick, including their locations on the various structures. The report provides a description of the approach used to calculate the dose to the quartz in the tile and brick samples, as well as a detailed tabulation of the calculated dose, including the contribution from each component of A-bomb radiation. Finally, the report provides a comparison of DS86 and T65D dose values with measured results and a discussion of issues raised in the process of that comparison

  3. Dosimetry of Strontium eye applicator: Comparison of Monte Carlo calculations and radiochromic film measurements

    International Nuclear Information System (INIS)

    Strontium-90 eye applicators are a beta-ray emitter with a relatively high-energy (maximum energy about 2.28 MeV and average energy about 0.9 MeV). These applicators come in different shapes and dimensions; they are used for the treatment of eye diseases. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The main aim of our study is to simulate the dosimetry of the SIA.20 eye applicator with Monte Carlo GATE 6.1 platform and to compare the calculated results with those measured with EBT2 films. This means that GATE and EBT2 were used to quantify the surface and depths dose- rate, the relative dose profile and the dosimetric parameters in according to international recommendations. Calculated and measured results are in good agreement and they are consistent with the ICRU and NCS recommendations

  4. Measurement of Dose Distributions for Useful Utilization of BioBeam 8000 Gamma Irradiation Device

    International Nuclear Information System (INIS)

    Gamma irradiation device using Cs-137 have been widely utilized to the irradiation of cell, blood, and animal, and the dose measurement and education. Radiation irradiators for cell and blood irradiation used in numerous research institutions has demerits to perform the experiment of large volume objects like as 96 Multiwell Plate. Therefore, KIRAMS (Korea Institute of Radiological and Medical Sciences) introduced Gamma irradiation device having large volume capacity (BioBeam 8000, STS Steuerungstechnik and. Strahlenschutz GmbH, Braunschweig, Germany, Cs137, 3.35 Gy/min). In this study, dose the distribution of newly implemented BioBeam 8000 Gamma irradiation device was measured using glass dosimeter and Gafchromic EBT film dosimetry. In addition, an user guideline for useful utilization of the device based on measurement results are presented

  5. Emittance measurements of low-energy beam line at KVI

    NARCIS (Netherlands)

    Toprek, D; Formanoy, [No Value

    2006-01-01

    In this paper is represented the results of beam profile measurements of He-3(+) beam delivered from ECR ion source at KVI. The beam emittance is estimated by varying quadrupole method. The estimated values for the beam emittance at the different profile grid locations along the transport beam line

  6. Audit of radiotherapy dosimetry in New Zealand: Practical considerations and results

    International Nuclear Information System (INIS)

    In order to verify regulatory compliance, every two years staff of the National Radiation Laboratory (NRL) of New Zealand visit each of the radiotherapy departments in New Zealand to carry out an independent audit of the dosimetry of their external radiation beams. The audit is carried out under Technical Reports Series No. 277 reference conditions using dosimetry equipment belonging to the NRL to maximize the independence of the measurements. Audits have been carried out regularly since 1991 and the results show that discrepancies of up to 2% for linac beams are within normal output variability. However, much greater discrepancies are observed in kilovoltage X ray beams.This is due to the use of different dosimetry protocols rather than error. Experience to date suggests that the dosimetry audit is of continuing benefit to radiotherapy departments, but should be supplemented with dosimetry of planned treatments in an anthropomorphic phantom. (author)

  7. A Test of Reliability of the Personnel Dosimetry Services Authorized by CSN using Photon Beams

    International Nuclear Information System (INIS)

    In 1987 the Consejo de Seguridad Nuclear (CSN) had eight Personnel Dosimetry Services (PDS) authorized to asses the equivalent doses to the spanish occupationally exposed workers, by means of the readings from the dosemeters wear by them. An audit was carried on the PDS on behalf of CSN under the control of CIEMAT. Batches of dosemeters from each one of the PDS were irradiated to dose equivalent values which were well established by CIEMAT but kept hidden from the PDS. By comparing the true values with those obtained by the PDS, it was possible to evaluate the Services according to the analysis of the quantity Q= I B I -I- S where B is the average of the individual deviations between the dosemeters belonging to the same group and the true value as established by CIEMAT, whereas S is the standard deviation of the values inside of this same group. The results of the evaluation, which was made using the new ICRU quantities for personnel monitoring, are presented. (Author) 8 refs

  8. Quality assurance of BNCT dosimetry

    International Nuclear Information System (INIS)

    The Phase I clinical trials for boron neutron capture therapy (BNCT) started in May 1999 in Otaniemi, Espoo. For BNCT no uniform international guidance for the quality assurance of dosimetry exists, so far. Because of the complex dose distribution with several different dose components, the international recommendations on conventional radiotherapy dosimetry are not applicable in every part. Therefore, special guidance specifically for BNCT is needed. To obtain such guidelines a European collaboration project has been defined. The aim of the project is a generally accepted Code of Practice for use by all European BNCT centres. This code will introduce the traceability of the dosimetric methods to the international measurement system. It will also ensure the comparability of the results in various BNCT beams and form the basis for the comparison of the treatment results with the conventional radiotherapy or other treatment modalities. The quality assurance of the dosimetry in BNCT in Finland covers each step of the BNCT treatment, which include dose planning imaging, dose planning, boron infusion, boron kinetics, patient positioning, monitoring of the treatment beam, characterising the radiation spectrum, calibration of the beam model and the dosimetric measurements both in patients (in viva measurements) and in various phantoms. The dose planning images are obtained using a MR scanner with MRI sensitive markers and the dose distribution is computed with a dose planning software BNCTRtpe. The program and the treatment beam (DORT) model used have been verified with measurements and validated with MCNP calculations in phantom. Dosimetric intercomparison has been done with the Brookhaven BNCT beam (BMRR). Before every patient irradiation the relationship between the beam monitor pulse rate and neutron fluence rate in the beam is checked by activation measurements. Kinetic models used to estimate the time-behavior of the blood boron concentration have been verified

  9. A Compton imager for in-vivo dosimetry of proton beams-A design study

    International Nuclear Information System (INIS)

    In-beam SPECT during therapeutic proton beam irradiation is a novel method for three dimensional in-vivo dose verification. For this purpose a Compton camera design is evaluated with respect to the special requirements and conditions that arise from this application. Different concepts are studied by means of simulation concerning the angular resolution and efficiency. It was found that a cadmium zinc telluride system can perform sufficiently well. For further evaluation the construction of a semiconductor scintillator hybrid system is under way.

  10. A Compton imager for in-vivo dosimetry of proton beams-A design study

    Energy Technology Data Exchange (ETDEWEB)

    Kormoll, T., E-mail: thomas.kormoll@physik.tu-dresden.d [Technische Universitaet Dresden, OncoRay-Center for Radiation Research in Oncology, Fetscherstr. 74, 01307 Dresden (Germany); Fiedler, F.; Schoene, S. [Forschungszentrum Dresden-Rossendorf, Institute for Radiation Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Wuestemann, J. [Technische Universitaet Dresden, OncoRay-Center for Radiation Research in Oncology, Fetscherstr. 74, 01307 Dresden (Germany); Zuber, K. [Technische Universitaet Dresden, Institute for Nuclear and Particle Physics, Zellescher Weg 19, 01069 Dresden (Germany); Enghardt, W. [Technische Universitaet Dresden, OncoRay-Center for Radiation Research in Oncology, Fetscherstr. 74, 01307 Dresden (Germany); Forschungszentrum Dresden-Rossendorf, Institute for Radiation Research, Bautzner Landstr. 400, 01328 Dresden (Germany)

    2011-01-21

    In-beam SPECT during therapeutic proton beam irradiation is a novel method for three dimensional in-vivo dose verification. For this purpose a Compton camera design is evaluated with respect to the special requirements and conditions that arise from this application. Different concepts are studied by means of simulation concerning the angular resolution and efficiency. It was found that a cadmium zinc telluride system can perform sufficiently well. For further evaluation the construction of a semiconductor scintillator hybrid system is under way.

  11. A comparison of radiation dose measured in CT dosimetry phantoms with calculations using EGS4 and voxel-based computational models

    International Nuclear Information System (INIS)

    CT is a high-dose examination and possibly the dominant contributor to dose from diagnostic radiology. Estimates of organ doses are obtained from Monte Carlo calculations and used to quantify radiation risk. To ensure the validity of using Monte Carlo calculations to estimate actual dose, measurements must be compared with calculations. We have measured doses to CT head and chest dosimetry phantoms and compared them with Monte Carlo (EGS4) calculated doses in voxel-based computational models of the phantoms. The simulation used an x-ray spectrum calculated from the specified values of the scanner's x-ray tube parameters. The scanner's beam-shaping filter was included in the modelling. Measured and calculated doses to both the head and chest phantoms agreed to within 7%. The inclusion of Rayleigh scattering in the calculations has a significant effect if only one slice is scanned but not if multiple slices are scanned. (author)

  12. Application of the Ethanol-Chlorobenzene Dosimeter to Electron Beam Dosimetry: Pulsed 10 MeV Electrons

    International Nuclear Information System (INIS)

    With gamma irradiation, the ethanol-chlorobenzene chemical dosimetric systems have shown valuable properties. They are simple to prepare and analyse, the G(HC1) values are not sensitive to normal impurities and are constant within the dose range of interest for processing. This paper describes the experiments performed with 10 MeV pulsed electrons from the linear accelerator of the Research Establishment Risø, Denmark (7 microsecond pulses repeated 300 times per second, 109 rad/sec in the pulse). The irradiations were calibrated calorimetrically. The G(HC1) values independent of dose up to 40 Mrad are given as a function of chlorobenzene concentration. The comparison with gamma irradiations shows only insignificant differences in the G-values. Above 10 vol. % chlorobenzene the G-values are approximately constant up to 20 Mrad or more, and are to within 2% equal to those obtained for gamma rays with free access of air. The addition of 0.04% of acetone or benzene to the systems had within the experimental error, no influence upon the G(HC1). The results show the applicability of ethanol-chlorobenzene dosimeters to the dosimetry of electron beam irradiations at dose rates as high as 109 rad/sec and dosages up to 6 Mrad. (author)

  13. Production and dosimetry of simultaneous therapeutic photons and electrons beam by linear accelerator: A Monte Carlo study

    International Nuclear Information System (INIS)

    Depending on the location and depth of tumor, the electron or photon beams might be used for treatment. Electron beam have some advantages over photon beam for treatment of shallow tumors to spare the normal tissues beyond of the tumor. In the other hand, the photon beam are used for deep targets treatment. Both of these beams have some limitations, for example the dependency of penumbra with depth, and the lack of lateral equilibrium for small electron beam fields. In first, we simulated the conventional head configuration of Varian 2300 for 16 MeV electron, and the results approved by benchmarking the Percent Depth Dose (PDD) and profile of the simulation and measurement. In the next step, a perforated Lead (Pb) sheet with 1mm thickness placed at the top of the applicator holder tray. This layer producing bremsstrahlung x-ray and a part of the electrons passing through the holes, in result, we have a simultaneous mixed electron and photon beam. For making the irradiation field uniform, a layer of steel placed after the Pb layer. The simulation was performed for 10×10, and 4×4 cm2 field size. This study was showed the advantages of mixing the electron and photon beam by reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size

  14. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103Rh(n,n')103mRh and 58Ni(n,p)58Co integral cross sections have been accurately measured relatively to the 115In(n,n')115m In cross section in the 235U thermal fission neutron spectrum and in the MOL-ΣΣ intermediate-energy standard neutron field. In this last neutron field, the data are related also to the 235U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103Rh(n,n')103mRh differential-energy cross section among the existing, conflicting data. (author)

  15. TL (thermoluminescence) accident dosimetry measurements on samples from the town of Pripyat

    International Nuclear Information System (INIS)

    In July 1990, several different types of ceramic samples were collected from the town of Pripyat, situated 3 km NW of the Chernobyl Nuclear Power Plant. The samples were distributed among several laboratories for thermoluminescence (TL) measurement to determine the total absorbed gamma dose at different points within a small area in the most polluted region and to assess the shielding given by the walls of buildings to the people inside apartment blocks. This paper discusses the types of samples and their suitability for accident dosimetry, the TL measurements, minimum limits of detection for various types of samples and the strengths and limitations of the method in this type of situation. The implication of the results are discussed. (author)

  16. Transverse beam shape measurements of intense proton beams using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  17. Measurement with hadron beams at COMPASS

    CERN Document Server

    Ferrero, Andrea

    2005-01-01

    The physics program of the COMPASS experiment at CERN focuses on the investigation of the hadron structure and spectroscopy, using both leptonic and hadronic probes. The COMPASS experiment has collected so far mostly data with polarized muon beams of 160 GeV, but also a pilot data taking with negative hadron beams of 190 GeV has been successfully completed at the end of the 2004 run. The main physics objectives of this pilot run are the study of soft pion-nuclei interactions. The predictions of the Chiral Perturbation Theory for the electric and magnetic polarizabilities of the pion will be verified through the study of the Primakoff scattering of 190 GeV pions on thin lead targets. A sample corresponding to an integrated beam flux of more than 10$^{11}$ pions has been collected for this purpose, and an equivalent sample with the muon beam of 190 GeV has been collected in the same experimental conditions to correct possible systematic effects. In parallel to the polarizability measurements, first data have al...

  18. The influence of detector size relative to field size in small-field photon-beam dosimetry using synthetic diamond crystals as sensors

    International Nuclear Information System (INIS)

    The choice of a detector for small-field dosimetry remains a challenge due to the size/volume effect of detectors in small fields. Aimed at selecting a suitable crystal type and detector size for small-field dosimetry, this study investigates the relationship between detector and field size by analysing output factors (OFs) measured with a Diode E (reference detector), a Farmer chamber and synthetic diamond detectors of various types and sizes in the dosimetry of a 6 MV photon beam with small fields between 0.3×0.3 cm2 and 10×10 cm2. The examined diamond sensors included two HPHT samples (HP1 and HP2) and six polycrystalline CVD specimens of optical grade (OG) and detector grade (DG) qualities with sizes between 0.3 and 1.0 cm. Each diamond was encapsulated in a tissue-equivalent probe housing which can hold crystals of various dimensions up to 1.0×1.0×0.1 cm3 and has different exposure geometries (‘edge-on’ and ‘flat-on’) for impinging radiation. The HPHT samples were found to show an overall better performance compared to the CVD crystals with the ‘edge-on’ orientation being a preferred geometry for OF measurement especially for very small fields. For instance, down to a 0.4×0.4 cm2 field a maximum deviation of 1.9% was observed between the OFs measured with Diode E and HP2 in the ‘edge-on’ orientation compared to a 4.6% deviation in the ‘flat-on’ geometry. It was observed that for fields below 4×4 cm2, the dose deviation between the OFs measured with the detectors and Diode E increase with increasing detector size. It was estimated from an established relationship between the dose deviation and the ratio of detector size to field size for the detectors that the dose deviation probably due to the volume averaging effect would be >3% when the detector size is >3/4 of the field size. A sensitivity value of 223 nC Gy−1 mm−3 was determined in a 0.5×0.5 cm2 field with HP2 compared to a value of 159.2 nC Gy−1 mm−3 obtained with the

  19. A measured data set for evaluating electron-beam dose algorithms

    International Nuclear Information System (INIS)

    The purpose of this work was to develop an electron-beam dose algorithm verification data set of high precision and accuracy. Phantom geometries and treatment-beam configurations used in this study were similar to those in a subset of the verification data set produced by the Electron Collaborative Working Group (ECWG). Measurement techniques and quality-control measures were utilized in developing the data set to minimize systematic errors inherent in the ECWG data set. All measurements were made in water with p-type diode detectors and using a Wellhoefer dosimetry system. The 9 and 20 MeV, 15x15 cm2 beams from a single linear accelerator composed the treatment beams. Measurements were made in water at 100 and 110 cm source-to-surface distances. Irregular surface measurements included a 'stepped surface' and a 'nose-shaped surface'. Internal heterogeneity measurements were made for bone and air cavities in differing orientations. Confidence in the accuracy of the measured data set was reinforced by a comparison with Monte Carlo (MC)-calculated dose distributions. The MC-calculated dose distributions were generated using the OMEGA/BEAM code to explicitly model the accelerator and phantom geometries of the measured data set. The precision of the measured data, estimated from multiple measurements, was better than 0.5% in regions of low-dose gradients. In general, the agreement between the measured data and the MC-calculated data was within 2%. The quality of the data set was superior to that of the ECWG data set, and should allow for a more accurate evaluation of an electron beam dose algorithm. The data set will be made publicly available from the Department of Radiation Physics at The University of Texas M. D. Anderson Cancer Center

  20. Radiation dosimetry.

    OpenAIRE

    Cameron, J.

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists.

  1. Review of data and methods recommended in the international code of practice for dosimetry IAEA Technical Reports Series No. 381, The Use of Plane Parallel Ionization Chambers in High Energy Electron and Photon beams. Final report of the co-ordinated research project on dose determination with plane parallel ionization chambers in therapeutic electron and photon beams

    International Nuclear Information System (INIS)

    In 1987 the IAEA published a Code of Practice entitled ''Absorbed Dose Determination in Photon and Electron Beams: An International Code of Practice'' (IAEA Technical Reports Series No. 277), to advise users on how to obtain the absorbed dose in water from measurements made with an ionization chamber, calibrated in terms of air kerma. The Code of Practice described procedures and provided data for the use of ionization chambers to obtain the absorbed dose in high energy photon and electron beams. It was so designed that a variety of cylindrical chambers could be used, which represented the existing conditions worldwide. However, most national and international dosimetry protocols recognized the advantages of plane parallel ionization chambers, explicitly for electron beams and especially for low energy electron beams (below 10 MeV). Although this was acknowledged in TRS-277, recommended procedures for the calibration and use of these chambers were not fully developed. Another Code of Practice entitled ''The Use of Plane Parallel Ionization Chambers in High Energy Electron and Photon Beams: An International Code of Practice for Dosimetry'' (IAEA Technical Reports Series No. 381) was published in 1997 to update TRS-277 and complement it with respect to the area of parallel plate ionization chambers. TRS-381 describes options on how to calibrate plane parallel chambers, against air kerma or absorbed dose to water standards at 60Co gamma ray energies, in order to determine the absorbed dose to water in reference conditions. The use of these chambers to calibrate therapy electron beams, as well as to perform relative dose measurements for photon and electron beams, is included in the Code of Practice which also updates some of the data and concepts in TRS-277. It is considered that the Code of Practice TRS-381 fills the gaps that existed in TRS-277 with respect to plane parallel chambers and will result in improved accuracy in radiotherapy dosimetry when these chambers

  2. Cherenkov detector for beam quality measurement

    Science.gov (United States)

    Orfanelli, S.

    2016-07-01

    A new detector to measure the machine induced background at larger radii has been developed and installed in the CMS experiment at the LHC. It consists of forty modules, each comprising a quartz bar read out by a photomultiplier tube. Since Cherenkov radiation is emitted in a forward cone around the charged particle trajectory, these detectors can distinguish between the arrival directions of the machine induced background and the collision products. The back-end electronics consists of a uTCA readout with excellent time resolution. The installation in the CMS is described and first commissioning measurements with the LHC beams in Run II are presented.

  3. Combining measurements and 3D neutron transport calculations. A powerful tool in detailed neutron dosimetry and damage analysis

    International Nuclear Information System (INIS)

    It is shown that the combination of 3D neutron transport calculations and the results from activation foil measurements at a limited number of locations in a materials testing irradiation experiment can provide information at any position in the experiment for detailed neutron dosimetry and damage analysis. 4 refs

  4. Water equivalence of some plastic-water phantom materials for clinical proton beam dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiti, L., E-mail: l.al-sulaiti@surrey.ac.uk [Physics Department, University of Surrey, Guildford (United Kingdom); Radiation Dosimetry Team, National Physical Laboratory, Teddington (United Kingdom); Shipley, D.; Thomas, R. [Radiation Dosimetry Team, National Physical Laboratory, Teddington (United Kingdom); Owen, P. [Physics Department, University of Surrey, Guildford (United Kingdom); Radiation Dosimetry Team, National Physical Laboratory, Teddington (United Kingdom); Kacperek, A. [Douglas Cyclotron, Clatterbridge Centre for Oncology, Wirral (United Kingdom); Regan, P.H. [Physics Department, University of Surrey, Guildford (United Kingdom); Palmans, H. [Radiation Dosimetry Team, National Physical Laboratory, Teddington (United Kingdom)

    2012-07-15

    Plastic-water phantom materials are not exactly water equivalent since they have a different elemental composition and different interaction cross sections for protons than water. Several studies of the water equivalence of plastic-water phantom materials have been reported for photon and electron beams, but none for clinical proton beams. In proton beams, the difference between non-elastic nuclear interactions in plastic-water phantom materials compared to those in water should be considered. In this work, the water equivalence of Plastic Water{sup Registered-Sign} (PW){sup 1}, Plastic Water{sup Registered-Sign} Diagnostic Therapy (PWDT){sup 1} and solid water (WT1){sup 2} phantoms was studied for clinical proton energies of 60 MeV and 200 MeV. This was done by evaluating the fluence correction factor at equivalent depths; first with respect to water and then with respect to graphite by experiment and Monte Carlo (MC) simulations using FLUKA. MC simulations showed that the fluence correction with respect to water was less than 0.5% up to the entire penetration depth of the protons at 60 MeV and less than 1% at 200 MeV up to 20 cm depth for PWDT, PW and WT1. With respect to graphite the fluence correction was about 0.5% for 60 MeV and about 4% for 200 MeV. The experimental results for modulated and un-modulated 60 MeV proton beams showed good agreement with the MC simulated fluence correction factors with respect to graphite deviating less than 1% from unity for the three plastic-water phantoms. - Highlights: Black-Right-Pointing-Pointer We study plastic-water in clinical proton beams by experiment and Monte Carlo. Black-Right-Pointing-Pointer We obtain fluence correction factors for water and graphite. Black-Right-Pointing-Pointer The correction factor for water was close to 1 at 60 MeV and <0.990 at 200 MeV. Black-Right-Pointing-Pointer The correction factor for graphite was {approx}0.5% at 60 MeV and up to 4% at 200 MeV.

