WorldWideScience

Sample records for beam ion source

  1. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G; Thorn, A

    2013-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  2. Electron-Beam Ion Source MIS-1

    International Nuclear Information System (INIS)

    INP develops and produces electron-beam ion sources of multicharged ions. These ion sources provide a high density of the electron beam in the ionization area at the ion trap ≥ 103 A/cm2. They produce multicharge ions of various elements, both gaseous and solid ones. These ion sources successfully employ the technique of the dozed inlet of solid elements atoms into the ion trap

  3. Electron beam ion source and electron beam ion trap (invited).

    Science.gov (United States)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future. PMID:20192368

  4. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  5. Multicharged and intense heavy ion beam sources

    International Nuclear Information System (INIS)

    The cyclotron plasma-are source (PIG), duoplasmatron (DP), laser source (LS), electron beam ion source (EBIS) and electron cyclotron resonance source (ECRS) from the viewpoint of generating intense and high charge state beams are considered. It is pointed out that for the last years three types of multicharged ion sources-EBIS, ECR and LS have been essentially developed. In the EBIS source the Xe48+ ions are produced. The present day level of the development of the electron-beam ionization technique shows that by means of this technique intensive uranium nuclei beams production becomes a reality. On the ECR source Xe26+ approximately 4x1010 h/s, Asub(r)sup(12+) approximately 1012 h/s intensive ion beams are produced. In the laser source a full number of C6+ ions during one laser pulse constitutes not less than 1010 from the 5x10mm2 emission slit. At the present time important results are obtained pointing to the possibility to separate the ion component of laser plasma in the cyclotron central region. On the PIG source the Xe15+ ion current up to 10μA per pulse is produced. In the duoplasmatron the 11-charge state of xenon ion beams is reached

  6. Plasma-Based Ion Beam Sources

    International Nuclear Information System (INIS)

    Ion beam sources cover a broad spectrum of scientific and technical applications delivering ion currents between less than 1 mA and about 100 A at acceleration voltages between 100 V and 100 kV. The ions are mostly generated by electron collisions in a gas discharge and then extracted from the discharge plasma, focused and post-accelerated by single- or multi-aperture electrode systems. Some important applications require the neutralization of the exhausted beam either by charge exchange or by admixture of electrons. In the first part of the paper, the theory of ionization by electron impact, the energy and carrier balances in the plasma, and the extraction and focusing mechanisms will be outlined. The principles of the preferred gas discharges and of the ion beam sources based on them are discussed; i.e. of the Penning, bombardment, arc, duoplasmatron, radio frequency, and microwave types. In the second part of the paper, the special requirements of the different applications are described together with the related source hardware. One distinguishes: 1. Single-aperture ion sources producing protons, heavy ions, isotope ions, etc. for particle accelerators, ion microprobes, mass spectrometers, isotope separators, etc.; quality determinative quantities are brightness, emittance, energy width, etc. 2. Broad-beam multi-aperture injector sources for fusion machines with positive or negative deuterium ions; very high beam densities, small portions of molecular ions, flat beam profiles with small divergence angles, etc. are required. 3. Broad-beam multi-aperture ion thrusters for space propulsion operated with singly charged xenon ions; high efficiencies, reliable operation, and long lifetimes are most important. Spin-offs are applied in industry for material processing. Referring to these applications, the following sources will be described in some detail: 1. Cold cathode and filament driven sources, capillary arc and plasmatron types, microwave and ECR-sources. 2

  7. Ion beam source construction and applications

    International Nuclear Information System (INIS)

    The aim of this thesis is to improve the performance of a new shape cold cathode Penning ion source to be suitable for some applications. In this work, many trials have been made to reach the optimum dimensions of the new shape of cold Molybdenum cathode Penning ion source with radial extraction. The high output ion beam can be extracted in a direction transverse to the discharge region. The new shape cold cathode Penning ion source consists of Copper cylindrical hollow anode of 40 mm length, 12 mm diameter and has two similar cone ends of 15 mm length, 22 mm upper cone diameter and 12 mm bottom cone diameter. The two movable Molybdenum cathodes are fixed in Perspex insulator and placed symmetrically at two ends of the anode. The Copper emission disc of 2 mm thickness and has central aperture of different diameters is placed at the middle of the anode for ion beam exit. The inner surface of the emission disc is isolated from the anode by Perspex insulator except an area of diameter 5 mm to confine the electrical discharge in this area. A movable Faraday cup is placed at different distances from the emission electrode aperture and used to collect the output ion beam from the ion source. The working gases are admitted to the ion source through a hole in the anode via a needle valve which placed between the gas cylinder and the ion source. The optimum anode- cathode distance, the uncovered area diameter of the emission disc, the central aperture diameter of the emission electrode, the distance between emission electrode and Faraday cup have been determined using Argon gas. The optimum distances of the ion source were found to be equal to 6 mm, 5 mm, 2.5 mm, and 3 cm respectively where stable discharge current and maximum output ion beam current at low discharge current can be obtained. The discharge characteristics, ion beam characteristics, and the efficiency of the ion source have been measured at different operating conditions and different gas pressures using

  8. Cleaning techniques for intense ion beam sources

    International Nuclear Information System (INIS)

    Generation of high power lithium ion beams on the SABRE (1TW) and PBFA-X (20 TW) accelerators have been limited by the parallel acceleration of contaminant ions. during the beam pulse lithium is replaced by protons and carbon ions. This replacement is accompanied by rapid impedance decay of the diode. The contaminant hydrogen and carbon is believed to originate from impurity molecules on the surface and in the bulk of the lithium ion source and its substrate material. Cleaning techniques designed to remove hydrocarbons from the ion source have been employed with some success in test stand experiments and on SABRE. The test stand experiments have shown that a lithium fluoride (LiF) ion source film can accrue dozens of hydrocarbon monolayers on its surface while sitting in vacuum. Application of 13.5 MHz RF discharge cleaning with 90% Ar/10% O2 can significantly reduce the surface hydrocarbon layers on the LiF film. On SABRE, combinations of RF discharge cleaning, anode heating, layering gold between the source film (LiF) and its substrate, and cryogenic cathode cooling produced an increase by a factor of 1.5--2 in the quantity of high energy lithium in the ion beam. A corresponding decrease in protons and carbon ions was also observed. Cleaning experiments on PBFA-X are underway. New designs of contamination resistant films and Li ion sources are currently being investigated

  9. Primary beams of an electron beam ion source (EBIS)

    International Nuclear Information System (INIS)

    Electron guns for the ion sources of the SATURN II facility were tested and compared with models. The guns tested were a gun with 36 mm diameter cathode, 7 mm, 4 mm, 4 mm with insulated Whenelt, and 8 mm. A lanthanium hexaboride cathode is presented. For the primary ion beams, zeolite and plasma sources were realized. In DIONE, which will replace CRYEBIS as ion source in SATURNE, the density of the electron beam compressed within the maximum magnetic field can be evaluated. Results indicate a factor of 3 improvement compared with CRYEBIS. Lithium sources can be used, but gas sources do not produce significant improvements

  10. The Stockholm Electron Beam Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, E.; Liljeby, L.; Engstroem, A.; Bjoerkhage, M. (Manne Siegbahn Inst. of Physics, Stockholm (Sweden))

    1993-03-01

    The electron beam ion source, CRYSIS, produces highly charged ions for injection into the heavy ion storage ring - CRYRING at the Manne Siegbahn Institute, and for low energy atomic physics experiments. It will also provide highly charged ions for the Stockholm-Mainz Penning trap scheduled for installation at MSI in early 1993. CRYSIS has produced ions up to Ar[sup 18+] and [sup 136]Xe[sup 49+] using electron beam currents of typically I[sub e] = 200-300 mA and current density j[sub e] = 100-200 A/cm[sup 2]. Continuous electron beams of energy E = 19 keV and current I[sub e] = 600 mA have been propagated through the source with transmission greater than 99.9%. Test beams of He[sup 2+] and N[sup 7+] extracted from the source in 50-100 [mu]s pulses have been injected into CRYRING with the entire CRYSIS platform raised to 20 kV. Ions of charge up to [sup 136]Xe[sup 44+] extracted in extended 50-100 ms pulses have been used in coincidence-type atomic physics experiments. The status of CRYSIS as of March 15, 1992 is reported. Improvements, modes of operation, and results are discussed. (orig.).

  11. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  12. Ions beams and ferroelectric plasma sources

    Science.gov (United States)

    Stepanov, Anton

    Near-perfect space-charge neutralization is required for the transverse compression of high perveance ion beams for ion-beam-driven warm dense matter experiments, such as the Neutralized Drift Compression eXperiment (NDCX). Neutralization can be accomplished by introducing a plasma in the beam path, which provides free electrons that compensate the positive space charge of the ion beam. In this thesis, charge neutralization of a 40 keV, perveance-dominated Ar+ beam by a Ferroelectric Plasma Source (FEPS) is investigated. First, the parameters of the ion beam, such as divergence due to the extraction optics, charge neutralization fraction, and emittance were measured. The ion beam was propagated through the FEPS plasma, and the effects of charge neutralization were inferred from time-resolved measurements of the transverse beam profile. In addition, the dependence of FEPS plasma parameters on the configuration of the driving pulser circuit was studied to optimize pulser design. An ion accelerator was constructed that produced a 30-50 keV Ar + beam with pulse duration ion source showed that the dependence of beam radius on Q was consistent with space charge expansion. It was concluded that the beam was perveance-dominated with a charge neutralization fraction of approximately zero in the absence of neutralizing plasma. Since beam expansion occurred primarily due to space charge, the decrease in effective perveance due to neutralization by FEPS plasma can be inferred from the reduction in beam radius. Results on propagation of the ion beam through FEPS plasma demonstrate that after the FEPS is triggered, the beam radius decreases to its neutralized value in about 5 mus. The duration of neutralization was about 10 mus at a charging voltage VFEPS = 5.5 kV and 35 mus at VFEPS = 6.5 kV. With VFEPS = 6.5 kV, the transverse current density profile 33 cm downstream of the source had a Gaussian shape with xrms =5 mm, which corresponds to a half-angle divergence of 0.87°. The

  13. Low energy ion beam dynamics of NANOGAN ECR ion source

    Science.gov (United States)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  14. Intense metal ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    We have developed an ion source which can produce high current beams of metal ions. The source uses a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted, so we have called this source the MEVVA ion source. The metal plasma is created simply and efficiently and no carrier gas is required. Beams have been produced from metallic elements spanning the periodic table from lithium through uranium, at extraction voltages from 10 to 60 kV and with beam currents as high as 1.1 Amperes (electrical current in all charge states). A brief description of the source is given and its possible application as an ion source for heavy ion fusion is considered. Beams such as C+ (greater than or equal to99% of the beam in this species and charge state), Cr2+ (80%), and Ta/sup 3+,4+,5+/ (mixed charge states) have been produced. Beam emittance measurements and ways of increasing the source brightness are discussed

  15. Decaborane beam from ITEP Bernas ion source

    International Nuclear Information System (INIS)

    A joint research and development program is under way to develop steady-state intense ion sources for the two energy extremes of MeV and hundreds of eV. The difficulties of extraction and transportation of low-energy boron beams are investigated using a decaborane compound [I. Yamada, W. L. Brown, J. A. Northby, and M. Sosnowski, Nucl. Instrum. Methods Phys. Res. B 79, 223 (1993)]. Presented here are the results from ITEP experiments using the Bernas ion source with an indirectly heated LaB6 cathode

  16. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili

    2007-09-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 {micro}m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  17. Plasma ion sources and ion beam technology in microfabrications

    International Nuclear Information System (INIS)

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 (micro)m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  18. Numerical Simulation Multicomponent Ion Beam Transport form ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    MaLei; SongMingtao; ZhangZimin; CaoYun

    2003-01-01

    In order to simulate the transport of multi-components ion beam extracted from an ECR ion source, we have developed a multi-charged ion beam transport program named MCIBS 1.0. The program is dedicated to numerical simulation of the behavior of highly-charged ion beam and optimization of beam optics in transport lines and is realized on a PC with Windows user interface of Microsoft Visual Basic. Among all the ions with different charge states in the beam, the exchanges of electrons between highly charged ions and low charged ions or neutral,atoms of residual gas are taken into account by using classical Molecular Over-barrier Model and Monte Carlo method. An advanced Windows graphical interface makes it; comfortable and friendly for the user to operate in an interactive mode. The present program is used for the numerical calculation and optimization of beam optics in a transport line consisting of various magnetic elements, such as dipole magnet, quadrupole and so on. It is possible to simultaneously simulate 200,000 particles, in a transport line of 340 m at most, and show every particle orbit. Beam cross section graphics and emittance phase pictures can be also shown at any position in the transport line.

  19. Energy spread of ion beams generated in multicusp ion sources

    International Nuclear Information System (INIS)

    For the production of future microelectronics devices, various alternate methods are currently being considered to replace the presently used method of lithography with ion beam lithography. One of these methods is the Ion Projection Lithography (IPL), which aims at the possibility of projecting sub-0.25 μm patterns of a stencil mask onto a wafer substrate. In order to keep the chromatic aberrations below 25 nm, an ion source which delivers a beam with energy spread of less than 3 eV is desired. For this application, multicusp ion sources are being considered. We measure the longitudinal energy spread of the plasma ions by using a two-grid electrostatic energy analyzer. The energy spread of the extracted beam is measured by a high-voltage retarding-field energy analyzer. In order to obtain the transverse ion temperature, a parallel-plate scanner is being set up to study the beam emittance. In this paper, comparisons are made for different ion source configurations

  20. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O7+ and 1.15 emA of O6+, more than 100 eμA of intermediate heavy ions for charge states up to Ar13+, Ca13+, Fe13+, Co14+ and Kr18+, and tens of eμA of heavy ions with charge states to Kr26+, Xe28+, Au35+, Bi34+ and U34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe36+, Au46+, Bi47+ and U48+. An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams

  1. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  2. An ion source with bunched beam release

    International Nuclear Information System (INIS)

    As a continuation of a preceding study, the possibility of bunched beam release from a FEBIAD-B2 ion source was investigated for the alkali metals, the alkaline-earths, aluminum, the transition elements scandium to nickel and for ytterbium. With an appropriate choice of the cooling/heating system and of the trap material, efficient bunching is reached for the alkalies, calcium, manganese and ytterbium, which have enthalpies of adsorption within the range 2.6 ≤ΔH, < 5 eV, the window useful for bunching. Utilizing deduced values of the mean sticking time at a surface of defined temperature, ΔH/sub a/-values up to approximately 6 eV can be determined. Thus the conditions can be specified which should allow bunching and chemical separation for various other elements that are too refractory for the present device. Experimental and semi-empirical ΔH/sub a/-values are in good agreement for the transition elements and aluminium but exhibit strong deviations for the alkali metals, the alkaline-earths, ytterbium and probably some other lanthanides. On-line mass separation of neutron-deficient isotopes of cadmium, indium and tin with a high degree of selectivity demonstrates the chemical separation power of bunched beam release

  3. Transport line for beam generated by ITEP Bernas ion source

    International Nuclear Information System (INIS)

    A joint research and development program is underway to investigate beam transport systems for intense steady-state ion sources for ion implanters. Two energy extremes of MeV and hundreds of eV are investigated using a modified Bernas ion source with an indirectly heated cathode. Results are presented for simulations of electrostatic systems performed to investigate the transportation of ion beams over a wide mass range: boron to decaborane

  4. ITEP Bernas ion source with additional electron beam

    International Nuclear Information System (INIS)

    A joint research and development program is underway to develop steady-state intense ion sources for the two energy extremes of MeV and hundreds of eV. For the MeV range the investigations were focused on charge-state enhancement for ions generated by the modified Bernas ion sources. Based on the previously successful ITEP experience with the e-metal vapor vacuum arc ion source [e.g., Batalin et al., Rev. Sci. Instrum. 75, 1900 (2004)], the injection of a high-energy electron beam into the Bernas ion source discharge region is expected to enhance the production of high charge states. Presented here are construction details and studies of electron-beam influence on the enhancement of ion-beam charge states generated by the modified Bernas ion source

  5. Electron temperature effects for an ion beam source

    International Nuclear Information System (INIS)

    A hydrogen high temperature plasma up to 200 eV is produced by acceleration of electrons in a hot hollow cathode discharge and is used as an ion beam source. Then, two characteristics are observed: A rate of the atomic ion (H+) number increases above 70%. A perveance of the ion beam increases above 30 times compared with that of a cold plasma, while a floating potential of an ion acceleration electrode approaches an ion acceleration potential (- 500 V) according as an increment of the electron temperature. Moreover, a neutralized ion beam can be produced by only the negative floating electrode without an external power supply. (author)

  6. A high charge state heavy ion beam source for HIF

    International Nuclear Information System (INIS)

    A high current low emittance high charge state heavy ion beam source is being developed. This is designed to deliver HIF (heavy ion fusion) driver accelerator scale beam. Using high-charge-state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system which consists of the gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 2D beam envelope simulations and experimental feasibility studies' results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector

  7. Emittance Measurements for Beams Extracted from LECR3 Ion Source

    Institute of Scientific and Technical Information of China (English)

    CaoYun; ZhaoHongwei; MaLei; ZhangZimin

    2003-01-01

    High quality ion beams are required by IMP cyclotron and atomic physics research, so it is important to research and measure beam emitt ance of ECR ion source. Intense beams extracted from ECR ion source usually have low energy, so it is suitable to use Electric-Sweep Scanner to measure the emittance. This kind of measurement is popularly used at ECR ion source, and it has some prominent merits such as high accuracy, very short time of data processing and easy expressing of the emittance pattern. So we designed and built this emittance scanner to measure emittance of the ion beams produced by LECR3 ion source. The structure of the ESS is shown in Fig.l, and the photo of the ESS is shown in Fig.2.

  8. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  9. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source

    International Nuclear Information System (INIS)

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  10. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented. PMID:20192366

  11. Caborane beam from ITEP Bernas ion source for semiconductor implanters

    Energy Technology Data Exchange (ETDEWEB)

    Seleznev, D.; Hershcovitch, A.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Koshelev, V.; Kulevoy, T.; Jonson, B.; Poole, J.; Alexeyenko, O.; Gurkova, E.; Oks, E.; Gushenets, V.; Polozov, S.; Masunov, E.

    2010-02-01

    A joint research and development of steady state intense boron ion sources for hundreds of electron-volt ion implanters has been in progress for the past 5 years. The difficulties of extraction and transportation of low energy boron beams can be solved by implanting clusters of boron atoms. In Institute for Theoretical and Experimental Physics (ITEP) the Bernas ion source successfully generated the beam of decaborane ions. The carborane (C{sub 2}B{sub 10}H{sub 12}) ion beam is more attractive material due to its better thermal stability. The results of carborane ion beam generation are presented. The result of the beam implantation into the silicon wafer is presented as well.

  12. Performance of positive ion based high power ion source of EAST neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chundong; Xie, Yahong, E-mail: xieyh@ipp.ac.cn; Xie, Yuanlai; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Jiang, Caichao; Li, Jun; Liu, Zhimin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-02-15

    The positive ion based source with a hot cathode based arc chamber and a tetrode accelerator was employed for a neutral beam injector on the experimental advanced superconducting tokamak (EAST). Four ion sources were developed and each ion source has produced 4 MW @ 80 keV hydrogen beam on the test bed. 100 s long pulse operation with modulated beam has also been tested on the test bed. The accelerator was upgraded from circular shaped to diamond shaped in the latest two ion sources. In the latest campaign of EAST experiment, four ion sources injected more than 4 MW deuterium beam with beam energy of 60 keV into EAST.

  13. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source

    International Nuclear Information System (INIS)

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  14. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline. PMID:22380298

  15. Development of the RIKEN atomic beam type polarized ion source

    International Nuclear Information System (INIS)

    The RIKEN atomic beam type polarized ion source has been assembled and is operational. The present level of performance is 140 μA with 50-60% polarization of the ideal value. Results from operation will be described. (author)

  16. High yields from the Stockholm electron beam ion source CRYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Rao, R.; Bjoerkhage, M.; Carle, P.; Engstroem, Aa.; Liljeby, L.; Rouleau, G.; Wenander, F. [Manne Siegbahn Lab., Stockholm (Sweden)

    1997-04-01

    CRYSIS is an electron beam ion source (EBIS) with a superconducting solenoid. Highly charged ions are delivered to the acceleration and storage ring CRYRING, SMILETRAP and to low energy atomic and surface physics experiments. Stable electron beam currents up to 700 mA are obtained, in order to enhance the ion yield out of the EBIS. Measurements of the total charge per pulse at different working conditions and electron beam current density measurements were done. At electron beam currents of 600 mA yields up to 2.5 x 10{sup 10} charges per pulse could be measured. (orig.). 8 refs.

  17. Injection line of 1+ ion beam for electron beam ion-charge breeding source and related beam elements

    International Nuclear Information System (INIS)

    Main purpose of the electron beam ion-charge breeding source (EBIBS) is to produce highly pure and highly charged ion beam from single charge ion of stable or radioactive species. It can accept low emittance ion beam from either online or offline ECR ion sources (ECRIS). The emittance of the extracted beam is low at lower RF frequencies and magnetic field of the ECRIS. The beam at the position of extraction is approximately reproduced at the entrance of the electron collector of the EBIBS. The beam moves forward under the influence of the negative potential deep of the electron beam and enters the ionization region in solenoid field of the EBIBS. The injection line starts at the extraction region of the ECRIS. The assumed parameters of the extracted beam of 20 keV energy and 0.0732 GeV/c momentum for injection are 10 mm diameter and 30 mrad beam divergence cone. As mass number of the ions decreases the energy decreases for constant momentum of the ion beam. The value of the momentum or the beam rigidity is judiciously chosen to encompass the most of the isotopes of various elements. The beam is focused by a quadrupole doublet and passes the beam through a 90° bending magnet. The beam is analyzed also by the dipole magnet to remove the contaminants and the selected ion beam is focused by a quadrupole doublet magnet to pass through an electrostatic 90° bending elements. The beam approaches the opening of 16 mm diameter of the electron collector. A round beam of 12 mm diameter is achieved here with the help of a quadrupole triplet through point-to-point imaging from start to the end. The transport matrices for the electrostatic bending elements were calculated and incorporated into the TRANSPORT code. (author)

  18. Verification of high efficient broad beam cold cathode ion source.

    Science.gov (United States)

    Abdel Reheem, A M; Ahmed, M M; Abdelhamid, M M; Ashour, A H

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition. PMID:27587108

  19. Simulation code for beam trajectories in an ion source 'IONORB'

    International Nuclear Information System (INIS)

    The computer simulation code developed is for studying optimum configuration of the ion beam extraction electrodes in an ion source. It simulates ion extraction from a source plasma and acceleration through the extraction electrodes. The shape and position of the emitter are self-consistently computed so that the plasma temperature saturation current is equal to the space-charge-limitted current at the emitter. Finite ion and electron temperatures and wall sheath length between the source plasma and the electrode are considered at the emitter. The extracted ions which pass through the zero equipotential surface under the grounded electrode suffer from no space-charge-expansion because of the electron cloud. The beam divergence is thus computed on the surface. The computation is possible for both the beams from an aperture and a slot. (auth.)

  20. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  1. A Study on the Ion Beam Extraction using Duo-PiGatron Ion source for Vertical Type Ion Beam Facility

    International Nuclear Information System (INIS)

    In Korea Multipurpose Accelerator Complex (KOMAC), we have started ion beam service in the new beam utilization building since March this year. For various ion beam irradiation services, we are developed implanters such as metal (150keV/1mA), gaseous (200keV/5mA) and high current ion beam facility (20keV/150mA). One of the new one is a vertical type ion beam facility without acceleration tube (60keV/20mA) which is easy to install the sample. After the installation is complete, it is where you are studying the optimal ion beam extraction process. Detailed experimental results will be presented. Vertical Type Ion Beam Facility without acceleration tube of 60keV 20mA class was installed. We successfully extracted 60keV 20mA using Duo- PiGatron Ion source for Vertical Type Ion Beam Facility. Use the BPM and Faraday-cup, is being studied the optimum conditions of ion beam extraction

  2. A Study on the Ion Beam Extraction using Duo-PiGatron Ion source for Vertical Type Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sok; Lee, Chan young; Lee, Jae Sang [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea Multipurpose Accelerator Complex (KOMAC), we have started ion beam service in the new beam utilization building since March this year. For various ion beam irradiation services, we are developed implanters such as metal (150keV/1mA), gaseous (200keV/5mA) and high current ion beam facility (20keV/150mA). One of the new one is a vertical type ion beam facility without acceleration tube (60keV/20mA) which is easy to install the sample. After the installation is complete, it is where you are studying the optimal ion beam extraction process. Detailed experimental results will be presented. Vertical Type Ion Beam Facility without acceleration tube of 60keV 20mA class was installed. We successfully extracted 60keV 20mA using Duo- PiGatron Ion source for Vertical Type Ion Beam Facility. Use the BPM and Faraday-cup, is being studied the optimum conditions of ion beam extraction.

  3. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source.

    Science.gov (United States)

    Thorn, A; Ritter, E; Ullmann, F; Pilz, W; Bischoff, L; Zschornack, G

    2012-02-01

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au(60 +). The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented. PMID:22380207

  4. A New Technique for Diagnosing Multi-charged Ion Beams Produced by ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    ZhangZimin; ZhaoHongwei; CaoYun; MaLei; MaBaohua; LiJinyu; WangHui; FengYucheng; DuJunfeng

    2003-01-01

    In order to study the transmission properties of multi-charged ion beams between the ECR ion source and the analyzing magnet, a new diagnostic system composed of three Wien-filters with three single-wires has been built and installed on the IMP ECR source test bcnch. The single-wire is used to measure the beam profile and the beam density distribution, and the Wien-filter is used to measure the charge state distribution of ion beam.

  5. Development of the RF Ion Sources for Focused Ion Beam Accelerators

    OpenAIRE

    V. Voznyi; Miroshnichenko, V.; S. Mordyk; D. Shulha; V. Storizhko; Tokman, V.

    2014-01-01

    The paper presents the results of investigations of ion sources developed in the IAP of NAS of Ukraine for generation of high brightness ion beams with small energy spread. A series of RF ion sources operated at the frequency of 27.12 MHz were studied: the inductive RF ion source, the helicon ion source, the multi-cusp RF ion source, and the sputter type RF source of metal ions. A global model and transformer model were applied for calculation of RF source plasma parameters. Ion energy spread...

  6. Beam tests of a 10 GHz compact ECR ion source

    International Nuclear Information System (INIS)

    Ion source for medical facilities should have characteristics of easy maintenance, low electric power, good stability and long operation time without maintenance (one year or more). The 10 GHz compact Electron Cyclotron Resonance (ECR) Ion Source with all permanent magnets has been developed 2003. The maximum mirror magnetic field on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side. The minimum B strength is 0.25 T. The size of the source is 300 mm in diameter and 290 mm in length. Details of the design and the results of preliminary beam test are reported. (author)

  7. Negative Decaborane Ion Beam from ITEP Bernas Ion Source

    International Nuclear Information System (INIS)

    A joint research and development effort focusing on the design of steady state, intense ion sources has been in progress for the past two and a half years with a couple of Russian institutions. The ultimate goal of the effort is to meet the two, energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of higher charge state antimony and phosphorous ions to meet high-energy implantation requirements. For low energy ion implantation, R and D efforts have involved molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive decaborane ions were extracted at 10 keV and a smaller current of negative decaborane ions were also extracted. Though of scientific interest, negative decaborane ions did not attract interest from industry, since the semiconductor ion implant industry seems to have solved the wafer-charging problem. This paper describes conditions under which negative decaborane ions are formed and extracted from a Bernas ion source

  8. Laser Ion Source Operation at the TRIUMF Radioactive Ion Beam Facility

    Science.gov (United States)

    Lassen, J.; Bricault, P.; Dombsky, M.; Lavoie, J. P.; Gillner, M.; Gottwald, T.; Hellbusch, F.; Teigelhöfer, A.; Voss, A.; Wendt, K. D. A.

    2009-03-01

    The TRIUMF Resonant Ionization Laser Ion Source (RILIS) for radioactive ion beam production is presented, with target ion source, laser beam transport, laser system and operation. In this context aspects of titanium sapphire (TiSa) laser based RILIS and facility requirements are discussed and results from the first years of TRILIS RIB delivery are given.

  9. Electron beam ion sources for student education at universities

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Erik [DREEBIT GmbH, Dresden (Germany); Zschornack, Guenter [TU Dresden, Dresden (Germany)

    2014-07-01

    Ion beams have become essential tools used in many fields of fundamental research as well as industrial applications. Thus, it is important for todays physics students to understand the basics of ion beam creation, transportation as well as ion-surface interactions. We present results from laboratory training courses using table-top sized electron beam ion sources of the Dresden EBIT type which is able to produce a large spectrum of ions with low or high charge states. The initial ion beam is guided through several ion optical elements like Einzel lenses and deflectors, is separated by the charge-to-mass ratio of its components with a Wien-Filter or dipole analyzing magnet and is detected in a Faraday Cup. A specific assembly for laboratory training as used at the Technische Universitaet Dresden and the Jagiellonian University in Krakow, Poland, is introduced. In typical experiments, students analyze the charge-to-mass ratio spectrum from a Dresden EBIT measured using a Wien Filter. The composition of the extracted ion beam can be manipulated by the gas pressure or the ionisation time. In a wider context, the atomic physics processes occurring especially during the production of highly charged ions also appear in nuclear fusion facilities as well as in many astrophysical phenomena, for example supernovas. Such aspects can be discussed in order to help students connect to modern research carried out at large international facilities.

  10. Electron beam ion sources for student education at universities

    International Nuclear Information System (INIS)

    Ion beams have become essential tools used in many fields of fundamental research as well as industrial applications. Thus, it is important for todays physics students to understand the basics of ion beam creation, transportation as well as ion-surface interactions. We present results from laboratory training courses using table-top sized electron beam ion sources of the Dresden EBIT type which is able to produce a large spectrum of ions with low or high charge states. The initial ion beam is guided through several ion optical elements like Einzel lenses and deflectors, is separated by the charge-to-mass ratio of its components with a Wien-Filter or dipole analyzing magnet and is detected in a Faraday Cup. A specific assembly for laboratory training as used at the Technische Universitaet Dresden and the Jagiellonian University in Krakow, Poland, is introduced. In typical experiments, students analyze the charge-to-mass ratio spectrum from a Dresden EBIT measured using a Wien Filter. The composition of the extracted ion beam can be manipulated by the gas pressure or the ionisation time. In a wider context, the atomic physics processes occurring especially during the production of highly charged ions also appear in nuclear fusion facilities as well as in many astrophysical phenomena, for example supernovas. Such aspects can be discussed in order to help students connect to modern research carried out at large international facilities.

  11. Production of slow ion beams from a laser ion source

    Czech Academy of Sciences Publication Activity Database

    Gammino, S.; Ciavola, G.; Torrisi, L.; Ando, L.; Celona, L.; Láska, Leoš; Krása, Josef; Wolowski, J.; Woryna, E.; Parys, P.; Shirkov, G. D.

