WorldWideScience

Sample records for beam loss control

  1. Beam Loss Control for the Fermilab Main Injector

    CERN Document Server

    Brown, Bruce C

    2013-01-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Losses were at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  2. Characterizing and Controlling Beam Losses at the LANSCE Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rybarcyk, Lawrence J. [Los Alamos National Laboratory

    2012-09-12

    The Los Alamos Neutron Science Center (LANSCE) currently provides 100-MeV H{sup +} and 800-MeV H{sup -} beams to several user facilities that have distinct beam requirements, e.g. intensity, micropulse pattern, duty factor, etc. Minimizing beam loss is critical to achieving good performance and reliable operation, but can be challenging in the context of simultaneous multi-beam delivery. This presentation will discuss various aspects related to the observation, characterization and minimization of beam loss associated with normal production beam operations in the linac.

  3. Beam Loss Estimates and Control for the BNL Neutrino Facility

    CERN Document Server

    Weng, Wu-Tsung; Raparia, Deepak; Tsoupas, Nicholaos; Wei, Jie; Yung Lee, Yong; Zhang, S Y

    2005-01-01

    BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW for a very long baseline neutrino oscillation experiment. This increase in beam power is mainly due to the faster repetition rate of the AGS by a new 1.5 GeV superconductiong linac as injector, replacing the existing booster. The requirement for low beam loss is very important both to protect the beam component, and to make the hands-on maintenance possible. In this report, the design considerations for achieving high intensity and low loss will be presented. We start by specifying the beam loss limit at every physical process followed by the proper design and parameters for realising the required goals. The process considered in this paper include the emittance growth in the linac, the H-

  4. Beam loss control in the LINAC4 design

    CERN Document Server

    Stovall, J; Crandall, K

    2010-01-01

    The Linac4 DTL reference design has been modified to reduce the power consumption in tank 1 by modifying the accelerating field and phase law. In addition we have adopted an FFDD focusing lattice throughout to minimize expected losses resulting from alignment errors. We have observed, however, that this design suffers from decreasing transverse acceptance and a sensitivity to misalignments that causes any expected beam loss to occcur at the high energy end of the DTL. In this note we investigate two solutions to increase the acceptance, decrease its sensitivity to misalignments and eliminate the potential for a beam-loss “bottleneck” at 50 MeV.

  5. The Fermilab Main Injector: high intensity operation and beam loss control

    CERN Document Server

    Brown, Bruce C; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-01-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at ~400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  6. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  7. FNAL Proton Source High Intensity Operations and Beam Loss Control

    CERN Document Server

    Garcia, F G

    2014-01-01

    The 40-year-old Fermilab Proton Source machines, constituted by the Pre-Injector, Linac and the synchrotron Booster, have been the workhorse of the Fermi National Accelerator Laboratory (Fermilab). During this time, the High Energy Physics Program has demanded an increase in proton throughput, especially during the past decade with the beginning of the neutrino program at Fermilab. In order to achieve a successful program, major upgrades and changes were made in Booster. Once again, the Proton Source has been charged to double their beam throughput, while maintain the present residual activation levels, to meet the laboratory Intensity Frontier program goals until new machines are built and operational to replace the Proton Source machines. This paper discusses the present performance of Booster and the plans involved in reaching even higher intensities.

  8. Special diagnostic methods and beam loss control on high intensity proton synchrotrons and storage rings Circular proton accelerator

    CERN Document Server

    Warsop, C M

    2002-01-01

    Two topics concerning high intensity, medium energy, circular proton accelerators have been studied: specialist diagnostics and beam loss control. The use of specially configured, low intensity diagnostic beams to help measure, understand and control high intensity beams is described. The ideas are developed and demonstrated on the ISIS 800 MeV, high intensity proton synchrotron at the Rutherford Appleton Laboratory in the UK. It is shown that these techniques make much new and valuable information available, which is particularly useful in achieving the precise beam optimisation required for low and controlled losses. Beam loss control in the proposed European Spallation Source (ESS) accumulator rings is studied. The expected losses are summarised, and a design for the beam collimation system presented. A new code for the simulation of loss control is outlined, and then used to test the collimation system under most foreseeable conditions. It is expected that the required loss control levels will be achievab...

  9. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  10. LHC beam loss pattern recognition

    CERN Document Server

    Marsili, A; Puzo, P

    2011-01-01

    One of the systems protecting CERN’s Large Hadron Collider (LHC) is the Beam Loss Monitoring system (BLM). More than 3600 monitors are installed around the ring. The beam losses are permanently integrated over 12 different time intervals (from 40 microseconds to 84 seconds). When any loss exceeds the thresholds defined for the integration window, the beam is removed from the machine. Understanding the origin of a beam loss is crucial for machine operation, as it can help to avoid a repetition of the same scenario. The signals read from given monitors can be considered as entries of a vector. This article presents how a loss map of unknown cause can be decomposed using vector based analysis derived from well-known loss scenarios. The algorithms achieving this decomposition are described, as well as the accuracy of the results.

  11. Micro-nanopores fabricated by high-energy electron beam irradiation: suitable structure for controlling pesticide loss.

    Science.gov (United States)

    Xiang, Yubin; Wang, Ning; Song, Jimei; Cai, Dongqing; Wu, Zhengyan

    2013-06-01

    Pesticide sprayed onto crop leaves tends to be washed off by rainwater and discharge into the environment through leaching and runoff, resulting in severe pollution to both soil and water. Here, to control pesticide loss, we developed a loss-control pesticide (LCP) by adding modified natural nanoclay (diatomite) through high-energy electron beam (HEEB) to traditional pesticide. After HEEB treatment, the originally clogged pores in diatomite opened, resulting in plenty of micro-nanopores in diatomite, which are beneficial for the pesticide molecules to access and be adsorbed. This pesticide-diatomite complex tended to be retained by the rough surface of crop leaves, displaying a high adhesion performance onto the leaves, so that the pesticide loss reduced, sufficient pesticide for crops was supplied, and the pollution risk of the pesticide could be substantially lowered.

  12. Detection of Equipment Faults Before Beam Loss

    CERN Document Server

    Galambos, J

    2016-01-01

    High-power hadron accelerators have strict limits on fractional beam loss. In principle, once a high-quality beam is set up in an acceptable state, beam loss should remain steady. However, in practice, there are many trips in operational machines, owing to excessive beam loss. This paper deals with monitoring equipment health to identify precursor signals that indicate an issue with equipment that will lead to unacceptable beam loss. To this end, a variety of equipment and beam signal measurements are described. In particular, several operational examples from the Spallation Neutron Source (SNS) of deteriorating equipment functionality leading to beam loss are reported.

  13. Application of diamond based beam loss monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); CERN, Geneva (Switzerland); Baer, Tobias [CERN, Geneva (Switzerland); Hamburg Univ. (Germany); Castro Carballo, Elena Maria [DESY, Zeuthen (Germany); Lohmann, Wolfgang [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); Schmidt, Ruediger [CERN, Geneva (Switzerland)

    2013-07-01

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionization chambers and diamond sensors. Ionization chambers trigger a beam dump if beam losses exceed a certain threshold. They have a time resolution of 40um (half LHC turn) which is not sufficient to resolve bunch-by-bunch beam losses. Diamond sensors have a nanosecond time resolution and can therefore detect bunch-by-bunch beam losses. This time resolution allows an analysis of various types of beam losses and an understanding of the mechanisms. For the first time beam loss intensities were measured bunch-by-bunch caused by different origins of losses. Beam loss measurements using diamond sensors will be presented. The results are compared to simulations and good qualitative agreement was found. The potential of diamond sensors for LHC and experiment applications are discussed.

  14. Requirements of CLIC Beam Loss Monitoring System

    CERN Document Server

    Sapinski, M; Holzer, EB; Jonker, M; Mallows, S; Otto, T; Welsch, C

    2010-01-01

    The Compact Linear Collider (CLIC) [1] is a proposed multi-TeV linear electron-positron collider being designed by a world-wide collaboration. It is based on a novel twobeam acceleration scheme in which two beams (drive and main beam) are placed in parallel to each other and energy is transferred from the drive beam to the main one. Beam losses on either of them can have catastrophic consequences for the machine, because of high intensity (drive beam) or high energy and small emittance (main beam). In the framework of machine protection, a Beam Loss Monitoring (BLM) system has to be put in place. This paper discusses the requirements for the beam loss system in terms of detector sensitivity, resolution, dynamic range and ability to distinguish losses originating from various sources. The two-beam module where the protection from beam losses is particularly challenging and important, is studied.

  15. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    Science.gov (United States)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  16. Beam Loss Monitors at LHC

    CERN Document Server

    Dehning, B

    2016-01-01

    One of the main functions of the LHC beam loss measurement system is the protection of equipment against damage caused by impacting particles creating secondary showers and their energy dissipation in the matter. Reliability requirements are scaled according to the acceptable consequences and the frequency of particle impact events on equipment. Increasing reliability often leads to more complex systems. The downside of complexity is a reduction of availability; therefore, an optimum has to be found for these conflicting requirements. A detailed review of selected concepts and solutions for the LHC system will be given to show approaches used in various parts of the system from the sensors, signal processing, and software implementations to the requirements for operation and documentation.

  17. Beam Loss and Beam Shape at the LHC Collimators

    CERN Document Server

    Burkart, Florian

    In this master thesis the beam loss and the beam shape at the LHC collimators was measured, analysed, presented and discussed. Beginning with a short introduction of the LHC, the experiments, the supercon- ducting magnet system, the basics on linear beam dynamics and a describtion of the LHC collimation system are given. This is followed by the presentation of the performance of the LHC collimation sys- tem during 2011. A method to convert the Beam Loss Monitor signal in Gy/s to a proton beam loss rate will be introduced. Also the beam lifetime during the proton physics runs in 2011 will be presented and discussed. Finally, the shape of the LHC beams is analysed by using data obtained by scraping the beam at the LHC primary collimators.

  18. Beam Loss Monitors at the ESRF

    CERN Document Server

    Joly, B; Naylor, G A

    2000-01-01

    The European Synchrotron radiation facility is a third generation x-ray source providing x-rays on a continuous basis. As a facility available to external users, the monitoring of radiation caused by the loss of high-energy stored beam is of great concern. A network of beam loss monitors has been installed inside the storage ring tunnel so as to detect and localize the slow loss of electrons during a beam decay. This diagnostic tool allows optimization of beam parameters and physical aperture limits as well as giving useful information on the machine to allow the lifetime to be optimized and defects localized.

  19. Overview of LHC Beam Loss Measurements

    CERN Document Server

    Dehning, B; Effinger, E; Emery, J; Fadakis, E; Holzer, E B; Jackson, S; Kruk, G; Kurfuerst, C; Marsili, A; Misiowiec, M; Nebot Del Busto, E; Nordt, A; Priebe, A; Roderick, C; Sapinski, M; Zamantzas, C; Grishin, V; Griesmayer, E

    2011-01-01

    The LHC beam loss monitoring system provides measurements with an update rate of 1 Hz and high time resolution data by event triggering. These informations are used for the initiation of beam aborts, fixed displays and the off line analysis. The analysis of fast and localized loss events resulted in the determination of its rate, duration, peak amplitudes, its scaling with intensity, number of bunches and beam energy. The calibration of the secondary shower beam loss signal in respect to the needed beam energy deposition to quench the magnet coil is addressed at 450GeV and 3.5T eV . The adjustment of collimators is checked my measuring the loss pattern and its variation in the collimation regions of the LHC. Loss pattern changes during a fill allow the observation of non typical fill parameters.

  20. Application of optical fiber beam loss monitor

    International Nuclear Information System (INIS)

    KEK is an accelerator complex consisting of an electron-positron injector linac and various types of circular accelerators. In order to protect instruments from radiation damage, discrete beam loss monitors have been installed inside the linac and rings. Although beam losses can be detected using the beam loss monitors (BLMs) or beam position monitors (BPMs), it is difficult to identify the exact position of the loss. The electrons, which strike the duct, lose a fraction of their beam energy, which produces a shower at the location and emits many electrons out of the duct. If an optical fiber is placed inside the beam duct, many of these electrons will pass through the optical fiber where the beam loss is generated. BLMs employing an optical fiber based on Cherenkov radiation are currently being developed and applied to our system. An optical fiber placed into the duct also can be used as a detector for a wire scanner system. Existing wire scanner detectors are set at a fixed position, and detect signals of different beam energies that correspond to the different injection modes. However, the fixed position is not always optimal. Conversely, owing to the optical fiber's distributing nature, optical fiber detector systems containing PMTs enables the effective detection of all signals from various beam modes. We can successfully obtain the clear wire scanner signal by employing this optical fiber system. The measurement of the beam loss at the incidence part of the circular accelerator is also described. The beam loss location as well as the turn-by-turn beam loss can be measured. (author)

  1. Injection Beam Loss and Beam Quality Checks for the LHC

    CERN Document Server

    Kain, Verena; Bartmann, Wolfgang; Bracco, Chiara; Drosdal, Lene; Holzer, Eva; Khasbulatov, Denis; Magnin, Nicolas; Meddahi, Malika; Nordt, Annika; Sapinski, Mariusz; Vogt, Mathias

    2010-01-01

    The quality of the injection into the LHC is monitored by a dedicated software system which acquires and analyses the pulse waveforms from the injection kickers, and measures key beam parameters and compares them with the nominal ones. The beam losses at injection are monitored on many critical devices in the injection regions, together with the longitudinal filling pattern and maximum trajectory offset on the first 100 turns. The paper describes the injection quality check system and the results from LHC beam commissioning, in particular the beam losses measured during injection at the various aperture limits. The results are extrapolated to full intensity and the consequences are discussed

  2. Beam Loss Monitors for NSLS-II Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L.; Cameron, P.

    2011-03-28

    The shielding for the NSLS-II storage ring will provide adequate protection for the full injected beam losses in two cells of the ring around the injection point, but the remainder of the ring is shielded for lower losses of <10% top-off injection beam current. This will require a system to insure that beam losses do not exceed levels for a period of time that could cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring system will have beam loss monitors that will measure where the beam charge is lost around the ring, to warn operators if losses approach the design limits. To measure the charge loss quantitatively, we propose measuring the electron component of the shower as beam electrons hit the vacuum chamber (VC) wall. This will be done using the Cerenkov light as electrons transit ultra-pure fused silica rods placed close to the inner edge of the VC. The entire length of the rod will collect light from the electrons of the spread out shower resulting from the small glancing angle of the lost beam particles to the VC wall. The design and measurements results of the prototype Cerenkov BLM will be presented.

  3. Cryogenic Beam Loss Monitoring for the LHC

    CERN Document Server

    Kurfuerst, C; Sapinski, M

    A Beam Loss Monitoring (BLM) system was installed on the outside surface of the LHC magnet cryostats to protect the accelerator equipment from beam losses. The protection is achieved by extracting the beam from the ring in case thresholds imposed on measured radiation levels are exceeded. Close to the interaction regions of the LHC, the present BLM system is sensitive to particle showers generated in the interaction region of the two beams. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. The particle showers measured by the present BLM configuration are partly shielded by the cryostat and the iron yoke of the magnets. The system can hence be optimised by locating beam loss monitors as close as possible to the protected element, i. e. the superconducting coils, inside the cold mass of the magnets in superfluid helium at 1.9 K. T...

  4. The N8 channel beam loss monitor system

    International Nuclear Information System (INIS)

    High intensity 70 GeV proton beam loss monitor system architecture in the area of single beam pass is described. The main system components choosing as detectors recording and controlling electronics are grounded on. There are list of the main system monitoring tasks and some experimental results. 12 refs.; 6 figs

  5. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  6. Beam Loss Diagnostics Based on Pressure Measurements

    CERN Document Server

    Weinrich, U

    2003-01-01

    The GSI is operating a heavy ion synchrotron, which is currently undergoing an upgrade towards higher beam intensities. It was discovered that beam losses induce a significant pressure increase in the vacuum system. In order to detect the time constants of the pressure increase and decrease, fast total pressure measurements were put into operation. With the recently installed partial pressure diagnostics it is also possible to follow up which types of molecules are released. The presentation will focus on the different techniques applied as well as on some measurement results. The potential and difficulties of this diagnostic tool will also be discussed.

  7. Cherenkov Fibers for Beam Loss Monitoring at the CLIC Two Beam Module

    CERN Document Server

    van Hoorne, Jacobus Willem; Holzer, E B

    The Compact Linear Collider (CLIC) study is a feasibility study aiming at a nominal center of mass energy of 3TeV and is based on normal conducting travelling-wave accelerating structures, operating at very high field gradients of 100 MV/m. Such high fields require high peak power and hence a novel power source, the CLIC two beam system, has been developed, in which a high intensity, low energy drive beam (DB) supplies energy to a high energy, low intensity main beam (MB). At the Two Beam Modules (TBM), which compose the 2x21km long CLIC main linac, a protection against beam losses resulting from badly controlled beams is necessary and particularly challenging, since the beam power of both main beam (14 MW) and drive beam (70 MW) is impressive. To avoid operational downtimes and severe damages to machine components, a general Machine Protection System (MPS) scheme has been developed. The Beam Loss Monitoring (BLM) system is a key element of the CLIC machine protection system. Its main role will be to detect p...

  8. LHC Beam Loss Monitoring System Verification Applications

    CERN Document Server

    Dehning, B; Zamantzas, C; Jackson, S

    2011-01-01

    The LHC Beam Loss Mon­i­tor­ing (BLM) sys­tem is one of the most com­plex in­stru­men­ta­tion sys­tems de­ployed in the LHC. In ad­di­tion to protecting the col­lid­er, the sys­tem also needs to pro­vide a means of di­ag­nos­ing ma­chine faults and de­liv­er a feed­back of loss­es to the control room as well as to sev­er­al sys­tems for their setup and analysis. It has to trans­mit and pro­cess sig­nals from al­most 4’000 mon­i­tors, and has near­ly 3 mil­lion con­fig­urable pa­ram­e­ters. The system was de­signed with re­li­a­bil­i­ty and avail­abil­i­ty in mind. The spec­i­fied op­er­a­tion and the fail-safe­ty stan­dards must be guar­an­teed for the sys­tem to per­form its func­tion in pre­vent­ing su­per­con­duc­tive mag­net de­struc­tion caused by par­ti­cle flux. Main­tain­ing the ex­pect­ed re­li­a­bil­i­ty re­quires ex­ten­sive test­ing and ver­i­fi­ca­tion. In this paper we re­port our most re­cent ad­di­t...

  9. The LEP RF Trip and Beam Loss Diagnostics System

    CERN Document Server

    Arnaudon, L; Beetham, G; Ciapala, Edmond; Juillard, J C; Olsen, R

    2002-01-01

    During the last years of operation the number of operationally independent RF stations distributed around LEP reached a total of 40. A serious difficulty when running at high energy and high beam intensities was to establish cause and effect in beam loss situations, where the trip of any single RF station would result in beam loss, rapidly producing further multiple RF station trips. For the last year of operation a fast post-mortem diagnostics system was developed to allow precise time-stamping of RF unit trips and beam intensity changes. The system was based on eight local DSP controlled fast acquisition and event recording units, one in each RF sector, connected to critical RF control signals and fast beam intensity monitors and synchronised by GPS. The acquisition units were armed and synchronised at the start of each fill. At the end of the fill the local time-stamped RF trip and beam intensity change history tables were recovered, events ordered and the results stored in a database for subsequent analys...

  10. Fermilab booster operational status: Beam loss and collimation

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Webber

    2002-06-11

    Beam loss reduction and control challenges confronting the Fermilab Booster are presented in the context of the current operational status. In Summer 2002 the programmatic demand for 8 GeV protons will increase to 5E20/year. This is an order of magnitude above recent high rates and nearly as many protons as the machine has produced in its entire 30-year lifetime. Catastrophic radiation damage to accelerator components must be avoided, maintenance in an elevated residual radiation environment must be addressed, and operation within a tight safety envelope must be conducted to limit prompt radiation in the buildings and grounds around the Booster. Diagnostic and performance tracking improvements, enhanced orbit control, and a beam loss collimation/localization system are essential elements in the approach to achieving the expected level of performance and are described here.

  11. Depth-controlled Bessel beams

    CERN Document Server

    Müller, Angelina; Wallrabe, Ulrike

    2016-01-01

    We present a ring aperture with independently switchable segments for the three-dimensional control of quasi propagation invariant beams. We demonstrate that our liquid crystal design concept preserves coherence and generates the Bessel beam structure.

  12. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    CERN Document Server

    Wu, Juhao; Raubenheimer, Tor O; Seryi, Andrei; Sramek, Christopher K

    2005-01-01

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ‘banana effect'). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  13. Measurements of Beam Ion Loss from the Compact Helical System

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan

    2010-02-03

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  14. Cavity loss factors for non-ultrarelativistic beams

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.

    1998-12-31

    Cavity loss factors can be easily computed for ultrarelativistic beams using time-domain codes like MAFIA or ABCI. However, for non-ultrarelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. The authors calculate the loss factors of a non-relativistic bunch and compare results with the relativistic case.

  15. Cavity Loss Factors For Non-Ultrarelativistic Beams

    CERN Document Server

    Kurennoy, S S

    1998-01-01

    Cavity loss factors can be easily computed for ultrarelativistic beams using time-domain codes like MAFIA or ABCI. However, for non-ultrarelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. We calculate the loss factors of a non-ultrarelativistic bunch and compare results with the relativistic case.

  16. Controlling Beam Halo-Chaos

    Institute of Scientific and Technical Information of China (English)

    方锦清; 罗晓曙; 陈关荣; 翁甲强

    2001-01-01

    Beam halo-chaos is essentially a complex spatiotemporal chaotic motion in a periodic-focusing channel of a highpower linear proton accelerator. The controllability condition for beam halo-chaos is analysed qualitatively. A special nonlinear control method, i.e. the wavelet-based function feedback, is proposed for controlling beam halochaos. Particle-in-cell simulations are used to explore the nature of halo-chaos formation, which has shown that the beam hMo-chaos is suppressed effectively after using nonlinear control for the proton beam with an initial full Gaussian distribution. The halo intensity factor Hav is reduced from 14%o to zero, and the other statistical physical quantities of beam halo-chaos are more than doubly reduced. The potential applications of such nonlinear control in experiments are briefly pointed out.

  17. Beam Loss Patterns at the LHC Collimators Measurements & Simulations

    CERN Document Server

    Böhlen, Till Tobias

    2008-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) detects particle losses of circulating beams and initiates an emergency extraction of the beam in case that the BLM thresholds are exceeded. This protection is required as energy deposition in the accelerator equipment due to secondary shower particles can reach critical levels; causing damage to the beam-line components and quenches of superconducting magnets. Robust and movable beam line elements, so-called collimators, are the aperture limitations of the LHC. Consequently, they are exposed to the excess of lost beam particles and their showers. Proton loss patterns at LHC collimators have to be determined to interpret the signal of the BLM detectors and to set adequate BLM thresholds for the protection of collimators and other equipment in case of unacceptably increased loss rates. The first part of this work investigates the agreement of BLM detector measurements with simulations for an LHC-like collimation setup. The setup consists ...

  18. Beam loss studies for the KEK compact-ERL

    International Nuclear Information System (INIS)

    We performed the beam loss study for the compact Energy Recovery Linac (cERL) at KEK. To this purpose the Touschek effect with intra-beam scattering, the residual gas scattering (elastic and inelastic cases) were examined using existing and modified ELEGANT routines, and developed MATLAB data analysis algorithms to handle the large amount of data that is produced by the program. In addition we performed several simulations to judge the impact of field emission issued from the main cavity. By studying the beam losses of cERL, we can better understand the loss mechanisms, estimate the beam loss rates, and localize potentially dangerous areas of the beam line, which is important for the safety low-emittance and high-current beams operation. The data obtained then are compared with the theoretical estimation to verify the accuracy of the simulations. (author)

  19. Beam Loss Studies for the 2-MW LBNE Proton Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Drozhdin, A.I.; Childress, S.R.; Mokhov, N.V.; Tropin, I.S.; Zwaska, R.; /Fermilab

    2012-05-01

    Severe limits are put on allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6 x 10{sup 14} protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that loss of a single beam pulse at 2.3 MW will result in a catastrophic event: beam pipe destruction, damaged magnets and very high levels of residual radiation inside and outside the tunnel. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.

  20. Beam loss studies at the ANKA storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Hertle, Edmund; Smale, Nigel; Goetsch, Tobias; Mueller, Anke-Susanne; Wegh, Frans; Worms, Kai [Karlsruher Institut fuer Technologie (Germany)

    2013-07-01

    The real time study and the post mortem analysis of beam loss are powerful tools for the optimization of a storage ring's performance. It allows, for example, a fast identification of failing hardware components or can be used to improve the beam lifetime by a reduction of the losses. This needs a sophisticated beam loss monitor system with appropriate spatial and temporal resolution. This presentation gives an overview of the loss monitor system under study at the ANKA synchrotron radiation facility of the Karlsruhe Institute of Technology.

  1. Design for controllable optofluidic beam splitter

    Science.gov (United States)

    Tang, Xionggui; Liang, Shan; Li, Rujian

    2016-01-01

    A novel configuration for controllable optofluidic beam splitter is proposed, which consists of the asymmetric Y-branch waveguide and the microfluidic channel filled with fluid mixture. The beam propagation method (BPM) is employed to numerically investigate the optical performance of device in our layout. The simulated results demonstrate that arbitrary splitting ratio and low optical loss for both TE and TM mode can be easily achieved, with a low dependence of wavelength and polarization. Particularly, the optofluidic beam splitter has advantages such as compact structure and large fabrication tolerance. The proposed device provides a new way to manipulate the optical power splitting, and has wide potential applications in integrated optofluidic system.

  2. The LCLS Undulator Beam Loss Monitor Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  3. The LHC beam loss monitoring system commissioning for 2010

    CERN Document Server

    Zamantzas, C; Chery, C; Effinger, E; Emery, J; Grishin, S; Hajdu, C F; Holzer, E B; Jackson, S; Kurfuerst, C; Marsili, A; Nordt, A; Sapinski, M; Tissier, R; Venturini, G G

    2010-01-01

    The LHC Beam Loss Monitoring (BLM) system is one of the most complex instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver feedback of the losses to the control room as well as to several systems for their setup and analysis. It has to transmit and process signals from approximately 4’000 monitors, and has nearly 3 million configurable parameters. This paper will discuss its performance and ability to provide the expected measurements, the problems encountered and necessary improvements, the adequacy of related software and databases, and in general its readiness and suitability for 3.5 TeV operation.

  4. Beam loss monitors comparison at the CERN Proton Synchrotron

    CERN Document Server

    Gilardoni, S S; Effinger, E; Gil-Flores, J; Wienands, U

    2011-01-01

    CERN is planning the renovation and upgrade of the beam loss detection system for the Proton Synchrotron (PS). Improved performance in speed–to be able to monitor beam loss on a bunch-by-bunch basis–and in longterm stability–to reduce or avoid the need for periodic calibration–are aimed for. To select the most suitable technology, different detectors were benchmarked in the machine with respect to the same beam loss. The characteristics of the different detectors, the results of the measurement campaign and their suitability as future monitors for the PS are presented.

  5. Monitoring system experiments on beam loss at SSRF injector

    Science.gov (United States)

    Cai, Jun; Xia, XiaoBin; Xu, XunJiang; Liu, Xin; Xu, JiaQiang; Wang, GuangHong; Zeng, Ming

    2011-12-01

    Experiments on beam loss by using beam loss monitoring (BLM) system were carried out at Shanghai Synchrotron Radiation Facility (SSRF) injector. This system used highly sensitive and current-integrated Si-photodiode detectors and an Ethernet data acquisition (DAQ) system. The experimental results demonstrate that the Si-photodiode detectors are a useful tool that provides dynamic information on beam loss and investigates problems of machine operation. It also shows that the Si-photodiode BLM system is suitable for pulse-radiation of high-energy accelerators.

  6. Monitoring system experiments on beam loss at SSRF injector

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Experiments on beam loss by using beam loss monitoring (BLM) system were carried out at Shanghai Synchrotron Radiation Facility (SSRF) injector. This system used highly sensitive and current-integrated Si-photodiode detectors and an Ethernet data acquisition (DAQ) system. The experimental results demonstrate that the Si-photodiode detectors are a useful tool that provides dynamic information on beam loss and investigates problems of machine operation. It also shows that the Si-photodiode BLM system is suitable for pulse-radiation of high-energy accelerators.

  7. CCD based beam loss monitor for ion accelerators

    Science.gov (United States)

    Belousov, A.; Mustafin, E.; Ensinger, W.

    2014-04-01

    Beam loss monitoring is an important aspect of proper accelerator functioning. There is a variety of existing solutions, but each has its own disadvantages, e.g. unsuitable dynamic range or time resolution, high cost, or short lifetime. Therefore, new options are looked for. This paper shows a method of application of a charge-coupled device (CCD) video camera as a beam loss monitor (BLM) for ion beam accelerators. The system was tested with a 500 MeV/u N+7 ion beam interacting with an aluminum target. The algorithms of camera signal processing with LabView based code and beam loss measurement are explained. Limits of applicability of this monitor system are discussed.

  8. Beam loss mechanisms in relativistic heavy-ion colliders

    CERN Document Server

    Bruce, Roderik; Gilardoni, S; Wallén, E

    2009-01-01

    The Large Hadron Collider (LHC), the largest particle accelerator ever built, is presently under commissioning at the European Organization for Nuclear Research (CERN). It will collide beams of protons, and later Pb82+ ions, at ultrarelativistic energies. Because of its unprecedented energy, the operation of the LHC with heavy ions will present beam physics challenges not encountered in previous colliders. Beam loss processes that are harmless in the presently largest operational heavy-ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, risk to cause quenches of superconducting magnets in the LHC. Interactions between colliding beams of ultrarelativistic heavy ions, or between beam ions and collimators, give rise to nuclear fragmentation. The resulting isotopes could have a charge-to-mass ratio different from the main beam and therefore follow dispersive orbits until they are lost. Depending on the machine conditions and the ion species, these losses could occur in loca...

  9. Dependence of bunch energy loss in cavities on beam velocity

    Science.gov (United States)

    Kurennoy, Sergey S.

    1999-03-01

    Beam energy loss in a cavity can be easily computed for a relativistic bunch using time-domain codes like MAFIA or ABCI. However, for nonrelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. We calculate the cavity loss factors for a bunch in frequency domain as a function of its velocity and compare results with the relativistic case.

  10. A Versatile Beam Loss Monitoring System for CLIC

    CERN Document Server

    Kastriotou, Maria; Farabolini, Wilfrid; Holzer, Eva Barbara; Nebot Del Busto, Eduardo; Tecker, Frank; Welsch, Carsten

    2016-01-01

    The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to qu...

  11. Toward automated beam optics control

    International Nuclear Information System (INIS)

    We have begun a program aiming toward automatic control of charged-particle beam optics using artificial intelligence programming techniques. In developing our prototype, we are working with LISP machines and the KEE expert system shell. Our first goal was to develop a ''mouseable'' representation of a typical beam line. This responds actively to changes entered from the mouse or keyboard, giving an updated display of the beam line itself, its optical properties, and the instrumentation and control devices as seen by the operater. We have incorporated TRANSPORT, written in Fortran but running as a callable procedure in the LISP environment, for simulation of the beam-line optics. This paper describes the experience gained in meeting our first goal and discusses plans to extend the work so that it is usable, in realtime, on an operating beam line. 11 refs

  12. Parasitic mode losses versus signal sensitivity in beam position monitors

    Science.gov (United States)

    Denard, J. C.; Bane, K. L.; Bijleveld, J.; Hutton, A. M.; Pellegrin, J. I.; Rivkin, L.; Wang, P.; Weaver, J. N.

    1985-04-01

    A beam position monitor (BPM) for a storage or damping ring may be subject to heating problems due to the parasitic mode (PM) losses, beam interception and synchrotron radiation interception. In addition, high PM losses can cause beam instabilities under some conditions. Recessing and/or masking the BPM may increase the PM losses in the process of solving the latter two problems. Three complementary methods for estimating the PM losses and for improving the design of a stripline directional coupler type of BPM: bench measurements, computer modeling (TBCI), and an equivalent circuit representation are presented. These methods lead to a decrease in PM losses without significant reduction in output signal for the north Stanford Linear Collider (SLC) damping ring BPMs.

  13. Beam loss detection system in the arcs of the LHC

    Science.gov (United States)

    Arauzo, A.; Bovet, C.

    2000-11-01

    Over the whole circumference of the LHC, Beam Loss Monitors (BLM) will be needed for a continuous surveillance of fast and slow beam losses. In this paper, the location of the BLMs set outside the magnet cryostats in the arcs is proposed. In order to know the number of protons lost on the beam screen, the sensitivity of each BLM has been computed using the program GEANT 3.21, which generates the shower inside the cryostat. The material and the magnetic fields have been described thoroughly in 3-D and the simulation results show the best locations for 6 BLMs needed around each quadrupole. The number of minimum ionizing particles received for each lost proton serves to define local thresholds to dump the beam when the losses are menacing to quench a magnet.

  14. Beam Loss Detection System in the Arcs of the LHC

    CERN Document Server

    Arauzo-Garcia, A

    2000-01-01

    Over the whole circumference of the LHC, Beam Loss Monitors (BLM) will be needed for a continuous surveillance of fast and slow beam losses. In this paper, the location of the BLMs set outside the magnet cryostats in the arcs is proposed. In order to know the number of protons lost on the beam screen, the sensitivity of each BLM has been computed using the program GEANT 3.21, which generates the shower inside the cryostat. The material and the magnetic fields have been described thoroughly in 3-D and the simulation results show the best locations for 6 BLMs needed around each quadrupole. The number of minimum ionizing particles received for each lost proton serves to define local thresholds to dump the beam when the losses are menacing to quench a magnet

  15. Simulations of Neutral Beam Ion Ripple Loss on EAST

    Institute of Scientific and Technical Information of China (English)

    李吉波; 丁斯晔; 吴斌; 胡纯栋

    2012-01-01

    Predictions on the ripple loss of neutral beam fast ions on EAST are investigated with a guiding center code, including both ripple and collisional effects. A 6% to 16% loss of neutral beam ions is predicted for typical EAST experiments, and a synergistic enhancement of fast ion loss is found for toroidal field (TF) ripples with collisions. The lost ions are strongly localized and will cause a maximum heat load of - 0.05 MW/m^2 on the first wall.

  16. Application of diamond based beam loss monitors at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria

    2013-04-15

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus(ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments to study the questions: ''What is mass?'', ''What is the universe made of?'' and ''Why is there no antimatter?''. The four experiments take data of the collision products and try to answer the fundamental questions of physics. The two larger detectors, CMS and ATLAS, are looking for the Higgs boson to study the electroweak symmetry breaking. Both detectors were built with contrasting concepts to exclude potential error sources and to rea rm the results. The smaller experiment LHCb studies the matter-antimatter asymmetry with a focus of the beauty quark. Another smaller experiment is ALICE that studies the conditions right after the Big Bang by colliding heavy ions. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150 km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due to deviations of the beam parameters. Several systems called beam loss monitors (BLMs) can measure beam losses. This thesis concentrates on two of them, ionization chambers and diamond detectors. Over 3600 ionization chambers are installed in

  17. Application of diamond based beam loss monitors at LHC

    International Nuclear Information System (INIS)

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus(ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments to study the questions: ''What is mass?'', ''What is the universe made of?'' and ''Why is there no antimatter?''. The four experiments take data of the collision products and try to answer the fundamental questions of physics. The two larger detectors, CMS and ATLAS, are looking for the Higgs boson to study the electroweak symmetry breaking. Both detectors were built with contrasting concepts to exclude potential error sources and to rea rm the results. The smaller experiment LHCb studies the matter-antimatter asymmetry with a focus of the beauty quark. Another smaller experiment is ALICE that studies the conditions right after the Big Bang by colliding heavy ions. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150 km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due to deviations of the beam parameters. Several systems called beam loss monitors (BLMs) can measure beam losses. This thesis concentrates on two of them, ionization chambers and diamond detectors. Over 3600 ionization chambers are installed in the LHC, especially near each quadrupole and next to

  18. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  19. WELD FORMATION CONTROL AT ELECTRON BEAM WELDING WITH BEAM OSCILLATIONS

    OpenAIRE

    Trushnikov, Dmitriy; Koleva, Elena; Mladenov, Georgy; Shcherbakov, A.

    2014-01-01

    Electron beam welding is used extensively to produce essential machine parts. The control of the basic beam parameters beam power or beam current at constant accelerating voltage, welding speed, current of focusing lens and distance between electron gun and welded sample surface is not enough to obtain at most of the regimes sound welds. Control of the focus position using analysis of the high frequency component of the current, collected by plasma, at periodic interactions on the beam (the o...

  20. Radiation Tolerance of Cryogenic Beam Loss Monitor Detectors

    CERN Document Server

    Kurfuerst, C; Bartosik, M; Dehning, B; Eisel, T; Sapinski, M; Eremin, V; Verbitskaya, E; Fabjan, C; Griesmayer, E

    2013-01-01

    At the triplet magnets, close to the interaction regions of the LHC, the current Beam Loss Monitoring system is sensitive to the particle showers resulting from the collision of the two beams. For the future, with beams of higher energy and intensity resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. Investigations are therefore underway to optimise the system by locating the beam loss detectors as close as possible to the superconducting coils of the triplet magnets. This means putting detectors inside the cold mass in superfluid helium at 1.9 K. Previous tests have shown that solid state diamond and silicon detectors as well as liquid helium ionisation chambers are promising candidates. This paper will address the final open question of their radiation resistance for 20 years of nominal LHC operation, by reporting on the results from high irradiation beam tests carried out at CERN in a...

  1. Laser-Beam-Alignment Controller

    Science.gov (United States)

    Krasowski, M. J.; Dickens, D. E.

    1995-01-01

    In laser-beam-alignment controller, images from video camera compared to reference patterns by fuzzy-logic pattern comparator. Results processed by fuzzy-logic microcontroller, which sends control signals to motor driver adjusting lens and pinhole in spatial filter.

  2. Beam Loss Studies for Rare Isotope Driver Linacs Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wangler, T P; Kurennoy, S S; Billen, J H; Crandall, K R; Qiang, J; Ryne, R D; Mustapha, B; Ostroumov, P; Zhao, Q; York, and R. C.

    2008-03-26

    The Fortran 90 RIAPMTQ/IMPACT code package is a pair of linked beam-dynamics simulation codes that have been developed for end-to-end computer simulations of multiple-charge-state heavy-ion linacs for future exotic-beam facilities. These codes have multiple charge-state capability, and include space-charge forces. The simulations can extend from the low-energy beam-transport line after an ECR ion source to the end of the linac. The work has been performed by a collaboration including LANL, LBNL, ANL, and MSU. The code RIAPMTQ simulates the linac front-end beam dynamics including the LEBT, RFQ, and MEBT. The code IMPACT simulates the beam dynamics of the main superconducting linac. The codes have been benchmarked for rms beam properties against previously existing codes at ANL and MSU. The codes allow high-statistics runs on parallel supercomputing platforms, particularly at NERSC at LBNL, for studies of beam losses. The codes also run on desktop PC computers for low-statistics work. The code package is described in more detail in a recent publication [1] in the Proceedings of PAC07 (2007 US Particle Accelerator Conference). In this report we describe the main activities for the FY07 beam-loss studies project using this code package.

  3. Monte Carlo Simulations of Beam Losses in the Test Beam Line of CTF3

    CERN Document Server

    Nebot Del Busto, E; Branger, E; Holzer, E B; Doebert, S; Lillestol, R L; Welsch, C P

    2013-01-01

    The Test Beam Line (TBL) of the CLIC Test Facility 3 (CTF3) aims to validate the drive beam deceleration concept of CLIC, in which the RF power requested to boost particles to multi-TeV energies is obtained via deceleration of a high current and low energy drive beam (DB). Despite a TBL beam energy (150-80 MeV) significantly lower than the minimum nominal energy of the CLIC DB (250 MeV), the pulse time structure of the TBL provides the opportunity to measure beam losses with CLIC-like DB timing conditions. In this contribution, a simulation study on the detection of beam losses along the TBL for the commissioning of the recently installed beam loss monitoring system is presented. The most likely loss locations during stable beam conditions are studied by considering the beam envelope defined by the FODO lattice as well as the emittance growth due to the deceleration process. Moreover, the optimization of potential detector locations is discussed. Several factors are considered, namely: the distance to the bea...

  4. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    CERN Document Server

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  5. SPS transverse beam scraping and LHC injection losses

    CERN Document Server

    Drosdal, L; Bartmann, W; Bracco, C; Cornelis, K; Goddard, B; Meddahi, M; Veyrunes, E

    2012-01-01

    Machine protection sets strict requirements for the quality of the injected beam, in particular in the transverse plane. Losses at aperture restrictions and protection elements have to be kept at a minimum. Particles in the beam tails are lost at the tight transfer line collimators and can trigger the LHC beam abort system. These particles have to be removed by scrapers in the vertical and horizontal plane in the SPS. Scraping has become vital for high intensity LHC operation. This paper shows the dependence of injection quality on the SPS scraping and discusses an improved scraper setting up strategy for better reproducibility with the current scraper system.

  6. IFMIF-LIPAc Beam Diagnostics. Profiling and Loss Monitoring Systems

    International Nuclear Information System (INIS)

    The IFMIF accelerator will accelerate two 125 mA continuous wave (cw) deuteron beams up to 40 MeV and blasts them onto a liquid lithium target to release neutrons. The very high beam power of 10 MW pose unprecedented challenges for the accelerator development. Therefore, it was decided to build a prototype accelerator, the Linear IFMIF Prototype Accelerator (LIPAc), which has the very same beam characteristic, but is limited to 9 MeV only. In the frame of this thesis, diagnostics devices for IFMIF and LIPAc have been developed. The diagnostics devices consist of beam loss monitors and interceptive as well as non-interceptive profile monitors. For the beam loss monitoring system, ionization chambers and diamond detectors have been tested and calibrated for neutron and γ radiation in the energy range expected at LIPAc. During these tests, for the first time, diamond detectors were successfully operated at cryogenic temperatures. For the interceptive profilers, thermal simulations were performed to ensure safe operation. For the non-interceptive profiler, Ionization Profile Monitors (IPMs) were developed. A prototype has been built and tested, and based on the findings, the final IPMs were designed and built. To overcome the space charge of accelerator beam, a software algorithm was written to reconstruct the actual beam profile. (author)

  7. Beam Loss Position Monitor Using Cerenkov Radiation in Optical Fibers

    CERN Document Server

    Körfer, M

    2005-01-01

    Single pass Free Electron Lasers SASE-FELs are developed for high brightness and short wavelength applications. The VUV-FEL at DESY will reach an average beam power of about 72 kW. To avoid particle losses in the radiation sensitive undulators a collimator system is installed. However, the proper operation of the collimator system needs to be measured with a beam loss monitor. Conventional radiation sensor systems are not suited for the VUV-FEL undulators, because the free space in the undulator gap is less than 1 mm. A Beam Loss Position Monitor (BLPM) based on Cerenkov light in optical fibers allows the monitoring of losses inside the undulator. Electrons with energies above 175 keV generate Cerenkov light during their penetration of the optical fiber. The fast response of the Cerenkov signal is detected with photomultipliers at the end of the irradiated fibers. The beam loss position along the section of interest can be determinate by exploiting the system trigger (bunch clock) of the accelerator system. T...

  8. Reliability Tests of the LHC Beam Loss Monitoring FPGA Firmware

    CERN Document Server

    Hajdu, C F; Dehning, B; Jackson, S

    2010-01-01

    The LHC Beam Loss Monitoring (BLM) system is one of the most complex instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver a feedback of losses to the control room as well as to several systems for their setup and analysis. It has to transmit and process signals from almost 4’000 monitors, and has nearly 3 million configurable parameters. In a system of such complexity, firmware reliability is a critical issue. The integrity of the signal chain of the LHC BLM system and its ability to correctly detect unwanted scenarios and thus provide the required protection level must be ensured. In order to analyze the reliability and functionality, an advanced verification environment has been developed to evaluate the performance and response of the FPGA-based data analysis firmware. This paper will report on the numerous tests that have been performed and on how the results are used to quantify the reliabi...

  9. Beam Loss Monitoring for Run 2 of the LHC

    CERN Document Server

    Kalliokoski, Matti; Dehning, Bernd; Domingues Sousa, Fernando; Effinger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Holzer, Eva Barbara; Jackson, Stephen; Kolad, Blazej; Nebot Del Busto, Eduardo; Picha, Ondrej; Roderick, Chris; Sapinski, Mariusz; Sobieszek, Marcin; Zamantzas, Christos

    2015-01-01

    The Beam Loss Monitoring (BLM) system of the LHC consists of over 3600 ionization chambers. The main task of the system is to prevent the superconducting magnets from quenching and protect the machine components from damage, as a result of critical beam losses. The BLM system therefore requests a beam abort when the measured dose in the chambers exceeds a threshold value. During Long Shutdown 1 (LS1) a series of modifications were made to the system. Based on the experience from Run 1 and from improved simulation models, all the threshold settings were revised, and modified where required. This was done to improve the machine safety at 7 TeV, and to reduce beam abort requests when neither a magnet quench or damage to machine components is expected. In addition to the updates of the threshold values, about 800 monitors were relocated. This improves the response to unforeseen beam losses in the millisecond time scale due to micron size dust particles present in the vacuum chamber. This contribution will discuss...

  10. Tracking Simulation for Beam Loss Studies with Application to FCC

    CERN Document Server

    Boscolo, M

    2015-01-01

    We present first results on FCC-ee beam losses using a tracking simulation tool originally developed and successfully applied to Flav or Factories designs. After a brief description of the tool, we discuss first results obtained for FCC-ee at top energy, both for the Touschek effect and radiative Bhabha scattering.