  5. Monte Carlo neutron fluence calculations, activation measurements and spectrum adjustment for the KORPUS dosimetry experiment

    International Nuclear Information System (INIS)

    KORPUS is an irradiation facility located at the lateral core surface of the 6 MW experimental reactor RBT-6 in Dimitrovgrad. In this work the KORPUS irradiation experiment has been used to demonstrate the capability of the pressure vessel dosimetry methodology developed in Rossendorf to solve these problems. At the same time the experiments were used to test recent improvements of this methodology including a new procedure for treatment of elastic scattering in the Monte Carlo code TRAMO and a new multispectrum version of the adjustment code. By means of a series of calculations the influence of model and data approximations were investigated aiming at an evaluation of the uncertainties of the calculations. Further, uncertainty investigations were carried out in connection with spectrum adjustment resulting in covariances of spectra, measured reaction rates and fluence integrals. (orig.)

  6. Dosimetry at the Portuguese research reactor using thermoluminescence measurements and Monte Carlo calculations

    International Nuclear Information System (INIS)

    This work presents an extensive study on Monte Carlo radiation transport simulation and thermoluminescent (TL) dosimetry for characterising mixed radiation fields (neutrons and photons) occurring in nuclear reactors. The feasibility of these methods is investigated for radiation fields at various locations of the Portuguese Research Reactor (RPI). The performance of the approaches developed in this work is compared with dosimetric techniques already existing at RPI. The Monte Carlo MCNP-4C code was used for a detailed modelling of the reactor core, the fast neutron beam and the thermal column of RPI. Simulations using these models allow to reproduce the energy and spatial distributions of the neutron field very well (agreement better than 80%). In the case of the photon field, the agreement improves with decreasing intensity of the component related to fission and activation products. 7LiF:Mg,Ti, 7LiF:Mg,Cu,P and Al2O3:Mg,Y TL detectors (TLDs) with low neutron sensitivity are able to determine photon dose and dose profiles with high spatial resolution. On the other hand, natLiF:Mg,Ti TLDs with increased neutron sensitivity show a remarkable loss of sensitivity and a high supra-linearity in high-intensity fields hampering their application at nuclear reactors. (authors)

  7. Impact of beam-beam effects on precision luminosity measurements at the ILC

    CERN Document Server

    Rimbault, C; Mönig, K; Schulte, D

    2007-01-01

    In this paper, the impact of beam-beam effects on the precision luminosity measurement at the International Linear Collider is investigated quantitatively for the first time. GUINEA-PIG, a beam-beam interaction simulation tool, is adapted to treat the space charge effects affecting the Bhabha events used in this measurement. The biases due to the resulting changes in kinematics are evaluated for different center-of-mass energies and beam parameters.

  8. Sixth symposium on neutron dosimetry

    International Nuclear Information System (INIS)

    This booklet contains all abstracts of papers presented in 13 sessions. Main topics: Cross sections and Kerma factors; analytical radiobiology; detectors for personnel monitoring; secondary charged particles and microdosimetric basis of q-value for neutrons; personnel dosimetry; concepts for radiation protection; ambient monitoring; TEPC and ion chambers in radiation protection; beam dosimetry; track detectors (CR-39); dosimetry at biomedical irradiation facilities; health physics at therapy facilities; calibration for radiation protection; devices for beam dosimetry (TLD and miscellaneous); therapy and biomedical irradiation facilities; treatment planning. (HP)

  9. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams

    Science.gov (United States)

    Chow, James C. L.; Jiang, Runqing

    2012-06-01

    This study examines variations of bone and mucosal doses with variable soft tissue and bone thicknesses, mimicking the oral or nasal cavity in skin radiation therapy. Monte Carlo simulations (EGSnrc-based codes) using the clinical kilovoltage (kVp) photon and megavoltage (MeV) electron beams, and the pencil-beam algorithm (Pinnacle3 treatment planning system) using the MeV electron beams were performed in dose calculations. Phase-space files for the 105 and 220 kVp beams (Gulmay D3225 x-ray machine), and the 4 and 6 MeV electron beams (Varian 21 EX linear accelerator) with a field size of 5 cm diameter were generated using the BEAMnrc code, and verified using measurements. Inhomogeneous phantoms containing uniform water, bone and air layers were irradiated by the kVp photon and MeV electron beams. Relative depth, bone and mucosal doses were calculated for the uniform water and bone layers which were varied in thickness in the ranges of 0.5-2 cm and 0.2-1 cm. A uniform water layer of bolus with thickness equal to the depth of maximum dose (dmax) of the electron beams (0.7 cm for 4 MeV and 1.5 cm for 6 MeV) was added on top of the phantom to ensure that the maximum dose was at the phantom surface. From our Monte Carlo results, the 4 and 6 MeV electron beams were found to produce insignificant bone and mucosal dose (<1%), when the uniform water layer at the phantom surface was thicker than 1.5 cm. When considering the 0.5 cm thin uniform water and bone layers, the 4 MeV electron beam deposited less bone and mucosal dose than the 6 MeV beam. Moreover, it was found that the 105 kVp beam produced more than twice the dose to bone than the 220 kVp beam when the uniform water thickness at the phantom surface was small (0.5 cm). However, the difference in bone dose enhancement between the 105 and 220 kVp beams became smaller when the thicknesses of the uniform water and bone layers in the phantom increased. Dose in the second bone layer interfacing with air was found to be

  10. Definition and measurement of the beam propagation factor M2 for chromatic laser beams

    Institute of Scientific and Technical Information of China (English)

    Tao Fang; Xin Ye; Jinfu Niu; Jianqiu Xu

    2006-01-01

    The concept of the beam propagation factor M2 is extended for chromatic laser beams. The definition of the beam propagation factor can be generalized with the weighted effective wavelength. Using the new definition of factor M2, the propagation of chromatic beams can be analyzed by the beam propagation factor M2 as same as that of monochromatic beams. A simple method to measure the chromatic beam factor M2 is demonstrated. The chromatic factor M2 is found invariable while the laser beam propagates through the dispersion-free ABCD system.

  11. Research on Brightness Measurement of Intense Electron Beam

    CERN Document Server

    Wang, Yuan; Zhang, Huang; Yang, GuoJun; Li, YiDing; Li, Jin

    2015-01-01

    The mostly research fasten on high emission density of injector to study electron beam's brightness in LIA. Using the injector(2MeV) was built to research brightness of multi-pulsed high current(KA) electron beam, and researchs three measurement method (the pepper-pot method, beam collimator without magnetic field, beam collimator with magnetic field method) to detect beam's brightness with time-resolved measurement system.

  12. Relative dosimetry by Ebt-3

    International Nuclear Information System (INIS)

    In the present work relative dosimetry in two linear accelerator for radiation therapy was studied. Both Varian Oncology systems named Varian Clinac 2100-Cd and MLC Varian Clinac i X were used. Gaf Chromic Ebt-3 film was used. Measurements have been performed in a water equivalent phantom, using 6 MV and 18 MV photon beams on both Linacs. Both calibration and Electron irradiations were carried out with the ionization chamber placed at the isocenter, below a stack of solid water slabs, at the depth of dose maximum (D max), with a Source-to-Surface Distance (SSD) of 100 cm and a field size of 10 cm x 10 cm. Calibration and dosimetric measurements photons were carried out under IAEA-TRS 398 protocol. Results of relative dosimetry in the present work are discussed. (Author)

  13. Electron beam dose measurements with alanine/ESR dosimeter

    International Nuclear Information System (INIS)

    When the aminoacid alanine, CH3-CH(NH2)-COOH, is exposed to radiation field, stable free radicals are produced. The predominant paramagnetic specie found at room temperature is the CH3-CH-COOH. Electron Spin Resonance - ESR is a technique used for quantification and analysis of radicals in solid and liquid samples. The evaluation of the amount of produced radicals can be associated with the absorbed dose . The alanine/ESR is an established dosimetry method employed for high doses evaluation, it presents good performance for X-rays, gamma, electrons, and protons radiation detection. The High Doses Dosimetry Laboratory of Ipen developed a dosimetric system based on alanina/ESR that presents good characteristics for use in gamma fields such as: wide dose range from 10 to 105 Gy, low fading, low uncertainty (<5%), no dose rate dependence and non-destructive ESR single readout. The detector is encapsulated in a special polyethylene tube that reduces the humidity problems and improves the mechanical resistance. The IPEN dosimeter was investigated for application in electron beam fields dosimetry

  14. Microstructure cantilever beam for current measurement

    Directory of Open Access Journals (Sweden)

    M.T.E. Khan

    2010-01-01

    Full Text Available Most microelectromechanical systems (MEMS sensors are based on the microcantilever technology, which uses a broad range of design materials and structures. The benefit ofMEMStechnology is in developing devices with a lower cost, lower power consumption, higher performance and greater integration. A free-end cantilever beam with a magnetic material mass has been designed using MEMS software tools. The magnetic material was used to improve the sensitivity of the cantilever beam to an externally-applied magnetic field. The cantilever was designed to form a capacitance transducer, which consisted of variable capacitance where electrical and mechanical energies were exchanged. The aim of this paper was to analyse the system design of the microcantilever when subjected to a magnetic field produced by a current-carrying conductor. When the signal, a sinusoidal current with a constant frequency, was applied, the cantilever beam exhibited a vibration motion along the vertical axis when placed closer to the line current. This motion created corresponding capacitance changes and generated a voltage output proportional to the capacitive change in the signal-processing circuitry attached to the microcantilever. The equivalent massspring system theory was used to describe and analyse the effect of the natural frequency of the system vibrations and motion due to the applied magnetic field, in a single-degree of freedom. The main application of this microcantilever is in current measurements to develop a non-contact current sensor mote.

  15. Radiation therapy with laser-driven accelerated particle beams: physical dosimetry and spatial dose distribution

    International Nuclear Information System (INIS)

    One of the main goals of the Munich Centre for Advanced Photonics (MAP) is the application of laser driven accelerated (LDA) particle beams for radiation therapy. Due to the unique acceleration process ultrashort particle pulses of high intensity (> 107 particles /cm2/ns) are generated, which makes online detection an ambitious task. So far, state of the art detection of laser accelerated ion pulses are non-electronic detectors like radiochromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39). All these kind of detectors are offline detectors requiring several hours of processing time. For this reason they are not qualified for an application in radiation therapy where quantitative real time detection of the beam is an essential prerequisite. Therefore we are investigating pixel detectors for real time monitoring of LDA particle pulses. First tests of commercially available systems with 8-20 MeV protons are presented. For radiobiological experiments second generation Gafchromic films (EBT2) have been calibrated with protons of 12 and 20 MeV for a dose range of 0.3-10 Gy. Dose verification in proton irradiation of subcutaneous tumours in mice was successfully accomplished using these films.

  16. Radiation therapy with laser-driven accelerated particle beams: physical dosimetry and spatial dose distribution

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Sabine; Assmann, Walter [Ludwig-Maximilians Universitaet Muenchen (Germany); Kneschaurek, Peter; Wilkens, Jan [MRI, Technische Universitaet Muenchen (Germany)

    2011-07-01

    One of the main goals of the Munich Centre for Advanced Photonics (MAP) is the application of laser driven accelerated (LDA) particle beams for radiation therapy. Due to the unique acceleration process ultrashort particle pulses of high intensity (> 10{sup 7} particles /cm{sup 2}/ns) are generated, which makes online detection an ambitious task. So far, state of the art detection of laser accelerated ion pulses are non-electronic detectors like radiochromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39). All these kind of detectors are offline detectors requiring several hours of processing time. For this reason they are not qualified for an application in radiation therapy where quantitative real time detection of the beam is an essential prerequisite. Therefore we are investigating pixel detectors for real time monitoring of LDA particle pulses. First tests of commercially available systems with 8-20 MeV protons are presented. For radiobiological experiments second generation Gafchromic films (EBT2) have been calibrated with protons of 12 and 20 MeV for a dose range of 0.3-10 Gy. Dose verification in proton irradiation of subcutaneous tumours in mice was successfully accomplished using these films.

  17. Measurement of / values using proton beam

    Indian Academy of Sciences (India)

    G A V Ramanamurthy; K Ramachandra Rao; Y Rama Krishna; P Venkateswarlu; K Bhaskara Rao; P V Ramana Rao; S Venkata Ratnam; V Seshagiri Rao; G J Nagaraju; S Bhuloka Reddy

    2001-05-01

    The / intensity ratios are measured in some 3 shell elements by using a 2 MeV proton beam along with a high resolution Si(Li) detector. The present / intensity ratios are in good agreement with Scofield modified theoretical values, thus supporting the basic assumptions in that theory. From the present / intensity ratios, it is evident that due to chemical effects, the experimental / intensity ratios will be increased while they will be decreased due to the presence of simultaneous -shell vacancies which are produced due to proton excitation.

  18. PERMEABILITY OF SALTSTONE MEASUREMENT BY BEAM BENDING

    International Nuclear Information System (INIS)

    One of the goals of the Saltstone variability study is to identify (and, quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. A performance property for Saltstone mixes that is important but not routinely measured is the liquid permeability or saturated hydraulic conductivity of the cured Saltstone mix. The value for the saturated hydraulic conductivity is an input into the Performance Assessment for the SRS Z-Area vaults. Therefore, it is important to have a method available that allows for an accurate and reproducible measurement of permeability quickly and inexpensively. One such method that could potentially meet these requirements for the measurement of saturated hydraulic conductivity is the technique of beam bending, developed by Professor George Scherer at Princeton University. In order to determine the feasibility of this technique for Saltstone mixes, a summer student, David Feliciano, was hired to work at Princeton under the direction of George Scherer. This report details the results of this study which demonstrated the feasibility and applicability of the beam bending method to measurement of permeability of Saltstone samples. This research effort used samples made at Princeton from a Modular Caustic side solvent extraction Unit based simulant (MCU) and premix at a water to premix ratio of 0.60. The saturated hydraulic conductivities for these mixes were measured by the beam bending technique and the values determined were of the order of 1.4 to 3.4 x 10-9 cm/sec. These values of hydraulic conductivity are consistent with independently measured values of this property on similar MCU based mixes by Dixon and Phifer. These values are also consistent with the hydraulic conductivity of a generic Saltstone mix measured by Langton in 1985. The high water to premix ratio used for Saltstone along with the relatively low degree of hydration for MCU

  19. Effect of electron contamination of a 6 MV x-ray beam on near surface diode dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C R; Mountford, P J; Moloney, A J [Medical Physics Directorate, University Hospital of North Staffordshire, Princes Road, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7LN (United Kingdom)

    2006-12-21

    In critical organ in vivo x-ray dosimetry, the relative contaminating electron contribution to the total dose and total detector response outside the field will be different to the corresponding contributions at the central axis detector calibration position, mainly due to the effects of shielding in the linear accelerator head on the electron and x-ray energy spectrum. To investigate these contributions, the electron energy response of a Scanditronix PFD diode was measured using electrons with mean energies from 0.45 to 14.6 MeV, and the Monte Carlo code MCNP-4C was used to calculate the electron energy spectra on the central axis, and at 1 and 10 cm outside the edge of a 4 x 4, 10 x 10 and a 15 x 15 cm{sup 2} 6 MV x-ray field. The electron contribution to the total dose varied from about 8% on the central axis of the smallest field to about 76% at 10 cm outside the edge of the largest field. The electron contribution to the total diode response varied from about 7-8% on the central axis of all three fields to about 58% at 10 cm outside the edge of the smallest field. The results indicated that a near surface x-ray dose measurement with a diode outside the treatment field has to be interpreted with caution and requires knowledge of the relative electron contribution specific to the measurement position and field size.

  20. Radiation therapy dosimetry system

    International Nuclear Information System (INIS)

    New therapeutic treatments generally aim to increase therapeutic efficacy while minimizing toxicity. Many aspects of radiation dosimetry have been studied and developed particularly in the field of external radiation. The success of radiotherapy relies on monitoring the dose of radiation to which the tumor and the adjacent tissues are exposed. Radiotherapy techniques have evolved through a rapid transition from conventional three-dimensional (3D) conformal radiation therapy to intensity-modulated radiation therapy (IMRT) treatments or radiosurgery and robotic radiation therapy. These advances push the frontiers in our effort to provide better patient care by improving the precision of the absorbed dose delivered. This paper presents state-of-the art radiation therapy dosimetry techniques as well as the value of integral dosimetry (INDOS), which shows promise in the fulfillment of radiation therapy dosimetry requirements. - highlights: • Pre-treatment delivery and phantom dosimetry in brachytherapy treatments were analyzed. • Dose distribution in the head and neck was estimated by physical and mathematical dosimetry. • Electron beam flattening was acquired by means of mathematical, physical and “in vivo” dosimetry. • Integral dosimetry (INDOS) has been suggested as a routine dosimetric method in all radiation therapy treatments

  1. Statistical analysis of IMRT dosimetry quality assurance measurements for local delivery guideline

    International Nuclear Information System (INIS)

    To establish our institutional guideline for IMRT delivery, we statistically evaluated the results of dosimetry quality assurance (DQA) measurements and derived local confidence limits using the concept confidence limit of |mean|+1.96σ. From June 2006 to March 2009, 206 patients with head and neck cancer, prostate cancer, liver cancer, or brain tumor were treated using LINAC-based IMRT technique. In order to determine site specific DQA tolerances at a later stage, a hybrid plan with the same fluence maps as in the treatment plan was generated on CT images of a cylindrical phantom of acryl. Points of measurement using a 0.125 cm3 ion-chamber were typically located in the region of high and uniform doses. The planar dose distributions perpendicular to the central axis were measured by using a diode array in solid water with all fields delivered, and assessed using gamma criteria of 3%/3 mm. The mean values and standard deviations were used to develop the local confidence and tolerance limits. The dose differences and gamma pass rates for the different treatment sites were also evaluated in terms of total monitor uints (MU), MU/cGy, and the number of PTV's pieces. The mean values and standard deviations of ion-chamber dosimetry differences between calculated and measured doses were -1.6 ± 1.2% for H&N cancer, -0.4 ± 1.2% for prostate and abdominal cancer, and -0.6 ± 1.5% for brain tumor. Most of measured doses (92.2%) agreed with the calculated doses within a tolerance limit of ±3% recommended in the literature. However, we found some systematic under-dosage for all treatment sites. The percentage of points passing the gamma criteria, averaged over all treatment sites was 97.3 ± 3.7%. The gamma pass rate and the agreement of ion-chamber dosimetry generally decreased with increasing the number of PTV's pieces, the degree of modulation (MU/cGy), and the total MU beyond 700. Our local confidence limits were comparable to those of AAPM TG 119 and ESTRO

  2. Statistical analysis of IMRT dosimetry quality assurance measurements for local delivery guideline

    Directory of Open Access Journals (Sweden)

    Ye Sung-Joon

    2011-03-01

    Full Text Available Abstract Purpose To establish our institutional guideline for IMRT delivery, we statistically evaluated the results of dosimetry quality assurance (DQA measurements and derived local confidence limits using the concept confidence limit of |mean|+1.96σ. Materials and methods From June 2006 to March 2009, 206 patients with head and neck cancer, prostate cancer, liver cancer, or brain tumor were treated using LINAC-based IMRT technique. In order to determine site specific DQA tolerances at a later stage, a hybrid plan with the same fluence maps as in the treatment plan was generated on CT images of a cylindrical phantom of acryl. Points of measurement using a 0.125 cm3 ion-chamber were typically located in the region of high and uniform doses. The planar dose distributions perpendicular to the central axis were measured by using a diode array in solid water with all fields delivered, and assessed using gamma criteria of 3%/3 mm. The mean values and standard deviations were used to develop the local confidence and tolerance limits. The dose differences and gamma pass rates for the different treatment sites were also evaluated in terms of total monitor uints (MU, MU/cGy, and the number of PTV's pieces. Results The mean values and standard deviations of ion-chamber dosimetry differences between calculated and measured doses were -1.6 ± 1.2% for H&N cancer, -0.4 ± 1.2% for prostate and abdominal cancer, and -0.6 ± 1.5% for brain tumor. Most of measured doses (92.2% agreed with the calculated doses within a tolerance limit of ±3% recommended in the literature. However, we found some systematic under-dosage for all treatment sites. The percentage of points passing the gamma criteria, averaged over all treatment sites was 97.3 ± 3.7%. The gamma pass rate and the agreement of ion-chamber dosimetry generally decreased with increasing the number of PTV's pieces, the degree of modulation (MU/cGy, and the total MU beyond 700. Our local confidence limits

  3. Radiation dosimetry of the reactor RA at Vinca, Measurements by isothermal calorimeter

    International Nuclear Information System (INIS)

    1. In this work we have made attempts to: - analyze the problems of reactor radiation dosimetry; - describe the solutions of this problem by the calorimetric method; - present our results of measurements of the reactor RA at Vinca, and to describe the method, apparatus and measuring equipment used. 2. Use was made of the isothermal calorimeter with thermistors which measured the absorbed dose rates within the range 104-106 rad/h, with an accuracy of 2-5%. It was shown that the reactor radiation in which the thermal neutron flux is up to the order of magnitude 1012 n/cm2/sec, and the integral thermal neutron flux up to about 1016 n/cm2 exerts no significant influence upon the working characteristics out of the thermistors used. 3. Determination was made of the absorbed dose distribution into the gamma-ray and the neutron contribution. For this purpose we used 3 materials: ordinary water, heavy water and graphite. 4. Measurements were carried out in two vertical experimental holes 'VK-5' and 'VK-6' of the reactor RA at several heights. It has been shown that the absorbed dose height distribution agrees well with the thermal flux distribution curve, although the relations of the absorbed doses of the two holes are not in accordance with the corresponding thermal flux relations (author)

  4. Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Ottosson, Rickard; Lindvold, Lars René;

    2011-01-01

    a 10 cm × 10 cm field at 10 cm depth. The dose per pulse behaviour compared well with linac target current measurements and accumulated dose measurements, and the system was able to resolve transient dose delivery differences between two Varian linac builds. The system therefore shows promise for...