    Vienna : XX, 2000, s. 1598-1600. [European Particles Acceleration Conference. Wien (AT), 26.06.2000-30.06.2000] R&D Projects: GA AV ČR IAA1010105 Institutional research plan: CEZ:AV0Z1010921 Keywords : hybride laser ion source * highly charged ions Subject RIV: BL - Plasma and Gas Discharge Physics

  12. ECR ion source based low energy ion beam facility

    International Nuclear Information System (INIS)

    Over the past two decades or so, electron cyclotron resonance (ECR) ion sources have created a tremendous impact and given a major boost to technology and science in the production of high intensity multiply charged ions. A project was undertaken to develop a research facility consisting of an ECR source along with all its peripheral electronics and vacuum components placed on a 200 kV high voltage platform for obtaining multiply charged ions in a widely varying energy range from a few kilo electron volts (keV) to a few million electron volts (MeV)

  13. Generation of a boron ion beam in a modified ion source for semiconductor applications

    International Nuclear Information System (INIS)

    Presented here are results of experimental studies on the production of intense beams of boron ions using a modified Bernas-Calutron ion source. Instead of using the conventional boron-trifluoride gas, a solid lithium-boron-tetrafluoride compound was heated to release boron-trifluoride. For optimum ion source parameters the measured 25-41 mA of total ion beam current was composed of 70% singly charged and about 1% doubly charged boron ions

  14. The examinations on purity of ion beams emitted by plasmatic and thermoemission ion source

    International Nuclear Information System (INIS)

    The composition of ion beam emitted by both Nielsen's type of plasmatic ion source and source with superficial ionization was examined. Investigations were connected with a design of simplified and chapper variant of implantator without ion beam analysis in magnetic field. The measurements were carried out using an isotope electromagnetic separator in the Institute of Physics at the Maria Curie-Sklodowska University in Lublin. A considerable differentation in ion beam in respect of both ion charge and kind was observed. The impurities were caused by gases absorbed in source elements as well as by residual gases filled the apparatus. An important reason of impurities seems to be also a source ''store'' due to previous separations. The methods which enable to obtain pure ion beams of argon, nitrogen, zinc and aluminium are presented. Besides the optimum conditions for source work the pure ion beams are determined. (author)

  15. Examinations on purity of ion beams emitted by plasmatic and thermoemission ion source

    Energy Technology Data Exchange (ETDEWEB)

    Maczka, D.; Mazur, J.; Wasiak, A. (Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland). Inst. Fizyki)

    1981-01-01

    The composition of ion beam emitted by both Nielsen's type of plasmatic ion source and source with superficial ionization was examined. Investigations were connected with a design of simplified and chapper variant of implantator without ion beam analysis in magnetic field. The measurements were carried out using an isotope electromagnetic separator in the Institute of Physics at the Maria Curie-Sklodowska University in Lublin. A considerable differentation in ion beam in respect of both ion charge and kind was observed. The impurities were caused by gases absorbed in source elements as well as by residual gases filled the apparatus. An important reason of impurities seems to be also a source ''store'' due to previous separations. The methods which enable to obtain pure ion beams of argon, nitrogen, zinc and aluminium are presented. Besides the optimum conditions for source work the pure ion beams are determined.

  16. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  17. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  18. Development of ion source for neutral beam injection

    International Nuclear Information System (INIS)

    There are a few methods for further raising (secondary heating) toroidal plasma temperature above the limit of Joule heating of 1 to 2 keV. In this paper, the ion source used for neutral beam injection heating is described, which is now considered to be the most effective means as the secondary heating. It was reported that in Oak Ridge National Laboratory, neutral particle beam was injected into the torus and the plasma temperature increased as expected. Japan Atomic Energy Research Institute (JAERI) planned the plasma heating by neutral beam injection in JFT-2 torus from the summer of 1976 and it was decided that the heating by neutral beam injection is also employed in the critical plasma test facility (JT-60) which is scheduled to start operation in 1980. For this purpose, JAERI decided to build some test stand for ion source development including ITS-1 already prepared. At present, the test stand ITS-2 for the development of two stage acceleration ion source is ordered as a part of the development program of neutral beam injection heating for JT-60. This stand will be available for the test of ion sources of up to 100 kV, 20 A, and pulse width 1 sec. (Wakatsuki, Y.)

  19. Ion source development for JT-60 neutral beam injector

    International Nuclear Information System (INIS)

    The design work of the JT-60 neutral beam injection system requires two ion sources in each beam line. A low divergent ion beam of 35 A at 75 keV shall be extracted for several to ten seconds through 12 cm x 27 cm extraction grids. The corresponding ion current density is about 0.27 A/cm2 with 40% transparency. To develop ion sources of these specifications, we investigate the beam optics of the two-stage acceleration system using the 100 kV test stand. The extraction grids are made of copper disk with 83 apertures over 5 cm diam. area. The total acceleration energy ranges from 50 keV to 70 keV, and the extraction and the acceleration gap distances are changed in the range of 4.5 to 8 mm. The beam divergence is plotted as a function of perveance for a set of these parameters. We find the tendency that the minimum beam divergence is improved with the decrease of field intensity ratio f, while one must allow the decrease of optimum perveance, the perveance at which the beam divergence is minimum. When f is smaller than 0.25, where the strong lens effect is expected, we obtain the smallest beam divergence (1.0 degree), but the heat loading of the plasma and the gradient grid increases significantly above a certain perveance value. Chamfering of the aperture edge in the plasma and the gradient grid improves beam optics appreciably. The heat loading of each grid is discussed in relation to the beam optics. The maximum perveance per hole obtained is 1.3 nanopervs., where the beam energy is 70 keV and the divergence is 1.4 degree

  20. Discrimination of ionic species from broad-beam ion sources

    International Nuclear Information System (INIS)

    The performance of a broad-beam, three-grid, ion extraction system incorporating radio frequency (RF) mass discrimination was investigated experimentally. This testing demonstrated that the system, based on a modified single-stage Bennett mass spectrometer, can discriminate between ionic species having about a 2-to-1 mass ratio while producing a broad-beam of ions with low kinetic energy (less than 15 eV). Testing was conducted using either argon and krypton ions or atomic and diatomic oxygen ions. A simple one-dimensional model, which ignores magnetic field and space-charge effects, was developed to predict the species separation capabilities as well as the kinetic energies of the extracted ions. The experimental results correlated well with the model predictions. This RF mass discrimination system can be used in applications where both atomic and diatomic ions are produced, but a beam of only one of the species is desired. An example of such an application is a 5 eV atomic oxygen source. This source would produce a beam of atomic oxygen with 5 eV kinetic energy, which would be directed onto a material specimen, to simulate the interaction between the surface of a satellite and the rarefied atmosphere encountered in low-Earth orbit

  1. Beam test of compact ECR ion source for carbon therapy

    International Nuclear Information System (INIS)

    Ion source for medical facilities should have characteristics of easy maintenance, low electric power, good stability and long operation time without maintenance (one year or more). Based on the proto type compact source, a 10 GHz compact ECR ion source with all permanent magnets has been developed. Peaks of the mirror magnetic field along the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, respectively, while the minimum B strength is 0.25 T. The source has a diameter of 320 mm and a length of 295 mm. The result of beam tests shows that a C4+ intensity of 530 μA was obtained under an extraction voltage of 45 kV. This paper describes the design detail and the experimental results for the new source. (author)

  2. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    International Nuclear Information System (INIS)

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ∼ 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage (∼ 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 1011 cm-3. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K+ ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments

  3. The status of the Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.

    1990-12-31

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes` efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs.

  4. The status of the Electron Beam Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.

    1990-01-01

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes' efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs.

  5. The status of the Electron Beam Ion Sources

    International Nuclear Information System (INIS)

    More than twenty years after its invention, 13 examples of the Electron Beam Ion Sources (EBIS) are in operation worldwide. The substantial progress in operation and insight, achieved over the last few years, made the EBISes become reliable tools for the production of beams of very highly charged, low-energy ions. For example, 8 EBISes produce bare argon on a standard basis. The successful production of hydrogen-like xenon presents the ions with the highest ionization energy, whereas the production of Th80+ presents the highest achieved charge state. Several synchrotrons are fed by EBIS injectors, taking advantage of the EBIS batch mode production, which yields the highest charge states. A few EBISes are used for ion source development. However, most of the EBISes' efforts are directed to research the physics of highly charged ions. Some of those are used to study the electron--ion interaction inside the source. But normally, most EBISes deliver the ions for external experiments, which so far concentrate on the recombination of the highly charged ions with atoms, molecules and surfaces. The ions are typically produced at a potential of 1 to a few kilovolts per charge; but in most cases, the EBIS is mounted on a high voltage platform or is followed by an RFQ, and therefore can generate ion energies from a few hundred volts up to a few hundred kilovolts per charge. The delivered beams have a low emittance and a low energy spread, which is an advantage for high-resolution experiments. This paper presents briefly all operational EBISes, their capabilities, their achievements, and their contribution to physics research. 5 figs., 1 tab., 59 refs

  6. High intensity negative proton beams from a SNICS ion source

    International Nuclear Information System (INIS)

    For the past year we have been involved in a project to develop an intense (> 100μA) negative proton beam from a SNICS (Source of Negative Ions by Cesium Sputtering) ion source. This report will cover how we accomplished and exceeded this goal by more than 40%. Included in these observations will be the following: A description of an effective method for making titanium hydride cathodes. How to overcome the limitations of the titanium hydride cathode. The modification of the SNICS source to improve output; including the installation of the conical ionizer and the gas cathode. A discussion of problems including: poisoning the proton beam with oxygen, alternative gas cathode materials, the clogging of the gas inlet, long burn-in times, and limited cathode life times. Finally, how to optimize source performance when using a gas cathode, and what is the mechanism by which a gas cathode operates; facts, fantasies, or myth

  7. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT

    International Nuclear Information System (INIS)

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized 3He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem

  8. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  9. A high-performance electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Alessi,J.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McCafferty, D.; Okamura, M.; Pikin, A. I.; Raparia, D.; Ritter, J.; Syndstrup, L.

    2009-06-08

    At Brookhaven National Laboratory, a high current Electron Beam Ion Source (EBIS) has been developed as part of a new preinjector that is under construction to replace the Tandem Van de Graaffs as the heavy ion preinjector for the RHIC and NASA experimental programs. This preinjector will produce milliampere-level currents of essentially any ion species, with q/A {ge} 1/6, in short pulses, for injection into the Booster synchrotron. In order to produce the required intensities, this EBIS uses a 10A electron gun, and an electron collector designed to handle 300 kW of pulsed electron beam power. The EBIS trap region is 1.5 m long, inside a 5T, 2m long, 8-inch bore superconducting solenoid. The source is designed to switch ion species on a pulse-to-pulse basis, at a 5 Hz repetition rate. Singly-charged ions of the appropriate species, produced external to the EBIS, are injected into the trap and confined until the desired charge state is reached via stepwise ionization by the electron beam. Ions are then extracted and matched into an RFQ, followed by a short IH Linac, for acceleration to 2 MeV/A, prior to injection into the Booster synchrotron. An overview of the preinjector is presented, along with experimental results from the prototype EBIS, where all essential requirements have already been demonstrated. Design features and status of construction of the final high intensity EBIS is also be presented.

  10. Pragmatic development of a laser ion source for intense highly-charged ion beam

    International Nuclear Information System (INIS)

    Recently, applications of high-charge-state (including fully stripped) heavy-ion beams have been attracting interest in both physics and industry. To enhance their usefulness, more intense beams are required. Cancer therapy using carbon ions is a particularly promising heavy-ion beam application. Due to advances in laser technology, the laser ion source (LIS) has become one of the most popular sources for generating highly charged and intense heavy-ion beams. The project to develop a high-intensity LIS was started on June 2009. In our project, whose ultimate goal is to apply a heavy-ion accelerator for cancer therapy, we have almost completed designing the LIS, and manufacturing will commence soon. We intend to measure the source performance by performing plasma and beam tests up until the end of March 2011. We will report the outline and a progress of the project. (author)

  11. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    CERN Document Server

    Efthimion, Philip; Gilson, Erik P; Grisham, Larry; Logan, B G; Waldron, William; Yu, Simon

    2005-01-01

    Plasmas are employed as a medium for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ~ 0.1-1 m would be suitable. To produce 1 meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic. High voltage (~ 1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long produced plasma densities ~ 5x1011 cm-3. The source was integrated into the experiment and successfully charge neutralized the K ion beam. Presently, the 1 meter source ...

  12. Tests of a Laser Ion Source at the Heidelberg Electron Beam Ion Trap

    OpenAIRE

    Mironov, V; Trinczek, M.; Werdich, A.; González Martínez, A.; Guo, P; X. Zhang; Braun, J.; Crespo López-Urrutia, J.; Höhr, C.; Ullrich, J.

    2003-01-01

    A laser ion source (LIS) has been designed and successfully tested for loading the Heidelberg electron beam ion trap (H-EBIT) with ions of practically all solid-state elements. A pulsed YAG:Nd3þ laser (30 mJ, 8 ns) is used to produce plasma from a solid target. Lowly charged ions are extracted from the plasma and accelerated by a short high-voltage pulse, generating a pulsed ion beam with energy of up to 6 keV per charge. The ion beam is transported into the EBIT, decelerated and captured wit...

  13. Beam optics optimization of a negative-ion sputter source

    Indian Academy of Sciences (India)

    F Osswald; R Rebmeister

    2002-11-01

    A negative-ion sputter source has been studied in order to increase the beam intensity delivered by the Vivitron tandem injector. The aim was to characterize the influence on the beam intensity of some factors related to the configuration of the source such as the shape of the target holder, the target surface topography and the anode/cathode voltage. The paper reports the results carried out by experimentation on a test facility and on the injector itself as well as the investigations performed with computer simulations.

  14. Recent developments and upgrades in ion source technology and ion beam systems at HVE

    Science.gov (United States)

    Podaru, Nicolae C.; Mous, Dirk J. W.

    2016-03-01

    In this paper we discuss various ion sources used in particle accelerator systems dedicated to ion beam analysis techniques. Key performance and characteristics of some ion sources are discussed: emittance, brightness, gas consumption, sample consumption efficiency, lifetime, etc. For negative ion sources, we focus on the performance of volume H- ion sources (e.g. HVE model 358), the duoplasmatron negative ion source and the magnetically filtered multicusp volume sources (e.g. HVE model SO-120). The duoplasmatron ion source has been recently upgraded with a Ta filament to deliver up to 150 μA H- ion beams and in conjunction with the Na charge exchange canal up to 20 μA of He-. The available brightness from the duoplasmatron increased from 2 to 6 A m-2 rad-2 eV-1. The ion source has been incorporated in a stand-alone light ion injector, well suited to deliver 20-30 keV negative ion beams of H-, He-, C-, NHx- and O- to accelerate for most ion beam analysis techniques.

  15. Calculation of ion beam species extracted from a hydrogen ion source

    International Nuclear Information System (INIS)

    Ion species from a hydrogen ion source are calculated as a function of the electron density on the assumption that the energy distribution of electrons in the source is Maxwellian with temperatures 8 to 12 eV. The beam fraction of ion species depends only on the electron density, and the proton ratio increases with electron density. (author)

  16. A study for the improvements of radio frequency ion source performance and ion beam quality

    International Nuclear Information System (INIS)

    In this work emphasis was given to improve ion beam obtained from the RF ion source. Thus, the objectives of this work are: a - Production of higher ion charge state which requires an intense plasma. This is achieved by the use of D.C magnetic field, the use of electron injection into the plasma, and the work run at optimum discharge pressure. b - Increasing the value of the extracted current. c - Improving ion beam quality by its interaction with electron beam. The production of multiply charged ions requires an intense plasma. This leads of the use of RF ion source with radial extraction, central constriction, and electron injection into plasma, together with magnetic field perpendicular to RF field. The plasma intensity could be increased from n e = 10 9 electrons/c m3 up to 10 12 electrons/cm 3. The ion beam was analyzed by a sector magnet and is found to contain a larger percentage of Ar +4 than that without electron injection. To improve ion source efficiency, this means increasing ion current for the same, or lower RF power and gas consumption. A new design of RF ion source of small size and having a magnetic mirror - like shape could yield a current up to 12 m. A at extracting voltage 3 K.V and pressure = 20 m.Torr. Electrons were injected into the ion beam from filaments around the beam . Such electrons decrease the space charge repulsive forces between the particles. Samples of the beam profiles are traced by ion beam scanner, with and without suppression to electrons . From these samples we could deduce a decrease of ion beam emittance due to the effect of beam neutralization, which agrees with the theoretical work made for the effect of neutralization on the beam emittance

  17. On plasma ion beam formation in the Advanced Plasma Source

    International Nuclear Information System (INIS)

    The Advanced Plasma Source (APS) is employed for plasma ion-assisted deposition (PIAD) of optical coatings. The APS is a hot cathode dc glow discharge which emits a plasma ion beam to the deposition chamber at high vacuum (p ≲ 2 × 10−4 mbar). It is established as an industrial tool but to date no detailed information is available on plasma parameters in the process chamber. As a consequence, the details of the generation of the plasma ion beam and the reasons for variations of the properties of the deposited films are barely understood. In this paper the results obtained from Langmuir probe and retarding field energy analyzer diagnostics operated in the plasma plume of the APS are presented, where the source was operated with argon. With increasing distance to the source exit the electron density (ne) is found to drop by two orders of magnitude and the effective electron temperature (Te,eff) drops by a factor of five. The parameters close to the source region read ne ≳ 1011 cm−3 and Te,eff ≳ 10 eV. The electron distribution function exhibits a concave shape and can be described in the framework of the non-local approximation. It is revealed that an energetic ion population leaves the source region and a cold ion population in the plume is build up by charge exchange collisions with the background neutral gas. Based on the experimental data a scaling law for ion beam power is deduced, which links the control parameters of the source to the plasma parameters in the process chamber. (paper)

  18. A computer gas cluster ion beam source at QSEC

    International Nuclear Information System (INIS)

    Description is given for a compact ion source developed in our laboratory which can serve not only as an accelerator in a range of a few tens of kV but also as a Wiley-McLaren Time-of-Flight (TOF) mass spectrometer. Using this new type ion source we can select a variety of desired cluster size and obtain a well collimated beam with the aide of Grid Lenses. We describe two technical details that play a key role in cluster size measurements; electrostatic lenses in a TOF system and the use of a mesh in an electrostatic optical system. (author)

  19. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  20. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    Science.gov (United States)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-01

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H-) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H- current at higher frequency of cathode heating current.

  1. Optimization of negative ion sources for a heavy-ion-beam probe

    OpenAIRE

    Nishiura, M.; Ido, T.; Shimizu, A.; Kato, S.; Tsukada, K.; Nishizawa, A.; Hamada, Y.; Matsumoto, Y.; Mendenilla, A.; Wada, M.

    2006-01-01

    The development of plasma-sputter-type negative ion sources is underway for the heavy-ion-beam probe system as plasma diagnostic beams of the large helical device (LHD) for potential and fluctuation field measurements. Our purpose is to increase the doubly charged exchanged Au^+ beam intensity to enhance the detection signal after passing through the plasmas of the LHD. For this purpose, the characterization of the Au^– ion source and the beam optics has been carried out both experimentally a...

  2. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source.

    Science.gov (United States)

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U(35+) for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power. PMID:22380180

  3. Effects of a dielectric material in an ion source on the ion beam current density and ion beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y., E-mail: yutaka-fujiwara@aist.go.jp; Sakakita, H.; Nakamiya, A. [Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki 305-8577 (Japan); Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8568 (Japan); Hirano, Y.; Kiyama, S. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8568 (Japan)

    2016-02-15

    To understand a strong focusing phenomenon that occurs in a low-energy hydrogen ion beam, the electron temperature, the electron density, and the space potential in an ion source with cusped magnetic fields are measured before and after the transition to the focusing state using an electrostatic probe. The experimental results show that no significant changes are observed before or after the transition. However, we found unique phenomena that are characterized by the position of the electrostatic probe in the ion source chamber. Specifically, the extracted ion beam current density and energy are obviously enhanced in the case where the electrostatic probe, which is covered by a dielectric material, is placed close to an acceleration electrode.

  4. A vacuum spark ion source: High charge state metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  5. A vacuum spark ion source: High charge state metal ion beams

    International Nuclear Information System (INIS)

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described

  6. A vacuum spark ion source: High charge state metal ion beams

    Science.gov (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  7. Ion Beam Plasma Interactions in the ASTRAL Helicon Plasma Source.

    Science.gov (United States)

    Boivin, R. F.; Kesterson, A.; Kamar, O.; Lin, Y.; Munoz, J.; Wang, X.

    2008-11-01

    A 100 KeV NEC duoplasmatron is used to produce an energetic ion beam (10 KeV ASTRAL helicon plasma source. The beam current and beam size are measured by a device combining Retarding Field Analyzer (RFA) and Faraday Cup (FC) features. ASTRAL produces bright intense He/Ne/Ar plasmas with the following parameters: ne = 1E11 -- 1E13 cm-3 and Te = 2 - 10 eV, B-field < 1.3 kGauss, rf power <= 2 kWatt. RF compensated Langmuir probes are used to measure Te and ne. Depending on the ion beam energy and the ratio of beam density over plasma density different wave instabilities will be generated within the plasmas. A real-time spectrum analyzer will be used to identify the wave instabilities and their evolution in the plasma. We will present early experimental results together with some preliminary theoretical simulation using 2D and 3D hybrid simulation codes. In these codes, ions are treated as fully kinetic particles while electrons are treated as a fluid. Both species are moving in a self-consistent electromagnetic field.

  8. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  9. Ion source developments for stable and radioactive ion beams at GANIL

    CERN Document Server

    Leroy, R; Lecesne, N; Jardin, P; Gaubert, G; Huguet, Y; Pacquet, J Y; Villari, A C C; Lecler, D; Been, T

    1999-01-01

    Since now many years, the Ganil ion source team has in charge to develop ion sources with three main purposes. The first one concerns the radioactive ion production that implies high efficiency ion sources as the amount of created exotic atoms is very low (between 10 to 108 particle per second). The second one deals with high intensities of stable metallic ion beams for the injectors of the accelerator while the last one tries to increase the intensities of very high charge state ion beams for atomic physic. Concerning radioactive ion production, the recent results obtained, in collaboration with the ISN Grenoble group, with the 1+/n+ method drove us to develop a new concept of ecr ion source for monocharged ion production. The results of the first tests of this source will be given. This new idea for the construction of ecr ion source can be applied to multicharged ion production. Concerning the high charge state ion beam production, a new source called SUPERSHYPIE has been built that allow to increase by a ...

  10. An ion guide laser ion source for isobar-suppressed rare isotope beams.

    Science.gov (United States)

    Raeder, Sebastian; Heggen, Henning; Lassen, Jens; Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjøs, Anders; Teigelhöfer, Andrea

    2014-03-01

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated. PMID:24689577

  11. An ion guide laser ion source for isobar-suppressed rare isotope beams

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Sebastian, E-mail: sebastian.raeder@fys.kuleuven.be; Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjøs, Anders [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Heggen, Henning, E-mail: heggen@triumf.ca [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Institute of Applied Physics, TU Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt (Germany); Lassen, Jens, E-mail: lassen@triumf.ca; Teigelhöfer, Andrea [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2014-03-15

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

  12. Long Plasma Source for Heavy Ion Beam Charge Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Davidson, R.C.; Logan, B.G.; Seidl, P.A.; Waldron, W.

    2008-06-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus them to a small spot size and compress their axial length. The plasma source should operate at low neutral pressures and without strong externally-applied fields. To produce long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients have been developed. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic material. High voltage ({approx} 8 kV) is applied between the drift tube and the front surface of the ceramics. A BaTiO{sub 3} source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma in the 5 x 10{sup 10} cm{sup -3} density range. The source was integrated into the NDCX device for charge neutralization and beam compression experiments, and yielded current compression ratios {approx} 120. Present research is developing multi-meter-long and higher density sources to support beam compression experiments for high energy density physics applications.

  13. Beam dynamics of a liquid metal ion source

    International Nuclear Information System (INIS)

    RMS emittance growth of liquid metal ion sources is studied. Processes included are nonlinear expansion through extractor and accelerator fringe fields, nonlinear beam space charge, plasma effects near needle, and waves (either ion-acoustic or space charge limited as considered by V.I. Dudnikov). This investigation consists of 2-D analysis of appropriate Vlasov-Poisson equations in both steady-state and time-dependent formulations. Various geometries will be considered such as some used by G. Alton of ORNL. 2 refs., 7 figs

  14. Electron heating, time evolution of bremsstrahlung and ion beam current in electron cyclotron resonance ion sources

    OpenAIRE

    Ropponen, Tommi

    2010-01-01

    This thesis is a study of Electron Cyclotron Resonance Ion Source (ECRIS) plasmas and their properties. The focus has been on time evolution studies of bremsstrahlung emission, ion beam current production and numerical studies of electron heating in ECRIS plasmas. The time scales for reaching steady state bremsstrahlung production at electron energies greater than 30 keV is shown to be on the order of several hundreds of milliseconds. The ion beam currents of different elements...

  15. An intense plane-beam ion source (1963)

    International Nuclear Information System (INIS)

    Experiments are described carried out on the cross-section of a Penning type ion source which is a prototype of the annular ion source intended for the M.M.I.I. device at the Fontenay-aux-Roses Nuclear Research Centre. It is shown that the existence or absence of a very strong concentration depends in particular on the magnetic geometry. With a suitable magnetic and electrical geometry it is possible to concentrate the discharge towards the slit and thus to increase considerably the electrical yield and the gas yield. In pulsed conditions, the current derived from this source can exceed 100 mA with a slit 20 cm long and 0.2 mm wide. The gas yield can attain 20 per cent. The main characteristics of the discharge and of the beam are examined. (authors)

  16. Investigation of multi-charged heavy ion production in an electron beam ion source

    International Nuclear Information System (INIS)

    Measurements of multi-charged heavy ions produced in an Electron Beam Ion Source (EBIS) were carried out with a test model ion source 20 cm in length. This test model utilized an electron gun placed external to the bore of the focusing solenoid in order to achieve electrostatically focussed electron beams and isolation of the vacuum surrounding the electron gun from the vacuum in the ionization region within the solenoid bore. An ultrahigh vacuum system utilizing liquid nitrogen (770K) cryopumping was used to achieve the low pressures needed in the ionization region for the operation of this ion source. Several technical problems limited the operation of this test model and prevented a thorough investigation of the ionization processes in the ion source, but the experimental results have shown qualitative agreement with the theoretical calculations for the operation of this type of ion source. Even with the problems of an insufficient vacuum and electron beam focussing field, measurable currents of C+5 and A+8 ions were produced. The present experimental results suggest that the approach taken in this work of using an external electron gun and cryopumping in the EBIS to achieve the large electron beam current density and low vacuum necessary for successful operation is a viable one. Such an ion source can be used to create highly-charged heavy ions for injection into a cyclotron or other type of particle accelerator

  17. Investigation of multi-charged heavy ion production in an electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, R.W.

    1977-12-01

    Measurements of multi-charged heavy ions produced in an Electron Beam Ion Source (EBIS) were carried out with a test model ion source 20 cm in length. This test model utilized an electron gun placed external to the bore of the focusing solenoid in order to achieve electrostatically focussed electron beams and isolation of the vacuum surrounding the electron gun from the vacuum in the ionization region within the solenoid bore. An ultrahigh vacuum system utilizing liquid nitrogen (77/sup 0/K) cryopumping was used to achieve the low pressures needed in the ionization region for the operation of this ion source. Several technical problems limited the operation of this test model and prevented a thorough investigation of the ionization processes in the ion source, but the experimental results have shown qualitative agreement with the theoretical calculations for the operation of this type of ion source. Even with the problems of an insufficient vacuum and electron beam focussing field, measurable currents of C/sup +5/ and A/sup +8/ ions were produced. The present experimental results suggest that the approach taken in this work of using an external electron gun and cryopumping in the EBIS to achieve the large electron beam current density and low vacuum necessary for successful operation is a viable one. Such an ion source can be used to create highly-charged heavy ions for injection into a cyclotron or other type of particle accelerator.

  18. ECR [electron cyclotron resonance] ion source beams for accelerator applications: Final report

    International Nuclear Information System (INIS)

    Reliable, easily operated ion sources are always in demand for accelerator applications. This paper reports on a systematic study of ion-beam characterisrtics and optimization of beam quality for production of light ion beams in an ECR ion source. Of particular interest is the optimization of beam brightness (defined as ion current divided by the square of the emittance), which is typically used as a figure-of-merit for accelerator-quality beams. Other areas to be discussed include the measurement of beam emittance values, the effects of various source parameters on emittances, and scaling effects from operating the same ECR source at different frequencies. 4 refs., 4 figs

  19. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    Science.gov (United States)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  20. A self-sputtering ion source: A new approach to quiescent metal ion beams

    OpenAIRE

    Oks, Efim M.

    2010-01-01

    A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield like Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering (HIPIMS) discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density w...

  1. A self-sputtering ion source: A new approach to quiescent metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Oks, Efim M.; Anders, Andre

    2009-09-03

    A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield like Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering (HIPIMS) discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density which reached about 10 mA/cm2 at an extraction voltage of 45 kV and a first gap spacing of 12 mm.

  2. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure...... due to high heath fluxes, the controllability of the ion incidence angle, and charge accumulation when treating insulating materials. Despite of a large variety of plasma sources available for ion beam extraction, there is a clear need for new extraction mechanisms that can make available ion beams...... with high current densities that can treat surfaces placed adjacent to the extraction region. This work introduces a new phenomenology for ion beam extraction using the discrete ion-focusing effect associated with three-dimensional plasma-sheath-lenses [1, 2]. Experiments are performed in a matrix...

  3. Production and diagnosis of krypton ion beam using a freeman ion source

    International Nuclear Information System (INIS)

    The present work investigates the processes and phenomena occur in a Freeman heavy ion source system using krypton gas. The ion source parameters are adjusted in order to obtain the desired beam current with highest efficiency. The relations between the discharge current Id and the ion beam current Ib are obtained at constant pressures and for various accelerating voltages. The curves indicate a linear dependence of ion current from plasma density. Optimization of the ion source required adjustment of the cathode current and gas pressure. The dependence of ion beam currents on the accelerating voltage is given at constant discharge current (la = 0.8 A) and for various pressures. The ion beam current reaches 3m A at 45 KV and at a pressure of 2 x 105 Torr, and a cathode current equal to 130 A. An analysis has been made for an implanted Krypton ion beam in a zinc specimen using laser ablation inductively coupled plasma mass spectrometry. Photographs show the examined zinc specimen are presented. The depth profile shows that the highest concentration of Krypton ion under the surface of the zinc specimen is located at about 10 nm

  4. Separation of beam and electrons in the spallation neutron source H- ion source

    International Nuclear Information System (INIS)

    The Spallation Neutron Source (SNS) requires an ion source producing an H- beam with a peak current of 35 mA at a 6.2% duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H- beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H- beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson's equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail

  5. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    Science.gov (United States)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.

    2016-04-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established ˜5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-μs surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of μs after the high voltage pulse is applied. It is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.

  6. First test of BNL electron beam ion source with high current density electron beam

    Science.gov (United States)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-01

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  7. Development of ion sources: Towards high brightness for proton beam writing applications

    International Nuclear Information System (INIS)

    An Ion Source Test Bench (ISTB) has been designed and commissioned to facilitate the measurement of ion beam reduced brightness (Br) obtained from different ion sources. Preliminary Br measurements were carried out, with RF ion source, in the ISTB for He ions. Meanwhile we have also fabricated and tested a novel ion source called electron impact gas ion source, whose reduced brightness is expected to reach up to 107 pA/μm2 mrad2 MeV. Initial ion-current measurements from such electron impact gas ion source (tested inside an environmental SEM) has yielded about 300 pA of Ar ions. The areal ion current density from this electron impact gas ion source is found to be at least 380 times higher than the existing RF ion source. This novel ion source is promising for application in proton beam writing lithography with feature sizes smaller than 10 nm

  8. High charge-state ion beam production from a laser ion source

    International Nuclear Information System (INIS)

    The high current, high charge-state ion beam which can be extracted from a laser produced plasma is well suited, after initial acceleration, for injection into synchrotrons. At CERN, the production of a heavy ion beam using such a source is studied. A 60 mA pulse of a mixture of high charge state tantalum or lead ions of 5 μs duration has been extracted at 59 kV. The resulting beam emittance and energy spread were measured. A Low Energy Beam Transport system (LEBT) consisting of two pulsed solenoids is used to match the beam to a four-rod Radio Frequency Quadrupole (RFQ). Preliminary results are given for the acceleration of the beam by an RFQ, designed for the acceleration of 10 mA of Ta16+ to an energy of 100 keV/u. (author)

  9. Portable test bench for the studies concerning ion sources and ion beam extraction and focusing systems

    International Nuclear Information System (INIS)

    A portable test bench is described, which was designed to check ion sources, ion beam extraction and focusing systems before its use in a 600 KeV Cockcroft-Walton accelerator. The vacuum possibilities of the system are specially analyzed in connection with its particular use. The whole can be considered as a portable accelerator of low energy (50 keV). (Author)

  10. Computer investigation of ion beam optics for a Freeman type ion source system

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, M.M., E-mail: moustafa82003@yahoo.com [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.N. 13759, Inchas, Cairo (Egypt); Abdelsalam, F.W. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.N. 13759, Inchas, Cairo (Egypt)

    2011-08-01

    The present work investigates the computer analysis of the ion beam properties produced by a Freeman type system. The extraction for such system is composed of four electrodes that permit to keep a fixed output energy by means of two accelerating gaps and one decelerating gap. The latter allows reducing the beam divergence angle. The combination of the acceleration/deceleration sections provides to keep a low beam emittance at the source outlet. The simulation of single charged argon ion trajectories for a plasma concave of curvature 4 mm was first studied with and without space charge effect using acceleration/deceleration extraction system with the aid of the SIMION computer program. The voltage applied to the accelerating electrode was optimized to accomplish the suitable ion trajectories without hitting the extraction electrode. Then, two additional studies were performed: the influence of the acceleration voltage and extraction voltage on the beam emittance and beam diameter; and the effect of the extraction gap width (distance between the plasma emission surface and the acceleration electrode) on the shape of the ion beam envelope and the position of the ion beam waist. Last, the influence of the space charge on the ion beam envelope was also investigated.