  11. Identification of LHC beam loss mechanism : a deterministic treatment of loss patterns

    CERN Document Server

    Marsili, Aurélien

    CERN's Large Hadron Collider (LHC) is the largest machine ever built, with a total circumference of 26.7 km; and it is the most powerful accelerator ever, both in beam energy and beam intensity. The main magnets are superconducting, keeping the particles into two counter circulating beams, which collide in four interaction points. CERN and the LHC will be described in chap. 1. The superconducting magnets of the LHC have to be protected against particle losses. Depending on the number of lost particles, the coils of the magnets will become normal conducting and/or will be damaged. To avoid these events a beam loss monitoring (BLM) system was installed to measure the particle loss rates. If the predefined safe thresholds of loss rates are exceeded, the beams are directed out of the accelerator ring towards the beam dump. The detectors of the BLM system are mainly ionization chambers located outside of the cryostats. In total, about 3500 ionisation chambers are installed. Further challenges include the high dyna...

  12. Update on beam loss monitoring at CTF3 for CLIC

    CERN Document Server

    Devlin, L J; Effinger, E; Holzer, E B; del Busto, E N; Mallows, S; Branger, E

    2013-01-01

    The primary role of the beam loss monitoring (BLM) system for the compact linear collider (CLIC) study is to work within the machine protection system. Due to the size of the CLIC facility, a BLM that covers large distances along the beam line is highly desirable, in particular for the CLIC drive beam decelerators, which would alternatively require some ~40,000 localised monitors. Therefore, an optical fibre BLM system is currently under investigation which can cover large sections of beam line at a time. A multimode fibre has been installed along the Test Beam Line at the CLIC test facility (CTF3) where the detection principle is based on the production of Cherenkov photons within the fibre resulting from beam loss and their subsequent transport along the fibre where they are then detected at the fibre ends using silicon photomultipliers. Several additional monitors including ACEMs, PEP-II and diamond detectors have also been installed. In this contribution the first results from the BLMs are presented, comp...

  13. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  14. Real-Time Beam Loss Monitor Display Using FPGA Technology

    CERN Document Server

    North, Matt R W

    2005-01-01

    This paper outlines the design of a Real-time Beam Loss Monitor Display for the ISIS Synchrotron based at Rutherford Appleton Laboratory (Oxon, UK). Beam loss is monitored using 39 argon filled ionisation chambers positioned around the synchrotron, the levels of which are sampled four times in each cycle. The new BLM display acquires the signals and displays four histograms, each relating to an individual sample period; the data acquisition and signal processing required to build the display fields are completed within each machine cycle (50 Hz). Attributes of the new system include setting limits for individual monitors; displaying over-limit detection, and freezing the display field when a beam trip has occurred. The design is based around a reconfigurable Field Programmable Gate Array, interfacing to a desktop monitor via the VGA standard. Results gained using simulated monitor signals have proven the system.

  15. RF Cavity Induced Sensitivity Limitations on Beam Loss Monitors

    Science.gov (United States)

    Kastriotou, M.; Degiovanni, A.; Sousa, F. S. Domingues; Effinger, E.; Holzer, E. B.; Quirante, J. L. Navarro; del Busto, E. N.; Tecker, F.; Viganò, W.; Welsch, C. P.; Woolley, B. J.

    Due to the secondary showers generated when a particle hits the vacuum chamber, beam losses at an accelerator may be detected via radiation detectors located near the beam line. Several sources of background can limit the sensitivity and reduce the dynamic range of a Beam Loss Monitor (BLM). This document concentrates on potential sources of background generated near high gradient RF cavities due to dark current and voltage breakdowns. An optical fibre has been installed at an experiment of the Compact Linear Collider (CLIC) Test Facility (CTF3), where a dedicated study of the performance of a loaded and unloaded CLIC accelerating structure is undergoing. An analysis of the collected data and a benchmarking simulation are presented to estimate BLM sensitivity limitations. Moreover, the feasibility for the use of BLMs optimised for the diagnostics of RF cavities is discussed.

  16. H- Beam Stripping Loss at Background Partial Pressure of Ar

    Institute of Scientific and Technical Information of China (English)

    Hu Chundong; Wang Shaohu; Hu Liqun

    2005-01-01

    It has been observed that H- current could be improved by adding Ar to H2 plasma.But due to a slower pumping speed for Ar with the existing pumping scheme, the tank pressure will increase quickly during the length of a beam pulse. Since H- stripping loss depends on the tank pressure and gas species, part of the H- beam can be converted to H0 and then H0 can be converted into H+ with background H2 and Ar gas thickness. Therefore, the H- beam current,measured by a Faraday cup, situated at a distance L from GG (ground grid), will decrease because it will be converted into a H+ current. This gives a ratio of the Faraday cup net current to the H- beam current before stripping at background partial pressure of Ar.

  17. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    Science.gov (United States)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  18. LHC Beam Instrumentation: Beam Loss and Tune Measurements (3/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  19. Ionization Chambers for the LHC Beam Loss Detection

    CERN Document Server

    Assmann, R W; Ferioli, G; Gschwendtner, E; Kain, V

    2003-01-01

    At the Large Hadron Collider (LHC) a beam loss system will be used to prevent and protect superconducting magnets against coil quenches and coil damages. Ionisation chambers will be mounted outside the cryostat to measure the secondary shower particles caused by lost beam particles. Since the stored particle beam intensity is eight orders of magnitude larger than the lowest quench level and the losses should be detected with a relative error of two, the design and the location of the detectors have to be optimised. For that purpose a two-fold simulation was carried out. The longitudinal loss locations of the tertiary halo is investigated by tracking the halo through several magnet elements. These loss distributions are combined with simulations of the particle fluence outside the cryostat, which is induced by lost protons at the vacuum pipe. The base-line ionisation chamber has been tested at the PS Booster in order to determine the detector response at the high end of the dynamic range.

  20. A Fast CVD Diamond Beam Loss Monitor for LHC

    CERN Document Server

    Griesmayer, E; Dobos, D; Effinger, E; Pernegger, H

    2011-01-01

    Chemical Vapour Deposition (CVD) diamond detectors were installed in the collimation area of the CERN LHC to study their feasibility as Fast Beam Loss Monitors in a high-radiation environment. The detectors were configured with a fast, radiation-hard pre-amplifier with a bandwidth of 2 GHz. The readout was via an oscilloscope with a bandwidth of 1 GHz and a sampling rate of 5 GSPS. Despite the 250 m cable run from the detectors to the oscilloscope, single MIPs were resolved with a 2 ns rise time, a pulse width of 10 ns and a time resolution of less than 1 ns. Two modes of operation were applied. For the analysis of unexpected beam aborts, the loss profile was recorded in a 1 ms buffer and, for nominal operation, the histogram of the time structure of the losses was recorded in synchronism with the LHC period of 89.2 μs. Measurements during the LHC start-up (February to December 2010) are presented. The Diamond Monitors gave an unprecedented insight into the time structure of the beam losses resolving the 400...

  1. RFQ Designs and Beam-Loss Distributions for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, Robert A [ORNL

    2007-01-01

    The IFMIF 125 mA cw 40 MeV accelerators will set an intensity record. Minimization of particle loss along the accelerator is a top-level requirement and requires sophisticated design intimately relating the accelerated beam and the accelerator structure. Such design technique, based on the space-charge physics of linear accelerators (linacs), is used in this report in the development of conceptual designs for the Radio-Frequency-Quadrupole (RFQ) section of the IFMIF accelerators. Design comparisons are given for the IFMIF CDR Equipartitioned RFQ, a CDR Alternative RFQ, and new IFMIF Post-CDR Equipartitioned RFQ designs. Design strategies are illustrated for combining several desirable characteristics, prioritized as minimum beam loss at energies above ~ 1 MeV, low rf power, low peak field, short length, high percentage of accelerated particles. The CDR design has ~0.073% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7,is 12.3 m long, and accelerates ~89.6% of the input beam. A new Post-CDR design has ~0.077% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7 and ~8 m length, and accelerates ~97% of the input beam. A complete background for the designs is given, and comparisons are made. Beam-loss distributions are used as input for nuclear physics simulations of radioactivity effects in the IFMIF accelerator hall, to give information for shielding, radiation safety and maintenance design. Beam-loss distributions resulting from a ~1M particle input distribution representative of the IFMIF ECR ion source are presented. The simulations reported were performed with a consistent family of codes. Relevant comparison with other codes has not been possible as their source code is not available. Certain differences have been noted but are not consistent over a broad range of designs and parameter range. The exact transmission found by any of these codes should be treated as indicative, as each has various sensitivities in

  2. Performance and perspectives of the diamond based Beam Condition Monitor for beam loss monitoring at CMS

    CERN Document Server

    AUTHOR|(CDS)2080862

    2015-01-01

    At CMS, a beam loss monitoring system is operated to protect the silicon detectors from high particle rates, arising from intense beam loss events. As detectors, poly-crystalline CVD diamond sensors are placed around the beam pipe at several locations inside CMS. In case of extremely high detector currents, the LHC beams are automatically extracted from the LHC rings.Diamond is the detector material of choice due to its radiation hardness. Predictions of the detector lifetime were made based on FLUKA monte-carlo simulations and irradiation test results from the RD42 collaboration, which attested no significant radiation damage over several years.During the LHC operational Run1 (2010 â?? 2013), the detector efficiencies were monitored. A signal decrease of about 50 times stronger than expectations was observed in the in-situ radiation environment. Electric field deformations due to charge carriers, trapped in radiation induced lattice defects, are responsible for this signal decrease. This so-called polarizat...

  3. Beam-loss monitoring system with free-air ionization chambers

    Science.gov (United States)

    Nakagawa, H.; Shibata, S.; Hiramatsu, S.; Uchino, K.; Takashima, T.

    1980-08-01

    A monitoring system for proton beam losses was installed in the proton synchrotron at the National Laboratory for High Energy Physics in Japan (KEK). The system consists of 56 air ionization chambers (AIC) for radiation detectors, 56 integrators, 56 variable gain amplifiers, two multiplexers, a computer interface circuit, a manual controller and a high tension power supply. The characteristics of the AIC, time resolution, radiation measurement upper limit saturation, kinetic energy dependence of the sensitivity, chamber activation effect, the beam loss detection system and the results of observations with the monitoring system are described.

  4. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    CERN Document Server

    Bruce, R; Boccone, V; Bracco, C; Brugger, M; Cauchi, M; Cerutti, F; Deboy, D; Ferrari, A; Lari, L; Marsili, A; Mereghetti, A; Mirarchi, D; Quaranta, E; Redaelli, S; Robert-Demolaize, G; Rossi, A; Salvachua, B; Skordis, E; Tambasco, C; Valentino, G; Weiler, T; Vlachoudis, V; Wollmann, D

    2014-01-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010--2013, the LHC was routinely storing protons at 3.5--4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An un-controlled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multi-stage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the co...

  5. Benchmarking of collimation tracking using RHIC beam loss data.

    Energy Technology Data Exchange (ETDEWEB)

    Robert-Demolaize,G.; Drees, A.

    2008-06-23

    State-of-the-art tracking tools were recently developed at CERN to study the cleaning efficiency of the Large Hadron Collider (LHC) collimation system. In order to estimate the prediction accuracy of these tools, benchmarking studies can be performed using actual beam loss measurements from a machine that already uses a similar multistage collimation system. This paper reviews the main results from benchmarking studies performed with specific data collected from operations at the Relativistic Heavy Ion Collider (RHIC).

  6. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  7. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  8. A new beam loss detector for low-energy proton and heavy-ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhengzheng, E-mail: liuz@frib.msu.edu; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-11

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR), to be implemented upstream of each FRIB cryomodule, as part of the direct loss monitoring system to fulfill the needs of machine protection. - Highlights: • Traditional BLM is not effective for beam loss monitoring at FRIB low energy linac segments. • We developed LMR to intercept a small portion of beam loss and output voltage signals. • We made a prototype LMR and demonstrated its functionality to monitor small beam losses. • The LMR is very sensitive for small beam losses and is independent of beam current. • The LMR is especially useful for loss monitoring at low energy ion/proton accelerators.

  9. Measurement of Beam Loss at the Australian Synchrotron

    CERN Document Server

    Holzer, EB; Kastriotou, M; Boland, MJ; Jackson, PD; Rasool, RP; Schmidt, J; Welsch, CP

    2014-01-01

    The unprecedented requirements that new machines are setting on their diagnostic systems is leading to the development of new generation of devices with large dynamic range, sensitivity and time resolution. Beam loss detection is particularly challenging due to the large extension of new facilities that need to be covered with localized detector. Candidates to mitigate this problem consist of systems in which the sensitive part of the radiation detectors can be extended over long distance of beam lines. In this document we study the feasibility of a BLM system based on optical fiber as an active detector for an electron storage ring. The Australian Synchrotron (AS) comprises a 216m ring that stores electrons up to 3GeV. The Accelerator has recently claimed the world record ultra low transverse emittance (below pm rad) and its surroundings are rich in synchrotron radiation. Therefore, the AS provides beam conditions very similar to those expected in the CLIC/ILC damping rings. A qualitative benchmark of beam l...

  10. 2014 CERN Accelerator Schools: Beam Loss and Accelerator Protection

    CERN Multimedia

    2014-01-01

    The US-CERN-JAPAN-RUSSIA Joint International Accelerator School is organising a course on Beam Loss and Accelerator Protection to be held in Newport Beach, California, USA from 5-14 November, 2014.    This school is intended for physicists and engineers who are or may be engaged in the design, construction, and/or operation of accelerators with high power photon or particle beams and/or accelerator sub-systems with large stored energy. Application deadlines are 15 August and 4 September. Further information on this Joint School can be found at: http://cas.web.cern.ch/cas/JAS/Newport%20Beach%202014/NPBadvert.html http://indico.cern.ch/event/287647/ http://uspas.fnal.gov/programs/JAS/JAS14.shtml

  11. Aircraft Loss-of-Control Accident Analysis

    Science.gov (United States)

    Belcastro, Christine M.; Foster, John V.

    2010-01-01

    Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. To gain a better understanding into aircraft loss-of-control events and possible intervention strategies, this paper presents a detailed analysis of loss-of-control accident data (predominantly from Part 121), including worst case combinations of causal and contributing factors and their sequencing. Future potential risks are also considered.

  12. Impedances and power losses for an off-axis beam

    CERN Document Server

    Kurennoy, S S

    1996-01-01

    A method for calculating coupling impedances and power losses for off-axis beams is developed. It is applied to calculate impedances of small localized discontinuities like holes and slots, as well as the impedance due to a finite resistivity of chamber walls, in homogeneous chambers with an arbitrary shape of the chamber cross section. The approach requires to solve a two-dimensional electrostatic problem, which can be easily done numerically in the general case, while for some particular cases analytical solutions are obtained.

  13. Control on Electron Beam Scanning Track

    Institute of Scientific and Technical Information of China (English)

    王学东; 姚舜

    2004-01-01

    In order to use electron beam as a movable welding heat source and whose energy distribution along its moving trace can be controlled, a method of electron beam scanning track and scanning mode control was put forward. Based on it, the electron beam scanning track and scanning mode can be edited at will according to actual requirements, and the energy input of each point of the scanning track can be controlled. In addition, the scanning frequency and points control, real time adjusting of the scanning track etc. were explained. This method can be used in electron beam brazing, surface modification, surface heat treatment etc.

  14. Test of Different Beam Loss Detectors at the GSI Heavy Ion Synchrotron

    CERN Document Server

    Forck, P

    2001-01-01

    For the sensitive process of slow extraction from a synchrotron a reliable control of the beam losses is needed. We have tested several types of particle detectors mounted at the extraction path of the SIS: A BF-tube for pure neutron detection, a liquid and a plastic scintillator detecting neutrons, gammas and charged particles and an Argon filled ionization chamber mainly sensitive to charged particles. While the count rate is quite different, the time evolution of all detector signals during the spill are similar, but the plastic scintillator has the highest dynamic range. This type is going to be used for beam alignment.

  15. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response.

    Science.gov (United States)

    Sipp, Amy R; Gwin, Joseph T; Makeig, Scott; Ferris, Daniel P

    2013-11-01

    Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4-7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12-30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments.

  16. A new beam loss detector for low-energy proton and heavy-ion accelerators

    Science.gov (United States)

    Liu, Zhengzheng; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-01

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR1

  17. Beam control and Dosimetry in Proton Therapy

    International Nuclear Information System (INIS)

    This thesis deals with beam control devices for scanned proton beams. The IBA society (Ion Beam Applications) has developed a new dynamic beam delivery system called Pencil Beam Scanning. IBA needed a monitor unit to equip its proton beam lines dedicated to the PBS system and called upon the medical applications group of the Laboratoire de Physique Corpusculaire de Caen. In 2008, this group realized, in collaboration with IBA, an ionization chamber monitor IC2/3 for the IBA dedicated PBS nozzle. This device verifies the agreement between planned and delivered particular fluence. The first part of this thesis focused on the characterization of this monitor unit. Proton beams of different clinical energies, positions and dose rates were used to check the specifications requested by IBA. After the introduction about the Proton Therapy, the validation step of IC2/3 is exposed. Information provided by IC2/3 makes it possible beam control in terms of fluence but does not ensure quality control in terms of spatial dose distribution. The second part of the work was devoted to the conception of a beam control device for scanned proton beams. Called Compass PT, it will allow a reconstruction of the spatial dose distribution delivered to the patient. The specifications definition and the conception studies are presented in this thesis. All this work has led to recommendations for the realization of this device and new research prospects. (author)

  18. Loss of accuracy using smeared properties in composite beam modeling

    Science.gov (United States)

    Liu, Ning

    Advanced composite materials have broad, proven applications in many engineering systems ranging from sports equipment sectors to components on the space shuttle because of their lightweight characteristics and significantly high stiffness. Together with this merit of composite materials is the challenge of improving computational simulation process for composites analysis. Composite structures, particularly composite laminates, usually consist of many layers with different lay-up angles. The anisotropic and heterogeneous features render 3D finite element analysis (FEA) computationally expensive in terms of the computational time and the computing power. At the constituent level, composite materials are heterogeneous. But quite often one homogenizes each layer of composites, i.e. lamina, and uses the homogenized material properties as averaged (smeared) values of those constituent materials for analysis. This is an approach extensively used in design and analysis of composite laminates. Furthermore, many industries tempted to use smeared properties at the laminate level to further reduce the model of composite structures. At this scale, smeared properties are averaged material properties that are weighted by the layer thickness. Although this approach has the advantage of saving computational time and cost of modeling significantly, the prediction of the structural responses may not be accurate, particularly the pointwise stress distribution. Therefore, it is important to quantify the loss of accuracy when one uses smeared properties. In this paper, several different benchmark problems are carefully investigated in order to exemplify the effect of the smeared properties on the global behavior and pointwise stress distribution of the composite beam. In the classical beam theory, both Newtonian method and variational method include several ad hoc assumptions to construct the model, however, these assumptions are avoided if one uses variational asymptotic method. VABS

  19. Behavioral Portfolio Selection with Loss Control

    Institute of Scientific and Technical Information of China (English)

    Song ZHANG; Han Qing JIN; Xun Yu ZHOU

    2011-01-01

    In this paper we formulate a continuous-time behavioral (à la cumulative prospect theory)portfolio selection model where the losses are constrained by a pre-specified upper bound. Economically the model is motivated by the previously proved fact that the losses occurring in a bad state of the world can be catastrophic for an unconstrained model. Mathematically solving the model boils down to solving a concave Choquet minimization problem with an additional upper bound. We derive the optimal solution explicitly for such a loss control model. The optimal terminal wealth profile is in general characterized by three pieces: the agent has gains in the good states of the world, gets a moderate, endogenously constant loss in the intermediate states, and suffers the maximal loss (which is the given bound for losses) in the bad states. Examples are given to illustrate the general results.

  20. Statistical quality control a loss minimization approach

    CERN Document Server

    Trietsch, Dan

    1999-01-01

    While many books on quality espouse the Taguchi loss function, they do not examine its impact on statistical quality control (SQC). But using the Taguchi loss function sheds new light on questions relating to SQC and calls for some changes. This book covers SQC in a way that conforms with the need to minimize loss. Subjects often not covered elsewhere include: (i) measurements, (ii) determining how many points to sample to obtain reliable control charts (for which purpose a new graphic tool, diffidence charts, is introduced), (iii) the connection between process capability and tolerances, (iv)

  1. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  2. Identification and Classification of Beam Loss Patterns in the Large Hadron Collider

    CERN Document Server

    Panagiotis, Theodoropoulos; Valentino, Gianluca; Redaelli, Stefano; Herbster, Mark

    The Large Hadron Collider, is the largest particle accelerator ever built, achieving record beam energy and beam intensity. Beam losses are unavoidable and can risk the safety of accelerator’s components. Beam loss maps are used to validate the collimation system, designed to protect the accelerator against beam losses. The complexity of this system requires well defined inspection methods and well defined case studies that ensure normal operation and efficient performance evaluation. In this work, enhancements are proposed to the existing validation methods with extensions towards automating the inspection mechanisms, introducing pattern recognition and statistical learning methods.

  3. Active Vibration Control of Piezolaminated Smart Beams

    Directory of Open Access Journals (Sweden)

    V. Balamurugan

    2001-04-01

    Full Text Available This paper deals with the active vibration control of beam like structures with distributed piezoelectric sensor and actuator layers bonded on top and bottom surfaces of the beam. A finite element model based on Euler-Bernoulli beam theory has been developed. The contribution of the piezoelectric sensor and actuator layers on the mass and stiffness of the beam is considered. Three types of classical control strategies, namely direct proportional feedback, constant-gain negative velocity feedback and Lyapunov feedback and an optimal control strategy, linear quadratic regulator (LQR scheme are applied to study their control effectiveness. Also, the control performance with different types of loading, such as impulse loading, step loading, harmonic and random loading is studied

  4. Cryogenic Beam Loss Monitors for the Superconducting Magnets of the LHC

    CERN Document Server

    Bartosik, MR; Sapinski, M; Kurfuerst, C; Griesmayer, E; Eremin, V; Verbitskaya, E

    2014-01-01

    The Beam Loss Monitor detectors close to the interaction points of the Large Hadron Collider are currently located outside the cryostat, far from the superconducting coils of the magnets. In addition to their sensitivity to lost beam particles, they also detect particles coming from the experimental collisions, which do not contribute significantly to the heat deposition in the superconducting coils. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and dangerous quench-provoking beam losses from the primary proton beams will be challenging. The system can be optimised by locating beam loss monitors as close as possible to the superconducting coils, inside the cold mass in a superfluid helium environment, at 1.9 K. The dose then measured by such Cryogenic Beam Loss Monitors would more precisely correspond to the real dose deposited in the coil. The candidates under investigation for such detectors are based on p+-n-n+ si...

  5. Design Specifications for a Radiation Tolerant Beam Loss Measurement ASIC

    CERN Document Server

    Venturini, G G; Effinger, E; Zamantzas, C

    2009-01-01

    A novel radiation-hardened current digitizer ASIC is in planning stage, aimed at the acquisition of the current signals from the ionization chambers employed in the Beam Loss Monitoring system at CERN. The purpose is to match and exceed the performance of the existing discrete component design, currently in operation in the Large Hadron Collider (LHC). The specifications include: a dynamic range of nine decades, defaulting to the 1 pA-1mA range but adjustable by the user, ability to withstand a total integrated dose of 10 kGy at least in 20 years of operation and user selectable integrating windows, as low as 500 ns. Moreover, the integrated circuit should be able to digitize currents of both polarity with a minimum number of external components and without needing any configuration. The target technology is the IBM 130nm CMOS process. The specifications, the architecture choices and the reasons on which they are based upon are discussed in this paper.

  6. Development, Production and Testing of 4500 Beam Loss Monitors

    CERN Document Server

    Holzer, E B; Dehning, B; Ferioli, G; Grishin, V; Jimenez, T M; Koshelev, A; Kramer, Daniel; Larionov, A; Taborelli, M; Seleznev, V; Sleptsov, M; Sytin, A; Wevers, I

    2008-01-01

    Beam-loss monitoring (BLM) [1] is a key element in the LHC machine protection. 4250 nitrogen filled ionization chambers (IC) and 350 secondary emission monitors (SEM) have been manufactured and tested at the Institute for High Energy Physics (IHEP) in Protvino, Russia, following their development at CERN. Signal speed and robustness against aging were the main design criteria. Each monitor is permanently sealed inside a stainless-steel cylinder. The quality of the welding was a critical aspect during production. The SEMs are requested to hold a vacuum of $10^{-7}$ bar. Impurity levels from thermal and radiationinduced desorption should remain in the range of parts per million in the ICs. To avoid radiation aging (up to $2·10^{8}$ Gy in 20 years) production of the chambers followed strict UHV requirements. IHEP designed and built the UHV production stand. Due to the required dynamic range of $10^{8}$, the leakage current of the monitors has to stay below 2 pA. Several tests during and after production were ...

  7. Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron

    CERN Document Server

    Garcia, J B

    2011-01-01

    The proton beams used for the fixed target physics at the Super Proton Synchrotron (SPS) are extracted from the Proton Synchrotron ( PS) by a multiturn technique called continuous transfer (CT). During the CT extraction, large losses are observed in locations where the machine aperture should be large enough to accommodate the circulating beam. This limits the maximum intensity deliverable due to the induced stray radiation outside the PS tunnel. Scattered particles from the interaction with the electrostatic septum are identified as the possible source of these losses. This article presents a detailed study aiming to understand the origin of losses and propose possible cures. The simulations could reproduce accurately the beam loss pattern measured in real machine operation and determine the beam shaving, intrinsic to the extraction process, as the cause for the unexpected losses. Since these losses are unavoidable, the proposed solution implies a new optics scheme displacing the losses to a region with bett...

  8. A fast beam loss monitor system for the KEK proton synchrotron complex

    Science.gov (United States)

    Holt, J. A.; Kishiro, J.; Arakawa, D.; Hiramatsu, S.

    1991-06-01

    Efforts to increase the intensity of the KEK proton synchrotron have led to the need for a new fast response beam loss monitor system. The design and some prelimitary test results of a new beam loss monitor system are presented.(AIP)

  9. The Long-Term Beam Losses in the CERN Injector Chain

    CERN Document Server

    Gilardoni, Simone; Benedetto, Elena; Damerau, Heiko; Forte, Vincenzo; Giovannozzi, Massimo; Goddard, Brennan; Hancock, Steven; Hanke, Klaus; Huschauer, Alexander; Kowalska, Magdalena; Mcateer, Meghan Jill; Metral, Elias; Mikulec, Bettina; Papaphilippou, Yannis; Rumolo, Giovanni; Sterbini, Guido; Wasef, Raymond; Arduini, Gianluigi; Meddahi, Malika; Chapochnikova, Elena

    2015-01-01

    For the production of the LHC type beams, but also for the high intensity ones, the budget allocated to losses in the CERN injector chain is maintained as tight as possi- ble, in particular to keep as low as possible the activation of the different machine elements. Various beam dynamics effects, like for example beam interaction with betatronic resonances, beam instabilities, but also reduced efficiency of the RF capture processes or RF noise, can produce losses even on a very long time scale. The main different mecha- nisms producing long term losses observed in the CERN injectors, and their cure or mitigation, will be revised.

  10. Studies of Limits on Uncontrolled Heavy Ion Beam Losses for Allowing Hands-On Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Reginald M. Ronningen; Igor Remec

    2010-09-11

    Dose rates from accelerator components activated by 1 W/m beam losses are obtained semiempirically for a 1 GeV proton beam and by use of Monte Carlo transport codes for the proton beam and for 777 MeV/u 3He, 500 MeV/u 48Ca, 86Kr, 136Xe, and 400 MeV/u 238U ions. The dose rate obtained by the semi-empirical method, 0.99 mSv/h (99 mrem/h) at 30 cm, 4 h after 100 d irradiation by a 1-GeV proton beam, is consistent with studies at several accelerator facilities and with adopted hands-on maintenance dose rate limits. Monte Carlo simulations verify this result for protons and extend studies to heavy ion beam losses in drift-tube linac and superconducting linac accelerating structures. The studies indicate that the 1 W/m limit imposed on uncontrolled beam losses for high-energy proton beams might be relaxed for heavy ion beams. These studies further suggest that using the ratio of neutrons produced by a heavy ion beam to neutrons produced by a proton beam along with the dose rate from the proton beam (for thin-target scenarios) should allow an estimate of the dose rates expected from heavy ion beam losses.

  11. A Compactrio-Based Beam Loss Monitor For The SNS RF Test Cave

    International Nuclear Information System (INIS)

    An RF Test Cave has been built at the Spallation Neutron Source (SNS) to be able to test RF cavities without interfering the SNS accelerator operations. In addition to using thick concrete wall to minimize radiation exposure, a Beam Loss Monitor (BLM) must abort the operation within 100 usec when the integrated radiation within the cave exceeds a threshold. We choose the CompactRIO platform to implement the BLM based on its performance, cost-effectiveness, and rapid development. Each in/output module is connected through an FPGA to provide point-by-point processing. Every 10 usec the data is acquired analyzed and compared to the threshold. Data from the FPGA is transferred using DMA to the real-time controller, which communicates to a gateway PC to talk to the SNS control system. The system includes diagnostics to test the hardware and integrates the losses in real-time. In this paper we describe our design, implementation, and results

  12. A COMPACTRIO-BASED BEAM LOSS MONITOR FOR THE SNS RF TEST CAVE

    Energy Technology Data Exchange (ETDEWEB)

    Blokland, Willem [ORNL; Armstrong, Gary A [ORNL

    2009-01-01

    An RF Test Cave has been built at the Spallation Neutron Source (SNS) to be able to test RF cavities without interfering the SNS accelerator operations. In addition to using thick concrete wall to minimize radiation exposure, a Beam Loss Monitor (BLM) must abort the operation within 100 usec when the integrated radiation within the cave exceeds a threshold. We choose the CompactRIO platform to implement the BLM based on its performance, cost-effectiveness, and rapid development. Each in/output module is connected through an FPGA to provide point-by-point processing. Every 10 usec the data is acquired analyzed and compared to the threshold. Data from the FPGA is transferred using DMA to the real-time controller, which communicates to a gateway PC to talk to the SNS control system. The system includes diagnostics to test the hardware and integrates the losses in real-time. In this paper we describe our design, implementation, and results

  13. Rf beam control for the AGS Booster

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, J.M.

    1994-09-26

    RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made.

  14. Particle Rate and Host Accelerator Beam Loss on the MICE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Adam James [Imperial College, London (United Kingdom)

    2011-10-01

    A study is presented of particle rates in the MICE Muon Beamline and their relationship to beam loss produced in ISIS. A brief overview of neutrino physics is presented, together with a discussion on the Neutrino Factory as a motivation for MICE. An overview of MICE itself is then presented, highlighting the need for a systematic understanding of the relationship between the MICE target parameters, ISIS beam loss, and MICE particle rate. The variation of beam loss with target depth is examined and observed to be non-linear. The variation of beam loss with respect to the target dip time in the ISIS cycle is examined and observed to be approximately linear for dip times between 11.1 ms and 12.6 ms after ISIS injection, before tailing at earlier dip times. The variation of beam loss with particle rate is also observed to follow an approximately linear relationship from 0.05 V.ms to 4.7 V.ms beam loss, with a further strong indication that this continues up to 7.1 V.ms. Particle identification using time-of-flight data is used to give an insight into the relative abundances of each particle species present in the MICE beam. Estimates of muon rate are then produced as a function of beam loss. At a level of 2 V.ms beam loss ~10.9 muons per spill for a 3.2 ms spill with negative π → μ optics, and ~31.1 muons per 1 ms spill with positive π → μ optics are observed. Simulations using the ORBIT particle tracking code of the beam loss distributions around the ISIS ring, caused by the MICE target, are also presented and the implications for MICE running discussed.

  15. Particle Rate and Host Accelerator Beam Loss on the MICE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Adam James [Imperial Coll., London; Imperial College, London (United Kingdom)

    2011-10-01

    A study is presented of particle rates in the MICE Muon Beamline and their relationship to beam loss produced in ISIS. A brief overview of neutrino physics is presented, together with a discussion on the Neutrino Factory as a motivation for MICE. An overview of MICE itself is then presented, highlighting the need for a systematic understanding of the relationship between the MICE target parameters, ISIS beam loss, and MICE particle rate. The variation of beam loss with target depth is examined and observed to be non-linear. The variation of beam loss with respect to the target dip time in the ISIS cycle is examined and observed to be approximately linear for dip times between 11.1 ms and 12.6 ms after ISIS injection, before tailing at earlier dip times. The variation of beam loss with particle rate is also observed to follow an approximately linear relationship from 0.05 V.ms to 4.7 V.ms beam loss, with a further strong indication that this continues up to 7.1 V.ms. Particle identification using time-of-flight data is used to give an insight into the relative abundances of each particle species present in the MICE beam. Estimates of muon rate are then produced as a function of beam loss. At a level of 2 V.ms beam loss ~10:9 muons per spill for a 3.2 ms spill with negative π → μ optics, and ~31:1 muons per 1 ms spill with positive π → μ optics are observed. Simulations using the ORBIT particle tracking code of the beam loss distributions around the ISIS ring, caused by the MICE target, are also presented and the implications for MICE running discussed.

  16. Propagation of Gaussian beams in the presence of gain and loss

    CERN Document Server

    Graefe, Eva-Maria; Schubert, Roman

    2016-01-01

    We consider the propagation of Gaussian beams in a waveguide with gain and loss in the paraxial approximation governed by the Schr\\"odinger equation. We derive equations of motion for the beam in the semiclassical limit that are valid when the waveguide profile is locally well approximated by quadratic functions. For Hermitian systems, without any loss or gain, these dynamics are given by Hamilton's equations for the center of the beam and its conjugate momentum. Adding gain and/or loss to the waveguide introduces a non-Hermitian component, causing the width of the Gaussian beam to play an important role in its propagation. Here we show how the width affects the motion of the beam and how this may be used to filter Gaussian beams located at the same initial position based on their width.

  17. A prototype readout system for the Diamond Beam Loss Monitors at LHC

    CERN Document Server

    Effinger, E; Baer, T; Schmidt, R; Frais-Kölbl, H; Griesmayer, E

    2013-01-01

    Diamond Beam Loss Monitors are used at the LHC for the measurement of fast beam losses. In this note, specimen LHC loss measurements with the prototype readout system “ROSY” from CIVIDEC are presented. The readout system is FPGA-based for on-line, real-time, and dead-time-free data processing, including a Linuxbased server for the interconnection to a GUI. The loss analysis makes full use of the fast signal response of the diamond detectors with 1 ns time resolution and 6.7 ns double pulse resolution. Two examples are presented: applications of the Time Loss Histogram with 1.6 ns binning and 1.2 ns time jitter for loss measurements that are synchronized with the LHC revolution period and a beam-loss-based tune measurement for all circulating bunches in parallel.

  18. A Prototype Readout System for the Diamond Beam Loss Monitors at LHC

    CERN Document Server

    Effinger, E; Baer, T; Schmidt, R; Frais-Kölbl, H; Griesmayer, E; Kavrigin, P; CERN. Geneva. ATS Department

    2013-01-01

    Diamond Beam Loss Monitors are used at the LHC for the measurement of fast beam losses. In this note, specimen LHC loss measurements with the prototype readout system “ROSY” from CIVIDEC are presented. The readout system is FPGA-based for on-line, real-time, and dead-time-free data processing, including a Linux-based server for the interconnection to a GUI. The loss analysis makes full use of the fast signal response of the diamond detectors with 1 ns time resolution and 6.7 ns double pulse resolution. Two examples are presented: applications of the Time Loss Histogram with 1.6 ns binning and 1.2 ns time jitter for loss measurements that are synchronized with the LHC revolution period and a beam-loss-based tune measurement for all circulating bunches in parallel.

  19. Real-Time System Supervision for the LHC Beam Loss Monitoring System at CERN

    CERN Document Server

    Zamantzas, C; Effinger, E; Emery, J; Jackson, S

    2014-01-01

    The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss Monitoring (BLM) system. The LHC BLM system is one of the most complex and large instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver feedback of the losses to the control room as well as to several systems for their setup and analysis. In order to augment the dependability of the system several layers of supervision has been implemented internally and externally to the system. This paper describes the different methods employed to achieve the expected availability and system fault detection.

  20. Beam losses due to the foil scattering for CSNS/RCS

    CERN Document Server

    Huang, Ming-Yang; Wang, Sheng; Xu, Shou-Yan

    2012-01-01

    For the Rapid Cycling Synchrotron of China Spallation Neutron Source (CSNS/RCS), the stripping foil scattering generates the beam halo and gives rise to additional beam losses during the injection process. The interaction between the proton beam and the stripping foil was discussed and the foil scattering was studied. A simple model and the realistic situation of the foil scattering were considered. By using the codes ORBIT and FLUKA, the multi-turn phase space painting injection process with the stripping foil scattering for CSNS/RCS was simulated and the beam losses due to the foil scattering were obtained.

  1. TCDQ-TCT retraction and losses during asynchronous beam dump

    CERN Document Server

    Bracco, Chiara; Quaranta, Elena; CERN. Geneva. ATS Department

    2016-01-01

    The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the β* reach.

  2. LHC beam stability and feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, Ralph

    2007-07-20

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a

  3. LHC beam stability and feedback control

    International Nuclear Information System (INIS)

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a proportional

  4. Supervisory control software for MFTF neutral beams

    International Nuclear Information System (INIS)

    We describe the software structures that control the operation of MFTF Sustaining Neutral Beam Power Supplies (SNBPS). These components of the Supervisory Control and Diagnostics System (SCDS) comprise ten distinct tasks that exist in the SCDS system environment. The codes total about 16,000 lines of commented Pascal code and occupy 240 kbytes of memory. The controls have been running since March 1981, and at this writing are being integrated to the Local Control System and to the power supply Pulse Power Module Controller

  5. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    Science.gov (United States)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  6. Experimental determination of beam loss point in transport line-2 of Indus Accelerator Complex

    International Nuclear Information System (INIS)

    Radiation field in the Indus-1 SRS Experimental hall during 550 MeV electron beam injection into Transport Line-3 (TL-3)/Indus-2 was found to be higher than during 450 MeV beam injection to Transport line -2 (TL-2)/Indus-1. Experimental investigation was carried out to find out the location of beam loss. For the investigation, Ion chamber based detectors viz direct reading dosimeters (passive detectors) and beam loss monitors (active) were used. The beam loss point was observed near Sputter Ion Pump-5 (SIP-5) of TL-2, in Indus-1 area. The result was confirmed by induced activity profile measurements of the transport lines (TL-2/TL-3) during shut down. In order to reduce the radiation level in Indus-1 hall, two tenth value layers of lead shielding was put near TL2. Later on, correction in the beam optics by beam dynamics section reduced the beam losses at SIP-5 location, thereby reducing the radiation fields in Indus-1 hall substantially. The paper describes the measurement and the results in detail. (author)

  7. Electron beam guiding by grooved SiO2 parallel plates without energy loss

    International Nuclear Information System (INIS)

    Using a pair of grooved SiO2 parallel plates, stably guided electron beams were obtained without energy loss at 800–2000 eV. This shows that the transmitted electrons are guided by a self-organized repulsive electric field, paving the way for a self-adaptive manipulation of electron beams

  8. Electron beam guiding by grooved SiO2 parallel plates without energy loss

    Science.gov (United States)

    Xue, Yingli; Yu, Deyang; Liu, Junliang; Zhang, Mingwu; Yang, Bian; Zhang, Yuezhao; Cai, Xiaohong

    2015-12-01

    Using a pair of grooved SiO2 parallel plates, stably guided electron beams were obtained without energy loss at 800-2000 eV. This shows that the transmitted electrons are guided by a self-organized repulsive electric field, paving the way for a self-adaptive manipulation of electron beams.

  9. Implementation of EPICS based Control System for Radioisotope Beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac.

  10. PRELIMINARY DESIGN OF THE BEAM LOSS MONITORING SYSTEM FOR THE SNS.

    Energy Technology Data Exchange (ETDEWEB)

    WITKOVER,R.; GASSNER,D.

    2002-05-06

    The SNS to be built at Oak Ridge National Laboratory will provide a high average intensity 1 GeV beam to produce spallation neutrons. Loss of a even small percentage of this intense beam would result in high radiation. The Beam Loss Monitor (ELM) system must detect such small, long term losses yet be capable of measuring infrequent short high losses. The large dynamic range presents special problems for the system design. Ion chambers will be used as the detectors. A detector originally designed for the FNAL Tevatron, was considered but concerns about ion collection times and low collection efficiency at high loss rates favor a new design. The requirements and design concepts of the proposed approach will be presented. Discussion of the design and testing of the ion chambers and the analog j-Point end electronics will be presented. The overall system design will be described.

  11. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2004-01-01

    The employment of superconducting magnets, in the high energies colliders, opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standar...

  12. Basis for low beam loss in the high-current APT linac

    Energy Technology Data Exchange (ETDEWEB)

    Wangler, T.P.; Gray, E.R.; Krawczyk, F.L.; Kurennoy, S.S.; Lawrence, G.P.; Ryne, R.D. [Los Alamos National Lab., NM (United States); Crandall, K.R. [TECHSOURCE, Santa Fe, NM (United States)

    1998-12-31

    The present evidence that the APT proton linac design will meet its goal of low beam loss operation. The conclusion has three main bases: (1) extrapolation from the understanding of the performance of the 800-MeV LANSCE proton linac at Los Alamos, (2) the theoretical understanding of the dominant halo-forming mechanism in the APT accelerator from physics models and multiparticle simulations, and (3) the conservative approach and key principles underlying the design of the APT linac, which are aimed at minimizing beam halo and providing large apertures to reduce beam loss to a very low value.

  13. Beam losses due to abrupt crab cavity failures in the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Baer, T.; Barranco, J.; Calaga, R.; Tomas, R.; Wenninger, B.; Yee, B.; Zimmermann, F.

    2011-03-28

    A major concern for the implementation of crab crossing in a future High-Luminosity LHC (HL-LHC) is machine protection in an event of a fast crab-cavity failure. Certain types of abrupt crab-cavity amplitude and phase changes are simulated to characterize the effect of failures on the beam and the resulting particle-loss signatures. The time-dependent beam loss distributions around the ring and particle trajectories obtained from the simulations allow for a first assessment of the resulting beam impact on LHC collimators and on sensitive components around the ring. Results for the nominal LHC lattice is presented.

  14. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    CERN Document Server

    Baumbaugh, A; Brown, B C; Capista, D; Drennan, C; Fellenz, B; Knickerbocker, K; Lewis, J D; Marchionni, A; Needles, C; Olson, M; Pordes, S; Shi, Z; Still, D; Thurman-Keup, R; Utes, M; Wu, J

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and...

  15. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2005-01-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data...

  16. Stochastic Orbit Loss of Neutral Beam Ions From NSTX Due to Toroidal Alfven Eigenmode Avalanches

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, D S; Fredrickson, E D; Gorelenkov, N N; Gorelenkova, M; Kubota, S; Medley, S S; Podesta, M; Shi, L

    2012-07-11

    Short toroidal Alfven eigenmode (TAE) avalanche bursts in the National Spherical Torus Experiment (NSTX) cause a drop in the neutron rate and sometimes a loss of neutral beam ions at or near the full injection energy over an extended range of pitch angles. The simultaneous loss of wide ranges of pitch angle suggests stochastic transport of the beam ions occurs. When beam ion orbits are followed with a guiding center code that incorporates plasma's magnetic equilibrium plus the measured modes, the predicted ranges of lost pitch angle are similar to those seen in the experiment, with distinct populations of trapped and passing orbits lost. These correspond to domains where the stochasticity extends in the orbit phase space from the region of beam ion deposition to the loss boundary.

  17. Method and apparatus for laser-controlled proton beam radiology

    Science.gov (United States)

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  18. Use of beam deflection to control an electron beam wire deposition process

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  19. Incoherent vertical ion losses during multiturn stacking cooling beam injection

    Science.gov (United States)

    Syresin, E. M.

    2014-07-01

    The efficiency of the multiturn ion injection with electron cooling depends on two parameters, namely, cooling efficiency and ion lifetime. The lifetime of freshly injected ions is usually shorter than the lifetime of strongly cooled stacked ions. Freshly injected ions are lost in the vertical direction because the vertical acceptance of the synchrotron is usually a few times smaller than the horizontal acceptance. Incoherent vertical losses of freshly injected ions arise from their multiple scattering by residual gas atoms and transverse diffusion caused by stack noise. Reduced ion lifetime limits the multiturn injection efficiency. Analytical estimations and BETACOOL-based numerical evaluations of the vertical ion losses during multiturn injection are presented in comparison with the experimental data obtained at the HIMAC synchrotron and the S-LSR storage ring.

  20. Control of transformer losses in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.A. [Canadian Standards Association, Toronto, Ontario (Canada)

    1994-12-31

    A new standard issued by the Canadian Standards Association, CSA C802, imposes maximum losses on transformers 10 MVA and below. Included are Distribution Transformers, small Power Transformers, and Dry Types. Implementation will start though the publishing in mid 1994 of the Gazette by Ontario`s Ministry of Energy. The Gazette will call for conformance to C802 after a lead time of one year to eighteen months, depending on the type of transformer. Other provincial energy ministries have been awaiting this development and are expected to follow suit shortly thereafter. The federal department, Natural Resources Canada, is also attuned to these actions and is expected to issue supportive legislation which will control movement of transformers across provincial and national borders.

  1. Effects of Optical Loss Factors on Heliostat Field Layout for Beam-Down Solar Concentrating Systems

    Science.gov (United States)

    Utamura, Motoaki; Takamatsu, Tadahiko; Yuasa, Minoru; Kajita, Rina; Yamamoto, Takashi

    A methodology to give an optimal layout of a group of heliostats has been developed for beam-down concentrating solar tower systems. Given the maximum solar power together with optical parameters, the method determines an optimal configuration of a heliostat field around a tower. Various optical losses such as cosine factor, shadowing and blocking at heliostats are considered in the calculation. Furthermore, spillage at the receiver is taken into account due to the spread of light caused by the effects of a finite solar disk, flat facet and various stochastic errors in optical hardware and control. It is found the effect of spillage becomes significant at heliostats from the tower at the distance farther than four times of upper focus height of the reflector when receiver diameter is one fifteenth of the height and dominates the configuration of the optimal heliostat layout.