  5. Evaluation of patient dose in imaging using a cone-beam CT dosimetry by X-ray films for radiotherapeutic dose

    International Nuclear Information System (INIS)

    A limited cone-beam X-ray CT (3DX multi-image micro CT; 3DX-FPD) is widely used in dentistry because it provides a lower cost, smaller size, and higher spatial resolution than a CT for medicine. Our recent research suggested that the patient dose of 3DX-FPD was less than 7/10 of that of CT, and it was several to 10 times more than that of dental or panoramic radiography. The purpose of this study was to evaluate the spatial dose distribution from 3DX-FPD and to estimate the influence of dose by positioning of the region of interest. Dosimetry of the organs and the tissues was performed using an anthropomorphic Alderson Rando phantom and X-ray films for measurement of radiotherapeutic dose. Measurements of dose distribution were performed using a cylinder-type tank of water made of acrylic resin imitating the head and X-ray films. The results are summarized as follows: The dose was higher as the ratio of the air region included in the region of interest increased. The dose distribution was not homogeneous and the dose was highest in the skin region. The dose was higher for several seconds after the beginning of exposure. It was concluded that patient positioning, as well as exposure conditions including the size of the exposure field and tube current, could greatly influence the patient dose in 3DX-FPD. In addition, it is necessary to consider the influence of image quality for the treatment of dental implants. (author)

  6. The FiR 1 photon beam model adjustment according to in-air spectrum measurements with the Mg(Ar) ionization chamber

    International Nuclear Information System (INIS)

    The mixed neutron–photon beam of FiR 1 reactor is used for boron–neutron capture therapy (BNCT) in Finland. A beam model has been defined for patient treatment planning and dosimetric calculations. The neutron beam model has been validated with an activation foil measurements. The photon beam model has not been thoroughly validated against measurements, due to the fact that the beam photon dose rate is low, at most only 2% of the total weighted patient dose at FiR 1. However, improvement of the photon dose detection accuracy is worthwhile, since the beam photon dose is of concern in the beam dosimetry. In this study, we have performed ionization chamber measurements with multiple build-up caps of different thickness to adjust the calculated photon spectrum of a FiR 1 beam model. - Highlights: • In order to verify the photon beam model of the FiR 1 BNCT facility in Finland, the photon beam spectrum is determined experimentally through ionization chamber measurements with multiple build-up caps of different thickness. • Large discrepancy is found between free in air measurements with the ionization chamber and the Monte Carlo calculations indicating that the initial beam model needs to be adjusted. • The unfolded spectrum and photon beam intensity may be applicable as a more correct photon beam model

  7. Monte Carlo modelling of Germanium detectors for the measurement of low energy photons in internal dosimetry: Results of an international comparison

    International Nuclear Information System (INIS)

    This communication summarizes the results concerning the Monte Carlo (MC) modelling of Germanium detectors for the measurement of low energy photons arising from the 'International comparison on MC modelling for in vivo measurement of Americium in a knee phantom' organized within the EU Coordination Action CONRAD (Coordinated Network for Radiation Dosimetry) as a joint initiative of EURADOS working groups 6 (computational dosimetry) and 7 (internal dosimetry). MC simulations proved to be an applicable way to obtain the calibration factor that needs to be used for in vivo measurements

  8. Monte Carlo modelling of Germanium detectors for the measurement of low energy photons in internal dosimetry: Results of an international comparison

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ros, J.M. [CIEMAT, Av. Complutense 22, E-28040 Madrid (Spain)], E-mail: jm.gomezros@ciemat.es; Carlan, L. de [CEA DRT/LIST/DETECS/LNHB/LMD, Bat 534, F-91191 Gif sur Yvette, Cedex (France); IRSN DRPH/SDI/LEDI, BP6, F-92262, Fontenay-aux-Roses, Cedex (France); Franck, D. [IRSN DRPH/SDI/LEDI, BP6, F-92262, Fontenay-aux-Roses, Cedex (France); Gualdrini, G. [ENEA ION-IRP, Via dei Colli 16, I-40136 Bologna (Italy); Lis, M.; Lopez, M.A.; Moraleda, M. [CIEMAT, Av. Complutense 22, E-28040 Madrid (Spain); Zankl, M. [GSF - National Research Center for Environment and Health, D-85764 Neuherberg (Germany); Badal, A. [Institut de Tecniques Energetiques, UPC, Diagonal 647, 08028 Barcelona (Spain); Capello, K. [Human Monitoring Laboratory (Canada); Cowan, P. [Serco Assurance, Bld. A32, Winfrith Tech. Centre Winfrith, Dorchester, Dorset DT2 8DH (United Kingdom); Ferrari, P. [ENEA ION-IRP, Via dei Colli 16, I-40136 Bologna (Italy); Heide, B. [Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Henniger, J. [Technical University of Dresden, 01062 Dresden (Germany); Hooley, V. [Serco Assurance, Bld. A32, Winfrith Tech. Centre Winfrith, Dorchester, Dorset DT2 8DH (United Kingdom); Hunt, J. [IRD, Av. Salvador Allende, s/n, Recreio, Rio de Janeiro (Brazil); Kinase, S. [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Kramer, G.H. [Human Monitoring Laboratory (Canada); Loehnert, D. [Technical University of Dresden, 01062 Dresden (Germany); Lucas, S. [LARN Laboratory, University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium)] (and others)

    2008-02-15

    This communication summarizes the results concerning the Monte Carlo (MC) modelling of Germanium detectors for the measurement of low energy photons arising from the 'International comparison on MC modelling for in vivo measurement of Americium in a knee phantom' organized within the EU Coordination Action CONRAD (Coordinated Network for Radiation Dosimetry) as a joint initiative of EURADOS working groups 6 (computational dosimetry) and 7 (internal dosimetry). MC simulations proved to be an applicable way to obtain the calibration factor that needs to be used for in vivo measurements.

  9. Detection, dosimetry and microdosimetry using high energy sup 1 sup 2 C beams

    CERN Document Server

    Spurny, F

    1999-01-01

    Samples of polyallyldiglycolcarbonate (PADC) track etch detectors (TED) were exposed to high energy sup 1 sup 2 C nuclei at the particle beam of the Dubna synchrophasotron. The energy of sup 1 sup 2 C nuclei varied between 0.1 and 1.5 GeV per amu. At the low studied energies the linear energy transfer (LET) of these nuclei is higher than the detector threshold value. Then, the primary particle tracks are directly etched in the detector surface. The detection efficiency approaches to 100% at perpendicular incidence. Their LET has been established by means of standard authomatized procedure recently developed. The LET values found here are in good agreement with theoretical ones. At 1.5 GeV per amu (LET approx 8.4 keV mu m sup - sup 1) the secondary particle tracks were evaluated in all the exposed detectors. The energy deposited by these particles was compared to the energy deposited through primary ionization losses. It was found out that its contribution to the total dose is relatively lower than for protons...

  10. Semi- and virtual 3D dosimetry in clinical practice

    DEFF Research Database (Denmark)

    Korreman, S. S.

    2013-01-01

    In this review, 3D dosimetry is divided in three categories; "true" 3D, semi-3D and virtual 3D. Virtual 3D involves the use of measurement arrays either before or after beam entry in the patient/phantom, whereas semi-3D involves use of measurement arrays in phantoms mimicking the patient. True 3D...

  11. Dose measurements in dental radiology using thermoluminescent dosimetry;Medicoes de dose em radiodiagnostico odontologico utilizando dosimetria termoluminescente

    Energy Technology Data Exchange (ETDEWEB)

    Chiara, Ana Claudia M. de; Costa, Alessandro M. [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras; Pardini, Luiz Carlos [Universidade de Sao Paulo (FORP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Odontologia

    2009-07-01

    The aim of this work was the implementation of a code of practice for dosimetry in dental radiology using the technique of thermoluminescent dosimetry. General principles for the use of thermoluminescent dosimeters were followed. The irradiations were performed using ten X-ray equipment for intra-oral radiography and an X-ray equipment for panoramic radiography. The incident air kerma was evaluated for five different exposure times used in clinical practice for intra-oral radiographs. Using a backscatter factor of 1.2, it was observed that approximately 40% of the entrance skin dose values found for intra-oral radiographs are above the diagnostic reference level recommended in national regulation. Different configurations of voltage and current were used representing the exposure as a child, woman and man for panoramic radiographs. The results obtained for the air kerma area product were respectively 53.3 +- 5.2 mGy.cm{sup 2}, 101.5 +- 9.5 mGy.cm{sup 2} and 116.8 +- 10.4 mGy.cm{sup 2}. The use of thermoluminescent dosimetry requires several procedures before a result is recorded. The use of dosimeters with ionization chambers or semiconductors provides a simple and robust method for routine measurements. However, the use of thermoluminescent dosimetry can be of great value to large-scale surveys to establish diagnostic reference levels. (author)

  12. Dosimetry in radiotherapy. V.1

    International Nuclear Information System (INIS)

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  13. Dosimetry in radiotherapy. V.2

    International Nuclear Information System (INIS)

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  14. Implementation of a metrological framework for dosimetry of X ray beams used in diagnostic radiology in Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    This work was done at the Dosimeter Calibration Laboratory in the Development Center of Nuclear Technology (CDTN) aiming to implement a framework to assure a metrological reliability of air kerma and absorbed dose measurements related to dosimetry of patients submitted to diagnostic radiology examinations. An Isovolt HS320 model Seifert-Pantak x-ray machine with 5 to 320 kV voltage and 0.1 to 45 mA tube current ranges, a 7 mmBe window and tungsten target was used to reproduce the internationally recommended x-ray reference radiations for calibrating or testing dosemeters. The energy spectra of all reference radiations were measured with an EXV9 - XR-100T model Amptek Cd-Te spectrometer. The tube voltage was measured in terms of the maximum value through a linear fitting of the energy spectrum tail. The first and, if applicable, the second half-value layers (HVL) were measured based on the attenuation curves in terms of air kerma rate versus the thickness of 99.99% high purity aluminium filters. For all reference radiations, as first approximation, the nominal voltage in the x-ray machine was set as the IEC tube voltage and the additional filtration was adjusted to get the 1st HVL and the homogeneity coefficient in compliance with the IEC or the IAEA requirements. Air kerma measurements were done with a RC6 and, in the case of mammography, a RC6M RADCAL ionization chambers traceable to the National (Brazilian) Ionizing Radiation Metrology Laboratory (LNMRI/IRD)

  15. Magnetization transfer proportion: a simplified measure of dose response for polymer gel dosimetry

    International Nuclear Information System (INIS)

    The response to radiation of polymer gel dosimeters has most often been described by measuring the nuclear magnetic resonance transverse relaxation rate as a function of dose. This approach is highly dependent upon the choice of experimental parameters, such as the echo spacing time for Carr-Purcell-Meiboom-Gill-type pulse sequences, and is difficult to optimize in imaging applications where a range of doses are applied to a single gel, as is typical for practical uses of polymer gel dosimetry. Moreover, errors in computing dose can arise when there are substantial variations in the radiofrequency (B1) field or resonant frequency, as may occur for large samples. Here we consider the advantages of using magnetization transfer imaging as an alternative approach and propose the use of a simplified quantity, the magnetization transfer proportion (MTP), to assess doses. This measure can be estimated through two simple acquisitions and is more robust in the presence of some sources of system imperfections. It also has a dependence upon experimental parameters that is independent of dose, allowing simultaneous optimization at all dose levels. The MTP is shown to be less susceptible to B1 errors than are CPMG measurements of R2. The dose response can be optimized through appropriate choices of the power and offset frequency of the pulses used in magnetization transfer imaging.

  16. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  17. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    International Nuclear Information System (INIS)

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water

  18. Methods of measurement and calibration in personnel dosimetry for external irradiation: presentation of the concept and the results of a test programme in Switzerland

    International Nuclear Information System (INIS)

    In 1986 the Swiss working group on personnel dosimetry issued a recommendation on methods of calibration and measurement in personnel dosimetry for external radiation, based on ICRU report 39. The aim of the report was to give detailed and pragmatic guidance to the dosimetry services and the calibration labs. In the recommendation a definition is given for primary and secondary limited quantities, for calibration quantities and operational quantities as well as for their interrelationships. The second part of the report is a manual for the calibration and evaluation procedures for whole-body and extremity dosemeters for photon and electron radiation. Based on that recommendation an extended test programme has been performed for all dosimetry services in Switzerland. The results show that the legal introduction of the recommended concept has no severe consequences for the dosimetry services although a number of minor modifications are needed. (author)

  19. Anniversary Paper: Fifty years of AAPM involvement in radiation dosimetry

    International Nuclear Information System (INIS)

    This article reviews the involvement of the AAPM in various aspects of radiation dosimetry over its 50 year history, emphasizing the especially important role that external beam dosimetry played in the early formation of the organization. Topics covered include the AAPM's involvement with external beam and x-ray dosimetry protocols, brachytherapy dosimetry, primary standards laboratories, accredited dosimetry chains, and audits for machine calibrations through the Radiological Physics Center

  20. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields

    DEFF Research Database (Denmark)

    Ploquin, N.; Kertzscher, Gustavo; Vandervoort, E.;

    2015-01-01

    A dosimetry system based on Al2O3:C radioluminescence (RL), and RADPOS, a novel 4D dosimetry system using microMOSFETs, were used to measure total scatter factors, (Sc,p)fclindet, for the CyberKnife robotic radiosugery system. New Monte Carlo calculated correction factors are presented and applied...... for the RL detector response for the 5, 7.5 and 10 mm collimators in order to correct for the detector geometry and increased photoelectric cross section of Al2O3:C relative to water. For comparison, measurements were also carried out using a micro MOSFET, PTW60012 diode and GAFCHROMIC® film (EBT and...... EBT2). Uncorrected (Sc,p)fclindet, were obtained by taking the ratio of the detector response for each collimator to that for the 60 mm diameter reference field. Published Monte Carlo calculated correction factors were applied to the RADPOS, microMOSFET and diode detector measurements to yield...

  1. Dosimetry in process control

    International Nuclear Information System (INIS)

    Measurement of absorbed dose and dose distribution in irradiated medical products relies on the use of quality dosimetry systems, trained personnel and a thorough understanding of the energy deposition process. The interrelationship of these factors will be discussed with emphasis on the current and future practices of process control dosimetry. (author)

  2. Faraday Cup - it is used to measure beam intensities at low energy beams.

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    A Faraday Cup is used to measure beam intensities at low energy beams. An electrically isolated metallic electrode intercepts the beam and captures all its charges. These charges are integrated using an current sensitive amplifier. When the beam impinges onto the electrode surface low energy electrons are liberated. In order to prevent these electrons from escaping the cup and thus falsifying the measurement, a repeller electrode with negative potential pushes the electrons back onto the electrode.

  3. Comparison between the IAEA/TRS-227 and the new protocol IAEA/TRS-398 in dosimetry of photon beams

    International Nuclear Information System (INIS)

    This work presents a comparison of the measured values of absorbed dose in water for photon beams, using the formalism of the IAEA/TRS-277 and the new protocol IAEA/TRS-398. For measurements were used a linear accelerator Clinac 2300 C/D with energy beams of 6 MV and 15 MV, and a cobalt machine Theratron 780 C installed at the Instituto Nacional de Cancer, Rio de Janeiro. The value of the absorbed dose in water, Dw, was measured using the calibration factor in terms of absorbed dose in water (ND,w), according to TRS-398 and the calibration factor in terms of kerma in air (Nk,ar), from the TRS-277 (with the actualization of the TRS-381). The higher difference comparing the two protocols was 0,6 % for the Clinac 2300, for the energy of 15 MV. (author)

  4. Experimental method of in-vivo dosimetry without build-up device on the skin for external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hosang [Department of Radiation Oncology, Pusan National University Yangsan Hospital, Yangsan (Korea, Republic of); Medical Research Institute, Pusan National University Hospital, Busan (Korea, Republic of); Nam, Jiho; Lee, Jayoung [Department of Radiation Oncology, Pusan National University Yangsan Hospital, Yangsan (Korea, Republic of); Park, Dahl, E-mail: dpark411@gmail.com [Department of Radiation Oncology, Pusan National University Hospital, Busan (Korea, Republic of); Baek, Cheol-Ha [Department of Radiological Science, Dongseo University, Busan (Korea, Republic of); Kim, Wontaek; Ki, Yongkan; Kim, Dongwon [Department of Radiation Oncology, Pusan National University Hospital, Busan (Korea, Republic of)

    2015-06-01

    Accurate dose delivery is crucial to the success of modern radiotherapy. To evaluate the dose actually delivered to patients, in-vivo dosimetry (IVD) is generally performed during radiotherapy to measure the entrance doses. In IVD, a build-up device should be placed on top of an in-vivo dosimeter to satisfy the electron equilibrium condition. However, a build-up device made of tissue-equivalent material or metal may perturb dose delivery to a patient, and requires an additional laborious and time-consuming process. We developed a novel IVD method using a look-up table of conversion ratios instead of a build-up device. We validated this method through a monte-carlo simulation and 31 clinical trials. The mean error of clinical IVD is 3.17% (standard deviation: 2.58%), which is comparable to that of conventional IVD methods. Moreover, the required time was greatly reduced so that the efficiency of IVD could be improved for both patients and therapists.

  5. Experimental method of in-vivo dosimetry without build-up device on the skin for external beam radiotherapy

    International Nuclear Information System (INIS)

    Accurate dose delivery is crucial to the success of modern radiotherapy. To evaluate the dose actually delivered to patients, in-vivo dosimetry (IVD) is generally performed during radiotherapy to measure the entrance doses. In IVD, a build-up device should be placed on top of an in-vivo dosimeter to satisfy the electron equilibrium condition. However, a build-up device made of tissue-equivalent material or metal may perturb dose delivery to a patient, and requires an additional laborious and time-consuming process. We developed a novel IVD method using a look-up table of conversion ratios instead of a build-up device. We validated this method through a monte-carlo simulation and 31 clinical trials. The mean error of clinical IVD is 3.17% (standard deviation: 2.58%), which is comparable to that of conventional IVD methods. Moreover, the required time was greatly reduced so that the efficiency of IVD could be improved for both patients and therapists

  6. Dosimetry study for a new in vivo X-ray fluorescence (XRF) bone lead measurement system

    International Nuclear Information System (INIS)

    A new 109Cd γ-ray induced bone lead measurement system has been developed to reduce the minimum detectable limit (MDL) of the system. The system consists of four 16 mm diameter detectors. It requires a stronger source compared to the 'conventional' system. A dosimetry study has been performed to estimate the dose delivered by this system. The study was carried out by using human-equivalent phantoms. Three sets of phantoms were made to estimate the dose delivered to three age groups: 5-year old, 10-year old and adults. Three approaches have been applied to evaluate the dose: calculations, Monte Carlo (MC) simulations, and experiments. Experimental results and analytical calculations were used to validate MC simulation. The experiments were performed by placing Panasonic UD-803AS TLDs at different places in phantoms that representing different organs. Due to the difficulty of obtaining the organ dose and the whole body dose solely by experiments and traditional calculations, the equivalent dose and effective dose were calculated by MC simulations. The result showed that the doses delivered to the organs other than the targeted lower leg are negligibly small. The total effective doses to the three age groups are 8.45/9.37 μSv (female/male), 4.20 μSv, and 0.26 μSv for 5-year old, 10-year old and adult, respectively. An approval to conduct human measurements on this system has been received from the Research Ethics Board based on this research

  7. A mammographic phantom to measure mean glandular dose by thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    We have designed a phantom to evaluate mean glandular dose (MGD) as part of the regulatory dosimetry control for mammographic equipment. The phantom is constituted by TLD-100 thermoluminescent dosemeters (TLDs) inserted within semicircular plates of acrylic. Different groups of TLDs are used to determine entrance surface air kerma and half-value layer (HVL). Calibration of both tasks has been performed using a Senographe 2000D system and an ionization chamber. The phantom has been tested in five clinical systems. The HVL and MGD obtained by this method agree, on average, within 3%, with those from standard procedures based on the use of ionization chambers. The phantom MGD measurements have a combined uncertainty better than 10% (k = 1). - Highlights: • We have designed a phantom to evaluate mean glandular dose (MGD). • We used TLD-100 dosemeters inserted within semicircular plates of acrylic. • The system has been tested in five clinical systems. • MGD obtained by this method agrees within 3% with ionization chambers. • MGD measurements have a combined uncertainty better than 10% (k = 1)

  8. Validation of an in-vivo proton beam range check method in an anthropomorphic pelvic phantom using dose measurements

    International Nuclear Information System (INIS)

    Purpose: In-vivo dosimetry and beam range verification in proton therapy could play significant role in proton treatment validation and improvements. In-vivo beam range verification, in particular, could enable new treatment techniques one of which could be the use of anterior fields for prostate treatment instead of opposed lateral fields as in current practice. This paper reports validation study of an in-vivo range verification method which can reduce the range uncertainty to submillimeter levels and potentially allow for in-vivo dosimetry. Methods: An anthropomorphic pelvic phantom is used to validate the clinical potential of the time-resolved dose method for range verification in the case of prostrate treatment using range modulated anterior proton beams. The method uses a 3 × 4 matrix of 1 mm diodes mounted in water balloon which are read by an ADC system at 100 kHz. The method is first validated against beam range measurements by dose extinction measurements. The validation is first completed in water phantom and then in pelvic phantom for both open field and treatment field configurations. Later, the beam range results are compared with the water equivalent path length (WEPL) values computed from the treatment planning system XIO. Results: Beam range measurements from both time-resolved dose method and the dose extinction method agree with submillimeter precision in water phantom. For the pelvic phantom, when discarding two of the diodes that show sign of significant range mixing, the two methods agree with ±1 mm. Only a dose of 7 mGy is sufficient to achieve this result. The comparison to the computed WEPL by the treatment planning system (XIO) shows that XIO underestimates the protons beam range. Quantifying the exact XIO range underestimation depends on the strategy used to evaluate the WEPL results. To our best evaluation, XIO underestimates the treatment beam range between a minimum of 1.7% and maximum of 4.1%. Conclusions: Time-resolved dose

  9. Clinical implementation of entrance in vivo dosimetry with a diode system in MV photon beam radiotherapy

    International Nuclear Information System (INIS)

    In order to improve the quality assurance of radiation treatments, a diode system for in vivo entrance dose verification is being implemented in our department. Before clinical use of the diode system Nuclear Associates Model 30-472-8000, the acceptance tests and the measurement of the calibration and correction factors were carried out. For conventional treatment setup, diode lecture only requires correction for variation in: source to surface distance -SSD- (CFSSD), temperature (CFT), calibration factor due to accumulated dose (CFcai) and the accelerator output (CFout). Therefore, the expected diode reading Rexp can be obtained from the planned SSD and dose DTPS at dmax (both given by the treatment planning system -TPS- Eclipse v7.3.10) through the relation Rexp = DTPS / (CFcai x CFout x CFSSD x CFT)

  10. Measuring the electron beam energy in a magnetic bunch compressor

    International Nuclear Information System (INIS)

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 μm precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  11. Small Field Dosimetry Using Optical-Fiber Radioluminescence and Radpos Dosimetry Systems

    DEFF Research Database (Denmark)

    Ploquin, N.; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Vandervoort, E.;

    2012-01-01

    Inc, USA). The RL signal generated in the crystal by ionizing radiation can be read remotely via thin optical fiber cables. The system was originally developed for in vivo dose verification during external beam radiotherapy and brachytherapy (Radiother Oncol, 100 (3), 45662, 2011). However, due to...... the small dimensions of the Al2O3 crystal, the system may have applications in small field dosimetry. The second system is the RADPOS system (Med Phys, 36, 167279, 2009), a novel 4D dosimetry system available from BEST Medical Canada. RADPOS probe consists of 2 sensors: a small antenna as an...... well within the measurement uncertainty for each detector. Conclusions: Our study suggests that the μMOSFET/RADPOS and fiber coupled RL dosimetry systems are well suited for Cyberknife cone ROF measurements, provided that appropriate correction factors are applied for cone sizes 5 and 7.5 mm....