  11. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    Science.gov (United States)

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  12. Slow ion beams from a laser ion source for the ECLISSE experiment

    Czech Academy of Sciences Publication Activity Database

    Andó, L.; Torrisi, L.; Gammino, S.; Ciavola, G.; Celona, L.; Láska, Leoš; Krása, Josef; Wolowski, J.; Woryna, E.; Shirkiv, G. D.

    Bologna : Italian Physical Society, 2001 - (Gammino, S.; Ciavola, G.), s. 109-113 - (Conference Proceedings.. 72). [Workshop on the Production of Intense Beams of Highly Charged Ions . Catania (IT), 24.09.2000-27.09.2000] R&D Projects: GA AV ČR IAA1010105 Institutional research plan: CEZ:AV0Z1010921 Keywords : hybrid ion source * ion generation Subject RIV: BJ - Thermodynamics

  13. Kinetic plasma simulation of ion beam extraction from an ECR ion source

    International Nuclear Information System (INIS)

    Designing optimized ECR (electron cyclotron resonance) ion beam sources can be streamlined by the accurate simulation of beam optical properties in order to predict ion extraction behavior. The complexity of these models, however, can make PIC-based simulations time-consuming. In this paper, we first describe a simple kinetic plasma finite element simulation of extraction of a proton beam from a permanent magnet hexapole ECR ion source. Second, we analyze the influence of secondary electrons generated by ion collisions in the residual gas on the space charge of a proton beam of a dual-solenoid ECR ion source. The finite element method (FEM) offers a fast modeling environment, allowing analysis of ion beam behavior under conditions of varying current density, electrode potential, and gas pressure. The new version of SCALA/TOSCA v14 permits the making of simulations in tens of minutes to a few hours on standard computer platforms without the need of particle-in-cell methods. The paper is followed by the slides of the presentation. (authors)

  14. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    Science.gov (United States)

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs. PMID:18315181

  15. Numerical simulation program of multicomponent ion beam transport from ECR ion source

    Institute of Scientific and Technical Information of China (English)

    MA Lei; SONG Ming-Tao; CAO Yun; ZHAO Hong-Wei; ZHANG Zi-Min; LI Xue-Qian; LI Jia-Cai

    2004-01-01

    In order to research multi-component ion beam transport process and improve transport efficiency, a special simulating program for ECR beam is becoming more and more necessary. We have developed a program written by Visual Basic to be dedicated to numerical simulation of the highly charged ion beam and to optimization of beam dynamics in transport line. In the program the exchange of electrons between highly charged ions and low chargedions or neutral atoms (residual gas in transport line) is taken into account, adopting classical molecular over-barrier model and Monte Carlo method, so the code can easily give the change of charge state distribution along the transmission line. The main advantage of the code is the ability to simultaneously simulate a large quantity of ions with different masses and charge states, and particularly, to simulate the loss of highly charged ions and the increase of low charged ions due to electron exchange in the whole transport process. Some simulations have been done to study the transmission line of LECR3[1] which is an ECR ion source for highly charged ion beam at IMP. Compared with experimental results, the simulations are considered to be successful.

  16. Development of ion beams for space effects testing using an ECR ion source

    Science.gov (United States)

    Benitez, Janilee; Hodgkinson, Adrian; Johnson, Mike; Loew, Tim; Lyneis, Claude; Phair, Larry

    2013-04-01

    At LBNL's 88-Inch Cyclotron and Berkeley Accelerator Space Effects (BASE) Facility, a range of ion beams at energies from 1 to 55 MeV/nucleon are used for radiation space effects testing. By bombarding a component with ion beams the radiation component of the space environment can be simulated and single event effects (SEEs) determined. The performance of electronic components used in space flight and high altitude aircraft can then be evaluated. The 88- Inch Cyclotron is coupled to the three electron cyclotron resonance ion sources (ECR, AECR-U, VENUS). These ion sources provide a variety of ion species, ranging from protons to heavy ions such as bismuth, for these tests. In particular the ion sources have been developed to provide "cocktails", a mixture of ions of similar mass-to-charge ratio, which can be simultaneously injected into the cyclotron, but selectively extracted from it. The ions differ in both their linear energy transfer (LET) deposited to the part and in their penetration depth into the tested part. The current heavy ion cocktails available are the 4.5, 10, 16, and 30 MeV per nucleon.

  17. Development of ion beams for space effects testing using an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Janilee; Hodgkinson, Adrian; Johnson, Mike; Loew, Tim; Lyneis, Claude; Phair, Larry [Nuclear Science Division, Lawrence Berkeley National Lab One Cyclotron Road, Berkeley, CA 94720 (United States)

    2013-04-19

    At LBNL's 88-Inch Cyclotron and Berkeley Accelerator Space Effects (BASE) Facility, a range of ion beams at energies from 1 to 55 MeV/nucleon are used for radiation space effects testing. By bombarding a component with ion beams the radiation component of the space environment can be simulated and single event effects (SEEs) determined. The performance of electronic components used in space flight and high altitude aircraft can then be evaluated. The 88- Inch Cyclotron is coupled to the three electron cyclotron resonance ion sources (ECR, AECR-U, VENUS). These ion sources provide a variety of ion species, ranging from protons to heavy ions such as bismuth, for these tests. In particular the ion sources have been developed to provide {sup c}ocktails{sup ,} a mixture of ions of similar mass-to-charge ratio, which can be simultaneously injected into the cyclotron, but selectively extracted from it. The ions differ in both their linear energy transfer (LET) deposited to the part and in their penetration depth into the tested part. The current heavy ion cocktails available are the 4.5, 10, 16, and 30 MeV per nucleon.

  18. Industrialization and production of neutral beam ion sources for MFTF

    International Nuclear Information System (INIS)

    The existing LLNL designs of the 20 and 80kV deuterium fueled Neutral Beam Ion Source Modules (NBSM) have been industrialized and are being produced successfully for the MFTF. Industrialization includes value engineering, production engineering, cost reduction, fixturing, facilitation and procurement of components. Production assembly, inspection and testing is being performed in a large electronics manufacturing plant. Decades of experience in high voltage, high vacuum power tubes is being applied to the procedures and processes. Independent quality and reliability assurance criteria are being utilized. Scheduling of the various engineering, procurement and manufacturing task is performed by the use of a Critical Path Method (CPM) computer code, Innovative, computerized grid alignment methods were also designed and installed specifically for this project. New jointing and cleaning techniques were devised for the NBSMs. Traceability and cost control are also utilized

  19. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar12+, 0.92 emA Xe27+, and so on, will be presented

  20. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    Science.gov (United States)

    Sun, L.; Guo, J. W.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Yang, Y.; Qian, C.; Fang, X.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar12+, 0.92 emA Xe27+, and so on, will be presented.

  1. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L., E-mail: sunlt@impcas.ac.cn; Lu, W.; Zhang, W. H.; Feng, Y. C.; Qian, C.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Guo, J. W.; Yang, Y.; Fang, X. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω{sup 2} scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE{sub 01} and HE{sub 11} modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar{sup 12+}, 0.92 emA Xe{sup 27+}, and so on, will be presented.

  2. Electron beam dynamics and design of electron beam ion-charge breeding source

    International Nuclear Information System (INIS)

    There is a requirement to develop an electron beam ion-charge breeding source (EBIBS) to produce a highly charged and highly pure ion beam of common elements as well as rare isotopes. The EBIBS consists of an electron gun chamber, the main solenoid and ionization chamber and an electron collector chamber for attaining highly charged and pure ion beam of species. Some studies have been performed to reach appropriate design of the proposed source, The report explains certain design choices and constraints involved in developing the EBIBS. Trajectory simulation of electron beams in >5A range current has been done to determine the configuration of electrodes and magnet coils appropriate to obtain high current density electron pencil beam at the ionization region in high magnetic field of the superconducting solenoid. The electron beam starts from the high pervious electron gun and dumped on the water cooled electron collector. The background pressure in the trap region should be low enough that one does not produce a significant number of ions from the background gas. An impurity value of the order of ∼5% can be tolerated, so an acceptable range of vacuum in EBIBS, 10-10 - 10-12 mbar, is assumed. Physics design of high perveance electron gun, superconducting solenoid ionization region and the electron collector has been done and is under further study to achieve superior design of the source, The mechanical design of various components and the source bench has been started also. All these developments will be presented in the conference. (author)

  3. RF broad-beam low-energy ion source with electron compensation

    Directory of Open Access Journals (Sweden)

    Zykov A. V.

    2010-03-01

    Full Text Available Characteristics of single-grid RF ion source with 250 mm beam diameter and 1A beam current have been studied. Energy distribution functions of electrons and ions emitted by the source have been measured. It is shown that the emitted electron current is sufficient for full ion beam current compensation. The technique of ion to electron current ratio control allowing to change this ratio in wide range is proposed. Using the ICP in the source allows to rich high current density in the low ion energy range with the possibility of independent control of ion energy and current density.

  4. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    International Nuclear Information System (INIS)

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H− and D− beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H− (2.6 mA/cm2), which is the intensity needed at injection for production of 200 µA H+ with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed

  5. Long-life bismuth liquid metal ion source for focussed ion beam micromachining application

    Energy Technology Data Exchange (ETDEWEB)

    Mazarov, P. [Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)], E-mail: paul.mazarov@ruhr-uni-bochum.de; Melnikov, A.; Wernhardt, R.; Wieck, A.D. [Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2008-09-15

    Liquid metal ion sources (LMISs) with Ga as ion species are widely used in focused ion beam (FIB) technology for micromachining and surface treatment on the sub-micron and nano-scale. Key features of a LMIS for investigating mechanical properties and 3D-microfabrication of materials are long life-time, high brightness, stable ion current and a highly effective milling ability for the material to be modified. In order to increase the material removal rate, heavier ions than Ga and their clusters should be applied. Bismuth (Bi) is the heaviest, non-radio-active element in the periodic table, is non-toxic and exhibits a low melting point. We have thus produced a long-life (about 1000 h) Bi LMIS with a good beam performance, applicable in any FIB system. Since Bi is the only element in this source, it is not necessary to separate it from other ions by a mass filter. Investigation of the sputtering rate of NiTi shape memory alloys using Ga and Bi LMIS showed that, for the same experimental conditions, the material removal rate with using of Bi{sub n}{sup k+} ions in a standard FIB machine without a mass separator is about five times larger compared to Ga{sup +} ions. This use of Bi as LMIS-species is the ultimate breakthrough in sputtering applications.

  6. Long-life bismuth liquid metal ion source for focussed ion beam micromachining application

    International Nuclear Information System (INIS)

    Liquid metal ion sources (LMISs) with Ga as ion species are widely used in focused ion beam (FIB) technology for micromachining and surface treatment on the sub-micron and nano-scale. Key features of a LMIS for investigating mechanical properties and 3D-microfabrication of materials are long life-time, high brightness, stable ion current and a highly effective milling ability for the material to be modified. In order to increase the material removal rate, heavier ions than Ga and their clusters should be applied. Bismuth (Bi) is the heaviest, non-radio-active element in the periodic table, is non-toxic and exhibits a low melting point. We have thus produced a long-life (about 1000 h) Bi LMIS with a good beam performance, applicable in any FIB system. Since Bi is the only element in this source, it is not necessary to separate it from other ions by a mass filter. Investigation of the sputtering rate of NiTi shape memory alloys using Ga and Bi LMIS showed that, for the same experimental conditions, the material removal rate with using of Bink+ ions in a standard FIB machine without a mass separator is about five times larger compared to Ga+ ions. This use of Bi as LMIS-species is the ultimate breakthrough in sputtering applications

  7. Test bench to commission a third ion source beam line and a newly designed extraction system.

    Science.gov (United States)

    Winkelmann, T; Cee, R; Haberer, T; Naas, B; Peters, A

    2012-02-01

    The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed. PMID:22380336

  8. Test bench to commission a third ion source beam line and a newly designed extraction system

    International Nuclear Information System (INIS)

    The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed.

  9. Ion beams in SEM: An experiment towards a high brightness low energy spread electron impact gas ion source

    NARCIS (Netherlands)

    Jun, D.S.; Kutchoukov, V.G.; Kruit, P.

    2011-01-01

    A next generation ion source suitable for both high resolution focused ion beam milling and imaging applications is currently being developed. The new ion source relies on a method of which positively charged ions are extracted from a miniaturized gas chamber where neutral gas atoms become ionized b

  10. Heavy-Ion Beam Acceleration of Two-Charge States from an Ecr Ion Source

    OpenAIRE

    Ostroumov, P. N.; Shepard, K. W.; Aseev, V. N.; Kolomiets, A. A.

    2000-01-01

    This paper describes a design for the front end of a superconducting (SC) ion linac which can accept and simultaneously accelerate two charge states of uranium from an ECR ion source. This mode of operation increases the beam current available for the heaviest ions by a factor of two. We discuss the 12 MeV/u prestripper section of the Rare Isotope Accelerator (RIA) driver linac including the LEBT, RFQ, MEBT and SC sections, with a total voltage of 112 MV. The LEBT consists of two bunchers and...

  11. First test of BNL electron beam ion source with high current density electron beam

    International Nuclear Information System (INIS)

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given

  12. Simulation study of LEBT for transversely coupled beam from an ECR ion source

    International Nuclear Information System (INIS)

    A Low-Energy intense-highly charged ion Accelerator Facility (LEAF) program has been launched at Institute of Modern Physics. This accelerator facility consists of a superconducting Electron Cyclotron Resonance (ECR) ion source, a Low Energy Beam Transport (LEBT) system, and a Radio Frequency Quadrupole (RFQ). It is especially of interest for the extracted ion beam from the ECR ion source, which is transversely coupled, and this property will significantly affect the beam transmission in the LEBT line and the matching with the downstream RFQ. In the beam transport design of LEAF, beam decoupling in the LEBT is considered to lower down the projection emittances and the feasibility of the design has been verified by beam simulation with a transversely coupled beam from the ECR ion source

  13. Simulation study of LEBT for transversely coupled beam from an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y., E-mail: yangyao@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Dou, W. P.; Sun, L. T.; Yao, Q. G.; Zhang, Z. M.; Yuan, Y. J.; He, Y.; Zh, X. Z.; Zhao, H. W. [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2016-02-15

    A Low-Energy intense-highly charged ion Accelerator Facility (LEAF) program has been launched at Institute of Modern Physics. This accelerator facility consists of a superconducting Electron Cyclotron Resonance (ECR) ion source, a Low Energy Beam Transport (LEBT) system, and a Radio Frequency Quadrupole (RFQ). It is especially of interest for the extracted ion beam from the ECR ion source, which is transversely coupled, and this property will significantly affect the beam transmission in the LEBT line and the matching with the downstream RFQ. In the beam transport design of LEAF, beam decoupling in the LEBT is considered to lower down the projection emittances and the feasibility of the design has been verified by beam simulation with a transversely coupled beam from the ECR ion source.

  14. Simulation study of LEBT for transversely coupled beam from an ECR ion source

    Science.gov (United States)

    Yang, Y.; Dou, W. P.; Sun, L. T.; Yao, Q. G.; Zhang, Z. M.; Yuan, Y. J.; He, Y.; Zh, X. Z.; Zhao, H. W.

    2016-02-01

    A Low-Energy intense-highly charged ion Accelerator Facility (LEAF) program has been launched at Institute of Modern Physics. This accelerator facility consists of a superconducting Electron Cyclotron Resonance (ECR) ion source, a Low Energy Beam Transport (LEBT) system, and a Radio Frequency Quadrupole (RFQ). It is especially of interest for the extracted ion beam from the ECR ion source, which is transversely coupled, and this property will significantly affect the beam transmission in the LEBT line and the matching with the downstream RFQ. In the beam transport design of LEAF, beam decoupling in the LEBT is considered to lower down the projection emittances and the feasibility of the design has been verified by beam simulation with a transversely coupled beam from the ECR ion source.

  15. Characterization of volume type ion source for $p$, $H_2^+$ and $H_3^+$ beams

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    Recently, there is an increasing need for $H_{2}^+$ and $H_{3}^+$ ion sources. One example are ion therapy facilities, where $C^{4+}$ and $H_{3}^+$ ion beams along the linac are of great interest. Another example is a $H_{2}^+$ test beam for linacs finally operated with intense deuteron beams. At Frankfurt, a simple proton ion source is needed to test a new kind of beam injection into a magnetic storage ring\\cite{EPAC08}\\cite{EPAC06}. This article describes a volume type ion source which can deliver upto $3.05~mA$ beam current at $10~keV$ in stable dc operation. It is a hot filament driven ion source which can provide high fractions of $p$, $H_{2}^+$ or $H_{3}^+$, depending on the operation settings.

  16. Characterization of the proton ion source beam for the high intensity neutrino source at Fermilab

    Science.gov (United States)

    Tam, Wai-Ming

    Fermilab is considering an 8 GeV superconducting H-- linac with the primary mission of enabling 2MW beam power from the 120 GeV Fermilab Main Injector for a neutrino program. The High Intensity Neutrino Source (HINS) R&D program is underway to demonstrate the technical feasibility in a 30MeV prototype linac. The HINS Linac Front-end is composed of an ion source, a radio frequency quadrupole (RFQ), a medium energy beam transport and 16 room temperature Crossbar H-type cavities that accelerate the beam to 10 MeV. The cavities are separated by superconducting solenoids enclosed in individual cryostats. Beyond 10 MeV, the design uses superconducting spoke resonators. Recently, the HINS proton ion source has been successfully commissioned. It produces a 50 keV, 3 msec pulsed beam with a peak current greater than 20mA at 2.5 Hz. The beam is transported to the RFQ by a low energy beam transport (LEBT) that consists of two focusing solenoids, four steering dipole magnets and a beam current transformer. To understand beam transmission through the RFQ, it is important to characterize the 50 keV beam before connecting the LEBT to the RFQ. A wire scanner and a Faraday cup are temporarily installed at the exit of the LEBT to study the beam parameters. All beam studies are based on data taken using the wire scanner. We start with interpreting the signal measured by the wire scanner. Then, we performed a beam-calibration to the steering dipole magnets. We then study transverse motion coupling due to solenoidal field by measuring beam rotation through solenoid. Analysis to these measurements is accompanied with beam physics modeling and particle tracking simulation. Also, transverse emittance was measured using two different methods and results are compared. Finally, a bunch shape monitor will be introduced. It is a high bandwidth instrumentation device that measures the longitudinal profile of a bunched proton/H- beam. HINS will use it for its 2.5MeV beam. Operational principle

  17. Targets for ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    The Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory, is based on the use of the well-known on-line isotope separator (ISOL) technique in which radioactive nuclei are produced by fusion type reactions in selectively chosen target materials by high-energy proton, deuteron, or He ion beams from the Oak Ridge Isochronous Cyclotron (ORIC). Among several major challenges posed by generating and accelerating adequate intensities of radioactive ion beams (RIBs), selection of the most appropriate target material for production of the species of interest is, perhaps, the most difficult. In this report, we briefly review present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect maximum diffusion release rates of the short-lived species that can be realized at the temperature limits of specific target materials. We also describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the HRIBF as well as prototype ion sources that show promise for future use for RIB applications

  18. Cavity Ringdown Technique for negative-hydrogen-ion measurement in ion source for neutral beam injector

    International Nuclear Information System (INIS)

    The Cavity Ringdown Technique (CRD) is applied for negative hydrogen ion (H−) density measurement in H− source for the neutral beam injector. The CRD is one of the laser absorption techniques. Nd:YAG pulse laser was utilized for negative-hydrogen-ion photodetachment. The H− density related to extracted H− beam was successfully observed by a fixed position CRD. A two-dimensional movable CRD has been developed to measure the H− density profile. Measured profiles were consistent with expected profiles from the H− production area in pure hydrogen and cesium seeded plasmas. By applying absorption saturation in the optical cavity, negative hydrogen ion temperature was evaluated and was confirmed as being a similar value measured with other diagnostics

  19. Study of Effect of Ion Source Energy Spread on RFQ Beam Dynamics at REX-ISOLDE

    CERN Document Server

    Fraser, M A

    2013-01-01

    With an upgrade to the Electron Beam Ion Source (EBIS) at REX under consideration a study was launched in order to understand the effect of an increased energy spread from the ion source on the beam dynamics of the RFQ. Due to the increased electron beam potential needed to achieve the upgrade’s charge breeding specification it is expected that the energy spread of the beam will increase from today’s estimated value of approximately +-0.1%. It is shown through beam dynamics simulations that the energy spread can be increased to +-1% without significant degradation of the beam quality output by the RFQ.

  20. Development of 14.5 GHz Electron Cyclotron Resonance Ion Source for Muti-charged Ion Beams

    International Nuclear Information System (INIS)

    Ion sources to make multi-charged ion beam based on the electron cyclotron resonance (ECR) principle have played major role in the advancement of the knowledge of atomic and nuclear physics and in many areas of applied science and technology. Since the final energy of an ion beam is directly proportional to the charge of the ion during acceleration, a premium is placed on ion sources which are capable of generating very high charge state ion beams for use at accelerator-based research facilities. Recently in KAERI a 14.5 GHz ECRIS (Electron Cyclotron Resonance Ion Source) has been designed and is being fabricated to produce multi-charged ion beams for medical applications in a cyclotron. The design results, fabrication status, and future plan will be presented in this topic

  1. Plasma and Beam Production Experiments with HYBRIS, a Microwave-assisted H- Ion source

    International Nuclear Information System (INIS)

    A two-stage ion source concept had been presented a few years ago, consisting of a proven H- ion source and a 2.45-GHz Electron Cyclotron-Resonance (ECR) type ion source, here used as a plasma cathode. This paper describes the experimental development path pursued at Lawrence Berkeley National Laboratory, from the early concept to a working unit that produces plasma in both stages and creates a negative particle beam. Without cesiation applied to the second stage, the H- fraction of this beam is very low, yielding 75 micro-amperes of extracted ion beam current at best. The apparent limitations of this approach and envisaged improvements are discussed

  2. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    International Nuclear Information System (INIS)

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development

  3. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    Science.gov (United States)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  4. Production of highly charged ion beams from electron cyclotron resonance ion sources (invited)

    International Nuclear Information System (INIS)

    Electron cyclotron resonance ion source (ECRIS) development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields, and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECRISs. So far at continuous wave (CW) mode operation, up to 300 eμA of O7+ and 1.15 emA of O6+, more than 100 eμA of intermediate heavy ions for charge states up to Ar13+, Ca13+, Fe13+, Co14+, and Kr18+, and tens of eμA of heavy ions with charge states to Kr26+, Xe28+, Au35+, Bi34+, and U34+ were produced from ECRISs. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe36+, Au46+, Bi47+, and U48+. An order of magnitude enhancement for fully stripped argon ions (I≥60enA) were also achieved. This article will review the ECR ion source progress and discuss key requirement for ECRISs to produce the highly charged ion beams. copyright 1998 American Institute of Physics

  5. Experimental optimization of beam quality extracted from a duoplasmatron proton ion source

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Y. K.; Draganic, I. N.; Fortgang, C. M. [LANL, Los Alamos, New Mexico 87545 (United States)

    2014-10-01

    The LANSCE accelerator facility operates with two independent ion injectors for H⁺ and H⁻ particle beams. The H⁺ ion beam is formed using a duoplasmatron source followed by a 750 keV Cockroft-Walton accelerating column. Formation of an optimal plasma meniscus is an important feature for minimizing beam emittance, and maximizing beam brightness. A series of experiments were performed to find the optimal combination of extraction voltage and extracted current for the H⁺ beam. Measurements yielded the best ratio of beam perveance to Child–Langmuir perveance of 0.52 for maximizing beam brightness.

  6. Design and beam tests of an RFQ to accelerate a lead ion beam from a laser ion source

    International Nuclear Information System (INIS)

    A Radio Frequency Quadrupole (RFQ) for acceleration of a 10 mA lead 18+ ion beam from 6.9 keV/u to 100 keV/u has been designed, built and tested in the framework of the CERN Laser Ion Source (LIS) study. The challenge of the RFQ design was to deal with a lead ion beam that includes about 10 charge states with an overall current of some 100 mA. A new RFQ design, intermediate between the two standard high-intensity and low-intensity designs, has been applied in order to have a compact structure giving small longitudinal emittance and high transmission. The transport and matching line from the source to the RFQ is made of two solenoids. The unwanted charge states are not filtered and will enter the RFQ mis-matched. In order to test the RFQ performance proper it was decided to operate it with an equivalent mono-species proton beam during the first stage of the commissioning. The design criteria for this intermediate current RFQ, the problems involved in dealing with a mixture of different charge states, as well as the results of the first test with an equivalent proton beam are presented in this paper. (author)

  7. Development of multi-megawatt negative ion sources and accelerators for neutral beam injectors

    International Nuclear Information System (INIS)

    High energy and high power negative ion sources and accelerators have been developed for neutral beam (NB) injectors of future fusion machines such as International Thermonuclear Experimental Reactor (ITER). Using a 5-stage electrostatic accelerator, negative ion beam has been successfully accelerated up to the energy of 1 MeV, which is the required energy for ITER. Powerful negative ion beams of 18.5 A, 360 keV H- and 14.3 A, 380 keV D- have been produced with a high arc efficiency of 0.11 A/kW at a low source pressure of 0.15 Pa in JT-60 negative ion sources, and neutral beams of 5.2 MW have been injected into the plasma. Continuous operation of a Cs-seeded negative ion source has also been demonstrated for 140 hours, which is equivalent to the half year operation in the ITER-NB system. (author)

  8. The ISOLDE Laser Ion Source and Trap (LIST): Towards pure ion beams

    International Nuclear Information System (INIS)

    The on-line isotope mass separator ISOLDE at CERN is a facility dedicated to the production of a large variety of radioactive ion beams. A high ionization efficiency combined with ultimate isotope selectivity is of utmost importance for all on-line experiments on exotic, short-lived radionuclides with the lowest production rates. The ionization technique that most closely meets this requirement is the element selective Resonance Ionization Laser Ion Source (RILIS). Unfortunately, even when the RILIS is used, many rare isotope beams produced at ISOLDE remain contaminated with surface ionized isobars. In order to suppress the surface ions, a radio-frequency quadrupole device known as the Laser Ion Source and Trap (LIST) has been developed at the University of Mainz and at CERN. After the first successful on-line test in 2011, the LIST was further improved in terms of efficiency, selectivity, and reliability through several off-line tests at Mainz University and at ISOLDE/CERN. In September 2012, the first on-line physics experiments to use the LIST took place at ISOLDE. A summary of the LIST technology and the results of the on-line characterization and experiments are given.

  9. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited).

    Science.gov (United States)

    Vondrasek, R; Levand, A; Pardo, R; Savard, G; Scott, R

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci (252)Cf source to produce radioactive beams with intensities up to 10(6) ions∕s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for (23)Na(8+), 15.6% for (84)Kr(17+), and 13.7% for (85)Rb(19+) with typical breeding times of 10 ms∕charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The project has been commissioned with a radioactive beam of (143)Ba(27+) accelerated to 6.1 MeV∕u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities. PMID:22380254

  10. Multiply charged ion sources for photon-ion crossed beam experiments

    International Nuclear Information System (INIS)

    The intense beams of synchrotron radiation which will be available from dedicated storage rings such as the x-ray and vuv rings at the National Synchrotron Light Source allow one to contemplate experimental arrangements which can be used to investigate photon-ion interactions in the x-ray and vuv ranges. Studies of multiple charged ions of charge greater than two and their interactions with photons are of great interest because of the general lack of experimental information about the properties of ground and highly excited states of such ions and the important role some multiply charged ions play in astrophysical and laboratory plasmas. Experimental arrangements which would allow the use of photons as probes of such systems would be invaluable in these studies and would help stimulate research in a thus far untouched but increasingly important area of atomic physics. Specific experimental arrangements will depend on the aspects of the interaction being studied, but in general the experiments will be technically difficult and by necessity will involve crossed ion-photon beams with concomitant small interaction rates

  11. Enhancement in ion beam current with layered-glows in a constricted dc plasma ion source

    International Nuclear Information System (INIS)

    High current mode has been discovered and investigated in a constricted dc plasma ion source. As discharge currents exceed a certain threshold, voltage to sustain the constricted dc plasma suddenly falls down to almost half of the value. In this sense, constricted dc plasmas can be sustained at much higher current than in conventional mode operation at a fixed discharge voltage. Phenomenally, several discrete layered-glows are created between an anode glow and a cathode glow. The layers are thin and divided by dark spaces where charged particles can be accelerated. In this high current mode, ion beam current density is about 100 times higher than in conventional mode at the same voltage. It is noteworthy that lower gas pressure is desirable to sustain the layered-glow mode, which is also profitable for ion source in terms of differential pumping. Ion current density exceeds 300 mA/cm2 at low discharge power of 175 W where ion density of plasma ball is estimated to be over 3.7x1012 cm-3.