  2. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    Science.gov (United States)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and

  3. Demonstration of low-loss electron beam transport and mm-wave experiments of the fusion-FEM

    NARCIS (Netherlands)

    Urbanus, W. H.; Bongers, W. A.; van Dijk, G.; van der Geer, C. A. J.; de Kruif, R.; Manintveld, P.; Pluygers, J.; Poelman, A. J.; Schüller, F. C.; Smeets, P. H. M.; Sterk, A. B.; Verhoeven, A. G. A.; Valentini, M.; van der Wiel, M. J.

    1998-01-01

    In the Fusion-FEM electrostatic Free Electron Maser, an electron beam loss current of less than 0.2% is essential for long-pulse operation. At reduced beam current, 3 A instead of the nominal 12 A, we have demonstrated electron beam acceleration and transport through the undulator at current losses

  4. Digital Controller For Laser-Beam-Steering Subsystem: Part 2

    Science.gov (United States)

    Ansari, Homayoon; Voisinet, Leeann

    1995-01-01

    A report presents additional information about laser-beam-steering apparatus described in "Digital Controller for Laser-Beam-Steering Subsystem" (NPO-19193) and "More About Beam-Steering Subsystem for Laser Communication" (NPO-19381). Reiterates basic principles of operation of beam-steering subsystem, with emphasis on modes of operation, basic design concepts, and initial experiments on partial prototype of apparatus.

  5. Study on beam loss system of BEPCII%BEPCII束损系统研究

    Institute of Scientific and Technical Information of China (English)

    何俊; 赵晓岩; 汪林; 杜垚垚; 赵颖; 随艳峰; 岳军会; 曹建社

    2015-01-01

    为更好掌握储存环中的束流状态,在北京正负电子对撞机二期工程的储存环上建立了以二极管为探测器的束流损失探测系统。用蒙特卡罗软件对损失束流产生簇射电子的分布情况进行了模拟,为安装束损探测器位置提供了依据。搭建了包括探头、数据获取系统、数据传输系统在内的束损系统。对束损过程进行了详细的分析与描述。对北京正负电子对撞机多年的束损数据进行了整理分析,对其在丢束诊断、束流寿命研究等多个方面应用情况进行了总结。数据显示建立的束损系统工作状态稳定,是优化机器参数、改善束流寿命、分析丢束过程的有力工具。%Background: A beam loss system that uses the PIN diode as the detector has been set up on Beijing Electron–Positron Collider II (BEPCII) storage after 8-a routine operation. Further study and analysis should been carried out based on the historical data.Purpose: This study aims to learn the beam loss process in depth and further optimize the parameters of the accelerator.Methods: Based on the machine size and beam parameter of BEPCII, the Monte Carlo simulation of the cluster electrons in the storage ring was performed to provide reference for installation position of the beam loss system. Then different methods, including adding all the beam loss monitor (BLM) counts, adding the inner detector, adding the outer detector, have been used for data analysis of the beam life time, beam loss distribution, beam envelope and dispersion,etc., under both the collider mode and synchrotron mode.Results: The results show that the BLM system is useful to study the beam life time and diagnose the beam loss processes. The beam loss system for BEPCII works stablely. The detector counts are much smaller than the dynamic range of the detector.Conclusion: Over the eight years, the response of the beam loss system does not change a lot, which implies that the

  6. Study of Acquisition Electronics with a High Dynamic Range for a Beam Loss Measurement System

    CERN Document Server

    Venturini, G; Dehning, B; Effinger, E

    2010-01-01

    The particles accelerated in CERN accelerator chain reach high energies, topped by the particle energy at collision in the LHC, 7 GeV. During the operation, an amount of particles is inevitably lost from the beam. Depending on the extent of the losses, physical damage to machine components may be caused and the shower of secondary emission particles deposits energy in the surrounding equipment constituting the accelerator. The hadronic cascade also activates their materials, representing a hazard to the workers at CERN. In the LHC, the superconducting magnets that constitute the synchrotron lattice are kept at an operating temperature of 1:9K through a cryogenic facility employing superliquid helium, the increase in their temperature potentially initiates a quench. In the SPS, the damage due to a lost beam is also visible. The Beam Loss Monitoring (BLM) system has been developed to reliably protect the machines composing CERN’s accelerator chain and additionally provide information about the beam status: th...

  7. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82+208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  8. Robust Collimation Control of Laser-Generated Ion Beam

    CERN Document Server

    Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.

  9. Evaluation of source term induced by beam loss in the superconducting linear accelerator at RAON

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Kim, Su Na; Nam, Shin Woo; Chung, Yon Sei [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2014-11-15

    As a new world-class heavy ion accelerator, RAON is able to accelerate heavy ions from proton to uranium with the energy up to -400 MeV/u and produce rare isotopes. These high purity, high intensity, and high energy beams generate the various secondary radiation which will impact on the shielding aspects of the main linear accelerator tunnels. In the main tunnel the secondary neutrons are produced by uniform beam-loss or accident criteria. In this paper evaluations of several source terms induced by beam-loss will be discussed along with the physics model of the Monte Carlo simulation codes. The beam-loss criteria were tested for the evaluation of source term for the main beam line tunnel of the RAON accelerator. It was found that the amount of the secondary neutrons depends on the incident angle of projectile on the beam pipe and the mass and energy of projectile. The influence of selected physics models and libraries of MCNPX and PHITS has been examined. The secondary neutrons were produced most in the CEM and LAQGSM model.

  10. Beam loss studies on silicon strip detector modules for the CMS experiment

    CERN Document Server

    Fahrer, Manuel

    2006-01-01

    The large beam energy of the LHC demands for a save beam abort system. Nevertheless, failures cannot be excluded with last assurance and are predicted to occur once per year. As the CMS experiment is placed in the neighboured LHC octant, it is affected by such events. The effect of an unsynchronized beam abort on the silicon strip modules of the CMS tracking detector has been investigated in this thesis by performing one accelerator and two lab experiments. The dynamical behaviour of operational parameters of modules and components has been recorded during simulated beam loss events to be able to disentangle the reasons of possible damages. The first study with high intensive proton bunches at the CERN PS ensured the robustness of the module design against beam losses. A further lab experiment with pulsed IR LEDs clarified the physical and electrical processes during such events. The silicon strip sensors on a module are protected against beam losses by a part of the module design that originally has not been...

  11. Simulation of Heavy-Ion Beam Losses with the SixTrack-FLUKA Active Coupling

    CERN Document Server

    Hermes, Pascal; Cerutti, Francesco; Ferrari, Alfredo; Jowett, John; Lechner, Anton; Mereghetti, Alessio; Mirarchi, Daniele; Ortega, Pablo; Redaelli, Stefano; Salvachua, Belen; Skordis, Eleftherios; Valentino, Gianluca; Vlachoudis, Vasilis

    2016-01-01

    The LHC heavy-ion program aims to further increase the stored ion beam energy, putting high demands on the LHC collimation system. Accurate simulations of the ion collimation efficiency are crucial to validate the feasibility of new proposed configurations and beam parameters. In this paper we present a generalized framework of the SixTrack-FLUKA coupling to simulate the fragmentation of heavy-ions in the collimators and their motion in the LHC lattice. We compare heavy-ion loss maps simulated on the basis of this framework with the loss distributions measured during heavy-ion operation in 2011 and 2015.

  12. System Architecture for measuring and monitoring Beam Losses in the Injector Complex at CERN

    CERN Document Server

    Zamantzas, C; Dehning, B; Jackson, S; Kwiatkowski, M; Vigano, W

    2012-01-01

    The strategy for beam setup and machine protection of the accelerators at the European Organisation for Nuclear Research (CERN) is mainly based on its Beam Loss Monitoring (BLM) systems. For their upgrade to higher beam energies and intensities, a new BLM system is under development with the aim of providing faster measurement updates with higher dynamic range and the ability to accept more types of detectors as input compared to its predecessors. In this paper, the architecture of the complete system is explored giving an insight to the design choices made to provide a highly reconfigurable system that is able to fulfil the different requirements of each accelerator using reprogrammable devices.

  13. Predicting Loss-of-Control Boundaries Toward a Piloting Aid

    Science.gov (United States)

    Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.

  14. Controlling Beam Halo-Chaos via Time-Delayed Feedback

    Institute of Scientific and Technical Information of China (English)

    FANG Jin-Qing; WENG Jia-Qiang; ZHU Lun-Wu; LUO Xiao-Shu

    2004-01-01

    The study of controlling high-current proton beam halo-chaos has become a key concerned issue for many important applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Particle in cell simulation results show that the method is very effective and has some advantages for high-current beam experiments and engineering.

  15. Controlling beam halo-chaos via backstepping design

    Institute of Scientific and Technical Information of China (English)

    Gao Yuan; Kong Feng

    2008-01-01

    A backstepping control method is proposed for controlling beam halo-chaos in the periodic focusing channels PFCs) of high-current ion accelerator. The analysis and numerical results show that the method, via adjusting an exterior magnetic field, is effective to control beam halo chaos with five types of initial distribution ion beams, all statistical quantities of the beam halo-chaos are largely reduced, and the uniformity of ion beam is improved. This control method has an important value of application, for the exterior magnetic field can be easily adjusted in the periodical magnetic focusing channels in experiment.

  16. Radiation losses in PLT during neutral beam and ICRF heating experiments

    International Nuclear Information System (INIS)

    Radiation and charge exchange losses in the PLT tokamak are compared for discharges with ohmic heating only (OH), and with additional heating by neutral beams (NB) or RF in the ion cyclotron frequency range (ICRF). Spectroscopic, bolometric and soft x-ray diagnostics were used. The effects of discharge cleaning, vacuum wall gettering, and rate of gas inlet on radiation losses from OH plasmas and the correlation between radiation from plasma core and edge temperatures are discussed

  17. The Evaluation of the Residual Dose Caused by the Large-Angle Foil Scattering Beam Loss for the High Intensity Beam Operation in the J-PARC RCS

    Science.gov (United States)

    Kato, Shinichi; Yamamoto, Kazami; Harada, Hiroyuki; Hotchi, Hideaki; Saha, Pranab K.; Kinsho, Michikazu

    The Japan Proton Accelerator Research Complex 3-GeV rapid cycling synchrotron (RCS) has adopted the multi-turn charge-exchange injection scheme that uses H- beams. During injection, both the injected and circulating beams scatter from the charge-exchange foil. Therefore, the beam loss caused by the large-angle scattering from the foil occurs downstream of the injection point. For countermeasure against the uncontrolled beam loss, a new collimation system was developed and installed in the summer shutdown period in 2011. During beam commissioning, this uncontrolled beam loss was successfully localized for a 300 kW beam. Since the present target power of the RCS is 1 MW, the accurate simulation model to reproduce experimental results has been constructed in order to evaluate residual dose at higher power operation.

  18. Very Fast Losses of the Circulating LHC Beam, their Mitigation and Machine Protection

    CERN Document Server

    Baer, Tobias; Elsen, Eckhard

    The Large Hadron Collider (LHC) has a nominal energy of 362MJ stored in each of its two counter-rotating beams - over two orders of magnitude more than any previous accelerator and enough to melt 880kg of copper. Therefore, in case of abnormal conditions comprehensive machine protection systems extract the beams safely from the LHC within not more than three turns $\\approx$270$\\mu$s. The first years of LHC operation demonstrated a remarkable reliability of the major machine protection systems. However, they also showed that the LHC is vulnerable to losses of the circulating beams on very fast timescales, which are too fast to ensure an active protection. Very fast equipment failures, in particular of normal-conducting dipole magnets and the transverse damper can lead to such beam losses. Whereas these failures were already studied in the past, other unexpected beam loss mechanisms were observed after the LHC start-up: so-called (un)identified falling objects (UFOs), which are believed to be micrometer-sized m...

  19. Beam screen cryogenic control improvements for the LHC run 2

    CERN Document Server

    Bradu, Benjamin; Blanco Vinuela, Enrique; Ferlin, Gerard; Tovar-Gonzalez, Antonio

    2016-01-01

    This paper presents the improvements performed on the cryogenic control system for the LHC beam screens. The regulation objective is to maintain an acceptable temperature range around 20 K that ensures a good LHC beam vacuum and that limits cryogenic heat loads. In total, there are 485 regulation loops around the 27 km of the LHC machine affected by these beam disturbances. Due to the increase of the LHC performance during the run 2, standard PID controllers manage with difficulties the temperature transients of the beam screens. Several alternative control techniques have been studied and validated using dynamic simulation and then deployed on the LHC cryogenic control system in 2015. The main contribution is the addition of a feed-forward control in order to compensate the beam effects on the beam screen temperature based on the main beam parameters of the machine in real time.

  20. Beam screen cryogenic control improvements for the LHC run 2

    CERN Document Server

    Bradu, Benjamin; Blanco Vinuela, Enrique; Ferlin, Gerard; Tovar-Gonzalez, Antonio

    2016-01-01

    This paper presents the improvements made on the cryogenic control system for the LHC beam screens. The regulation objective is to maintain an acceptable temperature range around 20 K which simultaneously ensures a good LHC beam vacuum and limits cryogenic heat loads. In total, through the 27 km of the LHC machine, there are 485 regulation loops affected by beam disturbances. Due to the increase of the LHC performance during Run 2, standard PID controllers cannot keeps the temperature transients of the beam screens within desired limits. Several alternative control techniques have been studied and validated using dynamic simulation and then deployed on the LHC cryogenic control system in 2015. The main contribution is the addition of a feed-forward control in order to compensate the beam effects on the beam screen temperature based on the main beam parameters of the machine in real time.

  1. Low loss power splitter for antenna beam forming networks using probes in a waveguide

    OpenAIRE

    Dich, Mikael; Mortensen, Mette Dahl

    1994-01-01

    The design of a low loss one-to-four power splitter suitable for beam forming networks in antenna arrays is presented. The power splitter is constructed of a shorted waveguide in which five coaxial probes are inserted. Methods for the design of the power splitter are presented together with an experimental verification

  2. Low loss power splitter for antenna beam forming networks using probes in a waveguide

    DEFF Research Database (Denmark)

    Dich, Mikael; Mortensen, Mette Dahl

    1994-01-01

    The design of a low loss one-to-four power splitter suitable for beam forming networks in antenna arrays is presented. The power splitter is constructed of a shorted waveguide in which five coaxial probes are inserted. Methods for the design of the power splitter are presented together...

  3. Multiple-electron losses in uranium ion beams in heavy ion synchrotrons

    Science.gov (United States)

    Bozyk, L.; Chill, F.; Litsarev, M. S.; Tolstikhina, I. Yu.; Shevelko, V. P.

    2016-04-01

    Charge changing processes as the result of collisions with residual gas particles are the main cause of beam loss in high energy medium charge state heavy ion beams. To investigate the magnitude of this effect for heavy ion synchrotrons like the planned SIS100 at GSI, the multiple-electron and the total electron-loss cross sections are calculated for Uq+ ions, q = 10, 28, 40, 73, colliding with typical gas components H2, He, C, N2, O2, and Ar at ion energies E = 1 MeV/u-10 GeV/u. The total electron-capture cross sections for U28+ and U73+ ions interacting with these gases are also calculated. Most of these cross sections are new and presented for the first time. Calculated charge-changing cross sections are used to determine the ion-beam lifetimes τ for U28+ ions which agree well with the recently measured values at SIS18/GSI in the energy range E = 10-200 MeV/u. Using simulations made by the StrahlSim code with the reference ion U28+, it is found that in SIS100 the beam loss caused by single and multiple electron losses has only little impact on the residual gas density due to the high efficiency of the ion catcher system.

  4. Self-Tuning Active Vibration Control of Flexible Beam Structures

    OpenAIRE

    M.O. Tokhi; Hossain, M A

    1994-01-01

    This paper presents the design and performance evaluation of an adaptive active control mechanism for vibration suppression in flexible beam structures. A cantilever beam system in transverse vibration is considered. First order control finite difference methods are used to study the behaviour of the beam and develop a suitable test and verification platform. An active vibration control algorithm is developed within an adaptive control framework for broadband cancellation of vibration along t...

  5. Enhanced relativistic-electron-beam energy loss in warm dense aluminum.

    Science.gov (United States)

    Vaisseau, X; Debayle, A; Honrubia, J J; Hulin, S; Morace, A; Nicolaï, Ph; Sawada, H; Vauzour, B; Batani, D; Beg, F N; Davies, J R; Fedosejevs, R; Gray, R J; Kemp, G E; Kerr, S; Li, K; Link, A; McKenna, P; McLean, H S; Mo, M; Patel, P K; Park, J; Peebles, J; Rhee, Y J; Sorokovikova, A; Tikhonchuk, V T; Volpe, L; Wei, M; Santos, J J

    2015-03-01

    Energy loss in the transport of a beam of relativistic electrons in warm dense aluminum is measured in the regime of ultrahigh electron beam current density over 2×10^{11}  A/cm^{2} (time averaged). The samples are heated by shock compression. Comparing to undriven cold solid targets, the roles of the different initial resistivity and of the transient resistivity (upon target heating during electron transport) are directly observable in the experimental data, and are reproduced by a comprehensive set of simulations describing the hydrodynamics of the shock compression and electron beam generation and transport. We measured a 19% increase in electron resistive energy loss in warm dense compared to cold solid samples of identical areal mass.

  6. Distributed beam loss monitor based on the Cherenkov effect in an optical fiber

    Science.gov (United States)

    Maltseva, Yu; Emanov, F. A.; Petrenko, A. V.; Prisekin, V. G.

    2015-05-01

    This review discusses a distributed beam loss monitor which is based on the Cherenkov effect in an optical fiber and which has been installed at the VEPP-5 Injection Complex at the Budker Institute of Nuclear Physics. The principle of the device operation consists in detecting the Cherenkov radiation generated in an optical fiber by relativistic charged particles that are produced in an electromagnetic shower when highly relativistic beam particles (electrons or positrons) hit the accelerator vacuum chamber wall. Our experiments used a photomultiplier tube (PMT) to detect the Cherenkov light. Knowing when the PMT signal arrives tells us where the beam loss occurs. Using a 20-m-long optical fiber allowed a detector spatial resolution of 3 m. The way to improve the resolution is to optimize the monitor working conditions and optical fiber and PMT parameters, potentially leading to a resolution of as fine as 0.5 m according to our estimates.

  7. Recommended Locations of Beam Loss Monitors for the ATLAS Roman Pots

    CERN Document Server

    Hall-Wilton, R J; Talanov, V

    2007-01-01

    This note suggests suitable locations to position beam loss monitors to observe losses on the ATLAS Roman Pot station located close to 240m from IP1. This monitoring is envisaged to help to avoid quenches of the super- conducting magnets downstream of the roman pots and to avert damage to either the LHC machine elements or the roman pot detectors. The results presented in this note indicate the locations where the BLMs should be installed. The recommended locations are determined using previous simulation results on BLM response to losses; therefore these results should be considered in conjunction with the previous results. A more detailed note on the topic will follow later.

  8. Recommended locations of beam-loss monitors for the ATLAS Roman pots

    CERN Document Server

    Hall-Wilton, R J; Talanov, V

    2007-01-01

    This note suggests suitable locations to position beam loss monitors to observe losses on the ATLAS Roman Pot station located close to 240m from IP1. This monitoring is envisaged to help to avoid quenches of the super- conducting magnets downstream of the roman pots and to avert damage to either the LHC machine elements or the roman pot detectors. The results presented in this note indicate the locations where the BLMs should be installed. The recommended locations are determined using previous simulation results on BLM response to losses; therefore these results should be considered in conjunction with the previous results. A more detailed note on the topic will follow later.

  9. The LHC beam loss monitoring system's real-time data analysis card

    CERN Document Server

    Dehning, B; Ferioli, G; Guaglio, G; Leitner, R; Zamantzas, C

    2005-01-01

    The BLM (Beam Loss Monitoring) system has to prevent the superconducting magnets from being quenched and protect the machine components against damages making it one of the most critical elements for the protection of the LHC. The complete system consists of 3600 detectors, placed at various locations around the ring, tunnel electronics, which are responsible for acquiring, digitizing, and transmitting the data, and surface electronics, which receive the data via 2km optical data links, process, analyze, store, and issue warning and abort triggers. At those surface units, named BLMTCs, the backbone on each of them is an FPGA (field programmable gate array) which treats the loss signals collected from 16 detectors. It takes into account the beam energy and keeps 192 running sums giving loss durations of up to the last 84 seconds before it compares them with thresholds uniquely programmable for each detector. In this paper, the BLMTC's design is explored giving emphasis to the strategies followed in combining t...

  10. Simulation of the ATLAS SCT barrel module response to LHC beam loss scenarios

    CERN Document Server

    Rose, P; The ATLAS collaboration; Fadeyev, V; Spencer, E; Wilder, M; Domingo, M

    2014-01-01

    In the event of beam loss at the LHC, ATLAS Inner Detector components nearest the beam line may be subjected to unusually large amounts of radiation. Understanding their behavior in such an event is important in determining whether they would still function properly. We built a SPICE model of the silicon strip module electrical system to determine the behavior of its elements during a realistic beam loss scenario. We found that the power supply and bias filter characteristics strongly affect the module response in such scenarios. In particular, the following self-limiting phenomena were observed: there is a finite amount of charge initially available on the bias filter capacitors for collection by the strips; the power supply current limit reduces the rate at which the bias filter capacitors' charge can be replenished; the reduced bias voltage leads to a smaller depletion depth in the sensors which results in less collected charge. These effects provide a larger measure of safety during beam loss events than ...

  11. Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides

    Science.gov (United States)

    Wood, Michael G.; Chen, Li; Burr, Justin R.; Reano, Ronald M.

    2014-01-01

    We carried out a multiparameter fabrication study designed to reduce the line edge roughness (LER) of electron beam (e-beam) patterned hydrogen silsesquioxane resist for the purpose of producing low-loss silicon strip waveguides. Reduced mask roughness was achieved for 50°C pre-exposure baking, 5000 μC/cm2 dose with a beam spot size more than twice as large as the electron beam step size, development in 25% tetramethylammonium hydroxide and postdevelopment baking with rapid thermal annealing in an O2 ambient at 1000°C. The LER caused by pattern fracturing and stage stitches was reduced with multipass writing and per-pass linear and rotational offsets. Si strip waveguides patterned with the optimized mask have root-mean-square sidewall roughness of 2.1 nm with a correlation length of 94 nm, as measured by three-dimensional atomic force microscopy. Measured optical propagation losses of these waveguides across the telecommunications C-band were 2.5 and 2.8 dB/cm for the transverse magnetic and transverse electric modes, respectively. These reduced loss waveguides enable the fabrication of advanced planar lightwave circuit topologies.

  12. Evaluation of Beam Loss and Energy Depositions for a Possible Phase II Design for LHC Collimation

    Energy Technology Data Exchange (ETDEWEB)

    Lari, L.; /EPFL-ISIC, Lausanne /CERN; Assmann, R.; /CERN; Bracco, C.; /EPFL-ISIC, Lausanne /CERN; Brugger, M.; /CERN; Cerutti, F.; /CERN; Doyle, E.; /SLAC; Ferrari, A.; /CERN; Keller, L.; Lundgren, S.; Markiewicz, Thomas W.; /SLAC; Mauri, M.; Redaelli, S.; Sarchiapone, L.; /CERN; Smith, J.; /SLAC; Vlachoudis, V.; Weiler, T.; /CERN

    2011-11-07

    The LHC beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can survive the expected conditions during LHC stable physics runs, in order to avoid quenches of the SC magnets and to protect other LHC equipments.

  13. Evaluation of Beam Losses And Energy Deposition for a Possible Phase II Design for LHC Collimation

    Energy Technology Data Exchange (ETDEWEB)

    Lari, L.; Assmann, R.W.; Bracco, C.; Brugger, M.; Cerutti, F.; Ferrari, A.; Mauri, M.; Redaelli, S.; Sarchiapone, L.; Vlachoudis, Vasilis; Weiler, Th.; /CERN; Doyle, J.E.; Keller, L.; Lundgren, S.A.; Markiewicz, Thomas W.; Smith, J.C.; /SLAC; Lari, L.; /LPHE, Lausanne

    2011-11-01

    The Large Hadron Collider (LHC) beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can survive the expected conditions during LHC stable physics runs, in order to avoid quenches of the SC magnets and to protect other LHC equipments.

  14. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  15. Background gas density and beam losses in NIO1 beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Veltri, P.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Cavenago, M. [INFN-LNL, v.le dell’Università 2, I-35020 Legnaro (PD) (Italy)

    2016-02-15

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  16. Background gas density and beam losses in NIO1 beam source

    Science.gov (United States)

    Sartori, E.; Veltri, P.; Cavenago, M.; Serianni, G.

    2016-02-01

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  17. Beam loss in HIRFL-CSR due to collisions with residual gas in vacuum

    International Nuclear Information System (INIS)

    The author discusses the collision of heavy ions with residual gas atoms in the vacuum and the cross-sections of the collision processes. The method calculating beam transmission efficiency in vacuum is presented taking HIRFL and CSR machine as examples. Based on rich experimental data, a series of empirical formulae of calculating the cross-section of charge changing process is given. The transmission efficiency curves of different sections in HIRFL and CSR are also calculated, and thus the reasonable requirements for HIRFL and CSR vacuum systems are given. The calculation method has been checked by the measurements of vacuum and beam loss in HIRFL

  18. Beam-size effect and particle losses at Super$B$ factory developed in Italy

    CERN Document Server

    Kotkin, G L

    2009-01-01

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the $e^+ e^- \\to e^+ e^- \\gamma$ process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at Super$B$ factory developed in Italy. We find out that this effect reduces beam losses due to bremsstrahlung by about 40%.

  19. Beam-size effect and particle losses at B-factories KEKB and PEP-II

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Serbo, V.G. E-mail: serbo@math.nsc.ru

    2005-01-01

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the e{sup +}e{sup -}{yields}e{sup +}e{sup -}{gamma} process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at B-factories KEKB and PEP-II. We find out that this effect reduces beam losses due to bremsstrahlung by about 20%.

  20. Aircraft Accident Prevention: Loss-of-Control Analysis

    Science.gov (United States)

    Kwatny, Harry G.; Dongmo, Jean-Etienne T.; Chang, Bor-Chin; Bajpai, Guarav; Yasar, Murat; Belcastro, Christine M.

    2009-01-01

    The majority of fatal aircraft accidents are associated with loss-of-control . Yet the notion of loss-of-control is not well-defined in terms suitable for rigorous control systems analysis. Loss-of-control is generally associated with flight outside of the normal flight envelope, with nonlinear influences, and with an inability of the pilot to control the aircraft. The two primary sources of nonlinearity are the intrinsic nonlinear dynamics of the aircraft and the state and control constraints within which the aircraft must operate. In this paper we examine how these nonlinearities affect the ability to control the aircraft and how they may contribute to loss-of-control. Examples are provided using NASA s Generic Transport Model.

  1. Numerical study for beam loss occurring for wide-ranging transverse injection painting and its mitigation scenario in the J-PARC 3-GeV RCS

    Science.gov (United States)

    Hotchi, Hideaki; Tani, Norio; Watanabe, Yasuhiro

    2015-04-01

    In the J-PARC 3-GeV Rapid Cycling Synchrotron (RCS), transverse injection painting is utilized to manipulate the transverse beam profile according to the requirements from the downstream facilities as well as to mitigate the space-charge induced beam loss in RCS. Therefore, a flexible control is required for the transverse painting area. But now the available range of transverse painting is limited to small area due to beta function beating caused by the edge focus of injection bump magnets which operate during the beam injection period. This beta function beating additionally excites various random betatron resonances through a distortion of the lattice super-periodicity, causing a shrinkage of the dynamic aperture during the injection period. This decrease of the dynamic aperture leads to extra beam loss at present when applying large transverse painting. For beta function beating caused by the edge focus, we proposed a correction scheme with additional pulse-type quadrupole correctors. In this paper, we will discuss the feasibility and effectiveness of this correction scheme for expanding the transverse injection painting area with no extra beam loss, while considering the beam loss and its mitigation mechanisms, based on numerical simulations.

  2. Specialty flat-top beam delivery fibers with controlled beam parameter product

    Science.gov (United States)

    Jollivet, C.; Farley, K.; Conroy, M.; Abramczyk, J.; Belke, S.; Becker, F.; Tankala, K.

    2016-03-01

    Beam delivery fibers have been used widely for transporting the optical beams from the laser to the subject of irradiation in a variety of markets including industrial, medical and defense applications. Standard beam delivery fibers range from 50 to 1500 μm core diameter and are used to guide CW or pulsed laser light, generated by solid state, fiber or diode lasers. Here, we introduce a novel fiber technology capable of simultaneously controlling the beam profile and the angular divergence of single-mode (SM) and multi-mode (MM) beams using a single-optical fiber. Results of beam transformation from a SM to a MM beam with flat-top intensity profile are presented in the case of a controlled BPP at 3.8 mm*mrad. The scaling capabilities of this flat-top fiber design to achieve a range of BPP values while ensuring a flat-top beam profile are discussed. In addition, we demonstrate, for the first time to the best of our knowledge, the homogenizer capabilities of this novel technology, able to transform random MM beams into uniform flat-top beam profiles with very limited impact on the beam brightness. This study is concluded with a discussion on the scalability of this fiber technology to fit from 50 up to 1500 μm core fibers and its potential for a broader range of applications.

  3. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    International Nuclear Information System (INIS)

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio

  4. Beam kicker control system for CSR project in Lanzhou

    International Nuclear Information System (INIS)

    The beam kicker system is a key part for beam extraction and injection in ring-like accelerator, which works under high voltage and huge current. This paper introduces the kicker control system based on ARM+DSP+FPGA for CSR project in Lanzhou, which has nanosecond timing precision. ARM mainly completes the control signals with the network communication, and the time control precision for the beam kicker system is performed mainly by FPGA and DSP. The sequence control signals through the optic fiber transmission, synchronous to kicker power supply the voltage to assign uses the signal isolators and ferrites to suppress the disturbance pulses. Scene test has proved that this system can meet beam kicker control's request and work safely and stably. The control system has extracted and injected the CSR beam successfully in October 2007. (authors)

  5. A Gigabit Ethernet link for an FPGA based Beam Loss Measurement System

    CERN Document Server

    Kwiatkowski, M; Dehning, B; Vigano, W; Zamantzas, C

    2013-01-01

    A new Beam Loss Monitoring (BLM) system is under development at the European Organisation for Nuclear Research (CERN) within the LHC Injector Upgrade (LIU) project. The multi-channel system will have the ability to measure beam losses from various types of detectors with high precision and wide dynamic range. Several modes of data acquisition are supported. The data rate in the singlechannel mode is 16 Mbps and in the multi-channel mode 128 Mbps. The Gigabit Ethernet link is implemented in an FPGA, which allows both a high throughput and a quick validation of the digital data processing algorithms using standard PCs in the initial stages of the development. Both TCP and UDP protocols were explored. The implementation of the Ethernet link is flexible and proved to be highly reliable, leading to its planned use in other measurement systems developed at CERN. The implementation details of the Ethernet link and the results achieved will be described in this paper.

  6. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    Science.gov (United States)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M. R.; Eisel, T.; Fabjan, C.; Rementeria, C. A.; Griesmayer, E.; Eremin, V.; Verbitskaya, E.; Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I.; Egorov, N.; Härkönen, J.; Luukka, P.; Tuominen, E.

    2015-05-01

    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×1016 proton/cm2, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×1016 p/cm2 irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage.

  7. Control of Beam Halo-Chaos Based on Self-Field-Intensity of Particle Beam

    Institute of Scientific and Technical Information of China (English)

    YU Hai-Jun; BAI Long; WENG Jia-Qiang; LUO Xiao-Shu

    2008-01-01

    @@ The KV beam through an axisymmetric periodic-focusing magnetic field is studied using the particle-core model.A new variable of the self-field-intensity of particle beam is selected,and an idea of self-field feedback controller is proposed based on the variable for controlling the halo-chaos.We perform multiparticle simulation to control the halo by using the self-field feedback controller.

  8. Calculated electronic energy loss of swift proton and helium ion beams in liquid water

    OpenAIRE

    Abril Sánchez, Isabel; García Molina, Rafael; Denton Zanello, Cristian D.; Emfietzoglou, Dimitris

    2008-01-01

    The electronic energy loss of swift proton and helium beams in liquid water is theoretically evaluated. Our model is based in the dielectric formalism, taking into account the charge exchange of the projectile during its travel through the target. The electronic properties of liquid water are described by the MELF-GOS model, where the outer electron excitations are represented by a sum of Mermin functions fitted to the experimental data in the optical limit, whereas the inner-shell electron e...

  9. Allotropic effects on the energy loss of swift H+ and He+ ion beams through thin foils

    OpenAIRE

    García Molina, Rafael; Abril Sánchez, Isabel; Denton Zanello, Cristian D.; Heredia Ávalos, Santiago

    2006-01-01

    We have developed a theoretical treatment and a simulation code to study the energy loss of swift H+ and He+ ion beams interacting with thin foils of different carbon allotropes. The former is based on the dielectric formalism, and the latter combines Monte Carlo with the numerical solution of the motion equation for each projectile to describe its trajectory and interactions through the target. The capabilities of both methods are assessed by the reasonably good agreement between their predi...

  10. Reliability of the Beam Loss Monitors System for the Large Hadron Collider at CERN

    CERN Document Server

    Guaglio, G; Santoni, C

    2005-01-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out....

  11. Minimal requirements for quality controls in radiotherapy with external beams

    International Nuclear Information System (INIS)

    Physical dosimetric guidelines have been developed by the Italian National Institute of Health study group on quality assurance in radiotherapy to define protocols for quality controls in external beam radiotherapy. While the document does not determine strict rules or firm recommendations, it suggests minimal requirements for quality controls necessary to guarantee an adequate degree of accuracy in external beam radiotherapy

  12. Simulation of the ATLAS SCT Barrel Module Response to LHC Beam Loss Scenarios

    CERN Document Server

    Rose, P; The ATLAS collaboration; Fadeyev, V; Spencer, E; Wilder, M; Domingo, M

    2013-01-01

    In the event of beam loss at the LHC, ATLAS Inner Detector components nearest the beamline may be subjected to unusually large amounts of radiation. Understanding their behavior in such an event is important in determining whether they would still function properly. We built a SPICE model of the silicon strip module electrical system to determine the behavior of its elements during a realistic beam loss scenario. We found that the power supply and bias filter characteristics strongly affect the module response in such scenarios. In particular, the following self-limiting phenomena were observed: there is a finite amount of charge initially available on the bias filter capacitors for collection by the strips; the power supply current limit reduces the rate at which the bias filter capacitors' charge can be replenished; the reduced bias voltage leads to a smaller depletion depth which results in less collected charge. These effects provide a larger measure of safety during beam loss events than we have previous...

  13. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    Science.gov (United States)

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  14. Beam Trajectory control of the future Compact LInear Collider beam

    CERN Document Server

    Balik, G; Bolzon, B; Brunetti, L; Caron, B; Deleglise, G; Jeremie, A; Le Breton, R; Lottin, J; Pacquet, L

    2011-01-01

    The future Compact LInear Collider (CLIC) currently under design at CERN (European Organization for Nuclear Research) would create high-energy particle collisions between electrons and positrons, and provide a tool for scientists to address many of the most compelling questions about the fundamental nature of matter, energy, space and time. In accelerating structure, it is well-established that vibrations generated by the ground motion constitute the main limiting factors for reaching the luminosity of 10^34 cm-2s-1. Several methods have been proposed to counteract this phenomena and active vibration controls based on the integration of mechatronic systems into the machine structure is probably one of the most promising. This paper studies the strategy of the vibration suppression. Active vibration control methods, such as optimized parameter of a numerical compensator, adaptive algorithm with real time control are investigated and implemented in the simulation layout. The requirement couldn’t be achieved w...

  15. Reliability of the beam loss monitors system for the large hadron collider at CERN

    International Nuclear Information System (INIS)

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out. The reliability figures of the BLMS have been calculated using a commercial software package (Isograph.). The effect of the variation of the parameters on the obtained results has been evaluated with a sensitivity analysis. The reliability model has been extended by the results of radiation tests. Design improvements, like redundant optical transmission, have been implemented in an iterative process. The proposed system is compliant with the reliability requirements. The model uncertainties are given by the limited knowledge of the thresholds levels of the superconductive magnets and of the locations of the losses along the ring. The implemented model allows modifications of the system, following the measuring of the hazard rates during the LHC life. It can also provide reference numbers to other accelerators which will implement similar technologies. (author)

  16. Beam Parameter Measurement and Control at the SNS Target

    CERN Document Server

    Plum, Michael; McManamy, Tom

    2005-01-01

    The spallation neutron production target at the SNS facility is designed for 1.4 MW beam power. Both beam position and profile must be carefully controlled within narrow margins to avoid damage to the target. The position must be within 2 mm of the target center, and 90% of the beam must be within the nominal 70 mm x 200 mm spot size, without exceeding 0.18 A/m2

  17. Quench Tests of LHC Magnets with Beam: Studies on Beam Loss development and determination of Quench levels

    CERN Document Server

    Priebe, A; Sapinski, M

    The application of superconducting materials in the field of high energy accelerator physics not only opens the doors to the generation of the magnetic fields unattainable to normal conductors but also demands facing new challenges. A transition fromthe superconducting state, which is characterized by a resistance-free flow of the electric current, to the normal conducting state is called quenching. This process might be extremely dangerous and even lead to destruction of amagnet superconducting coil if no protecting actions are taken. Therefore, the knowledge of a magnet quench level, i.e. amount of energy which causes the transition to the resistive state, is crucial for the safety and operational efficiency of the accelerator. Regarding that, specific thresholds are incorporated to dedicated quench prevention systems in order to suppress the origin of detected energy perturbation, for example beam losses, or mitigate the consequences of the quenching process by dissipating the energy stored in the magnetic...

  18. Prestress Loss and Bending Capacity of Pre-cracked 40 Year-Old PC Beams Exposed to Marine Environment

    Directory of Open Access Journals (Sweden)

    Dasar Amry

    2016-01-01

    Full Text Available Six prestressed concrete beams (PC beam were used for evaluation, consist of four post-tension beams (PC-O and two pre-tension beams (PC-R. In order to investigate the effect of crack on prestress loss and bending capacity after long-term exposed, prestressed concrete beams were pre-crack and then exposed to marine environment. Experimental work was carried out to evaluate PC beams performance after long-term exposed. In addition, visual observations and load bearing capacity test was carried out. Furthermore, evaluation of prestress loss conducted using three-point loading bending test and the remaining tendon forces in the beam were determined using Crack Re-opening Method. The experimental results revealed that prestress loss was increased due to corrosion of strand/wire which affected by the pre-crack on the prestressed beams. Approximately a prestress loss around 26% and 30% was recorded for post-tension and pre-tension beams respectively.

  19. Vibration Analysis and Control of Flexible Beam by Using Smart Damping Structures

    Science.gov (United States)

    Chen, Q.; Levy, C.

    1999-01-01

    The temperature effects on frequency, loss factor and control of a flexible beam with a constrained viscoelastic layer and shape memory alloy layer (SMA) are discussed. It is shown that the temperature in the SMA (actuation) layer is very important in the determination of frequency and loss factor of such a structure. The effects of damping layer shear modulus and damping layer height as affected by the temperature are also discussed. As temperature plays such an important role, it is, therefore, imperative to evaluate temperature effects on the control of the system as well. Results with and without active control are discussed.

  20. Improving the Fermilab Booster Notching Efficiency, Beam Losses and Radiation Levels

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I.L.; Drozhdin, A.I.; Mokhov, N.V.; Sidorov, V.I.; Tropin, I.S.; /Fermilab

    2012-05-14

    A fast vertical 1.08-m long kicker (notcher) located in the Fermilab Booster Long-05 straight section is currently used to remove 3 out of 84 circulating bunches after injection to generate an abort gap. With the maximum magnetic field of 72.5 Gauss, it removes only 87% of the 3-bunch intensity at 400 MeV, with 75% loss on pole tips of the focusing Booster magnets, 11% on the Long-06 collimators, and 1% in the rest of the ring. We propose to improve the notching efficiency and reduce beam loss in the Booster by using three horizontal kickers in the Long-12 section. STRUCT calculations show that using horizontal notchers, one can remove up to 96% of the 3-bunch intensity at 400-700 MeV, directing 95% of it to a new beam dump at the Long-13 section. This fully decouples notching and collimation. The beam dump absorbs most of the impinging proton energy in its jaws. The latter are encapsulated into an appropriate radiation shielding that reduces impact on the machine components, personnel and environment to the tolerable levels. MARS simulations show that corresponding prompt and residual radiation levels can be reduced ten times compared to the current ones.

  1. Improving the Fermilab Booster Notching Efficiency, Beam Losses and Radiation Levels

    CERN Document Server

    Rakhno, I L; Mokhov, N V; Sidorov, V I; Tropin, I S

    2012-01-01

    Currently a fast vertical 1.08-m long kicker (notcher) located in the Fermilab Booster Long-5 straight section is used to remove 3 out of 84 circulating bunches after injection to generate an abort gap. With magnetic field of 72.5 Gauss it removes only 87% of the 3-bunch intensity at 400 MeV, with 75% loss on pole tips of the focusing Booster magnets, 11% on the Long-6 collimators, and 1% in the rest of the ring. We propose to improve the notching efficiency and reduce beam loss in the Booster by using two horizontal kickers in the Long-12 section. The STRUCT calculations show that using such horizontal notchers, one can remove up to 99% of the 3-bunch intensity at 400-700 MeV, directing 96% of it to a new beam dump at the Long-13 section. This fully decouples notching and collimation. The beam dump absorbs most of the impinging proton energy in its jaws. The latter are encapsulated into an appropriate radiation shielding that reduces impact on the machine components, personnel and environment to the tolerabl...

  2. Development and Validation of the Eating Loss of Control Scale

    OpenAIRE

    Blomquist, Kerstin K.; Roberto, Christina A.; Barnes, Rachel D.; White, Marney A.; Masheb, Robin M.; Grilo, Carlos M.

    2013-01-01

    Recurrent objective bulimic episodes (OBE) are a defining diagnostic characteristic of binge eating disorder (BED) and bulimia nervosa (BN). OBEs are characterized by experiencing loss of control (LOC) while eating an unusually large quantity of food. Despite nosological importance and complex heterogeneity across patients, measurement of LOC has been assessed dichotomously (present/absent). This study describes the development and initial validation of the Eating Loss of Control Scale (ELOCS...

  3. Perturbation of the energy loss spectra for an accelerated electron beam due to the photo injector exit

    CERN Document Server

    Salah, W

    2003-01-01

    The influence of the photo-injector exit hall on the energy loss for an accelerated electron beam is investigated, by calculating the total energy transferred from the electrons to the wakefields, which are driven by the beam. The obtained energy loss is compared to those previously obtained for a 'pill-box' cavity. This comparison shows that the influence of this hall, in terms of energy loss, varies over the beam length. It is strongest in the middle of the beam and decreases towards both ends. In consequence of this perturbation, the center of the beam is displaced from its initial position during the first phase (t < 200 ps) where the exit aperture has no effect to a new equilibrium position which takes place at 200 < t < 250 ps. (author)

  4. Reproducible and controllable induction voltage adder for scaled beam experiments

    Science.gov (United States)

    Sakai, Yasuo; Nakajima, Mitsuo; Horioka, Kazuhiko

    2016-08-01

    A reproducible and controllable induction adder was developed using solid-state switching devices and Finemet cores for scaled beam compression experiments. A gate controlled MOSFET circuit was developed for the controllable voltage driver. The MOSFET circuit drove the induction adder at low magnetization levels of the cores which enabled us to form reproducible modulation voltages with jitter less than 0.3 ns. Preliminary beam compression experiments indicated that the induction adder can improve the reproducibility of modulation voltages and advance the beam physics experiments.

  5. Reproducible and controllable induction voltage adder for scaled beam experiments.

    Science.gov (United States)

    Sakai, Yasuo; Nakajima, Mitsuo; Horioka, Kazuhiko

    2016-08-01

    A reproducible and controllable induction adder was developed using solid-state switching devices and Finemet cores for scaled beam compression experiments. A gate controlled MOSFET circuit was developed for the controllable voltage driver. The MOSFET circuit drove the induction adder at low magnetization levels of the cores which enabled us to form reproducible modulation voltages with jitter less than 0.3 ns. Preliminary beam compression experiments indicated that the induction adder can improve the reproducibility of modulation voltages and advance the beam physics experiments. PMID:27587112

  6. Digital Controller For Laser-Beam-Steering Subsystem

    Science.gov (United States)

    Ansari, Homayoon

    1995-01-01

    Report presents additional information about proposed apparatus described in "Beam-Steering Subsystem for Laser Communication" (NPO-19069). Discusses design of digital beam-steering control subsystem and, in particular, that part of design pertaining to digital compensation for frequency response of steering mirror.