  12. Dosimetry of industrial sources

    International Nuclear Information System (INIS)

    The gamma rays are produced during the disintegration of the atomic nuclei, its high energy allows them to cross thick materials. The capacity to attenuate a photons beam allows to determine the density, in line, of industrial interest materials as the mining. By means of two active dosemeters and a TLDs group (passive dosimetry) the dose rates of two sources of Cs-137 used for determining in line the density of mining materials were determined. With the dosemeters the dose levels in diverse points inside the grave that it harbors the sources and by means of calculations the isodoses curves were determined. In the phase of calculations was supposed that both sources were punctual and the isodose curves were calculated for two situations: naked sources and in their Pb packings. The dosimetry was carried out around two sources of 137Cs. The measured values allowed to develop a calculation procedure to obtain the isodoses curves in the grave where the sources are installed. (Author)

  13. Assessment of CaSO4:Dy and LiF:Mg,Ti thermoluminescent dosimeters performance in the dosimetry of clinical electron beams

    International Nuclear Information System (INIS)

    The assessment of the performance of CaS04:Dy thermoluminescent detectors produced by IPEN in the dosimetry of clinical electron beams aims to propose an alternative to the LiF:Mg,Ti commercial dosimeters (TLD-100) largely applied in radiation therapy. The two types of thermoluminescent dosimeters were characterised with the use of PMMA, RMI-457 type solid water and water phantoms in radiation fields of 4, 6, 9, 12 and 16 MeV electrons of nominal energies in which the dose-response curves were obtained and the surface and depth doses were determined. The thermoluminescent response dependency with the electron nominal energies and the applied phantom were studied. The CaS04:Dy presented the same behaviour than the LiF:Mg,Ti in such a way that its application as an alternative to the TLD-100 pellets in the radiation therapy dosimetry of electron beams is viable and presents the significantly higher sensitivity to the electron radiation as its main advantage. (author)

  14. On the property of measurements with the PTW microLion chamber in continuous beams

    International Nuclear Information System (INIS)

    Purpose: The performance of liquid ionization chambers, which may prove to be useful tools in the field of radiation dosimetry, is based on several chamber and liquid specific characteristics. The present work investigates the performance of the PTW microLion liquid ionization chamber with respect to recombination losses and perturbations from ambient electric fields at various dose rates in continuous beams. Methods: In the investigation, experiments were performed using two microLion chambers, containing isooctane (C8H18) and tetramethylsilane [Si(CH3)4] as the sensitive media, and a NACP-02 monitor chamber. An initial activity of approximately 250 GBq 18F was employed as the radiation source in the experiments. The initial dose rate in each measurement series was estimated to 1.0 Gy min−1 by Monte Carlo simulations and the measurements were carried out during the decay of the radioactive source. In the investigation of general recombination losses, employing the two-dose-rate method for continuous beams, the liquid ionization chambers were operated at polarizing voltages 25, 50, 100, 150, 200, and 300 V. Furthermore, measurements were also performed at 500 V polarizing voltage in the investigation of the sensitivity of the microLion chamber to ambient electric fields. Results: The measurement results from the liquid ionization chambers, corrected for general recombination losses according to the two-dose-rate method for continuous beams, had a good agreement with the signal to dose linearity from the NACP-02 monitor chamber for general collection efficiencies above 70%. The results also displayed an agreement with the theoretical collection efficiencies according to the Greening theory, except for the liquid ionization chamber containing isooctane operated at 25 V. At lower dose rates, perturbations from ambient electric fields were found in the microLion chamber measurement results. Due to the perturbations, measurement results below an estimated dose rate of

  15. Dosimetry in radiation processing- Indian scenario

    International Nuclear Information System (INIS)

    Radiation processing is a method for producing chemical, physical, and microbiological changes in substances by exposing to ionizing radiation. Availability of high intensity cobalt-60 gamma ray sources and high power electron beam accelerators has led to a continuous growth of radiation processing industry in India. Commercial viability and safe operation of these radiation-processing plants depends on accurate dosimetry. Depending on the purpose to be achieved, a widespread dose range, from few grays to few hundred kilo grays, is encountered in radiation processing technology and this necessitates the use of different dosimetry systems. In the present paper, current status of radiation processing facilities in India has been reviewed. Various indigenously developed dosimetry systems such as Alanine/glutamine (Spectrophotometric readout), FBX and ceric-cerous (potentiometry) are being used for quality assurance and routine plant dosimetry. Fricke dosimeter is used as a reference standard for calibrating other dosimetry systems. Glutamine (Spectrophotometric read out) dosimeter, used as transfer standard for Q.A. has traceability to NPL, UK and has shown an agreement within ±2% during dose intercomparisons carried out with various international standards laboratories. Performance of these dosimeters was found to be better than ±10% during dose measurements in radiation sterilization and food irradiation plants. (author)

  16. Topics in radiation dosimetry radiation dosimetry, v.1

    CERN Document Server

    Attix, Frank H

    2013-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  17. Laser beam complex amplitude measurement by phase diversity

    OpenAIRE

    Védrenne, Nicolas; Mugnier, Laurent M.; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-01-01

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named CAMELOT for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken ...

  18. Electron Beam Size Measurements in a Cooling Solenoid

    CERN Document Server

    Kroc, Thomas K; Burov, Alexey; Seletsky, Sergey; Shemyakin, Alexander V

    2005-01-01

    The Fermilab Electron Cooling Project requires a straight trajectory and constant beam size to provide effective cooling of the antiprotons in the Recycler. A measurement system was developed using movable appertures and steering bumps to measure the beam size in a 20 m long, nearly continuous, solenoid. This paper discusses the required beam parameters, the implimentation of the measurement system and results for our application.

  19. Measuring the orbital angular momentum of electron beams

    OpenAIRE

    Giulio Guzzinati; Laura Clark; Armand B\\xe9ch\\xe9; Jo Verbeeck

    2014-01-01

    Abstract: The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, and diffraction from a knife ed...

  20. New look at displacement factor and point of measurement corrections in ionization chamber dosimetry

    International Nuclear Information System (INIS)

    A new technique is presented for determination of the effective point of measurement when cavity ionization chambers are used to measure the absorbed dose due to ionizing radiation in a dense medium. An algorithm is derived relating the effective point of measurement to the displacement correction factor. This algorithm relates variations of the displacement factor to the radiation field gradient. The technique is applied to derive the magnitudes of the corrections for several chambers in a p(66)Be(49) neutron therapy beam. 30 references, 4 figures, 1 table

  1. Dosimetry intercomparisons between fast neutron radiotherapy facilities

    International Nuclear Information System (INIS)

    Neutron dosimetry intercomparisons have been made between M.D. Anderson Hospital and Tumor Institute, Naval Research Laboratory, University of Washington Hospital, and Hammersmith Hospital. The parameters that are measured during these visits are: tissue kerma in air, tissue dose at depth of dose maximum, depth dose, beam profiles, neutron/gamma ratios and photon calibrations of ionization chambers. A preliminary report of these intercomparisons will be given including a comparison of the calculation and statement of tumor doses for each institution

  2. Measurement of neutral beam power and beam profile distribution on DNB

    International Nuclear Information System (INIS)

    The injection power of a diagnostic neutral beam (DNB) can be obtained with the thermocouple probe measurement system on the Hefei superconducting Tokamak-7 (HT-7). With the 49 kv, 6 A, 100 ms pulse charge of an acceleration electrode, a thermocouple probe measurement system with 13 thermocouples crossly distributed on a coppery heat target was used to measure the temperature rise of the target, and the maximum measured temperature rise was 14 degree C. And the neutral beam power of 160 kW and beam profile distribution was obtained by calculation. The total neutral beam power of 130 kW was also obtained by integral calculation with the temperature rise on the heat section board. The difference between the two means was analyzed. The experiment results shows that the method of heat section board with thermocouple probe is one of the effective ways to measure the beam power and beam profile distribution. (authors)

  3. 3D dosimetry in patients with early breast cancer undergoing Intraoperative Avidination for Radionuclide Therapy (IART registered) combined with external beam radiation therapy

    International Nuclear Information System (INIS)

    Intraoperative Avidination for Radionuclide Therapy (IART registered) is a novel targeted radionuclide therapy recently used in patients with early breast cancer. It is a radionuclide approach with 90Y-biotin combined with external beam radiotherapy (EBRT) to release a boost of radiation in the tumour bed. Two previous clinical trials using dosimetry based on the calculation of mean absorbed dose values with the hypothesis of uniform activity distribution (MIRD 16 method) assessed the feasibility and safety of IART registered. In the present retrospective study, a voxel dosimetry analysis was performed to investigate heterogeneity in distribution of the absorbed dose. The aim of this work was to compare dosimetric and radiobiological evaluations derived from average absorbed dose vs. voxel absorbed dose approaches. We evaluated 14 patients who were injected with avidin into the tumour bed after conservative surgery and 1 day later received an intravenous injection of 3.7 GBq of 90Y-biotin (together with 185 MBq 111In-biotin for imaging). Sequential images were used to estimate the absorbed dose in the target region according to the standard dosimetry method (SDM) and the voxel dosimetry method (VDM). The biologically effective dose (BED) distribution was also evaluated. Dose/volume and BED volume histograms were generated to derive equivalent uniform BED (EUBED) and equivalent uniform dose (EUD) values. No ''cold spots'' were highlighted by voxel dosimetry. The median absorbed-dose in the target region was 20 Gy (range 15-27 Gy) by SDM, and the median EUD was 20.4 Gy (range 16.5-29.4 Gy) by the VDM; SDM and VDM estimates differed by about 6 %. The EUD/mean voxel absorbed dose ratio was >0.9 in all patients, indicative of acceptable uniformity in the target. The median BED and EUBED values were 21.8 Gy (range 15.9-29.3 Gy) and 22.8 Gy (range 17.3-31.8 Gy), respectively. VDM highlighted the absence of significant heterogeneity in absorbed dose in the target. The EUD

  4. 3D dosimetry in patients with early breast cancer undergoing Intraoperative Avidination for Radionuclide Therapy (IART {sup registered}) combined with external beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Mahila E.; Cremonesi, Marta; Di Dia, Amalia; Botta, Francesca; Pedroli, Guido [European Institute of Oncology, Division of Medical Physics, Milan (Italy); De Cicco, Concetta; Calabrese, Michele; Paganelli, Giovanni [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); Sarnelli, Anna [IRCCS Istituto Romagnolo per lo Studio e la Cura dei Tumori, Medical Physics Unit, Meldola, FC (Italy); Pedicini, Piernicola [Centro Regionale Oncologico Basilicata (IRCCS-CROB), Department of Radiation Oncology, Rionero in Vulture, PZ (Italy); Orecchia, Roberto [European Institute of Oncology, Division of Radiotherapy, Milan (Italy)

    2012-11-15

    Intraoperative Avidination for Radionuclide Therapy (IART {sup registered}) is a novel targeted radionuclide therapy recently used in patients with early breast cancer. It is a radionuclide approach with {sup 90}Y-biotin combined with external beam radiotherapy (EBRT) to release a boost of radiation in the tumour bed. Two previous clinical trials using dosimetry based on the calculation of mean absorbed dose values with the hypothesis of uniform activity distribution (MIRD 16 method) assessed the feasibility and safety of IART {sup registered}. In the present retrospective study, a voxel dosimetry analysis was performed to investigate heterogeneity in distribution of the absorbed dose. The aim of this work was to compare dosimetric and radiobiological evaluations derived from average absorbed dose vs. voxel absorbed dose approaches. We evaluated 14 patients who were injected with avidin into the tumour bed after conservative surgery and 1 day later received an intravenous injection of 3.7 GBq of {sup 90}Y-biotin (together with 185 MBq {sup 111}In-biotin for imaging). Sequential images were used to estimate the absorbed dose in the target region according to the standard dosimetry method (SDM) and the voxel dosimetry method (VDM). The biologically effective dose (BED) distribution was also evaluated. Dose/volume and BED volume histograms were generated to derive equivalent uniform BED (EUBED) and equivalent uniform dose (EUD) values. No ''cold spots'' were highlighted by voxel dosimetry. The median absorbed-dose in the target region was 20 Gy (range 15-27 Gy) by SDM, and the median EUD was 20.4 Gy (range 16.5-29.4 Gy) by the VDM; SDM and VDM estimates differed by about 6 %. The EUD/mean voxel absorbed dose ratio was >0.9 in all patients, indicative of acceptable uniformity in the target. The median BED and EUBED values were 21.8 Gy (range 15.9-29.3 Gy) and 22.8 Gy (range 17.3-31.8 Gy), respectively. VDM highlighted the absence of significant

  5. Measurement of accelerated electron beam current at the Erevan synchrotron

    International Nuclear Information System (INIS)

    A system which ensures high accuracy of accelerated electro n beam current measurement at the synchrotron is described. The expected limits for the frequency characteristic of the measured magnitude, i.e. current of accelerated electron beam, are analyzed. A structure of measurement devices ensuring a necessary frecuency range for measured signals is chosen. A magnetoinduction feedback converter operating in aperiodic mode is taken as a primary beam current monitor. The parameters of the converter with a coincidence amplifier were calculated with a computer. Oscillograms of accelerated electron beam current corresponding to different operational modes of the synchrotron are presented

  6. Linac4 Low Energy Beam Measurements with Negative Hydrogen

    CERN Document Server

    Scrivens, R; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J B; Lettry, J; Lombardi, A; Midttun, O; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-01-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  7. Thai Research Reactor (TRR-1/M1) Neutron Beam Measurements

    International Nuclear Information System (INIS)

    Full text: Neutron beam tube of neutron radiography facility at Thai Research Reactor (TRR-1/M1) Thailand Institute of Nuclear Technology (public organization) is a divergent beam. The rectangular open-end of the beam tube is 16 cm x 17 cm while the inner-end is closed to the reactor core. The neutron beam size was measured using 20 cm x 40 cm neutron imaging plate. The measurement at the position 100 cm from the end of the collimator has shown that the beam size was 18.2 cm x 19.0 cm. Gamma ray in neutron the beam was also measured by the identical position using industrial X ray film. The area of gamma ray was 27.8 cm x 31.1 cm with the highest intensity found to be along the neutron beam circumference

  8. Precision dosimetry system suited for low temperature radiation damage experiments

    DEFF Research Database (Denmark)

    Andersen, H.H.; Hanke, C.C.; Sørensen, H.

    1967-01-01

    A calorimetric system for dosimetry on a beam of charged particles is described. The calorimeter works at liquid helium temperature. The total dose may be measured with an accuracy of 0.3%, and the dose per area with 0.4%. No theoretical corrections are needed. © 1967 The American Institute of Ph...

  9. Transverse beam emittance measurement using quadrupole variation at KIRAMS-430

    Science.gov (United States)

    An, Dong Hyun; Hahn, Garam; Park, Chawon

    2015-02-01

    In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.

  10. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields

    Science.gov (United States)

    Ploquin, N.; Kertzscher, G.; Vandervoort, E.; Cygler, J. E.; Andersen, C. E.; Francescon, P.

    2015-01-01

    A dosimetry system based on Al2O3:C radioluminescence (RL), and RADPOS, a novel 4D dosimetry system using microMOSFETs, were used to measure total scatter factors, ≤ft({{S}c,p}\\right)\\text{det}{{f\\text{clin}}}, for the CyberKnife robotic radiosugery system. New Monte Carlo calculated correction factors are presented and applied for the RL detector response for the 5, 7.5 and 10 mm collimators in order to correct for the detector geometry and increased photoelectric cross section of Al2O3:C relative to water. For comparison, measurements were also carried out using a micro MOSFET, PTW60012 diode and GAFCHROMIC® film (EBT and EBT2). Uncorrected ≤ft({{S}c,p}\\right)\\text{det}{{f\\text{clin}}}, were obtained by taking the ratio of the detector response for each collimator to that for the 60 mm diameter reference field. Published Monte Carlo calculated correction factors were applied to the RADPOS, microMOSFET and diode detector measurements to yield corrected field factors, Ω {{Q\\text{clin}},{{Q}\\text{msr}}}{{f\\text{clin}},{{f}\\text{msr}}}, following the terminology of a recent formalism introduced for small and composite field relative dosimetry. With corrections, the RL measured Ω {{Q\\text{clin}},{{Q}\\text{msr}}}{{f\\text{clin}},{{f}\\text{msr}}}, were 0.656  ±  0.002, 0.815  ±  0.002 and 0.865  ±  0.003 for the 5, 7.5 and 10 mm collimators, respectively. This was in good agreement with RADPOS corrected field factors of 0.650  ±  0.010, 0.816  ±  0.024 and 0.867  ±  0.010 for the 5, 7.5 and 10 mm collimators, respectively. Both RL and RADPOS total scatter factors agreed within approximately two standard deviations of the GAFCHROMIC film values (average of EBT and EBT2) of 0.640  ±  0.006, 0.806  ±  0.007 and 0.859  ±  0.09. Corrected total scatter factors for all dosimetry systems agreed within one standard deviation for collimator sizes 10-60 mm. Our study suggests that the micro

  11. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields

    International Nuclear Information System (INIS)

    A dosimetry system based on Al2O3:C radioluminescence (RL), and RADPOS, a novel 4D dosimetry system using microMOSFETs, were used to measure total scatter factors, (Sc,p)detfclin, for the CyberKnife robotic radiosugery system. New Monte Carlo calculated correction factors are presented and applied for the RL detector response for the 5, 7.5 and 10 mm collimators in order to correct for the detector geometry and increased photoelectric cross section of Al2O3:C relative to water. For comparison, measurements were also carried out using a micro MOSFET, PTW60012 diode and GAFCHROMIC® film (EBT and EBT2). Uncorrected (Sc,p)detfclin, were obtained by taking the ratio of the detector response for each collimator to that for the 60 mm diameter reference field. Published Monte Carlo calculated correction factors were applied to the RADPOS, microMOSFET and diode detector measurements to yield corrected field factors, ΩQclin,Qmsrfclin,fmsr, following the terminology of a recent formalism introduced for small and composite field relative dosimetry. With corrections, the RL measured ΩQclin,Qmsrfclin,fmsr, were 0.656  ±  0.002, 0.815  ±  0.002 and 0.865  ±  0.003 for the 5, 7.5 and 10 mm collimators, respectively. This was in good agreement with RADPOS corrected field factors of 0.650  ±  0.010, 0.816  ±  0.024 and 0.867  ±  0.010 for the 5, 7.5 and 10 mm collimators, respectively. Both RL and RADPOS total scatter factors agreed within approximately two standard deviations of the GAFCHROMIC film values (average of EBT and EBT2) of 0.640  ±  0.006, 0.806  ±  0.007 and 0.859  ±  0.09. Corrected total scatter factors for all dosimetry systems agreed within one standard deviation for collimator sizes 10–60 mm. Our study suggests that the microMOSFET/RADPOS and optical fibre-coupled RL dosimetry system are well suited for total scatter factor measurements over the entire range of field sizes, provided that