  12. A high-current four-beam xenon ion source for heavy-ion fusion

    International Nuclear Information System (INIS)

    The growing interest in inertial confinement fusion using heavy ions has elicited from the Los Alamos Scientific Laboratory a proposal to use a multi-channel radiofrequency quadrupole (RFQ) structure for the initial stage of the heavy-ion accelerator. The RFQ would have 4 channels in each module and each channel would accelerate 25 mA of Xe+1. Based on experiments with xenon beam production with a high current duoPlGatron source at Chalk River Nuclear Laboratories, a 245 keV 4-beam xenon injector has been designed for this 4-channel RFQ. The injector is of modular design with 4 small independent plasma sources mounted in a 10 cm square array on a common combined extraction and acceleration column. The electrodes have 4 separate sets of apertures and each channel produces a 29 mA beam for injection into its corresponding RFQ channel. This paper presents a conceptual design for the injector, code calculations for the column electrode design and results of a preliminary test carried out to verify the feasibility of the concept. (author)

  13. Electron Cyclotron Resonance Ion Sources (ECRIS) for cyclotrons and radioactive beam production

    International Nuclear Information System (INIS)

    Improvements in Electron Cyclotron Resonance Ion Sources are discussed. These improvements include improvements in the charge-state distribution to increase the fraction of high charge-state current, improvement in production of beams of metallic ions, and reduction of construction cost and energy consumption for such sources

  14. Plasma studies and beam emittance measurements of 2.45 GHz microwave ion source at VECC

    International Nuclear Information System (INIS)

    A 2.45 GHz microwave ion source operating at VECC is able to produce a total beam current of ∼ 12 mA at a beam energy of 75 KeV with a microwave power of 400 W as described in. In order to optimize the performance of the ion source, we have conducted systematic studies with the variation of ion source gas flow rate, magnetic field, extraction voltage, suppressor voltage, microwave power etc. The total extracted beam current was recorded as a function of each of the earlier mentioned parameters. Moreover, we have studied the effect on extracted beam current and its transmission in the beam transport line due to dielectric and water introduction into the plasma chamber. In the best setting, we have found a total extracted beam current of 12.5 mA with a beam transmission of 70 %. Furthermore, we have also studied the extracted beam current and its transmission in the beam transport line using aluminum plasma chamber of different diameters. Finally, we have estimated the beam emittance by solenoid scan technique of a neutralized 75 KeV, 5 mA proton beam by measuring beam profile using a non-interceptive residual gas fluorescence monitor. The measured normalized rms emittance of the neutralized beam is 0.05 mm-mrad, which seems to be quite reasonable. (author)

  15. Generation of oxygen, carbon and metallic ion beams by a compact microwave source

    International Nuclear Information System (INIS)

    A small microwave ion source fabricated from a quartz tube and enclosed externally by a cavity has been operated with different geometries and for various gases in a cw mode. This source has been used to generate oxygen ion beams with energy as low as 5.5 eV. Beam energy spread has been measured to be less than 1 eV. By installing different metal plates on the front extraction electrode, metallic ion beams such as (Be, Cu, Al, etc.) can be produced

  16. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007. PMID:18315105

  17. Production of rare-earth atomic negative ion beams in a cesium-sputter-type negative ion source

    International Nuclear Information System (INIS)

    The desire to study negative ion structure and negative ion-photon interactions has spurred the development of ion sources for use in research and industry. The many different types of negative ion sources available today differ in their characteristics and abilities to produce anions of various species. Thus the importance of choosing the correct type of negative ion source for a particular research or industrial application is clear. In this study, the results of an investigation on the production of beams composed of negatively-charged rare-earth ions from a cylindrical-cathode-geometry, cesium-sputter-type negative ion source are presented. Beams of atomic anions have been observed for most of the first-row rare-earth elements, with typical currents ranging from hundreds of picoamps to several nanoamps

  18. Beam emittance and output waveforms of high-flux laser ion source

    International Nuclear Information System (INIS)

    A laser ion source with short drift distance has been developed for a driver of heavy ion fusion (HIF). It supplies a copper ion beam of 200 mA (255 mA/cm2) with duration of 400 ns and beam emittance is about 0.8π mm·mrad. Moreover it has fast rising (30 ns), flat-top current waveform and a potential to deliver pure charge states between 1+ - 3+. Experimental results indicate that the laser ion source is a good candidate for the HIF driver. (author)

  19. An ultra-low energy (30-200 eV) ion-atomic beam source for ion-beam-assisted deposition in ultrahigh vacuum.

    Science.gov (United States)

    Mach, Jindrich; Samoril, Tomás; Voborný, Stanislav; Kolíbal, Miroslav; Zlámal, Jakub; Spousta, Jirí; Dittrichová, Libuse; Sikola, Tomás

    2011-08-01

    The paper describes the design and construction of an ion-atomic beam source with an optimized generation of ions for ion-beam-assisted deposition under ultrahigh vacuum (UHV) conditions. The source combines an effusion cell and an electron impact ion source and produces ion beams with ultra-low energies in the range from 30 eV to 200 eV. Decreasing ion beam energy to hyperthermal values (≈10(1) eV) without loosing optimum ionization conditions has been mainly achieved by the incorporation of an ionization chamber with a grid transparent enough for electron and ion beams. In this way the energy and current density of nitrogen ion beams in the order of 10(1) eV and 10(1) nA/cm(2), respectively, have been achieved. The source is capable of growing ultrathin layers or nanostructures at ultra-low energies with a growth rate of several MLs/h. The ion-atomic beam source will be preferentially applied for the synthesis of GaN under UHV conditions. PMID:21895238

  20. Status report on the development of a tubular electron beam ion source

    International Nuclear Information System (INIS)

    The theoretical estimations and numerical simulations of tubular electron beams in both beam and reflex mode of source operation as well as the off-axis ion extraction from a tubular electron beam ion source (TEBIS) are presented. Numerical simulations have been done with the use of the IGUN and OPERA-3D codes. Numerical simulations with IGUN code show that the effective electron current can reach more than 100 A with a beam current density of about 300-400 A/cm2 and the electron energy in the region of several KeV with a corresponding increase of the ion output. Off-axis ion extraction from the TEBIS, being the nonaxially symmetric problem, was simulated with OPERA-3D (SCALA) code. The conceptual design and main parameters of new tubular sources which are under consideration at JINR, MSL, and BNL are based on these simulations

  1. Status report on the development of a tubular electron beam ion source

    Science.gov (United States)

    Donets, E. D.; Donets, E. E.; Becker, R.; Liljeby, L.; Rensfelt, K.-G.; Beebe, E. N.; Pikin, A. I.

    2004-05-01

    The theoretical estimations and numerical simulations of tubular electron beams in both beam and reflex mode of source operation as well as the off-axis ion extraction from a tubular electron beam ion source (TEBIS) are presented. Numerical simulations have been done with the use of the IGUN and OPERA-3D codes. Numerical simulations with IGUN code show that the effective electron current can reach more than 100 A with a beam current density of about 300-400 A/cm2 and the electron energy in the region of several KeV with a corresponding increase of the ion output. Off-axis ion extraction from the TEBIS, being the nonaxially symmetric problem, was simulated with OPERA-3D (SCALA) code. The conceptual design and main parameters of new tubular sources which are under consideration at JINR, MSL, and BNL are based on these simulations.

  2. Production of Si+ and Cl+ ion beams from a Freeman type ion source using low toxicity and non-corrosive vapours as source gas

    International Nuclear Information System (INIS)

    A method is proposed for production of Si+ and Cl+ ions in Freeman type ion sources using low toxicity and non-corrosive vapours of hexamethyldisilane ((CH3)3SiSi(CH3)3) and carbon tetrachloride (CCl4), respectively. These source materials can be used without expensive and complicated safety systems required for silane and chlorine source gases. Experimental X-ray photoelectron spectroscopy results show that in the case of (CH3)3SiSi(CH3)3 vapour used as the ion source gas, the ion beam, after using standard magnetic field ion mass analysis for mass 28, contains about 62% of 28Si+ ions. It is assumed that the molecular ions C2H4+ with the same mass 28 are the main component of the remaining 38% of this ion beam. In the case of the use of CCl4 vapour as ion source gas and magnetic field mass analysis set for mass 35, a pure Cl+ beam is observed; there are no other ions of mass 35 that can be formed from the source gas. The same system when used with water vapour as a source gas can produce pure ion beams of O+ and/or H+ ions without adverse effects produced in the ion source by oxygen gas (oxidation) or typical safety problems with a hydrogen gas supply (explosive)

  3. Al+ beam generation by means of the pencil type thermoemission ion source

    International Nuclear Information System (INIS)

    A new type of source is described for long-lasting, continuous, stable emission of ions produced directly in the contact area of a pencil-shaped sample with the thermoanode. Previous studies concern the emission of alkali-metal ions, e.g. K+ from a monocrystalline KCl sample on a tungsten surface. This source is applied for generation of Al+ beam aiming at its application in ion implantation. (author)

  4. Steering of high energy negative ion beam and design of beam focusing/deflection compensation for JT-60U large negative ion source

    International Nuclear Information System (INIS)

    A large negative ion source for JT-60U produces high current ion beam from a wide extraction area of 45 cm x 110 cm. On the other hand, a cross-sectional area of the negative ion based neutral beam (NNB) injection port on JT-60U is narrow, about 50 cm x 60 cm. In order to inject the neutral beam at a high geometric efficiency, i.e. to suppress beam loss in the beamline, it is necessary to steer the beam for both compensation of undesirable beam deflection in extractor and focusing of the beam. For the JT-60U, two methods are provided for the required beam steering. Among them the results of beam steering experiment by aperture displacement and the design study are summarized in the present report. The experiment was carried out with 400 keV negative ion source, which has the three stage accelerator of similar structure as the JT-60U ion source, at Negative Ion Acceleration Test Stand (NIAS). High energy negative ion beams of the same perveance as that of 500 keV full power operation of the JT-60U ion source were steered with displacement of electron suppression grid and grounded grid for the beam deflection compensation and the focusing. The experimental results of the high energy beam steering are discussed based on the thin lens theory. Then the aperture arrangement of electron suppression grid and grounded grid are designed for the large negative ion source of JT-60U NNB injector. (author)

  5. Steering of high energy negative ion beam and design of beam focusing/deflection compensation for JT-60U large negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Takashi [Department of ITER Project, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Miyamoto, Kenji; Okumura, Yoshikazu; Watanabe, Kazuhiro [Department of Nuclear Fusion Engineering, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Nagase, Akihito [Hitachi Ltd., Tokyo (Japan)

    2000-03-01

    A large negative ion source for JT-60U produces high current ion beam from a wide extraction area of 45 cm x 110 cm. On the other hand, a cross-sectional area of the negative ion based neutral beam (NNB) injection port on JT-60U is narrow, about 50 cm x 60 cm. In order to inject the neutral beam at a high geometric efficiency, i.e. to suppress beam loss in the beamline, it is necessary to steer the beam for both compensation of undesirable beam deflection in extractor and focusing of the beam. For the JT-60U, two methods are provided for the required beam steering. Among them the results of beam steering experiment by aperture displacement and the design study are summarized in the present report. The experiment was carried out with 400 keV negative ion source, which has the three stage accelerator of similar structure as the JT-60U ion source, at Negative Ion Acceleration Test Stand (NIAS). High energy negative ion beams of the same perveance as that of 500 keV full power operation of the JT-60U ion source were steered with displacement of electron suppression grid and grounded grid for the beam deflection compensation and the focusing. The experimental results of the high energy beam steering are discussed based on the thin lens theory. Then the aperture arrangement of electron suppression grid and grounded grid are designed for the large negative ion source of JT-60U NNB injector. (author)

  6. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    Science.gov (United States)

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented. PMID:26931949

  7. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    Science.gov (United States)

    Thomae, R.; Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F.; Kuechler, D.; Toivanen, V.

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  8. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    Energy Technology Data Exchange (ETDEWEB)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Kuechler, D.; Toivanen, V. [CERN, BE/ABP/HSL, 1211 Geneva 23 (Switzerland)

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  9. High-intensity ion sources for accelerators with emphasis on H- beam formation and transport (invited)

    International Nuclear Information System (INIS)

    This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as dc discharge-driven and rf-driven multicusp sources, Penning-type, and electron cyclotron resonance-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber, and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed, ionization mechanism, beam formation, and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

  10. Laser ion source: A direct plasma injection scheme for two-beam type interdigital-H radio frequency quadrupole linac

    International Nuclear Information System (INIS)

    We developed a laser ion source using a direct plasma injection scheme (DPIS) as an injection system for a two-beam type radio frequency quadrupole (RFQ) linac with an interdigital-H (IH) type cavity. The laser ion source in the DPIS is directly connected to the RFQ cavity without the low energy beam transport system. We achieved a high current C2+ beam above 60 mA per beam channel from the ion source. The beam will be injected to the two-beam type IH-RFQ linac, and the linac will generate a beam current of approximately 44 mA per beam channel.

  11. Bright focused ion beam sources based on laser-cooled atoms

    Science.gov (United States)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-03-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

  12. Simulation of the CERN GTS-LHC ECR ion source extraction system with lead and argon ion beams

    CERN Document Server

    Toivanen, V; Küchler, D; Lombardi, A; Scrivens, R; Stafford-Haworth, J

    2014-01-01

    A comprehensive study of beam formation and beam transport has been initiated in order to improve the performance of the CERN heavy ion injector, Linac3. As part of this study, the ion beam extraction system of the CERN GTS-LHC 14.5 GHz Electron Cyclotron Resonance Ion Source (ECRIS) has been modelled with the ion optical code IBSimu. The simulations predict self-consistently the triangular and hollow beam structures which are often observed experimentally with ECRIS ion beams. The model is used to investigate the performance of the current extraction system and provides a basis for possible future improvements. In addition, the extraction simulation provides a more realistic representation of the initial beam properties for the beam transport simulations, which aim to identify the performance bottle necks along the Linac3 low energy beam transport. The results of beam extraction simulations with Pb and Ar ion beams from the GTS-LHC will be presented and compared with experimental observations.

  13. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    Science.gov (United States)

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications. PMID:26931978

  14. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    International Nuclear Information System (INIS)

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 1013 W cm−2 in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications

  15. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Science.gov (United States)

    Zhao, H. Y.; Zhang, J. J.; Jin, Q. Y.; Liu, W.; Wang, G. C.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 1013 W cm-2 in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  16. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Jin, Q. Y.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, W.; Wang, G. C. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10{sup 13} W cm{sup −2} in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  17. Proton beam production by a laser ion source with hydride target

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M., E-mail: okamura@bnl.gov [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Stifler, C. [Engineering Physics Systems Department, Providence College, Providence, Rhode Island 02918 (United States); Palm, K. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Steski, D.; Kanesue, T. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa (Japan); Kumaki, M. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo (Japan)

    2016-02-15

    We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam.

  18. Proton beam production by a laser ion source with hydride target

    International Nuclear Information System (INIS)

    We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam

  19. Preliminary Simulation of Beam Extraction for the 28 GHz ECR Ion Source

    OpenAIRE

    Park, Bum-Sik; Kim, Yonghwan; Choi, Seokjin

    2015-01-01

    The 28 GHz ECR(Electron Cyclotron Resonance) ion source is under development to supply various beams from proton to uranium at RISP(Rare Isotope Science Project). The superconducting magnet system for a 28 GHz ECR ion source consists of four solenoid coils and a saddle type sextupole. To meet the design requirement of ECR ion source, a numerical simulation was accomplished by using the KOBRA3-INP to optimize the extraction system which is the three dimensional ion optics code. The influence o...

  20. Bright focused ion beam sources based on laser-cooled atoms

    CERN Document Server

    McClelland, J J; Knuffman, B; Twedt, K A; Schwarzkopf, A; Wilson, T M

    2015-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 uK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Never...

  1. Development of an ion source for long-pulse (30-s) neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Menon, M.M.; Barber, G.C.; Blue, C.W.; Dagenhart, W.K.; Gardner, W.L.; Haselton, H.H.; Moeller, J.A.; Ponte, N.S.; Ryan, P.M.; Schecter, D.E.

    1982-01-01

    This paper describes the development of a long-pulse positive ion source that has been designed to provide high brightness deuterium beams (divergence approx. = 0.25/sup 0/ rms, current density approx. = 0.15 A cm/sup -2/) of 40 to 45 A, at a beam energy of 80 keV, for pulse lengths up to 30 s. The design and construction of the ion source components are described with particular emphasis placed on the long-pulse cathode assembly and ion accelerator.

  2. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    Science.gov (United States)

    Liu, N.; Xu, X.; Pang, R.; Santhana Raman, P.; Khursheed, A.; van Kan, J. A.

    2016-02-01

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.

  3. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    International Nuclear Information System (INIS)

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators

  4. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, N.; Santhana Raman, P. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Xu, X.; Pang, R.; Kan, J. A. van, E-mail: phyjavk@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Khursheed, A. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

    2016-02-15

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.

  5. High-current pulse sources of broad beams of gas and metal ions for surface treatment

    International Nuclear Information System (INIS)

    This paper reviews the experimental study, development, and improvement of various types of processing ion sources undertaken in association with the joint program performed in recent years by the Institute of Electrophysics and the Institute of High-Current Electronics of the Russian Academy of Sciences. The beam parameters (type and energy of ions, current density, cross-sectional area of the beam, permissible content of impurities, etc.) should meet the requirements of particular ion beam treatment conditions, while the ion source itself should be simple and reliable in operation. Technical and service characteristics of the developed ion sources permit their use for ion-beam modification of materials, preparation of surfaces and ion-assisted deposition of thin films, and in some other applications. The sources under consideration employ high-current glow discharges with a hollow cathode or in crossed electric and magnetic fields, and low-pressure arc discharges and vacuum arc. Cold cathodes enhance reliability of the ion sources when they work at a high residual gas pressure or in the reactive gas media. The repetitive pulse mode of the plasma and beam generation provides optimum conditions for stable operation of the discharge, control of the average beam current over a wide range, and formation of homogeneous large-cross-section beams. The paper describes techniques used to realize high-current discharges at a reduced pressure, methods for producing a stable, dense and homogeneous plasma in a large volume, techniques of formation of large-cross-section homogeneous beams, and also findings on the mass-charge composition of the plasma and beams produced. Some design versions of the sources are given. At voltages from 10 to 100 kV, the pulse duration of 10 to 1000 μs, and the pulse repetition rate of 1 to 500 Hz these sources provide the current density of ∼1-10 mA/cm2 in beams having the cross-sectional area of a few hundreds of square centimeters. The

  6. High-resolution spectral analysis of light from neutral beams and ion source plasmas

    International Nuclear Information System (INIS)

    The spectral distributions of Balmer alpha emission from 7- and 22-cm-diam neutral hydrogen beams have been measured with a Fabry-Perot interferometer to obtain information on the beam energy, divergence, and species composition. Results of these measurements are compared with other data on the beam properties to evaluate high-resolution spectroscopy as a beam diagnostic technique. Measurements on ion source plasmas and on beam-produced background plasmas yield average neutral atom energies of approximately 0.3 and 2.5 eV, respectively

  7. Production of low axial energy spread ion beams with multicusp sources

    International Nuclear Information System (INIS)

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as: ion projection lithography (IPL) and focused ion beams for the next generation lithographic tools and nuclear science experiments such as radioactive ion beam production. The axial ion energy spread for multicusp source is approximately 6 eV which is too large for IPL and radioactive ion beam applications. The addition of a magnetic filter which consists of a pair of permanent magnets to the multicusp source reduces the energy spread considerably. The reduction is due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. Axial ion energy spread of the filament driven ion source has been measured using three different techniques. In all cases, it was found to be less than 2 eV. Energy spread of the radio frequency (RF) driven source has also been explored, and it was found to be less than 3 eV with the proper RF-shielding. A new multicusp source configuration has been designed and constructed to further reduce the energy spread. To achieve a more uniform axial plasma potential distribution, a cylindrical magnetic filter has been designed and constructed for a 2-cm-diameter source. This new source configuration, the co-axial source, is new in its kind. The energy spread in this source has been measured to be a record low of 0.6 eV. Because of the novelty of this device, some plasma parameters inside the source have been studied. Langmuir probe has been used to measure the plasma potential, the electron temperature and the density distribution

  8. Characterization of an ion beam produced by extraction and acceleration of ions from a wire plasma source

    International Nuclear Information System (INIS)

    In this study we first model a DC low pressure wire plasma source and then characterize the properties of an ion gun derived from the plasma source. In order to study the properties of the derived ion gun, we develop a particle-in-cell code fitted to the modelling of the wire plasma source operation, and validate it by confrontation with the results of an experimental study. In light of the simulation results, an analysis of the wire discharge in terms of a collisional Child-Langmuir ion flow in cylindrical geometry is proposed. We interpret the mode transition as a natural reorganization of the discharge when the current is increased above a threshold value which is a function of the discharge voltage, the pressure and the inter-electrodes distance. In addition, the analysis of the energy distribution function of ions impacting the cathode demonstrates the ability to extract an ion beam of low energy spread around the discharge voltage assuming that the discharge is operated in its high pressure mode. An ion source prototype allowing the extraction and acceleration of ions from the wire source is then proposed. The experimental study of such a device confirms that, apart from a shift corresponding to the accelerating voltage, the acceleration scheme does not spread the ion velocity distribution function along the axis of the beam. It is therefore possible to produce tunable energy (0 - 5 keV) ion beams of various ionic species presenting limited energy dispersion ( 10 eV). The typical beam currents are about a few tens of micro-amperes, and the divergence of such a beam is on the order of one degree. A numerical modelling of the ion source is eventually conducted in order to identify potential optimizations of the concept. (author)

  9. Generation of tubular beams of negative hydrogen ions by a surface plasma source

    International Nuclear Information System (INIS)

    The results of experiments on obtaining a tubular beam of hydrogen negative ions from a surface plasma source with emission ring slit of 100 mm diameter are described in the study. Conditions of burning of a high current ring discharge generating effectively hydrogen negative ions with current density up to 2.1 A/cm2 are investigated. The possibility of generation of intensive tubular beams of hydrogen negative ions by surface plasma sources is shown, the 2.4 A ion beam is obtained. The results of preliminary experiments on accelerating tubular beam up to 135 keV are described. Azymuthally uniform current density distribution of intensive tubular beams generated by discharges with a close electron drift in a surface plasma source with emission ring slit, absence of high-frequency oscillations in optimal conditions of sources operation as well as the possibility of the most complete use of generated by the discharge negative ions flow show the prospects of development of these sources for fast atom injectors

  10. Preliminary Simulation of Beam Extraction for the 28 GHz ECR Ion Source

    CERN Document Server

    Park, Bum-Sik; Choi, Seokjin

    2015-01-01

    The 28 GHz ECR(Electron Cyclotron Resonance) ion source is under development to supply various beams from proton to uranium at RISP(Rare Isotope Science Project). The superconducting magnet system for a 28 GHz ECR ion source consists of four solenoid coils and a saddle type sextupole. To meet the design requirement of ECR ion source, a numerical simulation was accomplished by using the KOBRA3-INP to optimize the extraction system which is the three dimensional ion optics code. The influence of the three dimensional magnetic field and the space charge effect was considered to extract the highly charged ion beam. In this paper, the design results of the extraction system were reported in detail.

  11. Production of low-Z ions in the Dresden superconducting electron ion beam source for medical particle therapy

    International Nuclear Information System (INIS)

    We report on experiments with a new superconducting electron beam ion source (EBIS-SC), the Dresden EBIS-SC, with the objective to meet the main requirements for their application in particle-therapy facilities. Synchrotrons as well as innovative accelerator concepts, such as high-gradient linacs which are driven by a large-current cyclotron (CYCLINACS) and direct drive RF linear accelerators may benefit from the advantages of EBISs in regard to their functional principle. First experimental studies of the production of low-Z ions such as H+, H2+, H3+, C4+, and C6+ are presented. Particular attention is paid to the ion output, i.e., the number of ions per pulse and per second, respectively. Important beam parameters in this context are, among others, ion pulse shaping, pulse repetition rates, beam emittance, and ion energy spread.

  12. Performance of the H- Ion Source Supporting 1-MW Beam Operations at SNS

    International Nuclear Information System (INIS)

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory reached 1-MW of beam power in September 2009, and now routinely operates near 1-MW for the production of neutrons. This paper reviews the performance, operational issues, implemented and planned mitigations of the SNS H- ion source to support such high power-level beams with high availability. Some results from R and D activities are also briefly described.

  13. Intense beams from gases generated by a permanent magnet ECR ion source at PKU.

    Science.gov (United States)

    Ren, H T; Peng, S X; Lu, P N; Yan, S; Zhou, Q F; Zhao, J; Yuan, Z X; Guo, Z Y; Chen, J E

    2012-02-01

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O(+), H(+), and D(+) to N(+), Ar(+), and He(+). Up to now, about 120 mA of H(+), 83 mA of D(+), 50 mA of O(+), 63 mA of N(+), 70 mA of Ar(+), and 65 mA of He(+) extracted at 50 kV through a φ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π mm mrad. Tungsten samples were irradiated by H(+) or He(+) beam extracted from this ion source and H∕He holes and bubbles have been observed on the samples. A method to produce a high intensity H∕He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He(+) beam injector for coupled radio frequency quadruple and SFRFQ cavity, He(+) beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He(+) beam. PMID:22380337

  14. Intense beams from gases generated by a permanent magnet ECR ion source at PKU

    Energy Technology Data Exchange (ETDEWEB)

    Ren, H. T.; Chen, J. E. [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Peng, S. X.; Lu, P. N.; Yan, S.; Zhou, Q. F.; Zhao, J.; Yuan, Z. X.; Guo, Z. Y. [SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2012-02-15

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O{sup +}, H{sup +}, and D{sup +} to N{sup +}, Ar{sup +}, and He{sup +}. Up to now, about 120 mA of H{sup +}, 83 mA of D{sup +}, 50 mA of O{sup +}, 63 mA of N{sup +}, 70 mA of Ar{sup +}, and 65 mA of He{sup +} extracted at 50 kV through a {phi} 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 {pi} mm mrad. Tungsten samples were irradiated by H{sup +} or He{sup +} beam extracted from this ion source and H/He holes and bubbles have been observed on the samples. A method to produce a high intensity H/He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He{sup +} beam injector for coupled radio frequency quadruple and SFRFQ cavity, He{sup +} beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He{sup +} beam.

  15. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    International Nuclear Information System (INIS)

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed

  16. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    CERN Document Server

    Panteleev, V N; Barzakh, A E; Fedorov, D V; Ivanov, V S; Moroz, F V; Orlov, S Y; Seliverstov, D M; Stroe, L; Tecchio, L B; Volkov, Y M

    2003-01-01

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed.

  17. Operating characteristics of a new ion source for KSTAR neutral beam injection system.

    Science.gov (United States)

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-01

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable. PMID:24593588

  18. 12th International Symposium on Electron Beam Ion Sources and Traps and Their Applications

    CERN Document Server

    Schwarz, Stefan; Baumann, Thomas M

    2014-01-01

    The EBIST symposia date back to 1977 and have taken place every 3 to 4 years to specifically discuss progress and exchange ideas in the design, development, applications of electron beam ion sources and traps, and the physics with highly charged ions. The topics to be covered in 2014 are: - Progress and status of EBIS/T facilities, - Atomic spectroscopy of highly charged ions, - Charge-exchange and surface interaction with highly charged ions, - Charge breeding of stable and radioactive isotopes, - Nuclear physics with highly charged ions.

  19. Status of ECR ion sources for the Facility for Rare Isotope Beams (FRIB) (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Machicoane, Guillaume, E-mail: machicoane@frib.msu.edu; Morgan, Glenn; Pozdeyev, Eduard; Rao, Xing; Ren, Haitao [Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824 (United States); Felice, Helene; Hafalia, Ray; Pan, Heng; Prestemon, Soren [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fogleman, Jesse; Tobos, Larry [National Superconducting Cyclotron Laboratory, Michigan State University, 640 South Shaw Lane, East Lansing, Michigan 48824 (United States)

    2016-02-15

    Ahead of the commissioning schedule, installation of the first Electron Cyclotron Resonance (ECR) ion source in the front end area of the Facility for Rare Isotope Beam (FRIB) is planned for the end of 2015. Operating at 14 GHz, this first ECR will be used for the commissioning and initial operation of the facility. In parallel, a superconducting magnet structure compatible with operation at 28 GHz for a new ECR ion source is in development at Lawrence Berkeley National Laboratory. The paper reviews the overall work in progress and development done with ECR ion sources for FRIB.

  20. Status of ECR ion sources for the Facility for Rare Isotope Beams (FRIB) (invited).

    Science.gov (United States)

    Machicoane, Guillaume; Felice, Helene; Fogleman, Jesse; Hafalia, Ray; Morgan, Glenn; Pan, Heng; Prestemon, Soren; Pozdeyev, Eduard; Rao, Xing; Ren, Haitao; Tobos, Larry

    2016-02-01

    Ahead of the commissioning schedule, installation of the first Electron Cyclotron Resonance (ECR) ion source in the front end area of the Facility for Rare Isotope Beam (FRIB) is planned for the end of 2015. Operating at 14 GHz, this first ECR will be used for the commissioning and initial operation of the facility. In parallel, a superconducting magnet structure compatible with operation at 28 GHz for a new ECR ion source is in development at Lawrence Berkeley National Laboratory. The paper reviews the overall work in progress and development done with ECR ion sources for FRIB. PMID:26931961

  1. Long pulse H- beam extraction with a rf driven ion source on a high power level

    International Nuclear Information System (INIS)

    IPP Garching is investigating the applicability of rf driven negative ion sources for the neutral beam injection of International Thermonuclear Experimental Reactor. The setup of the tested source was improved to enable long pulses up to 100 kW rf power. The efficiency of negative ion production decreases at high power. The extracted H- currents as well as the symmetry of the plasma density close to the plasma grid and of the beam divergence depend on the magnetic filter field. The pulse duration is limited by the increase in coextracted electrons, which depends on the rf power and the caesium conditions on the plasma grid.

  2. Cluster ion beam evaporation

    International Nuclear Information System (INIS)

    Cluster ions can be made by the supercooling due to adiabatic expansion of substances to be vaporized which are ejected from a nozzle. This paper is described on the recent progress of studies concerning the cluster beam. The technique of cluster ion beam has been applied for the studies of thermonuclear plasma, the fabrication of thin films, crystal growth and electronic devices. The density of cluster ion beam is larger than that of atomic ion beam, and the formation of thin films can be easily done in high vacuum. This method is also useful for epitaxial growth. Metallic vapour cluster beam was made by the help of jetting rare gas beam. Various beam sources were developed. The characteristics of these sources were measured and analyzed. (Kato, T.)

  3. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, P., E-mail: pradipr@barc.gov.in; Mishra, L.; Kewlani, H.; Mittal, K. C. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patil, D. S. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  4. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    International Nuclear Information System (INIS)

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10−3 mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source

  5. Optical photography of the magnetically confined anode plasma source for repetitive intense ion beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.J.; Crawford, M.T.; Maenchen, J.E. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    Time resolved photographs of the visible light from the Magnetically Confined Anode Plasma (MAP) source for Ion Beam Surface Treatment (IBEST) are presented. The MAP source utilizes a fast (2 {micro}s rise time) magnetic field to create a plasma in a radially injected disc shaped gas puff and subsequently inject this plasma into the accelerating gap of a 10-cm-radius high power pulsed extraction ion diode. The 600 kV, 10 kA, 100 ns duration pulse for the beam is generated by a marx generator, cable feed, and linear induction voltage adder. The application of this technology is the generation of repetitively pulsed ion beams for government and industrial treatment of metal and polymer surfaces.

  6. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Küchler, D. [European Organization for Nuclear Research (CERN), 1211 Geneva 23 (Switzerland)

    2016-02-15

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  7. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    International Nuclear Information System (INIS)

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work

  8. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work. PMID:26932095

  9. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    Science.gov (United States)

    Toivanen, V.; Küchler, D.

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  10. Beam extraction from a laser-driven multicharged ion source (abstract)

    International Nuclear Information System (INIS)

    A newly proposed type of multicharged ion source has several potential advantages over existing types and a number of useful applications. The basic principle is that multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity (Ref. 1). Thus, charge state separation downstream is simplified or made unnecessary. Another advantage is that large currents (hundreds of amperes) can be extracted. This type of source could be used for heavy-ion fusion drivers (see Ref. 1) or storage rings. There are also industrial application such as materials processing. We describe conceptual design studies for several specific cases. For example, we discuss extraction and focusing of a 4.1 MV, 144 A beam of Xe16+ ions from an expanding plasma created by an intense laser. The maximum duration of the beam pulse is determined by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The initially diverging beam can be refocused to a small radius or made parallel by a combination of electrostatic and solenoid focusing. Our design studies are carried out first with an envelope code to determine the proper focusing parameters and then with a self-consistent particle code to optimize the beam quality. We present results from both codes and discuss several applications of this type of ion source.copyright 1998 American Institute of Physics

  11. Beam extraction from a laser-driven multicharged ion source (abstract)

    Science.gov (United States)

    Anderson, O. A.; Logan, B. Grant

    1998-02-01

    A newly proposed type of multicharged ion source has several potential advantages over existing types and a number of useful applications. The basic principle is that multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity (Ref. Reference 1). Thus, charge state separation downstream is simplified or made unnecessary. Another advantage is that large currents (hundreds of amperes) can be extracted. This type of source could be used for heavy-ion fusion drivers (see Ref. Reference 1) or storage rings. There are also industrial application such as materials processing. We describe conceptual design studies for several specific cases. For example, we discuss extraction and focusing of a 4.1 MV, 144 A beam of Xe16+ ions from an expanding plasma created by an intense laser. The maximum duration of the beam pulse is determined by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The initially diverging beam can be refocused to a small radius or made parallel by a combination of electrostatic and solenoid focusing. Our design studies are carried out first with an envelope code to determine the proper focusing parameters and then with a self-consistent particle code to optimize the beam quality. We present results from both codes and discuss several applications of this type of ion source.

  12. High current H- ion sources for the large helical device neutral beam injector

    Science.gov (United States)

    Oka, Y.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Osakabe, M.; Asano, E.; Kawamoto, T.; Akiyama, R.