  7. The LHC beam loss monitoring system's real-time data analysis card

    Energy Technology Data Exchange (ETDEWEB)

    Zamantzas, C.; Dehning, B.; Effinger, E.; Ferioli, G.; Guaglio, G.; Leitner, R. [Conseil Europeen pour la Recherche Nucleaire, Geneve (Switzerland)

    2005-07-01

    The BLM (Beam Loss Monitoring) system has to prevent the superconducting magnets from being quenched and protect the machine components against damages making it one of the most critical elements for the protection of the LHC. The complete system consists of 3600 detectors, placed at various locations around the ring, tunnel electronics, which are responsible for acquiring, digitizing, and transmitting the data, and surface electronics, which receive the data via 2 km optical data links, process, analyze, store, and issue warning and abort triggers. At those surface units, named BLMTCs, the backbone on each of them is an FPGA (field programmable gate array) which treats the loss signals collected from 16 detectors. It takes into account the beam energy and keeps 192 running sums giving loss durations of up to the last 84 seconds before it compares them with thresholds uniquely programmable for each detector. In this paper, the BLMTC's design is explored giving emphasis to the strategies followed in combining the data from the integrator and the ADC, and in keeping the running sums updated in a way that gives the best compromise between memory needs, computation, and approximation error. (authors)

  8. Controllable circular Airy beams via dynamic linear potential

    CERN Document Server

    Zhong, Hua; Belić, Milivoj R; Li, Changbiao; Wen, Feng; Zhang, Zhaoyang; Zhang, Yanpeng

    2016-01-01

    We investigate controllable spatial modulation of circular autofocusing Airy beams, under action of different dynamic linear potentials, both theoretically and numerically. We introduce a novel treatment method in which the circular Airy beam is represented as a superposition of narrow azimuthally-modulated one-dimensional Airy beams that can be analytically treated. The dynamic linear potentials are appropriately designed, so that the autofocusing effect can either be weakened or even eliminated when the linear potential exerts a "pulling" effect on the beam, or if the linear potential exerts a "pushing" effect, the autofocusing effect can be greatly strengthened. Numerical simulations agree with the theoretical results very well.

  9. Control Schemes for Driving Electro-optic Array Beam Deflectors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The beam deflectors based on electro-optic phased array(EOPA) is mainly described, and then an analysis on existing control schemes for driving the EOPA beam deflectors, based on custom hard-wired electronics or based on software in a microcontroller, is made. Compared with these, a driving and control system for a multi-channel EOPA beam deflector is presented, in which the control assignment is implemented with a field programmable gate array(FPGA) chip. For different performance requirements, two control schemes, one with the serial scheme and another with the parallel scheme, have been explored and rapidly prototyped in Xilinx FPGA chips. With the control structures for the EOPA beam deflector, scanning rates of 588kHz and 5MHz can be respectively reached.

  10. Beam-size effect and particle losses at SuperB factory developed in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G L; Serbo, V G [Novosibirsk State University, 630090, Novosibirsk, Pirogova st., 2 (Russian Federation)], E-mail: serbo@math.nsc.ru

    2009-06-15

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the e{sup +}e{sup -}{yields} e{sup +}e{sup -}{gamma} process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at SuperB factory developed in Italy. We find out that this effect reduces beam losses due to bremsstrahlung by about 40%. We perform a critical comparison of our result with that presented in the Conceptual Design Report of the Italian SuperB factory.

  11. Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D

    Science.gov (United States)

    Hollmann, E. M.; Austin, M. E.; Boedo, J. A.; Brooks, N. H.; Commaux, N.; Eidietis, N. W.; Humphreys, D. A.; Izzo, V. A.; James, A. N.; Jernigan, T. C.; Loarte, A.; Martin-Solis, J.; Moyer, R. A.; Muñoz-Burgos, J. M.; Parks, P. B.; Rudakov, D. L.; Strait, E. J.; Tsui, C.; Van Zeeland, M. A.; Wesley, J. C.; Yu, J. H.

    2013-08-01

    DIII-D experiments on rapid shutdown runaway electron (RE) beams have improved the understanding of the processes involved in RE beam control and dissipation. Improvements in RE beam feedback control have enabled stable confinement of RE beams out to the volt-second limit of the ohmic coil, as well as enabling a ramp down to zero current. Spectroscopic studies of the RE beam have shown that neutrals tend to be excluded from the RE beam centre. Measurements of the RE energy distribution function indicate a broad distribution with mean energy of order several MeV and peak energies of order 30-40 MeV. The distribution function appears more skewed towards low energies than expected from avalanche theory. The RE pitch angle appears fairly directed (θ ˜ 0.2) at high energies and more isotropic at lower energies (ɛ < 100 keV). Collisional dissipation of RE beam current has been studied by massive gas injection of different impurities into RE beams; the equilibrium assimilation of these injected impurities appears to be reasonably well described by radial pressure balance between neutrals and ions. RE current dissipation following massive impurity injection is shown to be more rapid than expected from avalanche theory—this anomalous dissipation may be linked to enhanced radial diffusion caused by the significant quantity of high-Z impurities (typically argon) in the plasma. The final loss of RE beams to the wall has been studied: it was found that conversion of magnetic to kinetic energy is small for RE loss times smaller than the background plasma ohmic decay time of order 1-2 ms.

  12. Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D

    International Nuclear Information System (INIS)

    DIII-D experiments on rapid shutdown runaway electron (RE) beams have improved the understanding of the processes involved in RE beam control and dissipation. Improvements in RE beam feedback control have enabled stable confinement of RE beams out to the volt-second limit of the ohmic coil, as well as enabling a ramp down to zero current. Spectroscopic studies of the RE beam have shown that neutrals tend to be excluded from the RE beam centre. Measurements of the RE energy distribution function indicate a broad distribution with mean energy of order several MeV and peak energies of order 30–40 MeV. The distribution function appears more skewed towards low energies than expected from avalanche theory. The RE pitch angle appears fairly directed (θ ∼ 0.2) at high energies and more isotropic at lower energies (ε < 100 keV). Collisional dissipation of RE beam current has been studied by massive gas injection of different impurities into RE beams; the equilibrium assimilation of these injected impurities appears to be reasonably well described by radial pressure balance between neutrals and ions. RE current dissipation following massive impurity injection is shown to be more rapid than expected from avalanche theory—this anomalous dissipation may be linked to enhanced radial diffusion caused by the significant quantity of high-Z impurities (typically argon) in the plasma. The final loss of RE beams to the wall has been studied: it was found that conversion of magnetic to kinetic energy is small for RE loss times smaller than the background plasma ohmic decay time of order 1–2 ms. (paper)

  13. Electron-beam-controlled laser with a grid-controlled electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Avanesyan, V.S.; Dutov, A.I.; Lakhno, Y.V.; Malkhov, L.N.

    1977-08-01

    An experimental investigation was made of an electron-beam-controlled carbon dioxide laser with an electron gun in which the beam current was modulated by a control grid. The design features of the electron gun and laser are described and their performance is reported. Observations of instabilities of the electron beam in the gun are reported and methods for eliminating them are suggested.

  14. A long-range polarization-controlled optical tractor beam

    Science.gov (United States)

    Shvedov, Vladlen; Davoyan, Arthur R.; Hnatovsky, Cyril; Engheta, Nader; Krolikowski, Wieslaw

    2014-11-01

    The laser beam has become an indispensable tool for the controllable manipulation and transport of microscopic objects in biology, physical chemistry and condensed matter physics. In particular, ‘tractor’ laser beams can draw matter towards a laser source and perform, for instance, all-optical remote sampling. Recent advances in lightwave technology have already led to small-scale experimental demonstrations of tractor beams. However, the realization of long-range tractor beams has not gone beyond the realm of theoretical investigations. Here, we demonstrate the stable transfer of gold-coated hollow glass spheres against the power flow of a single inhomogeneously polarized laser beam over tens of centimetres. Additionally, by varying the polarization state of the beam we can stop the spheres or reverse the direction of their motion at will.

  15. High performance quantum cascade lasers: Loss, beam stability, and gain engineering

    Science.gov (United States)

    Bouzi, Pierre Michel

    Quantum Cascade (QC) lasers are semiconductor devices emitting in the mid-infrared (3-30 micron) and terahertz (30-300 micron) regions of the electromagnetic spectrum. Since their first demonstration by Jerome Faist et. al. in 1994, they have evolved very quickly into high performance devices and given rise to many applications such as trace-gas sensing, medical diagnosis, free-space communication, and light detection and ranging (LIDAR). In this thesis, we investigate a further increase of the performance of QC devices and, through meticulous device modeling and characterizations, gain a deeper understanding of several of their unique characteristics, especially their carrier transport and lifetime, their characteristic temperature, their waveguide loss and modal gain, their leakage current, and their transverse mode profile. First, in our quest to achieve higher performance, we investigate the effect of growth asymmetries on device transport characteristics. This investigation stems from recent studies on the role of interface roughness on intersubband scattering and device performance. Through a symmetric active core design, we find that interface roughness and ionized impurity scattering induced by dopant migration play a significant role in carrier transport through the device. Understanding how interface roughness affects intersubband scattering, in turn, we engineer the gain in QC devices by placing monolayer barriers at specific locations within the device band structure. These strategically placed additional thin barrier layers introduce roughness scattering into the device active region, thereby selectively decreasing the lower laser state lifetime and increasing population inversion necessary for laser action. Preliminary measurement results from modified devices reveal a 50% decrease in the emission broadening compared to the control structures, which should lead to a two-fold increase in gain. A special class of so-called "strong coupling" QC lasers

  16. Loss of beam ions to the inside of the PDX [Poloidal Divertor Experiment] tokamak during the fishbone instability

    International Nuclear Information System (INIS)

    Using data from two vertical charge-exchange detectors on the Poloidal Divertor Experiment (PDX), we have identified a set of conditions for which loss of beam ions inward in major radius is observed during the fishbone instability. Previously, it was reported that beam ions were lost only to the outside of the PDX tokamak

  17. Creating high-harmonic beams with controlled orbital angular momentum.

    Science.gov (United States)

    Gariepy, Genevieve; Leach, Jonathan; Kim, Kyung Taec; Hammond, T J; Frumker, E; Boyd, Robert W; Corkum, P B

    2014-10-10

    A beam with an angular-dependant phase Φ = ℓϕ about the beam axis carries an orbital angular momentum of ℓℏ per photon. Such beams are exploited to provide superresolution in microscopy. Creating extreme ultraviolet or soft-x-ray beams with controllable orbital angular momentum is a critical step towards extending superresolution to much higher spatial resolution. We show that orbital angular momentum is conserved during high-harmonic generation. Experimentally, we use a fundamental beam with |ℓ| = 1 and interferometrically determine that the harmonics each have orbital angular momentum equal to their harmonic number. Theoretically, we show how any small value of orbital angular momentum can be coupled to any harmonic in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.

  18. Controllable light capsules employing modified Bessel-Gauss beams

    CERN Document Server

    Gong, Lei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new rou...

  19. Creating High-Harmonic Beams with Controlled Orbital Angular Momentum

    Science.gov (United States)

    Boyd, Robert W.

    A beam of light with an angle-dependent phase Φ = lϕ , where ϕ is the azimuthal coordinate, about the beam axis carries an orbital angular momentum (OAM) of lℏ per photon. Such beams have been exploited to provide superresolution in visible-light microscopy. The ability to create extreme ultraviolet or soft-x-ray beams with controllable OAM would be a critical step towards extending superresolution methods to extremely small feature size. Here we show that OAM is conserved during the process of high-harmonic generation (HHG). Experimentally, we use a fundamental beam with l = 1 and interferometrically determine that the q-th harmonic has an OAM quantum number l equal to its harmonic order q. We also show theoretically how to couple an arbitrary low value of the OAM quantum number l to any harmonic order q in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.

  20. VOLTAGE AND POWER LOSS CONTROL IN DISTRIBUTION SYSTEM USING UPFC

    OpenAIRE

    Yuan, Wei; TANG, Aihong; ZHANG, Xiaocheng; Wang, Shaorong

    2012-01-01

    Abstract: A simplified loop distribution system is taken as the object and the main reasons leading to the power loss in the feeder are analysed in this paper. According to the natural power distribution theory of the loop systems, the minimum power distribution in the loop power system is deduced through the extremism method. Thinking about the power control function of the unified power flow controller, the control system for the series side of the unified power flow controller is designed ...

  1. Tuning of Graphene Properties via Controlled Exposure to Electron Beams

    OpenAIRE

    Liu, G; Teweldebrhan, D.; Balandin, A. A.

    2010-01-01

    Controlled modification of graphene properties is essential for its proposed electronic applications. Here we describe a possibility of tuning electrical properties of graphene via electron beam irradiation. We show that by controlling the irradiation dose one can change the carrier mobility and increase the resistance at the minimum conduction point in the single layer graphene. The bilayer graphene is less susceptible to the electron beam irradiation. The modification of graphene properties...

  2. Updated analytical solutions of continuity equation for electron beams precipitation - II. Mixed energy losses

    Science.gov (United States)

    Zharkova, V. V.; Dobranskis, R. R.

    2016-06-01

    In this paper we consider simultaneous analytical solutions of continuity equations for electron beam precipitation (a) in collisional losses and (b) in ohmic losses, or mixed energy losses (MEL) by applying the iterative method to calculate the resulting differential densities at given precipitation depth. The differential densities of precipitating electrons derived from the analytical solutions for MELs reveal increased flattening at energies below 10-30 keV compared to a pure collisional case. This flattening becomes stronger with an increasing precipitation depth turning into a positive slope at greater precipitation depths in the chromosphere resulting in a differential density distribution with maximum that shifts towards higher energies with increase in column depth, while the differential densities combining precipitating and returning electrons are higher at lower energies than those for a pure collisional case. The resulting hard X-ray (HXR) emission produced by the beams with different initial energy fluxes and spectral indices is calculated using the MEL approach for different ratios between the differential densities of precipitating and returning electrons. The number of returning electrons can be even further enhanced by a magnetic mirroring, not considered in the present model, while dominating at lower atmospheric depths where the magnetic convergence and magnitude are the highest. The proposed MEL approach provides an opportunity to account simultaneously for both collisional and ohmic losses in flaring events, which can be used for a quick spectral fitting of HXR spectra and evaluation of a fraction of returning electrons versus precipitating ones. The semi-analytical MEL approach is used for spectral fitting to Reuven High Energy Solar Spectroscopic Imager observations of nine C, M and X class flares revealing a close fit to the observations and good resemblance to numerical FP solutions.

  3. Single-beam water vapor detection system with automatic photoelectric conversion gain control

    Science.gov (United States)

    Zhu, C. G.; Chang, J.; Wang, P. P.; Wang, Q.; Wei, W.; Liu, Z.; Zhang, S. S.

    2014-11-01

    A single-beam optical sensor system with automatic photoelectric conversion gain control is proposed for doing high reliability water vapor detection under relatively rough environmental conditions. Comparing to a dual-beam system, it can distinguish the finer photocurrent variations caused by the optical power drift and provide timely compensation by automatically adjusting the photoelectric conversion gain. This system can be rarely affected by the optical power drift caused by fluctuating ambient temperature or variation of fiber bending loss. The deviation of the single-beam system is below 1.11% when photocurrent decays due to fiber bending loss for bending radius of 5 mm, which is obviously lower than the dual-beam system (8.82%). We also demonstrate the long-term stability of the single-beam system by monitoring a 660 ppm by volume (ppmv) water vapor sample continuously for 24 h. The maximum deviation of the measured concentration during the whole testing period does not exceed 10 ppmv. Experiments have shown that the new system features better reliability and is more apt for remote sensing application which is often subject to light transmission loss.

  4. TANGO standard software to control the Nuclotron beam slow extraction

    Science.gov (United States)

    Andreev, V. A.; Volkov, V. I.; Gorbachev, E. V.; Isadov, V. A.; Kirichenko, A. E.; Romanov, S. V.; Sedykh, G. S.

    2016-09-01

    TANGO Controls is a basis of the NICA control system. The report describes the software which integrates the Nuclotron beam slow extraction subsystem into the TANGO system of NICA. Objects of control are power supplies for resonance lenses. The software consists of the subsystem device server, remote client and web-module for viewing the subsystem data.

  5. On scaling and optimization of high-intensity, low-beam-loss RF linacs for neutron source drivers

    International Nuclear Information System (INIS)

    RF linacs providing cw proton beams of 30--250 mA at 800--1600 MeV, and cw deuteron beams of 100--250 mA at 35--40 MeV, are needed as drivers for factory neutron sources applied to radioactive waste transmutation, advanced energy production, materials testing facilities, and spallation neutron sources. The maintenance goals require very low beam loss along the linac. Optimization of such systems is complex; status of beam dynamics aspects presently being investigated is outlined

  6. Digital feed back control for radial beam position

    International Nuclear Information System (INIS)

    In the development of wide spread large scale distributed digital control systems, there is a requirement to automate small processes like radial beam control which will not only improve the beam quality but will also add local intelligence. Hence use is made here of digital control principles for such applications. The work concerned with the radial beam control discussed in this report has been developed for ISIS at RAL. The structure of the report is hence inclined more towards the local hardware system. The general feed back loop techniques can also be implemented for other control purpose. For instance, the author has successfully tested similar techniques to minimise the RF cavity tuning error, where the improvement in performance could not be matched by the analogue loop. A description of the RF cavity tuning programme and the associated experimental results will be published as a local paper for ISIS division. (author)

  7. Control of a flexible beam using fuzzy logic

    Science.gov (United States)

    Mccullough, Claire L.

    1991-01-01

    The goal of this project, funded under the NASA Summer Faculty Fellowship program, was to evaluate control methods utilizing fuzzy logic for applicability to control of flexible structures. This was done by applying these methods to control of the Control Structures Interaction Suitcase Demonstrator developed at Marshall Space Flight Center. The CSI Suitcase Demonstrator is a flexible beam, mounted at one end with springs and bearing, and with a single actuator capable of rotating the beam about a pin at the fixed end. The control objective is to return the tip of the free end to a zero error position (from a nonzero initial condition). It is neither completely controllable nor completely observable. Fuzzy logic control was demonstrated to successfully control the system and to exhibit desirable robustness properties compared to conventional control.

  8. Low-Power Optically Controlled Patch Antenna of Reconfigurable Beams

    Directory of Open Access Journals (Sweden)

    Deshuang Zhao

    2014-01-01

    Full Text Available A novel compact beam-reconfigurable patch antenna based on light control of no more than 30 mW optical powers is successfully demonstrated. It consists of one T-shape driven patch and one slot-etched parasitic patch. A silicon dice is employed as the photoconductive switch that is bridged across the slot center for optical control of reconfigurable beams. The antenna greatly reduces the total optical powers required for reconfigurable beams. Such design is based on the fact that the current phase change of the parasitic patch is sensitive to the conductivity of the silicon dice. A few conductivity changes of the silicon dice induced by the optical light can lead to a big phase change of the parasitic patch currents, eventually resulting in reconfigurable beams with low optical power requirement.

  9. Beam Intensity and Energy Control for the SPIRAL2 Facility

    OpenAIRE

    Jamet, C.; André, T.; Ducoudret, B.; Doutressoulles, C.; Le Coz, W.; Ledu, G.; Leloir, S.; Loret, S.

    2012-01-01

    TUPB029 - ISBN 878-3-95450-122-9 International audience The first part of the SPIRAL2 facility, which entered last year in the construction phase at GANIL in France, consists of an ion source, a deuteron and a proton source, a RFQ and a superconducting linear accelerator delivering high intensities, up to 5 mA and 40 MeV for the deuteron beams. Diagnostic developments have been done to control both beam intensity and energy by non-interceptive methods at the linac exit. The beam current...

  10. Sagnac Interferometer Based Generation of Controllable Cylindrical Vector Beams

    Directory of Open Access Journals (Sweden)

    Cristian Acevedo

    2016-01-01

    Full Text Available We report on a novel experimental geometry to generate cylindrical vector beams in a very robust manner. Continuous control of beams’ properties is obtained using an optically addressable spatial light modulator incorporated into a Sagnac interferometer. Forked computer-generated holograms allow introducing different topological charges while orthogonally polarized beams within the interferometer permit encoding the spatial distribution of polarization. We also demonstrate the generation of complex waveforms obtained by combining two orthogonal beams having both radial modulations and azimuthal dislocations.

  11. Electron Beam Technology for Environmental Pollution Control.

    Science.gov (United States)

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs. PMID:27620188

  12. Electron Beam Technology for Environmental Pollution Control.

    Science.gov (United States)

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs.

  13. Controllable light capsules employing modified Bessel-Gauss beams.

    Science.gov (United States)

    Gong, Lei; Liu, Weiwei; Zhao, Qian; Ren, Yuxuan; Qiu, Xingze; Zhong, Mincheng; Li, Yinmei

    2016-01-01

    We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. We provide a detailed insight into the theoretical origin and characteristics of the light capsule derived from modified Bessel-Gauss beams. Moreover, a binary digital micromirror device (DMD) based scheme is first employed to shape the bottle beams by precise amplitude and phase manipulation. Further, we demonstrate their ability for optical trapping of core-shell magnetic microparticles, which play a particular role in biomedical research, with holographic optical tweezers. Therefore, our observations provide a new route for generating and controlling bottle beams and will widen the potentials for micromanipulation of absorbing particles, aerosols or even individual atoms. PMID:27388558

  14. 10 Orders of Magnitude Current Measurement Digitisers for the CERN Beam Loss Systems

    CERN Document Server

    Vigano, W; Dehning, B; Kwiatkowski, M; Venturini, G G; Zamantzas, C

    2014-01-01

    A wide range current digitizer card is needed for the acquisition module of the beam loss monitoring systems in the CERN Injector Complex. The fully differential frequency converter allows measuring positive and negative input currents with a resolution of 31nA in an integration window of 2μs. Increasing the integration window, the dynamic range covers 2•1010 were the upper part of the range is converted by measuring directly the voltage drop on a resistor. The key elements of this design are the fully differential integrator and the switches operated by an FPGA. The circuit is designed to avoid any dead time in the acquisition and reliability and failsafe operational considerations are main design goals. The circuit will be discussed in detail and lab and field measurements will be shown.

  15. 10 orders of magnitude current measurement digitisers for the CERN beam loss systems

    Science.gov (United States)

    Viganò, W.; Alsdorf, M.; Dehning, B.; Kwiatkowski, M.; Venturini, G. G.; Zamantzas, C.

    2014-02-01

    A wide range current digitizer card is needed for the acquisition module of the beam loss monitoring systems in the CERN Injector Complex. The fully differential frequency converter allows measuring positive and negative input currents with a resolution of 31 nA in an integration window of 2 μs. Increasing the integration window, the dynamic range covers 21010 were the upper part of the range is converted by measuring directly the voltage drop on a resistor. The key elements of this design are the fully differential integrator and the switches operated by an FPGA. The circuit is designed to avoid any dead time in the acquisition and reliability and failsafe operational considerations are main design goals. The circuit will be discussed in detail and lab and field measurements will be shown.

  16. Improved design and construction of an ionization chamber for the CSNS beam loss monitor (BLM)

    Institute of Scientific and Technical Information of China (English)

    TIAN Jian-Min; XU Mei-Hang; ZHAO Zhong-Liang; CHEN Chang; RUAN Xiang-Dong; CHEN Yuan-Bo; XU Tao-Guang; LU Shuang-Tong

    2012-01-01

    Based on the first ionization chamber (IC) prototype,the structure,working gas component and electrode material of the IC are improved.The test of the improved IC shows that the plateau length is about 2000 V,the plateau slope is less than 0.2%/100 V,the sensitivity is 19.6 pA/rad.h-1,the up-limitation of the linearity can be up to 3.6× 105 rad/h,and the applied voltage can be operated to 3500 V.The test results show that the performance of the improved IC meets the requirements of the beam loss monitor.

  17. Study on the radiation problem caused by electron beam loss in accelerator tubes

    Institute of Scientific and Technical Information of China (English)

    LI Quan-Feng; GUO Bing-Qi; ZHANG Jie-Xi; CHEN Huai-Bi

    2008-01-01

    The beam dynamic code PARMELA was used to simulate the transportation process of accelerating electrons in S-band SW linacs with different energies of 2.5, 6 and 20 MeV. The results indicated that in the ideal condition, the percentage of electron beam loss was 50% in accelerator tubes. Also we calculated the spectrum, the location and angular distribution of the lost electrons. Calculation performed by Monte Carlo code MCNP demonstrated that the radiation distribution of lost electrons was nearly uniform along the tube axis, the angular distributions of the radiation dose rates of the three tubes were similar, and the highest leaking dose was at the angle of 160° with respect to the axis. The lower the energy of the accelerator, the higher the radiation relative leakage. For the 2.5 MeV accelerator, the maximum dose rate reached 5% of the main dose and the one on the head of the electron gun was 1%, both of which did not meet the eligible protection requirement for accelerators. We adopted different shielding designs for different accelerators. The simulated result showed that the shielded radiation leaking dose rates fulfilled the requirement.

  18. Resonant vibration control of rotating beams

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2011-01-01

    Rotatingstructures,like e.g.wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor–actuator system, governed by a resonant controller. The theory is here demonstrated...... modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency....

  19. Up-scattering of beam ions by nuclear elastic scattering and its effect on energy loss rate in thermonuclear plasmas

    International Nuclear Information System (INIS)

    An expression for the average energy loss rate of beam ions due to nuclear elastic scattering (NES) in Maxwellian plasmas is derived, by taking into consideration the thermal motion of the background ions. The NES effect on deuterium beam injection plasma heating is examined using the expression derived. As a result of the scattering due to NES of the slowing down deuterons up to the higher energy range, the average energy loss rate due to NES of 1 MeV deuterons in 20 keV deuterium plasmas decreases by about 60% compared with the case of cold background plasmas. An examination is also made of the fraction of the beam energy deposited to ions. It is shown that when the beam energy is higher than 1 MeV, the increase in the fraction due to NES becomes appreciable. (author). Letter-to-the-editor

  20. Low power RF beam control electronics for the LEB

    Energy Technology Data Exchange (ETDEWEB)

    Mestha, L.K.; Mangino, J.; Brouk, V.; Uher, T.; Webber, R.C.

    1993-05-01

    Beam Control Electronics for the Low Energy Booster (LEB) should provide a fine reference phase and frequency for the High Power RF System. Corrections applied on the frequency of the rf signal will reduce dipole synchrotron oscillations due to power supply regulation errors, errors in frequency source or errors in the cavity voltage. It will allow programmed beam radial position control throughout the LEB acceleration cycle. Furthermore the rf signal provides necessary connections during, adiabatic capture of the beam as injected into the LEB by the Linac and will guarantee LEB rf phase synchronism with the Medium Energy Booster (MEB) rf at a programmed time in the LEB cycle between a unique LEB bucket and a unique MEB bucket. We show in this paper a design and possible interfaces with other subsystems of the LEB such as the beam instrumentation, High Power RF Stations, global accelerator controls and the precision timing system. The outline of various components of the beam control system is also presented followed by some test results.

  1. Logic and control module for the Fermilab booster beam damper

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, B.R.

    1977-01-01

    A logic and control module is included in the electronic system of the booster superdamper. This module produces a 9-bit digital word that controls the delay of beam bunch position information in the Fermilab booster synchrotron so that it arrives at the damping electrodes at the same time as the bunch of beam to be corrected. This delay word generator also has an output feature that only allows delay time decreases as the booster synchrotron frequency program increases monotonically. Such a feature guards against low-index incidental FM from affecting the delay computations.

  2. Energy loss of a fast-electron beam due to the excitation of collective oscillation in hot plasma

    Institute of Scientific and Technical Information of China (English)

    Ma Jin-Yi; Qiu Xi-Jun; Zhu Zhi-Yuan

    2004-01-01

    Energy loss due to a fast-electron beam interacting with the hot plasma at a high density is analysed theoretically.By splitting the particle density fluctuations into the individual part due to the random thermal motion of the individual electrons and the collective part due to plasma-wave excitation, we are concerned with the collective interaction of the relativistic plasma electrons resulting from the Coulomb interactions. Consequently, we derive the frequency of the hot plasma and the "Debye length" with the modification of the relativistic effect. And finally we calculate the energy loss of a fast-electron beam due to the excitation of collective oscillation in the hot plasma.

  3. A Real-Time FPGA based Algorithm for the combination of Beam Loss Acquisition Methods used for Measurement Dynamic Range expansion

    CERN Document Server

    Kwiatkowski, M; Alsdorf, M; Dehning, B; Vigano, W

    2012-01-01

    The aim of the Beam Loss Monitoring Dual Polarity (BLEDP) module under development at the European Organisation for Nuclear Research (CERN) is to measure and digitise with high precision the current produced by several types of beam loss detectors. The BLEDP module consists of eight analogue channels each with a fully differential integrator and an accompanying 16 bit ADC at the output of each analogue integrator. The on-board FPGA device controls the integral periods, instructs the ADC devices to perform measurements at the end of each period and collects the measurements. In the next stage it combines the number of charge and discharge cycles accounted in the last interval together with the cycle fractions observed using the ADC samples to produce a digitised high precision value of the charges collected. This paper describes briefly the principle of the fully differential integrator and focuses on the algorithm employed to process the digital data.

  4. Sensor enabled closed-loop bending control of soft beams

    Science.gov (United States)

    Case, Jennifer C.; White, Edward L.; Kramer, Rebecca K.

    2016-04-01

    Control of soft-bodied systems is challenging, as the absence of rigidity typically implies distributed deformations and infinite degrees-of-freedom. In this paper, we demonstrate closed-loop control of three elastomer beams that vary in bending stiffness. The most stiff beam is comprised of a single prismatic structure made from a single elastomer. In the next beam, increased flexibility is introduced via an indentation in the elastomer, forming a joint. The most flexible beam uses a softer elastomer in the joint section, along with an indentation. An antagonistic pair of actuators bend the joint while a pair of liquid-metal-embedded strain sensors provide angle feedback to a control loop. We were able to achieve control of the system with a proportional-integral-derivative control algorithm. The procedure we demonstrate in this work is not dependent on actuator and sensor choice and could be applied to to other hardware systems, as well as more complex multi-joint robotic structures in the future.

  5. Vibration control of flexible beams using an active hinge

    Science.gov (United States)

    Cudney, H. H., Jr.; Inman, D. J.; Horner, G. C.

    1985-01-01

    The use of an active hinge to attenuate the transverse vibrations of a flexible beam is examined. A slender aluminum beam is suspended vertically, cantilevered at the top. An active hinge is placed at the node of the second vibration mode. The active hinge consists of a torque motor, strain gauge, and tachometer. A control law is implemented using both beam-bending strain and the relative angular velocity measured at this hinge, thereby configuring the hinge to act as an active damper. Results from implementing this control law show little improvement in the first mode damping ratio, 130 percent increase in the second mode damping ratio, and 180 percent increase in the third mode damping ratio. The merits of using a motor with a gearbox are discussed.

  6. Controls and Beam Diagnostics for Therapy-Accelerators

    CERN Document Server

    Eickhoff, H

    2000-01-01

    During the last four years GSI has developed a new procedure for cancer treatment by means of the intensity controlled rasterscan-method. This method includes active variations of beam parameters during the treatment session and the integration of 'on-line' PET monitoring. Starting in 1997 several patients have been successfully treated within this GSI experimental cancer treatment program; within this program about 350 patients shall be treated in the next 5 years. The developments and experiences of this program accompanied by intensive discussions with the medical community led to a proposal for a hospital based light ion accelerator facility for the clinic in Heidelberg. An essential part for patients treatments is the measurement of the beam properties within acceptance and constancy tests and especially for the rasterscan method during the treatment sessions. The presented description of the accelerator controls and beam diagnostic devices mainly covers the requests for the active scanning method, which...

  7. Loss Minimization and Voltage Control in Smart Distribution Grid

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Sloth, Christoffer; Wisniewski, Rafal;

    2014-01-01

    This work presents a strategy for increasing the installation of electric vehicles and solar panels in low-voltage grids, while obeying voltage variation constraints. Our approach employs minimization of active power losses for coordinating consumption and generation of power, as well as reactive...... power control to maintain satisfactory grid operation. Numerical case studies illustrate how our approach can significantly increase installation of both electric vehicles and solar panels, while avoiding unsatisfactory over- and under-voltages throughout the grid....

  8. Adaptive robust control of longitudinal and transverse electron beam profiles

    Science.gov (United States)

    Rezaeizadeh, Amin; Schilcher, Thomas; Smith, Roy S.

    2016-05-01

    Feedback control of the longitudinal and transverse electron beam profiles are considered to be critical for beam control in accelerators. In the feedback scheme, the longitudinal or transverse beam profile is measured and compared to a desired profile to give an error estimate. The error is then used to act on the appropriate actuators to correct the profile. The role of the transverse feedback is to steer the beam in a particular trajectory, known as the "orbit." The common approach for orbit correction is based on approximately inverting the response matrix, and in the best case, involves regulating or filtering the singular values. In the current contribution, a more systematic and structured way of handling orbit correction is introduced giving robustness against uncertainties in the response matrix. Moreover, the input bounds are treated to avoid violating the limits of the corrector currents. The concept of the robust orbit correction has been successfully tested at the SwissFEL injector test facility. In the SwissFEL machine, a photo-injector laser system extracts electrons from a cathode and a similar robust control method is developed for the longitudinal feedback control of the current profile of the electron bunch. The method manipulates the angles of the crystals in the laser system to produce a desired charge distribution over the electron bunch length. This approach paves the way towards automation of laser pulse stacking.

  9. Rotor Field Oriented Control with adaptive Iron Loss Compensation

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1999-01-01

    It is well known from the literature that iron loses in an induction motor implies field angle estimation errors and hence detuning problems. In this paper a new method for estimating the iron loss resistor in an induction motor is presented. The method is based on a traditional dynamic model of ...... current controlled in a Field Oriented Control scheme. This deviation is used to force a MIT-rule based adaptive estimator. An adaptive compensator containing the developed estimator is introduced and verified by simulations and tested by real time experiments....

  10. Rotor Field Oriented Control with adaptive Iron Loss Compensation

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1999-01-01

    It is well known from the literature that iron loses in an induction motor implies field angle estimation errors and hence detuning problems. In this paper a new method for estimating the iron loss resistor in an induction motor is presented. The method is based on a traditional dynamic model of ...... controlled in a Field Oriented Control scheme. This deviation is used to force a MIT-rule based adaptive estimator. An adaptive compensator containing the developed estimator is introduced and verified by simulations and tested by real time experiments....

  11. Neutral beam control systems for the Tandem Mirror Experiment

    International Nuclear Information System (INIS)

    The Tandem Mirror Experiment (TMX) is presently developing the technology and approaches which will be used in larger fusion systems. This paper describes some of the designs which were used in creating the control system for the TMX neutral beams. To create a system of controls that would work near these large, rapid switching current sources required a mixture of different technologies: fiberoptic data transmission, printed circuit and wirewrap techniques, etc

  12. DIII-D Neutral Beam control system operator interface

    International Nuclear Information System (INIS)

    A centralized graphical user interface has been added to the DIII-D Neutral Beam (NB) control systems for status monitoring and remote control applications. This user interface provides for automatic data acquisition, alarm detection and supervisory control of the four NB programmable logic controllers (PLC) as well as the Mode Control PLC. These PLCs are used for interlocking, control and status of the NB vacuum pumping, gas delivery, and water cooling systems as well as beam mode status and control. The system allows for both a friendly user interface as well as a safe and convenient method of communicating with remote hardware that formerly required interns to access. In the future, to enable high level of control of PLC subsystems, complete procedures is written and executed at the touch of a screen control panel button. The system consists of an IBM compatible 486 computer running the FIX DMACS trademark for Windows trademark data acquisition and control interface software, a Texas Instruments/Siemens communication card and Phoenix Digital optical communications modules. Communication is achieved via the TIWAY (Texas Instruments protocol link utilizing both fiber optic communications and a copper local area network (LAN). Hardware and software capabilities will be reviewed. Data and alarm reporting, extended monitoring and control capabilities will also be discussed

  13. A Cherenkov-based Beam Loss Scintillator system for beam, background and online luminosity monitoring at the LHCb experiment at CERN

    CERN Document Server

    Alessio, F; Jacobsson, R

    2013-01-01

    The installation of a scintillator-based system in the LHCb cavern was initially proposed in order to observe injection problems around the LHCb interaction region. Thanks to the fact that LHCb had already developed a custom-made electronics board (BPIM) for the LHCb beam pickups and global LHCb timing monitoring, a complete, inexpensive but flexible and robust system was quickly developed and installed few cm from the beam pipe just in front of the LHCb VELO detector in time for the very first beams injected in the LHC. The current and final system – commonly referred to as Beam Loss Scintillator (BLS) system - ultimately played a central role in the fast beam, background and online luminosity monitoring at LHCb. In this paper, the features of the detector – based on quartz radiator and Cherenkov light - are described, including the functionalities that the system acquired during the proton-proton physics programmes in 2009- 2013 thanks to its flexibility, reliability and sensitivity to beam hal...

  14. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    CERN Document Server

    Kassel, Florian; Dabrowski, Anne; de Boer, Wim

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field,...

  15. Beaconless adaptive-optics technique for HEL beam control

    Science.gov (United States)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  16. Surface chemical reactions induced by well-controlled molecular beams: translational energy and molecular orientation control

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Michio, E-mail: okada@chem.sci.osaka-u.ac.j, E-mail: mokada@cw.osaka-u.ac.j [Renovation Center of Instruments for Science Education and Technology, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 and 1-2 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan)

    2010-07-07

    I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams suggest that the translational energy of the incident molecules plays a significant role. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths, and to develop new methods for the fabrication of thin films. Oriented molecular beams also demonstrate the possibility for controlling surface chemical reactions by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of achieving material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for creating new materials on surfaces with well-controlled chemical reactions. (topical review)

  17. Orbital angular moment of a partially coherent beam propagating through an astigmatic ABCD optical system with loss or gain.

    Science.gov (United States)

    Cai, Yangjian; Zhu, Shijun

    2014-04-01

    We derive the general expression for the orbital angular momentum (OAM) flux of an astigmatic partially coherent beam carrying twist phase [i.e., twisted anisotropic Gaussian-Schell model (TAGSM) beam] propagating through an astigmatic ABCD optical system with loss or gain. The evolution properties of the OAM flux of a TAGSM beam in a Gaussian cavity or propagating through a cylindrical thin lens are illustrated numerically with the help of the derived formula. It is found that we can modulate the OAM of a partially coherent beam by varying the parameters of the cavity or the orientation angle of the cylindrical thin lens, which will be useful in some applications, such as free-space optical communications and particle trapping.

  18. Localization of the large-angle foil-scattering beam loss caused by the multiturn charge-exchange injection

    Science.gov (United States)

    Kato, Shinichi; Yamamoto, Kazami; Yoshimoto, Masahiro; Harada, Hiroyuki; Kinsho, Michikazu

    2013-07-01

    In the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, significant losses were observed at the branching of the H0 dump line and the beam position monitor that was inserted downstream of the H0 dump branch duct. These losses were caused by the large-angle scattering of the injection and circulating beams at the charge-exchange foil. To realize high-power operation, these losses must be mitigated. Therefore, a new collimation system was developed and installed in October 2011. To efficiently optimize this system, the behavior of particles scattered by the foil and produced by the absorber were simulated, and the optimal position and angle of the absorber were investigated. During this process, an angle regulation method for the absorber was devised. An outline of this system, the angle regulation method for the absorber, and the performance of this new collimation system are described.

  19. Control System of Neutral Beam Injection on HT-7

    Institute of Scientific and Technical Information of China (English)

    Wang Yongjun; Hu Chundong; Liu Zhimin; Liu Sheng; Song Shihua; Yang Daoye

    2005-01-01

    Neutral Beam Injection control system (NBICS) is constructed to measure the plasma current, Magnet current, vacuum pressure, cryopump temperature, control water cooling, filament voltage, and power supply, etc. The NBICS, consisting mainly of a Programmable Logic Controller (PLC) subsystem, data acquisition and processing subsystem and cryopump and vacuum pressure monitoring subsystem, has successfully been used on a NBI device. In this article, the design of NBICS on HT-7 is discussed and each subsystem is described in particular.In addition, some experimental results are reported which are very important data for further research related to the HT-7 tokamak.

  20. Ultra-precise holographic beam shaping for microscopic quantum control

    Science.gov (United States)

    Zupancic, Philip; Preiss, Philipp M.; Ma, Ruichao; Lukin, Alexander; Eric Tai, M.; Rispoli, Matthew; Islam, Rajibul; Greiner, Markus

    2016-06-01

    High-resolution addressing of individual ultracold atoms, trapped ions or solid state emitters allows for exquisite control in quantum optics experiments. This becomes possible through large aperture magnifying optics that project microscopic light patterns with diffraction limited performance. We use programmable amplitude holograms generated on a digital micromirror device to create arbitrary microscopic beam shapes with full phase and amplitude control. The system self-corrects for aberrations of up to several $\\lambda$ and reduces them to $\\lambda/50$, leading to light patterns with a precision on the $10^{-4}$ level. We demonstrate aberration-compensated beam shaping in an optical lattice experiment and perform single-site addressing in a quantum gas microscope for $^{87}$Rb.

  1. Ultra-precise holographic beam shaping for microscopic quantum control

    CERN Document Server

    Zupancic, Philip; Ma, Ruichao; Lukin, Alexander; Tai, M Eric; Rispoli, Matthew; Islam, Rajibul; Greiner, Markus

    2016-01-01

    High-resolution addressing of single ultracold atoms, trapped ions or solid state emitters allows for exquisite control in quantum optics experiments. This becomes possible through large aperture magnifying optics that project microscopic light patterns with diffraction limited performance. We use programmable amplitude holograms generated on a digital micromirror device to create arbitrary microscopic beam shapes with full phase and amplitude control. The system self-corrects for aberrations of up to several $\\lambda$ and reduces them to $\\lambda/50$, leading to light patterns with a precision on the $10^{-4}$ level. We demonstrate aberration-compensated beam shaping in an optical lattice experiment and perform single-site addressing in a quantum gas microscope for $^{87}$Rb.

  2. Ultra-precise holographic beam shaping for microscopic quantum control.

    Science.gov (United States)

    Zupancic, Philip; Preiss, Philipp M; Ma, Ruichao; Lukin, Alexander; Eric Tai, M; Rispoli, Matthew; Islam, Rajibul; Greiner, Markus

    2016-06-27

    High-resolution addressing of individual ultracold atoms, trapped ions or solid state emitters allows for exquisite control in quantum optics experiments. This becomes possible through large aperture magnifying optics that project microscopic light patterns with diffraction limited performance. We use programmable amplitude holograms generated on a digital micromirror device to create arbitrary microscopic beam shapes with full phase and amplitude control. The system self-corrects for aberrations of up to several λ and reduces them to λ/50, leading to light patterns with a precision on the 10-4 level. We demonstrate aberration-compensated beam shaping in an optical lattice experiment and perform single-site addressing in a quantum gas microscope for 87Rb. PMID:27410551

  3. Tracking control of a flexible beam by nonlinear boundary feedback

    Directory of Open Access Journals (Sweden)

    Bao-Zhu Guo

    1995-01-01

    Full Text Available This paper is concerned with tracking control of a dynamic model consisting of a flexible beam rotated by a motor in a horizontal plane at the one end and a tip body rigidly attached at the free end. The well-posedness of the closed loop systems considering the dissipative nonlinear boundary feedback is discussed and the asymptotic stability about difference energy of the hybrid system is also investigated.

  4. Influence of the beam-size effect on particle losses at B-factories PEP-II and KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Serbo, V.G. E-mail: serbo@math.nsc.ru

    2004-01-21

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross-section of the e{sup +}e{sup -}{yields}e{sup +}e{sup -}{gamma} process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross-section of this process has to be substantially modified. In the present paper such a beam-size is calculated for bremsstrahlung at B-factories PEP-II and KEKB. We find out that this effect reduces beam losses due to bremsstrahlung by about 20%.

  5. Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces

    Science.gov (United States)

    Hashemi, Mohammed Reza M.; Yang, Shang-Hua; Wang, Tongyu; Sepúlveda, Nelson; Jarrahi, Mona

    2016-10-01

    Engineered metamaterials offer unique functionalities for manipulating the spectral and spatial properties of electromagnetic waves in unconventional ways. Here, we report a novel approach for making reconfigurable metasurfaces capable of deflecting electromagnetic waves in an electronically controllable fashion. This is accomplished by tilting the phase front of waves through a two-dimensional array of resonant metasurface unit-cells with electronically-controlled phase-change materials embedded inside. Such metasurfaces can be placed at the output facet of any electromagnetic radiation source to deflect electromagnetic waves at a desired frequency, ranging from millimeter-wave to far-infrared frequencies. Our design does not use any mechanical elements, external light sources, or reflectarrays, creating, for the first time, a highly robust and fully-integrated beam-steering device solution. We demonstrate a proof-of-concept beam-steering metasurface optimized for operation at 100 GHz, offering up to 44° beam deflection in both horizontal and vertical directions. Dynamic control of electromagnetic wave propagation direction through this unique platform could be transformative for various imaging, sensing, and communication applications, among others.

  6. Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces

    Science.gov (United States)

    Hashemi, Mohammed Reza M.; Yang, Shang-Hua; Wang, Tongyu; Sepúlveda, Nelson; Jarrahi, Mona

    2016-01-01

    Engineered metamaterials offer unique functionalities for manipulating the spectral and spatial properties of electromagnetic waves in unconventional ways. Here, we report a novel approach for making reconfigurable metasurfaces capable of deflecting electromagnetic waves in an electronically controllable fashion. This is accomplished by tilting the phase front of waves through a two-dimensional array of resonant metasurface unit-cells with electronically-controlled phase-change materials embedded inside. Such metasurfaces can be placed at the output facet of any electromagnetic radiation source to deflect electromagnetic waves at a desired frequency, ranging from millimeter-wave to far-infrared frequencies. Our design does not use any mechanical elements, external light sources, or reflectarrays, creating, for the first time, a highly robust and fully-integrated beam-steering device solution. We demonstrate a proof-of-concept beam-steering metasurface optimized for operation at 100 GHz, offering up to 44° beam deflection in both horizontal and vertical directions. Dynamic control of electromagnetic wave propagation direction through this unique platform could be transformative for various imaging, sensing, and communication applications, among others. PMID:27739471

  7. The system of RF beam control for electron gun

    International Nuclear Information System (INIS)

    The system of RF control of three-electrode electron gun current is described. It consists of a source of microwave signal, coaxial line, coaxial RF switch and RF antenna lead. The system allows one to get the electron beam in the form of bunches with the frequency of the accelerating section to achieve the capture of particles in the acceleration mode close to 100%. The results of calculation and analysis of the elements of the system are presented. Characteristics of the devices are obtained experimentally. The results of using RF control in three-electrode electron gun at electron linear accelerator are described

  8. The system of RF beam control for electron gun

    Science.gov (United States)

    Barnyakov, A. M.; Chernousov, Yu. D.; Ivannikov, V. I.; Levichev, A. E.; Shebolaev, I. V.