  12. Radiation dosimetry

    CERN Document Server

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  13. Dosimetry Service

    CERN Multimedia

    2004-01-01

    We wish to remind the people who are invited to the dosimetry service to exchange the new CERN dosimeter that the hours are from Monday to Friday 8.30 to 11.00 and 14.00 to 16.00. http://service-rp-dosimetry.web.cern.ch/service-rp-dosimetry/

  14. A Finnish national code of practice for reference dosimetry of radiation therapy

    International Nuclear Information System (INIS)

    Full text: A national Code of Practice (CoP) for reference dosimetry of radiation therapy in Finland will be established during 2002 and will be implemented from the beginning of 2003. The CoP will cover dosimetry of the conventional radiotherapy modalities used in Finland i.e. external radiotherapy with megavoltage photon and electron beams, external radiotherapy with low energy kilovoltage X-ray beams and brachytherapy. The formalisms for external radiation beam dosimetry are those of TRS 389. For brachytherapy the formalism will follow the general guidelines of TECDOC-1274. The CoP will be prepared by the SSDL of STUK in close co-operation with the Finnish radiotherapy physicists. For external beam radiotherapy, the main objective of the national Code of Practice for radiation therapy dosimetry is to maintain the achieved good level of consistency of the dosimetry procedures in external beam radiotherapy as the 'absorbed dose to water' based approach of TRS 389 is implemented in Finland. In the CoP the dosimetry the procedures are described for the whole dosimetry chain starting from the calibration of the ionisation chambers at the SSDL of STUK and ending to the calibration of the beam monitor ionisation chamber of a linear accelerator. For brachytherapy dosimetry the aim is to fix the national practice for reference air kerma rate calibrations both for radioactive sources and for well-type ionisation chambers. Although the dosimetry procedures are described independently of the SSDL service, CoP makes use of the special features of the calibration service offered by the SSDL of STUK. For ionisation chambers used for photon dosimetry the calibration factors for the user measurement chain are given not only for the actual reference beam quality (60Co) but also for a set of user beam qualities. Furthermore, SSDL of STUK offers calibration services for plane parallel ionisation chambers in an electron beam of a user linac. For brachytherapy SSDL of STUK has

  15. LHC Beam Instrumentation: Beam Loss and Tune Measurements (3/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  16. LHC Beam Instrumentation: Beam Position and Intensity Measurements (1/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  17. Beam induced vacuum measurement error in BEPC II

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    When the beam in BEPCII storage ring aborts suddenly, the measured pressure of cold cathode gauges and ion pumps will drop suddenly and decrease to the base pressure gradually. This shows that there is a beam induced positive error in the pressure measurement during beam operation. The error is the difference between measured and real pressures. Right after the beam aborts, the error will disappear immediately and the measured pressure will then be equal to real pressure. For one gauge, we can fit a non-linear pressure-time curve with its measured pressure data 20 seconds after a sudden beam abortion. From this negative exponential decay pumping-down curve, real pressure at the time when the beam starts aborting is extrapolated. With the data of several sudden beam abortions we have got the errors of that gauge in different beam currents and found that the error is directly proportional to the beam current, as expected. And a linear data-fitting gives the proportion coefficient of the equation, which we derived to evaluate the real pressure all the time when the beam with varied currents is on.

  18. Measurements on wave propagation characteristics of spiraling electron beams

    Science.gov (United States)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  19. Use of beam emittance measurements in matching problems

    International Nuclear Information System (INIS)

    The CERN new 50 MeV linac should operate with a computer-aided beam matching in which the transverse criteria are based on measured r.m.s. values of beam co-ordinates in phase space. The collected data, however, need to undergo an intermediate treatment before significant results can be obtained and then used in computations. Some examples from the experimental study programme are given and the role of automated beam emittance measurements in matching problems discussed. (author)

  20. ILC Beam Energy Measurement by means of Laser Compton Backscattering

    OpenAIRE

    Muchnoi, N.; Schreiber, H. J.; Viti, M

    2008-01-01

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered $\\gamma$-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitiv...

  1. Shaping and measuring picosecond charged particle beams

    International Nuclear Information System (INIS)

    The joint use of subharmonic beam buncher and pulse deflector is an efficient method of high current, picosecond pulse shaping of a beam. The method permits to obtain picosecond pulse current at narrow enough energy spectrum and maximum pulse current of a beam. To realize the method a system for shaping picosecond pulse current of a beam has been developed. For the subharmonic bunching a coaxial resonator with capacitive load is used. A pulse deflector is developed and tested for shaping pulse current of 3-5 ns duration with the energy 50-300 keV and current up to 2A. The length of the deflector plates is 10 cm. A nanosecond modulator with a ferrite shaper is developed and manufactured. A system for deflector modulator pulse synchronization is developed. The block-diagram of a magnetooptical monitor is presented

  2. Lactose and sucrose aqueous solutions for high-dose dosimetry with 10-MeV electron beam irradiation

    International Nuclear Information System (INIS)

    In the present study, dosimetric characterisation of aqueous solutions of lactose and sucrose was analysed by UV spectrometry following irradiation using 10-MeV electron beam at doses between 0.5 and 10.5 kGy. As a dosimetric index, absorbance is selected at 256 and 264 nm for lactose and sucrose aqueous solutions, respectively. The intensity of absorbance for irradiated solutions depends on the pre-irradiation concentration of lactose and sucrose. The post-irradiation stability of both solutions was investigated at room temperature for a measurement period of 22 d. (authors)

  3. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  4. The Radiotherapy Dosimetry Audit System In the UK

    International Nuclear Information System (INIS)

    Two national radiotherapy dosimetry intercomparisons have been earned out in the UK, involving all radiotherapy institutes. The first was concerned with megavoltage photon beams and looked at beam calibration and simple three-field planned distributions in a geometric phantom. The intercomparisons were carried out by an independent intercomparison physicist visiting each department in turn and making measurements with ion chambers, following a fixed protocol. The beam calibration intercomparison was earned out on every 60Co beam and every MV x-ray beam, whilst the planned comparisons were carried out on one beam only. The plans included effects of wedges, oblique incidence and inhomogeneities. The study was unfunded and took a significant time (1988-1991) to cover the 65 or so centres. It was followed up by a national electron dosimetry intercomparison which was fended (Department of Health) and which ran from 1994-1996. This audited three electron beam energies in each centre (depth dose, beam energy, dose calibration) and also included a follow-up of the original photon beam intercomparison. In general these studies showed good consistency of dosimetry across the UK centres, with mean (measured/locally stated) doses being close to unity and standard deviations of the distributions of values being approx. 1.5 and 1% for photons, 1.8% for electrons for beam calibration and 2.5-3.5% for the planned multi-beam situations. 97-100% of measurements were within the pre-set 3% tolerance for beam calibration and around 90% of the measurements within a pre-set 5% tolerance for planned situations. The studies did highlight some areas where increased on Q A could provide benefits. In particular the photon intercomparison discovered one 60Co unit mis calibration which led to national recommendations for the implementation of Quality Systems in radiotherapy departments

  5. Third-order moment effect of beam position measurements

    International Nuclear Information System (INIS)

    Third-order moments of beam charge distribution cause unwanted errors in beam positions measured by a beam position monitor with two or four electrodes. These errors can be reduced or corrected by adding or subtracting third-order moment terms in difference equations of signal voltages output from electrodes. In the case of a six-electrode beam position monitor with circular cross-section which is used in SPring-8 linear accelerator errors calculated with and without correction are 24 μm and 360 μm at a simulated beam position of x = 3 mm, y = 3 mm apart form a duct center. (author)

  6. First measurements with the test stand for optical beam tomography

    OpenAIRE

    Wagner, Christopher; Meusel, Oliver; Ulrich, Ratzinger; Reichau, Hermine

    2011-01-01

    A test stand for optical beam tomography was developed. As a new non-destructive beam-diagnostic system for high current ion beams, the test stand will be installed in the low energy beam transport section (LEBT) of the Frankfurt Neutron Source (FRANZ) behind the chopper system. The test stand consists of a rotatable vacuum chamber with a mounted CCD camera. The maximum rotation angle amounts to 270°. In a first phase the optical beam profile measurement and 3D density reconstruction is teste...

  7. Dosimetry of total body irradiation

    International Nuclear Information System (INIS)

    In the treatment of disseminated malignancies an improvement in the curability and reduction of complication rates require high precision total body irradiation (TBI) and correct reporting of relevant treatment parameters. Optimal TBI dosimetry is the basis. Radiooncological and radiobiological requirements as well as the special physical situation have to be considered. To review the efforts of medical physicists, highlights from TBI workshops and publications are summarized. Additionally, dosimetric data from 34 European radiooncological centres contributing to the recent ESTRO inquiry on TBI are analysed. The topics are: absorbed dose and dose monitor calibration, determination of absolute and relative doses, dose ratios, attenuation data and heterogeneity corrections; TBI dose calculation methods regarding patient position, beam incidence, body shape and thickness, lung size and density; methods of TBI treatment planning including calculated dose modification and of TBI quality assurance. In conclusion, the following recommendations can be given: TBI dosimetry shall be performed under TBI conditions, close to the real treatment situation. The absorbed dose to water must be determined. The dose monitor should be calibrated against dose measurements at the centre of a water equivalent phantom of TBI equivalent size and typical thickness. Photon fluence profiles have to be measured with small phantoms. Influences on the local dose must be investigated systematically. A reproducible AP/PA TBI technique should be used. The TBI dose shall be specified to mid-abdomen and reported in units of gray. The single and total dose and the dose rate to the lungs, the number of fractions and the treatment time schedule must be stated. In vivo dosimetry is required if non-reliable TBI techniques are used. An international TBI dosimetry intercomparison could assist these efforts to improve the treatment of acute leukaemia. (author). 89 refs, 3 figs, 13 tabs

  8. Large Dynamic Range Beam Profile Measurements with Low Current Electron Beams

    International Nuclear Information System (INIS)

    Large dynamic range [Peak/Noise > 105] beam profile measurements are routinely performed in the Hall-B beamline at Jefferson Lab. These measurements are made with a 1 to 10nA electron beam current with energies between 1 to 6 GeV. The electron beam scatters off of a thin [25 mu-m] W or Fe wire and the scattered particle/shower is detected via scintillation or Cerenkov light several meters downstream of the wire. This light is converted to an electrical pulse via photomultiplier tubes [PMT]. The PMT readout and wire motion are controlled and synchronized by VME electronics. This report describes results on increasing the dynamic range by using multiple wires of varying diameters. Profile measurements with this large dynamic range can be of use for machines with very large beam currents (ERL) where any FR-actional beam loss represents a significant amount of beam power [1,2

  9. The application of thermoluminescence dosimetry in X-ray energy discrimination.

    Science.gov (United States)

    Nelson, V K; Holloway, L; McLean, I D

    2015-12-01

    Clinical dosimetry requires an understanding of radiation energy to accurately determine the delivered dose. For many situations this is known, however there are also many situations where the radiation energy is not well known, thus limiting dosimetric accuracy. This is the case in personnel dosimetry where thermo luminescent (TL) dosimetry is the method of choice. Traditionally beam energy characteristics in personnel dosimetry are determined through discrimination with the use of various filters fitted within a radiation monitor. The presence of scattered and characteristic radiation produced by these metallic filters, however, can compromise the results. In this study the TL response of five materials TLD100, TLD100H, TLD200, TLD400 and TLD500, was measured at various X-ray energies. The TL sensitivity ratio for various combinations of materials as a function of X-ray energy was calculated. The results indicate that in personal dosimetry a combination of three or more TL detector system has a better accuracy of estimation of effective radiation energy of an X-ray beam than some of the current method of employed for energy estimation and has the potential to improve the accuracy in dose determination in a variety of practical situations. The development of this method also has application in other fields including quality assurance of the orthovoltage therapy machines, dosimetry intercomparisons of kilovoltage X-ray beams, and measurement of the dose to critical organs outside a treatment field of a megavoltage therapy beam. PMID:26330215

  10. TRS 398 dosimetry protocol for radiotherapy

    International Nuclear Information System (INIS)

    Full text: In recent years, international codes of practice based on absorbed dose to water standards have been published for the clinical reference dosimetry of external beams. It has become widely accepted that dosimetry of radiotherapeutic beams should be based on these standards. These codes of practice are a major improvement over earlier ones that used air kerma calibration factors as they are based on a calibration directly in a phantom in terms of the quantity of interest. The previous codes begin with calibration in air in terms of air kerma, then use theoretical and generic conversion factors to obtain dose to water that do not take account of chamber-to-chamber variation. Other good reasons for implementing the new codes are that they are conceptually simpler, include improved physical data and improve the consistency for various ionisation chamber types as well as between different beam types. TRS-3982,3 is a new Code of Practice (CoP) for reference dosimetry of external radiotherapy beams based on absorbed dose to, water calibrations and was published by the IAEA in a joint effort with the WHO, PAHO and ESTRO. It is the first CoP of its kind comprehensively covering all external radiotherapy beams except neutrons. The Radiotherapy Interest Group (RJG) of the ACPSEM has recommended that radiotherapy centres in Australia and New Zealand implement this CoP by the end of 2004. In this workshop, the general philosophy of the CoP will be outlined which will provide a framework for each of the individual subcodes. Although it represents just one of the potential implementations of the CoP, this workshop will deal only with dosimetry based on a cylindrical ionisation chamber with an absorbed dose calibration factor in 60Co from the standards laboratory. With the framework of the code in mind, it is straightforward to identify the basic steps that are required for measuring absorbed dose under reference conditions in a high-energy photon beam. The same is true

  11. An international dosimetry exchange for boron neutron capture therapy, Part I: Absorbed dose measurements

    Czech Academy of Sciences Publication Activity Database

    Binns, P. J.; Riley, K. J.; Harling, O. K.; Kiger III, W. S.; Munck af Rosenschöld, P. M.; Giusti, V.; Capala, J.; Sköld, K.; Auterinen, I.; Serén, T.; Kotiluoto, P.; Uusi-Simola, J.; Marek, M.; Viererbl, L.; Spurný, František

    2005-01-01

    Roč. 32, č. 12 (2005), s. 3729-3736. ISSN 0094-2405 R&D Projects: GA ČR GA202/04/0795 Institutional research plan: CEZ:AV0Z10480505 Keywords : BNCT * thermal neutrons * dosimetry intercomparison Subject RIV: BO - Biophysics Impact factor: 3.192, year: 2005

  12. Dosimetry in high-energy photon fields for the calibration of measuring instruments for radiation protection purposes

    International Nuclear Information System (INIS)

    This report describes the dosimetry in various reference photon fields with energies between 4.4 MeV and about 8 MeV. Two dosimetric quantities were chosen. The air kerma was determined from measurements without a phantom and the absorbed dose to water from measurements with a phantom. This mean that the range of realization of the quantity air kerma has been extended from the energy of Co-60 photons to about 8 MeV. The results can serve as basis for the calibration of radiation protection dosemeters in nuclear power plants (0-16(n,p)N-16 reaction) with high energy photons. (orig./HP)

  13. Improved beam spot measurements in the 2nd generation proton beam writing system

    International Nuclear Information System (INIS)

    Nanosized ion beams (especially proton and helium) play a pivotal role in the field of ion beam lithography and ion beam analysis. Proton beam writing has shown lithographic details down to the 20 nm level, limited by the proton beam spot size. Introducing a smaller spot size will allow smaller lithographic features. Smaller probe sizes, will also drastically improve the spatial resolution for ion beam analysis techniques. Among many other requirements, having an ideal resolution standard, used for beam focusing and a reliable focusing method, is an important pre-requisite for sub-10 nm beam spot focusing. In this paper we present the fabrication processes of a free-standing resolution standard with reduced side-wall projection and high side-wall verticality. The resulting grid is orthogonal (90.0° ± 0.1), has smooth edges with better than 6 nm side-wall projection. The new resolution standard has been used in focusing a 2 MeV H2+ beam in the 2nd generation PBW system at Center for Ion Beam Applications, NUS. The beam size has been characterized using on- and off-axis scanning transmission ion microscopy (STIM) and ion induced secondary electron detection, carried out with a newly installed micro channel plate electron detector. The latter has been shown to be a realistic alternative to STIM measurements, as the drawback of PIN diode detector damage is alleviated. With these improvements we show reproducible beam focusing down to 14 nm

  14. Laser Doppler instrument measures fluid velocity without reference beam

    Science.gov (United States)

    Bourquin, K. R.; Shigemoto, F. H.

    1971-01-01

    Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid.

  15. Beam position and phase measurements of microampere beams at the Michigan State University REA3 facility

    CERN Document Server

    Crisp, J; Durickovic, B; Kiupel, G; Krause, S; Leitner, D; Nash, S; Rodriguez, J A; Russo, T; Webber, R; Wittmer, W; Eddy, N; Briegel, C; Fellenz, B; Slimmer, D; Wendt, M

    2013-01-01

    A high power CW, heavy ion linac will be the driver accelerator for the Facility for Rare Isotope Beams (FRIB) being designed at Michigan State University (MSU). The linac requires a Beam Position Monitoring (BPM) system with better than 100 micron resolution at 100 microamperes beam current. A low beam current test of the candidate technology, button pick-ups and direct digital down-conversion signal processing, was conducted in the ReA3 re-accelerated beam facility at Michigan State University. The test is described. Beam position and phase measurement results, demonstrating ~250 micron and ~1.5 degree resolution in a 45 kHz bandwidth for a 1.0 microampere beam current, are reported.

  16. 112: Rapid areal dosimetry using a computer based plastic scintillator-video camera system

    International Nuclear Information System (INIS)

    A novel water-tank dosimetry system is described based on capturing the scintillation emitted from an irradiated sheet of plastic scintillator immersed in water with a digital camera interfaced to an IBM PC/XT personal computer. Rapid areal dosimetry data are measured in seconds. Adequate data for the entire beam is obtained within one minute. Preliminary studies are promising, showing qualitatively good agreement with conventional methods. 3 refs.; 3 figs

  17. Beam optical measurements at the piotron of the SIN

    International Nuclear Information System (INIS)

    In this publication investigations of magnetoptical properties of the superconducting pion irradiation facility of the Swiss Institute of Nuclear Research are reported. This facility called 'Piotron' has been used for cancer therapy with negative pions since 1980. The Piotron has 60 identical beams bended to the tumour by two sets of 60 superconducting coils. Using szintillation counters and multiwire proportional chambers mounted on a high precision device the following physical parameters were measured: muon and electroncontamination, beam size and phase space distributions for all 60 beams. For a single beam these parameters have also been measured as a function of pion momentum, momentum width or pion production targets. (orig./HSI)

  18. Worldwide QA networks for radiotherapy dosimetry

    International Nuclear Information System (INIS)

    A number of national or international organizations have developed various types and levels of external audits for radiotherapy dosimetry. There are three major programmes who make available external audits, based on mailed TLD (thermoluminescent dosimetry), to local radiotherapy centres on a regular basis. These are the IAEA/WHO TLD postal dose audit service operating worldwide, the European Society for Therapeutic Radiology and Oncology (ESTRO) system, EQUAL, in European Union (EU) and the Radiological Physics Center (RPC) in North America. The IAEA, in collaboration with WHO, was the first organization to initiate TLD audits on an international scale in 1969, using mailed system, and has a well-established programme for providing dose verification in reference conditions. Over 32 years, the IAEA/WHO TLD audit service has checked the calibration of more than 4300 radiotherapy beams in about 1200 hospitals world-wide. Only 74% of those hospitals who receive TLDs for the first time have results with deviation between measured and stated dose within acceptance limits of ±5%, while approximately 88% of the users that have benefited from a previous TLD audit are successful. EQUAL, an audit programme set up in 1998 by ESTRO, involves the verification of output for high energy photon and electron beams, and the audit of beam parameters in non-reference conditions. More than 300 beams are checked each year, mainly in the countries of EU, covering approximately 500 hospitals. The results show that although 98% of the beam calibrations are within the tolerance level of ±5%, a second check was required in 10% of the participating centres, because a deviation larger than ±5% was observed in at least one of the beam parameters in non-reference conditions. EQUAL has been linked to another European network (EC network) which tested the audit methodology prior to its application. The RPC has been funded continuously since 1968 to monitor radiation therapy dose delivery at

  19. Beam diffusion measurements using collimator scans in the LHC

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giuliov; Valishev, Alexander

    2013-01-01

    The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  20. Measuring the electron beam energy in a magnetic bunch compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-09-15

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 {mu}m precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  1. Measurements and simulations of focused beam for orthovoltage therapy

    International Nuclear Information System (INIS)

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface

  2. Electron beam energy QA - a note on measurement tolerances.

    Science.gov (United States)

    Meyer, Juergen; Nyflot, Matthew J; Smith, Wade P; Wottoon, Landon S; Young, Lori; Yang, Fei; Kim, Minsun; Hendrickson, Kristi R G; Ford, Eric; Kalet, Alan M; Cao, Ning; Dempsey, Claire; Sandison, George A