    1998-02-01

    Two large helical device-neutral beam injector (LHD-NBI) ion sources were fabricated and tested in the test stand for producing a beam of 180 keV×40 A with H- ions. They are Cesiated multicusp ion sources with a rectangular discharge chamber and a single stage multihole accelerator. These are scaled up from the 16 A H- ion sources in the National Institute for Fusion Science (NIFS). A plasma source with a high aspect ratio was operated stably with an arc power up to ˜300 kW for 10 s, after balancing of the electron emission from the filaments was made. A satisfactorily dense and uniform plasma without mode flip was produced. Electrons accompanied by H- ions were reduced by an extraction grid with the electron trap, instead of straight holes. The electron beam component caused by the stripping of electrons from H- ions was detected with an array of calorimeters at the bottom of the connecting duct. At the first stage of the test, one of the five segment grids of the accelerator was installed. An H- ion current of 5.5 A with a current density of 27.5 mA/cm2 for 0.6 s was obtained with an arc power of 135 kW with Cs introduction. A high arc power efficiency for H- ions was observed. The intense cusp field is considered to be the important factor to improve this. The beam divergence angle at 10.4 m downstream was ˜10 mrad. Since these results satisfied our design, a full segment accelerator was tested in the next stage. Beam conditioning for five segment grids is underway. So far, an H- current of 21.0 A has been obtained at 106 keV for 0.6 s. As a result, we had good prospects for achieving the full specification of LHD-NBI ion sources, especially for achieving higher current and focused beam as well as for long pulse. The neutral beam injection experiment for the LHD is scheduled to start in the middle of 1998.

  13. Status report on the Stockholm cryogenic electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Liljeby, L.; Engstroem, A. (Manne Siegbahn Institute, S-104 05 Stockholm, Sweden (SE))

    1989-06-01

    The EBIS project in stockholm started as a collaboration between MSI and IPN in Orsay, France. Two almost identical cryogenic EBIS sources were constructed at IPN: CRYEBIS II for IPN and CRYSIS for MSI. The main difference between the two sources was that CRYEBIS II was equipped with a 50 keV electron gun as compared to 10 keV for CRYSIS. Both sources were planned to be dedicated to atomic physics experiments but during the construction plans to use CRYSIS as an injector for a storage ring evolved. Both source were completed in the beginning of 1984 and after initial tests, CRYSIS was moved to MSI in December 1984 and installed in a temporary laboratory.

  14. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    International Nuclear Information System (INIS)

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems

  15. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W.; Fantz, U.; Heinemann, B.; Franzen, P.

    2015-02-15

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems.

  16. Characterization of a metastable neon beam extracted from a commercial RF ion source

    International Nuclear Information System (INIS)

    We have used a commercial RF ion-source to extract a beam of metastable neon atoms. The source was easily incorporated into our existing system and was operative within a day of installation. The metastable velocity distribution, flux, flow, and efficiency were investigated for different RF powers and pressures, and an optimum was found at a flux density of 2 × 1012 atoms/s/sr. To obtain an accurate measurement of the amount of metastable atoms leaving the source, we insert a Faraday cup in the beam line and quench some of them using a weak 633 nm laser beam. In order to determine how much of the beam was quenched before reaching our detector, we devised a simple model for the quenching transition and investigated it for different laser powers. This detection method can be easily adapted to other noble gas atoms

  17. Characterization of a metastable neon beam extracted from a commercial RF ion source

    CERN Document Server

    Ohayon, B; Ron, G

    2015-01-01

    We have used a commercial RF ion-source to extract a beam of metastable neon atoms. The source was easily incorporated into our existing system and was operative within a day of installation. The metastable velocity distribution, flux, flow, and efficiency were investigated for different RF powers and pressures, and an optimum was found at a flux density of $2\\times10^{12}\\,$atoms/s/sr. To obtain an accurate measurement of the amount of metastable atoms leaving the source, we insert a Faraday cup in the beam line and quench some of them using a weak $633\\,$nm laser beam. In order to determine how much of the beam was quenched before reaching our detector, we devised a simple model for the quenching transition and investigated it for different laser powers. This detection method can be easily adapted to other noble gas atoms.

  18. Prudction of low energy high intensity metal ion beams by means of a laser ion source

    Czech Academy of Sciences Publication Activity Database

    Gammino, S.; Torrisi, L.; Andó, L.; Ciavola, G.; Celona, L.; Láska, Leoš; Krása, Josef; Pfeifer, Miroslav; Rohlena, Karel; Woryna, E.; Wolowski, J.; Parys, P.; Shirkov, G. D.

    2002-01-01

    Roč. 73, č. 2 (2002), s. 650-653. ISSN 0034-6748 R&D Projects: GA AV ČR IAA1010105 Grant ostatní: KBN(PL) 5 P03B 108 20 Institutional research plan: CEZ:AV0Z1010921 Keywords : ECLISSE project * laser ion source * electron cyclotron resonance ion source Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.437, year: 2002

  19. Production of intense highly charged ion beams by IMP 14.5 GHz electron cyclotron resonance ion source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new 14.5 GHz Electron Cyclotron Resonance (ECR) ion source has been constructed over the last two years. The source was designed and tested by making use of the latest results from ECR ion source development, such as high mirror magnetic field, large plasma volume, and biased probe. 140μA of O7+, 185μA of Ar11+ and 50 μA of Xe26+ could be produced with a RF power of 800 W. The intense beams of highly charged metallic ions are produced by means of the method of a metal evaporation oven and volatile compound through axial access. The test results are 130μA of Ca11+, 70μA of Ca12+ and 65μA of Fe10+. The ion source has been put into operation for the cyclotron at the Institute of Modern Physics (IMP).

  20. REXEBIS the Electron Beam Ion Source for the REX-ISOLDE project

    CERN Document Server

    Wenander, F; Liljeby, L; Nyman, G H

    1998-01-01

    The REXEBIS is an Electron Beam Ion Source (EBIS) developed especially to trap and further ionise the sometimes rare and short-lived isotopes that are produced in the ISOLDE separator for the Radioactive beam EXperiment at ISOLDE (REX-ISOLDE). By promoting the single-charged ions to a high charge-state the ions are more efficiently accelerated in the following linear accelerator. The EBIS uses an electron gun capable of producing a 0.5 A electron beam. The electron gun is immersed in a magnetic field of 0.2 T, and the electron beam is compressed to a current density of >200 A/cm2 inside a 2 T superconducting solenoid. The EBIS is situated on a high voltage (HV) platform with an initial electric potential of 60 kV allowing cooled and bunched 60 keV ions extracted from a Penning trap to be captured. After a period of confinement in the electron beam (<20 ms), the single-charged ions have been ionised to a charge-to-mass ratio of approximately ¼. During this confinement period, the platform potential is decr...

  1. Beam extractions of a prototype long pulse ion source for the KSTAR NBI system

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Doo Hee; Seo, Chang Seok; Jun, Yong Woo; Oh, Byung Hoon; Jeong, Seung Ho; Lee, Kwang Won; In, Sang Ryul; Kim, Jin Choon [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    Preliminary beam extraction experiments of a prototype long pulse (300 s) ion source were carried out on the NBI Test Stand for the KSTAR. The prototype ion source consists of a magnet bucket plasma generator with multi-pole cusp fields, similar to the US LPIS, and a set of tetrode accelerator with circular apertures. Arc discharges of the plasma generator have been controlled precisely by both a space-charge-limited mode and an emission-limited mode. The emission-limited operation, well controlled by the applied heating voltage of cathode filaments, of plasma generator resulted in more efficient and stable discharges than the space-charge- limited mode. An optimum arc efficiency of 0.33 A/kW and maximum ion density of 8310{sup 11} cm{sup -3} were obtained by using a Langmuir probe. Optimum beam perveance of the prototype ion source, which was deduced from the ratio of gradient grid current to the beam current, was 0.52. The preliminary beam extraction results obtained at {<=} 41 kV appear less than the expected.

  2. Studies on space charge neutralization and emittance measurement of beam from microwave ion source

    International Nuclear Information System (INIS)

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results

  3. Design considerations for a negative ion source for dc operation of high-power, multi-megaelectron-volt neutral beams

    International Nuclear Information System (INIS)

    A dc negative hydrogen and/or deuterium ion source is needed to prouce high-power, high-energy neutral beams for alpha diagnostics and current drive applicatiosn in fusion devices. The favorable beam particle energy for such applications extends to 1.5 MeV/amu. Continuous-wave (cw) radio-frequency quadrupole (RFQ) accelerators have been proposed to accelerate negative ions effeciently to this energy range. In this paper, the desired beam properties for ion beams injected into cw RFQ accelerators are summariezed. A number of candidate ion sources being developed at Culham, JAERI, LBL, and ORNL may prove useful for these applications. The properties of the Volume Ionization with Transverse Extraction (VITEX) ion sources being developed at ORNL are presented. Scaling such a dc ion source to produce ampere beams is discussed. 53 refs., 4 figs., 2 tabs

  4. Note: Production of a mercury beam with an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    An electron cyclotron resonance ion source has been utilized to produce mercury beams with intensities of 4.5 eμA of 202Hg29+ and 3.0 eμA of 202Hg31+ from natural abundance mercury metal. The production technique relies on the evaporation of liquid mercury into the source plasma vacuum region and utilizes elemental mercury instead of a volatile organic compound as the neutral feed material

  5. Studies of aerosol particle formation from various sources using ion and electron beam analytical techniques.

    OpenAIRE

    Gharibi, Arash

    2006-01-01

    The thesis presents the results of studies of aerosol particle formation using ion and electron beam analytical techniques. The sources of aerosol particle formation studied are the following: 1. production of primary aerosol particles in the high Arctic region during summers 2. emission of ultrafine aerosol particles from wear on the road-tire interface 3. emission of aerosol particles from district heating units operating on three commonly-used biofuels. A source...

  6. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  7. Development of microwave ion source and low energy beam transport system for high current cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, V.S., E-mail: pandit@vecc.gov.in; Sing Babu, P.; Goswami, A.; Srivastava, S.; Misra, A.; Chatterjee, Mou; Nabhiraj, P.Y.; Yadav, R.C.; Bhattacharya, S.; Roy, S.; Nandi, C.; Pal, G.; Thakur, S.K.

    2013-12-15

    A 2.45 GHz microwave ion source and a low energy beam transport system have been developed to study the high intensity proton beam injection into a 10 MeV, 5 mA compact cyclotron. We have extracted proton beam more than 10 mA at 80 kV as measured by the DCCT after the extraction and a well collimated beam of 7 mA (through 1 cm × 1 cm slit) at the faraday cup 1.5 m away from the source. The transport of protons from the ion source in the presence of H{sub 2}{sup +}, H{sub 3}{sup +} species has been studied using PIC simulations through our transport line which consists of two solenoids. We have also installed a small dipole magnet with similar field as that of the cyclotron along with vacuum chamber, spiral inflector and few diagnostic elements at the end of the beam line. In the preliminary testing of inflection, we achieved 1 mA beam on the faraday cup at the exit of inflector with ∼60% transmission efficiency.

  8. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  9. CW/Pulsed H− ion beam generation with PKU Cs-free 2.45 GHz microwave driven ion source

    International Nuclear Information System (INIS)

    Circular accelerators used for positron emission tomography (PET, i.e. accelerator used for make radio isotopes) need several mA of CW H- ion beam for their routine operation. Other facilities, like Space Radio-Environment Simulate Assembly (SPRESA), require less than 10 mA pulsed mode H− beam. Caesium free negative hydrogen ion source is a good choice for those facilities because of its compact structure, easy operation and low cost. Up to now, there is no H− source able to produce very intense H− beams with important variation of the duty factor[1]. Recently, a new version of 2.45 GHz microwave H− ion source was designed at PKU, based on lessons learnt from the previous one. This non cesiated source is very compact thanks to its permanent magnet configuration. Special attention was paid on the design of the discharge chamber structure, electron dumping and extraction system. Source test to produce H− ion beams in pulsed and CW mode was carried out on PKU ion source test bench. In CW mode, a 10.8 mA/30keV H− beam with rms emittance about 0.16 π·mm·mrad has been obtained with only 500 W rf power. The power efficiency reaches 21 mA/kW. In pulsed mode with duty factor of 10% (100Hz/1ms), this compact source can easily deliver 20 mA H− ion beam at 35 keV with rms emittance about 0.2 π·mm·mrad when RF power is set at 2.2 kW (peak power). Several hour successive running operation in both modes and totaling more than 200 hours proves its high quality. The outside dimension of this new H− source body is ϕ116 mm × 124 mm, and the entire H− source infrastructure, including rf matching section, plasma chamber and extraction system, is ϕ310 × 180 mm. The high voltage region is limited with in a ϕ310 mm × 230 mm diagram. Details are given in this paper

  10. CW/Pulsed H- ion beam generation with PKU Cs-free 2.45 GHz microwave driven ion source

    Science.gov (United States)

    Peng, S. X.; Ren, H. T.; Xu, Y.; Zhang, T.; Zhang, A. L.; Zhang, J. F.; Zhao, J.; Guo, Z. Y.; Chen, J. E.

    2015-04-01

    Circular accelerators used for positron emission tomography (PET, i.e. accelerator used for make radio isotopes) need several mA of CW H- ion beam for their routine operation. Other facilities, like Space Radio-Environment Simulate Assembly (SPRESA), require less than 10 mA pulsed mode H- beam. Caesium free negative hydrogen ion source is a good choice for those facilities because of its compact structure, easy operation and low cost. Up to now, there is no H- source able to produce very intense H- beams with important variation of the duty factor[1]. Recently, a new version of 2.45 GHz microwave H- ion source was designed at PKU, based on lessons learnt from the previous one. This non cesiated source is very compact thanks to its permanent magnet configuration. Special attention was paid on the design of the discharge chamber structure, electron dumping and extraction system. Source test to produce H- ion beams in pulsed and CW mode was carried out on PKU ion source test bench. In CW mode, a 10.8 mA/30keV H- beam with rms emittance about 0.16 π.mm.mrad has been obtained with only 500 W rf power. The power efficiency reaches 21 mA/kW. In pulsed mode with duty factor of 10% (100Hz/1ms), this compact source can easily deliver 20 mA H- ion beam at 35 keV with rms emittance about 0.2 π.mm.mrad when RF power is set at 2.2 kW (peak power). Several hour successive running operation in both modes and totaling more than 200 hours proves its high quality. The outside dimension of this new H- source body is ϕ116 mm × 124 mm, and the entire H- source infrastructure, including rf matching section, plasma chamber and extraction system, is ϕ310 × 180 mm. The high voltage region is limited with in a ϕ310 mm × 230 mm diagram. Details are given in this paper.

  11. Direct injection of intense heavy ion beams from a high performance ECR ion source into an RFQ

    International Nuclear Information System (INIS)

    Beam intensities achievable from high performance ECR sources for highly charged ions are limited by the high space charge. For high performance ECR sources, the stray magnetic field of the source can provide focusing against the space charge blow-up of the beam when used with the Direct Plasma Injection Scheme (DPIS) developed for laser ion sources. A combined extraction/matching system has been designed for direct injection into a radio frequency quadrupole (RFQ) accelerator, allowing a total beam current of 12 mA for the production of highly charged 238U40 +(0.49 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ionsource extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of the ion beam. The RFQ has been designed to suppress most of the charge states extracted from the ECR, acting as a filter for the desired 238U40+. This reduces the transport problem for the beam line as well as reduces the emittance for the transmitted charge states. Such an rfq-channel might be very effective and less q/m sensitive for the extraction system of all high performing ECR ion sources. This technique has promising applications for injecting and transporting very intense beams into RFQ accelerators for research, ADSS and more efficient, compact neutron generators. The accelerator driven sub-critical system (ADSS) being developed at various laboratories around the world to create nuclear energy may also benefit from this technique, both in terms of transporting intense beams of protons and making the low energy segment more compact. This RFQ is essentially a buncher configured as a charge filter, so RIB facilities can take advantage of this technique. The charge breeding concept can be utilised with a powerful ECR ion source directly coupled to this

  12. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, Ole; Ludewigt, Bernhard [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2011-11-15

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm{sup 2} have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material.

  13. Extraction and low energy beam transport from a surface ion source at the TRIUMF-ISAC facility

    Science.gov (United States)

    Sen, A.; Ames, F.; Bricault, P.; Lassen, J.; Laxdal, A.; Mjos, A.

    2016-06-01

    A large fraction of radioactive beams produced and delivered at TRIUMF's isotope separator and accelerator facility, ISAC, are using either a surface ion source or a resonant ionization laser ion source, which share a common design. To characterize the operation of the ion sources, simulations were performed to determine the ion beam optics and beam envelope properties of the extracted beam. Furthermore ion-optics calculations were performed to determine the transmission parameters through the mass separator magnet. Emittances are measured in the ISAC low energy beam line right after the mass separator. The recent addition of a channeltron to the Allison emittance meter scanner now allows us to measure emittances for ion beams with intensities as low as 105 ions/s. This is particularly useful for establishing high resolution, high throughput mass separator tunes for radioactive isotope beams. This paper discusses emittance measurements of low intensity beams, typical emittance scans for the surface ion source and the resonant laser ionized source for different source parameters. The observed results are compared to the simulations and discussed.

  14. Numerical simulation for the accelerator of the KSTAR neutral beam ion source

    International Nuclear Information System (INIS)

    Recent experiments with a prototype long-pulse, high-current ion source being developed for the neutral beam injection system of the Korea Superconducting Tokamak Advanced Research have shown that the accelerator grid assembly needs a further upgrade to achieve the final goal of 120keV/65A for the deuterium ion beam. The accelerator upgrade concept was determined theoretically by simulations using the IGUN code. The simulation study was focused on finding parameter sets that raise the optimum perveance as large as possible and reduce the beam divergence as low as possible. From the simulation results, it was concluded that it is possible to achieve this goal by sliming the plasma grid (G1), shortening the second gap (G2-G3), and adjusting the G2 voltage ratio.

  15. Development of semiconductor regulation of capacitor charge for a compact high power ion beam source

    International Nuclear Information System (INIS)

    A new power supplier for high power ion sources has been developed with using the Insulated-Gate Bipolar Transistor (IGBT) switching units, where the capacitor banks are employed as the electric power storage. This can make the supplier more compact and cheaper than that of usual beam sources, though the output is 10 ms order of duration. The designed maximum beam power is 1 MW for 10 ms and the repetition time is 5 min so as to avoid the heat problem of the electrodes. One switching unit consists of parallel and serial IGBT elements which can be simultaneously driven by a set of photo pulses via each optical fiber. The dummy local test gives the rise time 4 μs and the rear edge fall-down 125 μs on the switching speed of 44 IGBT elements with the applied voltage 25 keV. As for the power test of another switching unit of 26 IGBT elements and 15 kV voltage for the acceleration source the power of 650 kW is obtained in this circuit. Using the medium-size backet ion source constructed, the extracted ion beam power of 40 kW is attained at present. Also, the arcing control and the electrode aging are found to be sufficiently achieved by the inter-lock system in our developed circuit. (author)

  16. Production of beams from solid materials at Center for Nuclear Study electron cyclotron resonance ion source

    Science.gov (United States)

    Ohshiro, Y.; Yamaka, S.; Watanabe, S.; Kobayashi, K.; Kotaka, Y.; Nishimura, M.; Kase, M.; Muto, H.; Yamaguchi, H.; Shimoura, S.

    2014-02-01

    Two methods for the feed of vapor from solid materials in the Center for Nuclear Study ECR ion source are described. A rod placed near the wall of the plasma chamber, operating up to a melting point of 2600 °C, has been used for CaO, SiO2, and FeO. An oven with a number of openings, operating up to 800 °C, has been used for P2O5, Li, and S. Typical ion beam intensities of 7Li2+, 6Li3+, 40Ca12+, and 56Fe15+ are achieved 280, 75, 28, and 7 eμA, respectively. High intensity heavy ion beams are stably supplied into the azimuthally varying field cyclotron.

  17. Production of fully-stripped neon beam with the ECR ion source

    International Nuclear Information System (INIS)

    Complete text of publication follows. The ATOMKI ECRIS Laboratory celebrated the 20th anniversary of the project starting-up in 1992. Ion beams themselves are being delivered since 1996. The facility is used for low energy atomic physics research, plasma investigations and for applications. There is continuous necessity to increase the quality of the produced ion beams and plasmas in order to satisfy the diversified requirements. For example high intensity, highly charged neon ion beams with very low kinetic energy (several hundred eV/nucleon) are necessary to measure some aspect of the nowadays very intensively studied physics of nano-capillaries (guiding of highly charged ions through nanocapillaries). We were motivated to measure the intensity of a fully-stripped neon ion beam (at first time in Hungary) which is impossible with natural neon due to the (always) present molecular hydrogen ions (same charge - to- mass ratio). In order to overcome this difficulty it was decided to use isotopically enriched (99.95 %) 22Ne gas. The ECR ion source operated in standard mode. The plasma was tuned for the required charge state by changing parameters like the microwave power (klystron amplified), the biased electrode (voltage and position) and the neon-gas flow. The extraction voltage was 10 kV and the analysed beam was measured by a Faraday cup. The size of the beam was defined by (10 mm x 30 mm) slits. At first the charge state distribution (CSD) of the extracted ion beam was recorded using natural neon gas when the source was tuned for 20Ne8+ in order to get a benchmark for comparison. The natural neon gas abundances of 20Ne and 22Ne are 90.48 % and 9.25 %, respectively. By measuring the CSD of both isotopes in one setting we were able to observe (likely for the first time) the so-called isotopic anomaly, well known for nitrogen and oxygen, see figure 1. The CSD for the heavier isotope is shifted to higher charges at the cost of higher losses (output) for low charge

  18. A recipe to make zeolite ion source for plasma diagnostics beam

    International Nuclear Information System (INIS)

    A mathematical model is presented to describe replacement process to make zeolite containing a particular species of alkali ions for the beam source. The fraction of the alkali ions trapped in a zeolite lattice can be expressed as a function of the number of the times of substitution reaction in a concise recursion formula. The formula is used for a simple estimation of efficiency for making alkali zeolite in terms of time and cost. A rough comparison between the model and an experiment is presented. (author)

  19. Proceedings of the second symposium on ion sources and formation of iron beams

    International Nuclear Information System (INIS)

    The results are reported of a detailed study of the ion optical performance of the disk aperture extraction system with particular regard to establishing the differences between the performance of the simple aperture studied by Coupland et al. and that of an approximation to a design based on Pierce geometry. Measurements of beam perveance emittance and divergence from the two systems are presented. Some of the implications of this work are discussed with regard to high current multiaperture ion sources being developed for fusion research

  20. Production of multicharged radioactive ion beams for spiral: studies and realization of the first target-ion source system

    International Nuclear Information System (INIS)

    In the framework of the SPIRAL project, which concerns the production and the acceleration of a multicharged radioactive ions beam, the following part has been studied: production and ionization of the radioactive ions beam. A first target-source (nanogan II), devoted exclusively to the production of multicharged radioactive ions gas type beams, has been studied and tested. The diffusion efficiency has been deduced from the diffusion equations (Fick laws). This efficiency is governed by the following parameters: the temperature, the grains size of the target, the Arrhenius parameters and the radioactive period. Another study concerning the production targets is presented. It deals with the temperature distribution allowing an utilization of more than one month at a temperature of 2400 K. Another development (SPIRAL II) is devoted to the production of high neutron content radioactive atoms created by the uranium fission, from fast neutrons. The neutrons beam is produced by the ''stripping break-up'' of a deutons beam in a converter. (A.L.B.)

  1. Vacuum Arc Ion Sources

    OpenAIRE

    Brown, I.

    2014-01-01

    The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the sourc...

  2. Ion beam production with sub-milligram samples of material from an ECR source for AMS

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R., E-mail: scott@phy.anl.gov; Palchan-Hazan, T.; Pardo, R.; Vondrasek, R. [Argonne Tandem Linac Accelerator System (ATLAS), Argonne National Laboratory, Lemont, Illinois 60439 (United States); Bauder, W. [Argonne Tandem Linac Accelerator System (ATLAS), Argonne National Laboratory, Lemont, Illinois 60439 (United States); Nuclear Structure Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2016-02-15

    Current accelerator mass spectrometry experiments at the Argonne Tandem Linac Accelerator System facility at Argonne National Laboratory push us to improve the ion source performance with a large number of samples and a need to minimize cross contamination. These experiments can require the creation of ion beams from as little as a few micrograms of material. These low concentration samples push the limit of our current efficiency and stability capabilities of the electron cyclotron resonance ion source. A combination of laser ablation and sputtering techniques coupled with a newly modified multi-sample changer has been used to meet this demand. We will discuss performance, stability, and consumption rates as well as planned improvements.

  3. Beam Profile Measurement of 300 kV Ion Source Test Stand for 1 MV Electrostatic Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Gyeonju (Korea, Republic of); Kim, Dae-Il; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-10-15

    In this paper, RF ion source, test stand of the ion source and its test results are presented. Beam profile was measured at the downstream from the accelerating tube and at the beam dump by using BPM and wire scanner. The RF ion source of the test stand is verified by measuring the total beam current with a faraday cup in the chamber. The KOMAC (KOrea Multi-purpose Accelerator Complex) has been developing a 300 kV ion source test stand for a 1 MV electrostatic accelerator. An ion source and accelerating tube will be installed in a high pressure vessel. The ion source in a high pressure vessel requires high reliability. To confirm the stable operation of the ion source, a test stand was proposed and developed. The ion source will be tested at the test stand to verify its long-term operation conditions. The test stand consists of a 300 kV high voltage terminal, a battery for the ion source power, a 60 Hz inverter, a 200 MHz RF power, a 5 kV extraction power supply, a 300 kV accelerating tube, and a vacuum system. The beam profile monitor was installed at the downstream from the accelerating tube. Wire scanner and faraday-cup was installed at the end of the chamber.

  4. Negative ion production and beam extraction processes in a large ion source (invited)

    International Nuclear Information System (INIS)

    Recent research results on negative-ion-rich plasmas in a large negative ion source have been reviewed. Spatial density and flow distributions of negative hydrogen ions (H−) and positive hydrogen ions together with those of electrons are investigated with a 4-pin probe and a photodetachment (PD) signal of a Langmuir probe. The PD signal is converted to local H− density from signal calibration to a scanning cavity ring down PD measurement. Introduction of Cs changes the slope of plasma potential local distribution depending upon the plasma grid bias. A higher electron density H2 plasma locally shields the bias potential and behaves like a metallic free electron gas. On the other hand, the bias and extraction electric fields penetrate in a Cs-seeded electronegative plasma even when the electron density is similar. Electrons are transported by the penetrated electric fields from the driver region along and across the filter and electron deflection magnetic fields. Plasma ions exhibited a completely different response against the penetration of electric fields

  5. Negative ion production and beam extraction processes in a large ion source (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Tsumori, K., E-mail: tsumori@nifs.ac.jp; Nakano, H.; Goto, M.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Ikeda, K.; Kisaki, M. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Geng, S. [The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Sasaki, K.; Nishiyama, S. [Division of Quantum Science and Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Serianni, G.; Agostinetti, P.; Sartori, E.; Brombin, M.; Veltri, P. [Plasma Engineering Group, Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Wimmer, C. [Max-Planck-Institut für Plasmaphysik, Bereich ITER-Technologie und -Diagnostik/N-NBI Boltzmannstr. 2, 85748 Garching (Germany)

    2016-02-15

    Recent research results on negative-ion-rich plasmas in a large negative ion source have been reviewed. Spatial density and flow distributions of negative hydrogen ions (H{sup −}) and positive hydrogen ions together with those of electrons are investigated with a 4-pin probe and a photodetachment (PD) signal of a Langmuir probe. The PD signal is converted to local H{sup −} density from signal calibration to a scanning cavity ring down PD measurement. Introduction of Cs changes the slope of plasma potential local distribution depending upon the plasma grid bias. A higher electron density H{sub 2} plasma locally shields the bias potential and behaves like a metallic free electron gas. On the other hand, the bias and extraction electric fields penetrate in a Cs-seeded electronegative plasma even when the electron density is similar. Electrons are transported by the penetrated electric fields from the driver region along and across the filter and electron deflection magnetic fields. Plasma ions exhibited a completely different response against the penetration of electric fields.

  6. Effect of electron cyclotron resonance ion source frequency tuning on ion beam intensity and quality at Department of Physics, University of Jyvaeskylae

    International Nuclear Information System (INIS)

    Ion beam intensity and quality have a crucial effect on the operation efficiency of the accelerator facilities. This paper presents the investigations on the ion beam intensity and quality after the mass separation performed with the Department of Physics, University of Jyvaeskylae 14 GHz electron cyclotron resonance ion source by sweeping the microwave in the 14.05-14.13 GHz range. In many cases a clear variation in the ion beam intensity and quality as a function of the frequency was observed. The effect of frequency tuning increased with the charge state. In addition, clear changes in the beam structure seen with the beam viewer were observed. The results confirmed that frequency tuning can have a remarkable effect on ion beam intensity and quality especially in the case of highly charged ion beams. The examples presented here represent the typical charge state behavior observed during the measurements.

  7. Effect of electron cyclotron resonance ion source frequency tuning on ion beam intensity and quality at Department of Physics, University of Jyväskylä.

    Science.gov (United States)

    Toivanen, V; Koivisto, H; Steczkiewicz, O; Celona, L; Tarvainen, O; Ropponen, T; Gammino, S; Mascali, D; Ciavola, G

    2010-02-01

    Ion beam intensity and quality have a crucial effect on the operation efficiency of the accelerator facilities. This paper presents the investigations on the ion beam intensity and quality after the mass separation performed with the Department of Physics, University of Jyväskylä 14 GHz electron cyclotron resonance ion source by sweeping the microwave in the 14.05-14.13 GHz range. In many cases a clear variation in the ion beam intensity and quality as a function of the frequency was observed. The effect of frequency tuning increased with the charge state. In addition, clear changes in the beam structure seen with the beam viewer were observed. The results confirmed that frequency tuning can have a remarkable effect on ion beam intensity and quality especially in the case of highly charged ion beams. The examples presented here represent the typical charge state behavior observed during the measurements. PMID:20192340

  8. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P. N., E-mail: ostroumov@anl.gov; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Pikin, A. I. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2015-08-15

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  9. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    International Nuclear Information System (INIS)

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz

  10. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source.

    Science.gov (United States)

    Ostroumov, P N; Barcikowski, A; Dickerson, C A; Perry, A; Pikin, A I; Sharamentov, S I; Vondrasek, R C; Zinkann, G P

    2015-08-01

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz. PMID:26329185

  11. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    Science.gov (United States)

    Thongkumkoon, P.; Prakrajang, K.; Thopan, P.; Yaopromsiri, C.; Suwannakachorn, D.; Yu, L. D.

    2013-07-01

    Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation.

  12. Development of radioactive ion beam production systems for Tokai Radioactive Ion Acceleration Complex--High temperature ion source for short-lived isotopes

    International Nuclear Information System (INIS)

    We have developed a new ion source system in the isotope separator on-line at Japan Atomic Energy Agency, for separation of short-lived isotopes produced by proton-induced fission of 238U. The ion source system is a forced electron beam induced arc discharge version E type ion source with a target container. We successfully operated this system at 2000 deg. C as a result of reductions in volume of the ion source and the target container, introduction of heating method by electron bombardment, and improvement to the heat shield. This new ion source system was tested using 238U of 640 mg/cm2 with a proton primary beam of 30 MeV, 350 nA. Release times were measured for Kr, In, and Xe. The values of release times are 2.6 s for Kr, 1.8 s for In, and 4.6 s for Xe. In this work, the ion source system enabled us to mass-separate short-lived isotopes such as 93Kr(T1/2=1.286 s), 129In(T1/2=0.61 s), and 141Xe(T1/2=1.73 s) with intensity of 103 ions/s.