    2015-06-01

    The system of RF control of three-electrode electron gun current is described. It consists of a source of microwave signal, coaxial line, coaxial RF switch and RF antenna lead. The system allows one to get the electron beam in the form of bunches with the frequency of the accelerating section to achieve the capture of particles in the acceleration mode close to 100%. The results of calculation and analysis of the elements of the system are presented. Characteristics of the devices are obtained experimentally. The results of using RF control in three-electrode electron gun at electron linear accelerator are described.

  9. Experimental studies on active vibration control of a smart composite beam using a PID controller

    Science.gov (United States)

    Jovanović, Miroslav M.; Simonović, Aleksandar M.; Zorić, Nemanja D.; Lukić, Nebojša S.; Stupar, Slobodan N.; Ilić, Slobodan S.

    2013-11-01

    This paper presents experimental verification of the active vibration control of a smart cantilever composite beam using a PID controller. In order to prevent negative occurrences in the derivative and integral terms in a PID controller, first-order low-pass filters are implemented in the derivative action and in the feedback of the integral action. The proposed application setup consists of a composite cantilever beam with a fiber-reinforced piezoelectric actuator and strain gage sensors. The beam is modeled using a finite element method based on third-order shear deformation theory. The experiment considers vibration control under periodic excitation and an initial static deflection. A control algorithm was implemented on a PIC32MX440F256H microcontroller. Experimental results corresponding to the proposed PID controller are compared with corresponding results using proportional (P) control, proportional-integral (PI) control and proportional-derivative (PD) control. Experimental results indicate that the proposed PID controller provides 8.93% more damping compared to a PD controller, 14.41% more damping compared to a PI controller and 19.04% more damping compared to a P controller in the case of vibration under periodic excitation. In the case of free vibration control, the proposed PID controller shows better performance (settling time 1.2 s) compared to the PD controller (settling time 1.5 s) and PI controller (settling time 2.5 s).

  10. ROBUST POSITIONING OF LASER BEAMS USING PROPORTIONAL INTEGRAL DERIVATIVE AND BASED OBSERVER-FEEDBACK CONTROL

    OpenAIRE

    Kwabena A. Konadu; Sun Yi; Wonchang Choi; Taher Abu-Lebdeh

    2013-01-01

    High-precision positioning of laser beams has been a great challenge in industry due to inevitable existence of noise and disturbance. The work presented in this study addresses this problem by employing two different control strategies: Proportional Integral Derivative (PID) control and state feedback control with an observer. The control strategies are intended to stabilize the position of a laser beam on a Position Sensing Device (PSD) located on a Laser Beam Stabilization (or, laser beam ...

  11. Diffraction control in PT-symmetric photonic lattices: from beam rectification to dynamic localization

    CERN Document Server

    Kartashov, Yaroslav V; Konotop, Vladimir V; Torner, Lluis

    2016-01-01

    We address the propagation of light beams in longitudinally modulated PT-symmetric lattices, built as arrays of couplers with periodically varying separation between their channels, and show a number of possibilities for efficient diffraction control available in such non-conservative structures. The dynamics of light in such lattices crucially depends on the ratio of the switching length for the straight segments of each coupler and the longitudinal lattice period. Depending on the longitudinal period, one can achieve either beam rectification, when the input light propagates at a fixed angle across the structure without diffractive broadening, or dynamic localization, when the initial intensity distribution is periodically restored after each longitudinal period. Importantly, the transition between these two different propagation regimes can be achieved by tuning only gain and losses acting in the system, provided that the PT-symmetry remains unbroken. The impact of Kerr nonlinearity is also discussed.

  12. Calculation of abort thresholds for the Beam Loss Monitoring System of the Large Hadron Collider at CERN

    CERN Document Server

    Nemcic, Martin; Dehning, Bernd

    The Beam Loss Monitoring (BLM) System is one of the most critical machine protection systems for the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), Switzerland. Its main purpose is to protect the superconducting magnets from quenches and other equipment from damage by requesting a beam abort when the measured losses exceed any of the predefined threshold levels. The system consist of circa 4000 ionization chambers which are installed around the 27 kilometres ring (LHC). This study aims to choose a technical platform and produce a system that addresses all of the limitations with the current system that is used for the calculation of the LHC BLM abort threshold values. To achieve this, a comparison and benchmarking of the Java and .NET technical platforms is performed in order to establish the most suitable solution. To establish which technical platform is a successful replacement of the current abort threshold calculator, comparable prototype systems in Java and .NET we...

  13. Experimental demonstration of a controllable electrostatic molecular beam splitter.

    Science.gov (United States)

    Deng, Lianzhong; Liang, Yan; Gu, Zhenxing; Hou, Shunyong; Li, Shengqiang; Xia, Yong; Yin, Jianping

    2011-04-01

    We experimentally demonstrate a controllable electrostatic beam splitter for guided ND3 molecules with a single Y-shaped charged wire and a homogeneous bias field generated by a charged metallic parallel-plate capacitor. We study the dependences of the splitting ratio R of the guided ND3 beam and its relative guiding efficiency η on the voltage difference between two output arms of the splitter. The influences of the molecular velocity v and the cutting position L on the splitting ratio R are investigated as well, and the guiding and splitting dynamic processes of cold molecules are simulated. Our study shows that the splitting ratio R of our splitter can be conveniently adjusted from 10% to 90% by changing ΔU from -6  kV to +6  kV, and the simulated results are consistent with our experimental ones.

  14. Design and construction of the first prototype ionization chamber for CSNS and PA beam loss monitor (BLM) system

    Institute of Scientific and Technical Information of China (English)

    XU Mei-Hang; TIAN Jian-Min; CHEN Chang; CHEN Yuan-Bo; XU Tao-Guang; LU Shuang-Tong

    2009-01-01

    Design and construction of the first prototype ionization chamber for CSNS and Proton Accelerator (PA) beam loss monitor (BLM) system is reported. The low leakage current (<0.1 pA), good plateau (≈800 V) and linearity range up to 200 Roentgen/h axe obtained in the first prototype. All of these give us good experience for further improving the ionization chamber construction.

  15. Low-level feedback control for the phase regulation of CLIC Drive Beam Klystrons

    CERN Document Server

    AUTHOR|(SzGeCERN)752526

    2015-01-01

    The requirement of luminosity loss below 1% raises tight tolerances for the phase and power stability of the CLIC drive beam (DB) klystrons and consequently for the high voltage pulse ripple of the modulators. A low-level RF (LLRF) feedback system needs to be developed and combined with the modulator in order to guarantee the phase and amplitude tolerances. To this aim, three feedback control strategies were investigated, i) Proportional Integral (PI) controller, ii) Linear Quadratic Integral Regulator (LQI) and iii) Model Predictive Controller (MPC). The klystron, as well as the incident phase noise were modelled and used for the design and evaluation of the controllers. First simulation results are presented along with future steps and directions.

  16. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  17. A novel digitization scheme with FPGA-base TDC for beam loss monitors operating at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinyuan; Warner, Arden; /Fermilab

    2011-11-01

    Recycling integrators are common current-to-frequency converting circuits for measurements of low current such as that produced by Fermilab's cryogenic ionization chambers. In typical digitization/readout schemes, a counter is utilized to accumulate the number of pulses generated by the recycling integrator to adequately digitize the total charge. In order to calculate current with reasonable resolution (e.g., 7-8 bits), hundreds of pulses must be accumulated which corresponds to a long sampling period, i.e., a very low sampling rate. In our new scheme, an FPGA-based Time-to-Digital Convertor (TDC) is utilized to measure the time intervals between the pulses output from the recycling integrator. Using this method, a sample point of the current can be made with good resolution (>10 bits) for each pulse. This effectively increases the sampling rates by hundreds of times for the same recycling integrator front-end electronics. This scheme provides a fast response to the beams loss and is potentially suitable for accelerator protection applications. Moreover, the method is also self-zero-suppressed, i.e., it produces more data when the beam loss is high while it produces significantly less data when the beam loss is low.

  18. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    Science.gov (United States)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.

  19. Stability Analysis of Nonlinear Feedback Control Methods for Beam Halo-chaos

    Institute of Scientific and Technical Information of China (English)

    WANGZhong-sheng; FANGJin-qing; CHENGuan-rong

    2003-01-01

    Control of beam halo-chaos has been a more challenge subject in recent years, in which nonlinear feedback method for beam halo-chaos has been developed for control of beam halo-chaos in high-current proton linear accelerators. However, stability analysis of nonlinear feedback control methods for beam halo-chaos has still been an open and important topic in this field. In this letter.

  20. Robust Laser Beam Tracking Control using Micro/Nano Dual-Stage Manipulators

    OpenAIRE

    Amari, Nabil; Folio, David; Ferreira, Antoine

    2013-01-01

    International audience This paper presents a study of the control problem of a laser beam illuminating and focusing a microobject subjected to dynamic disturbances using light intensity for feedback only. The main idea is to guide and track the beam with a hybrid micro/nanomanipulator which is driven by a control signal generated by processing the beam intensity sensed by a four-quadrant photodiode. Since the pointing location of the beam depends on real-time control issues related to temp...

  1. Quality control and patient dosimetry in dental cone beam CT

    International Nuclear Information System (INIS)

    This paper presents the initial experience in performing quality control and patient dose measurements in a cone beam computed tomography (CT) scanner (ILUMATM Ultra, IMTEC Imaging, USA) for oral and maxillofacial radiology. The X-ray tube and the generator were tested first, including the kVp accuracy and precision, and the half-value layer (HVL). The following tests specific for panoramic dental systems were also performed: tube output, beam size and beam alignment to the detector. The tests specific for CT included measurements of noise and CT numbers in water and in air, as well as the homogeneity of CT numbers. The most appropriate dose quantity was found to be the air kerma-area product (KAP) measured with a KAP-metre installed at the tube exit. KAP values were found to vary from 110 to 185 μGy m2 for available adult protocols and to be 54 μGy m2 for the paediatric protocol. The effective dose calculated with the software PCXMC (STUK (Finland)) was 0.05 mSv for children and 0.09-0.16 mSv for adults. (authors)

  2. Ion beam polarization in storage rings. Production, controlling and preservation

    Energy Technology Data Exchange (ETDEWEB)

    Prozorov, A. [St. Petersburg State Univ. (Russian Federation). V.A. Fock Research Institute for Physics; Labzowsky, L. [St. Petersburg State Univ. (Russian Federation). V.A. Fock Research Institute for Physics]|[St. Petersburg Nuclear Physics Institute (Russian Federation); Plunien, G. [Technische Univ. Dresden (Germany). Inst. fuer Theoretische Physik; Liesen, D. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Heidelberg Univ. (Germany). Physikalisches Inst.; Bosch, F. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Fritzsche, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Heidelberg Univ. (Germany). Physikalisches Inst.]|[Max-Planck Insitute of Nuclear Physics, Heidelberg (Germany); Surzhykov, A. [Max-Planck Insitute of Nuclear Physics, Heidelberg (Germany)

    2008-03-15

    The present paper reports on the actual status of the theoretical concepts for the production of polarized heavy ion beams in storage rings and for methods to control online the degree of polarization as well as investigations of the preservation of the polarization during the ion movement across the magnetic system of the ring. It is argued that for hydrogen-like ions beam polarization can be built up efficiently by optical pumping of the Zeeman sublevels of ground-state hyperfine levels and that the maximal achievable nuclear polarization exceeds 90%. Of special interest are polarized helium-like ions which can be produced by the capture of one electron, because in selected cases parity nonconservation effects are found to be of unprecedented size in Atomic Physics. The measurements of these effects require online-diagnostics of the degree of the ion beam polarization. It is shown that this can be accomplished by an online-detection of the linear polarization of the X-rays which are emitted with the capture of the electron. In order to investigate the preservation of the polarization of the ions stored in the ring, the concept of an instantaneous quantization axis is introduced. The dynamics of this axis and the behaviour of the polarization with respect to it are explored in detail. (orig.)

  3. Active Position Control of a Flexible Smart Beam Using Internal Model Control

    Science.gov (United States)

    LEE, Y.-S.; ELLIOTT, S. J.

    2001-05-01

    The problem of controlling the position at the tip of a flexible cantilever beam to follow a command signal is considered, by using a pair of piezoelectric actuators at the clamped end. The beam is lightly damped and so the natural transient response is rather long, and also since the sensor and actuator are not collocated, the plant response is non-minimum phase. Two control strategies were investigated. The first involved conventional PID control in which the feedback gains were adjusted to give the fastest closed-loop response to a step input. The second control strategy was based on an internal model control (IMC) architecture. The control filter in the IMC controller was a digital FIR device designed to minimize the expectation of the mean square tracking error. In practice, such smart beams could be exposed to temperature fluctuations and changes in geometry. The effect of these variations on the stability was studied and it is shown that the need for robustness to such variations leads to a limitation in the performance of an IMC controller. The improvement in the stability robustness by incorporating control effort weighting into the cost function being minimized was investigated, as was the incorporation of modelling delay in the design of the IMC control filter. The IMC controller designed for the beam was found to have much reduced settling times to a step input compared with those of the PID controller while maintaining good robustness to changes in temperature. However, the extremely low damping of the experimental beam made it difficult to implement an accurate plant model in practice.

  4. Acoustic beam control in biomimetic projector via velocity gradient

    Science.gov (United States)

    Gao, Xiaowei; Zhang, Yu; Cao, Wenwu; Dong, Erqian; Song, Zhongchang; Li, Songhai; Tang, Liguo; Zhang, Sai

    2016-07-01

    A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.

  5. A device for a proton beam energy control for radiotherapy

    International Nuclear Information System (INIS)

    A Medical-Technical Facility for hadron radiotherapy based on the JINR DLNP phasotron has been constructed and put into operation. Upgrading of methods, hardware and software for radiotherapy is one of the main tasks for further development of the Facility. This article concerns one of the fields of this work, that is the development of equipment for dynamic irradiation of a deep lying target - the construction of a device for the proton beam energy control and measurement of its depth-dose curve in a treatment room. (author)

  6. STABILIZATION OF VIBRATING BEAM BY VELOCITY FEEDBACK CONTROL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A flexible structure consisting of a Euler-Bernoulli beam with co-located sensors and actuators is considered.The control is a shear force in proportion to velocity.It is known that uniform exponential stability can be achieved with velocity feedback.A sensitivity asymptotic analysis of the system's eigenvalues and eigenfunctions is set up.The authors prove that,for K1 ∈ [0,+∞),all of the generalized eigenvectors of A form a Riesz basis of H.It is also proved that the optimal exponential decay rate can be obtained from the spectrum of the system for 0 < Kl < +∞.

  7. A Device for a Proton Beam Energy Control for Radiotherapy

    CERN Document Server

    Agapov, A V; Molokanov, A G; Shvidkii, S V

    2004-01-01

    A Medical-Technical Facility for hadron radiotherapy based on DLNP JINR phasotron has been constructed and put into operation. Upgrading of methods, hardware and software for radiotherapy is one of the main tasks for further development of the Facility. This article concerns one of the fields of this work, that is the development of equipment for dynamic irradiation of deep lying target - the construction of a device for the proton beam energy control and measurement of its depth-dose curve in a treatment room.

  8. Analysis of Power Converter Losses in Vector Control System of a Self-Excited Induction Generator

    Science.gov (United States)

    Bašić, Mateo; Vukadinović, Dinko; Polić, Miljenko

    2014-03-01

    This paper provides analysis of losses in the hysteresis-driven three-phase power converter with IGBTs and free-wheeling diodes. The converter under consideration is part of the self-excited induction generator (SEIG) vector control system. For the analysis, the SEIG vector control system is used in which the induction generator iron losses are taken into account. The power converter losses are determined by using a suitable loss estimation algorithm reported in literature. The chosen algorithm allows the power converter losses to be determined both by type (switching/conduction losses) and by converter component (IGBT/diode losses). The overall power converter losses are determined over wide ranges of rotor speed, dc-link voltage and load resistance, and subsequently used for offline correction of the overall control system's losses (efficiency) obtained through control system simulations with an ideal power converter. The control system's efficiency values obtained after the correction are compared with the measured values.

  9. Exponential stabilization of a Rayleigh beam using collocated control

    NARCIS (Netherlands)

    Weiss, George; Curtain, Ruth F.

    2008-01-01

    We consider a hinged elastic beam described by the Rayleigh beam equation on the interval [0, pi]. We assume the presence of two sensors: one measures the angular velocity of the beam at a point xi is an element of [0, pi] and the other measures the bending (curvature) of the beam at the same point.

  10. Active vibration control of a free-free beam by using a tendon mechanism

    Science.gov (United States)

    Tani, Junji; Ueda, Hiroki

    This paper is concerned with an active vibration control of a free-free beam. The beam is reduced to a finite-degree-of-freedom system by the modal analysis, in which the mode function is derived from the transfer matrix method. A control force is produced by a pair of tendons and a DC servo motor attached to the beam. The state of the beam is presumed by the minimum order state observer and the control force is determined by the digital optimum regulator theory. It is found that the active tendon control method is effective to suppress the vibration of the free-free beam.

  11. An FPGA Based Implementation for Real-Time Processing of the LHC Beam Loss Monitoring System's Data

    CERN Document Server

    Dehning, B; Emery, J; Ferioli, G; Zamantzas, C

    2006-01-01

    The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss Monitoring (BLM) system. At each turn, there will be several thousands of data to record and process in order to decide if the beams should be permitted to continue circulating or their safe extraction is necessary to be triggered. The processing involves a proper analysis of the loss pattern in time and for the decision the energy of the beam needs to be accounted. This complexity needs to be minimized by all means to maximize the reliability of the BLM system and allow a feasible implementation. In this paper, a field programmable gate array (FPGA) based implementation is explored for the real-time processing of the LHC BLM data. It gives emphasis on the highly efficient Successive Running Sums (SRS) technique used that allows many and long integration periods to be maintained for each detector's data with relatively small leng...

  12. Robotics Methods for Beam Line Instrument Simulation and Control

    International Nuclear Information System (INIS)

    The majority of sample positioning systems in use at neutron and synchrotron beam line facilities around the world, may be accurately described as serial robot manipulators, i.e. they comprise a series of rotating or translating links connected together in a chain, with the tool or sample that is to be manipulated attached to one end. This characterization suggests that the methods of serial robot kinematic modeling might be usefully applied to the task of simulating and controlling beam line positioning systems. We describe how this approach is being developed within the planning, simulation and control software, SScanSS. The advantages of using the robotics approach are shown to include the ability to: (1) model any number of disparate positioning systems from within one software (and hence one user interface), with a minimum of instrument specific code, (2) accurately and speedily position and orientate samples of arbitrary complexity, and (3) provide options for automatically optimizing other important experimental parameters, such as the measurement count time. The possible extension of this technique to include parallel robotic systems, such as Stewart Platforms, is also discussed

  13. Suppression of beam halo-chaos using nonlinear feedback discrete control method

    CERN Document Server

    Fang Jin Qing; Chen Guan Rong; Luo Xiao Shu; Weng Jia Qiang

    2002-01-01

    Based on nonlinear feedback control method, wavelet-based feedback controller as a especial nonlinear feedback function is designed for controlling beam halo-chaos in high-current accelerators of driven clean nuclear power system. PIC simulations show that suppression of beam halo-chaos are realized effectively after discrete control of wavelet-based feed-back is applied to five kinds of the initial proton beam distributions, respectively. The beam halo strength factor is quickly reduced to zero, and other statistical physical quantities of beam halo-chaos are more than doubly reduced. These performed PIC simulation results demonstrate that the developed methods are very effective for control of beam halo-chaos. Potential application of the beam halo-chaos control methods is discussed finally

  14. Modelling the Loss of Steel-Concrete Bonds in Corroded Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2007-01-01

    The existing stochastic models for deterioration of reinforced concrete structures is extended by adding modelling of "loss of bond" due to corrosion between the reinforcement bars and the surrounding concrete.......The existing stochastic models for deterioration of reinforced concrete structures is extended by adding modelling of "loss of bond" due to corrosion between the reinforcement bars and the surrounding concrete....

  15. Control of beam halo-chaos by delayed self-controlling feedback

    CERN Document Server

    Zhu Lun Wu; Gao Yuan; Fang Jin Qing

    2002-01-01

    The delayed self-controlling feedback method is used to control beam halo-chaos in high-intensity accelerator effectively under five different initial distributions of protons. A brief theoretic analysis is presented. This method, considering its linear controller and weak feedback, has the advantage in technology realizability and cost saving. It cna be a good reference in the application to high-intensity accelerators

  16. A general algorithm for calculation of recombination losses in ionization chambers exposed to ion beams

    CERN Document Server

    Christensen, Jeppe brage; Bassler, Niels

    2016-01-01

    Dosimetry with ionization chambers in clinical ion beams for radiation therapy requires correction for recombination effects. However, common radiation protocols discriminate between initial and general recombination and provide no universal correction method for the presence of both recombination types in ion beams of charged particles heavier than protons. Here, we present the open source code IonTracks, where the combined initial and general recombination effects in principle can be predicted for any ion beam with arbitrary particle-energy spectrum and temporal structure. IonTracks uses track structure theory to distribute the charge carriers in ion tracks. The charge carrier movements are governed by a pair of coupled differential equations, based on fundamental physical properties as charge carrier drift, diffusion, and recombination, which are solved numerically while the initial and general charge carrier recombination is computed. The algorithm is numerically stable and in accordance with experimental...

  17. Examination of Icing Induced Loss of Control and Its Mitigations

    Science.gov (United States)

    Reehorst, Andrew L.; Addy, Harold E., Jr.; Colantonio, Renato O.

    2010-01-01

    Factors external to the aircraft are often a significant causal factor in loss of control (LOC) accidents. In today s aviation world, very few accidents stem from a single cause and typically have a number of causal factors that culminate in a LOC accident. Very often the "trigger" that initiates an accident sequence is an external environment factor. In a recent NASA statistical analysis of LOC accidents, aircraft icing was shown to be the most common external environmental LOC causal factor for scheduled operations. When investigating LOC accident or incidents aircraft icing causal factors can be categorized into groups of 1) in-flight encounter with super-cooled liquid water clouds, 2) take-off with ice contamination, or 3) in-flight encounter with high concentrations of ice crystals. As with other flight hazards, icing induced LOC accidents can be prevented through avoidance, detection, and recovery mitigations. For icing hazards, avoidance can take the form of avoiding flight into icing conditions or avoiding the hazard of icing by making the aircraft tolerant to icing conditions. Icing detection mitigations can take the form of detecting icing conditions or detecting early performance degradation caused by icing. Recovery from icing induced LOC requires flight crew or automated systems capable of accounting for reduced aircraft performance and degraded control authority during the recovery maneuvers. In this report we review the icing induced LOC accident mitigations defined in a recent LOC study and for each mitigation describe a research topic required to enable or strengthen the mitigation. Many of these research topics are already included in ongoing or planned NASA icing research activities or are being addressed by members of the icing research community. These research activities are described and the status of the ongoing or planned research to address the technology needs is discussed

  18. Fullerene-assisted electron-beam lithography for pattern improvement and loss reduction in InP membrane waveguide devices.

    Science.gov (United States)

    Jiao, Yuqing; Pello, Josselin; Mejia, Alonso Millan; Shen, Longfei; Smalbrugge, Barry; Geluk, Erik Jan; Smit, Meint; van der Tol, Jos

    2014-03-15

    In this Letter, we present a method to prepare a mixed electron-beam resist composed of a positive resist (ZEP520A) and C60 fullerene. The addition of C60 to the ZEP resist changes the material properties under electron beam exposure significantly. An improvement in the thermal resistance of the mixed material has been demonstrated by fabricating multimode interference couplers and coupling regions of microring resonators. The fabrication of distributed Bragg reflector structures has shown improvement in terms of pattern definition accuracy with respect to the same structures fabricated with normal ZEP resist. Straight InP membrane waveguides with different lengths have been fabricated using this mixed resist. A decrease of the propagation loss from 6.6 to 3.3  dB/cm has been demonstrated.

  19. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller

    CERN Document Server

    Jofre, M; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W; 10.1364/OE.20.012247

    2012-01-01

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than $\\sim 20$ ms. Given the unification of components to fully cont...

  20. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    International Nuclear Information System (INIS)

    We have determined ''effective'' Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  1. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    Science.gov (United States)

    Emfietzoglou, D.; Kyriakou, I.; Garcia-Molina, R.; Abril, I.; Kostarelos, K.

    2010-09-01

    We have determined "effective" Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  2. Damping of Torsional Beam Vibrations by Control of Warping Displacement

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Hoffmeyer, David; Ejlersen, Christian

    2016-01-01

    Supplemental damping of torsional beam vibrations is considered by viscous bimoments acting on the axial warping displacement at the beam supports. The concept is illustrated by solving the governing eigenvalue problem for various support configurations with the applied bimoments represented...

  3. Chemical precipitation for controlling nitrogen loss during composting.

    Science.gov (United States)

    Ren, Li-Mei; Li, Guo-Xue; Shen, Yun-Jun; Schuchardt, Frank; Lu Peng

    2010-05-01

    Aimed at controlling the nitrogen loss during composting, the mixture of magnesium hydroxide (Mg(OH)( 2)) and phosphoric acid (H(3)PO(4)) (molar ratio 1:2) were utilized as additives to avoid increasing total salinity. In trial TA, the additives were put into absorption bottles connecting with a gas outlet of fermentor (ex situ method); in trial TB, the additives were directly added to the composting materials (in situ method). During the 26 day composting period, the temperature, pH, total organic carbon (TOC), total nitrogen (TN), ammonium nitrogen (NH(4)(+)-N), total phosphorus (TP), available phosphorus (AP) and germination index (GI) were measured. The experimental results show that the additives reduced the pH, while NH( 4)(+)-N and TN were obviously improved. NH(4)( +)-N was 11.9 g kg(-1) and 3 g kg(- 1) in amended compost trial (TB) and unamended compost trial (TA), respectively; TN increased from 26.5 g kg(-1) to 40.3 g kg(-1) in TB and increased from 26.5 g kg( -1) to 26.8 g kg(-1) in TA. Analysis of the TOC and carbon mass revealed that absorbents accelerated the degradation of organic matter. The germination index test showed the maturity of TB (102%) was better than TA (82%) in final compost. Furthermore, TP and AP were also obviously improved. X-ray diffraction analysis of precipitation showed that the precipitation in absorption bottle of TA was newberyite (MgHPO( 4) 3H(2)O), however, the crystal in the TB compost was struvite (MgNH(4)PO(4) 6H(2)O: magnesium ammonium phosphate). These results indicated that Mg(OH)(2) and H(3)PO( 4) could reduce the ammonia emission by struvite crystallization reaction. Optimal conditions for struvite precipitation should be determined for different systems. PMID:19808738

  4. Beam losses from ultra-peripheral nuclear collisions between Pb ions in the Large Hadron Collider and their alleviation

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R.; /CERN; Bocian, D.; /Fermilab /CERN; Gilardoni, S.; Jowett, J.M.; /CERN

    2009-08-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of {sup 208}Pb{sup 82+} ion operation in the LHC, with focus on the alice interaction region, and show that the expected heat load during nominal {sup 208}Pb{sup 82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  5. Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam

    Science.gov (United States)

    Thomé, Lionel; Debelle, Aurélien; Garrido, Frédérico; Trocellier, Patrick; Serruys, Yves; Velisa, Gihan; Miro, Sandrine

    2013-04-01

    Single and dual-beam irradiations of oxide (c-ZrO2, MgO, Gd2Ti2O7) and carbide (SiC) single crystals were performed to study combined effects of nuclear (Sn) and electronic (Se) energy losses. Rutherford backscattering experiments in channeling conditions show that the Sn/Se cooperation induces a strong decrease of the irradiation-induced damage in SiC and MgO and almost no effects in c-ZrO2 and Gd2Ti2O7. The healing process is ascribed to electronic excitations arising from the electronic energy loss of swift ions. These results present a strong interest for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where expected cooperative Sn/Se effects may lead to the preservation of the integrity of nuclear devices.

  6. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  7. Robust Collimation Control of Laser-Generated Ion Beam

    OpenAIRE

    Kawata, S; Takano, M.; Kamiyama, D.; T. Nagashima; Barada, D.; Gu, Y. J.; Li, X; Yu, Q; Kong, Q.; Wang, P. X.

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters a...

  8. Ramsey-type phase control of free electron beams

    CERN Document Server

    Echternkamp, Katharina E; Schäfer, Sascha; Ropers, Claus

    2016-01-01

    Interference between multiple distinct paths is a defining property of quantum physics, where "paths" may involve actual physical trajectories, as in interferometry, or transitions between different internal (e.g. spin) states, or both. A hallmark of quantum coherent evolution is the possibility to interact with a system multiple times in a phase-preserving manner. This principle underpins powerful multi-dimensional optical and nuclear magnetic resonance spectroscopies and related techniques, including Ramsey's method of separated oscillatory fields used in atomic clocks. Previously established for atomic, molecular and quantum dot systems, recent developments in the optical quantum state preparation of free electron beams suggest a transfer of such concepts to the realm of ultrafast electron imaging and spectroscopy. Here, we demonstrate the sequential coherent interaction of free electron states with two spatially separated, phase-controlled optical near-fields. Ultrashort electron pulses are acted upon in ...

  9. Calculated energy loss of a swift fullerene ion beam in InP

    OpenAIRE

    Abril Sánchez, Isabel; García Molina, Rafael; Denton Zanello, Cristian D.; Heredia Ávalos, Santiago

    2009-01-01

    Bombardment of semiconductors with fullerene has been used to induce the formation of tracks. It is now accepted that target electronic excitation and ionization, which gives rise to the slowing down of the projectile is essential to calculate the track diameter. In the case of cluster beams, like fullerenes, the electronic excitation induced by each of the cluster constituents is enhanced, for certain projectile energies and target depths, by the so-called vicinage effects. Here we use a sim...

  10. Nonlinear Control of Beam Halo-Chaos in Accelerator-Driven Clean Nuclear Power System

    Institute of Scientific and Technical Information of China (English)

    FANG JinQing; CHEN GuanRong; ZHOU LiuLai; WENG JiaQiang

    2002-01-01

    Beam halo-chaos in high-current accelerators has become a key concerned issue because it can cause excessive radioactivity from the accelerators therefore significantly limits their applications in industry, medicine, and national defense. Some general engineering methods for chaos control have been developed in recent years, but they generally are unsuccessful for beam halo-chaos suppression due to many technical constraints. Beam halo-chaos is essentially a spatiotemporal chaotic motion within a high power proton accelerator. In this paper, some efficient nonlinear control methods, including wavelet function feedback control as a special nonlinear control method, are proposed for controlling beam halo-chaos under five kinds of the initial proton beam distributions (i.e., Kapchinsky-Vladimirsky, full Gauss,3-sigma Gauss, water-bag, and parabola distributions) respectively. Particles-in-cell simulations show that after control of beam halo-chaos, the beam halo strength factor is reduced to zero, and other statistical physical quantities of beam halo-chaos are doubly reduced. The methods we developed is very effective for suppression of proton beam halo-chaos in a periodic focusing channel of accelerator. Some potential application of the beam halo-chaos control in experiments is finally pointed out.

  11. Beam Losses in the Extraction Line of a TeV E+ E- Linear Collider With a 20-Mrad Crossing Angle

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; /Uppsala U.; Nosochkov, Y.; /SLAC

    2006-03-29

    In this paper, we perform a detailed study of the power losses along the postcollision extraction line of a TeV e+e- collider with a crossing angle of 20 mrad between the beams at the interaction point. Five cases are considered here: four luminosity configurations for ILC and one for CLIC. For all of them, the strong beam-beam effects at the interaction point lead to an emittance growth for the outgoing beams, as well as to the production of beamstrahlung photons and e+e- pairs. The power losses along the 20 mrad extraction line, which are due to energy deposition by a fraction of the disrupted beam, of the beamstrahlung photons and of the e+e- coherent pairs, were estimated in the case of ideal collisions, as well as with a vertical position or angular o set at the interaction point.

  12. A bench measurement of the energy loss of a stored beam to a cavity

    International Nuclear Information System (INIS)

    A rather simple electronic bench experiment is proposed for obtaining a measure of the impulse energy loss of a stored particle bunch of an rf cavity or other vacuum-chamber structure---the so-called ''cavity radiation.'' The proposed method is analyzed in some detail. 2 refs., 4 figs

  13. Adaptive-robust Control of a Smart Beam with Support Excitation Using Piezoelectric Layers

    Directory of Open Access Journals (Sweden)

    Mohammad Azadi

    2013-04-01

    Full Text Available In this paper, vibrations of a beam with support excitation and a tip mass are suppressed using piezoelectric layers. The beam is fixed to a motion support from one end and the other end is free with an attached mass. The beam is considered as an Euler-Bernoulli beam. The governing equations of motion are derived based on the generalized function theory and Lagrange-Rayleigh-Ritz technique. An adaptive-robust control scheme is applied to control the vibrations of the beam. The mathematical modelling of the beam with control algorithm is derived and in purpose to study the effect of the amount of tip mass, size and location of the piezoelectric layers and the type of the support excitation on the beam vibrations, the system is simulated. Finally, the results of simulation are presented.

  14. On a multi-channel transportation loss system with controlled input and controlled service

    Directory of Open Access Journals (Sweden)

    Jewgeni Dshalalow

    1987-01-01

    Full Text Available A multi-channel loss queueing system is investigated. The input stream is a controlled point process. The service in each of m parallel channels depends on the state of the system at certain moments of time when input and service may be controlled. To obtain explicitly the limiting distribution of the main process (Zt (the number of busy channels in equilibrium, an auxiliary three dimensional process with two additional components (one of them is a semi-Markov process is treated as semi-regenerative process. An optimization problem is discussed. Simple expressions for an objective function are derived.

  15. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  16. Model-based beam control for illumination of remote objects, part II: laboratory testbed

    Science.gov (United States)

    Basu, Santasri; Voelz, David; Chandler, Susan M.; Lukesh, Gordon W.; Sjogren, Jon

    2004-10-01

    When a laser beam propagates through the atmosphere, it is subject to corrupting influences including mechanical vibrations, turbulence and tracker limitations. As a result, pointing errors can occur, causing loss of energy or signal at the target. Nukove Scientific Consulting has developed algorithms to estimate these pointing errors from the statistics of the return photons from the target. To prove the feasibility of this approach for real-time estimation, an analysis tool called RHINO was developed by Nukove. Associated with this effort, New Mexico State University developed a laboratory testbed, the ultimate objective being to test the estimation algorithms under controlled conditions and to stream data into RHINO to prove the feasibility of real-time operation. The present paper outlines the description of this testbed and the results obtained through RHINO when the testbed was used to test the estimation approach.

  17. Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

    Directory of Open Access Journals (Sweden)

    Pravin Kumar

    2014-10-01

    Full Text Available We report the synthesis of Pt nanoparticles and their burrowing into silicon upon irradiation of a Pt–Si thin film with medium-energy neon ions at constant fluence (1.0 × 1017 ions/cm2. Several values of medium-energy neon ions were chosen in order to vary the ratio of the electronic energy loss to the nuclear energy loss (Se/Sn from 1 to 10. The irradiated films were characterized using Rutherford backscattering spectroscopy (RBS, atomic force microscopy (AFM, scanning electron microscopy (SEM, X-ray diffraction (XRD and high resolution transmission electron microscopy (HRTEM. A TEM image of a cross section of the film irradiated with Se/Sn = 1 shows ≈5 nm Pt NPs were buried up to ≈240 nm into the silicon. No silicide phase was detected in the XRD pattern of the film irradiated at the highest value of Se/Sn. The synergistic effect of the energy losses of the ion beam (molten zones are produced by Se, and sputtering and local defects are produced by Sn leading to the synthesis and burrowing of Pt NPs is evidenced. The Pt NP synthesis mechanism and their burrowing into the silicon is discussed in detail.

  18. High-speed reference-beam-angle control technique for holographic memory drive

    Science.gov (United States)

    Yamada, Ken-ichiro; Ogata, Takeshi; Hosaka, Makoto; Fujita, Koji; Okuyama, Atsushi

    2016-09-01

    We developed a holographic memory drive for next-generation optical memory. In this study, we present the key technology for achieving a high-speed transfer rate for reproduction, that is, a high-speed control technique for the reference beam angle. In reproduction in a holographic memory drive, there is the issue that the optimum reference beam angle during reproduction varies owing to distortion of the medium. The distortion is caused by, for example, temperature variation, beam irradiation, and moisture absorption. Therefore, a reference-beam-angle control technique to position the reference beam at the optimum angle is crucial. We developed a new optical system that generates an angle-error-signal to detect the optimum reference beam angle. To achieve the high-speed control technique using the new optical system, we developed a new control technique called adaptive final-state control (AFSC) that adds a second control input to the first one derived from conventional final-state control (FSC) at the time of angle-error-signal detection. We established an actual experimental system employing AFSC to achieve moving control between each page (Page Seek) within 300 µs. In sequential multiple Page Seeks, we were able to realize positioning to the optimum angles of the reference beam that maximize the diffracted beam intensity. We expect that applying the new control technique to the holographic memory drive will enable a giga-bit/s-class transfer rate.

  19. ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control

    Science.gov (United States)

    Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg

    2008-01-01

    In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.

  20. Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations

    OpenAIRE

    Boyd, Steven J

    2006-01-01

    Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these calculations define how the vehicle can decrease fuel consumption while maintaining low vehicle emissions. For a HEV, simply operating the vehicle's engine in its regions of high efficiency does not guarantee the most efficient vehicle operation. The results presented are meant only to define a literal str...

  1. Negotiating control: Patients' experiences of unsuccessful weight-loss surgery

    OpenAIRE

    Ogden, J; Avenell, S; Ellis, G.

    2011-01-01

    Interviews were carried out with 10 men and women who had undergone weight-loss surgery (WLS) up to 10 years ago and felt that it had failed. Seven had had a further successful procedure. Data were analysed using Interpretative Phenomenological Analysis. Weight regain following surgery was explained in terms of either the mechanics of the operation or with participants describing ways to ‘cheat’ as food continued to be used for emotional regulation. Everyone spoke of how surgery neglected the...

  2. Electrowetting-Controlled Dual Liquid Prism for Adaptive Beam Steering

    Science.gov (United States)

    Cheng, Jiangtao

    2015-03-01

    The use of concentrating photovoltaic (CPV) technology has been the most promising method of harvesting solar radiation. These CPV systems often require motor-driven tracking devices to steer the sun's beams onto solar cells. The cost of maintaining these tracking systems is the primary inhibitor for widespread application. We aim to overcome the need for mechanical trackers through the use of an electrowetting-driven solar tracking (EWST) system. The electrowetting-driven solar tracking system consists of an array of novel electrowetting-controlled dual liquid prisms, which are filled with immiscible fluids that have large differences in refractive indices. The naturally formed meniscus between the fluids can function as a dynamic optical prism. Via the full-range modulation of the liquid prisms, incident sunlight can be adaptively tracked, steered, and focused onto CPV cells through a fixed optical condenser. Furthermore, unlike the conventional and cumbersome motor-driven tracking systems used today, the liquid prism system would be suitable for rooftop applications. The results of this project reveal that the EWST system has the potential to generate ~ 70% more green energy at 50% of the conventional capital cost.

  3. A sub nrad beam pointing monitoring and stabilization system for controlling input beam jitter in GW interferometers

    CERN Document Server

    Canuel, Benjamin; Mantovani, Maddalena; Marque, Julien; Ruggi, Paolo; Tacca, Matteo

    2014-01-01

    In this paper a simple and very effective control system to monitor and suppress the beam jitter noise at the input of an optical system, called Beam Pointing Control (BPC) system, will be described showing the theoretical principle and an experimental demonstration for the application of large scale gravitational wave interferometers, in particular for the Advanced Virgo detector. For this purpose the requirements for the control accuracy and the sensing noise will be computed by taking into account the Advanced Virgo optical configuration and the outcomes will be compared with the experimental measurement obtained in the laboratory. The system has shown unprecedented performance in terms of control accuracy and sensing noise. The BPC system has achieved a control accuracy of ~ $10^{-8}$ rad for the tilt and ~ $10^{-7}$ m for the shift and a sensing noise of less than 1 nrad/$\\sqrt{Hz}$ resulting compliant with the Advance Virgo gravitational wave interferometer requirements.

  4. A Multi-Layer Intelligent Loss-of-Control Prevention System (LPS) for Flight Control Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of the proposed work is to design and develop a multi-layer intelligent Loss-of-control Prevention System (LPS) for flight control applications....

  5. 7 CFR 701.37 - Loss of control of the property during the practice life span.

    Science.gov (United States)

    2010-01-01

    ... the property during the practice life span. In the event of voluntary or involuntary loss of control... 7 Agriculture 7 2010-01-01 2010-01-01 false Loss of control of the property during the practice life span. 701.37 Section 701.37 Agriculture Regulations of the Department of Agriculture...

  6. Weed flora, yield losses and weed control in cotton crop

    OpenAIRE

    JABRAN, Khawar

    2016-01-01

    Cotton (Gossypium spp.) is the most important fiber crop of world and provides fiber, oil, and animals meals. Weeds interfere with the growth activities of cotton plants and compete with it for resources. All kinds of weeds (grasses, sedges, and broadleaves) have been noted to infest cotton crop. Weeds can cause more than 30% decrease in cotton productivity. Several methods are available for weed control in cotton. Cultural control carries significance for weed control up to a certain extent....

  7. Analysis and control of the photon beam position at PLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J.; Kim, I.-Y.; Kim, C.; Kim, D.-T.; Huang, J.-Y.; Shin, S., E-mail: tlssh@postech.ac.kr [POSTECH, Pohang, Kyungbuk 790-784 (Korea, Republic of)

    2016-02-18

    The variation of the photon beam position in a beamline, which is a critical issue for user experiments, is analyzed and corrected through the correlation link with the electron beam position in the storage ring. At third-generation light sources, the photon beam position stability is a critical issue for user experiments. In general, photon beam position monitors are developed to detect the real photon beam position, and the position is controlled by a feedback system in order to maintain the reference photon beam position. At Pohang Light Source II, a photon beam position stability of less than 1 µm r.m.s. was achieved for a user service period in the beamline, where the photon beam position monitor is installed. Nevertheless, a detailed analysis of the photon beam position data was necessary in order to ensure the performance of the photon beam position monitor, since it can suffer from various unknown types of noise, such as background contamination due to upstream or downstream dipole radiation, and undulator gap dependence. This paper reports the results of a start-to-end study of the photon beam position stability and a singular value decomposition analysis to confirm the reliability of the photon beam position data.

  8. Controlling multiple filaments by relativistic optical vortex beams in plasmas

    Science.gov (United States)

    Ju, L. B.; Huang, T. W.; Xiao, K. D.; Wu, G. Z.; Yang, S. L.; Li, R.; Yang, Y. C.; Long, T. Y.; Zhang, H.; Wu, S. Z.; Qiao, B.; Ruan, S. C.; Zhou, C. T.

    2016-09-01

    Filamentation dynamics of relativistic optical vortex beams (OVBs) propagating in underdense plasma is investigated. It is shown that OVBs with finite orbital angular momentum (OAM) exhibit much more robust propagation behavior than the standard Gaussian beam. In fact, the growth rate of the azimuthal modulational instability decreases rapidly with increase of the OVB topological charge. Thus, relativistic OVBs can maintain their profiles for significantly longer distances in an underdense plasma before filamentation occurs. It is also found that an OVB would then break up into regular filament patterns due to conservation of the OAM, in contrast to a Gaussian laser beam, which in general experiences random filamentation.

  9. Evaluation of diagnostic accuracy of conventional and digital periapical radiography, panoramic radiography, and cone-beam computed tomography in the assessment of alveolar bone loss

    Science.gov (United States)

    Takeshita, Wilton Mitsunari; Vessoni Iwaki, Lilian Cristina; Da Silva, Mariliani Chicarelli; Tonin, Renata Hernandes

    2014-01-01

    Background: To evaluate the diagnostic accuracy of different radiographic methods in the assessment of proximal alveolar bone loss (ABL). Materials and Methods: ABL, the distance between cement-enamel junction and alveolar bone crest, was measured in 70 mandibular human teeth – directly on the mandibles (control), using conventional periapical radiography with film holders (Rinn XCP and Han-Shin), digital periapical radiography with complementary metal-oxide semiconductor sensor, conventional panoramic, and cone-beam computed tomography (CBCT). Three programs were used to measure ABL on the images: Image tool 3.0 (University of Texas Health Sciences Center, San Antonio, Texas, USA), Kodak Imaging 6.1 (Kodak Dental Imaging 6.1, Carestream Health®, Rochester, NY, USA), and i-CAT vision 1.6.20. Statistical analysis used ANOVA and Tukey's test at 5% significance level. Results: The tomographic images showed the highest means, whereas the lowest were found for periapical with Han-Shin. Controls differed from periapical with Han-Shin (P digital periapical (P = 0.0027). Conventional periapicals with film holders differed from each other (P = 0.0007). Digital periapical differed from conventional periapical with Han-Shin (P = 0.0004). Conclusions: Conventional periapical with Han-Shin film holder was the only method that differed from the controls. CBCT had the closest means to the controls. PMID:25191066

  10. Using a tandem ionization chamber for quality control of X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, Maira T.; Caldas, Linda V.E., E-mail: mairaty@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    X-ray beam qualities are defined by both the mean energies and by the half-value layers (HVL). Many international protocols use the half-value layer and the beam voltage to characterize the X-ray beam quality. A quality control program for X-ray equipment includes the constancy check of beam qualities, i.e., the periodical verification of the half-value layer, which can be a time consumable procedure. A tandem ionization chamber, developed at Instituto de Pesquisas Energeticas e Nucleares, was used to determine the HVL and its constancy for five radiotherapy standard beam qualities. This ionization chamber is composed by two sensitive volumes with inner electrodes made of different materials: aluminum and graphite. The beam quality constancy check test was performed during two months and the maximum variation obtained was 1.24% for the radiation beam quality T-10. This result is very satisfactory according to national recommendations. (author)

  11. Loss of Control Prevention and Recovery: Onboard Guidance, Control, and Systems Technologies

    Science.gov (United States)

    Belcastro, Christine M.