    2016-01-01

    Monthly QA is recommended to verify the constancy of high-energy electron beams generated for clinical use by linear accelerators. The tolerances are defined as 2%/2 mm in beam penetration according to AAPM task group report 142. The practical implementation is typically achieved by measuring the ratio of readings at two different depths, preferably near the depth of maximum dose and at the depth corresponding to half the dose maximum. Based on beam commissioning data, we show that the relationship between the ranges of energy ratios for different electron energies is highly nonlinear. We provide a formalism that translates measurement deviations in the reference ratios into change in beam penetration for electron energies for six Elekta (6-18 MeV) and eight Varian (6-22 MeV) electron beams. Experimental checks were conducted for each Elekta energy to compare calcu-lated values with measurements, and it was shown that they are in agreement. For example, for a 6 MeV beam a deviation in the measured ionization ratio of ± 15% might still be acceptable (i.e., be within ± 2 mm), whereas for an 18 MeV beam the corresponding tolerance might be ± 6%. These values strongly depend on the initial ratio chosen. In summary, the relationship between differences of the ionization ratio and the corresponding beam energy are derived. The findings can be translated into acceptable tolerance values for monthly QA of electron beam energies. PMID:27074488

  3. The Saturne beam measurement system for orbit corrections and high and low intensity beam acceleration

    International Nuclear Information System (INIS)

    This paper summarizes the dipolar and multipolar correction system and the main beam diagnostics of Saturne II: wide-band RF electrostatic pick-up electrode for observation of bunches, beam position and tune measurement systems, special electrodes for observation of emittance blow-up when particles cross a resonance line. For low intensity beams, special electrodes and electronics have been developed. All this instrumentation is computer controlled

  4. Development of a portable graphite calorimeter for radiation dosimetry.

    Science.gov (United States)

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi

    2008-01-01

    We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively. PMID:21976250

  5. A measurement-based X-ray source model characterization for CT dosimetry computations.

    Science.gov (United States)

    Sommerville, Mitchell; Poirier, Yannick; Tambasco, Mauro

    2015-01-01

    The purpose of this study was to show that the nominal peak tube voltage potential (kVp) and measured half-value layer (HVL) can be used to generate energy spectra and fluence profiles for characterizing a computed tomography (CT) X-ray source, and to validate the source model and an in-house kV X-ray dose computation algorithm (kVDoseCalc) for computing machine- and patient-specific CT dose. Spatial variation of the X-ray source spectra of a Philips Brilliance and a GE Optima Big Bore CT scanner were found by measuring the HVL along the direction of the internal bow-tie filter axes. Third-party software, Spektr, and the nominal kVp settings were used to generate the energy spectra. Beam fluence was calculated by dividing the integral product of the spectra and the in-air NIST mass-energy attenuation coefficients by in-air dose measurements along the filter axis. The authors found the optimal number of photons to seed in kVDoseCalc to achieve dose convergence. The Philips Brilliance beams were modeled for 90, 120, and 140 kVp tube settings. The GE Optima beams were modeled for 80, 100, 120, and 140 kVp tube settings. Relative doses measured using a Capintec Farmer-type ionization chamber (0.65 cc) placed in a cylindrical polymethyl methacrylate (PMMA) phantom and irradiated by the Philips Brilliance, were compared to those computed with kVDoseCalc. Relative doses in an anthropomorphic thorax phantom (E2E SBRT Phantom) irradiated by the GE Optima were measured using a (0.015 cc) PTW Freiburg ionization chamber and compared to computations from kVDoseCalc. The number of photons required to reduce the average statistical uncertainty in dose to < 0.3% was 2 × 105. The average percent difference between calculation and measurement over all 12 PMMA phantom positions was found to be 1.44%, 1.47%, and 1.41% for 90, 120, and 140 kVp, respectively. The maximum percent difference between calculation and measurement for all energies, measurement positions, and phantoms was

  6. The use of plane parallel ionization chambers in high energy electron and photon beams. An international code of practice for dosimetry

    International Nuclear Information System (INIS)

    Research on plane-parallel ionization chambers since the IAEA code of practice (TRS-277) was published in 1987 has explained our knowledge on perturbation and other correction factors in ionization chamber, and also constructional details of these chambers have been shown to be important. Different countries have published, or are in the process of publishing, dosimetry recommendations which include specific procedures for the use of plan parallel ionization chambers. An international working group was formed under the auspieces of the IAEA, first to review the status and the actual validity of the code of practice and second to develop an international code of practice of the use of plane parallel ionization chambers in high energy electron and photon beams used in radiotherapy. This document fulfills the second taste. 153 refs, 21 figs, 18 tabs

  7. The Fricke Xylenol Gel (FXG) dosimetry in the mycosis fungoides radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zaias, Herofen; Petchevist, Paulo C.D.; Parada, Marco A.; Almeida, Adelaide de; Costa, Alessandro M. da [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica]. E-mail: dalmeida@ffclrp.usp.br; Rocha, Jose Renato de Oliveira [Universidade Estadual de Campinas, SP (Brazil). Centro de Engenharia Biomedica]. E-mail: renato@ceb.unicamp.br

    2005-07-01

    We used chemical dosimetry with the Fricke Xylenol Gel (FXG) dosimeter to verify the dose distribution in an electron therapy of mycosis fungoides. Anatomically shaped phantoms were developed and filled with the FXG. The phantoms were inserted in a Rando anthropomorphic phantom and submitted to the Stanford irradiation technique with a 6 MeV electron beam. The absorbances of the FXG after the irradiation were measured with a special FXG reader developed for this purpose. The preliminary results show that the FXG dosimetry system is a promising dosimetry technique. (author)

  8. The Fricke Xylenol Gel (FXG) dosimetry in the mycosis fungoides radiotherapy

    International Nuclear Information System (INIS)

    We used chemical dosimetry with the Fricke Xylenol Gel (FXG) dosimeter to verify the dose distribution in an electron therapy of mycosis fungoides. Anatomically shaped phantoms were developed and filled with the FXG. The phantoms were inserted in a Rando anthropomorphic phantom and submitted to the Stanford irradiation technique with a 6 MeV electron beam. The absorbances of the FXG after the irradiation were measured with a special FXG reader developed for this purpose. The preliminary results show that the FXG dosimetry system is a promising dosimetry technique. (author)

  9. Measuring the quantum statistics of an atom laser beam

    OpenAIRE

    Bradley, A. S.; Olsen, M. K.; Haine, S. A.; Hope, J. J.

    2006-01-01

    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, ...

  10. Theoretical analysis of some problems in the measurement of beam divergence angle for EAST neutral beam injector

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Beam angular divergence is one of the indicators to evaluate the beam quality. Operating parameters of the beam extraction system could be adjusted to gain better beam quality following the measurement results, which will be helpful not only to study the transmission characteristics of the beam and the power distribution on the heat load components, but also to understand the real-time working condition of the ion source and beam extraction system. This study includes: (1) the theoretical analysis of beam extraction pulse duration for measurement of beam angular divergence; (2) the theoretical analysis of beam intensity distribution during beam transmission for Experimental Advanced Superconducting Tokomak (EAST) neutral beam injector. Those theoretical analyses could point the way to the measurement of beam divergence angle for EAST neutral beam injector.

  11. Beam size measurement of the stored electron beam at the APS storage ring using pinhole optics

    International Nuclear Information System (INIS)

    Beam sizes of the stored electron beam at the APS storage ring were measured using pinhole optics and bending magnet x-rays in single-bunch and low-current mode. A pinhole of 25 μm and a fast x-ray imaging system were located 23.8 m and 35.4 m from the source, respectively. The x-ray imaging system consists of a CdWO4 scintillation crystal 60 μm thick, an optical imaging system, and a CCD detector. A measurement time of a few tenths of a second was obtained on a photon beam of E>30 keV produced in a bending magnet from a 7-GeV electron beam of 2mA current. The measured vertical and horizontal sizes of the electron beam were in reasonable agreement with the expected values

  12. Beam position measurements of Indus-2 using X-Ray beam position monitor

    International Nuclear Information System (INIS)

    A staggered pair metal blade X-ray beam position monitor (XBPM) is designed, fabricated and commissioned on Indus-2 bending magnet front end. Calibration of XBPM is done by scanning the metal blades in the path of synchrotron radiation and by giving controlled electron asymmetric bump. The vertical beam position stability of the source measured during various injections and storages are reported.

  13. Measurement of power density distribution and beam waist simulation for electron beam

    International Nuclear Information System (INIS)

    The study aims to measure the power density distribution of the electron beam (EB) for further estimating its characteristics. A compact device combining deflection signal controller and current signal acquisition circuit of the EB was built. A software modelling framework was developed to investigate structural parameters of the electron beam. With an iterative algorithm, the functional relationship between the electron beam power and its power density was solved and the corresponding contour map of power density distribution was plotted through isoline tracking approach. The power density distribution of various layers of cross-section beam was reconstructed for beam volume by direct volume rendering technique. The further simulation of beam waist with all-known marching cubes algorithm reveals the evolution of spatial appearance and geometry measurement principle was explained in detail. The study provides an evaluation of promising to replace the traditional idea of EB spatial characteristics. - Highlights: ► We build a framework for measuring power density distribution for electron beam. ► We capture actual electron and build transient spatial power distribution for EB. ► Tracing algorithm of power density contour for cross-section was designed. ► The volume and waist of the beam are reconstructed in 4D mode. ► Geometry measurement is finished which is befit for designing of process welding.

  14. Online fibre optic OSL in vivo dosimetry for quality assurance of external beam radiation therapy treatments: The ANR-TECSAN Codofer Project; Dosimetrie in vivo par OSL, en ligne par fibre optique, pour l'assurance qualite des traitements par radiotherapie externe: le projet ANR-TECSAN Codofer

    Energy Technology Data Exchange (ETDEWEB)

    Magne, S.; Ferdinand, P. [CEA Saclay, Laboratoire de mesures optiques, CEA LIST, 91191 Gif-sur-Yvette (France); De Carlan, L. [CEA Saclay, Laboratoire national Henri-Becquerel, CEA LIST, 91191 Gif-sur-Yvette (France); Bridier, A.; Isambert, A. [Service de physique, institut Gustave-Roussy, 39, rue Camille-Desmoulins, 94805 Villejuif (France); Hugon, R. [CEA Saclay, Departement capteur, signal et informations, CEA LIST, 91191 Gif-sur-Yvette (France); Guillon, J. [Societe Fimel, 18, rue Marie-et-Pierre-Curie, 92260 Fontenay-aux-Roses (France)

    2010-05-15

    The Codofer Project (2007-2009), led under the ANR-TECSAN Call, was coordinated by CEA LIST, in partnership with IGR and the Fimel company. The aim of the project was to design and test both metrologically and in clinical conditions OSL optical fiber sensors dedicated to in vivo dosimetry during external beam radiation therapy treatment with high-energy electrons. This study, combined with the results of clinical tests obtained within the European Project Maestro, has demonstrated the advantages of OSL/FO dosimetry for providing quality assurance of treatments. However, the French market for dosimetry has greatly changed as a result of the rules decreed by the French government in 2007. The OSL/FO product is now targeted for other treatment modalities lacking suitable dosimeters (ANR-INTRADOSE Project [2009-2011]). (authors)

  15. Application of Al2O3:C+fibre dosimeters for 290 MeV/n carbon therapeutic beam dosimetry

    International Nuclear Information System (INIS)

    The capability of radioluminescence (RL) dosimeters composed of carbon-doped aluminium oxide (Al2O3:C) detectors+optical fibre has been verified for absorbed dose-rate measurements during carbon radiotherapy. The RL signals from two separate Al2O3:C detectors (single crystal 'CG' and droplet 'P1') have been systematically measured and compared along the Bragg-curve and Spread-Out Bragg-Peak of 290 MeV/n carbon beams in the water. The absorbed dose response was assessed for the range of 0.5–10 Gy. For doses up to 6 Gy, we observed a linear response for both types of detectors, while for higher doses CG presented a more prominent supraliearity than P1. The RL response for low-LET protons in the entrance from the curve was found to closely resemble that observed for a clinical 6 MV X-ray beam, while it was found that P1 has a better agreement with the reference data from standard ionization chamber than CG. We observed a significant decrease in luminescence efficiency with LET in the Bragg peak region. The Al2O3:C RL luminescence efficiency differs from Al2O3:C OSL results, which implies that the signal can be corrected for LET dependency to match the correct SOBP and Bragg Peak. - Highlights: • Radioluminescence (RL) real time signal from Al2O3:C+fibre probes. • Irradiations with 290 MeV/n Carbon. • Two types of detectors were tested: droplet and single crystal. • Luminescence efficiencies for each probe were compared with 6 MV photons. • Bragg Peak and SOBP are obtained. • Luminescence efficiencies for Optically Stimulated Luminescence (OSL) and RL are compared for Al2O3:C

  16. Compact Measurement Station for Low Energy Proton Beams

    CERN Document Server

    Yildiz, H; Oz, S; Yasatekin, B; Turemen, G; Ogur, S; Sunar, E; Aydin, Y A; Dimov, V A; Unel, G; Alacakir, A

    2016-01-01

    A compact, remote controlled, cost efficient diagnostic station has been developed to measure the charge, the profile and the emittance for low energy proton beams. It has been installed and tested in the proton beam line of the Project Prometheus at SANAEM of the Turkish Atomic Energy Authority.

  17. Measurement of electron beam polarization at the SLC

    International Nuclear Information System (INIS)

    The polarimeters needed to monitor and measure electron beam polarization at the Stanford Linear Collider are discussed. Two types of polarimeters, are to be used. The first is based on the spin dependent elastic scattering of photons from high energy electrons. The second utilizes the spin dependence of elastic electron-electron scattering. The plans of the SLC polarization group to measure and monitor electron beam polarization are discussed. A brief discussion of the physics and the demands it imposes on beam polarization measurements is presented. The Compton polarimeter and the essential characteristics of two Moeller polarimeters are presented

  18. Measurement system with high accuracy for laser beam quality.

    Science.gov (United States)

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%. PMID:26192526

  19. Measurement of electron beam polarization at the SLC

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, H.

    1987-03-01

    The polarimeters needed to monitor and measure electron beam polarization at the Stanford Linear Collider are discussed. Two types of polarimeters, are to be used. The first is based on the spin dependent elastic scattering of photons from high energy electrons. The second utilizes the spin dependence of elastic electron-electron scattering. The plans of the SLC polarization group to measure and monitor electron beam polarization are discussed. A brief discussion of the physics and the demands it imposes on beam polarization measurements is presented. The Compton polarimeter and the essential characteristics of two Moeller polarimeters are presented. (LEW)

  20. Preliminary Measurement of Beam Power Transmission in KSTAR Neutral Beam Test-Stand

    International Nuclear Information System (INIS)

    A neutral beam test-stand (NBTS) was constructed to develop 300-sec deuterium beam extraction of 120 kV/65 A as an auxiliary heating system of KSTAR. The ion source is composed of a plasma generator and a tetrode accelerator. The beamline components include an optical multi-channel analyzer (OMA) duct, a neutralizer, a bending magnet (BM), an ion dump, a calorimeter, and a cryo-sorption pump system. Beam deposition along the NBTS has been measured by water flow calorimetry (WFC) and 96 % of the extracted beam power (Vacc·Iacc) was counted for a beam of 97 kV/22.2 A. Maximum power transmission efficiency, which is the ratio of transmitted power on the calorimeter to the extracted beam power, was 0.77 with an optimum perveance of 1.1 microperv

  1. Measuring the Orbital Angular Momentum of Electron Beams

    CERN Document Server

    Guzzinati, Giulio; Béché, Armand; Verbeeck, Jo

    2014-01-01

    The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, diffraction from a knife-edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.

  2. Modelling and measurement of inter-speed attenuation effects on dosimetry of I-125 seed implants for prostate brachytherapy

    International Nuclear Information System (INIS)

    Full text: TG43 based dose calculations for prostate permanent 1-125 seed implants ignore the effects of inter-seed attenuation (lSA). This study investigates the magnitude of ISA effects in simple seed arrangements and clinical implants using Monte Carlo (MC) simulation techniques. MC results are verified with experimental dose measurements. lSA effects for Oncura model 6711 and Thinseed (9011) are compared. MC simulations were performed with MCNPX v2.5.0. Seed models 6711 and 9011 were simulated singly to verify the accuracy of the model by comparison to previously published data. Then simple two seed arrangements and full clinical implant arrangements were simulated to assess ISA effects and consequences for typical patient DYH parameters. Experimental dose measurements using a MOSFET in a PMMA phantom were used to validate MC simulation results. Close agreement with published data was achieved for both seed models. Two seed arrangements demonstrate significant attenuation along the source transverse axis with the 90 II being slightly less attenuating. Clinical simulations show that ISA has significant effects on clinical dose-volume histogram (DYH) parameters. Experimental dose measurements agree with MC simulation results. Conclusion The study demonstrates the need to take account of ISA effects in permanent 1-125 seed implant treatments for accurate dosimetry. Ongoing work will investigate post implant dosimetry using MC simulation to determine in which circumstances ISA effects are clinically significant.

  3. Improvement of Varian a-Si EPID dosimetry measurements using a lead-shielded support-arm

    International Nuclear Information System (INIS)

    Dosimetry measurements with Varian amorphous silicon electronic portal imaging devices (a-Si EPIDs) are affected by the backscattered radiation from the EPID support arm. In this study, the nonuniform backscatter from an E-type support arm was reduced by fixing a thick (12.2 × 10.5 × 0.5 cm3) piece of lead on top of the arm, and the remaining backscatter was modeled and included in an existing dose prediction algorithm. The applied backscatter kernel was the average of kernels on different regions of the EPID over the arm. The lead-shielded arm reduced the nonuniform backscatter component by about 50% for field sizes ranging from 3 × 3 to 30 × 30 cm2 and the field symmetry improved for medium to large fields up to 3%. Gamma evaluation of the measured and modeled doses (2%, 2-mm criteria) showed that using the lead-shielded arm in the model increased the number of points with Gamma index <1 by 5.7% and decreased the mean Gamma by 0.201. Even using the lead alone (no modeling) could increase the number of points with Gamma index <1 by 4.7% and decrease the mean Gamma by 0.153. This is a simple and easy method to decrease the nonuniform arm backscatter and improve the accuracy of dosimetry measurements with the existing EPIDs used for clinical applications.

  4. Measuring Beam Quality of Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Shephard, J.D.; Roberts, John; Jones, J.D.C.;

    2006-01-01

    In this paper, the authors measure the quality of the delivered beam from hollow core photonic crystal fibers (HC-PCFs). The$M^2$parameter is determined, and the near- to far-field transition is examined. The influence on these properties due to the presence of a core surround mode is evaluated....... The applicability of the International Standards Organization 11146 : 1999 standard for$M^2$measurement of the beam quality of HC-PCFs is discussed. Because they are dependent on the measurement parameters, such as choice of aperturing scheme and the axis of measurement,$M^2$values could vary from 1.......32 to 3.17 for the same output beam. This highlights the need for careful consideration when measuring and describing the beam quality delivered by these novel photonic fibers....

  5. On the absorbed dose determination method in high energy electrons beams

    International Nuclear Information System (INIS)

    The absorbed dose determination method in water for electron beams with energies in the range from 1 MeV to 50 MeV is presented herein. The dosimetry equipment for measurements is composed of an UNIDOS.PTW electrometer and different ionization chambers calibrated in air kerma in a Co60 beam. Starting from the code of practice for high energy electron beams, this paper describes the method adopted by the secondary standard dosimetry laboratory (SSDL) in NILPRP - Bucharest

  6. Beta Beams for Precision Measurements of Neutrino Oscillation Parameters

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Damjanovic, S; Payet, J; Chancé, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, V; Gramegna, F; Marchi, T; Collazuol, G; Mezzetto, M; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Burt, G; Dexter, A; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Moro, R; De Rosa, G; Palladino, V

    2012-01-01

    Neutrino oscillations have implications for the Standard Model of particle physics. The CERN Beta Beam has outstanding capabilities to contribute to precision measurements of the parameters governing neutrino oscillations. The FP7 collaboration EUROnu (2008-2012) is a design study that will review three facilities (Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make decisions on future European neutrino oscillation facilities. ”Beta Beams” produce collimated pure electron (anti)neutrinos by accelerating beta active ions to high energies and having them decay in a storage ring. Using existing machines and infrastructure is an advantage for the cost evaluation; however, this choice is also constraining the Beta Beams. Recent work to make the Beta Beam facility a solid option will be described: production of Beta Beam isotopes, the 60 GHz pulsed ECR source development, integratio...