  13. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Ellison and J. Fuchs

    2010-09-23

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  14. Development and application of high power and high intensity ion beam sources at NPI, Tomsk, Russia

    International Nuclear Information System (INIS)

    High - current ion beams have become a powerful tool for improving the surface properties of different materials. The prospects of wide commercial use of such beams for material treatment is not only due to the possibility of improving their properties, but, also for economic expediency. To achieve a high throughput and reduce the cost on ion beam material treatment, ion beams of high average and pulsed power are necessary. This paper gives an overview of work on generation of pulsed and repetitively pulsed beams of ion beams with currents ranging from fractions of an ampere to several tens of kA and with pulse duration from several tens of nanoseconds to several hundreds of microseconds. A number of different methods of materials surface properties modification using high power and intense ion beam and plasma are considered. (author)

  15. A compact electron beam ion source with integrated Wien filter providing mass and charge state separated beams of highly charged ions

    International Nuclear Information System (INIS)

    A Wien filter was designed for and tested with a room temperature electron beam ion source (EBIS). Xenon charge state spectra up to the charge state Xe46+ were resolved as well as the isotopes of krypton using apertures of different sizes. The complete setup consisting of an EBIS and a Wien filter has a length of less than 1 m substituting a complete classical beamline setup. The Wien filter is equipped with removable permanent magnets. Hence total beam current measurements are possible via simple removal of the permanent magnets. In dependence on the needs of resolution a weak (0.2 T) or a strong (0.5 T) magnets setup can be used. In this paper the principle of operation and the design of the Wien filter meeting the requirements of an EBIS are briefly discussed. The first ion beam extraction and separation experiments with a Dresden EBIS are presented.

  16. A compact electron beam ion source with integrated Wien filter providing mass and charge state separated beams of highly charged ions.

    Science.gov (United States)

    Schmidt, M; Peng, H; Zschornack, G; Sykora, S

    2009-06-01

    A Wien filter was designed for and tested with a room temperature electron beam ion source (EBIS). Xenon charge state spectra up to the charge state Xe46+ were resolved as well as the isotopes of krypton using apertures of different sizes. The complete setup consisting of an EBIS and a Wien filter has a length of less than 1 m substituting a complete classical beamline setup. The Wien filter is equipped with removable permanent magnets. Hence total beam current measurements are possible via simple removal of the permanent magnets. In dependence on the needs of resolution a weak (0.2 T) or a strong (0.5 T) magnets setup can be used. In this paper the principle of operation and the design of the Wien filter meeting the requirements of an EBIS are briefly discussed. The first ion beam extraction and separation experiments with a Dresden EBIS are presented. PMID:19566197

  17. The Characteristics Of The Direct Metal Ion Beam Source And Its Applications (indium Tin Oxide)

    CERN Document Server

    Kim, D

    2001-01-01

    It is well known that thin film properties depends on its microstructures and the surface mobility is most important parameters to consider microstructures and to obtain high quality thin films. Thus, currently ion beam based deposition which can control surface mobility with kinetic energy of auxiliary gas ion investigated intensively. Recently we developed the DMIBD system which can control ion beam energy precisely under 500Ev and also ion beam flux, independently. In this work, the optimum process parameters of DMIBD such as secondary ion yields, ion/atom arrival ratios, ion energy spread, and deposition rates for various metal targets were measured as functions of Cs+ ion bombarding energy, Cs+ ion dose, and secondary ion beam energy, respectively. From the results, the secondary ion yields for C,Al,Si,Cu,Ta, and W were about 20% and the ion energy spread also less than 10% regardless of the ion beam energy. In order to investigated the effect of secondary ion beam energy on the thin film properties such...

  18. Beam Development/Implementation and Futher Development of the ISOLDE Laser Ion Source

    CERN Multimedia

    Kugler, E; Van duppen, P L E; Lettry, J

    2002-01-01

    % IS335 \\\\ \\\\ Already before the move to the PS-Booster (PSB) the proton-beam time-structure of 7 pulses of 2.4~$\\mu$s duration every 1.2~s was identified as the major challenge to the target and ion-source technique. It was also recognized that an intensive target development programme should be undertaken in order to exploit efficiently the properties of the Booster beam. This beam structure can have both beneficial effects and deleterious effects on the performance of the targets. On the one side the power deposition, the shock wave and the cascade of nuclear reactions may enhance the release and make the targets faster. \\\\ \\\\The selectivity with which ISOLDE can separate the products according to the chemical element is another important parameter for the experiments. Online test experiments at the SC ISOLDE-3 successfully demonstrated that resonant multi-photon excitation and final ionization by pulsed lasers is an efficient tool for the production of isobarically pure ion beams. The installation of a pe...

  19. Plasma Ion Sources

    International Nuclear Information System (INIS)

    A wide variety of ion source types has been developed. Ion sources can provide beams of hundreds of amperes for fusion applications, nano-amperes for microprobe trace analysis and broad beams for ion implantation, space thrusters, industrial polymerisation and food sterilisation. Also it can be used in medical, military and accelerators applications. In this paper, three different types of plasma ion sources with different means for producing the discharge current and the ions extracting current from the plasma are studied. The various plasma described include, d.c glow discharge plasma, arc discharge plasma and radio frequency discharge plasma

  20. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    International Nuclear Information System (INIS)

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam

  1. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    Science.gov (United States)

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam. PMID:24593474

  2. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Science.gov (United States)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  3. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    International Nuclear Information System (INIS)

    Highlights: ► Detected X-ray emission from metal, plastic and biological samples. ► Characteristic X-ray emission was detected from metal but not from non-metals. ► Low-energy ion bombarded bacteria held in different sample holders. ► Bacteria held in metal holder had higher mutation rate than in plastic holder. ► Ion-beam-induced X-ray from biological sample is not a basic mutation source. -- Abstract: Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation

  4. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812...

  5. Peristaltic ion source

    International Nuclear Information System (INIS)

    Conventional ion sources generate energetic ion beams by accelerating the plasma-produced ions through a voltage drop at the extractor, and since it is usual that the ion beam is to propagate in a space which is at ground potential, the plasma source is biased at extractor voltage. For high ion beam energy the plasma source and electrical systems need to be raised to high voltage, a task that adds considerable complexity and expense to the total ion source system. The authors have developed a system which though forming energetic ion beams at ground potential as usual, operates with the plasma source and electronics at ground potential also. Plasma produced by a nearby source streams into a grided chamber that is repetitively pulsed from ground to high positive potential, sequentially accepting plasma into its interior region and ejecting it energetically. They call the device a peristaltic ion source. In preliminary tests they've produced nitrogen and titanium ion beams at energies from 1 to 40 keV. Here they describe the philosophy behind the approach, the test embodiment that they have made, and some preliminary results

  6. Mechanical properties considerations for use of epoxy insulators and bonded joints in neutral beam ion sources

    International Nuclear Information System (INIS)

    In the Doublet III (D-III) neutral beam injectors, cast, rigid-epoxy insulators are joined to the AISI 304 stainless steel corona rings with semi-rigid epoxy adhesive. Selected mechanical properties of these materials were measured between 110C and 650C, well below the material temperature limits, to identify the trends and to confirm adequate mechanical strength for the insulators. Significant creep deformation was measured at 220C. Empirical relationships were developed to predict long term strain over a range of stress and temperature of design interest. Delayed failure was observed in bonded specimens at stress levels well below the ultimate strength. In order to protect the D-III neutral beam ion source epoxy from elevated temperature effects, a chill was installed in the cooling water circuit. Outgassing measurements of the insulator epoxy were made and found to be low and primarily H2O

  7. Reduction of beam current noise in the FNAL magnetron ion source

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, D. S., E-mail: bollinger@fnal.gov; Karns, P. R., E-mail: karns@fnal.gov; Tan, C. Y., E-mail: cytan@fnal.gov [Fermi National Accelerator Laboratory, Proton Source Department, P.O. Box 500, Batavia, Illinois (United States)

    2015-04-08

    The new FNAL Injector Line with a circular dimple magnetron ion source has been operational since December of 2012. Since the new injector came on line there have been variations in the H- beam current flattop observed near the downstream end of the Linac. Several different cathode geometries including a hollow cathode suggested by Dudnikov [1] were tried. Previous studies also showed that different mixtures of hydrogen and nitrogen had an effect on beam current noise [2]. We expanded on those studies by trying mixtures ranging from (0.25% nitrogen, 99.75% hydrogen) to (3% nitrogen, 97% hydrogen). The results of these studies in our test stand will be presented in this paper.

  8. Microwave Discharge Ion Sources

    CERN Document Server

    Celona, L

    2013-01-01

    This chapter describes the basic principles, design features and characteristics of microwave discharge ion sources. A suitable source for the production of intense beams for high-power accelerators must satisfy the requirements of high brightness, stability and reliability. The 2.45 GHz off-resonance microwave discharge sources are ideal devices to generate the required beams, as they produce multimilliampere beams of protons, deuterons and singly charged ions. A description of different technical designs will be given, analysing their performance, with particular attention being paid to the quality of the beam, especially in terms of its emittance.

  9. Assessment and modification of an ion source grid design in KSTAR neutral beam system

    Science.gov (United States)

    Lee, Dong Won; Shin, Kyu In; Jin, Hyung Gon; Guen Choi, Bo; Kim, Tae-Seong; Jeong, Seung Ho

    2014-02-01

    A new 2 MW NB (Neutral Beam) ion source for supplying 3.5 MW NB heating for the KSTAR campaign was developed in 2012 and its grid was made from OFHC (Oxygen Free High Conductivity) copper with rectangular cooling channels. However, the plastic deformation such as a bulging in the plasma grid of the ion source was found during the overhaul period after the 2012 campaign. A thermal-hydraulic and a thermo-mechanical analysis using the conventional code, ANSYS, were carried out and the thermal fatigue life assessment was evaluated. It was found that the thermal fatigue life of the OFHC copper grid was about 335 cycles in case of 0.165 MW/m2 heat flux and it gave too short fatigue life to be used as a KSTAR NB ion source grid. To overcome the limited fatigue life of the current design, the following methods were proposed in the present study: (1) changing the OHFC copper to CuCrZr, copper-alloy or (2) adopting a new design with a pure Mo metal grid and CuCrZr tubes. It is confirmed that the proposed methods meet the requirements by performing the same assessment.

  10. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source

    Science.gov (United States)

    Pikin, A.; Beebe, E. N.; Raparia, D.

    2013-03-01

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 ÷ 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 ÷ 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  11. Experimental study and simulation of the extraction conditions of a multicharged ion beam from an electron cyclotron resonance source

    International Nuclear Information System (INIS)

    This thesis concerns the beam extraction studies of ECR Ion Sources for the SPIRAL project at GANIL (France). The optical properties (i.e. the emittances) of the radioactive ion beam production source is a crucial point in this project. We performed emittance measurements with a very high transport efficiency and developed a computer code for simulating the extraction and transport conditions. This simulation takes into account all the parameters acting on the extraction process: the characteristics of the ions and electrons emitted by the plasma, their space and energy distributions, the space charge, the magnetic filed of the source and the accelerating electric field. We explained the evolution of the emittances for two different types of ECR Ion Source. The simulation-experiment comparison showed us that the magnetic field and the intrinsic energy of the ions seem to be the most important parameters for explaining the overall emittance behaviour of the ECRIS. We precise their values and comment them. (author)

  12. Afterglow mode and the new Micro Pulsed Beam mode applied to an ECR Ion Source

    OpenAIRE

    Maunoury, Laurent; Adoui, Lamri; Grandin, Jean-Pierre; Huber, Bernd; Lamour, Emily; Leherissier, Patrick; Noury, Fabien; Pacquet, Jean-Yves; Prigent, Christophe; Rozet, Jean-Pierre; Vernhet, Dominique

    2008-01-01

    An increasing number of experiments in the field of low energy ion physics ( µA) a pulsed beam chopper, installed downstream to the analyzing dipole, is used. For low-intensity beams (< 100 nA) the ion intensity delivered during the pulse may be increased by operating the ECR discharge in the afterglow mode [1]. This method gives satisfactory results (ie average current during the beam pulse is h...

  13. Highly Charged Ion Sources

    International Nuclear Information System (INIS)

    In this work a study is made for the factors affecting the production and extraction of highly charged ion beams. Discussion is made for the production of highly charged ions from: the conventional vacuum are ion sources (Pinning PIG and Duoplasmatron DP) and the recent trends type which are (Electron Beam Ion Sources EBIS, Electron Cyclotron Resonance Ion Sources ECRIS and Laser Ion source LIS). The highly charged ions with charge state +7 , O+8 ,Ne+10 , Ar+18 have been extracted from the ECRIS while fully stripped Xe+54 has been extracted from EBIS. Improving the capabilities of the conventional RF ion source to produce multiply charged ions is achieved through the use of electron injection into the plasma or with the use of RF driven ion source. The later is based on coupling the RF power to the discharge through an internal antenna in vacuum are ion source. The argon ion species extracted from these upgraded RF ion sources could reach Ar+5

  14. Status of ITEP decaborane ion source program

    International Nuclear Information System (INIS)

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Both Freeman and Bernas ion sources for decaborane ion beam generation were investigated. Decaborane negative ion beam as well as positive ion beam were generated and delivered to the output of mass separator. Experimental results obtained in ITEP are presented

  15. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M. [European Organization for Nuclear Research (CERN), 1211 Geneva 23 (Switzerland)

    2016-02-15

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  16. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    International Nuclear Information System (INIS)

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented

  17. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented. PMID:26932084

  18. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    Science.gov (United States)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  19. Ionization cross sections and ionic yield in an ion source with confined electron beam

    International Nuclear Information System (INIS)

    A new ion source for fully stripped ion production and polarized particles storage is studied. Ionization cross sections are simulated by the semi-empirical Loetz formula revised by Donets. The ionic yield of the ion source is calculated per pulse and second in the case of this source being used for a synchrocyclotron, a linear accelerator or a cyclotron

  20. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  1. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  2. Ion source research and development at University of Jyväskylä: Studies of different plasma processes and towards the higher beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Koivisto, H., E-mail: hannu.koivisto@phys.jyu.fi; Kalvas, T.; Tarvainen, O.; Komppula, J.; Laulainen, J.; Kronholm, R.; Ranttila, K.; Tuunanen, J. [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland); Thuillier, T. [LPSC, CNRS/IN2P3, Université Grenoble-Alpes1, 53 Rue des Martyrs, 38026 Grenoble Cedex (France); Xie, D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720 (United States); Machicoane, G. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2016-02-15

    Several ion source related research and development projects are in progress at the Department of Physics, University of Jyväskylä (JYFL). The work can be divided into investigation of the ion source plasma and development of ion sources, ion beams, and diagnostics. The investigation covers the Electron Cyclotron Resonance Ion Source (ECRIS) plasma instabilities, vacuum ultraviolet (VUV) and visible light emission, photon induced electron emission, and the development of plasma diagnostics. The ion source development covers the work performed for radiofrequency-driven negative ion source, RADIS, beam line upgrade of the JYFL 14 GHz ECRIS, and the development of a new room-temperature-magnet 18 GHz ECRIS, HIISI.

  3. Radio frequency ion source

    CERN Document Server

    Shen Guan Ren; Gao Fu; LiuNaiYi

    2001-01-01

    The study on Radio Frequency Ion Source is mainly introduced, which is used for CIAE 600kV ns Pulse Neutron Generator; and obtained result is also presented. The RF ion source consists of a diameter phi 25 mm, length 200 mm, coefficient of expansion =3.5 mA, beam current on target >=1.5 mA, beam spot =100 h.

  4. Prize for Industrial Applications of Physics Talk: Low energy spread Ion source for focused ion beam systems-Search for the holy grail

    Science.gov (United States)

    Ward, Bill

    2011-03-01

    In this talk I will cover my personal experiences as a serial entrepreneur and founder of a succession of focused ion beam companies (1). Ion Beam Technology, which developed a 200kv (FIB) direct ion implanter (2). Micrion, where the FIB found a market in circuit edit and mask repair, which eventually merged with FEI corporation. and (3). ALIS Corporation which develop the Orion system, the first commercially successful sub-nanometer helium ion microscope, that was ultimately acquired by Carl Zeiss corporation. I will share this adventure beginning with my experiences in the early days of ion beam implantation and e-beam lithography which lead up to the final breakthrough understanding of the mechanisms that govern the successful creation and operation of a single atom ion source.

  5. Detailed beam and plasma measurements on the vessel for extraction and source plasma analyses (VESPA) Penning H⁻ ion source.

    Science.gov (United States)

    Lawrie, S R; Faircloth, D C; Letchford, A P; Whitehead, M O; Wood, T

    2016-02-01

    A vessel for extraction and source plasma analyses (VESPA) is operational at the Rutherford Appleton Laboratory (RAL). This project supports and guides the overall ion source R&D effort for the ISIS spallation neutron and muon facility at RAL. The VESPA produces 100 mA of pulsed H(-) beam, but perveance scans indicate that the source is production-limited at extraction voltages above 12 kV unless the arc current is increased. A high resolution optical monochromator is used to measure plasma properties using argon as a diagnostic gas. The atomic hydrogen temperature increases linearly with arc current, up to 2.8 eV for 50 A; whereas the electron temperature has a slight linear decrease toward 2.2 eV. The gas density is 10(21) m(-3), whilst the electron density is two orders of magnitude lower. Densities follow square root relationships with arc current, with gas density decreasing whilst electron (and hence ion) density increases. Stopping and range of ions in matter calculations prove that operating a high current arc with an argon admixture is extremely difficult because cathode-coated cesium is heavily sputtered by argon. PMID:26932004

  6. Detailed beam and plasma measurements on the vessel for extraction and source plasma analyses (VESPA) Penning H− ion source

    International Nuclear Information System (INIS)

    A vessel for extraction and source plasma analyses (VESPA) is operational at the Rutherford Appleton Laboratory (RAL). This project supports and guides the overall ion source R&D effort for the ISIS spallation neutron and muon facility at RAL. The VESPA produces 100 mA of pulsed H− beam, but perveance scans indicate that the source is production-limited at extraction voltages above 12 kV unless the arc current is increased. A high resolution optical monochromator is used to measure plasma properties using argon as a diagnostic gas. The atomic hydrogen temperature increases linearly with arc current, up to 2.8 eV for 50 A; whereas the electron temperature has a slight linear decrease toward 2.2 eV. The gas density is 1021 m−3, whilst the electron density is two orders of magnitude lower. Densities follow square root relationships with arc current, with gas density decreasing whilst electron (and hence ion) density increases. Stopping and range of ions in matter calculations prove that operating a high current arc with an argon admixture is extremely difficult because cathode-coated cesium is heavily sputtered by argon

  7. Development of Small Multiaperture Negative Ion Beam Sources and Related Simulation Tools

    International Nuclear Information System (INIS)

    In the design of extraction systems for negative ion sources several fundamental questions still deserve further investigation, as the distribution of particles near the extraction sheath, the optimal magnetic structure and the space charge compensation length after acceleration. Large (and undesired) deflection differences may develop between beamlets of a multiaperture source, so that equalization of the magnetic field effect is necessary. To guarantee an uniform strength of filter field at extraction and in the acceleration, several configuration of arrays of permanent magnets were studied and fast simulation tools were developed. As an example of optimized magnetic configuration and as a possible experimental tool, the design of NIO1 (Negative Ion Optimization try 1) is here discussed. This project consists of a 3x3 matrix of 8 mm extraction holes, aimed at a total H- current about 130 mA with an extraction voltage Vs = -60 kV. A modular design is used, so several parts (the extraction grid, the acceleration grid, the filter assembly, the source multipoles) can be rotated by 90 degrees for versatility. Space charge compensation was included into a two dimensional self consistent code for negative beams, here used for NIO1 simulation.

  8. Monitoring transverse beam profiles of a Penning ion source using a position-sensitive Multi Array Faraday Cup

    International Nuclear Information System (INIS)

    In this paper, we describe the design and construction of a Multi Array Faraday Cup for both beam profiling and current measurements in a Penning ion source. This diagnostic system includes an array configured from multiple cups electrically isolated from each other to collect charged particles incident on the respective cups. Each cup in the array produces a specific signal corresponding to the collected charges due to the incident charged particles. Collected charges signals are amplified and processed by using an electronic beam monitoring system. A testing set-up has been designed for testing and calibration of the system. Experiments have been set up for evaluation of proper functioning of the MAFC in measurement of different beam profiles produced by using the testing set-up. Additionally, total extracted ion current and transverse beam profile has been measured for a Penning ion source

  9. Equipment for ion beam production

    International Nuclear Information System (INIS)

    An equipment has been designed to extend the scope of control of ion beam flux for an intensive ion beam source used for plasma injection in magnetic vessels. The control equipment is connected to the electromagnet power supply. A consumption regulator is fitted in the operating gas supply to the hollow cathode of the ion source. A circuit is also included for discharge voltage maintenance consisting of a control element and a discharge voltage pick-up. (M.D.). 1 fig

  10. The electron cyclotron resonance coupled to laser ion source for charge state enhancement experiment: production of high inensity ion beams by means of hybrid ion source

    Czech Academy of Sciences Publication Activity Database

    Gammino, S.; Torrisi, L.; Ciavola, G.; Andó, L.; Celona, L.; Manciagli, S.; Krása, Josef; Láska, Leoš; Pfeifer, Miroslav; Rohlena, Karel; Mazzasalma, A. M.; Gentile, C.; Picciotto, A.; Wolowski, J.; Woryna, E.; Badziak, J.; Parys, P.; Hitz, D.; Shirkov, G. D.

    2004-01-01

    Roč. 96, č. 5 (2004), s. 2961-2967. ISSN 0021-8979 Institutional research plan: CEZ:AV0Z1010921 Keywords : laser ion sources * ECR ion sources Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.255, year: 2004

  11. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    Science.gov (United States)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Fantz, U.; Franzen, P.; Minea, T.

    2014-10-01

    The development of a large area (Asource,ITER = 0.9 × 2 m2) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (Asource,BATMAN ≈ 0.32 × 0.59 m2) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child-Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion-ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated extracted currents, both ions

  12. Effects of virtual anode formation on the beam optics of grid-controlled vacuum arc ion source

    International Nuclear Information System (INIS)

    New concepts are proposed for intense long pulse ion injectors of several A (ampere) level. In order to control space charge effects on the emitting surface, a vacuum arc ion source which has double grid structure is tested. For ion injection of higher current level, a plasma gun type injector is also developed. It utilizes an electromagnetic injection of the source plasma and post-acceleration of it by a plasma filled diode gap. With this configuration, we can expect to get stable, high flux ion beams without forming a virtual anode in the extraction gap. copyright 1996 American Institute of Physics

  13. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source

    International Nuclear Information System (INIS)

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions’ charge states, and therefore, the ions’ energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 ÷ 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 ÷ 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  14. Maskless, resistless ion beam lithography

    CERN Document Server

    Ji, Q

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements...

  15. Review of Polarized Ion Sources

    Science.gov (United States)

    Zelenski, A.

    2016-02-01

    Recent progress in polarized ion sources development is reviewed. New techniques for production of polarized H‑ ion (proton), D‑ (D+) and 3He++ ion beams will be discussed. A novel polarization technique was successfully implemented for the upgrade of the RHIC polarized H‑ ion source to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from an external source) in the He-gas ionizer cell. Polarized electron capture from the optically-pumped Rb vapor further produces proton polarization (Optically Pumped Polarized Ion Source technique). The upgraded source reliably delivered beam for the 2013 polarized run in RHIC at S = 510 GeV. This was a major factor contributing to RHIC polarization increase to over 60 % for colliding beams. Feasibility studies of a new polarization technique for polarized 3He++ source based on BNL Electron Beam Ion Source is also discussed.

  16. Beam size reduction of a several hundred-keV compact ion microbeam system by improving the extraction condition in an ion source

    International Nuclear Information System (INIS)

    A several hundred-keV compact ion microbeam system with a three-stage acceleration lens has been developed to form an ion beam of several micrometers in diameter. In a previous study of the Ohkubo et al. (2013) and Ishii et al. (2014), a hydrogen beam of 143 keV having 17 μm diameter was experimentally formed using such a microbeam system. It was demonstrated that a three-stage acceleration lens functioned as a focusing lens and indicated that the beam diameter (hereinafter referred to as the “beam size”) depended on the extraction voltage to generate the ion beam and the vacuum pressure in the extraction space in a plasma-type ion source. In this study, the hydrogen beam sizes were experimentally measured at 130 keV as functions of the extraction voltage and vacuum pressure to form the beam size with several micrometers in diameter. These two relationships showed that beam sizes were reduced in the extraction voltage range of 400–500 V and when the vacuum pressure was lowered to a minimum value of 5.33 × 10−5 Pa. In addition, the result showed that the beam size was dominantly influenced by the vacuum pressure. Consequently, a hydrogen beam 5.8 μm in diameter was formed experimentally—the smallest beam yet obtained

  17. Ions beams. Theory and implementation

    International Nuclear Information System (INIS)

    After a presentation of the physical phenomena implied by ions beams (stopping power, defects creation), the implementation of ions beams is described (production, separation in terms of masses, experimental devices). Then, two use modes of ions beams are distinguished: analysis and synthesis. When the ion beam is destined to analysis, there are two possible experiments types. In the first case, the sample to be studied is the source of ions production and the analysis consists to separate in mass the ions extracted; this method is destructive. In the second case, the analysis results of the interaction between the light ions beam and a target: the sample. According to the nature of the analysis, different types of detectors can be used to quantify the energy of the particles diffused by the sample (fluorescence, back-scattering of particles). When ions beams are used as tools of controlled alterations of samples, several parameters (energy, flux, dose, nature of the beam, target temperature) are adjustable following to the searched objective (defects creation, ordering, synthesis of new phases or surfaces alteration). The typical experimental devices used for beams production (scheme of sources principle) and the environment of the sample are described in terms of the applications studied. (O.M.)

  18. Microcontroller based motion control interface unit for double slit type beam emittance monitor for H- ion source

    International Nuclear Information System (INIS)

    The Indian Spallation Neutron Source (ISNS), proposed to be developed at RRCAT, will use a 1 GeV H- linac and an accumulator ring to produce high flux of pulsed neutrons via spallation process. The development activity of front end of 1H- linac for ISNS is under progress at RRCAT, for which a pulsed H- ion source of 50 keV energy, 30 mA current with pulse width of 500 μs has been developed at RRCAT. In this paper, we present the design and development of a microcontroller based motion control interface unit for double slit type beam emittance monitor for the H- ion source. This is an interceptive type of beam diagnostic device, which is used for the quantitative measurement of transverse emittance and beam intensity profile

  19. Ion beam diagnosis

    International Nuclear Information System (INIS)

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  20. Delayering of Microelectronic Devices Using an Adjustable Broad-Beam Ion Source

    International Nuclear Information System (INIS)

    Analysis of the integrated circuits of a microelectronic device depends on delayering. Focused ion beam (FIB) or broad ion beam (BIB) milling are effective complementary methods of delayering. FIB provides higher removal rates, but is limited in the effective area that can be revealed per unit time, while BIB provides lower removal rates, but has the advantage with respect to the size of the field of view produced. Microstructural features and the appearance of defects were identified and tracked for two model systems: Cu vias and Cu TSVs (through-silicon vias)

  1. Preparation of isotopic ruthenium targets using an ion beam sputtering source

    CERN Document Server

    Greene, J P

    2002-01-01

    The preparation of ruthenium targets to be used in heavy-ion experiments has always presented challenges due to the physical properties of ruthenium and the cost of the separated isotopes. The straightforward approach of ion beam sputtering provides an efficient deposition technique, which allows for conservation of the isotopic starting material. A description of the target preparation will be presented along with results for several ruthenium isotopes.

  2. Design of a compact, permanent magnet electron cyclotron resonance ion source for proton and H2+ beam production

    International Nuclear Information System (INIS)

    A 2.45 GHz microwave ion source was developed at China Institute of Atomic Energy (CIAE) for proton beam production of over 60 mA [B.-Q. Cui, Y.-W. Bao, L.-Q. Li, W.-S. Jiang, and R.-W. Wang, Proceedings of the High Current Electron Cyclotron Resonance (ECR) Ion Source for Proton Accelerator, APAC-2001, 2001 (unpublished)]. For various proton beam applications, another 2.45 GHz microwave ion source with a compact structure is designed and will be built at CIAE as well for high current proton beam production. It is also considered to be used for the test of H2+ beam, which could be injected into the central region model cyclotron at CIAE, and accelerated to 5 MeV before extraction by stripping. The required ECR magnetic field is supplied by all the permanent magnets rather than electrical solenoids and six poles. The magnetic field distribution provided by this permanent magnets configuration is a large and uniformly volume of ECR zone, with central magnetic field of a magnitude of ∼875 Gs[T. Taylor and J. S. C. Wills, Nucl. Instrum. Methods Phys. Res. A 309, 37 (1991)]. The field adjustment at the extraction end can be implemented by moving the position of the magnet blocks. The results of plasma, coupling with 2.45 GHz microwave in the ECR zone inside the ion source are simulated by particle-in-cell code to optimize the density by adjusting the magnetic field distribution. The design configuration of the ion source will be summarized in the paper.

  3. Reactive ion beam etching of silicon with a new plasma ion source operated with CF4 : SiO2 over Si selectivity and Si surface modification

    OpenAIRE

    Lejeune, C.; Grandchamp, J.P.; Gilles, J.P.; Collard, E.; Scheiblin, P.

    1989-01-01

    Reactive Ion Beam Etching is obtained from a new specific ion gun, the Electrostatic Reflex Ion Source (Maxi-ERIS), which is operated with pure CF4 gas. The reported results concern both silicon dioxide and single-crystal silicon. They show that the operation of the source discharge down to its minimum pressure which implies an extensive fragmentation of the injected neutrals, provides a very convenient process for selective etching of SiO2 over Si, a basic problem in semiconductor technology...

  4. Castellated tiles as the beam-facing components for the diagnostic calorimeter of the negative ion source SPIDER

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzo, S., E-mail: simone.peruzzo@igi.cnr.it; Cervaro, V.; Dalla Palma, M.; Delogu, R.; Fasolo, D.; Franchin, L.; Pasqualotto, R.; Rizzolo, A.; Tollin, M.; Serianni, G. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); De Muri, M. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); INFN-LNL, v.le dell’Università 2, I-35020 Legnaro, PD (Italy); Pimazzoni, A. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Università degli Studi di Padova, Via 8 Febbraio 2, I-35122 Padova (Italy); Zampieri, L. [Università degli Studi di Padova, Via 8 Febbraio 2, I-35122 Padova (Italy)

    2016-02-15

    This paper presents the results of numerical simulations and experimental tests carried out to assess the feasibility and suitability of graphite castellated tiles as beam-facing component in the diagnostic calorimeter of the negative ion source SPIDER (Source for Production of Ions of Deuterium Extracted from Radio frequency plasma). The results indicate that this concept could be a reliable, although less performing, alternative for the present design based on carbon fiber composite tiles, as it provides thermal measurements on the required spatial scale.

  5. SHyPIE: a new source for on-line production of multicharged radioactive condensable ion beams

    International Nuclear Information System (INIS)

    In order to define the future intensity and reliability of the on line radioactive beams for the SPIRAL project, an intense activity of research and development is being done around the target and the ion source problems. The main instrument for this purpose is the isotopic separator SIRa (Separateur d'Ions Radioactifs) installed in the D2 experimental cave at GANIL. One of the research axis is the production of multicharged radioactive condensable ions. In this aim, we have built a new compact ECR ion source, SHyPIE (Source Hybride pour la Production d'Ions Exotiques), whose original magnetic configuration is under patent since 1997. This new magnetic structure allows to place an internal production target very close to the plasma, while avoiding radiation damages of the sensitive permanent magnets. A series of on line experiments have been done, using SHyPIE with several internal target systems, and around thirty species of condensable and noble gases radioactive multicharged ion beams have been produced. The behaviour of the plasma in a close geometry with the production target has been studied. (authors)

  6. Production of nitrogen, oxygen, neon, and argon nuclei in the KRION-2 electron-beam ion source

    International Nuclear Information System (INIS)

    The KRION-2 electron-beam ion source was designed for bench experiments to investigate the use of dense electron beams (over 100 A/cm2) for ionization purposes. The production of nitrogen and neon nuclei in this source has been reported previously. An ionization factor of approx. 1020 cm-2 for an ionizing electron energy of approx. 5 keV was achieved. A number of experiments aimed at investigating the evolution of the charge state spectrum of nitrogen, oxygen, neon, and argon ions as a function of the ionization factor and electron energy have been carried out. A brief description of the experimental setup and of the recent experiments conducted with the KRION-2 source is presented. A primary analysis of the results of these experiments is made

  7. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    International Nuclear Information System (INIS)

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H− extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases

  8. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    Science.gov (United States)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  9. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    International Nuclear Information System (INIS)

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP

  10. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP. PMID:24593475

  11. Research on the character and development of the neutral beam injector RF negative ion source

    International Nuclear Information System (INIS)

    The RF source is now an interesting alternative to the reference design with filamented sources due to its maintenance-free operation. Extensive R and D work on RF-driven negative hydrogen ion sources carried out at IPP Garching led to the decision of ITER to select this type of source as the new reference source for the ITER NBI system.The work is progressing with three test beds: BATMAN, MANITU and RADI, which are being used to carry out different investigations in parallel. The experimental results show that the RF source equals or surpasses the ITER requirements. (authors)

  12. Molecular Ion Beam Transportation for Low Energy Ion Implantation

    International Nuclear Information System (INIS)

    A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B10H14) and carborane (C2B10H12) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

  13. Operation of ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In 2001, ECR ion source was operated for HIRFL about 5138 hours and 8 species of ion beams, such as ~(12)C~(4+), ~(12)C~(5+), ~(36)Ar~(11+),~(13)C~(4+),~(40)Ca~(11+),~(40)Ar~(11+),~(56)Fe~(10+) and ~(18)O~(6+) were provided. Among these ions,~(56)Fe~(10+)is a new ion beam. In this period, 14 experiments of heavy ion physics application and nuclear research were finished.