    2012-01-01

    Loss of control (LOC) is one of the largest contributors to fatal aircraft accidents worldwide. LOC accidents are complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. These LOC hazards include vehicle impairment conditions, external disturbances; vehicle upset conditions, and inappropriate crew actions or responses. Hence, there is no single intervention strategy to prevent these accidents. NASA previously defined a comprehensive research and technology development approach for reducing LOC accidents and an associated integrated system concept. Onboard technologies for improved situation awareness, guidance, and control for LOC prevention and recovery are needed as part of this approach. Such systems should include: LOC hazards effects detection and mitigation; upset detection, prevention and recovery; and mitigation of combined hazards. NASA is conducting research in each of these areas. This paper provides an overview of this research, including the near-term LOC focus and associated analysis, as well as preliminary flight system architecture.

  12. Method of temperature rising velocity and threshold control of electron beam brazing

    Institute of Scientific and Technical Information of China (English)

    Xuedong Wang; Shun Yao

    2005-01-01

    In order to accommodate electron beam to the brazing of the joints with various curve shapes and the brazing of thermo sensitive materials, the method of electron beam scanning and brazing temperature control was developed, in which electron beam was controlled to scan according to predefined scanning track, and the actual temperature rising velocity of the brazed seam was limited in an allowed scope by detecting the brazed seam temperature, calculating the temperature rising velocity and adjusting the beam current during the brazing process; in addition, through the setting of the highest allowed temperature, the actual temperature of the brazed seam could be controlled not exceeding the threshold set value, and these two methods could be employed alone or jointly. It is shown that high precision temperature control in electron beam brazing could be realized and the productivity be increased by the proposed method.

  13. Stability Analysis of Some Nonlinear Feedback Control Methods for Beam Halo-Chaos Suppression

    Institute of Scientific and Technical Information of China (English)

    FANG Jin-Qing; WANG Zhong-Sheng; CHEN Guan-Rong

    2004-01-01

    Control of beam halo-chaos has been a very challenging subject for research in recent years, in which some nonlinear feedback methods have been developed for suppression of beam halo-chaos in high-current proton linear accelerators. However, stability analysis of such successful nonlinear feedback control methods has not yet been rigorously carried out, which remains an important open topic in the field. In this letter, we present a rigorous mathematical analysis of several nonlinear feedback control methods that are applied to control beam halo-chaos with great success on simulations.

  14. Stability Analysis of Some Nonlinear Feedback Control Methods for Beam Halo-ChaosSuppression

    Institute of Scientific and Technical Information of China (English)

    FANGJin-Qing; WANGZhong-Sheng; CHENGuan-Rong

    2004-01-01

    Control of beam halo-chaos has been a very challenging subject for research in recent years, in which some nonlinear feedback methods have been developed for suppression of beam halo-chaos in high-current proton linear accelerators. However, stability analysis of such successful nonlinear feedback control methods has not yet been rigorously carried out, which remains an important open topic in the field. In this letter, we present a rigorous mathematical analysis of several nonlinear feedback control methods that are applied to control beam halo-chaos with great success on simulations.

  15. Influence of the beam-size or MD-effect on particle losses at B-factories PEP-II and KEKB

    CERN Document Server

    Kotkin, G L

    2004-01-01

    For the $e^+ e^- \\to e^+ e^- \\gamma$ process at colliding beams, macroscopically large impact parameters give an essential contribution to the standard cross section. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard calculations have to be essentially modify. In the present paper such a beam-size or MD-effect is calculated for bremsstrahlung at B-factories PEP-II and KEKB using the list of nominal parameters from Review of Particle Physics (2002). We find out that this effect reduces beam losses due to bremsstrahlung by about 20%.

  16. Towards correcting atmospheric beam wander via pump beam control in a down conversion process.

    Science.gov (United States)

    Pugh, Christopher J; Kolenderski, Piotr; Scarcella, Carmelo; Tosi, Alberto; Jennewein, Thomas

    2016-09-01

    Correlated photon pairs produced by a spontaneous parametric down conversion (SPDC) process can be used for secure quantum communication over long distances including free space transmission over a link through turbulent atmosphere. We experimentally investigate the possibility to utilize the intrinsic strong correlation between the pump and output photon spatial modes to mitigate the negative targeting effects of atmospheric beam wander. Our approach is based on a demonstration observing the deflection of the beam on a spatially resolved array of single photon avalanche diodes (SPAD-array). PMID:27607697

  17. Controlling hollow relativistic electron beam orbits with an inductive current divider

    Energy Technology Data Exchange (ETDEWEB)

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2015-02-15

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b} = (I{sub 2} + I{sub 1}). The values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.

  18. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Taguchi, Mitsumasa [Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Fukuda, Mitsuhiro [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2015-07-15

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.

  19. Quantized stabilization of wireless networked control systems with packet losses.

    Science.gov (United States)

    Qu, Feng-Lin; Hu, Bin; Guan, Zhi-Hong; Wu, Yong-Hong; He, Ding-Xin; Zheng, Ding-Fu

    2016-09-01

    This paper considers stabilization of discrete-time linear systems, where wireless networks exist for transmitting the sensor and controller information. Based on Markov jump systems, we show that the coarsest quantizer that stabilizes the WNCS is logarithmic in the sense of mean square quadratic stability and the stabilization of this system can be transformed into the robust stabilization of an equivalent uncertain system. Moreover, a method of optimal quantizer/controller design in terms of linear matrix inequality is presented. Finally, a numerical example is provided to illustrate the effectiveness of the developed theoretical results.

  20. Control of Halo-Chaos in Beam Transport Network via Neural Network Adaptation with Time-Delayed Feedback

    Institute of Scientific and Technical Information of China (English)

    FANG Jin-Qing; LUO Xiao-Shu; HUANG Guo-Xian

    2006-01-01

    Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neuralnetwork with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.

  1. Modeling the Impact of Communication Loss on the Power Grid under Emergency Control

    OpenAIRE

    Parandehgheibi, Marzieh; Turitsyn, Konstantin; Modiano, Eytan

    2015-01-01

    We study the interaction between the power grid and the communication network used for its control. We design a centralized emergency control scheme under both full and partial communication support, to improve the performance of the power grid. We use our emergency control scheme to model the impact of communication loss on the grid. We show that unlike previous models used in the literature, the loss of communication does not necessarily lead to the failure of the correspondent power nodes;...

  2. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Ji Hyun [Univ. of Science and Technology, Daejeon (Korea, Republic of); Bae, Hyung Bin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Changmoon [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-12-15

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances.

  3. Control of Refrigeration Systems for Trade-off between Energy Consumption and Food Quality Loss

    OpenAIRE

    Cai, Junping

    2008-01-01

    In supermarkets, control strategies determine both the energy consumption of refrigeration systems and the quality loss of refrigerated foodstuffs. The question is, what can be done to optimize the balance between quality loss and energy consumption? This thesis tries to answer this question by applying two main optimization strategies to traditional refrigeration systems. The first strategy is a new defrost-on-demand scheme, which based on an objective function between quality loss and energ...

  4. Indus-2 beam line front end controls using real time operating system

    International Nuclear Information System (INIS)

    Beam Line Front Ends (BLFE) are crucial interfaces between machine user beam lines and INDUS-2 synchrotron radiation source. Twenty-seven beam lines are proposed in INDUS-2 synchrotron facility out of which some are operational by now and many more are about to come. The purpose of these BLFE's is essentially to protect the machine vacuum from beam line failures and vice versa and allow a well co-ordinated and safe usage of machine by its users. For controlling these beam lines, BLFE control system is implemented. The BLFE control system is based on three-layer architecture with equipments connected ate the layer three, Layer two serves the purpose of metadata storage, layer one serves as operator console (GUI). This paper discusses the scheme and architecture of layer two and layer three implementation using RTOS OS-9. The diagnostic features incorporated in the architecture increases the system uptime by quick diagnosis of system faults. (author)

  5. Self-control and loss aversion in intertemporal choice

    OpenAIRE

    Selart, Marcus; Karlsson, Niklas; Gärling, Tommy

    1997-01-01

    The life-cycle theory of saving behavior (Modigliani, 1988) suggests that humans strive towards an equal intertemporal distribution of wealth. However, behavioral life-cycle theory (Shefrin & Thaler, 1988) proposes that people use self-control heuristics to postpone wealth until later in life. According to this theory, people use a system of cognitive budgeting known as mental accounting. In the present study it was found that mental accounts were used differently depending on if the income c...

  6. Molecule-surface scattering with velocity-controlled molecular beams

    International Nuclear Information System (INIS)

    The production of cold molecular beams with a tunable velocity by means of pulsed electric fields, known as Stark deceleration, is now mature and convenient. At the same time, molecular beam experiments that use traditional ways of velocity manipulation have been commonly used to study different aspects of molecule-surface interactions in the regime of high kinetic energy. We present a new generation of molecule-surface scattering machine, which brings the advantages of Stark decelerated molecular beams to the field of surface physics. Using this machine, CO molecules will be scattered at surfaces, quantum-state selective with respect to both impacting and scattered molecules, while providing a tunable velocity in the range of 1000 to 20 m/s with an exceptional translational energy resolution.

  7. ADAPTIVE CONTROL OF FLEXIBLE BEAM WITH UNKNOWN DEAD-ZONE IN THE DRIVING MOTOR

    Institute of Scientific and Technical Information of China (English)

    Wang Xingsong; Hong Henry; Su Chunyi

    2004-01-01

    Adaptive control of a flexible beam system preceded by an unknown dead-zone in the driving motor is investigated in state space form. By introducing an important lemma for simplifying error equation between the flexible beam model and the matching reference model, a robust adaptive control scheme is developed by involving the dead-zone inverse terms. The new adaptive control law ensures global stability of the entire system and achieves desired tracking precision even when the slopes of the dead-zone are not equal. Simulations performed on a typical flexible beam system illustrate and clarify the validity of this approach.

  8. Field control in a standing wave structure at high average beam power

    International Nuclear Information System (INIS)

    A 100% duty factor electron beam has been accelerated through a graded-β side-coupled standing wave structure operating in π/2 mode. Three non-interacting control loops are necessary to provide the accelerating field amplitude and phase and to control structure resonance. The principal disturbances have been identified and measured over the beam current range of 0 to 20 mA. Design details are presented of control loops which regulate the accelerating field amplitude to +-0.3% and its phase to +-0.5 deg for 50% beam loading. (author)

  9. Methodological demonstration of laser beam pointing control for space gravitational wave detection missions

    International Nuclear Information System (INIS)

    In space laser interferometer gravitational wave (G.W.) detection missions, the stability of the laser beam pointing direction has to be kept at 10 nrad/√Hz. Otherwise, the beam pointing jitter noise will dominate the noise budget and make the detection of G.W. impossible. Disturbed by the residue non-conservative forces, the fluctuation of the laser beam pointing direction could be a few μrad/√Hz at frequencies from 0.1 mHz to 10 Hz. Therefore, the laser beam pointing control system is an essential requirement for those space G.W. detection missions. An on-ground test of such beam pointing control system is performed, where the Differential Wave-front Sensing technique is used to sense the beams pointing jitter. An active controlled steering mirror is employed to adjust the beam pointing direction to compensate the jitter. The experimental result shows that the pointing control system can be used for very large dynamic range up to 5 μrad. At the interested frequencies of space G.W. detection missions, between 1 mHz and 1 Hz, beam pointing stability of 6 nrad/√Hz is achieved

  10. Controlled growth of bismuth nanoparticles by electron beam irradiation in TEM

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Ho [College of Environment and Applied Chemistry, Kyung Hee University, Yongin 449-701 (Korea, Republic of); Choi, Young-Suk [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kang, Kyongha [Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)]. E-mail: kkang@bnl.gov; Yang, Sung Ik [College of Environment and Applied Chemistry, Kyung Hee University, Yongin 449-701 (Korea, Republic of)]. E-mail: siyang@khu.ac.kr

    2007-01-16

    In situ nanometer-sized bismuth particles were synthesized by irradiation of the electron beam in the TEM. The size of the crystalline Bi nanoparticles could be controlled by adjusting the irradiation time of the electron beam. Characterization of TEM reveals that the Bi nanoparticles exist in rhombic structure, same as to bulk Bi.

  11. The Utrecht 850 kV cascade generator I. Beam deflection and energy control

    NARCIS (Netherlands)

    Braams, C.M.; Smith, P.B.

    1960-01-01

    The beam deflection magnet and energy control system of the Utrecht cascade generator are described. The uniform-field magnet has entrance and exit slits located outside the magnetic held. Since the cascade generator produces a vertical beam, the most convenient choice for the angle of deflection wa

  12. Active buckling control of beams using piezoelectric actuators and strain gauge sensors

    International Nuclear Information System (INIS)

    In this paper, a finite element model incorporating active control techniques has been developed to stabilize the first two buckling modes of both a simply supported and a cantilevered beam. The goal is to increase the corresponding beam buckling loads by using piezoelectric actuators along with optimal feedback control. The uniform beams are bonded with two pairs of segmented piezoelectric actuators at the top and bottom. Resistive strain gauges are attached to the centres of the actuators as sensors. Measurements are taken using these, to estimate the system states. The beams are simply supported or cantilevered and subjected to a slowly increasing axial compressive load. Finite element formulations based on the classical Euler–Bernoulli beam theory and linear piezoelectric constitutive equations for the actuators are presented. The associated reduced-order modal equations and the state-space equations are derived for the design of a standard linear quadratic regulator (LQR). The finite element analysis and the active control simulation results are consistent with both theoretical analysis results and experimental data. The designed full state feedback LQR controller is shown to be successful in stabilizing the first two buckling modes of the beams. Also the control simulation shows that the present optimally located segmented actuator pairs along the beam are more effective for buckling control

  13. Investigation on gradient material fabrication with electron beam melting based on scanning track control

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new electron beam control system was developed in a general vacuum electron beam machine by assembling with industrial control computer, programmable logic control (PLC), deflection coil, data acquisition card, power amplifier, etc. In this control system, scanning track and energy distribution of electron beam could be edited off-line, real-time adjusted and controlled on-line. Ti-Mo gradient material (GM) with high temperature resistant was fabricated using the technology of electron beam melting. The melting processes include three steps, such as preheating, melting, and homogenizing. The results show that the GM prepared by melting technology has fine appearance, and it has good integrated interface with the Ti alloy. Mo and Ti elements are gradually distributed in the interface of the gradient material. The microstructure close to the Ti alloy base metal is α+β basket-waver grain, and the microstructure close to the GM is a single phase of β solid solution.

  14. Reducing Runoff Loss of Applied Nutrients in Oil Palm Cultivation Using Controlled-Release Fertilizers

    Directory of Open Access Journals (Sweden)

    A. Bah

    2014-01-01

    Full Text Available Controlled-release fertilizers are expected to minimize nutrient loss from crop fields due to their potential to supply plant-available nutrients in synchrony with crop requirements. The evaluation of the efficiency of these fertilizers in tropical oil palm agroecological conditions is not yet fully explored. In this study, a one-year field trial was conducted to determine the impact of fertilization with water soluble conventional mixture and controlled-release fertilizers on runoff loss of nutrients from an immature oil palm field. Soil and nutrient loss were monitored for one year in 2012/2013 under erosion plots of 16 m2 on 10% slope gradient. Mean sediments concentration in runoff amounted to about 6.41 t ha−1. Conventional mixture fertilizer posed the greatest risk of nutrient loss in runoff following fertilization due to elevated nitrogen (6.97%, potassium (13.37%, and magnesium (14.76% as percentage of applied nutrients. In contrast, this risk decreased with the application of controlled-release fertilizers, representing 0.75–2.44% N, 3.55–5.09% K, and 4.35–5.43% Mg loss. Meanwhile, nutrient loss via eroded sediments was minimal compared with loss through runoff. This research demonstrates that the addition of controlled-release fertilizers reduced the runoff risks of nutrient loss possibly due to their slow-release properties.

  15. Control of Refrigeration Systems for Trade-off between Energy Consumption and Food Quality Loss

    DEFF Research Database (Denmark)

    Cai, Junping

    In supermarkets, control strategies determine both the energy consumption of refrigeration systems and the quality loss of refrigerated foodstuffs. The question is, what can be done to optimize the balance between quality loss and energy consumption? This thesis tries to answer this question by a...

  16. Identifying deficits in balance control following vestibular or proprioceptive loss using posturographic analysis of stance tasks.

    NARCIS (Netherlands)

    Horlings, C.G.; Kung, U.M.; Bloem, B.R.; Honegger, F.; Alfen, N. van; Engelen, B.G.M. van; Allum, J.H.

    2008-01-01

    OBJECTIVE: To distinguish between normal and deficient balance control due to vestibular loss (VL) or proprioceptive loss (PL) using pelvis and shoulder sway measures. METHODS: Body-worn gyroscopes measured pelvis and shoulder sway in pitch (anterior-posterior) and roll (side-to-side) directions in

  17. Event-triggered networked predictive control of system with data loss

    Directory of Open Access Journals (Sweden)

    Quan Wang

    2016-12-01

    Full Text Available This paper investigates the problem of event-triggered networked predictive control for systems with data loss. An event-triggered networked predictive control system is proposed. Based on predictive control model, a data loss compensation strategy is presented and an extended event-triggered transmission mechanism is developed. The closed-loop event-triggered predictive control system is described as a switched system and sufficient closed-loop stability conditions related to event-triggered mechanism are established. Under the event-triggered networked predictive control scheme, the consumption of the communication resources is reduced. Finally, an example is provided to illustrate the effectiveness of the proposed method.

  18. INVESTIGATION OF DYNAMIC PARAMETRS OF SPLIT SKEWED BRIDGE SPANS IN CASE OF LOSS OF CONTACT BETWEEN END BEAM AND ITS SUPPORT

    Directory of Open Access Journals (Sweden)

    V.S.Safronov

    2015-02-01

    Full Text Available Statement of the problem. In order to get a valid estimate of risks of fracture during the mainten-ance of simply supported skew slab-and-girder reinforced concrete spans of highway bridges the influence of the supporting skew on the natural frequencies spectrum and the corresponding ei-genmodes in case of changing the design model due to loss of contact between beams and support.Results. Possible loss of contact between one of the marginal beams and its support near the sharp angle during the maintenance of transport facility depending on its type and geometrical parameters is substantiated. Modal and frequency spectrum analysis of spans in case of loss of contact between one of the marginal beams and its support is performed.Conclusions. The analysis revealed possible loss of contact between marginal beams and support, which increases as the skew angle grows and the width and length of the span reduce. A signifi-cant influence of support separation on eigenmodes and frequency spectrum of spans is revealed.

  19. TECHNICAL NOTE: Fuzzy control of vibration of a smart CFRP laminated beam

    Science.gov (United States)

    Takawa, Takeshi; Fukuda, Takehito; Nakashima, Koichiro

    2000-04-01

    In the present study, the fuzzy control of vibration is investigated for a hybrid smart composite beam actuated by piezoceramics and electro-rheological fluids (ERFs) actuators. A carbon fiber reinforced plastics cantilevered beam containing ERF with bonded piezoceramics is vibrated under forced sinusoidal external excitation. A fuzzy model of the controlled element containing two actuators is formed because the application of a linear control theory to the vibration control is difficult due to intense nonlinearity in the ERF actuator. The parameters of the fuzzy model are identified by using a hybrid neuro-fuzzy system. The fuzzy controller for vibration suppression of the composite beam designed is based on the fuzzy model by using modern control theory. The effect of the vibration control system with a fuzzy controller is verified by simulation and experiment.

  20. Use Of Dynamic Distortion To Predict And Alleviate Loss Of Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The intent of this project is to develop and validate means to alert, constrain and thereby alleviate loss of control (LOC) associated with unfavorable...

  1. Use Of Dynamic Distortion To Predict And Alleviate Loss Of Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Improvements to aviation safety will be made by the development and validation of means to alleviate, alert, and inhibit loss of control associated with unfavorable...

  2. 40 CFR 1060.104 - What running loss emission control requirements apply?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What running loss emission control requirements apply? 1060.104 Section 1060.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT Emission Standards...

  3. Simulation of equivalent dose due to accidental electron beam loss in Indus-1 and Indus-2 synchrotron radiation sources using FLUKA code

    International Nuclear Information System (INIS)

    Indus-1 and Indus-2 are two Synchrotron radiation sources at Raja Ramanna Centre for Advanced Technology (RRCAT), India. Stored electron energy in Indus-1 and Indus-2 are 450MeV and 2.5GeV respectively. During operation of storage ring, accidental electron beam loss may occur in addition to normal beam losses. The Bremsstrahlung radiation produced due to the beam losses creates a major radiation hazard in these high energy electron accelerators. FLUKA, the Monte Carlo radiation transport code is used to simulate the accidental beam loss. The simulation was carried out to estimate the equivalent dose likely to be received by a trapped person closer to the storage ring. Depth dose profile in water phantom for 450MeV and 2.5GeV electron beam is generated, from which percentage energy absorbed in 30cm water phantom (analogous to human body) is calculated. The simulation showed the percentage energy deposition in the phantom is about 19% for 450MeV electron and 4.3% for 2.5GeV electron. The dose build up factor in 30cm water phantom for 450MeV and 2.5GeV electron beam are found to be 1.85 and 2.94 respectively. Based on the depth dose profile, dose equivalent index of 0.026Sv and 1.08Sv are likely to be received by the trapped person near the storage ring in Indus-1 and Indus-2 respectively. (author)

  4. Reducing Runoff Loss of Applied Nutrients in Oil Palm Cultivation Using Controlled-Release Fertilizers

    OpenAIRE

    Bah, A.; M. H.A. Husni; C. B. S. Teh; Rafii, M. Y.; S. R. SYED OMAR; Ahmed, O. H.

    2014-01-01

    Controlled-release fertilizers are expected to minimize nutrient loss from crop fields due to their potential to supply plant-available nutrients in synchrony with crop requirements. The evaluation of the efficiency of these fertilizers in tropical oil palm agroecological conditions is not yet fully explored. In this study, a one-year field trial was conducted to determine the impact of fertilization with water soluble conventional mixture and controlled-release fertilizers on runoff loss of ...

  5. Enhancing congestion control to address link failure loss over mobile ad-hoc network

    CERN Document Server

    Fard, Mohammad Amin Kheirandish; Aflaki, Mohammad

    2011-01-01

    Standard congestion control cannot detect link failure losses which occur due to mobility and power scarcity in multi-hop Ad-Hoc network (MANET). Moreover, successive executions of Back-off algorithm deficiently grow Retransmission Timeout (RTO) exponentially for new route. The importance of detecting and responding link failure losses is to prevent sender from remaining idle unnecessarily and manage number of packet retransmission overhead. In contrast to Cross-layer approaches which require feedback information from lower layers, this paper operates purely in Transport layer. This paper explores an end-to-end threshold-based algorithm which enhances congestion control to address link failure loss in MANET. It consists of two phases. First, threshold-based loss classification algorithm distinguishes losses due to link failure by estimating queue usage based on Relative One-way Trip Time (ROTT). Second phase adjusts RTO for new route by comparing capabilities of new route to the broken route using available i...

  6. Thermionic gun control system for the CEBAF [Continuous Electron Beam Accelerator Facility] injector

    International Nuclear Information System (INIS)

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab

  7. Materials of the Regional Training Course on Validation and Process Control for Electron Beam Radiation Processing

    International Nuclear Information System (INIS)

    Irradiation with electron beams is used in the polymer industry, food, pharmaceutical and medical device industries for sterilization of surfaces. About 20 lectures presented during the Course were devoted to all aspects of control and validation of low energy electron beam processes. They should help the product manufacturers better understand the application of the ANSI/AAMI/ISO 11137 norm, which defines the requirements and standard practices for validation of the irradiation process and the process controls required during routine processing

  8. Planar C-Band Antenna with Electronically Controllable Switched Beams

    Directory of Open Access Journals (Sweden)

    Mariano Barba

    2009-01-01

    Full Text Available The design, manufacturing, and measurements of a switchable-beam antenna at 3.5 GHz for WLL or Wimax base station antennas in planar technology are presented. This antenna performs a discrete beam scan of a 60∘ sector in azimuth and can be easily upgraded to 5 or more steps. The switching capabilities have been implemented by the inclusion of phase shifters based on PIN diodes in the feed network following a strategy that allows the reduction of the number of switches compared to a classic design. The measurements show that the design objectives have been achieved and encourage the application of the acquired experience in antennas for space applications, such as X-band SAR and Ku-band DBS.

  9. Summary report of working group 5: Beam and radiation generation, monitoring, and control

    Energy Technology Data Exchange (ETDEWEB)

    Church, Mike; /Fermilab; Kim, Ki-Yong; /Maryland U.

    2010-01-01

    This paper summarizes the activities and presentations of Working Group 5 of the Advanced Accelerator Concepts Workshop held at Annapolis, Maryland in June 2010. Working Group 5 touched on a broad range of topics in the fields of beam and radiation generation and their monitoring and control. These topics were not comprehensively covered in this Workshop, but rather the Working Group concentrated on specific new developments and recent investigations. The Working Group divided its sessions into four broad categories: cathodes and electron guns, radiation generation, beam diagnostics, and beam control and dynamics. This summary is divided into the same structure.

  10. Summary report of working group 5: Beam and radiation generation, monitoring, and control

    CERN Document Server

    Church, Mike; 10.1063/1.3520295

    2012-01-01

    This paper summarizes the activities and presentations of Working Group 5 of the Advanced Accelerator Concepts Workshop held at Annapolis, Maryland in June 2010. Working Group 5 touched on a broad range of topics in the fields of beam and radiation generation and their monitoring and control. These topics were not comprehensively covered in this Workshop, but rather the Working Group concentrated on specific new developments and recent investigations. The Working Group divided its sessions into four broad categories: cathodes and electron guns, radiation generation, beam diagnostics, and beam control and dynamics. This summary is divided into the same structure.

  11. Nonlinear Control of Multicolor Beams in Coupled Optical Waveguides

    Science.gov (United States)

    Neshev, Dragomir N.; Sukhorukov, Andrey A.; Kivshar, Yuri S.

    Photonic structures with a periodic modulation of the optical refractive index play an important role in the studies of the fundamental aspects of wave dynamics [1, 2]. In particular, photonic crystals, layered media, or closely spaced optical waveguides enable manipulation of the key phenomena governing optical beam propagation: spatial refraction and diffraction. Arrays of coupled optical waveguides are particularly attractive as an experimental testbed due to their easier fabrication and characterization, as well as because of the opportunities they offer for enhanced nonlinear effects as a result of the large propagation distances in such structures. The physics of beam propagation in optical waveguide arrays is governed by the coupling of light between neighboring waveguides and the subsequent interference of the coupled light. Since both the coupling and the interference processes are sensitive to the light wavelength, the output intensity profiles can be drastically different for each spectral component of the input beam. This is a particular concern in many practical cases, including ultra-broad bandwidth optical communications, manipulation of ultra-short pulses or supercontinuum radiation, where the bandwidth of the optical signals can span over a wide frequency range.

  12. Monolithic millimeter-wave diode array beam controllers: Theory and experiment

    Science.gov (United States)

    Sjogren, L. B.; Liu, H.-X. L.; Wang, F.; Liu, T.; Wu, W.; Qin, X.-H.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.; Maserjian, J.

    1992-01-01

    In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively.

  13. Beam Control and Steering in the University of Maryland Electron Ring (UMER)

    International Nuclear Information System (INIS)

    The University of Maryland Electron Ring (UMER) is a low energy, high current recirculator for beam physics research. Ring construction has been completed for multi-turn operation of beams over a broad range of intensities and initial conditions. The electron beam current is adjustable up to 100 mA and pulse length as long as 100 ns. UMER is addressing issues in beam physics relevant to many applications that require intense beams of high quality, such as advanced concept accelerators, free electron lasers, spallalion neutron sources, and future heavy-ion drivers for inertial fusion. The primary focus of this presentation is experimental results in the area of beam steering and control within the injection line and ring. Unique beam steering algorithms now include measurement of the beam response matrix at each quadrupole and matrix inversion by singular value decomposition (SVD). With these advanced steering methods, transport of an intense beam over 50 turns (3600 full lattice periods) of the ring has been achieved

  14. Beam Control and Steering in the University of Maryland Electron Ring (UMER)

    Science.gov (United States)

    Walter, M.; Bai, G.; Bernal, S.; Feldman, D.; Godlove, T.; Haber, I.; Holloway, M.; Kishek, R.; O'Shea, P.; Papadopoulos, C.; Quinn, B.; Reiser, M.; Stratakis, D.; Sutter, D.; Thangaraj, J.; Wilson, M.; Wu, C.

    2006-11-01

    The University of Maryland Electron Ring (UMER) is a low energy, high current recirculator for beam physics research. Ring construction has been completed for multi-turn operation of beams over a broad range of intensities and initial conditions. The electron beam current is adjustable up to 100 mA and pulse length as long as 100 ns. UMER is addressing issues in beam physics relevant to many applications that require intense beams of high quality, such as advanced concept accelerators, free electron lasers, spallalion neutron sources, and future heavy-ion drivers for inertial fusion. The primary focus of this presentation is experimental results in the area of beam steering and control within the injection line and ring. Unique beam steering algorithms now include measurement of the beam response matrix at each quadrupole and matrix inversion by singular value decomposition (SVD). With these advanced steering methods, transport of an intense beam over 50 turns (3600 full lattice periods) of the ring has been achieved.

  15. Binder extraction from green multilayer ceramics using a weight loss rate-controlled thermogravimetric analyzer

    Science.gov (United States)

    Witt, Jason; Speyer, Robert F.; Murali, Lakshman

    1997-06-01

    A weight loss rate-controlled organic extraction furnace was built and demonstrated using a multilayer green ceramic. Multirate weight loss schedules as well as automated atmosphere control and detection were demonstrated. The low thermal mass furnace showed good tracking with 300 °C heating and cooling rates. This furnace, coupled with appropriate PID control constants, facilitated feedback control which could extract organics rapidly without self-ignition to uncontrolled combustion. Controlled organic burnout was demonstrated at weight loss rates up to 0.5%/min in air. Damage-free multilayers were observed using a burnout rate requiring 150 min for extraction, rather than the days commonly associated with this task when using conventional furnaces.

  16. Control system of magnetic optical element power supplies for some beam channels

    International Nuclear Information System (INIS)

    The control system of the magnetic optical element power supplies for some beam channels of the IHEP accelerator, based on the micro-computer ''Elektronika-60'' and its software are described. The remote control is supplied with three Multidrop Serial Busses (31 consumer per bus). The number of controlled elements can be increased by adding one or more serial busses

  17. Evaluation of diagnostic accuracy of conventional and digital periapical radiography, panoramic radiography, and cone-beam computed tomography in the assessment of alveolar bone loss

    Directory of Open Access Journals (Sweden)

    Wilton Mitsunari Takeshita

    2014-01-01

    Full Text Available Background: To evaluate the diagnostic accuracy of different radiographic methods in the assessment of proximal alveolar bone loss (ABL. Materials and Methods: ABL, the distance between cement-enamel junction and alveolar bone crest, was measured in 70 mandibular human teeth - directly on the mandibles (control, using conventional periapical radiography with film holders (Rinn XCP and Han-Shin, digital periapical radiography with complementary metal-oxide semiconductor sensor, conventional panoramic, and cone-beam computed tomography (CBCT. Three programs were used to measure ABL on the images: Image tool 3.0 (University of Texas Health Sciences Center, San Antonio, Texas, USA, Kodak Imaging 6.1 (Kodak Dental Imaging 6.1, Carestream Health ® , Rochester, NY, USA, and i-CAT vision 1.6.20. Statistical analysis used ANOVA and Tukey′s test at 5% significance level. Results: The tomographic images showed the highest means, whereas the lowest were found for periapical with Han-Shin. Controls differed from periapical with Han-Shin (P < 0.0001. CBCT differed from panoramic (P = 0.0130, periapical with Rinn XCP (P = 0.0066, periapical with Han-Shin (P < 0.0001, and digital periapical (P = 0.0027. Conventional periapicals with film holders differed from each other (P = 0.0007. Digital periapical differed from conventional periapical with Han-Shin (P = 0.0004. Conclusions: Conventional periapical with Han-Shin film holder was the only method that differed from the controls. CBCT had the closest means to the controls.

  18. Advanced control of walking-beam reheating furnace

    Institute of Scientific and Technical Information of China (English)

    Zhigang Chen; Chao Xu; Bin Zhang; Huihe Shao; Jianmin Zhang

    2003-01-01

    Reheating furnace is an important device with complex dynamic characteristics in steel plants. The temperature tracing control of reheating furnace has great importance both to the quality of slabs and energy saving. A model-based control strategy,multivariable constrained control (MCC) for the reheating furnace control is used. With this control method, the furnace is treated as a six-input-six-output general model with loops coupled in nature. Compared with the traditional control, the proposed control strategy gets better temperature tracing accuracy and exhibits some energy saving feature. The simulation results show that the performance of the furnace is greatly improved.

  19. Particle beam technology for control of atomic-bonding state in materials

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Junzo [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    The atomic-bonding state in materials can be controlled through `kinetic bonding` process by energetic particle beams which have a sufficient atomic kinetic energy. In order to clarify the `kinetic bonding` process the negative-ion beam deposition is considered as an ideal method because the negative ion has no additional active energies. Sputter type heavy negative-ion sources can be used for this purpose. Carbon films prepared by carbon negative-ion beam deposition have a strong dependency of the film properties on ion beam kinetic energy and have a quite high thermal conductivity which is comparable to that of the IIb diamond at a kinetic energy of 50-100 eV/atom. It suggests that new or metastable materials could be formed through the `kinetic bonding` process. Negative-ion beams can also be used for ion implantation, in which charging problems are perfectly reduced. (author)

  20. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    Science.gov (United States)

    Tsoupas, N.; Huang, H.; MacKay, W. W.; Meot, F.; Roser, T.; Trbojevic, D.

    2013-04-01

    The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS) which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to accommodate the four

  1. End-to-end rate-based congestion control with random loss: convergence and stability

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The convergence and stability analysis for two end-to-end rate-based congestion control algorithms with unavoidable random loss in packets are presented, which can be caused by, for example, errors on wireless links. The convergence rates of these two algorithms are analyzed by linearizing them around their equilibrium points, since they are globally stable and can converge to their unique equilibrium points. Some sufficient conditions for local stability in the presence of round-trip delay are obtained based on the general Nyquist criterion of stability. The stability conditions can be considered to be more general. If random loss in the first congestion control algorithm is not considered, they reduce to the local stability conditions which have been obtained in some literatures. Furthermore, sufficient conditions for local stability of a new congestion control algorithm have also been obtained if random loss is not considered in the second congestion control algorithm.

  2. A Hybrid Optimization Method for Reactive Power and Voltage Control Considering Power Loss Minimization

    DEFF Research Database (Denmark)

    Liu, Chengxi; Qin, Nan; Bak, Claus Leth;

    2015-01-01

    This paper proposes a hybrid optimization method to optimally control the voltage and reactive power with minimum power loss in transmission grid. This approach is used for the Danish automatic voltage control (AVC) system which is typically a non-linear non-convex problem mixed with both...

  3. Beam transport experiment with a new kicker control system on the HIRFL-CSR

    CERN Document Server

    Wang, Yan-Yu; Luo, Jin-Fu; Zhang, Jian-Chuan; Zhou, Wen-Xiong; Ni, Fa-Fu; Yin, Jun; Yin, Jia; Yuan, You-Jin; Shang-Guan, Jin-Bin

    2015-01-01

    The kicker control system was used for beam extraction and injection between two cooling storage rings (CSRs) at the Heavy Ion Research Facility in Lanzhou (HIRFL). To meet the requirements of special physics experiments, the kicker controller was upgraded. The new controller was designed based on ARM+DSP+FPGA technology and monolithic circuit architecture, which can achieve a precision time delay of 2.5 ns. In September 2014, the new kicker control system was installed in the kicker field, and the test experiment using the system was completed. In addition, a pre-trigger signal was provided by the controller, which was designed to synchronize the beam diagnostic system and physics experiments. Experimental results indicate that the phenomena of "missed kick" and "inefficient kick" were not observed, and the multichannel trigger signals' delay could be adjusted individually for kick power supplies in digitization; thus, the beam transport efficiency was improved compared with that of the original system. The ...

  4. Research on Delay and Packet Loss Control Mechanism in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Qiuling Yang

    2014-04-01

    Full Text Available In wireless mesh networks, the performance of TCP was degraded rapidly due to the interference in wireless channels. To deal with this problem, A TCP control mechanism based on the character of delay distribution and wireless packet loss is proposed in this paper. Firstly, this delay model can capture the delay exactly that a packet experiences at one hop transmission with rigorous theoretic derivation and lower overhead, and computational complexity. Then we analyze the character of the wireless packet loss. Furthermore, this mechanism points out the control method at transport layer to deal with the different type of packet loss. The simulation results show that our mechanism can decrease the packet loss rate efficiently

  5. Ion beam machining error control and correction for small scale optics.

    Science.gov (United States)

    Xie, Xuhui; Zhou, Lin; Dai, Yifan; Li, Shengyi

    2011-09-20

    Ion beam figuring (IBF) technology for small scale optical components is discussed. Since the small removal function can be obtained in IBF, it makes computer-controlled optical surfacing technology possible to machine precision centimeter- or millimeter-scale optical components deterministically. Using a small ion beam to machine small optical components, there are some key problems, such as small ion beam positioning on the optical surface, material removal rate, ion beam scanning pitch control on the optical surface, and so on, that must be seriously considered. The main reasons for the problems are that it is more sensitive to the above problems than a big ion beam because of its small beam diameter and lower material ratio. In this paper, we discuss these problems and their influences in machining small optical components in detail. Based on the identification-compensation principle, an iterative machining compensation method is deduced for correcting the positioning error of an ion beam with the material removal rate estimated by a selected optimal scanning pitch. Experiments on ϕ10 mm Zerodur planar and spherical samples are made, and the final surface errors are both smaller than λ/100 measured by a Zygo GPI interferometer.

  6. Active vibration control of a smart pultruded fiber-reinforced polymer I-beam

    Science.gov (United States)

    Song, G.; Qiao, P.; Sethi, V.; Prasad, A.

    2004-08-01

    Advanced and innovative materials and structures are increasingly used in civil infrastructure applications. By combining the advantages of composites and smart sensors and actuators, active or smart composite structures can be created and be efficiently adopted in practical structural applications. This paper presents results on active vibration control of pultruded fiber-reinforced polymer (FRP) composite thin-walled I-beams using smart sensors and actuators. The FRP I-beams are made of E-glass fibers and polyester resins. The FRP I-beam is in a cantilevered configuration. The PZT (lead zirconate titanate) type of piezoelectric ceramic patches are used as smart sensors and actuators. These patches are surface bonded near the cantilevered end of the I-beam. Utilizing results from modal analyses and experimental modal testing, several active vibration control methods, such as position feedback control, strain rate feedback control and lead compensation, are investigated. Experimental results demonstrate that the proposed methods achieve effective vibration control of FRP I-beams. For instance, the modal damping ratio of the strong direction first bending mode increases by more than 1000% with positive position feedback control.

  7. A Monitor and Control System for the Synchrotron Radiation Beam Lines at DAΦNE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Three synchrotron radiation beam lines have been built on DAΦNE,the Frascati electron-positron accelerator.It is Possible to monitor and control all the elements on the beam lines using a modular network distributed I/O system by National Instrunments (FieldPoint) with Bridge VIEW/Lab VIEW programs,Two of these beam lines have radiation safety problems solved by two independent and redundant systems,using mechanical switches ,and S7-200 PLC's by Siemens.In this article our solution will be described in details.

  8. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface

    OpenAIRE

    Xiang Wan; Mei Qing Qi; Tian Yi Chen; Tie Jun Cui

    2016-01-01

    Digital phase shifters have been applied in traditional phased array antennas to realize beam steering. However, the phase shifter deals with the phase of the induced current; hence, it has to be in the path of each element of the antenna array, making the phased array antennas very expensive. Metamaterials and/or metasurfaces enable the direct modulation of electromagnetic waves by designing subwavelength structures, which opens a new way to control the beam scanning. Here, we present a dire...

  9. Generation of J0 Bessel Beams with controlled spatial coherence features

    OpenAIRE

    Carbajal-Dominguez, Adrian; Bernal, Jorge; Martin-Ruiz, Alberto; Niconoff, Gabriel Martínez

    2010-01-01

    An alternative method to generate J0 Bessel beams with controlled spatial partial coherence properties is introduced. Far field diffraction from a discrete number of source points on an annular region is calculated. The average for different diffracted fields produced at several rotation angles is numerically calculated and experimentally detected. Theoretical and experimental results show that for this particular case, J0 Bessel beam is a limit when the number of points tends towards infinit...

  10. Active trajectory control for a heavy ion beam probe on the compact helical system

    International Nuclear Information System (INIS)

    A 200 keV heavy ion beam probe (HIBP) on the Compact Helical System torsatron/heliotron uses a newly proposed method in order to control complicated beam trajectories in non-axisymmetrical devices. As a result, the HIBP has successfully measured potential profiles of the toroidal helical plasma. The article will describe the results of the potential profile measurements, together with the HIBP hardware system and procedures to realize the method. (author)

  11. Commercial weight loss diets meet nutrient requirements in free living adults over 8 weeks: A randomised controlled weight loss trial

    Directory of Open Access Journals (Sweden)

    Macdonald Ian

    2008-09-01

    Full Text Available Abstract Objective To investigate the effect of commercial weight loss programmes on macronutrient composition and micronutrient adequacy over a 2 month period. Design Adults were randomly allocated to follow the Slim Fast Plan, Weight Watchers Pure Points Programme, Dr Atkins' New Diet Revolution, or Rosemary Conley's "Eat Yourself Slim" Diet & Fitness Plan. Setting A multi-centre randomised controlled trial. Subjects 293 adults, mean age 40.3 years and a mean BMI 31.7 (range 27–38 were allocated to follow one of the four diets or control group. Subjects completed a 7-day food and activity diary at baseline (prior to randomisation and after 2 months. Diet records were analysed for nutrient composition using WinDiets (research version. Results A significant shift in the macronutrient composition of the diet with concurrent alteration of the micronutrient profile was apparent with all diets. There was no evidence to suggest micronutrient deficiency in subjects on any of the dietary regimens. However, those sub-groups with higher needs for specific micronutrients, such as folate, iron or calcium may benefit from tailored dietary advice. Conclusion The diets tested all resulted in considerable macronutrient change and resulted in an energy deficit indicating dietary compliance. Health professionals and those working in community and public health should be reassured of the nutritional adequacy of the diets tested. Trial Registration Number NCT00327821

  12. Spousal Social Control During a Weight Loss Attempt: A Daily Diary Study

    OpenAIRE

    Novak, Sarah A.; Webster, Gregory D.

    2011-01-01

    We investigated perceptions of spousal social control and the partners’ behavior, affect, and relationship satisfaction at the start of a weight loss attempt. Gender and body mass index (BMI) were explored as moderators. In order to examine the short-term effects of social control, participants completed daily assessments reporting spouses’ influence and their own behavior and well-being. Instrumental and reinforcing social control were associated with better health behavior, well-being, and ...

  13. Logical and Timing Control for Diagnostic Neutral Beam Injection on HT-7

    Institute of Scientific and Technical Information of China (English)

    Du Shaowu; Ge Suoliang; Zhang Jian; Su Yu; Liu Baohua; Huang He

    2005-01-01

    The timing and master control logic (MCL) units are the most important function units of the diagnostic neutral beam (DNB) power supply control system. The units control the operation of nine power supply subsystems of the DNB system, and provide protection for the DNB system from faults such as beam source arc down. Based on the characteristics of the DNB power supply system, the timing and MCL units have been designed, fabricated and tested. Experiments prove that the timing unit is convenient, flexible and reliable, and the MCL is functional.

  14. Dynamic boundary controls of a rotating body-beam system with time-varying angular velocity

    OpenAIRE

    Boumediène Chentouf

    2004-01-01

    This paper deals with feedback stabilization of a flexible beam clamped at a rigid body and free at the other end. We assume that there is no damping and the rigid body rotates with a nonconstant angular velocity. To stabilize this system, we propose a feedback law which consists of a control torque applied on the rigid body and either a dynamic boundary control moment or a dynamic boundary control force or both of them applied at the free end of the beam. Then it is ...