  7. Dosimetry in radiotherapy with natural diamond detectors

    International Nuclear Information System (INIS)

    There is wide interest in the use of diamond detectors for dosimetry in radiotherapy mainly because of the small dimensions, radiation hardness, nearly tissue equivalence of sensitive material and capability to deliver the dosimetric response 'on line'. In order to assess the dosimetric properties of PTW Riga diamond detectors type 60003, experiments were performed in conventional (high energy photon and electron) therapy beams as well as in proton therapy beams. The main detector features investigated were reproducibility of response, dose-signal relationship, temperature dependence, dose-rate dependence, energy dependence and angular dependence. High energy photons (6-25 MV) and electrons (6-22 MeV), available at the Radiotherapy Department of the Florence University, were used for investigating the general properties. Two different PTW diamond detectors of the same type were used to evidence inter-sample differences. The beam quality dependence of the detector response is probably the most critical point and this statement is of particular relevance for proton dosimetry since the proton LET changes with depth in the medium. Mainly because of the little information available on detector sensitivity variations with beam energy, the use of diamonds for clinical proton dosimetry is not widespread. In two recent papers a sensitivity dependence on proton energy of a natural PTW diamond detector has been reported. Due to the necessity to characterise each diamond detector individually the PTW Riga natural diamond detector in operation at the LNS-INFN, Catania, Italy was tested with the local proton beam line. This experiment is of main concern because this proton beam, produced by a superconducting cyclotron and used for ocular melanoma treatment, is available only since 2001 (CATANA beam). The first patient has been treated in February 2002. Proton irradiations were performed with non modulated and modulated 62 MeV beams. Attention was focused on diamond sensitivity

  8. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    data, damage correlations. Two-dimensional mapping of the calculated fission power for the full-size fuel plate experiment irradiated in the advanced test reactor / G. S. Chang and M. A. Lillo. The radiation safety information computational center: a resource for reactor dosimetry software and nuclear data / B. L. Kirk. Irradiated xenon isotopic ratio measurement for failed fuel detection and location in fast reactor / C. Ito, T. Iguchi and H. Harano. Characterization of dosimetry of the BMRR horizontal thimble tubes and broad beam facility / J.-P. Hu, R. N. Reciniello and N. E. Holden. 2007 nuclear data review / N. E. Holden. Further dosimetry studies at the Rhode Island nuclear science / R. N. Reciniello ... [et al.]. Characterization of neutron fields in the experimental fast reactor Joyo MK-III core / S. Maeda ... [et al.]. Measuring [symbol]Li(n, t) and [symbol]B(n, [symbol]) cross sections using the NIST alpha-gamma apparatus / M. S. Dewey ... [et al.]. Improvement of neutron/gamma field evaluation for restart of JMTR / Y. Nagao ... [et al.]. Monitoring of the irradiated neutron fluence in the neutron transmutation doping process of HANARO / M.-S. Kim and S.-J. Park.Training reactor VR-l neutron spectrum determination / M. Vins, A. Kolros and K. Katovsky. Differential cross sections for gamma-ray production by 14 MeV neutrons on iron and bismuth / V. M. Bondar ... [et al.]. The measurements of the differential elastic neutron cross-sections of carbon for energies from 2 to 133 ke V / O. Gritzay ... [et al.]. Determination of neutron spectrum by the dosimetry foil method up to 35 Me V / S. P. Simakov ... [et al.]. Extension of the BGL broad group cross section library / D. Kirilova, S. Belousov and Kr. Ilieva. Measurements of neutron capture cross-section for tantalum at the neutron filtered beams / O. Gritzayand V. Libman. Measurements of microscopic data at GELINA in support of dosimetry / S. Kopecky ... [et al.]. Nuclide guide and international chart of

  9. Dosimetry method for measurements of energy outcome from gadolinium after neutron capture

    International Nuclear Information System (INIS)

    A very important task now is to measure a real absorbed dose for Gadolinium Neutron Capture Therapy. A method for direct measurement of Gd reaction dose was offered and worked through in the study. A chemical dosimeter for measurement of absorbed dose from neutron capture Gd(n,y) reaction products - gamma-radiation, internal conversion electrons, and Auger electrons, that are very essential for neutron capture therapy, is described in the paper. Auger electrons are of interest, since their dose measurement or direct registration is a very involved problem due their low mean energy - less then 10 keV. Substances with gadolinium of Gd(NO3)3.?6H2O and GdCl3.?6H2O, and two different dosimeters - FBX and Fricke were investigated. The absorbed dose measurements were carried out with the Fricke dosimeter for different gadolinium concentrations in the solution; thus, this simulated probable treatment condition for thermal and fast neutron beams. The experimental results were compared with calculations made using the MCNP Monte Carlo code. (authors)

  10. Beam diagnostics measurements at 3 MeV of the LINAC4 H- beam at CERN

    CERN Document Server

    Zocca, F; Duraffourg, M; Focker, G J; Gerard, D; Kolad, B; Lenardon, F; Ludwig, M; Raich, U; Roncarolo, F; Sordet, M; Tan, J; Tassan-Viol, J; Vuitton, C; Feshenko, A

    2014-01-01

    As part of the CERN LHC injector chain upgrade, LINAC4 [1, 2] will accelerate H- ions to 160 MeV, replacing the old 50 MeV proton linac. The ion source, the Low Energy Beam Transfer (LEBT) line, the 3 MeV Radio Frequency Quadrupole and the Medium Energy Beam Transfer (MEBT) line hosting a chopper, have been commissioned in the LINAC4 tunnel. Diagnostic devices are installed in the LEBT and MEBT line and in a movable diagnostics test bench which is temporarily added to the MEBT exit. The paper gives an overview of all the instruments used, including beam current transformers, beam position monitors, wire scanners and wire grids for transverse profile measurements, a longitudinal bunch shape monitor and a slit-and-grid emittance meter. The instrumentation performance is discussed and the measurement results that allowed characterizing the 3 MeV beam in the LINAC4 tunnel are summarized.

  11. Assessment of electron beam induced DNA damage in human peripheral blood by alkaline comet assay: a tool for bio-dosimetry

    International Nuclear Information System (INIS)

    lonising radiation is a potent inducer of DNA damage because it causes single and double-strand breaks, alkali-labile sites, base damage and cross-links. Single cell gel electrophoresis (comet assay) provides a very sensitive method for detecting strand breaks and measuring DNA damages in single cells. Biological dosimetry is a necessary complement to physical and clinical dosimetries. Human bio-monitoring studies using the comet assay provide an efficient tool for measuring human exposure to radiation, thus helping in risk assessment and hazard evaluation. Comet assay is a micro-dosimetric technique based on the selection of individual cells in a heterogeneous cell population and is suitable for rapid and sensitive human bio-monitoring. The induction of DNA strand breaks in human peripheral blood after electron irradiation has been investigated using comet assay in alkaline condition. The DNA damages were quantified using different comet parameters such as tail length, percentage tail DNA and olive tail moment (OTM) using the Comet Assay Software Project (CASP). From the study, a dose-dependent increase in DNA damage was observed and the variation follows a linear quadratic model. The variation in OTM with dose after electron irradiation is fitted to, OTMelectron = 1.26 + 1.4 D +0.12 D2 (R2= 0.98) and the result was compared with that of gamma irradiation. From the study, it can be concluded that alkaline Comet Assay can be used as a rapid and sensitive method for radiation bio-dosimetry. It is suitable for human bio-monitoring, especially in cases of incidental exposure to ionising radiation. (author)

  12. Techniques for intense-proton-beam profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, J.D.

    1998-12-31

    In a collaborative effort with industry and several national laboratories, the Accelerator Production of Tritium (APT) facility and the Spallation Neutron Source (SNS) linac are presently being designed and developed at Los Alamos National Laboratory (LANL). The APT facility is planned to accelerate a 100-mA H{sup +} cw beam to 1.7 GeV and the SNS linac is planned to accelerate a 1- to 4-mA-average, H{sup {minus}}, pulsed-beam to 1 GeV. With typical rms beam widths of 1- to 3-mm throughout much of these accelerators, the maximum average-power densities of these beams are expected to be approximately 30- and 1-MW-per-square millimeter, respectively. Such power densities are too large to use standard interceptive techniques typically used for acquisition of beam profile information. This paper summarizes the specific requirements for the beam profile measurements to be used in the APT, SNS, and the Low Energy Development Accelerator (LEDA)--a facility to verify the operation of the first 20-MeV section of APT. This paper also discusses the variety of profile measurement choices discussed at a recent high-average-current beam profile workshop held in Santa Fe, NM, and will present the present state of the design for the beam profile measurements planned for APT, SNS, and LEDA.

  13. Production, Characterization, and Measurement of H(D) Beams on the ORNL Merged-Beams Experiment

    International Nuclear Information System (INIS)

    Total cross section measurements of electron capture processes are being studied for low-energy, Aq++H(D) collisions using the Ion-Atom Merged-Beams apparatus at the Multicharged Ion Research Facility (MIRF) at Oak Ridge National Laboratory (ORNL). On this apparatus, a modified Faraday cup detector is used to measure the intensity of the neutral beam. The conversion of the measured electrical current to the true neutral particle beam current is necessary to accurately determine the true cross section values. Inherent in this conversion process is the number of secondary electrons (γ) emitted from the surface of the detector upon impact of an atom. The method employed to determine γ and its role in the absolute electron capture measurements at ORNL-MIRF are presented. With a recent upgrade to the apparatus, the neutral beam H(D) production technique has been improved and is discussed in detail in this paper.

  14. Production, Characterization, and Measurement of H(D) Beams on the ORNL Merged-Beams Experiment

    International Nuclear Information System (INIS)

    Total cross section measurements of electron capture processes are being studied for low-energy, Aq++H(D) collisions using the Ion-Atom Merged-Beams apparatus at the Multicharged Ion Research Facility (MIRF) at Oak Ridge National Laboratory (ORNL). On this apparatus, a modified Faraday cup detector is used to measure the intensity of the neutral beam. The conversion of the measured electrical current to the true neutral particle beam current is necessary to accurately determine the true cross section values. Inherent in this conversion process is the number of secondary electrons (gamma) emitted from the surface of the detector upon impact of an atom. The method employed to determine gamma and its role in the absolute electron capture measurements at ORNL-MIRF are presented. With a recent upgrade to the apparatus, the neutral beam H(D) production technique has been improved and is discussed in detail in this paper

  15. Effects of dose fractionation on the response of alanine dosimetry

    International Nuclear Information System (INIS)

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  16. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors...... international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. Several dosimeter systems like calorimetry, perspex, and radiochromic dye films are being improved and new systems have emerged, e.g. spectrophotometry of dichromate solution for reference...

  17. ILC Beam Energy Measurement by means of Laser Compton Backscattering

    CERN Document Server

    Muchnoi, N; Viti, M

    2008-01-01

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered $\\gamma$-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of $10^{-4}$ or bette...

  18. Beam Emittance Measurement for PLS-II Linac

    CERN Document Server

    Lee, Byung-Joon; Park, Chong do; Chunjarean, SomJai; Kim, Changbum

    2016-01-01

    The PLS-II has a 100 MeV pre-injector for the 3 GeV Linac. A thermionic gun produces electron charge of 200 pC with a bunch duration of 500 ps by a 250 ps triggering pulser. At the pre-injector, one of the most important beam parameters to identify the beam quality is a transverse emittance of electron bunches. Therefore we measure the beam emittance and twiss functions at 100 MeV in order to match the beam optics to beam transport line and go through it to the storage ring. To get the transverse emittance measurement, well-known technique, quadrupole scan, is used at the pre-injector. The emittance were 0.591 mm-mrad in horizontal and 0.774 mm-mrad in vertical direction.

  19. Standardization of dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Three objectives of dosimetry in diagnostic radiology can be identified: (1) Measurement of patient doses for comparison with diagnostic reference levels; (2) Assessment of equipment performance; (3) Patient dose measurements for risk assessment. In this paper author deals with problems of standardization of dosimetry in diagnostic radiology. Recommended application specific quantities for dosimetry in diagnostic radiology are presented

  20. Emittance Measurements for Beams Extracted from LECR3 Ion Source

    Institute of Scientific and Technical Information of China (English)

    CaoYun; ZhaoHongwei; MaLei; ZhangZimin

    2003-01-01

    High quality ion beams are required by IMP cyclotron and atomic physics research, so it is important to research and measure beam emitt ance of ECR ion source. Intense beams extracted from ECR ion source usually have low energy, so it is suitable to use Electric-Sweep Scanner to measure the emittance. This kind of measurement is popularly used at ECR ion source, and it has some prominent merits such as high accuracy, very short time of data processing and easy expressing of the emittance pattern. So we designed and built this emittance scanner to measure emittance of the ion beams produced by LECR3 ion source. The structure of the ESS is shown in Fig.l, and the photo of the ESS is shown in Fig.2.

  1. Direct reading measurement of absorbed dose with plastic scintillators--the general concept and applications to ophthalmic plaque dosimetry.

    Science.gov (United States)

    Flühs, D; Heintz, M; Indenkämpen, F; Wieczorek, C

    1996-03-01

    We have developed dosemeters based on plastic scintillators for a variety of applications in radiation therapy. The dosemeters consist basically of a tissue-substituting scintillator probe, an optical fiber light guide, and a photomultiplier tube. The background light generated in the light guide can be compensated by a simultaneous measurement of the light from a blind fiber. Plastic scintillator dosemeters combine several advantageous properties which render them superior to other dosemeter types for many applications: minimal disturbance of the radiation field because of the homogeneous detector volume and the approximate water equivalence; no dependence on temperature and pressure (under standard clinical conditions) and angle of radiation incidence; no high voltage in the probe; high spatial resolution due to small detector volumes; direct reading of absorbed doses; and a large dynamical range. The high spatial resolution together with direct reading make these detectors suitable for real-time 3-D dosimetry using multi-channel detector systems. Such a system has been developed for eye plaque dosimetry and successfully employed for dosimetric treatment optimization. The plaque optimization can be performed by dosimetric measurements for the individual patient ("dosimetric treatment planning"). The time consumption for this procedure is less than for a physically correct computer-based therapy planning, e.g., by means of a Monte Carlo simulation. PMID:8815386

  2. Breast dosimetry

    International Nuclear Information System (INIS)

    The estimation of the absorbed dose to the breast is an important part of the quality control of the mammographic examination. Knowledge of breast dose is essential for the design and performance assessment of mammographic imaging systems. This review gives a historical introduction to the measurement of breast dose. The mean glandular dose (MGD) is introduced as an appropriate measure of breast dose. MGD can be estimated from measurements of the incident air kerma at the surface of the breast and the application of an appropriate conversion factor. Methods of calculating and measuring this conversion factor are described and the results discussed. The incident air kerma itself may be measured for patients or for a test phantom simulating the breast. In each case the dose may be determined using TLD measurements, or known exposure parameters and measurements of tube output. The methodology appropriate to each case is considered and the results from sample surveys of breast dose are presented. Finally the various national protocols for breast dosimetry are compared

  3. Confined nanoparticle measurement using Bessel Beam Microscopy

    Science.gov (United States)

    Chakraborty, Chumki; Snoeyink, Craig

    2015-11-01

    With the advent of Lab-on-chip technologies, study of near surface phenomenon has gained a lot of importance due to their huge impact on bulk fluid properties. Such studies demand imaging techniques with utmost precision to capture the intricate details of the interface. But, resolution for most of the optical imaging systems is limited due to the light spreading effects of diffraction. This diffraction limited resolution, can be improved by the use of Bessel Beam microscopy. Bessel beam imaging technique when combined with a TIRF (Total Internal Reflection Fluorescence) system can be used for high resolution particle tracking experiments, to reveal detailed information about near surface particle positions and motions with their velocity profile and distribution. With the experimental set up combining these two powerful tools, we plan to present our particle tracking velocimetry results in the interface regime of confined nanoparticles in a binary fluid mixture. Such a study can contribute towards a better understanding of near surface fluid-particle interfaces.

  4. Measuring the proton beam polarization from the source to RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi,Y.

    2007-09-10

    Polarimeters are necessary tools for measuring the beam polarization during the acceleration process as well as a yardstick for performing spin physics experiments. In what follows, I will describe the principles of measuring the proton beam polarization and the techniques that are employed at various energies. I will present a tour of the polarimetry employed at the BNL Relativistic Heavy Ion collider (RHIC) polarized proton complex as it spans the full spectrum from the source to collider energies.

  5. Measuring the phase of the scattering amplitude with vortex beams

    OpenAIRE

    Ivanov, I. P.

    2012-01-01

    We show that colliding vortex beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the plane wave scattering amplitude changes with the scattering angle. Since vortex beams are coherent superpositions of plane waves with different momenta, their scattering amplitude receives contributions from plane wave amplitudes with distinct kinematics. These contributions interfere, leading to the measurement of their phase difference. Although interfere...

  6. Thermoluminescent dosimetry in total body irradiation

    International Nuclear Information System (INIS)

    The aim of this paper was to develop a thermoluminescent dosimetry method for the absorbed dose determination of 6 MeV high-energy electron beams by thermoluminescent dosimetry. Total body irradiation (TBI) was performed using four dual fields angled at 252° and 285° in high-dose rate (HDR) mode. TBI measurements were investigated to estimate the absorbed dose in different anatomical parts of the patient. Experimental results were obtained using thermoluminescent detectors and solid water phantoms. The TL response of the dosimeters, as a function of the high-energy electron beam (HEEB) absorbed dose, was linear, from 0.1 to 500 cGy. The entrance skin dose (ESD) and isodose distribution on the surface of the treatment were investigated graphically. - Highlights: ► The total patient skin electron dose was determined. ► The patient skin dose distribution was measured by TL. ► TBID in treatment planning and QA for radiation therapy are suggested. ► TLD system is a good candidate for TBI dosimetry.

  7. Measurement of Neutral Particle Contamination in the MICE Muon Beam

    CERN Document Server

    Fletcher, Rob Roy; Hanson, Gail

    2011-01-01

    The Muon Ionization Cooling Experiment (MICE) is being built at the ISIS proton synchrotron at Rutherford Appleton Laboratory (RAL) to measure ionization cooling of a muon beam. During recent data-taking, it was determined that there is a significant background contamination of neutral particles populating the MICE muon beam. This contamination creates unwanted triggers in MICE, thus reducing the percentage of useful data taken during running. This paper describes the analysis done with time-of-flight detectors, used to measure and identify the source of the contamination in both positive and negative muon beams.

  8. Measurement of acceleration and orbital angular momentum of Airy beam and Airy-vortex beam by astigmatic transformation.

    Science.gov (United States)

    Singh, Brijesh Kumar; Remez, Roei; Tsur, Yuval; Arie, Ady

    2015-11-15

    Special beams, including the Airy beam and the vortex-embedded Airy beam, draw much attention due to their unique features and promising applications. Therefore, it is necessary to devise a straightforward method for measuring these peculiar features of the beams with ease. Hence we present the astigmatic transformation of Airy and Airy-vortex beam. The "acceleration" coefficient of the Airy beam is directly determined from a single image by fitting the astigmatically transformed beam to an analytic expression. In addition, the orbital angular momentum of optical vortex in Airy-vortex beam is measured directly using a single image. PMID:26565887

  9. Precision Measurements with High Energy Neutrino Beams

    CERN Document Server

    Conrad, J M; Bolton, T; Conrad, Janet M.; Shaevitz, Michael H.; Bolton, Tim

    1998-01-01

    Neutrino scattering measurements offer a unique tool to probe the electroweak and strong interactions as described by the Standard Model (SM). Electroweak measurements are accessible through the comparison of neutrino neutral- and charged-current scattering. These measurements are complimentary to other electroweak measurements due to differences in the radiative corrections both within and outside the SM. Neutrino scattering measurements also provide a precise method for measuring the F_2(x,Q^2) and xF_3(x,Q^2 structure functions. The predicted Q^2 evolution can be used to test perturbative Quantum Chromodynamics as well as to measure the strong coupling constant, alpha _s, and the valence, sea, and gluon parton distributions. In addition, neutrino charm production, which can be determined from the observed dimuon events, allows the strange-quark sea to be investigated along with measurements of the CKM matrix element |V_{cd}| and the charm quark mass.

  10. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry

  11. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service Tel. 7 2155 http://cern.ch/rp-dosimetry

  12. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 7 2155 http://cern.ch/rp-dosimetry

  13. ESR Dosimetry

    International Nuclear Information System (INIS)

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  14. Feasibility of polymer gel dosimetry measurements in a dynamic porcine lung phantom

    International Nuclear Information System (INIS)

    A dynamic ex-vivo porcine lung phantom combined with polymer gel dosimetry is tested as a new tool to validate modern adaptive radiotherapy techniques (e.g. gating or tracking). The gel was inserted into the lung via a latex balloon to simulate a tumor. After irradiation, the location of the dose maximum was verified, however, the dose was higher than planned and a high background signal was seen. Potential reasons for this finding are the nonstandard conditions of gel handling. These conditions were systematically studied. Besides temperature, the material of the balloon seems to be of special importance. The results identify open issues that have to be addressed in future studies

  15. In vivo dosimetry with silicon diodes in total body irradiation

    International Nuclear Information System (INIS)

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments. - Highlights: ► Characterization of a silicon diode dosimetry system. ► Application of the diodes for in vivo dosimetry in total body irradiation treatments. ► Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  16. Dose rate and beam profile measurement of proton beam using a flat panel detector

    Science.gov (United States)

    Park, Jeong-Min

    2015-10-01

    A 20-MeV or 100-MeV proton beam is provided to users for their proton beam irradiation experiments at KOrea Multi-Purpose Accelerator Complex. Radiochromic film (Gafchromic / HDV2) has been used to measure the dose rate and the profile of an incident proton beam during irradiation experiments. However, such measurements using radiochromic film have some inconveniences because an additional scanning process of is required to quantify the film's image. Therefore, we tried to measure the dose rate and beam profile by using a flat panel detector (FPD), which was developed for X-ray radiography as a substitute for radiochromic film because the FPD can measure the beam profile and the dose rate directly through a digitized image with a high spatial resolution. In this work, we investigated the feasibility of using a FPD as a substitute for radiochromic film. The preliminary results for the beam profile and the dose rate measured by using the flat panel detector are reported in the paper.