  14. Thermal-electric coupled-field finite element modeling and experimental testing of high-temperature ion sources for the production of radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Manzolaro, M., E-mail: mattia.manzolaro@lnl.infn.it; Andrighetto, A. [INFN, Laboratori Nazionali di Legnaro, Viale dell’Universita’ 2, Legnaro, 35020 Padova (Italy); Meneghetti, G. [Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova (Italy); Vivian, G.; D’Agostini, F. [INFN, Laboratori Nazionali di Legnaro, Viale dell’Universita’ 2, Legnaro, 35020 Padova (Italy); Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova (Italy)

    2016-02-15

    In isotope separation on line facilities the target system and the related ion source are two of the most critical components. In the context of the selective production of exotic species (SPES) project, a 40 MeV 200 μA proton beam directly impinges a uranium carbide target, generating approximately 10{sup 13} fissions per second. The radioactive isotopes produced in this way are then directed to the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work both the surface ion source and the plasma ion source adopted for the SPES facility are presented and studied by means of numerical thermal-electric models. Then, numerical results are compared with temperature and electric potential difference measurements, and finally the main advantages of the proposed simulation approach are discussed.

  15. Thermal-electric coupled-field finite element modeling and experimental testing of high-temperature ion sources for the production of radioactive ion beams

    International Nuclear Information System (INIS)

    In isotope separation on line facilities the target system and the related ion source are two of the most critical components. In the context of the selective production of exotic species (SPES) project, a 40 MeV 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The radioactive isotopes produced in this way are then directed to the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work both the surface ion source and the plasma ion source adopted for the SPES facility are presented and studied by means of numerical thermal-electric models. Then, numerical results are compared with temperature and electric potential difference measurements, and finally the main advantages of the proposed simulation approach are discussed

  16. Thermal-electric coupled-field finite element modeling and experimental testing of high-temperature ion sources for the production of radioactive ion beams.

    Science.gov (United States)

    Manzolaro, M; Meneghetti, G; Andrighetto, A; Vivian, G; D'Agostini, F

    2016-02-01

    In isotope separation on line facilities the target system and the related ion source are two of the most critical components. In the context of the selective production of exotic species (SPES) project, a 40 MeV 200 μA proton beam directly impinges a uranium carbide target, generating approximately 10(13) fissions per second. The radioactive isotopes produced in this way are then directed to the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work both the surface ion source and the plasma ion source adopted for the SPES facility are presented and studied by means of numerical thermal-electric models. Then, numerical results are compared with temperature and electric potential difference measurements, and finally the main advantages of the proposed simulation approach are discussed. PMID:26932055

  17. Diagnosing light ion beam diodes

    International Nuclear Information System (INIS)

    This lecture begins with a discussion of diagnostics in ion-beam diodes. This will include electromagnetic measurements, measurements of the electron cloud, and measurements of anode plasmas. A few minutes will be spent on diagnostics of distributed ion sources required for one class of ion diodes, the plasma-filled versions, which require high-density, highly ionized sources of very uniform plasma. The measurements of the beam characteristics will then be discussed. This will be broken into two regions; the region near the diode where diagnostics are generally extensions of those used in other fields; and the region near focus where new diagnostics have been developed

  18. Status of plasma source developments for ion beam and PIII applications at INRS-Energie et Materiaux

    International Nuclear Information System (INIS)

    The development of fast modulated plasma sources for use with energetic ion beam and plasma immersed ion implantation (PIII) system is in progress at INRS-Energie et Materiaux. DuoPIGatron and compact ECR sources are both under development. Modulation of the DuoPIGatron source has been realized using a fast switching circuit. The useful modulation frequency is limited by the source impedance. The ECR plasma sources are modulated via pulsing the 2.45GHz, 1.5kW microwave power. Two types of ECR plasma sources are under study. The first is a volume resonance source, which has been operational for several years. The other source is a new surface resonance source, where 28 columns of NdFeB permanent magnets arranged with alternating poles provide both the resonance surface and the confining field for the plasma electrons. Various diagnostics such as scanning Langmuir probes and diamagnetic loops are used for characterization of the source plasma. Laser fluorescence spectroscopy provides the main diagnostic tool for studying the ion energy distribution in the plasma sheath region. The optimization of plasma sources, the setup for PIII studies and the results will be presented and discussed

  19. Carbon beam extraction with 14.5 GHz electron cyclotron resonance ion source at Korea Atomic Energy Research Institute.

    Science.gov (United States)

    Lee, Cheol Ho; Oh, Byung-Hoon; Chang, Dae-Sik; Jeong, Sun-Chan

    2014-02-01

    A 14.5 GHz Electron Cyclotron Resonance ion source (ECRIS) has been made to produce C(4+) beam for using a carbon therapy facility and recently tested at KAERI. Highly charged carbon ions have been successfully extracted. When using only CO2 gas, the beam current of C(4+) was almost 14 μA at 15 kV extraction voltage. To get higher current of the C(4+) beam, while optimizing confinement magnetic field configuration (e.g., axial strengths at minimum and extraction side), gas-mixing (CO2/He), and biased disk were introduced. When the gas mixing ratio of the CO2/He gas is 1:8 at an operational pressure of 5 × 10(-7) mbar and the disk was biased to -150 V relative to the ion source body, the highest current of the C(4+) beam was achieved to be 50 μA, more than three times higher than previously observed only with CO2 gas. Some details on the operating conditions of the ECRIS were discussed. PMID:24593482

  20. CW/Pulsed H{sup −} ion beam generation with PKU Cs-free 2.45 GHz microwave driven ion source

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Xu, Y.; Zhang, T.; Zhang, J. F.; Zhao, J.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, People' s Republic of China (China); Zhang, A. L. [University of Chinese Academy of Sciences, Beijing 100049, People' s Republic of China (China); Chen, J. E. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, People' s Republic of China (China); University of Chinese Academy of Sciences, Beijing 100049, People' s Republic of China (China)

    2015-04-08

    Circular accelerators used for positron emission tomography (PET, i.e. accelerator used for make radio isotopes) need several mA of CW H- ion beam for their routine operation. Other facilities, like Space Radio-Environment Simulate Assembly (SPRESA), require less than 10 mA pulsed mode H{sup −} beam. Caesium free negative hydrogen ion source is a good choice for those facilities because of its compact structure, easy operation and low cost. Up to now, there is no H{sup −} source able to produce very intense H{sup −} beams with important variation of the duty factor{sup [1]}. Recently, a new version of 2.45 GHz microwave H{sup −} ion source was designed at PKU, based on lessons learnt from the previous one. This non cesiated source is very compact thanks to its permanent magnet configuration. Special attention was paid on the design of the discharge chamber structure, electron dumping and extraction system. Source test to produce H{sup −} ion beams in pulsed and CW mode was carried out on PKU ion source test bench. In CW mode, a 10.8 mA/30keV H{sup −} beam with rms emittance about 0.16 π·mm·mrad has been obtained with only 500 W rf power. The power efficiency reaches 21 mA/kW. In pulsed mode with duty factor of 10% (100Hz/1ms), this compact source can easily deliver 20 mA H{sup −} ion beam at 35 keV with rms emittance about 0.2 π·mm·mrad when RF power is set at 2.2 kW (peak power). Several hour successive running operation in both modes and totaling more than 200 hours proves its high quality. The outside dimension of this new H{sup −} source body is ϕ116 mm × 124 mm, and the entire H{sup −} source infrastructure, including rf matching section, plasma chamber and extraction system, is ϕ310 × 180 mm. The high voltage region is limited with in a ϕ310 mm × 230 mm diagram. Details are given in this paper.

  1. Boron ion beam production with the supernanogan ECR ion source for the CERN BIO-LEIR facility

    CERN Document Server

    Stafford-Haworth, J; Scrivens, R; Toivanen, V; Röhrich, J

    2014-01-01

    To deliver B3+ ions for medical research the compounds decaborane and m-carborane were tested using the metal ions from volatile compounds (MIVOC) method with the Supernanogan 14.5 GHz ECR ion source. Using decaborane the source delivered less than 10 A intensity of B3+ and after operation large deposits of material were found inside the source. Using m-carborane 50 A of B3+ were delivered without support gas. For m-carborane, helium and oxygen support gasses were also tested, and the effects of different source tuning parameters are discussed. The average consumption of m-carborane was 0:1 mg/Ah over all operation.

  2. Cluster ion beam facilities

    International Nuclear Information System (INIS)

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  3. New source of MeV negative ion and neutral atom beams

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Avetisyan, S., E-mail: sargis@gist.ac.kr [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 500-712 (Korea, Republic of); Braenzel, J.; Schnürer, M. [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin 12489 (Germany); Prasad, R. [Institute for Laser and Plasma Physics, Heinrich Heine University, Duesseldorf 40225 (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen’s University of Belfast, Belfast BT7-1NN (United Kingdom); Jequier, S.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, CEA, CNRS, University of Bordeaux, 33405 Talence (France)

    2016-02-15

    The scenario of “electron-capture and -loss” was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities.

  4. Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kronberger, M., E-mail: matthias.kronberger@gmx.at [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland); Department of Physics, University of Jyväskylä, Survontie 9, FI-40014 (Finland); Gottberg, A. [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland); Instituto de Estructura de la Materia CSIC, E28006 Madrid (Spain); Mendonca, T.M. [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland); IFIMUP and IN – Institute of Nanosciences and Nanotechnologies, University of Porto, Rua do Campo Alegre 687, PT-4169-007 (Portugal); Ramos, J.P. [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 (Switzerland); Seiffert, C.; Suominen, P.; Stora, T. [European Organization for Nuclear Research, 1211 Geneva 23 (Switzerland)

    2013-12-15

    Highlights: • We present a novel radioactive ion source concept for nuclear physics experiments. • Molecular sideband beams are produced by an RF discharge in a magnetized plasma. • Ionization efficiencies of 2.5% and 4% were measured for CO{sup +} and Ar, respectively. • Using a HfO{sub 2} fibre target, 17-CO{sup +} was produced for the first time at ISOLDE. • Up to 50 × gain was achieved by using a nanostructured CaO target and He as buffer gas. -- Abstract: In order to account for the increasing demand for strong molecular beams for nuclear physics experiments at ISOLDE, a new radioactive ion source concept based on an RF discharge in a magnetized plasma was developed at CERN. Experimental studies at the ISOLDE offline separator show that the optimum conditions for CO{sup +} and CO{sub 2}{sup +} ion production are given when the ion source is operated with He plasma, in line with expectations based on their electron impact ionization cross-sections. At optimum tuning, ionization efficiencies of 2.5% and 4% were measured for CO{sup +} and Ar{sup +}, respectively. The capability of the Helicon ion source prototype for ISOL operation was evaluated during two online runs at the General Purpose Separator of CERN-ISOLDE, yielding the first observation of {sup 17}CO{sup +} with a HfO{sub 2} fibre target, and a more than 50-fold enhancement of the {sup 10}CO{sup +} and {sup 11}CO{sup +} yields with a nanostructured CaO target and an upgraded ion source prototype.

  5. Study of a single-charged ions ECR source matching of the extracted beam to an isotope separator

    International Nuclear Information System (INIS)

    A new ECR ion-source has been designed and studied for single-charged ion beams. A very stable regime has been obtained with an ion-source made of two identical stages in cascade. The RF power supplies consist of two 2.45 GHZ magnetrons. The discharge chamber is made of two coaxial Pyrex tubes. The external one ensures vacuum and HT insulation. The tubes are aligned inside the two multi-mode cavities axially limited by three magnetic coils. The ion beam is extracted at 20 kV and focused with electric lenses. For argon and xenon, 1 mA single-charged ion currents have been extracted. The influence of various parameters has been progressively achieved with a set-up including a 600 analyzing magnet and with the 1200 on-line isotope separator at SARA. From emittances and images observed it appears difficult to compensate charge space effects. Suggestions and future developments are proposed to improve qualities of the isotopic separation

  6. MECHANICAL AND ELECTRONIC ASPECTS OF A FIELD ION SOURCE FOR BEAM APPLICATIONS

    OpenAIRE

    Schwoebel, P.; Hanson, G.

    1986-01-01

    Temperature control from 5.0 to 3000K and high voltage constraints of a field ion source are discussed. Electronics for emitter annealing and for thermal field prosessing in addition to drawings and operational aspects of a 1 liter cryostat source assembly operating at 40 to 50 kV are presented. Practical constraints such as alignment, emitter replacement, operating temperature ranges, etc. will be presented. Supported by NSF under NRRFS grant ECS-8200312

  7. A Cold Strontium Ion Source

    Science.gov (United States)

    Erickson, Christopher J.; Lyon, Mary; Blaser, Kelvin; Harper, Stuart; Durfee, Dallin

    2010-03-01

    We present a cold ion source for strontium 87. The source is based off of a standard Low-Velocity-Intense-Source (LVIS) for strontium using permanent magnets in place of anti-Helmholtz coils. Atoms from the LVIS are then ionized in a two photon process as they pass a 20kV anode plate. The result is a mono-energetic beam of ions whose velocity is tunable. Applications for the ions include spectroscopy and ion interferometry.

  8. 用于产生放射性离子束ECR离子源%ECR Ion Sources for Radioactive Ion Beam Production

    Institute of Scientific and Technical Information of China (English)

    P.Jardin; F.Lemagnen; R.Leroy; J.Y.Pacquet; M.G.Saint Laurent; A.C.C.Villari; C.Canet; J.C.Cornell; M.Dupuis; C.Eleon; J.L.Flambard; G.Gaubert; N.Lecesne; P.Leherissier

    2007-01-01

    ECRIS's dedicated to radioactive ion production must be as efficient as those used for production of stable elements,but in addition they are subject to more specific constraints such as radiation hardness,short atom-to-ion transformation time,beam purity and low cost.Up to now,different target/ion-source systems(TISSs)have been designed,using singly-charged ECRISs,multi.charged ion sources or an association of singly-to-multi-charged ECRISs.The main goals,constraints and advantages of different existing ECR setups will be compared before a more detailed description is given of the one designed for the SPIRAL Ⅱ project and its future improvements.

  9. Development of a pepper-pot device to determine the emittance of an ion beam generated by electron cyclotron resonance ion sources

    International Nuclear Information System (INIS)

    This paper describes the recent development and commissioning of a pepper-pot emittance meter at the Lawrence Berkeley National Laboratory (LBNL). It is based on a potassium bromide (KBr) scintillator screen in combination with a charged coupled device camera. Pepper-pot scanners record the full four-dimensional transverse phase space emittances which are particularly interesting for electron cyclotron resonance ion sources. The strengths and limitations of evaluating emittances using optical pepper-pot scanners are described and systematic errors induced by the optical data acquisition system will be presented. Light yield tests of KBr exposed to different ion species and first emittance measurement data using ion beams extracted from the 6.4 GHz LBNL electron cyclotron resonance ion source are presented and discussed.

  10. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    Science.gov (United States)

    Kolmogorov, A.; Atoian, G.; Davydenko, V.; Ivanov, A.; Ritter, J.; Stupishin, N.; Zelenski, A.

    2014-02-01

    The RHIC polarized H- ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ˜0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  11. Work function measurements during plasma exposition at conditions relevant in negative ion sources for the ITER neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Gutser, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Wimmer, C. [Lst. f. Experimentelle Plasmaphysik, Universitaet Augsburg, 86135 Augsburg (Germany); Fantz, U. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Lst. f. Experimentelle Plasmaphysik, Universitaet Augsburg, 86135 Augsburg (Germany)

    2011-02-15

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.

  12. Development of high performance negative ion sources and accelerators for MeV class neutral beam injectors

    International Nuclear Information System (INIS)

    The operation of an accelerator at low pressure is an essential requirement to reduce the stripping loss of negative ions, which, in turn, results in high efficiency of the neutral beam systems. For this purpose, a vacuum insulated beam source (VIBS) has been developed at Japan Atomic Energy Research Institute, which reduces the gas pressure in the accelerator by enhanced gas conductance through the accelerator. The VIBS achieves a high voltage insulation of 1 MV by immersing the whole structure of the accelerator in vacuum with a long (∼ 1.8 m) insulation distance. Results of the voltage holding test using a long vacuum gap of 1.8 m indicate that a transition from vacuum discharge to gas discharge occurs at around 0.2 Pa m in the long vacuum gap. So far, the VIBS succeeded in accelerating a 20 mA (H-) beam up to 970 keV for 1 s. It has been demonstrated that the high voltage holding capability of the 1 MV bushing surrounding the VIBS accelerator could be drastically improved by installing new large stress rings that reduces the electric field concentration at the triple junction. After implementing this change, the VIBS sustained 1 MV stably for more than 1200 s. Acceleration of ampere class H- beams at high current density is to be started soon to demonstrate ITER relevant beam optics. The operation of a negative ion source at low pressure is also essential to reduce the stripping loss. However, it was not very easy to attain high current density H- ions at low pressure, since the destruction cross-section of the negative ion becomes large if the electron temperature is >1 eV in low pressure discharge. Using a strong magnetic filter to lower the electron temperature, and introducing higher arc discharge power to compensate for the reduction of plasma density through the filter, an H- ion beam of 310 A m-2 was extracted at a very low pressure of 0.1 Pa. This satisfies the ITER requirement of current density at one-third of the ITER design pressure (0.3 Pa

  13. Gas and metal ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Oaks, E. [High Current Electronics Institute, Tomsk (Russian Federation)]|[State Academy of Control System and Radioelectronics, Tomsk (Russian Federation); Yushkov, G. [High Current Electronics Institute, Tomsk (Russian Federation)

    1996-08-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of {approximately} 10{sup 17} cm{sup {minus}2} in some tens of minutes. So the average ion current density at the surface under treatment should be over 10{sup {minus}5} A/cm{sup 2}. The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from {approximately}1 kV (for the ion source used for surface sputtering) to {approximately}100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation).

  14. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  15. Commercialization of a high energy neutral beam ion source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-21

    This final report summarizes the effort and presents the results of a Phase II fabrication effort to build an industrial prototype of the LBL developed high energy neutral beam source. The effort was primarily concentrated on incorporating hard vacuum dielectric seals and a ceramic high voltage accelerator insulator. Several other design changes were incorporated for cost, reliability or life improvements to include: (1) accelerator grid locating dowel pins to aid final alignment, (2) plasma source to accelerator captive fasteners to aid filament replacement during source maintenance, (3) molybdenum cooling tubes on all accelerator grids, (4) additional fasteners in the plasma generator to facilitate hard seals, (5) modified suppressor grid rails and holders to simplify final grid alignment, (6) adjusting screws on exit grid rail holders to simplify final grid alignment, (7) addition of adjusting screws to the grid end pieces to simplify alignment, and (8) addition of accelerator hat shims to allow two different grid positioning locations.

  16. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, T., E-mail: nagatomo@riken.jp; Kase, M.; Kamigaito, O.; Nakagawa, T. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Tzoganis, V. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Cockcroft Institute, Daresbury, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool, Merseyside L69 3BX (United Kingdom)

    2016-02-15

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO{sub 2} (quartz), KBr, Eu-doped CaF{sub 2}, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy {sup 12}C{sup 4+}, {sup 16}O{sup 4+}, and {sup 40}Ar{sup 11+} ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.

  17. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    Science.gov (United States)

    Nagatomo, T.; Tzoganis, V.; Kase, M.; Kamigaito, O.; Nakagawa, T.

    2016-02-01

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO2 (quartz), KBr, Eu-doped CaF2, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy 12C4+, 16O4+, and 40Ar11+ ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.

  18. ORNL positive ion neutral beam program

    International Nuclear Information System (INIS)

    The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G. G. Kelley and O. B. Morgan. We describe the ion sources under development at this Laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design

  19. Development of ion sources for ion projection lithography

    International Nuclear Information System (INIS)

    Multicusp ion sources are capable of generating ion beams with low axial energy spread as required by the Ion Projection Lithography (IPL). Longitudinal ion energy spread has been studied in two different types of plasma discharge: the filament discharge ion source characterized by its low axial energy spread, and the RF-driven ion source characterized by its long source lifetime. For He+ ions, longitudinal ion energy spreads of 1-2 eV were measured for a filament discharge multicusp ion source which is within the IPL device requirements. Ion beams with larger axial energy spread were observed in the RF-driven source. A double-chamber ion source has been designed which combines the advantages of low axial energy spread of the filament discharge ion source with the long lifetime of the RF-driven source. The energy spread of the double chamber source is lower than that of the RF-driven source

  20. Modeling of the negative ions extraction from a hydrogen plasma source. Application to ITER Neutral Beam Injector

    International Nuclear Information System (INIS)

    The development of a high performance negative ion (NI) source constitutes a crucial step in the construction of a Neutral Beam Injector of the future fusion reactor ITER. NI source should deliver 40 A of H- or of D-. To address this problem in a realistic way, a 3D particles-in-cell electrostatic collisional code was developed. Binary collisions between the particles are introduced using Monte-Carlo collision scheme. This code called ONIX was used to investigate the plasma properties and the transport of the charged particles close to a typical extraction aperture. Results obtained from this code are presented in this thesis. They include negative ions and electrons 3D trajectories. The ion and electron current density profiles are shown for different local magnetic field configurations. Results of production, destruction, and transport of H- in the extraction region are also presented. The production of H- is investigated via 3 atomic processes: 1) electron dissociative attachment to the vibrationally excited molecules H2(v) in the volume, 2) interaction of the positive ions H+ and H2+ with the aperture wall and 3) collisions of the neutral gas H, H2 with aperture wall. The influence of each process on the total extracted NI current is discussed. The extraction efficiency of H- from the volume is compared to the one of H- coming from the wall. Moreover, a parametric study of the H- surface production is presented. Results show the role of sheath behavior in the vicinity of the aperture developing a double layer structure responsible of the NI extraction limitations. The 2 following issues are also analysed. First the influence of the external extracted potential value on the formation of negative sheath and secondly the strength of the magnetic filter on the total extracted NI and co-extracted electron current. The suppression of the electron beam by the negative ion produced at the plasma grid wall is also discussed. Results are in good agreement with available

  1. Development of an all-permanent-magnet microwave ion source equipped with multicusp magnetic fields for high current proton beam production.

    Science.gov (United States)

    Tanaka, M; Hara, S; Seki, T; Iga, T

    2008-02-01

    An all-permanent-magnet (APM) microwave hydrogen ion source was developed to reduce the size and to simplify structure of a conventional solenoid coil microwave ion source developed for reliability improvement of high current proton linac application systems. The difficulty in developing the APM source was sensitive dependence of the source performance on axial magnetic field in the microwave discharge chamber. It was difficult to produce high current proton beam stably without precise tuning of the magnetic field using solenoid coils. We lowered the sensitivity using multicusp magnetic fields for plasma confinement at the discharge chamber sidewall of the source. This enabled stable high current proton beam production with the APM microwave ion source with no tuning coil. The water cooling and the power supply for the coils are not necessary for the APM source, which leads to better reliability and system simplification. The outer diameter of the APM source was around 300 mm, which was 20% lower than the coil source. The APM source produced a maximum hydrogen ion beam current of 65 mA (high current density of 330 mA/cm(2), proton ratio of 87%, and beam energy of 30 keV) with a 5 mm diameter extraction aperture, pulse width of 400 micros, and 20 Hz repetition rate at 1.3 kW microwave power. This performance is almost the same as the best performances of the conventional coil sources. The extracted ion beams were focused with electrostatic five-grid lens to match beam to acceptance of radio-frequency quadrupole linacs. The maximum focused beam current through the orifice (5 mm radius) and the lens was 36 mA and the 90% focused beam half-width was 1-2 mm. PMID:18315183

  2. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  3. Recent developments in production of radioactive ion beams with the selective laser ion source at the on-line isotope separator ISOLDE

    International Nuclear Information System (INIS)

    The resonance ionization laser ion source (RILIS) of the ISOLDE on-line isotope separation facility is based on the method of laser stepwise resonance ionization of atoms in a hot metal cavity. The atomic selectivity of the RILIS compliments the mass selection process of the ISOLDE separator magnets to provide beams of a chosen isotope with greatly reduced isobaric contamination. Using a system of dye lasers pumped by copper vapor lasers, ion beams of 22 elements have been generated at ISOLDE with ionization efficiencies in the range of 0.5%-30%. As part of the ongoing RILIS development, recent off-line resonance ionization spectroscopy studies have determined the optimal three-step ionization schemes for yttrium, scandium, and antimony

  4. Recent developments in production of radioactive ion beams with the selective laser ion source at the on-line isotope separator ISOLDE

    Science.gov (United States)

    Catherall, R.; Fedosseev, V. N.; Köster, U.; Lettry, J.; Suberlucq, G.; Marsh, B. A.; Tengborn, E.

    2004-05-01

    The resonance ionization laser ion source (RILIS) of the ISOLDE on-line isotope separation facility is based on the method of laser stepwise resonance ionization of atoms in a hot metal cavity. The atomic selectivity of the RILIS compliments the mass selection process of the ISOLDE separator magnets to provide beams of a chosen isotope with greatly reduced isobaric contamination. Using a system of dye lasers pumped by copper vapor lasers, ion beams of 22 elements have been generated at ISOLDE with ionization efficiencies in the range of 0.5%-30%. As part of the ongoing RILIS development, recent off-line resonance ionization spectroscopy studies have determined the optimal three-step ionization schemes for yttrium, scandium, and antimony.

  5. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  6. Maskless, resistless ion beam lithography

    International Nuclear Information System (INIS)

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 · Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P+ beam implantation at

  7. Radioactive Ion Beam Development at the Holifield Radioactive Ion Beam Facility

    CERN Document Server

    Stracener, Dan; Beene, James R; Bilheux, Hassina Z; Bilheux, Jean-Christophe; Blackmon, Jeff C; Carter, Ken; Dowling, Darryl; Juras, Raymond; Kawai, Yoko; Kronenberg, Andreas; Liu, Yuan; Meigs, Martha; Müller, Paul; Spejewski, Eugene H; Tatum, A

    2005-01-01

    Radioactive beams are produced at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory using the Isotope Separator On-Line (ISOL) technique. Radioactive nuclei are produced in a thick target via irradiation with energetic light ions (protons, deuterons, helium isotopes) and then post-accelerated to a few MeV/nucleon for use in nuclear physics experiments. An overview of radioactive beam development at the HRIBF will be presented, including ion source development, improvements in the ISOL production targets, and a description of techniques to improve the quality (intensity and purity) of the beams. Facilities for radioactive ion beam development include two ion source test facilities, a target/ion source preparation and quality assurance facility, and an in-beam test facility where low intensity production beams are used. A new test facility, the High Power Target Laboratory, will be available later this year. At this facility, high intensity production beams will be available t...

  8. Recent progress in ion sources

    International Nuclear Information System (INIS)

    This paper is intended to survey recent developments in ion sources, particularly work reported at the ''Symposium on Ion Sources and the Formation of Ion Beams'' held in Berkeley in October 1974. The approach here will be to subdivide this topic into three main areas; briefly list and discuss notable progress in each; and finally add some additional detail through a few specific, selected examples. The major items of progress discussed include development of large-area plasma surfaces for multiple- aperture ion sources, a significant increase in available negative-ion current densities, and improved general agreement between extraction electrode design and performance. (U.S.)

  9. Multiply charged ion beams from solid substances

    International Nuclear Information System (INIS)

    The mVINIS Ion Source has enabled us to obtain multiply charged ion beams from gases as well as from solid materials. The solid substance ion beams were produced by using two techniques: a) the evaporation of metals by using the inlet system based on mini-oven and b) the metal-ions-from volatile-compounds method (MIVOC) by using the modified gas inlet system. In the production of high current stable ion beams of solids with relatively high melting points (over 1000 deg) were made great efforts. The B3+ ion beam current of over 300 μA is one of the most intensive beams extracted until now. The obtained multiply charged ion beam spectra of solid substances (B, Fe and Zn) are presented as well as some of the corresponding experimental results achieved during the modification of polymers, carbon materials and fullerenes. (author)

  10. Reduction of gas flow into a hollow cathode ion source for a neutral beam injector

    International Nuclear Information System (INIS)

    Experimental studies have been made on the reduction of the gas flow rate into ion sources which utilize a hollow cathode. The electron emitter of the hollow cathode was a barium oxide impregnated porous tungsten tube. The hollow cathode was mounted to a circular or a rectangular bucket source and the following results were obtained. There was a tendency for the minimum gas flow rate for the stable source operation to decrease with increasing orifice diameter of the hollow cathode up to 10 mm. A molybdenum button with an appropriate diameter set in front of the orifice reduced the minimum gas flow rate to one half of that without button. An external magnetic field applied antiparallel to the field generated by the heater current stabilized the discharges and reduced the minimum gas flow rate to one half of that without field. Combination of the button and the antiparallel field reduced the minimum gas flow rate from the initial value (9.5 Torr 1/s) to 2.4 Torr 1/s. The reason for these effects was discussed on the basis of the theory for arc starvation

  11. Triplemafios: a multicharged heavy ion source

    International Nuclear Information System (INIS)

    The principle and the characteristics of the ion source 'Triplemafios' are described. We also furnish the upto date performances concerning the ion charge states, ion currents and globale emittances of the beam

  12. Programmable logic controller system in neutral beam injector's ion source test stand

    International Nuclear Information System (INIS)

    Due to the real-time monitoring requirement of field devices in EAST-NBI ion source test stand, this paper introduces a programmable logic controller (PLC) system based on Profibus protocol. The hardware configuration of PLC system can be determined according to the requirement of test stand, a Profibus-DP network with single-master workstation make a distributed I/O system. The PLC system can monitor the field devices' status in real time, exchange data with NBI control system and instruct field devices work stably. In addition, full graphical user interface can realize the visualization of system operation, data storage and display in real-time, which will provide a basis for experimental analysis for physical operator. The whole PLC system is reliable,reproducible, well compatible and scalable, which can be used to monitor and control the field devices in EAST-NBI test stand. (authors)

  13. Pulsed plasma sources for the production of intense ion beams based on catalytic resonance ionization

    International Nuclear Information System (INIS)

    In this paper we describe a technique to produce planar and volumetric ion sources of nearly every element. This technique is based on a generalization of the LIBORS-process (Laser Ionization Based On Resonant Saturation) which because of its similarity to chemical catalytic reactions has been called CATRION (CATalytic Resonance IONization). A vapor containing the desired atomic species is doped with a suitable element processing resonance transitions that can be pumped ro saturation with a laser. By superelastic collisions with the excited atoms and by simulated bremsstrahlung absorption seed electrons are heated. It is the heated electron component which then by collisional processes ionizes the desired atomic species and are multiplied. 41 refs.; 4 figs.; 3 tabs

  14. Production of radioactive ion beams and resonance ionization spectroscopy with the laser ion source at on-line isotope separator ISOLDE

    International Nuclear Information System (INIS)

    Full text: The resonance ionisation laser ion source (RILIS) of the ISOLDE on-line isotope separation facility at CERN is based on the method of laser step-wise resonance ionisation of atoms in a hot metal cavity. Using the system of dye lasers pumped by copper vapour lasers the ion beams of many different metallic elements have been produced at ISOLDE with an ionization efficiency of up to 27%. The high selectivity of the resonance ionization is an important asset for the study of short-lived nuclides produced in targets bombarded by the proton beam of the CERN Booster accelerator. Radioactive ion beams of Be, Mg, Al, Mn, Ni, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Tb, Yb, Tl, Pb and Bi have been generated with the RILIS. Setting the RILIS laser in the narrow line-width mode provides conditions for a high-resolution study of hyperfine structure and isotopic shifts of atomic lines for short-lived isotopes. The isomer selective ionization of Cu, Ag and Pb isotopes has been achieved by appropriate tuning of laser wavelengths

  15. Cold Strontium Ion Source for Ion Interferometry

    Science.gov (United States)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  16. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S.; Goto, I.; Hatayama, A. [Graduate school of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Fukano, A. [Tokyo Metropolitan Collage of Industrial Technology, Higashioi, Shinagawa, Tokyo 140-0011 (Japan)

    2015-04-08

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short.