  15. Investigating the dosimetric and tumor control consequences of prostate seed loss and migration

    International Nuclear Information System (INIS)

    Purpose: Low dose-rate brachytherapy is commonly used to treat prostate cancer. However, once implanted, the seeds are vulnerable to loss and movement. The goal of this work is to investigate the dosimetric and radiobiological effects of the types of seed loss and migration commonly seen in prostate brachytherapy. Methods: Five patients were used in this study. For each patient three treatment plans were created using Iodine-125, Palladium-103, and Cesium-131 seeds. The three seeds that were closest to the urethra were identified and modeled as the seeds lost through the urethra. The three seeds closest to the exterior of prostatic capsule were identified and modeled as those lost from the prostate periphery. The seed locations and organ contours were exported from Prowess and used by in-house software to perform the dosimetric and radiobiological evaluation. Seed loss was simulated by simultaneously removing 1, 2, or 3 seeds near the urethra 0, 2, or 4 days after the implant or removing seeds near the exterior of the prostate 14, 21, or 28 days after the implant. Results: Loss of one, two or three seeds through the urethra results in a D90 reduction of 2%, 5%, and 7% loss, respectively. Due to delayed loss of peripheral seeds, the dosimetric effects are less severe than for loss through the urethra. However, while the dose reduction is modest for multiple lost seeds, the reduction in tumor control probability was minimal. Conclusions: The goal of this work was to investigate the dosimetric and radiobiological effects of the types of seed loss and migration commonly seen in prostate brachytherapy. The results presented show that loss of multiple seeds can cause a substantial reduction of D90 coverage. However, for the patients in this study the dose reduction was not seen to reduce tumor control probability.

  16. Experimental study of delayed positive feedback control for a flexible beam

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing ...

  17. STUDY ON ACTIVE CONTROL FOR A FLEXIBLE BEAM UNDER THE CONDITION OF ZERO GRAVITY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The system of coupling structure with controlling is a kind of dynamic feedback system in which the mechanical load and the actuator/controller interact. The mechanical system and the control system can be considered integrally as a close system, and the driving forces actuating the mechanical load can be taken as inner forces in the coupling structure system with controlling. Therefore, one can use the method for dealing with conservative systems to simplify greatly modeling and analyses. The relative equilibrium state of motion of the flexible beam under the condition of zero gravity is studied by using the energy method, in which the characteristics of structure and controlling are considered synthetically. And further, the stability conditions for the relative equilibrium state of the system have been found. If the stability conditions are used as controlling parameters of motion of the system, the kinetic energy of the flexible beam can be converted advantageously into the electromagnetic energy of the motor and controller as well as the vibration of the flexible structure can be reduced rapidly. The results in the research provide a kind of very simple and effective real-time control method reducing the vibration of the flexible beam. The method has been verified in many kinds of experimental systems of flexible beams.

  18. The CEBAF [Continuous Electron Beam Accelerator Facility] control system architecture

    International Nuclear Information System (INIS)

    The focus of this paper is on CEBAF's computer control system. This control system will utilize computers in a distributed, networked configuration. The architecture, networking and operating system of the computers, and preliminary performance data are presented. We will also discuss the design of the operator consoles and the interfacing between the computers and CEBAF's instrumentation and operating equipment

  19. On the failure of the `Similar Piezoelectric Control' in preventing loss of stability by nonconservative positional forces

    Science.gov (United States)

    D'Annibale, Francesco; Rosi, Giuseppe; Luongo, Angelo

    2015-08-01

    A control strategy for continuous, autonomous, linear mechanical systems, controlled via piezoelectric devices, and suffering Hopf bifurcations, triggered by positional nonconservative forces, is discussed. The strategy is based on the `principle of similarity', proved in the literature to be successful in controlling externally excited systems. A continuous metamodel of Piezo-Electro-Mechanical system, loaded by position-dependent forces, is derived via the Extended Hamilton Principle. The similarity principle is introduced in the model, demanding for certain relations among mechanical and piezoelectric properties to be satisfied. A stability analysis is carried out via perturbation methods, also accounting for small deviations from similarity. It is shown that the similar control has always a detrimental effect in preventing the loss of stability of the mechanical systems and that this effect is robust under slight imperfections. As an example, a Generalized Beck beam is studied, internally and externally damped, under the simultaneous action of a follower and a dead load, for which the previous asymptotic results are corroborated by an exact analysis.

  20. 预应力损失对连续梁桥内力的影响%Impacts of prestress loss on internal force of continuous beam bridge

    Institute of Scientific and Technical Information of China (English)

    曾辉; 杨凡坤

    2012-01-01

    Integrating with three-span continuous beam bridge on the extra large(48+80+48)m bridge,this paper discusses two conditions with and without considering prestress loss,introduces the composition and calculation method of prestress loss,and studies the impacts of prestress loss on internal force of continuous beam bridge,which has provided theoretical guidance for the design and calculation of three-span continuous beam bridge.%结合广东某特大桥(48+80+48)m三跨连续梁,从考虑和不考虑预应力损失两种情况进行了论述,介绍了预应力损失的组成和计算方法,进行了预应力损失对桥梁结构内力影响的研究,为三跨连续梁桥设计计算提供了理论指导。

  1. Control and Dissipation of Runaway Electron Beams Created during Rapid Shutdown Experiments in DIII-D

    International Nuclear Information System (INIS)

    Full text: High-current (multi-MA) runaway electron (RE) beams could form in ITER during disruptions or rapid shutdowns. To avoid localized wall damage, it is crucial to understand how these RE beams are lost and how they can be controlled and dissipated. DIII-D dedicated experiments on rapid shutdown REs have improved understanding of the processes involved in RE formation, control, dissipation, and final impact with the vessel wall. Improvements in RE beam feedback control enabled stable confinement of RE beams out to the volt-s limit of the ohmic coil, as well as enabled a rampdown to zero current. Collisional dissipation of RE beam current was studied by massive gas injection of different impurities into RE beams. RE current dissipation is shown to be more rapid than expected from avalanche theory - this anomalous dissipation appears to be linked to the presence of high-Z impurity ions in plasma. It is not clear if the anomalous dissipation is due to radial diffusion of REs into the wall or an anomalously large collisional drag on the REs. Evidence for radial diffusion of REs is seen with diagnostic pellets, which show diffuse REs well outside the main RE beam. Evidence for anomalous collisional drag on REs is seen in the RE energy distribution function, which shows a large increase in electrons at low energies, when compared with avalanche theory. Final RE-wall impact studies show that the REs are lost to the wall rapidly and with significant toroidal asymmetry once the beam radius touches the wall. Significant (∼ 10x) apparent conversion of RE magnetic energy to kinetic energy is observed in the final RE-wall impact for sufficiently slow impacts; for rapid impacts, the RE magnetic energy appears to go mostly into wall currents and ohmic plasma current. (author)

  2. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    Science.gov (United States)

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.

  3. Beam Dynamics and Pulse Duration Control During Final Beam Bunching in Driver System for Heavy Ion Inertial Fusion

    CERN Document Server

    Kikuchi, Takashi; Katayama, Takeshi; Kawata, Shigeo; Nakajima, Mitsuo; Someya, Tetsuo

    2005-01-01

    Beam dynamics is investigated by multi-particle simulations during a final beam bunching in a driver system for heavy ion inertial fusion (HIF). The longitudinal bunch compression causes the beam instability induced by the strong space charge effect. The multi-particle simulation can indicate the emittance growth due to the longitudinal bunch compression. Dependence in the beam pulse duration is also investigated for effective pellet implosion in HIF. Not only the spatial nonuniformity of the beam illumination, but also the errors of the beam pulse duration cause changes of implosion dynamics. The allowable regime of the beam pulse duration for the effective fusion output becomes narrow with decreasing the input beam energy. The voltage accuracy requirement at the beam velocity modulator is also estimated for the final beam bunching. It is estimated that the integrated voltage error is allowable as a few percent.

  4. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    CERN Document Server

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Ferrando, Belen Salvachua; Salvachua Ferrando, B

    2014-01-01

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. Within the US LHC Accelerator Research Program (LARP) and the European FP7 HiLumi LHC Design Study, we are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were check...

  5. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Previtali, Valentina [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bruce, Roderik [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Redaelli, Stefano [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Rossi, Adriana [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Salvachua Ferrando, Belen [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  6. Plasmon Injection to Compensate and Control Losses in Negative Index Metamaterials

    CERN Document Server

    Sadatgol, Mehdi; Yang, Lan; Güney, Durdu Ö

    2015-01-01

    Metamaterials have introduced a whole new world of unusual materials with functionalities that cannot be attained in naturally occurring material systems by mimicking and controlling the natural phenomena at subwavelength scales. However, the inherent absorption losses pose fundamental challenge to the most fascinating applications of metamaterials. Based on a novel plasmon injection (PI or \\Pi) scheme, we propose a coherent optical amplification technique to compensate losses in metamaterials. Although the proof of concept device here operates under normal incidence only, our proposed scheme can be generalized to arbitrary form of incident waves. The \\Pi-scheme is fundamentally different than major optical amplification schemes. It does not require gain medium, interaction with phonons, or any nonlinear medium. The \\Pi-scheme allows for loss-free metamaterials. It is ideally suited for mitigating losses in metamaterials operating in the visible spectrum and is scalable to other optical frequencies. These fin...

  7. Active Vibration Control of Beam Using Electro-magnetic Constrained Layer Damping

    Institute of Scientific and Technical Information of China (English)

    Niu Hongpan; Zhang Yahong; Zhang Xinong; Xie Shilin

    2008-01-01

    This paper investigates vibration control of beam through electro-magnetic constrained layer damping (EMCLD) which consists of electromagnet layer, permanent magnet layer and viscoelastic damping layer. When the coil of the electromagnet is electrified with proper control strategy, the electromagnet can exert magnetic force opposite to the direction of structural deformation so that the struc- tural vibration is attenuated. A mathematical model is developed based on the equivalent current method to calculate the electromagnetic control force produced by EMCLD. The governing equations of the system are obtained using Hamilton's Principle and then reduced with the assumed-mode method. A simulation on vibration control of a cantilever beam is conducted under the velocity proportional feedback to demonstrate the energy dissipation capability of EMCLD, and the beam system with the same parameter is experimented. The results of experiment and simulation are compared and the results show that the EMCLD is an effective means for suppressing modal vibration. The results also indicate that the beam system has better control performance for larger control current. The EMCLD method presented in this paper provides an applicable and efficient tool for the vibration control of structures.

  8. Beam loss caused by edge focusing of injection bump magnets and its mitigation in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Hotchi, H.; Tani, N.; Watanabe, Y.; Harada, H.; Kato, S.; Okabe, K.; Saha, P. K.; Tamura, F.; Yoshimoto, M.

    2016-01-01

    In the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, transverse injection painting is utilized not only to suppress space-charge induced beam loss in the low energy region but also to mitigate foil scattering beam loss during charge-exchange injection. The space-charge induced beam loss is well minimized by the combination of modest transverse painting and full longitudinal painting. But, for sufficiently mitigating the foil scattering part of beam loss, the transverse painting area has to be further expanded. However, such a wide-ranging transverse painting had not been realized until recently due to beta function beating caused by edge focusing of pulsed injection bump magnets during injection. This beta function beating additionally excites random betatron resonances through a distortion of the lattice superperiodicity, and its resultant deterioration of the betatron motion stability causes significant extra beam loss when expanding the transverse painting area. To solve this issue, we newly installed pulse-type quadrupole correctors to compensate the beta function beating. This paper presents recent experimental results on this correction scheme for suppressing the extra beam loss, while discussing the beam loss and its mitigation mechanisms with the corresponding numerical simulations.

  9. Data acquisition and control system for steady state neutral beam injector

    International Nuclear Information System (INIS)

    This paper presents the control system overview, hardware, software and network for Data acquisition and Control system for steady state neutral beam injector (NBIDACS) to be used for heating of plasma in steady state superconducting tokamak (SST-1). The task for NBIDACS is not only to safely deliver 1.7 MW of neutral beams at 55 keV H deg. a period of 1000 s with 16.7% duty cycle but also to acquire the data related to house keeping of the system and its auxiliaries and diagnostics which determine the quality and parameters of the beam. Major issues concerning the design of the system stem from operation duty cycle of 1000 s ON/5000 s OFF. This calls for use of intelligent techniques not only for managing a large amount (100 MB) of data per shot but also to obtain failsafe, reliable control system and to archive the recorded data

  10. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2012-11-15

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  11. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    International Nuclear Information System (INIS)

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  12. Improving Delay-Margin of Noncollocated Vibration Control of Piezo-Actuated Flexible Beams via a Fractional-Order Controller

    Directory of Open Access Journals (Sweden)

    Teerawat Sangpet

    2014-01-01

    Full Text Available Noncollocated control of flexible structures results in nonminimum-phase systems because the separation between the actuator and the sensor creates an input-output delay. The delay can deteriorate stability of closed-loop systems. This paper presents a simple approach to improve the delay-margin of the noncollocated vibration control of piezo-actuated flexible beams using a fractional-order controller. Results of real life experiments illustrate efficiency of the controller and show that the fractional-order controller has better stability robustness than the integer-order controller.

  13. Actuator Location and Voltages Optimization for Shape Control of Smart Beams Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Georgios E. Stavroulakis

    2013-10-01

    Full Text Available This paper presents a numerical study on optimal voltages and optimal placement of piezoelectric actuators for shape control of beam structures. A finite element model, based on Timoshenko beam theory, is developed to characterize the behavior of the structure and the actuators. This model accounted for the electromechanical coupling in the entire beam structure, due to the fact that the piezoelectric layers are treated as constituent parts of the entire structural system. A hybrid scheme is presented based on great deluge and genetic algorithm. The hybrid algorithm is implemented to calculate the optimal locations and optimal values of voltages, applied to the piezoelectric actuators glued in the structure, which minimize the error between the achieved and the desired shape. Results from numerical simulations demonstrate the capabilities and efficiency of the developed optimization algorithm in both clamped−free and clamped−clamped beam problems are presented.

  14. Recent Improvements to the Control of the CTF3 High-Current Drive Beam

    CERN Document Server

    Constance, B; Gamba, D; Skowronski, P K

    2013-01-01

    In order to demonstrate the feasibility of the CLIC multiTeV linear collider option, the drive beam complex at the CLIC Test Facility (CTF3) at CERN is providing highcurrent electron pulses for a number of related experiments. By means of a system of electron pulse compression and bunch frequency multiplication, a fully loaded, 120 MeV linac is used to generate 140 ns electron pulses of around 28 Amperes. Subsequent deceleration of this high-current drive beam demonstrates principles behind the CLIC acceleration scheme, and produces 12 GHz RF power for experimental purposes. As the facility has progressed toward routine operation, a number of studies aimed at improving the drive beam performance have been carried out. Additional feedbacks, automated steering programs, and improved control of optics and dispersion have contributed to a more stable, reproducible drive beam with consequent benefits for the experiments.

  15. Propagation properties of controllable dark-hollow beams through fractional Fourier transform systems

    Institute of Scientific and Technical Information of China (English)

    TANG Bin; LI Rui-peng; JIN Yi; JIANG Mei-ping

    2012-01-01

    Based on the definition of fractional Fourier transform (FrFT) in the cylindrical coordinate system,the propagation properties of a controllable dark-hollow beam (CDHB) are investigated in detail.An analytical formula is derived for the FrFT of a CDHB.By using the derived formula,the properties of a CDHB in the FrFT plane are illustrated numerically.The results show that the properties of the intensity of the beam in the FrFT are closely related to not only the fractional order but also initial beam parameter,beam order and the lens focal length of the optical system for performing FrFT.The derived formula provides an effective and convenient way for analyzing and calculating the FrFT ofa CDHB.

  16. Ethics of Placebo Control in Trials for Idiopathic Sudden Sensorineural Hearing Loss.

    Science.gov (United States)

    Maldonado Fernández, Miguel; Kornetsky, Susan; Rubio Rodriguez, Laura

    2016-07-01

    Idiopathic sudden sensorineural hearing loss (ISSHL) involves sudden loss of hearing from cochlear or retrocochlear origin of unknown cause. Systemic corticosteroids may be considered in the management of ISSNHL. However, an updated Cochrane systematic review concludes that "the value of steroids in the treatment of idiopathic sudden sensorineural hearing loss remains unclear since the evidence obtained from randomized controlled trials is contradictory in outcome." Therefore, a new clinical trial that addresses this question is mandatory. A first step in its design is to determine if placebo control would be ethically acceptable. We conclude that there is equipoise (uncertainty) about the use of corticosteroids for ISSHL. A new trial is justified-but with the inclusion of interim analyses to detect early imbalances on efficacy or safety and with the ability to stop the trial if needed. PMID:27371619

  17. Ethics of Placebo Control in Trials for Idiopathic Sudden Sensorineural Hearing Loss.

    Science.gov (United States)

    Maldonado Fernández, Miguel; Kornetsky, Susan; Rubio Rodriguez, Laura

    2016-07-01

    Idiopathic sudden sensorineural hearing loss (ISSHL) involves sudden loss of hearing from cochlear or retrocochlear origin of unknown cause. Systemic corticosteroids may be considered in the management of ISSNHL. However, an updated Cochrane systematic review concludes that "the value of steroids in the treatment of idiopathic sudden sensorineural hearing loss remains unclear since the evidence obtained from randomized controlled trials is contradictory in outcome." Therefore, a new clinical trial that addresses this question is mandatory. A first step in its design is to determine if placebo control would be ethically acceptable. We conclude that there is equipoise (uncertainty) about the use of corticosteroids for ISSHL. A new trial is justified-but with the inclusion of interim analyses to detect early imbalances on efficacy or safety and with the ability to stop the trial if needed.

  18. Determinants of Anger in Young Infants: The Effect of Loss of Control.

    Science.gov (United States)

    Sullivan, Margaret W.; Lewis, Michael

    This study examined the effect of different types of loss of control on the quality and quantity of the frustration response in 4- to 6-month-old infants. To establish an expectancy, all infants received 4 minutes of contingency training in which infants were presented with slides and music after they performed a pulling response with their right…

  19. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture

    OpenAIRE

    Wood, Stephen A.; Almaraz, Maya; Bradford, Mark A.; McGuire, Krista L.; Naeem, Shahid; Neill, Christopher; Palm, Cheryl A.; Tully, Katherine L.; Zhou, Jizhong

    2015-01-01

    Tropical smallholder agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence process...

  20. Results of the studies on energy deposition in IR6 superconducting magnets from continuous beam loss on the TCDQ system

    CERN Document Server

    Bracco, C; Presland, A; Redaelli, S; Sarchiapone, L; Weiler, T

    2007-01-01

    A single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of the superconducting quadrupole Q4 magnets in IR6, in order to protect it and other downstream LHC machine elements from destruction in the event of a beam dump that is not synchronised with the abort gap. The TCDQ will be positioned close to the beam, and will intercept the particles from the secondary halo during low beam lifetime. Previous studies (1-4) have shown that the energy deposited in the Q4 magnet coils can be close to or above the quench limit. In this note the results of the latest FLUKA energy deposition simulations for Beam 2 are described, including an upgrade possibility for the TCDQ system with an additional shielding device. The results are discussed in the context of the expected performance levels for the different phases of LHC operation.

  1. Transient finite element simulations and experiments on active control of sound transmission loss through plates

    OpenAIRE

    Brink, Maarten Cornelis

    2008-01-01

    In this thesis the sound transmission loss of a plate has been investigated. It serves as an abstract model for the noise barrier between engine and passengers in a bus. A finite element simulation model has been developed to be able to predict the plate's noise reduction effect. To increase this reduction without adding too much mass, the integration of active noise control (ANC) has been investigated. The active system contained a controller, microphones and piezoelectric actuators. The inf...

  2. Considering linear generator copper losses on model predictive control for a point absorber wave energy converter

    International Nuclear Information System (INIS)

    Highlights: • We considered the linear generator copper losses in the proposed MPC strategy. • We maximized the power transferred to the generator side power converter. • The proposed MPC increases the useful average power injected into the grid. • The stress level of the PTO system can be reduced by the proposed MPC. - Abstract: The amount of energy that a wave energy converter can extract depends strongly on the control strategy applied to the power take-off system. It is well known that, ideally, the reactive control allows for maximum energy extraction from waves. However, the reactive control is intrinsically noncausal in practice and requires some kind of causal approach to be applied. Moreover, this strategy does not consider physical constraints and this could be a problem because the system could achieve unacceptable dynamic values. These, and other control techniques have focused on the wave energy extraction problem in order to maximize the energy absorbed by the power take-off device without considering the possible losses in intermediate devices. In this sense, a reactive control that considers the linear generator copper losses has been recently proposed to increase the useful power injected into the grid. Among the control techniques that have emerged recently, the model predictive control represents a promising strategy. This approach performs an optimization process on a time prediction horizon incorporating dynamic constraints associated with the physical features of the power take-off system. This paper proposes a model predictive control technique that considers the copper losses in the control optimization process of point absorbers with direct drive linear generators. This proposal makes the most of reactive control as it considers the copper losses, and it makes the most of the model predictive control, as it considers the system constraints. This means that the useful power transferred from the linear generator to the power

  3. Active Vibration Control of a Nonlinear Beam with Self- and External Excitations

    Directory of Open Access Journals (Sweden)

    J. Warminski

    2013-01-01

    Full Text Available An application of the nonlinear saturation control (NSC algorithm for a self-excited strongly nonlinear beam structure driven by an external force is presented in the paper. The mathematical model accounts for an Euler-Bernoulli beam with nonlinear curvature, reduced to first mode oscillations. It is assumed that the beam vibrates in the presence of a harmonic excitation close to the first natural frequency of the beam, and additionally the beam is self-excited by fluid flow, which is modelled by a nonlinear Rayleigh term for self-excitation. The self- and externally excited vibrations have been reduced by the application of an active, saturation-based controller. The approximate analytical solutions for a full structure have been found by the multiple time scales method, up to the first-order approximation. The analytical solutions have been compared with numerical results obtained from direct integration of the ordinary differential equations of motion. Finally, the influence of a negative damping term and the controller's parameters for effective vibrations suppression are presented.

  4. Current control of the electron beam formed in the magnetron gun with a secondary-emission cathode

    International Nuclear Information System (INIS)

    Data are reported on electron beam generation and beam current control in two types of secondary-emission cathode magnetron guns. The influence of the magnetic field value and field distribution on the formation of the beam and its parameters has been investigated in the electron energy range between 20 and 150 keV. The influence of local magnetic field variations on the cathode and the electron beam characteristics has been studied. The possibility to control the electron beam current in various ways has been demonstrated

  5. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  6. 洛阳博物馆新馆大跨度框架梁预应力损失测试研究%Prestressing Loss Test of the Large Span Frame Beam of Luoyang New Museum

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    In Luoyang New Museum, the prestressing loss monitoring and testing play very important role in the process of tensioning, especially for the prestressed control of the construction sequence of a large span prestressed frame beam adopting the post⁃tensioned prestressed technology. The measured values of stress and strain of the beam characteristic cross section are compared with the theoretical design calculation ones, based on the coefficient of friction loss accurately obtained in this paper. Finally, it can achieve the purpose of precise control of the prestressing construction quality.%洛阳博物馆新馆工程大跨度预应力框架梁采用后张有黏结预应力施工工艺,施工过程中应加强其预应力施工控制,特别是张拉过程中的预应力损失监控及测试十分重要。通过精确计算出摩阻损失系数,测定出特征截面的应力和应变值,并与理论设计验算值进行对比分析,可达到精确控制预应力施工质量的目的。

  7. Study of Intensity Proton Accelerator Beam Loss Readout System%强流质子加速器的束流损失读出系统的研究

    Institute of Scientific and Technical Information of China (English)

    马晓媛; 雷革; 徐韬光

    2012-01-01

    It introduces the research on the Beam - Loss - Readout system, which is part of the Beam - Loss -Monitoring system of the intensity proton accelerator. The hardware scheme of BLR system use ADC sampling e-quipment based on VME bus protocol. The software design is built on the Linux platform using EPICS control system. With the device driver, device support and record support program, the system gets control of the device and reads out the data. It turns out to meet the requirements of the project target.%介绍了强流质子加速器束流损失监测系统中束流损失读出系统的研究.束损读出系统硬件使用基于VME总线协议的ADC设备,软件设计采用EPICS控制软件框架.作者编写设备驱动、设备支持、记录支持程序,实现了对硬件的控制和数据的读取,并满足工程要求的性能指标.

  8. Molecule-Surface-Scattering with Velocity-Controlled Molecular Beams

    OpenAIRE

    Grätz, F

    2014-01-01

    This thesis describes the design and construction of a novel molecule-surface scattering apparatus. The setup combines a Stark decelerator with a state-of-the-art surface scattering chamber, and allows background-gas free scattering of packets of velocity-controlled polar molecules in selected quantum states from well-defined surfaces with unprecedented energy resolution. Results for scattering of CO (a3Π) in different vibrational quantum states from a clean Au(111) surface are presented. CO ...

  9. Laser controlled deposition of metal microstructures via nondiffracting Bessel beam illumination

    Science.gov (United States)

    Drampyan, Rafael; Leonov, Nikita; Vartanyan, Tigran

    2016-04-01

    The technique of the laser controlled deposition of sodium and rubidium deposits on the sapphire substrate is presented. The metals were deposited on the clean sapphire substrate from the vapor phase contained in the evacuated and sealed cell. We use an axicon to produce a non-diffracting Bessel beam out of the beam got from the cw diode laser with 200 mW power at the wavelength of 532 nm. After 30 minutes of the laser-controlled deposition the substrates were examined in the optical microscope. The obtained metal deposits form the sharp-cut circles with the pitch of 10 μm, coincident with the tens of dark rings of the Bessel beam. Reduction of the laser power leads to the build up of the continuous metal film over the whole substrate.

  10. Human response to individually controlled micro environment generated with localized chilled beam

    DEFF Research Database (Denmark)

    Uth, Simon C.; Nygaard, Linette; Bolashikov, Zhecho Dimitrov;

    2014-01-01

    Indoor environment in a single-office room created by a localised chilled beam with individual control of the primary air flow was studied. Response of 24 human subjects when exposed to the environment generated by the chilled beam was collected via questionnaires under a 2-hour exposure including...... different work tasks at three locations in the room. Response of the subjects to the environment generated with a chilled ceiling combined with mixing air distribution was used for comparison. The air temperature in the room was kept at 26 or 28 °C. Results show no significant difference in the overall and...... local thermal sensation reported by the subjects with the two systems. Both systems were equally acceptable. At 26°C the individual control of the localised chilled beam lead to higher acceptability of the work environment. At 28°C the acceptability decreased with the two systems. It was not acceptable...

  11. Band gap control of phononic beam with negative capacitance piezoelectric shunt

    Institute of Scientific and Technical Information of China (English)

    Chen Sheng-Bing; Wen Ji-Hong; Yu Dian-Long; Wang Gang; Wen Xi-Sen

    2011-01-01

    Periodic arrays of negative capacitance shunted piezoelectric patches are employed to control the band gaps of phononic beams. The location and the extent of induced band gap depend on the mismatch in impedance generated by each patch. The total impedance mismatch is determined by the added mass and stiffness of each patch as well as the shunting electrical impedance. Therefore, the band gap of the shunted phononic beam can be actively tuned by appropriately selecting the value of negative capacitance. The control of the band gap of phononic beam with negative capacitive shunt is demonstrated numerically by employing transfer matrix method. The result reveals that using negative capacitive shunt to tune the band gap is effective.

  12. A closed-loop photon beam control study for the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Portmann, G.; Bengtsson, J.

    1993-05-01

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared -- a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.

  13. Semi-active damping strategy for beams system with pneumatically controlled granular structure

    Science.gov (United States)

    Bajkowski, Jacek M.; Dyniewicz, Bartłomiej; Bajer, Czesław I.

    2016-03-01

    The paper deals with a control method for semi-active damping of a double beam system with a smart granular structure placed in a thin silicone envelope. The damping properties of the system are controlled pneumatically, by subjecting the granular material to underpressure at particular moments. A mathematical model of the layered beam with a granular damping structure is represented by the two degrees of freedom, modified Kelvin-Voigt model of two masses, a spring with controllable stiffness, and a viscous damper with a variable damping coefficient. The optimal control problem is posed, using the concept of switching of the parameters to increase the efficiency of suppressing the displacement's amplitude. The resulting control strategy was verified experimentally for free vibrations of a cantilever system. The research proved that the appropriate, periodic switching of the properties of the considered structure enables reducing the vibration more effectively than if the material is treated passively.

  14. Aircraft Loss-of-Control Accident Prevention: Switching Control of the GTM Aircraft with Elevator Jam Failures

    Science.gov (United States)

    Chang, Bor-Chin; Kwatny, Harry G.; Belcastro, Christine; Belcastro, Celeste

    2008-01-01

    Switching control, servomechanism, and H2 control theory are used to provide a practical and easy-to-implement solution for the actuator jam problem. A jammed actuator not only causes a reduction of control authority, but also creates a persistent disturbance with uncertain amplitude. The longitudinal dynamics model of the NASA GTM UAV is employed to demonstrate that a single fixed reconfigured controller design based on the proposed approach is capable of accommodating an elevator jam failure with arbitrary jam position as long as the thrust control has enough control authority. This paper is a first step towards solving a more comprehensive in-flight loss-of-control accident prevention problem that involves multiple actuator failures, structure damages, unanticipated faults, and nonlinear upset regime recovery, etc.

  15. Early pest development and loss of biological control are associated with urban warming.

    Science.gov (United States)

    Meineke, Emily K; Dunn, Robert R; Frank, Steven D

    2014-11-01

    Climate warming is predicted to cause many changes in ectotherm communities, one of which is phenological mismatch, wherein one species' development advances relative to an associated species or community. Phenological mismatches already lead to loss of pollination services, and we predict that they also cause loss of biological control. Here, we provide evidence that a pest develops earlier due to urban warming but that phenology of its parasitoid community does not similarly advance. This mismatch is associated with greater egg production that likely leads to more pests on trees.

  16. Fault-tolerant control of delta operator systems with actuator saturation and effectiveness loss

    Science.gov (United States)

    Yang, Hongjiu; Zhang, Luyang; Zhao, Ling; Yuan, Yuan

    2016-07-01

    This paper studies the problem of robust fault-tolerant control against the actuator effectiveness loss for delta operator systems with actuator saturation. Ellipsoids are used to estimate the domain of attraction for the delta operator systems with actuator saturation and effectiveness loss. Some invariance set conditions used for enlarging the domain of attraction are expressed by linear matrix inequalities. Discussions on system performance optimisation are presented in this paper, including reduction on computational complexity, expansion of the domain of attraction and disturbance rejection. Two numerical examples are given to illustrate the effectiveness of the developed techniques.

  17. Experimental Studies on The Mechanism and COntrol of Secondary Flow Losses in Turbine Cascades

    Institute of Scientific and Technical Information of China (English)

    WangZhongqi; HanWanjin; 等

    1992-01-01

    This paper summarizes the results of the authors' 4 year experimental studies on the secondary flow losses in turbine cascades.cascade wind tunnel experiments were carried out concerning the influence of aspect rations,incidence,turning angles and outer endwall divergent angles in order to unveil the evolution mechanism of secondary flow losses in turbine cascades without end clearance.Some methods for controlling the secondary flows are investigated including the blade leaning,blade cambering,endwall convergence and leading edge extension at two ends of the blade.

  18. An Adaptive Loss-Aware Flow Control Scheme for Delay-Sensitive Applications in OBS Networks

    Science.gov (United States)

    Jeong, Hongkyu; Choi, Jungyul; Mo, Jeonghoon; Kang, Minho

    Optical Burst Switching (OBS) is one of the most promising switching technologies for next generation optical networks. As delay-sensitive applications such as Voice-over-IP (VoIP) have recently become popular, OBS networks should guarantee stringent Quality of Service (QoS) requirements for such applications. Thus, this paper proposes an Adaptive Loss-aware Flow Control (ALFC) scheme, which adaptively decides on the burst offset time based on loss-rate information delivered from core nodes for assigning a high priority to delay-sensitive application traffic. The proposed ALFC scheme also controls the upper-bounds of the factors inducing delay and jitter for guaranteeing the delay and jitter requirements of delay-sensitive application traffic. Moreover, a piggybacking method used in the proposed scheme accelerates the guarantee of the loss, delay, and jitter requirements because the response time for flow control can be extremely reduced up to a quarter of the Round Trip Time (RTT) on average while minimizing the signaling overhead. Simulation results show that our mechanism can guarantee a 10-3 loss-rate under any traffic load while offering satisfactory levels of delay and jitter for delay-sensitive applications.

  19. Fast control and data acquisition in the neutral beam test facility

    Energy Technology Data Exchange (ETDEWEB)

    Luchetta, A., E-mail: adriano.luchetta@igi.cnr.it; Manduchi, G.; Taliercio, C.

    2014-05-15

    Highlights: • The paper describes the fast control and data acquisition in the ITER neutral beam test facility. • The usage of real time control in ion beam generation and extraction is proposed. • Real time management of breakdowns is described. • The implementation of event-driven data acquisition is reported. - Abstract: Fast control and data acquisition are required in the ion source test bed of the ITER neutral beam test facility, referred to as SPIDER. Fast control will drive the operation of the power supply systems with particular reference to special asynchronous events, such as the breakdowns. These are short-circuits among grids or between grids and vessel that can occur repeatedly during beam operation. They are normal events and, as such, they will be managed by the fast control system. Cycle time associated to such fast control is down to hundreds of microseconds. Fast data acquisition is required when breakdowns occur. Event-driven data acquisition is triggered in real time by fast control at the occurrence of each breakdown. Pre- and post-event samples are acquired, allowing capturing information on transient phenomena in a whole time-window centered on the event. Sampling rate of event-driven data acquisition is up to 5 MS/s. Fast data acquisition may also be independent of breakdowns as in the case of the cavity ring-down spectroscopy where data chunks are acquired at 100 MS/s in bursts of 1.5 ms every 100 ms and are processed in real time to produce derived measurements. The paper after the description of the SPIDER fast control and data acquisition application will report the system design based on commercially available hardware and the MARTe and MDSplus software frameworks. The results obtained by running a full prototype of the fast control and data acquisition system are also reported and discussed. They demonstrate that all SPIDER fast control and data acquisition requirements can be met in the prototype solution.

  20. Status of Computational Aerodynamic Modeling Tools for Aircraft Loss-of-Control

    Science.gov (United States)

    Frink, Neal T.; Murphy, Patrick C.; Atkins, Harold L.; Viken, Sally A.; Petrilli, Justin L.; Gopalarathnam, Ashok; Paul, Ryan C.

    2016-01-01

    A concerted effort has been underway over the past several years to evolve computational capabilities for modeling aircraft loss-of-control under the NASA Aviation Safety Program. A principal goal has been to develop reliable computational tools for predicting and analyzing the non-linear stability & control characteristics of aircraft near stall boundaries affecting safe flight, and for utilizing those predictions for creating augmented flight simulation models that improve pilot training. Pursuing such an ambitious task with limited resources required the forging of close collaborative relationships with a diverse body of computational aerodynamicists and flight simulation experts to leverage their respective research efforts into the creation of NASA tools to meet this goal. Considerable progress has been made and work remains to be done. This paper summarizes the status of the NASA effort to establish computational capabilities for modeling aircraft loss-of-control and offers recommendations for future work.

  1. CSNS/RCS粒子散射束流损失研究%Study of Beam Loss due to Particle Scattering in CSNS/RCS

    Institute of Scientific and Technical Information of China (English)

    黄明阳; 王娜; 邱静; 王生; 黄楠

    2012-01-01

    在中国散裂中子源快循环同步加速器(CSNS/RCS)中,质子束流在加速过程中会与一些器件(如剥离膜、准直器、散射引出膜等)相互作用,产生粒子散射并导致束流损失.本工作首先利用ORBIT模拟RCS束流注入过程,并用FLUKA模拟注入束流穿过剥离膜的粒子散射过程,计算剥离膜散射所造成的束流损失.其次,模拟质子束流与准直器相互作用的粒子散射,计算质子束流与不同尺寸的次级准直器相互作用的吸收效率,作为对次级准直器优化的依据.最后,研究CSNS/RCS膜散射引出方案,利用FLUKA对不同引出方案进行模拟并比较,得到最佳的可行性方案.%In the Rapid Cycling Synchrotron of China Spallation Neutron Source (CSNS/ RCS) , the proton beam will interact with some devices, such as the stripping foil, beam collimator, and foil for scattering extraction. These interactions result in some particle scattering and beam losses. In this paper, firstly, the beam transportation in the injection procedure was simulated by ORBIT and the particle scattering due to the interaction between the beam and stripping foil was simulated by FLUKA, then the beam loss due to the foil scattering was calculated. Secondly, the particle scattering due to the proton beam interacting with the secondary collimator was simulated, and based on which, the secondary collimator was optimized by calculating the absorb efficiency. The optimization was done for the foil scattering extraction scheme by simulating and comparing different schemes with FLUKA.

  2. Pascal software structures achieve definite control of the 24 MFTF sustaining neutral-beam power supplies

    International Nuclear Information System (INIS)

    Precise control of large, complex systems is not assured unless there is known to be no unintended interactions in the control system. The software controlling the sustaining neutral-beam power supplies of the Mirror Fusion Test Facility accomplishes this feat. The software structures comprise some 16,000 lines of commented Pascal code, distributed amoung 10 different tasks. Each task may control any of the 24 power supplies. All the tasks are strictly event-driven, and are not subject to any system mode. Since there is no global information in the software, we know that all the power supplies are controlled independently

  3. Evolution and Control of 2219 Aluminum Microstructural Features through Electron Beam Freeform Fabrication

    Science.gov (United States)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  4. Loss of Asthma Control in Pediatric Patients after Discontinuation of Long-Acting Beta-Agonists

    Directory of Open Access Journals (Sweden)

    Adrian R. O'Hagan

    2012-01-01

    Full Text Available Recent asthma recommendations advocate the use of long-acting beta-agonists (LABAs in uncontrolled asthma, but also stress the importance of stepping down this therapy once asthma control has been achieved. The objective of this study was to evaluate downtitration of LABA therapy in pediatric patients who are well-controlled on combination-inhaled corticosteroid (ICS/LABA therapy. Clinical and physiologic outcomes were studied in children with moderate-to-severe persistent asthma after switching from combination (ICS/LABA to monotherapy with ICS. Of the 54 patients, 34 (63% were determined to have stable asthma after the switch, with a mean followup of 10.7 weeks. Twenty (37% had loss of asthma control leading to addition of leukotriene receptor antagonists, increased ICS, or restarting LABA. There were 2 exacerbations requiring treatment with systemic steroids. In patients with loss of control, there was a statistically significant decline in FEV1 (−8% versus −1.9%, =0.03 and asthma control test (−3.2 versus −0.5, =0.03. This did not approach significance for FEF25-75%, exhaled nitric oxide, lung volumes or airway reactivity. No demographic, asthma control measures, or lung function variables predicted loss of control. Pediatric patients with moderate-to-severe persistent asthma who discontinue LABA therapy have a 37% chance of losing asthma control resulting in augmented maintenance therapies. Recent recommendations of discontinuing LABA therapy as soon as control is achieved should be evaluated in a prospective long-term study.

  5. Pre-Meal Affective State and Laboratory Test Meal Intake in Adolescent Girls with Loss of Control Eating

    OpenAIRE

    Ranzenhofer, Lisa M.; Hannallah, Louise; Field, Sara E.; Shomaker, Lauren B.; Stephens, Mark; Sbrocco, Tracy; Kozlosky, Merel; Reynolds, James; Yanovski, Jack A.; Tanofsky-Kraff, Marian

    2013-01-01

    Loss of control eating confers risk for excess weight gain and exacerbated disordered eating. Affect theory proposes that loss of control eating is used to cope with negative mood states. Self-report data suggest that negative affect may contribute to the etiology of loss of control eating, but this theory has not been well-tested using laboratory paradigms. We examined associations between pre-meal affective states and intake during a laboratory test meal. One-hundred and ten adolescent girl...

  6. Wavefront control of high power laser beams for the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, E; Feldman, M; Grey, A; Koch, J; Lund, L; Sacks, R; Smith, D; Stolz, C; Van Atta, L; Winters, S; Woods, B; Zacharias, R

    1999-09-22

    The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focus ability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).

  7. Design of active feedback controller used in the infrared beam line of SSRF

    International Nuclear Information System (INIS)

    Background: The infrared beam line consists of many kinds of optical components that are susceptible to the external mechanical vibration, which will be further amplified by the long optical paths to seriously destroy the stability of infrared beam position. Purpose: The active feedback controller is used to stabilize the infrared beam position disturbed by the external environment. Methods: The design of the active feedback controller used in the infrared beam line of SSRF was proposed in this paper firstly, which included its background, light-path layout and operating process. Subsequently, the selections of the crucial components such as detector and actuator were discussed in details. Finally, the correction compensator design and its experimental test were also presented. The correction compensator design was realized by utilizing the frequency response method, and tested in time domain, frequency domain and mathematical model simulation of the controlled object. Results: The experimental tests included time domain step response signal of the controller, the time domain signal and its relevant magnitude spectrum in frequency domain due to the light source simulation vibration. Conclusion: The results show that the maximum effective operating band is 250 Hz and the maximum steady error is 5 μm. (authors)

  8. Field testing of variable-speed beam-pump computer control

    International Nuclear Information System (INIS)

    This paper reports on a variable-frequency drive (VFD) used to change the speed of beam-pump motors that was tested on seven wells to control the rate of oil pumping. Increased power consumption was observed, but on certain wells, increased production rates can result in overall benefits

  9. Adaptive Modified Hysteresis Current Control for Reduction of Switching Losses in Grid Connected Solar Inverters

    Directory of Open Access Journals (Sweden)

    Preethi Thekkath

    2014-06-01

    Full Text Available Current Control logic plays an important role in the performance of Grid connected inverters. In the present work Adaptive Modified Hysteresis controller has been used for generation of switching pulses to the minimally switched grid connected inverter. Different from the previous works the new control logic helps in maintaining the instantaneous switching frequency low and nearly constant with reduction of switching losses to one-third of that of the conventional type. Considerable reduction in Total harmonic distortion of supply current, better DC bus voltage stabilization, good reactive power compensation, satisfactory performance under unbalanced source and load conditions and good dynamic response is also achieved. The experimental verification is done using SIMULINK/REALTIME WINDOWS TARGET. Present control logic is compared with conventional hysteresis controller with and without adaptive control to prove the effectiveness.

  10. Intention, perceived control, and weight loss: an application of the theory of planned behavior.

    Science.gov (United States)

    Schifter, D E; Ajzen, I

    1985-09-01

    Success at attempted weight reduction among college women was predicted on the basis of a theory of planned behavior. At the beginning of a 6-week period, participants expressed their attitudes, subjective norms, perceived control, and intentions with respect to losing weight. In addition, the extent to which they had made detailed weight reduction plans was assessed, as were a number of general attitudes and personality factors. In support of the theory, intentions to lose weight were accurately predicted on the basis of attitudes, subjective norms, and perceived control; perceived control and intentions were together moderately successful in predicting the amount of weight that participants actually lost over the 6-week period. Actual weight loss was also found to increase with development of a plan and with ego strength, factors that were assumed to increase control over goal attainment. Other factors, such as health locus of control, perceived competence, and action control, were found to be unrelated to weight reduction. PMID:4045706

  11. BEAM INSTRUMENTATION FOR THE SPALLATION NEUTRON SOURCE RING.

    Energy Technology Data Exchange (ETDEWEB)

    WITKOVER,R.L.; CAMERON,P.R.; SHEA,T.J.; CONNOLLY,R.C.; KESSELMAN,M.

    1999-03-29

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. [1] The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10{sup -4}. A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring.

  12. Global Accelerator Network, Control Systems And Beam Diagnostics

    CERN Document Server

    Raich, U

    2003-01-01

    Falling funds force all accelerator centers to look for new sources of financing and for the most efficient way of implementing new projects. This very often leads to collaborations between institutes scattered around the globe, a problem well known to big high energy physics experiments. The collaborations working on big detectors e.g. for LHC started thinking about detector acquisition and control systems which can be remotely used from their respective home institutes with minimal support on the spot. This idea was taken up by A. Wagner from DESY for the TESLA machine, who proposed the “Global Accelerator Network” (GAN) enabling users from around the world to run an accelerator remotely. Questions around this subject that immediately come to mind Is the GAN only relevant to big labs ? Or is it reasonable e.g. for operators or engineers in charge to do certain manipulations from home? Are our instruments ready for the GAN? Does the fact of being “GAN ready” increa...

  13. Model-based beam control for illumination of remote objects

    Science.gov (United States)

    Chandler, Susan M.; Lukesh, Gordon W.; Voelz, David; Basu, Santasri; Sjogren, Jon A.

    2004-11-01

    On September 1, 2003, Nukove Scientific Consulting, together with partner New Mexico State University, began work on a Phase 1 Small Business Technology TRansfer (STTR) grant from the United States Air Force Office of Scientific Research (AFOSR). The purpose of the grant was to show the feasibility of taking Nukove's pointing estimation technique from a post-processing tool for estimation of laser system characteristics to a real-time tool usable in the field. Nukove's techniques for pointing, shape, and OCS estimation do not require an imaging sensor nor a target board, thus estimates may be made very quickly. To prove feasibility, Nukove developed an analysis tool RHINO (Real-time Histogram Interpretation of Numerical Observations) and successfully demonstrated the emulation of real-time, frame-by-frame estimation of laser system characteristics, with data streamed into the tool and the estimates displayed as they are made. The eventual objective will be to use the frame-by-frame estimates to allow for feedback to a fielded system. Closely associated with this, NMSU developed a laboratory testbed to illuminate test objects, collect the received photons, and stream the data into RHINO. The two coupled efforts clearly demonstrate the feasibility of real-time pointing control of a laser system.

  14. Designing of an Automatic Paraffin Controlling Device for a Beam Well

    Institute of Scientific and Technical Information of China (English)

    YAN Jian; LIU Xiao-juan; LI Shu-qin; YANG Shi-hao; ZHANG Ning-sheng

    2008-01-01

    Aiming at the paraffin-deposition problem of a beam well,the automatic paraffin-controlling device is designed by making use of ratchet-pallet mechanism,cam echanism and modern designing method.The device has four main functions:paraffin-controlling,paraffin removal,centralizing the pumping rod,and improving the safety of well tubing.This device integrates the advantages of the paraffin control,such as strong magnetic paraffin controlling and mechanical paraffin-cntting.Theoretical analysis shows that this device has fine working reliability.It turns out to be a new device which can solve the paraffin-deposition problem of a beam well economieally and efficiently.