  17. Alanine/EPR dosimetry as a reference system in radiotherapy

    International Nuclear Information System (INIS)

    Full text: It is widely accepted that dosimetry intercomparisons are a key step in the continuous quality improvement programmes in radiotherapy (CQIR). Indeed, they offer the possibility to detect and evaluate errors in dose delivery. Similarly to other European and international actions, the ISS is promoting a network of dosimetry intercomparisons among radiotherapy centres. The alanine/EPR system is used as reference dosimetry for the ISS dosimetry intercomparisons. The reduced energy dependence, absence of fading, 1% (1σ) accuracy, robustness for mail delivery and non-destructive read-out procedure are the main characteristics that substantiate the choice of alanine. TLD-100 are also being used, but only for relative measurements. Alanine dosimetry has been developed at ISS and has been calibrated by the Primary Dosimetry Laboratory in Italy (INMRI- ENEA). In the framework of CQIR programmes, the ISS launched two different postal dosimetry intercomparisons: (a) for conventional treatments using external high-energy photon beams, and (b) for protontherapy centres which treat ocular melanomas. High energy photon beams: The purpose is to check the accuracy in the doses delivered under reference conditions and for a simulated treatment, through the analysis of the differences between measured and stated doses. The accuracy will depend on the procedures adopted in the radiation therapy centres, including the dosimetric protocol, the CT imaging and the treatment plan system used for the dose calculation. Two irradiation conditions have been chosen. In the first, a water phantom will be irradiated where the dose will be measured at a reference point. In the second, a rectum cancer treatment will be simulated, delivering the dose to an anthropomorphic phantom which will be measured at the isocentre and at 5 other previously defined points. In the first phase, the intercomparison will include only 16 centres and will be considered as a pilot project. The

  18. Electrical measurement techniques for pulsed high current electron beams

    International Nuclear Information System (INIS)

    The advent of high current (1 to 100 kA), moderate energy (>10 MeV), short pulse (1 to 100 ns) electron accelerators used for charged particle beam research has motivated a need to complement standard diagnostics with development of new diagnostic techniques to measure electron beam parameters. A brief survey is given of the diagnostics for measuring beam current, position, size, energy, and emittance. While a broad scope of diagnostics will be discussed, this survey will emphasize diagnostics used on the Experimental Test Accelerator (ETA) and Advanced Test Accelerator (ATA). Focus is placed on diagnostics measuring beam current, position and size. Among the diagnostics discussed are resistive wall current monitors, B/sub theta/ loops, Rogowski coils, Faraday cups, and x-ray wire diagnostics. Operation at higher current levels also increases radiation and electromagnetic pulse interference. These difficulties and methods for circumventing them are also discussed

  19. Measurements of Terahertz Generation in a Metallic, Corrugated Beam Pipe

    CERN Document Server

    Bane, K L F; Fedurin, M; Kusche, K; Swinson, C; Xiang, D

    2016-01-01

    A method for producing narrow-band THz radiation proposes passing an ultra-relativistic beam through a metallic pipe with small periodic corrugations. We present results of a measurement of such an arrangement at Brookhaven's Accelerator Test Facility (ATF). Our pipe was copper and was 5 cm long; the aperture was cylindrically symmetric, with a 1 mm (radius) bore and a corrugation depth (peak-to-peak) of 60 um. In the experiment we measured both the effect on the beam of the structure wakefield and the spectral properties of the radiation excited by the beam. We began by injecting a relatively long beam compared to the wavelength of the radiation to excite the structure, and then used a downstream spectrometer to infer the radiation wavelength. This was followed by injecting a shorter bunch, and then using an interferometer (also downstream of the corrugated pipe) to measure the spectrum of the induced THz radiation.

  20. Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements

    CERN Document Server

    Rihl, Mariana; Baglin, Vincent; Barschel, Colin; Bay, Aurelio; Blanc, Frederic; Bravin, Enrico; Bregliozzi, Giuseppe; Chritin, Nicolas; Dehning, Bernd; Ferro-Luzzi, Massimiliano; Gaspar, Clara; Gianì, Sebastiana; Giovannozzi, Massimo; Greim, Roman; Haefeli, Guido; Hopchev, Plamen; Jacobsson, Richard; Jensen, Lars; Jones, Owain Rhodri; Jurado, Nicolas; Kain, Verena; Karpinski, Waclaw; Kirn, Thomas; Kuhn, Maria; Luthi, Berengere; Magagnin, Paolo; Matev, Rosen; Nakada, Tatsuya; Neufeld, Niko; Panman, Jaap; Rakotomiaramanana, Barinjaka; Salustino Guimaraes, Valdir; Salvant, Benoit; Schael, Stefan; Schneider, Olivier; Schwering, Georg; Tobin, Mark; Veness, Raymond; Veyrat, Quentin; Vlachos, Sotiris; Wlochal, Michael; Xu, Zhirui; von Dratzig, Arndt

    2016-01-01

    Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.

  1. In vivo dosimetry in radiation therapy in Sweden

    International Nuclear Information System (INIS)

    A prerequisite for achieving high radiation safety for patients receiving external beam radiation therapy is that the hospitals have a quality assurance program. The program should include include monitoring of the radiation dose given to the patient. Control measurements are performed both at the system level and at the individual level. Control measurement is normally performed using in vivo dosimetry, e.g. a method to measure the radiation dose at the individual level during the actual radiation treatment time. In vivo dosimetry has proven to be an important tool to detect and prevent serious errors in patient treatment. The purpose of this research project was to identify the extent to which vivo dosimetry is used and the methods available for this at Swedish radiation therapy clinics. The authority also wanted to get an overall picture of how hospitals manage results of in vivo dosimetry, and how clinics control radiation dose when using modern treatment techniques. The report reflects the situation in Swedish radiotherapy clinics 2007. The report shows that all hospitals use some form of in vivo dosimetry. The instruments used are mainly diodes and termoluminiscence dosimeters

  2. Beam Normal Single Spin Asymmetry Measurements from QWeak

    CERN Document Server

    Waidyawansa, Buddhini P

    2016-01-01

    The Q weak experiment has made several interesting beam normal single spin asymmetry measurements. Preliminary result from a 3.2% measurement of the beam normal single spin asymmetry in elastic e+p scattering at E = 1.155 GeV and {\\theta} lab = 7.8(deg) is presented. We have also made measurements of this asymmetry in elastic and inelastic scattering in the Delta resonance region from Hydrogen, Aluminum and Carbon targets and e+e scattering from Hydrogen target. Some initial results from these measurements are also presented.

  3. Argentine intercomparison programme for personal dosimetry

    International Nuclear Information System (INIS)

    Full text: In 1997 began in Argentine, sponsored by Nuclear Regulatory Authority (ARN) the intercomparison program for personal dosimetry laboratories, on a voluntary basis. Up to know 6 exercises have been done. The program began with a workshop to present the quantities, personal dose equivalent, Hp(10) and extremities dose equivalent, Hs(d). The first aim of this program was to know the true sate of personal dosimetry laboratories in the country, and then introduce the personal dose equivalent, Hp(10) into the dose measurements. The Regional Reference Center for Dosimetry (CCR), belonging to CNEA and the Physical Dosimetry Laboratory of ARN performed the irradiation. Those were done air free and on ICRU phantom, using x-ray, quality ISO: W60, W110 and W200; and 137Cs and 60Co gamma rays. The irradiation was made following ISO 4037 (2) recommendations. There are studied the dose, energy and angular response of the different measuring system. The range of the dose analyzed was from 0.2 mSv up to 80 mSv. The beam incidence was normal and also 20o and 60o. The dosimeters irradiation's were performed kerma in free in air and in phantom in order to study the availability of the service to evaluate the behavior as a function of kerma free in air or Hp(10). At the same time several items have been asked to each participant referring to the action range, the detectors characteristics, the laboratory procedures, the existence of an algorithm and its use for the dosimeter evaluation and the wish to participate in a quality assurance program. The program worked in writing a standard of personal dosimetry laboratories, that was published in 2001. In this work the results of each laboratory and its performance based on the ICRP-60 and ICRP-35 acceptance criteria are shown. Also the laboratory evolution and inquiry analyses have been included. (author)

  4. Stereotactic radiosurgery photon field profile dosimetry using conventional dosimeters and polymer gel dosimetry. Analysis and inter-comparison

    International Nuclear Information System (INIS)

    Small photon fields are increasingly used in modern radiotherapy and especially in IMRT and SRS/SRT treatments. Accurate beam profile measurements of such beams are crucial for a precise and effective treatment. In this work four different dosimetric methods have been used for profile measurements of three small 6 MV circular fields having diameters of 7.5, 15.0 and 30.0 mm. A small sensitive volume air ion chamber, a diamond detector, a novel silicon-diode array and Vinyl-Pyrrolidone based polymer gel dosimetry. The results of this work reveal the well-known disadvantages and/or problems of the conventional dosimeters for this kind of measurements and support that polymer gel dosimetry may overcome these problems. Conclusively, it is estimated that polymer gels could play an important role towards the minimization of the total SRS/SRT treatment error that is related with small field profile measurements.

  5. Upgrade of Beam Energy Measurement System at BEPC-II

    CERN Document Server

    Zhang, Jian-Yong; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M N; Krasnov, A A; Muchnoi, N Yu; Pyata, E E; Mamoshkina, E V; Harris, F A

    2015-01-01

    The beam energy measurement system is of great importance and profit for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. Many advanced techniques and precise instruments are employed to realize the highly accurate measurement of positron/electron beam energy. During five year's running period, in order to meet the requirement of data taking and improve the capacity of measurement itself, the upgradation of system is continued, which involve the component reformation of laser and optics subsystem, replacement of view-port of the laser to vacuum insertion subsystem, the purchase of electric cooling system for high purity germanium detector, and the improvement of data acquisition and processing subsystem. The upgrading of system guarantees the smooth and efficient measuring of beam energy at BEPC-II and accommodates the accurate offline energy values for further physics analysis at BES-III.

  6. Bunch shape measurement of CW heavy-ion beam

    International Nuclear Information System (INIS)

    An accurate bunch shape measurement is one of the most important tasks during the fine tuning of multi-cavity accelerators. A device for the measurement of bunch time structure of cw heavy-ion beams with time resolution ∼20 picoseconds was developed, constructed and commissioned at ATLAS which is a 50 MV superconducting heavy-ion linac. The Bunch Shape Monitor (BSM) is based on the analysis of secondary electrons produced by a primary beam hitting a tungsten wire to which a potential of -10 kV is applied. In a BSM the longitudinal distribution of charge of the primary beam is coherently transformed into a spatial distribution of low energy secondary electrons through transverse rf modulation. The distribution of secondary electrons is detected by a chevron MCP coupled to a phosphor screen. The signal image on the screen is measured by use of a CCD camera connected to a PC. This BSM analyzes cw beams rather than pulsed beams studied by a previous device [1]. Design features of the BSM and the beam measurement results are reported

  7. Beam-quality measurements on heavy ion therapeutic beam of HIMAC

    International Nuclear Information System (INIS)

    Fluence spectra of fragment particles caused by spallation reactions between heavy ion beams and PMMA (polymethyl methacrylate; Lucite) target were measured with ΔE-E counter telescope method for each fragmented element. Measurements were carried out for carbon beams of 290 MeV/nucleon and 400 MeV/nucleon at Heavy Ion Medical Accelerator in Chiba (HIMAC), and 135 MeV/nucleon carbon beam at RIKEN Ring Cyclotron with changing the thickness of target material. Incident beam was broadened with a pair of wobbler magnets and a scatterer, in the same way of clinical trials which have been carrying out at HIMAC. Results were compared with the calculational expectations. (author)

  8. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  9. Measurement and simulation of the TRR BNCT beam parameters

    Science.gov (United States)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad

    2016-09-01

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  10. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    In radiotherapy, the primary objective is to deliver a prescribed dose of radiation to a tumour or lesion within a patient while minimising the dose delivered to the surrounding healthy tissue. Traditional radiotherapy treatments usually involve simple external or internal irradiations of a tumour. External irradiations are normally achieved in the clinic with photon or electron beams produced by high energy linear accelerators. The photon or electron beams are collimated into regular shapes as they emerge from the treatment head of the unit which is supported by a gantry that can be rotated isocentrically to any position. A discrete number of photon or electron beams with different angles of incidence that intersect at the iso-centre are used to produce a region of high dose around the tumour volume (positioned at the iso-centre). Internal irradiations are normally achieved in the clinic by implanting radioactive sources in and around the tumour or lesion. Such irradiations are characterised by very high doses local to the tumour. Radioactive sources are also used to prevent post-angioplasty restenosis by inserting sources into arteries. Usually when treating a tumour, a compromise is made between tumour control and complications arising from normal tissue damage. One measure of this compromise, the therapeutic ratio, is defined as the radiation dose producing complications in 50% of patients divided by the dose providing tumour control in 50% of the patients. The therapeutic ratio depends on the radiobiological characteristics of the cancerous tissue and surrounding healthy tissues and on the radiation dose distribution achieved by the radiotherapy treatment. It is generally believed that the therapeutic ratio can be minimised by optimising the conformation of the radiation dose distribution to the target volume. This is difficult with traditional radiotherapy techniques since they do not produce dose distributions that adequately cover tumour volumes of complex

  11. Effective point of measurement for parallel plate and cylindrical ion chambers in megavoltage electron beams

    International Nuclear Information System (INIS)

    The presence of an air filled ionization chamber in a surrounding medium introduces several fluence perturbations in high energy photon and electron beams which have to be accounted for. One of these perturbations, the displacement effect, may be corrected in two different ways: by a correction factor pdis or by the application of the concept of the effective point of measurement (EPOM). The latter means, that the volume averaged ionization within the chamber is not reported to the chambers reference point but to a point within the air filled cavity. Within this study the EPOM was determined for four different parallel plate and two cylindrical chambers in megavoltage electron beams using Monte Carlo simulations. The positioning of the chambers with this EPOM at the depth of measurement results in a largely depth independent residual perturbation correction, which is determined within this study for the first time. For the parallel plate chambers the EPOM is independent of the energy of the primary electrons. Whereas for the Advanced Markus chamber the position of the EPOM coincides with the chambers reference point, it is shifted for the other parallel plate chambers several tenths of millimeters downstream the beam direction into the air filled cavity. For the cylindrical chambers there is an increasing shift of the EPOM with increasing electron energy. This shift is in upstream direction, i.e. away from the chambers reference point toward the focus. For the highest electron energy the position of the calculated EPOM is in fairly good agreement with the recommendation given in common dosimetry protocols, for the smallest energy, the calculated EPOM positions deviate about 30% from this recommendation. (orig.)

  12. TFTR [Tokamak Fusion Test Reactor] neutral beam injected power measurement

    International Nuclear Information System (INIS)

    Energy flow within TFTR neutral beamlines is measured with a waterfall calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source in the well instrumented test stand, 99.5 +- 3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12/degree/, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations on the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water. 28 refs., 9 figs., 1 tab

  13. Traceability of metrologic references of dose absorbed to water used in a Dosimetry Quality Assurance Program

    International Nuclear Information System (INIS)

    Objective: to present the solidly established traceability structure for ionometric standards and for thermoluminescent dosimetry system that ensures reliability of the Dosimetry Quality Assurance Program and is aimed to certify the highest level of accuracy of the measurements. Materials and methods: thermoluminescent powder dosimeters (DTL 937) placed into plastic capsules and packed in specific kits for each intended application were mailed to the participant centers. Results: the results of the intercomparisons performed between 'Laboratorio de Ciencias Radiologicas da Universidade do Estado do Rio de Janeiro' and EQUAL-ESTRO for the beam of 60Co gamma rays, expressed for (1σ), and the results of the dose absorbed measurements obtained with the chambers of the Program EQUAL and the chambers of the Dosimetry Quality Assurance Program were lower than 0.5%. Conclusion: based on these results we concluded that the Dosimetry Quality Assurance Program reached the desired level of reliability to allow its implementation. (author)

  14. Electron beams in radiation therapy

    International Nuclear Information System (INIS)

    Clinical electron beams in interaction with beam flattening and collimating devices are studied, in order to obtain the means for adequate electron therapy. A treatment planning method for arbitrary field shapes is developed that takes the properties of the collimated electron beams into account. An electron multiple-scattering model is extended to incorporate a model for the loss of electrons with depth, in order to improve electron beam dose planning. A study of ionisation measurements in two different phantom materials yields correction factors for electron beam dosimetry. (Auth.)

  15. Measurement of dose distributions using film in therapeutic electron beams

    International Nuclear Information System (INIS)

    The feasibility of using film dosimetry data as the input data for patient treatment planning was evaluated. The central-axis depth dose and the off-axis ratios obtained from film measurements in a solid phantom were compared with those of ion-chamber measurements in water. Two techniques were used to generate isodose distributions. The first technique used only the film data, i.e., the central-axis depth dose and the off-axis ratios used for the reconstruction were determined from the film optical density (corrected for film nonlinearity). In the second technique, the central-axis depth dose measured by an ion chamber in a water phantom was combined with the off-axis ratios measured using film in the ''solid water'' phantom. The resulting isodose distributions from both techniques were compared with the ion-chamber measurements in water for 7-, 12-, and 18-MeV electrons, and the second technique showed better agreement with the ion-chamber measurements than did the first technique. The differences were within a clinically acceptable range

  16. Neutral beam species measurements using in situ Rutherford backscatter spectrometry

    International Nuclear Information System (INIS)

    This work describes a new in situ method for measuring the neutral particle fractions in high power deuterium neutral beams, used to heat magnetically confined fusion plasmas. Deuterium beams, of variable energies, pulse lengths, and powers up to 47 keV, 100 msec, 1.6 MW, were Rutherford backscattered at 1350 from TiC inner neutral beam armor of the PDX, and detected using an electrostatic analyzer with microchannel plates. Complete energy scans were made every 20 msec and data were obtained simultaneously from five different positions across the beam profile. The neutral particle fractions were measured to be D0(E):D0(E/2):D0(E/3)=53:32:15. The corresponding neutral power fractions were P0(E):P0(E/2):P0(E/3)=72:21:7, and the associated ionic fractions at the output of the ion source were D1+(E):D2+(E):D3+(E)=74:20:6. The measured neutral particle fractions were relatively constant over more than 70% of the beam power distribution. A decrease in the yield of the full energy component in the outer regions of the beam was observed. Other possible experimental configurations and geometries are discussed

  17. Fast neutron dosimetry: Progress summary

    International Nuclear Information System (INIS)

    The purpose was to investigate the radiological physics and biology of very low energy photons derived from a 1-GeV electron synchrotron storage ring. An extensive beam line and irradiation apparatus was designed, developed, and constructed. Dosimetry measurements required invention and testing of a miniature absolute calorimeter and a cell irradiation fixture suitable for scanning exposures under computer control. Measurements of the kerma factors of oxygen, aluminum and silicon for 14-20 MeV neutrons. Custom designed miniature proportional counters of cylindrical symmetry were employed in these determinations. The oxygen kerma factor was found significantly lower than values calculated from microscopic cross sections. We also tested Mg and Fe walled conventional spherical counters. The direct neutron-counting gas interaction is significant enough for these counters that a correction is needed. We also investigated the application of Nuclear Magnetic Resonance spectroscopy to radiation dosimetry. Our purpose was to take advantage of recent development of very high-field magnets, complex RF-pulse techniques for solvent suppression, and improved spectral analysis techniques

  18. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...... material are the radiation stability of this material and the fact that identical phantoms can be made for irradiation of other dosimeters for calibration. This provides a precise tool for establishing traceability of dose measurements at industrial electron electron accelerators....

  19. Design and development of DCCT for measurement of beam current

    International Nuclear Information System (INIS)

    Charged Particle beams in accelerators need measurement of beam current during operations and diagnostics. The beam passes through a resonant cavity that is excited at a fixed resonant frequency and is maintained at a vacuum level as high as 10E-8 Ton. Non-intrusive method is needed for beam current measurement. DCCT is a non-intrusive, accurate and stable device that is widely used for measurement of the beam intensity in particle accelerators. DCCT is based on principle of flux gate magnetometers. It consists of magnetic modulator, magnetizing coils, sense coils, back end and front end electronics. A prototype DCCT for vacuum chamber of 24 mm nominal inner diameter is designed and developed at CnID. During laboratory experiments beam current is simulated by passing DC current generated by stable current source along the axis of the DCCT. In absence of beam current sense coils senses zero voltage. Even harmonics are generated at the output winding when DC current is passed and the magnitude of the 2nd harmonic gives the corresponding value of the beam current. The prototype DCCT is designed for 0.5 mA to 10 mA range with resolution better than 0.1 mA. This paper describes the magnetic, electronics and mechanical design of the prototype DCCT which is optimized for amplitude and frequency of magnetizing current. The dependence of the amplitude and frequency of the magnetizing current on the second harmonic is discussed in detail. Shielding to external noise is provided with help of high permeability soft magnetic material. A compensation core with coil is used to determine the direction/charge of the beam. The current in this coil is tuned to reduce the 2nd harmonics generated due to beam current, back to zero. The value of this current gives magnitude of the beam current and its polarity gives information on direction/charge of the beam. Front and back end electronics designed for prototype DCCT is also discussed. It is planned to deploy the developed DCCT in Linac

  20. Detector to detector corrections: A comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams

    International Nuclear Information System (INIS)

    Purpose: The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements. Methods: Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm2 to 4.2 × 4.2 cm2 and the measurements were extended to larger fields of up to 10 × 10 cm2. Measurements were performed at 5 cm depth, in a 6 MV photon beam. Detectors used included alanine, thermoluminescent dosimeters (TLDs), stereotactic diode, electron diode, photon diode, radiophotoluminescent dosimeters (RPLDs), radioluminescence detector based on carbon-doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm3 to 0.3 cm3). All detector measurements were corrected for volume averaging effect and compared with dose ratios determined from alanine to derive a detector correction factors that account for beam perturbation related to nonwater equivalence of the detector materials. Results: For the detectors used in this study, volume averaging corrections ranged from unity for the smallest detectors such as the diodes, 1.148 for the 0.14 cm3 air filled ionization chamber and were as high as 1.924 for the 0.3 cm3 ionization chamber. After applying volume averaging corrections, the detector readings were consistent among themselves and with alanine measurements for several small detectors but they differed for larger detectors, in particular for some small ionization chambers with volumes larger than 0.1 cm3. Conclusions: The results demonstrate how important it is for the appropriate corrections to be