  15. Finger-specific loss of independent control of movements in musicians with focal dystonia.

    Science.gov (United States)

    Furuya, S; Altenmüller, E

    2013-09-01

    The loss of independent control of finger movements impairs the dexterous use of the hand. Focal hand dystonia is characterised by abnormal structural and functional changes at the cortical and subcortical regions responsible for individuated finger movements and by the loss of surround inhibition in the finger muscles. However, little is known about the pathophysiological impact of focal dystonia on the independent control of finger movements. Here we addressed this issue by asking pianists with and without focal dystonia to repetitively strike a piano key with one of the four fingers as fast as possible while the remaining digits kept the adjacent keys depressed. Using principal component analysis and cluster analysis to the derived keystroke data, we successfully classified pianists according to the presence or absence of dystonic symptoms with classification rates and cross-validation scores of approximately 90%. This confirmed the effects of focal dystonia on the individuated finger movements. Interestingly, the movement features that contributed to successful classification differed across fingers. Compared to healthy pianists, pianists with an affected index finger were characterised predominantly by stronger keystrokes, whereas pianists with affected middle or ring fingers exhibited abnormal temporal control of the keystrokes, such as slowness and rhythmic inconsistency. The selective alternation of the movement features indicates a finger-specific loss of the independent control of finger movements in focal dystonia of musicians.

  16. Beam orbit control in TESLA superconducting cavities from dipole mode measurements

    International Nuclear Information System (INIS)

    The knowledge of the electromagnetic interaction between a beam and the surrounding vacuum chamber is necessary in order to optimize the accelerator performance in terms of stored current. Many instability phenomena may occur in the machine because of the fields produced by the beam and acting back on itself. Basically, these fields, wake-fields, produce an extra voltage, affecting the longitudinal dynamics, and a transverse kick which deflects the beam. In this thesis we present the results of theoretical and experimental investigations to demonstrate the possibility of using the dipolar wake fields of the superconducting accelerating to measure the beam transverse position. After an introduction to the ILC project and to the TESLA technology, of superconducting RF cavities, we will approach the problem from an analytical point of view in chapter 2. The expression of the wake fields in a cylindrical cavity will be investigated and the electromagnetic field modes derived from Maxwell equations in an original way. Graphical solutions of a Matlab program simulating the fields due to a particle passing through a pill-box cavity along a generic path will be shown. The interaction of the beam with higher order modes (HOM) in the TESLA cavities has been studied in the past at the TESLA Test Facility (TTF) in order to determine whether the modes with the highest loss factor are sufficiently damped. Starting from the results obtained before 2003, HOM signals has been better observed and examined in order to use dipole modes to find the electric center of each cavity in the first TTF accelerating module. The results presented in chapter 3 will show that by monitoring the HOM signal amplitude for two polarizations of a dipole mode, one can measure electrical center of the modes with a resolution of 50 μm. Moreover, a misalignment of the first TTF module with respect to the gun axis has been predicted using cavity dipole modes. Alternatives to this method are described in

  17. Role of Platelet Parameters on Sudden Sensorineural Hearing Loss: A Case-Control Study in Iran.

    Directory of Open Access Journals (Sweden)

    Abbas Mirvakili

    Full Text Available Sudden sensorineural hearing loss (SSNHL is a common otological disorder characterized by a hearing loss greater than 30 dB over three consecutive frequencies, in less than 72 hours. It has been established that platelet parameters, such as mean platelet volume, are associated with ischemic heart events, whose clinical manifestations are similar to those of SSNHL. Hence, we aimed to determine if the platelet count, mean platelet volume and platelet distribution width are related to the occurrence and severity of sudden sensorineural hearing loss. A case-control prospective study was conducted in a teaching hospital in Iran. One hundred-eight patients with SSNHL and an equal number of healthy, age- and sex-matched controls were enrolled in the study. Peripheral venous blood samples were collected from the subjects, and the platelet count, mean platelet volume and platelet distribution width were measured with an automated blood cell counter. Analysis of the audiometry and hematological test results using SPSS22 software showed no statistical correlation between the platelet parameters and the occurrence of SSNHL, but correlation coefficients showed a significant correlation between PDW and hearing loss severity in patients group. However, further investigation is required to unequivocally establish the absence of correlation between the platelet parameters and occurrence of SSNHL.

  18. Role of Platelet Parameters on Sudden Sensorineural Hearing Loss: A Case-Control Study in Iran.

    Science.gov (United States)

    Mirvakili, Abbas; Dadgarnia, Mohammad Hossein; Baradaranfar, Mohammad Hossein; Atighechi, Saeid; Zand, Vahid; Ansari, Abdollah

    2016-01-01

    Sudden sensorineural hearing loss (SSNHL) is a common otological disorder characterized by a hearing loss greater than 30 dB over three consecutive frequencies, in less than 72 hours. It has been established that platelet parameters, such as mean platelet volume, are associated with ischemic heart events, whose clinical manifestations are similar to those of SSNHL. Hence, we aimed to determine if the platelet count, mean platelet volume and platelet distribution width are related to the occurrence and severity of sudden sensorineural hearing loss. A case-control prospective study was conducted in a teaching hospital in Iran. One hundred-eight patients with SSNHL and an equal number of healthy, age- and sex-matched controls were enrolled in the study. Peripheral venous blood samples were collected from the subjects, and the platelet count, mean platelet volume and platelet distribution width were measured with an automated blood cell counter. Analysis of the audiometry and hematological test results using SPSS22 software showed no statistical correlation between the platelet parameters and the occurrence of SSNHL, but correlation coefficients showed a significant correlation between PDW and hearing loss severity in patients group. However, further investigation is required to unequivocally establish the absence of correlation between the platelet parameters and occurrence of SSNHL.

  19. Assessing electron beam sensitivity for SrTiO3 and La0.7Sr0.3MnO3 using electron energy loss spectroscopy.

    Science.gov (United States)

    Nord, Magnus; Vullum, Per Erik; Hallsteinsen, Ingrid; Tybell, Thomas; Holmestad, Randi

    2016-10-01

    Thresholds for beam damage have been assessed for La0.7Sr0.3MnO3 and SrTiO3 as a function of electron probe current and exposure time at 80 and 200kV acceleration voltage. The materials were exposed to an intense electron probe by aberration corrected scanning transmission electron microscopy (STEM) with simultaneous acquisition of electron energy loss spectroscopy (EELS) data. Electron beam damage was identified by changes of the core loss fine structure after quantification by a refined and improved model based approach. At 200kV acceleration voltage, damage in SrTiO3 was identified by changes both in the EEL fine structure and by contrast changes in the STEM images. However, the changes in the STEM image contrast as introduced by minor damage can be difficult to detect under several common experimental conditions. No damage was observed in SrTiO3 at 80kV acceleration voltage, independent of probe current and exposure time. In La0.7Sr0.3MnO3, beam damage was observed at both 80 and 200kV acceleration voltages. This damage was observed by large changes in the EEL fine structure, but not by any detectable changes in the STEM images. The typical method to validate if damage has been introduced during acquisitions is to compare STEM images prior to and after spectroscopy. Quantifications in this work show that this method possibly can result in misinterpretation of beam damage as changes of material properties.

  20. Beam transport experiment with a new kicker control system on the HIRFL

    Science.gov (United States)

    Wang, Yan-Yu; Zhou, De-Tai; Luo, Jin-Fu; Zhang, Jian-Chuan; Zhou, Wen-Xiong; Ni, Fa-Fu; Yin, Jun; Yin, Jia; Yuan, You-Jin; Shang-Guan, Jing-Bin

    2016-04-01

    A kicker control system is used for beam extraction and injection between two cooling storage rings (CSRs) at the Heavy Ion Research Facility in Lanzhou (HIRFL). To meet the requirements of special physics experiments, the kicker controller has been upgraded, with a new controller designed based on ARM+DSP+FPGA technology and monolithic circuit architecture, which can achieve a precision time delay of 2.5 ns. In September 2014, the new kicker control system was installed in the kicker field, and the test experiment using the system was completed. In addition, a pre-trigger signal was provided by the controller, which was designed to synchronize the beam diagnostic system and physics experiments. Experimental results indicate that the phenomena of “missed kick” and “inefficient kick” were not observed, and the multichannel trigger signal delay could be adjusted individually for kick power supplies in digitization; thus, the beam transport efficiency was improved compared with that of the original system. The fast extraction and injection experiment was successfully completed based on the new kicker control systems for HIRFL. Supported by National Natural Science Foundation of China (U1232123)

  1. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    Science.gov (United States)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  2. Observations and control of beam instabilities due to higher order modes in Indus-2

    International Nuclear Information System (INIS)

    In a synchrotron radiation source (SRS), the interaction between electron beam spectra and Higher Order Modes (HOMs) of RF cavities may give rise to coupled bunch instabilities. These instabilities may limit beam current and beam lifetime. Indus-2 SRS has four RF cavities equipped with precision temperature controller of cooling system and Higher Order Mode Frequency Shifter (HOMFS) to avoid harmful HOMs. Offline (i.e. without beam) and Online (i.e. with beam) measurements, observations and analysis of HOMs have been performed. Some of the Longitudinal modes such as L1 (∼ 950 MHz), L3 (∼ 1432 MHz), L4 (∼ 1521 MHz), L5 (∼1628 MHz) were observed to be quite prominent at specific operating conditions. Based on these studies, harmful HOMs were identified and suitable methods were evolved to avoid these HOMs. Experiments were performed to achieve high beam current in Indus-2. The precision chiller temperatures and HOMFS positions were set as per theoretical estimates and were further optimized in fine steps during experiments. With the optimized settings, beam current around 200 mA at Injection energy (550 MeV) and 157 mA at 2.5 GeV has been successfully achieved. At these settings of RF cavity water temperature and HOMFS, harmful HOMs were within safe limits during regular operation of Indus-2 at 2.5 GeV/100 mA in user mode for more than one year. In this paper, important observations, analysis and experiments to avoid harmful HOMs of RF cavities are presented. (author)

  3. Frequency-controls of electromagnetic multi-beam scanning by metasurfaces.

    Science.gov (United States)

    Li, Yun Bo; Wan, Xiang; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun

    2014-01-01

    We propose a method to control electromagnetic (EM) radiations by holographic metasurfaces, including to producing multi-beam scanning in one dimension (1D) and two dimensions (2D) with the change of frequency. The metasurfaces are composed of subwavelength metallic patches on grounded dielectric substrate. We present a combined theory of holography and leaky wave to realize the multi-beam radiations by exciting the surface interference patterns, which are generated by interference between the excitation source and required radiation waves. As the frequency changes, we show that the main lobes of EM radiation beams could accomplish 1D or 2D scans regularly by using the proposed holographic metasurfaces shaped with different interference patterns. This is the first time to realize 2D scans of antennas by changing the frequency. Full-wave simulations and experimental results validate the proposed theory and confirm the corresponding physical phenomena.

  4. Application of Energy Finite Element Method in Active Vibration Control of Piezoelectric Intelligent Beam

    Directory of Open Access Journals (Sweden)

    Jinhua Xie

    2012-01-01

    Full Text Available Based on the transmission and equilibrium relationship of vibration energy in beam-like structures, the Galerkin weighted residual method was applied to equation discretization. An equivalent transformation of feedback element was suggested to develop the Energy Finite Element model of a composite piezoelectric cantilever beam driven by harmonic excitation on lateral direction, with both systems with and without time delay being studied and the power input estimation of harmonic excitation was discussed for the resolution of Energy Finite Element function. Then the energy density solutions of the piezoelectric coupling beam through Energy Finite Element Method (EFEM and classical wave theory were compared to verify the EFEM model, which presented a good accordance. Further investigation was undertaken about the influence of control parameters including the feedback gain and arrangement of piezoelectric patches on characteristics of system energy density distribution.

  5. Free vibration control of smart composite beams using particle swarm optimized self-tuning fuzzy logic controller

    Science.gov (United States)

    Zorić, Nemanja D.; Simonović, Aleksandar M.; Mitrović, Zoran S.; Stupar, Slobodan N.; Obradović, Aleksandar M.; Lukić, Nebojša S.

    2014-10-01

    This paper deals with active free vibrations control of smart composite beams using particle-swarm optimized self-tuning fuzzy logic controller. In order to improve the performance and robustness of the fuzzy logic controller, this paper proposes integration of self-tuning method, where scaling factors of the input variables in the fuzzy logic controller are adjusted via peak observer, with optimization of membership functions using the particle swarm optimization algorithm. The Mamdani and zero-order Takagi-Sugeno-Kang fuzzy inference methods are employed. In order to overcome stability problem, at the same time keeping advantages of the proposed self-tuning fuzzy logic controller, this controller is combined with the LQR making composite controller. Several numerical studies are provided for the cantilever composite beam for both single mode and multimodal cases. In the multimodal case, a large-scale system is decomposed into smaller subsystems in a parallel structure. In order to represent the efficiency of the proposed controller, obtained results are compared with the corresponding results in the cases of the optimized fuzzy logic controllers with constant scaling factors and linear quadratic regulator.

  6. Economic losses due to cystic echinococcosis in India: Need for urgent action to control the disease.

    Science.gov (United States)

    Singh, Balbir B; Dhand, Navneet K; Ghatak, Sandeep; Gill, Jatinder P S

    2014-01-01

    Cystic ehinococcosis (CE) caused by Echinococcus granulosus remains a neglected zoonotic disease despite its considerable human and animal health concerns. This is the first systematic analysis of the livestock and human related economic losses due to cystic echinococcosis in India. Data about human cases were obtained from a tertiary hospital. Human hydatidosis cases with and without surgical interventions were extrapolated to be 5647 and 17075 per year assuming a total human population of 1210193422 in India. Data about prevalence of hydatid cysts in important food producing animals were obtained from previously published abattoir based epidemiological surveys that reported a prevalence of 5.39% in cattle, 4.36% in buffaloes, 3.09% in pigs, 2.23% in sheep and 0.41% in goats. Animal population data were sourced from the latest census conducted by the Department of Animal Husbandry, Dairying and Fisheries, India. Other input parameters were obtained from published scientific literature. Probability distributions were included for many input values to account for variability and uncertainty. Sensitivity analyses were conducted to evaluate the effect of important parameters on the estimated economic losses. The analysis revealed a total annual median loss of Rs. 11.47 billion (approx. US $ 212.35 million). Cattle and buffalo industry accounted for most of the losses: 93.05% and 88.88% of the animal and total losses, respectively. Human hydatidosis related losses were estimated to be Rs. 472.72 million (approx. US $ 8.75 million) but are likely to be an under-estimate due to under-reporting of the disease in the country. The human losses more than quadrupled to Rs. 1953 million i.e. approx. US $ 36.17 million, when the prevalence of human undiagnosed cases was increased to 0.2% in the sensitivity analyses. The social loss and psychological distress were not taken into account for calculating human loss. The results highlight an urgent need for a science based policy

  7. Stabilization of a Wireless Networked Control System with Packet Loss and Time Delay: An ADS Approach

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2012-01-01

    Full Text Available The stabilization problem of a wireless networked control system is considered in this paper. Both time delay and packet loss exist simultaneously in the wireless network. The system is modeled as an asynchronous dynamic system (ADS with unstable subsystems. A sufficient condition for the system to be stable is presented. A numerical example is given to demonstrate the effectiveness of the proposed approach.

  8. Distributed reactive power feedback control for voltage regulation and loss minimization

    OpenAIRE

    Bolognani, Saverio; Cavraro, Guido; Carli, Ruggero; Zampieri, Sandro

    2013-01-01

    We consider the problem of exploiting the microgenerators dispersed in the power distribution network in order to provide distributed reactive power compensation for power losses minimization and voltage regulation. In the proposed strategy, microgenerators are smart agents that can measure their phasorial voltage, share these data with the other agents on a cyber layer, and adjust the amount of reactive power injected into the grid, according to a feedback control law that descends from dual...

  9. Weight-loss intervention using implementation intentions and mental imagery: a randomised control trial study protocol

    OpenAIRE

    Hattar, Anne; Hagger, Martin S.; Pal, Sebely

    2015-01-01

    Background Overweight and obesity are major health problems worldwide. This protocol describes the HEALTHI (Healthy Eating and Active LifesTyle Health Intervention) Program, a 12-week randomised-controlled weight-loss intervention that adopts two theory-based intervention techniques, mental imagery and implementation intentions, a behaviour-change technique based on planning that have been shown to be effective in promoting health-behaviour change in previous research. The effectiveness of go...

  10. 部分相干平顶光束在增益或损耗介质中传输的M~2因子%M~2-factor of partially coherent flat-top beams propagating in gain or loss media

    Institute of Scientific and Technical Information of China (English)

    李高清; 付文羽

    2009-01-01

    根据光束在介质中传输强度二阶矩计算公式,推导出部分相干平顶光束在增益或损耗介质中传输的M~2因子解析表达式,并将高斯-谢尔模型光束在增益或损耗介质中的传输作为特例统一于一般表达式中.研究结果表明:部分相干平顶光束在增益或损耗介质中传输时的M~2因子与光束传输距离、光束相干长度、光束阶数及介质的特性有关.光束在增益或损耗介质中传输的这种特性为应用和控制光束传输提供了理论依据.%According to the second-order moments intensity formula of the beam propagating in the gain or loss media, an analytical expression for M~2-factor of partially coherent flat-top beams propagating in the media is derived, and Gaussian-Schell model beams propagation in gain or loss media, which is taken as a particular case, is integrated into a common expression. The research result shows that the M~2-factor of partially coherent flat-top beams propagating in the gain or loss media is relative to the propagation distance, the coherent length, the order of the beams and the character of media. The propagation characteristic of the beams propagating in the gain or loss media provides a theoretical basis for the application and control of the beam propagation.

  11. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask

    Science.gov (United States)

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-12-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories.

  12. Robust Control Design for Vibration Isolation of an Electron Beam Projection Lithography System

    Science.gov (United States)

    Wang, Fu-Cheng; Hong, Min-Feng; Yen, Jia-Yush

    2010-06-01

    This paper describes vibration control for an electron beam projection lithography (EPL) system. Two kinds of disturbances should be considered for an EPL: load disturbances from the machine and ground disturbances from the environment. However, the suspension settings for insulating these two disturbances conflict with each other. Therefore, we propose a double-layer optical table and apply disturbance response decomposing (DRD) techniques to independently control the disturbances. We use a passive control structure to isolate the ground disturbances, and an active control structure to suppress load disturbances. In addition, symmetric transformation is applied to decouple a full optical table into bounce/pitch and roll/warp half-table models, which can be further decoupled into quarter-table models to simplify controller design. Finally, we apply robust control techniques to design active controllers. From both simulation and experimental results, the designed H∞ robust controllers are proven effective in reducing EPL system vibrations.

  13. Beam losses from ultra-peripheral nuclear collisions between $^{208}$Pb$^{82+}$ ions in the Large Hadron Collider and their alleviation

    CERN Document Server

    Bruce, R; Jowett, J; Bocian, D; CERN. Geneva. BE Department

    2009-01-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of Pb ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal Pb operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  14. Using a pressure controlled vortex design method to control secondary flow losses in a turbine stage

    Institute of Scientific and Technical Information of China (English)

    Deng Qingfeng; Zheng Qun; Yue Guoqiang; Zhang Hai; Luo Mingcong

    2013-01-01

    A turbine design method based on pressure controlled vortex design (PCVD) is presented to design a small-size turbine stage. Contrary to the conventional controlled vortex design (CVD) method, the main objective of PCVD is to control the axial velocity and radial pressure in the sta-tor-rotor gap. Through controlling axial velocity, the PCVD establishes a direct tie to meridional stream surface. Thus stream surface variation is induced, resulting in a large secondary flow vortex covering the full blade passage in the respective stator and rotor. This secondary flow vortex could be dedicated to control the secondary flow mitigation and migration. Through radial pressure, the PCVD is also associated with the macroscopic driving force of fluid motion. So the better benefit of CVD can be achieved. The core concept behind PCVD is to mainly control the spanwise pressure gradient by altering profile loading at various spanwise locations. Therefore not only the local pro-file lift is affected, but also the resulting throat widths, stage reaction degree, and massflow rate are altered or redistributed respectively. With the PCVD method, the global stage efficiency is increased successfully while the mass flow rate keeps constant. Additionally there is no endwall shape optimi-zation, stacking optimization, or pitch/chord variations, concentrating solely on varying blade pro-file deflections and stagger.

  15. Aspects of input processing in the numerical control of electron beam machines

    International Nuclear Information System (INIS)

    A high-performance Numerical Control has been developed for an Electron Beam Machine. The system is structured into 3 hierarchial levels: Input Processing, Realtime Processing (such as Geometry Interpolation) and the Interfaces to the Electron Beam Machine. The author considers the Input Processing. In conventional Numerical Controls the Interfaces to the control is given by the control language as defined in DIN 66025. State of the art in NC-technology offers programming systems of differing competence covering the spectra between manual programming in the control language to highly sophisticated systems such as APT. This software interface has been used to define an Input Processor that in cooperation with the Hostcomputer meets the requirements of a sophisticated NC-system but at the same time provides a modest stand-alone system with all the basic functions such as interactive program-editing, program storage, program execution simultaneous with the development of another program, etc. Software aspects such as adapting DIN 66025 for Electron Beam Machining, organisation and modularisation of Input Processor Software has been considered and solutions have been proposed. Hardware aspects considered are interconnections of the Input Processor with the Host and the Realtime Processors. Because of economical and development-time considerations, available software and hardware has been liberally used and own development has been kept to a minimum. The proposed system is modular in software and hardware and therefore very flexible and open-ended to future expansion. (Auth.)

  16. A fast feedback controlled magnetic drive for the ASDEX Upgrade fast-ion loss detectors

    Science.gov (United States)

    Ayllon-Guerola, J.; Gonzalez-Martin, J.; Garcia-Munoz, M.; Rivero-Rodriguez, J.; Herrmann, A.; Vorbrugg, S.; Leitenstern, P.; Zoletnik, S.; Galdon, J.; Garcia Lopez, J.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Dominguez, A. D.; Kocan, M.; Gunn, J. P.; Garcia-Vallejo, D.; Dominguez, J.

    2016-11-01

    A magnetically driven fast-ion loss detector system for the ASDEX Upgrade tokamak has been designed and will be presented here. The device is feedback controlled to adapt the detector head position to the heat load and physics requirements. Dynamic simulations have been performed taking into account effects such as friction, coil self-induction, and eddy currents. A real time positioning control algorithm to maximize the detector operational window has been developed. This algorithm considers dynamical behavior and mechanical resistance as well as measured and predicted thermal loads. The mechanical design and real time predictive algorithm presented here may be used for other reciprocating systems.

  17. 77 FR 22480 - Guidance Under Section 267(f); Deferral of Loss on Transactions Between Members of a Controlled...

    Science.gov (United States)

    2012-04-16

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BI92 Guidance Under Section 267(f); Deferral of Loss on Transactions Between Members of a Controlled Group AGENCY: Internal Revenue Service (IRS), Treasury. ACTION... controlled group and there would be recognition of loss under consolidated return principles or until...

  18. Plasmon Injection to Compensate and Control Losses in Negative Index Metamaterials.

    Science.gov (United States)

    Sadatgol, Mehdi; Özdemir, Şahin K; Yang, Lan; Güney, Durdu Ö

    2015-07-17

    Metamaterials have introduced a whole new world of unusual materials with functionalities that cannot be attained in naturally occurring material systems by mimicking and controlling the natural phenomena at subwavelength scales. However, the inherent absorption losses pose a fundamental challenge to the most fascinating applications of metamaterials. Based on a novel plasmon injection (PI or Π) scheme, we propose a coherent optical amplification technique to compensate losses in metamaterials. Although the proof of concept device here operates under normal incidence only, our proposed scheme can be generalized to an arbitrary form of incident waves. The Π scheme is fundamentally different from major optical amplification schemes. It does not require a gain medium, interaction with phonons, or any nonlinear medium. The Π scheme allows for loss-free metamaterials. It is ideally suited for mitigating losses in metamaterials operating in the visible spectrum and is scalable to other optical frequencies. These findings open the possibility of reviving the early dreams of making "magical" metamaterials from scratch.

  19. Reduction in iron losses in Indirect Vector-Controlled IM Drive using FLC

    CERN Document Server

    Srisailam, C; Trivedi, Anurag

    2010-01-01

    This paper describes the use of fuzzy logic controller for efficiency optimization control of a drive while keeping good dynamic response. At steady-state light-load condition, the fuzzy controller adaptively adjusts the excitation current with respect to the torque current to give the minimum total copper and iron loss. The measured input power such that, for a given load torque and speed, the drive settles down to the minimum input power, i.e., operates at maximum efficiency. The low-frequency pulsating torque due to decrementation of flux is compensated in a feed forward manner. If the load torque or speed commands changes, the efficiency search algorithm is abandoned and the rated flux is established to get the best dynamic response. The drive system with the proposed efficiency optimization controller has been simulated with lossy models of converter and machine, and its performance has been thoroughly investigated.

  20. Controllability of runoff and soil loss from small plots treated by vinasse-produced biochar.

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Harchegani, Mahboobeh Kiani

    2016-01-15

    Many different amendments, stabilizers, and conditioners are usually applied for soil and water conservation. Biochar is a carbon-enriched substance produced by thermal decomposition of organic material in the absence of oxygen with the goal to be used as a soil amendment. Biochar can be produced from a wide range of biomass sources including straw, wood, manure, and other organic wastes. Biochar has been demonstrated to restore soil fertility and crop production under many conditions, but less is known about the effects of its application on soil erosion and runoff control. Therefore, a rainfall simulation study, as a pioneer research, was conducted to evaluate the performance of the application of vinasse-produced biochar on the soil erosion control of a sandy clay loam soil packed in small-sized runoff 0.25-m(2) plots with 3 replicates. The treatments were (i) no biochar (control), (ii) biochar (8 tha(-1)) application at 24h before the rainfall simulation and (iii) biochar (8 tha(-1)) application at 48 h before the rainfall simulation. Rainfall was applied at 50 mm h(-1) for 15 min. The mean change of effectiveness in time to runoff could be found in biochar application at 24 and 48 h before simulation treatment with rate of +55.10% and +71.73%, respectively. In addition, the mean runoff volume 24 and 48 h before simulation treatments decreased by 98.46% and 46.39%, respectively. The least soil loss (1.12 ± 0.57 g) and sediment concentration (1.44 ± 0.48 gl(-1)) occurred in the biochar-amended soil treated 48 h before the rainfall simulation. In conclusion, the application of vinasse-produced biochar could effectively control runoff and soil loss. This study provided a new insight into the effects of biochar on runoff, soil loss, and sediment control due to water erosion in sandy clay loam soils.

  1. Evaluation of a commercial web-based weight loss and weight loss maintenance program in overweight and obese adults: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Neve Melinda

    2010-11-01

    Full Text Available Abstract Background Obesity rates in adults continue to rise and effective treatment programs with a broad reach are urgently required. This paper describes the study protocol for a web-based randomized controlled trial (RCT of a commercially available program for overweight and obese adult males and females. The aim of this RCT was to determine and compare the efficacy of two web-based interventions for weight loss and maintenance of lost weight. Methods/Design Overweight and obese adult males and females were stratified by gender and BMI and randomly assigned to one of three groups for 12-weeks: waitlist control, or basic or enhanced online weight-loss. Control participants were re-randomized to the two weight loss groups at the end of the 12-week period. The basic and enhanced group participants had an option to continue or repeat the 12-week program. If the weight loss goal was achieved at the end of 12, otherwise on completion of 24 weeks of weight loss, participants were re-randomized to one of two online maintenance programs (maintenance basic or maintenance enhanced, until 18 months from commencing the weight loss program. Assessments took place at baseline, three, six, and 18 months after commencing the initial weight loss intervention with control participants repeating the initial assessment after three month of waiting. The primary outcome is body mass index (BMI. Other outcomes include weight, waist circumference, blood pressure, plasma markers of cardiovascular disease risk, dietary intake, eating behaviours, physical activity and quality of life. Both the weight loss and maintenance of lost weight programs were based on social cognitive theory with participants advised to set goals, self-monitor weight, dietary intake and physical activity levels. The enhanced weight loss and maintenance programs provided additional personalized, system-generated feedback on progress and use of the program. Details of the methodological aspects of

  2. Acute alcohol effects on inhibitory control and implicit cognition: implications for loss of control over drinking

    NARCIS (Netherlands)

    M. Field; R.W. Wiers; P. Christiansen; M.T. Fillmore; J.C. Verster

    2010-01-01

    Alcohol impairs inhibitory control, and it alters implicit alcohol cognitions including attentional bias and implicit associations. These effects are seen after doses of alcohol which do not lead to global impairments in cognitive performance. We review studies which demonstrate that the effects of

  3. ACTIVE VIBRATION CONTROL OF FINITE L-SHAPED BEAM WITH TRAVELLING WAVE APPROACH

    Institute of Scientific and Technical Information of China (English)

    Chunchuan Liu; Fengming Li; Wenhu Huang

    2010-01-01

    In this paper,the disturbance propagation and active vibration control of a finite L-shaped beam are studied.The dynamic response of the structure is obtained by the travelling wave approach.The active vibration suppression of the finite L-shaped beam is performed based on the structural vibration power flow.In the numerical calculation,the influences of the near field effect of the error sensor and the small error of the control forces on the control results are all considered.The simulation results indicate that the structural vibration response in the medium and high frequency regions can be effectively computed by the travelling wave method.The effect of the active control by controlling the power flow is much better than that by controlling the acceleration in some cases.And the control results by the power flow method are slightly affected by the locations of the error sensor and the small error of the control forces.

  4. Implementation to spanish protocol of quality control of accelerators to daily control of electron beams; Implementacion del protocolo espanol de control de calidad de aceleradores al control diario de haces de electrones

    Energy Technology Data Exchange (ETDEWEB)

    Adaimi Hernandez, P.; Ramirez Ros, J. C.; Casa de Julian, M. A. de la; Clemente Gutierrez, F.; Cabello Murillo, E.; Diaz Fuente, R.; Ferrando Sanchez, A.

    2011-07-01

    A revised procedure for daily control of the electron beams to make measurements more meaningful physically, having a better reproducibility and more in line with the recommendations of the Spanish Protocol for Quality Control in Electron Linear Accelerators Clinical Use. The daily quality control beams of high energy electrons that had been done so far was the finding that the record of a series of measures (symmetry, uniformity, stability, energy, beam central dose) were within tolerance values established. The amendment is to check the beam quality by directly measuring changes in absorption depth at which the dose is reduced to half its maximum value, R50.

  5. Monte Carlo Studies of the Radiation Fields in the Linac Coherent Light Source Undulators and of the Corresponding Signals in the Cerenkov Beam Loss Monitors

    Energy Technology Data Exchange (ETDEWEB)

    Santana Leitner, Mario; Fasso, Alberto; Fisher, Alan S.; Nuhn, Heinz D.; /SLAC; Dooling, Jeffrey C.; Berg, William; Yang, Bin X.; /Argonne

    2010-09-14

    In 2009 the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Center started free electron laser (FEL) operation. In order to continue to produce the bright and short-pulsed x-ray laser demanded by FEL scientists, this pioneer hard x-ray FEL requires a perfectly tailored magnetic field at the undulators, so that the photons generated at the electron wiggling path interact at the right phase with the electron beam. In such a precise system, small (>0.01%) radiation-induced alterations of the magnetic field in the permanent magnets could affect FEL performance. This paper describes the simulation studies of radiation fields in permanent magnets and the expected signal in the detectors. The transport of particles from the radiation sources (i.e. diagnostic insert) to the undulator magnets and to the beam loss monitors (BLM) was simulated with the intra nuclear cascade codes FLUKA and MARS15. In order to accurately reproduce the optics of LCLS, lattice capabilities and magnetic fields were enabled in FLUKA and betatron oscillations were validated against reference data. All electron events entering the BLMs were printed in data files. The paper also introduces the Radioactive Ion Beam Optimizer (RIBO) Monte Carlo 3-D code, which was used to read from the event files, to compute Cerenkov production and then to simulate the optical coupling of the BLM detectors, accounting for the transmission of light through the quartz.

  6. Stop of loss of cognitive performance during rehabilitation after total hip arthroplasty-Prospective controlled study

    Directory of Open Access Journals (Sweden)

    Matthias H. Brem, MD, MHBA

    2010-12-01

    Full Text Available Prolonged hospitalization is known to be associated with a loss of cognitive performance. Does playing video games (VGs developed to improve cognitive properties delay this loss or even lead to an increase in cognitive performance? We performed a 10-day longitudinal study of patients who received total hip arthroplasty. We compared 16 patients (6 male aged 66 ± 9 years (mean ± standard deviation who played Dr. Kawashima's Brain Training: How Old Is Your Brain? (Nintendo; Redmond, Washington on a Nintendo DS handheld console with 16 control patients (6 male aged 69 ± 14 years. We measured cognitive performance 1 day preoperation, as well as on days 2 and 9 postoperation. With the daily exercise of a specific VG by the play group, the patients' fluid intelligence (median intelligence quotient 99-106, working memory capacity, and rate of information processing significantly improved over the course of 7 postoperative days. The cognitive performance of the control group did not increase. However, the memory spans of both groups did not systematically change. Exercise with VGs can prevent the loss of cognitive performance during prolonged hospitalization.

  7. Potential effects of vinasse as a soil amendment to control runoff and soil loss

    Science.gov (United States)

    Hazbavi, Z.; Sadeghi, S. H. R.

    2016-02-01

    Application of organic materials are well known as environmental practices in soil restoration, preserving soil organic matter and recovering degraded soils of arid and semiarid lands. Therefore, the present research focused on evaluating the effectiveness of vinasse, a byproduct mainly of the sugar-ethanol industry, on soil conservation under simulated rainfall. Vinasse can be recycled as a soil amendment due to its organic matter content. Accordingly, the laboratory experiments were conducted by using 0.25 m2 experimental plots at 20 % slope and rainfall intensity of 72 mm h-1 with 0.5 h duration. The effect of vinasse was investigated on runoff and soil loss control. Experiments were set up as a control (with no amendment) and three treated plots with doses of 0.5, 1, and 1.5 L m-2 of vinasse subjected to simulated rainfall. Laboratory results indicated that vinasse at different levels could not significantly (P > 0.05) decrease the runoff amount and soil loss rate in the study plots compared to untreated plots. The average amounts of minimum runoff volume and soil loss were about 3985 mL and 46 g for the study plot at a 1 L m-2 level of vinasse application.

  8. Simulation on control of beam halo-chaos by power function in the hackle periodic-focusing channel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The K-V beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and a power function controller is proposed based on mechanism of halo formation and strategy of controlling halo-chaos. Multiparticle simulation was performed to control the halo by using the power function control method. The results show that the halo-chaos and its regeneration can be eliminated effectively. We also find that the radial particle density evolvement is of uniformity at the beam's centre as long as appropriate paramours are chosen.

  9. The Breathe Easier through Weight Loss Lifestyle (BE WELL Intervention: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Buist A

    2010-03-01

    Full Text Available Abstract Background Obesity and asthma have reached epidemic proportions in the US. Their concurrent rise over the last 30 years suggests that they may be connected. Numerous observational studies support a temporally-correct, dose-response relationship between body mass index (BMI and incident asthma. Weight loss, either induced by surgery or caloric restriction, has been reported to improve asthma symptoms and lung function. Due to methodological shortcomings of previous studies, however, well-controlled trials are needed to investigate the efficacy of weight loss strategies to improve asthma control in obese individuals. Methods/Design BE WELL is a 2-arm parallel randomized clinical trial (RCT of the efficacy of an evidence-based, comprehensive, behavioral weight loss intervention, focusing on diet, physical activity, and behavioral therapy, as adjunct therapy to usual care in the management of asthma in obese adults. Trial participants (n = 324 are patients aged 18 to 70 years who have suboptimally controlled, persistent asthma, BMI between 30.0 and 44.9 kg/m2, and who do not have serious comorbidities (e.g., diabetes, heart disease, stroke. The 12-month weight loss intervention to be studied is based on the principles of the highly successful Diabetes Prevention Program lifestyle intervention. Intervention participants will attend 13 weekly group sessions over a four-month period, followed by two monthly individual sessions, and will then receive individualized counseling primarily by phone, at least bi-monthly, for the remainder of the intervention. Follow-up assessment will occur at six and 12 months. The primary outcome variable is the overall score on the Juniper Asthma Control Questionnaire measured at 12 months. Secondary outcomes include lung function, asthma-specific and general quality of life, asthma medication use, asthma-related and total health care utilization. Potential mediators (e.g., weight loss and change in physical

  10. Adaptive control of gait stability in reducing slip-related backward loss of balance.

    Science.gov (United States)

    Bhatt, T; Wening, J D; Pai, Y-C

    2006-03-01

    The properties of adaptation within the locomotor and balance control systems directed towards improving one's recovery strategy for fall prevention are not well understood. The purpose of this study was to examine adaptive control of gait stability to repeated slip exposure leading to a reduction in backward loss of balance (and hence in protective stepping). Fourteen young subjects experienced a block of slips during walking. Pre- and post-slip onset stability for all slip trials was obtained as the shortest distance at touchdown (slipping limb) and lift-off (contralateral limb), respectively, between the measured center of mass (COM) state, that is, position and velocity relative to base of support (BOS) and the mathematically predicted threshold for backward loss of balance. An improvement in pre- and post-slip onset stability correlated with a decrease in the incidence of balance loss from 100% (first slip) to 0% (fifth slip). While improvements in pre-slip stability were affected by a proactive anterior shift in COM position, the significantly greater post-slip onset improvements resulted from reductions in BOS perturbation intensity. Such reactive changes in BOS perturbation intensity resulted from a reduction in the demand on post-slip onset braking impulse, which was nonetheless influenced by the proactive adjustments in posture and gait pattern (e.g., the COM position, step length, flat foot landing and increased knee flexion) prior to slip onset. These findings were indicative of the maturing process of the adaptive control. This was characterized by a shift from a reliance on feedback control for postural correction to being influenced by feedforward control, which improved pre-slip stability and altered perturbation intensity, leading to skateover or walkover (>0.05 m or strategies. Finally, the stability at contralateral limb lift-off was highly predictive of balance loss occurrence and its subsequent rapid reduction, supporting the notion of the

  11. Tranexamic acid for control of blood loss in bilateral total knee replacement in a single stage

    Directory of Open Access Journals (Sweden)

    Mandeep S Dhillon

    2011-01-01

    Full Text Available Background: Tranexamic acid (TEA reduces blood loss and red cell transfusions in patients undergoing unilateral total knee arthroplasty (TKA. However, there is not much literature regarding the use of TEA in patients undergoing bilateral TKA in a single stage and the protocols for administration of TEA in such patients are ill-defined. Materials and Methods: We carried out a case control study evaluating the effect of TEA on postoperative hemoglobin (Hb, total drain output, and number of blood units transfused in 52 patients undergoing bilateral TKA in a single stage, and compared it with 56 matched controls who did not receive TEA. Two doses of TEA were administered in doses of 10 mg / kg each (slow intravenous (IV infusion, with the first dose given just before tourniquet release of the first knee and the second dose three hours after the first one. Results: A statistically significant reduction in the total drain output and requirement of allogenic blood transfusion in cases who received TEA, as compared to the controls was observed. The postoperative Hb and Hb at the time of discharge were found to be lower in the control group, and this result was found to be statistically significant. Conclusion: TEA administered in patients undergoing single stage bilateral TKA helped reduce total blood loss and decreased allogenic blood transfusion requirements. This might be particularly relevant, where facilities such as autologous reinfusion might not be available.

  12. Failure of Arm Movement Control in Stroke Patients, Characterized by Loss of Complexity.

    Science.gov (United States)

    Goh, Segun; Han, Kyungreem; Ryu, Jehkwang; Kim, Seonjin; Choi, MooYoung

    2015-01-01

    We study the mechanism of human arm-posture control by means of nonlinear dynamics and quantitative time series analysis methods. Utilizing linear and nonlinear measures in combination, we find that pathological tremors emerge in patient dynamics and serve as a main feature discriminating between normal and patient groups. The deterministic structure accompanied with loss of complexity inherent in the tremor dynamics is also revealed. To probe the underlying mechanism of the arm-posture dynamics, we further analyze the coupling patterns between joints and components, and discuss their roles in breaking of the organization structure. As a result, we elucidate the mechanisms in the arm-posture dynamics of normal subjects responding to the gravitational force and for the reduction of the dynamic degrees of freedom in the patient dynamics. This study provides an integrated framework for the origin of the loss of complexity in the dynamics of patients as well as the coupling structure in the arm-posture dynamics.

  13. A double faced ionization chamber for quality control in diagnostic radiology beams

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonas O., E-mail: josofisico@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, 05508-000, Sao Paulo (Brazil); Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, 05508-000, Sao Paulo (Brazil)

    2012-07-15

    The development of new radiation detectors of low cost but with adequate materials is a very important task for countries that have to import ionization chambers such as Brazil. A special double faced ionization chamber was developed for use in conventional diagnostic radiology beams and computed tomography energy ranges. The results show that this new chamber present applicability in conventional diagnostic radiology and computed tomography quality control programs. - Highlights: Black-Right-Pointing-Pointer We constructed a double faced ionization chamber. Black-Right-Pointing-Pointer It was submitted to conventional diagnostic and computed tomography X-rays beams. Black-Right-Pointing-Pointer The results obtained showed good agreement with international standards. Black-Right-Pointing-Pointer This ionization chamber can be used in clinic quality control program.

  14. Controlling Fano resonance of ring/crescent-ring plasmonic nanostructure with Bessel beam.

    Science.gov (United States)

    Xiao, Fajun; Zhu, Weiren; Premaratne, Malin; Zhao, Jianlin

    2014-01-27

    We propose a method to dynamically control the Fano resonance of a ring/crescent-ring gold nanostructure by spatially changing the phase distribution of a probe Bessel beam. We demonstrate that a highly tunable Fano interference between the quadrupole and bright dipole modes can be realized in the near-infrared range. Even though a complex interference between a broad resonance and a narrower resonance lead to these observations, we show that a simple coupled oscillator model can accurately describe the behavior, providing valuable insights into the dynamics of the system. A further analysis of this structure uncovers a series of interesting phenomena such as anticrossing, sign changing of coupling and the spectral inversion of quadrupole and bright dipole modes. We further show that near field enhancement at Fano resonance can be actively controlled by modulating the phase distribution of the exciting incident Bessel beam. PMID:24515223

  15. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture.

    Science.gov (United States)

    Wood, Stephen A; Almaraz, Maya; Bradford, Mark A; McGuire, Krista L; Naeem, Shahid; Neill, Christopher; Palm, Cheryl A; Tully, Katherine L; Zhou, Jizhong

    2015-01-01

    Tropical smallholder agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture. PMID:25926815

  16. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture

    Directory of Open Access Journals (Sweden)

    Stephen A Wood

    2015-03-01

    Full Text Available Tropical smallholder agriculture supports the livelihoods of over 900 million of the world’s poorest people. This form of agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture.

  17. Flood control and loss estimation for paddy field at midstream of Chao Phraya River Basin, Thailand

    Science.gov (United States)

    Cham, T. C.; Mitani, Y.

    2015-09-01

    2011 Thailand flood has brought serious impact to downstream of Chao Phraya River Basin. The flood peak period started from August, 2011 to the end of October, 2011. This research focuses on midstream of Chao Phraya River Basin, which is Nakhon Sawan area includes confluence of Nan River and Yom River, also confluence of Ping River and Nan River. The main purpose of this research is to understand the flood generation, estimate the flood volume and loss of paddy field, also recommends applicable flood counter measurement to ease the flood condition at downstream of Chao Phraya River Basin. In order to understand the flood condition, post-analysis is conducted at Nakhon Sawan. The post-analysis consists of field survey to measure the flood marks remained and interview with residents to understand living condition during flood. The 2011 Thailand flood generation at midstream is simulated using coupling of 1D and 2D hydrodynamic model to understand the flood generation during flood peak period. It is calibrated and validated using flood marks measured and streamflow data received from Royal Irrigation Department (RID). Validation of results shows good agreement between simulated result and actual condition. Subsequently, 3 scenarios of flood control are simulated and Geographic Information System (GIS) is used to assess the spatial distribution of flood extent and reduction of loss estimation at paddy field. In addition, loss estimation for paddy field at midstream is evaluated using GIS with the calculated inundation depth. Results show the proposed flood control at midstream able to minimize 5% of the loss of paddy field in 26 provinces.

  18. Generation, control, and transport of a 19-MeV, 700-kA pulsed electron beam

    International Nuclear Information System (INIS)

    The authors show experimentally and theoretically that the generation of the 13-TW Hermes III electron beam can be accurately monitored, and that the beam can be accurately directed onto a high-Z target to produce a wide variety of bremsstrahlung patterns. This control allows the study of radiation effects induced by gamma rays to be extended into new parameter regimes. Finally, they show that the beam can be stably transported in low-pressure gas cells

  19. Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Gergely Takács

    2014-01-01

    Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

  20. Controlling quantum dynamics regardless of laser beam spatial profile and molecular orientation

    Science.gov (United States)

    Rabitz, Herschel; Turinici, Gabriel

    2007-04-01

    In a typical experiment aiming to control quantum dynamics phenomena, each molecule experiences the same temporal laser field, but with an amplitude that depends on the spatial location and orientation of the molecule in the laser beam. It is proved under commonly arising conditions that at least one optimal laser field exists which will control all molecules in the sample, regardless of their orientation or spatial location. The optimal laser field may consist of a multipolarization control containing up to three orthogonal, independently shaped components. The analysis also includes the prospect of multipartite control where the field couples distinct groupings of states (e.g., multiple vibronic states), but without direct coupling within a group of states. This conclusion shows that achieving quantum control is not a matter of striking a compromise over the sample diversity, but rather a task subject to optimization to reach the highest possible level of control for all molecules in the sample.