  17. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    International Nuclear Information System (INIS)

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short

  18. Tool steel ion beam assisted nitrocarburization

    Energy Technology Data Exchange (ETDEWEB)

    Zagonel, L.F. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, Sao Paulo (Brazil)], E-mail: zagonel@ifi.unicamp.br; Alvarez, F. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, Unicamp, 13083-970 Campinas, Sao Paulo (Brazil)

    2007-09-15

    The nitrocarburization of the AISI-H13 tool steel by ion beam assisted deposition is reported. In this technique, a carbon film is continuously deposited over the sample by the ion beam sputtering of a carbon target while a second ion source is used to bombard the sample with low energy nitrogen ions. The results show that the presence of carbon has an important impact on the crystalline and microstructural properties of the material without modification of the case depth.

  19. Tool steel ion beam assisted nitrocarburization

    International Nuclear Information System (INIS)

    The nitrocarburization of the AISI-H13 tool steel by ion beam assisted deposition is reported. In this technique, a carbon film is continuously deposited over the sample by the ion beam sputtering of a carbon target while a second ion source is used to bombard the sample with low energy nitrogen ions. The results show that the presence of carbon has an important impact on the crystalline and microstructural properties of the material without modification of the case depth

  20. Experiments of synchrotron injection using the direct fast chopped H- beam extracted from surface-plasma-type negative hydrogen ion source

    International Nuclear Information System (INIS)

    An experiment of synchrotron injection using the direct fast chopped H- beam extracted from a surface-plasma-type H- ion source has been successfully achieved. The injection phase of the fast chopped beam from linac into the booster synchrotron is adjustable against the center of rf bucket by using this beam. It was obtained that the longitudinal emittance was controlled at the extraction of the booster synchrotron, and that the beam loss during the injection into main ring of the KEK-PS was reduced by this fast chopped beam. (author)

  1. Note: Effect of hot liner in producing 40,48Ca beam from RIKEN 18-GHz electron cyclotron resonance ion source

    Science.gov (United States)

    Ozeki, K.; Higurashi, Y.; Kidera, M.; Nakagawa, T.

    2015-01-01

    In order to produce a high-intensity and stable 48Ca beam from the RIKEN 18-GHz electron cyclotron resonance ion source, we have begun testing the production of a calcium beam using a micro-oven. To minimize the consumption rate of the material (48Ca), we introduced the "hot liner" method and investigated the effect of the liner on the material consumption rate. The micro-oven was first used to produce the 48Ca beam for experiments in the RIKEN radioisotope beam factory, and a stable beam could be supplied for a long time with low consumption rate.

  2. Simulation studies for ion beam extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, M.M.; Zakhary, S.G. [Atomic Energy, Cairo (Egypt). Nuclear Research Center. Accelerators and Ion Sources Dept.], e-mail: moustafa82003@yahoo.com

    2009-06-15

    The characteristics of the ion beam extracted from an ion sources were investigated using computer code SIMION 3 D Version 7.0. It has been used to evaluate the extraction system in order to produce an ion beam with high current and low beam emittance. The results show that the shape of the extraction electrode plays an important role in ion beam formation. Comparison has been made between two extraction systems, Pierce extraction electrode and spherical extraction electrode. The results show that the spherical extraction system yields ion extraction beam with lower emittance and radius than that the Pierce system. The simulation can provide the basis for optimizing the extraction system and the acceleration gap for ion source. (author)

  3. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A.; Hiratsuka, J. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2016-02-15

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  4. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    Science.gov (United States)

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.; Hiratsuka, J.

    2016-02-01

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  5. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    International Nuclear Information System (INIS)

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result

  6. Production of electron cyclotron resonance plasma by using multifrequencies microwaves and active beam profile control on a large bore electron cyclotron resonance ion source with permanent magnets

    International Nuclear Information System (INIS)

    A new concept on magnetic field with all magnets on plasma production and confinement has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure. The magnetic field configuration is constructed by a pair of magnets assembly, i.e., comb-shaped magnet which cylindrically surrounds the plasma chamber. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequencies are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds. It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequencies microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.

  7. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    Energy Technology Data Exchange (ETDEWEB)

    Segal, M. J., E-mail: mattiti@gmail.com [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); University of Cape Town, Rondebosch, Cape Town 7700 (South Africa); Bark, R. A.; Thomae, R. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A. [Joint Institute for Nuclear Research, Joloit-Curie 6, 141980 Dubna, Moscow Region (Russian Federation)

    2016-02-15

    An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.

  8. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    Science.gov (United States)

    Segal, M. J.; Bark, R. A.; Thomae, R.; Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A.

    2016-02-01

    An assembly for a commercial Ga+ liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga+ ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga+ and Au+ ion beams will be reported as well.

  9. Recent progress in ion sources and preaccelerators

    International Nuclear Information System (INIS)

    Recent progress in ion sources is reviewed. The types of sources discussed include positive and negative proton and deuteron sources developed for conventional preaccelerators and for neutral beam applications. Positive heavy ion sources for conventional linacs and for induction linacs are included. Negative heavy ion sources are used for tandem electrostatic accelerators. Positive and negative polarized ion sources for protons and deuterons inject cyclotrons, tandems, and linacs. Some recent preaccelerator designs are summarized

  10. Ion-beam nitriding of steels

    Science.gov (United States)

    Salik, Joshua (Inventor); Hubbell, Theodore E. (Inventor)

    1987-01-01

    A surface of a steel substrate is nitrided without external heating by exposing it to a beam of nitrogen ions under low pressure, a pressure much lower than that employed for ion-nitriding. An ion source is used instead of a glow discharge. Both of these features reduce the introduction of impurities into the substrate surface.

  11. Detailed beam and plasma measurements on the vessel for extraction and source plasma analyses (VESPA) Penning H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, S. R., E-mail: scott.lawrie@stfc.ac.uk [STFC ISIS Pulsed Spallation Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell, Oxford (United Kingdom); John Adams Institute of Accelerator Science, University of Oxford, Oxford (United Kingdom); Faircloth, D. C.; Letchford, A. P.; Whitehead, M. O.; Wood, T. [STFC ISIS Pulsed Spallation Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell, Oxford (United Kingdom)

    2016-02-15

    A vessel for extraction and source plasma analyses (VESPA) is operational at the Rutherford Appleton Laboratory (RAL). This project supports and guides the overall ion source R&D effort for the ISIS spallation neutron and muon facility at RAL. The VESPA produces 100 mA of pulsed H{sup −} beam, but perveance scans indicate that the source is production-limited at extraction voltages above 12 kV unless the arc current is increased. A high resolution optical monochromator is used to measure plasma properties using argon as a diagnostic gas. The atomic hydrogen temperature increases linearly with arc current, up to 2.8 eV for 50 A; whereas the electron temperature has a slight linear decrease toward 2.2 eV. The gas density is 10{sup 21} m{sup −3}, whilst the electron density is two orders of magnitude lower. Densities follow square root relationships with arc current, with gas density decreasing whilst electron (and hence ion) density increases. Stopping and range of ions in matter calculations prove that operating a high current arc with an argon admixture is extremely difficult because cathode-coated cesium is heavily sputtered by argon.

  12. Characteristics of 6.5 GHz ECR ion source for polarized H- ion source

    International Nuclear Information System (INIS)

    A 6.5 GHz ECR (electron cyclotron resonance) ion source has been developed for optically pumped polarized H- ion source at KEK. The properties of this ECR ion source such as beam intensities, proton ratios, plasma electron temperatures and beam emittances were measured. (author)

  13. Results from E-Mevva and Z-Mevva: Development of new sources of intense high charge state heavy-ion beams

    International Nuclear Information System (INIS)

    The authors are exploring a new approach for heavy ion beam injection (e.g., into the Relativistic Heavy Ion Collider (RHIC) at BNL), as well as new sources of intense high charge state ions to be mounted on a relatively low voltage platform for high energy ion implantation. While conventional Metal Vapor Vacuum Arc (Mevva) ion sources can produce up to hundreds of milliamps or more of several-times-ionized metal ions (e.g., U3+), the recent results from Batalin et al. indicate that the addition of an energetic electron beam (E-Mevva) may lead to considerably higher charge states. An alternative way to produce the electron beam is Z-Mevva, in which a z-discharge plasma is used to enhance multiple ionization. As the vacuum arc plasma plume expands into a magnetized drift region, a z-discharge is triggered in the drifting metal plasma. The ions are then extracted and analyzed using a time-of-flight system. The authors report initial results using these schemes with applied discharge and electron beam voltages from 1 to 2 kV

  14. Schemes and Optimization of Gas Flowing into the Ion Source and the Neutralizer of the DIII-D Neutral Beam Systems

    International Nuclear Information System (INIS)

    Performance comparisons of a DIII-D neutral beam ion source operated with two different schemes of supplying neutral gas to the arc chamber were performed. Superior performance was achieved when gas was puffed into both the arc chamber and the neutralizer with the gas flows optimized as compared to supplying gas through the neutralizer alone. To form a neutral beam, ions extracted from the arc chamber and accelerated are passed through a neutralizing cell of gas. Neutral gas is commonly puffed into the neutralizing cell to supplement the residual neutral gas from the arc chamber to obtain maximum neutralization efficiency. However, maximizing neutralization efficiency does not necessarily provide the maximum available neutral beam power, since high levels of neutral gas can increase beam loss through collisions and cause larger beam divergence. Excessive gas diffused from the neutralizer into the accelerator region also increases the number of energetic particles (ions and secondary electrons from the accelerator grid surfaces) deposited on the accelerator grids, increasing the possibility of overheating. We have operated an ion source with a constant optimal gas flow directly into the arc chamber while gas flow into the neutralizer was varied. Neutral beam power available for injecting into plasmas was obtained based on the measured data of beam energy, beam current, beam transmission, beam divergence, and neutralization efficiency for various neutralizer gas flow rates. We will present the results of performance comparison with the two gas puffing schemes, and show steps of obtaining the maximum available beam power and determining the optimum neutralizer gas flow rate

  15. The DCU laser ion source

    OpenAIRE

    Yeates, Patrick; Costello, John T.; Kennedy, Eugene T.

    2010-01-01

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I ∼ 108–1011 W cm−2) and fluences (F = 0.1–3....

  16. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  17. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    International Nuclear Information System (INIS)

    Under the auspices of the research grant, the Intense Beam Theoretical Research Group at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; (c) Development of elliptic beam theory; and (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX)

  18. Desing and construction of a horizontally placed superconducting magnet and its cryostat for an electron beam ion source

    International Nuclear Information System (INIS)

    An electron beam ion source nicknamed NICE-I (Naked Ion Collision Experiments) has been constructed at IPP for studies of atomic processes in fusion plasmas. A super conducting magnet is adopted to generate a strong, stable and homogenious magnetic field to compress a high density electron beam. The solenoid is 1 m long, the inner diameter is 100 mm and the maximum magnetic field is 2T. It is placed horizontally and coaxially with a liquid nitrogen (L-N2) reservoir and a vaccum vessel. In order to fix their axes inmovable even when the reservoirs are cooled by L-N2 and He, a structure having spokes strained uniformly like a wheel is used between the vaccum vessel and the L-N2 reservoir and also between the L-N2 reservoir and the solenoid bore. The electrodes, such as the electron gun, the drift tubes and so on, are mounted on the radiation shields fixed on the L-N2 reservoir, and they are centered to the solenoid bore within the precision of 0.1 mm. The evapolation rate of L-He is about 1.4 l/h, which is not so much larger than the estimated value. This provides a continuous operation for 16 hours with a charge of 50 l L-He including the precooling of the reservoir. The ultimate pressure 4 x 10-10 Torr is achived in the vacuum vessel, and the residual gas pressure in the ionization region is expected to be much lower than 1 x 10-10 Torr. The consideration for mechanical strength and the heat conduction of the materials related to the design are described as well as the details of the structure. (author)

  19. Dielectric barrier discharge source for supersonic beams

    Energy Technology Data Exchange (ETDEWEB)

    Luria, K.; Lavie, N.; Even, U. [Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2009-10-15

    We present a new excitation source for pulsed supersonic beams. The excitation is based on dielectric barrier discharge in the beam. It produces cold beams of metastable atoms, dissociated neutral atoms from molecular precursors, and both positive and negative ions with high efficiency and reliability.

  20. PREFACE: The ninth International Symposium on Electron Beam Ion Sources and Traps and Their Applications, 15 17 April 2004

    Science.gov (United States)

    Nakamura, Nobuyuki; Ohtani, Shunsuke

    2004-01-01

    The ninth International Symposium on Electron Beam Ion Sources and Traps and Their Applications — EBIS/T 2004 was held at the Tokyo Metropolitan University (TMU), 15-17 April 2004. There were about 40 participants and about 30 papers presented. The meeting has shown the remarkable progress in science and technology with the EBIS/T machines. In this meeting, besides the normal presentations related to the EBIS/T works, a special session was organized on the last day which was dedicated to Professors N Kobayashi and K Okuno, who have contributed to the EBIS/T development and to the physics of highly charged ions (HCI), to mark their retirement from the TMU in March 2004. In the evening of the first day, there was a laboratory tour where the participants enjoyed seeing the Tokyo EBIT facility and also a beer party in a small hall next to the laboratory. The banquet was held in a traditional Japanese restaurant in a village under Mt Takao with the Japanese meals and performances, after seeing the HCI-research activities in the TMU. The next EBIS/T symposium will be held in Heidelberg in the summer of 2007 as a satellite meeting of XXV ICPEAC. We are looking forward to the next exciting meeting there. Finally, we thank all of TMU staffs and students for their help during the meeting.

  1. Hollow cathode hydrogen ion source

    International Nuclear Information System (INIS)

    High current density ion sources have been used to heat plasmas in controlled thermonuclear reaction experiments. High beam currents imply relatively high emission currents from cathodes which have generally taken the form of tungsten filaments. This paper describes a hydrogen ion source which was primarily developed to assess the emission current capability and design requirements for hollow cathodes for application in neutral injection devices. The hydrogen source produced ions by electron bombardment via a single hollow cathode. Source design followed mercury ion thruster technology, using a weak magnetic field to enhance ionization efficiency. A 1.3-cm diameter hollow cathode using a low work function material dispenser performed satisfactorily over a discharge current range of 10 to 90 A. Cylindrical probe measurements taken without ion extraction indicate maximum ion number densities on the order of 1012 cm-3. Discharge durations ranged from 30 seconds to continuous operation. Tests with beam extraction at 2.5 keV and 30 A discharge current yield average ion beam current densities of 0.1 A cm-2 over a 5-cm extraction diameter. Results of this study can be used to supply the baseline information needed to scale hollow cathodes for operation at discharge currents of hundreds of amperes using distributed cathodes

  2. Applications of ion beams

    International Nuclear Information System (INIS)

    Charged particle accelerator was invented almost seven decades ago with the primary purpose to break the atomic nucleus. The broader inspiration, however, was to understand the structure of matter and the nature around us. Since then the accelerators have evolved enormously in terms of types, intricacies and sizes. They continue to play, primarily, the same role now also but have necessitated, over the years, invention and development of a large number of technologies that are being driven to cutting edge to meet the demands of scientists to carry their researches to unprecedented frontiers in various branches of science. While the first ever accelerator was built to break a 'simple' nucleus of lithium atom, the accelerators of today are trying to recreate the 'big bang' in the laboratory. They have been serving the scientists over the decades to discover new particles and fields. Charged particle accelerators are very commonly used to generate secondary beams for basic research and applications. The secondary beams include neutrons, antiprotons, mesons, neutrinos etc. In view of the experimentalists needs, accelerators have been developed both for electrons as well as ions. While the basic technologies do not differ much, the two varieties offer their own challenges. For each variety, the accelerator can be of linear type or circular type. Generally, a given accelerator accelerates either electrons or ions. In this report we shall be concerned only with the ion accelerators - more specifically about their applications. The accelerators most commonly used to accelerate ions are Cockroft Walton accelerator, Radio Frequency Quadrupole (RFQ) accelerator, Van-de- Graaff accelerator, linear accelerator (linac), cyclotron and synchrotron. In many situations they may operate in combination and, rarely, there exists hybrid variety also. (author)

  3. A 915 MHz/2.45 GHz ECR plasma source for large area ion beam and plasma processing

    International Nuclear Information System (INIS)

    The technology for producing uniform, high density (1011--1012/cm3) microwave discharges over cross sections of 50 cm2 is well established. The present challenge is to extend the high density, and electrodeless benefits of microwave discharges to produce uniform densities over an area of 300--700 cm2. Such discharges have important applications for 6 to 8-in. single wafer processing and as large surface, broad beam, high current density ion sources. The design principles for scaling the 18 cm diam MPDR ECR cavity applicator technology to 38--47 cm diam are reviewed. Microwave discharges with diameters of 20--30 cm can be created when these applicators are excited with either 2.45 GHz or 915 MHz. The design and construction of a prototype cavity applicator with a 20 cm diam discharge is described. The discharge is enclosed with a 12-pole multicusp static magnetic field produced by 2-in. by 2-in. by 1-in. rare-earth magnets. Each magnet has a pole face field strength of 3 kG. The experimental test of this plasma source in argon gas excited with 2.45 GHz energy is reviewed

  4. Radioactive ion beams at SPIRAL

    International Nuclear Information System (INIS)

    The radioactive ion beam facility SPIRAL, presently under construction, will be based on the very high intensity heavy-ion beams (96AMeV at 6kW from He to Ar) at GANIL, France. The facility will produce radioactive ion beams using the ISOL method and a permanent magnet ECRIS which will allow for the production of multiple charged radioactive ions. The beam will be accelerated by a K=265 compact cyclotron and delivered into the existing experimental areas. The first tests for the production of radioactive ion beams have been undertaken with the test bench separator SIRa. A description of the facility, including the first results for the production of radioactive ion beams and perspectives are given. ((orig.))

  5. Radioactive ion beams at Spiral

    International Nuclear Information System (INIS)

    The radioactive ion beam facility SPIRAL, presently under construction, will be based on the very high intensity heavy-ion beams (96A MeV at 6kW from He to Ar) at GANIL, France. The facility will produce radioactive ion beams using the ISOL method and a permanent magnet ECRIS which will allow for the production of multiple charged radioactive ions. The beam will be accelerated by a K = 265 compact cyclotron and delivered into the existing experimental areas. The first tests for the production of radioactive ion beams has been undertaken with the test bench separator SIRa. A description of the facility, including the first results for the production of radioactive ion beams and perspectives are given. (authors). 10 refs., 3 figs., 1 tab

  6. Synthetic plasma ion source

    International Nuclear Information System (INIS)

    An improved crossed-beam charge-exchange ion gun in which a synthetic plasma is formed by injecting an electron beam into a collimated molecular beam just before the molecules are ionized by charge exchange with a crossed primary ion beam, thereby forming a secondary ion beam from the ionized but space-charge-neutralized and substantially undeflected molecular beam. The plasma thus formed extends to an aperture stop in an aperture tube which extends upstream from an anode downstream of which anode a cathode is placed. A field is formed within the cathode/anode space and within the aperture tube into which the plasma extends. The sheath edge of the plasma within the tube is curved by the field to form a meniscus, and the aperture, being smaller in area than the secondary ion beam upstream of the aperture, both collimates the secondary ion beam and acts as a lens stop for the subsequent immersion lens formed by the meniscus and the field region

  7. Intense Pulsed Heavy Ion Beam Technology

    Science.gov (United States)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  8. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  9. Nitriding of titanium and titanium: 8 percent aluminum, 1 percent molybdenum, 1 percent vanadium alloy with an ion-beam source

    Science.gov (United States)

    Gill, A.

    1983-01-01

    Titanium and Ti-8Al-1Mo-1V alloy were nitrided with an ion-beam source of nitrogen or argon and nitrogen at a total pressure of 2 x 10 to the minus 4th power to 10 x 10 to the minus 4th power torr. The treated surface was characterized by surface profilometry, X-ray diffractometry, Auger electron spectroscopy and microhardness measurements. The tetragonal Ti2N phase formed in pure titanium and Ti-8Al-1Mo-1V alloy with traces of AlN in the alloy. Two opposite processes competed during the ion-beam-nitriding process: (1) formation of nitrides in the surface layer and (2) sputtering of the nitrided layers by the ion beam. The highest surface hardnesses, about 500 kg/sq mm in titanium and 800 kg/sq mm in Ti-8Al-1Mo-1V, were obtained by ion nitriding with an ion beam of pure nitrogen at 4.2 x 10 to the minus 4th power torr at a beam voltage of 1000 V.

  10. The DCU laser ion source

    International Nuclear Information System (INIS)

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I∼108-1011 W cm-2) and fluences (F=0.1-3.9 kJ cm-2) from a Q-switched ruby laser (full-width half-maximum pulse duration ∼35 ns, λ=694 nm) were used to generate a copper plasma. In ''basic operating mode,'' laser generated plasma ions are electrostatically accelerated using a dc HV bias (5-18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I∼600 μA for Cu+ to Cu3+ ions were recorded. The maximum collected charge reached 94 pC (Cu2+). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a ''continuous einzel array'' were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at ''high pressure.'' In ''enhanced operating mode,'' peak currents of 3.26 mA (Cu2+) were recorded. The collected currents of more highly charged ions (Cu4+-Cu6+) increased considerably in this mode of operation.

  11. The DCU laser ion source.

    Science.gov (United States)

    Yeates, P; Costello, J T; Kennedy, E T

    2010-04-01

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I approximately 10(8)-10(11) W cm(-2)) and fluences (F=0.1-3.9 kJ cm(-2)) from a Q-switched ruby laser (full-width half-maximum pulse duration approximately 35 ns, lambda=694 nm) were used to generate a copper plasma. In "basic operating mode," laser generated plasma ions are electrostatically accelerated using a dc HV bias (5-18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I approximately 600 microA for Cu(+) to Cu(3+) ions were recorded. The maximum collected charge reached 94 pC (Cu(2+)). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a "continuous einzel array" were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at "high pressure." In "enhanced operating mode," peak currents of 3.26 mA (Cu(2+)) were recorded. The collected currents of more highly charged ions (Cu(4+)-Cu(6+)) increased considerably in this mode of operation

  12. Candlestick rubidium beam source

    Science.gov (United States)

    Walkiewicz, M. R.; Fox, P. J.; Scholten, R. E.

    2000-09-01

    We describe a long-lived, bright and intense rubidium atomic beam source based on a previously published recirculating candlestick design for sodium, with several modifications and enhancements. The device operates for thousands of hours without maintenance, with brightness of 1.9×1022 m-2 s-1 sr-1.

  13. Negative ion beam extraction in ROBIN

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Gourab, E-mail: bansal@ipr.res.in [Institute for Plasma Research (IPR), Bhat, Gandhinagar, Gujarat 382428 (India); Gahlaut, Agrajit; Soni, Jignesh; Pandya, Kaushal; Parmar, Kanu G.; Pandey, Ravi; Vuppugalla, Mahesh; Prajapati, Bhavesh; Patel, Amee; Mistery, Hiren [Institute for Plasma Research (IPR), Bhat, Gandhinagar, Gujarat 382428 (India); Chakraborty, Arun; Bandyopadhyay, Mainak; Singh, Mahendrajit J.; Phukan, Arindam; Yadav, Ratnakar K.; Parmar, Deepak [ITER-India, Institute for Plasma Research, A-29, Sector 25, GIDC, Gandhinagar, Gujarat 380025 (India)

    2013-10-15

    Highlights: ► A RF based negative hydrogen ion beam test bed has been set up at IPR, India. ► Ion source has been successfully commissioned and three campaigns of plasma production have been carried out. ► Extraction system (35 kV) has been installed and commissioning has been initiated. Negative ion beam extraction is immediate milestone. -- Abstract: The RF based single driver −ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 10{sup 12} cm{sup −3} is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm{sup 2} as observed in BATMAN. In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 10{sup 11} cm{sup −3} has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated.

  14. Potential biomedical applications of ion beam technology

    Science.gov (United States)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  15. Potential biomedical applications of ion beam technology

    Science.gov (United States)

    Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.

  16. Laser ion source with solenoid field

    International Nuclear Information System (INIS)

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator

  17. Laser ion source with solenoid field

    Science.gov (United States)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  18. MIVOC method at the mVINIS ion source

    OpenAIRE

    Jovović Jovica; Cvetić Jovan; Dobrosavljević Aleksandar; Nedeljković Tanja; Jovanović Biljana; Draganić Ilija

    2007-01-01

    Based on the metal-ions-from-volatile-compounds (MIVOC) method with the mVINIS ion source, we have produced multiply charged ion beams from solid substances. Highly in tense, stable multiply charged ion beams of several solid substances with high melting points were extracted by using this method. The spectrum of multiply charged ion beams obtained from the element hafnium is presented here. For the first time ever, hafnium ion beam spectra were recorded at an electron cyclotron resonance ion...

  19. The RHIC polarized H⁻ ion source.

    Science.gov (United States)

    Zelenski, A; Atoian, G; Raparia, D; Ritter, J; Steski, D

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H(-) ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H(-) ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC. PMID:26932068

  20. The RHIC polarized H- ion source

    Science.gov (United States)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D.

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H- ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H- ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  1. Using the Orbit Tracking Code Z3CYCLONE to Predict the Beam Produced by a Cold Cathode PIG Ion Source for Cyclotrons under DC Extraction

    CERN Document Server

    Forringer, Edward

    2005-01-01

    Experimental measurements of the emittance and luminosity of beams produced by a cold-cathode Phillips Ionization Guage (PIG) ion source for cyclotrons under dc extraction are reviewed. (The source being studied is of the same style as ones that will be used in a series of 250 MeV proton cyclotrons being constructed for cancer therapy by ACCEL Inst, Gmbh, of Bergisch Gladbach, Germany.) The concepts of 'plasma boundary' and 'plasma temperature' are presented as a useful set of parameters for describing the initial conditions used in computational orbit tracking. Experimental results for r-pr and z-pz emittance are compared to predictions from the MSU orbit tracking code Z3CYCLONE with results indicating that the code is able to predict the beam produced by these ion sources with adequate accuracy such that construction of actual cyclotrons can proceed with reasonably prudent confidence that the cyclotron will perform as predicted.

  2. Ion Beam Modification of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

    2005-10-10

    This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

  3. Intense non-relativistic cesium ion beam

    International Nuclear Information System (INIS)

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm

  4. Development of a high brightness ion source

    International Nuclear Information System (INIS)

    The brightness and emittance of an ion beam can depend on the ion temperature, aberrations and scattering, as well as other factors. However, it is the ion temperature which determines the irreducible minimum value of the emittance and hence brightness, as the other components can be eliminated by careful design. An ion source design is presented which has attained this minimum value for the emittance; the dependence of the ion temperature on the plasma source parameters is discussed

  5. Experimental study of the dependence of beam current on injection magnetic field in 6.4 GHz ECR ion source

    Indian Academy of Sciences (India)

    G S Taki; P R Sarma; D K Chakraborty; R K Bhandari; P K Ray

    2006-09-01

    The ion current from an electron cyclotron resonance (ECR) heavy ion source depends on the confining axial and radial magnetic fields. Some efforts were made by earlier workers to investigate magnetic field scaling on the performance of the ECR source. In order to study the dependence of the ion current on the injection magnetic field in the 6.4 GHz ECR source, we have measured the current by varying the peak injection field and have inferred that the variation of the current is exponential up to our maximum design injection field of 7.5 kG. An attempt has been made to understand this exponential nature on the basis of ion confinement time.

  6. High-charge-state ion sources

    International Nuclear Information System (INIS)

    Sources of high charge state positive ions have uses in a variety of research fields. For heavy ion particle accelerators higher charge state particles give greater acceleration per gap and greater bending strength in a magnet. Thus higher energies can be obtained from circular accelerators of a given size, and linear accelerators can be designed with higher energy gain per length using higher charge state ions. In atomic physics the many atomic transitions in highly charged ions supplies a wealth of spectroscopy data. High charge state ion beams are also used for charge exchange and crossed beam experiments. High charge state ion sources are reviewed

  7. Ion Sources for MedAustron

    CERN Document Server

    Lettry, J; Wallner, J; Sargsyan, E; CERN. Geneva. BE Department

    2010-01-01

    The MedAustron Ion therapy center will be constructed in Wiener Neustadt (Austria) in the vicinity of Vienna. Its accelerator complex consists of four ion sources, a linear accelerator, a synchrotron and a beam delivery system to the three medical treatment rooms and to the research irradiation room. The ion sources shall deliver beams of H31+, C4+ and light ions with utmost reliability and stability. This paper describes the features of the ion sources presently planned for the MedAustron facility; such as ion source main parameters, gas injection, temperature control and cooling systems. A dedicated beam diagnostics technique is proposed in order to characterize ECR ions beams; in the first drift region after the ion source, a fraction of the mixed beam is selected via moveable aperture. With standard beam diagnostics, we then aim to produce position-dependant observables such as ion-current density, beam energy distribution and emittance for each charge states to be compared to simulations of ECR e-heating...

  8. Micromachining using focused ion beams

    International Nuclear Information System (INIS)

    Focused ion beam (FIB) systems prove to be useful precision micromachining tools for a wide variety of applications. This micromachining technique includes scanning ion microscopy (SIM), micromachining by physical sputtering, and the ion-beam induced surface chemistry for etching and deposition. This technique is applied to image and modify IC's, to micromechanical applications, to modify the tip shape of tungsten emitters, and to prepare cross sections of selected regions for inspection in a transmission electron microscope (TEM). (orig.)

  9. Ion sources for RFQ accelerators and for cyclotrons

    International Nuclear Information System (INIS)

    Ion sources used in conjunction with low energy accelerators, either RF quadrupole linacs or small cyclotrons, are reviewed. The topics covered include low energy accelerators used as injectors to larger accelerators, ion sources for low and medium currents of heavy ions, high-current heavy ion sources, ion sources for pulsed high currents of light ions, and new developments in ion sources such as beams of radioactive ions

  10. Studies for the development of a micro-focus monochromatic x-ray source with making use of a highly charged heavy ion beam

    International Nuclear Information System (INIS)

    We propose a new scheme for a micro-focus monochromatic X-ray source using a focused highly charged ion beam colliding with a solid surface. When highly charged ion approaches a surface, many electrons are captured into the ion and the so-called hollow atom is produced. The hollow atom will decay by emitting X-rays before and after hitting the surface. Such X-rays do not contain any contribution from bremsstrahlung, so that monochromatic X-rays can be obtained by using proper filters. For the first step of realizing the proposed scheme, an ion focusing system with a glass capillary has been developed. In order to study the monochromaticity of the emission, X-ray spectra from hollow atoms produced in the collisions between highly charged heavy ions and several surfaces have been observed. (author)

  11. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S., E-mail: nishioka@ppl.appi.keio.ac.jp; Goto, I.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [School of Natural and Living Sciences Education, Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Fukano, A. [Toshiba, 33 Isogo-chou, Isogo-ku, Yokohama-shi, Kanagawa 235-001 (Japan)

    2014-02-15

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.

  12. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    International Nuclear Information System (INIS)

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result

  13. Neutral beam production using negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B. Jr.

    1978-06-14

    Techniques for producing intense negative ion beams are discussed. These beams are required for intense neutral beam development at energies greater than 150 keV. Handling, acceleration, and stripping of negative ion beams are described.

  14. MIVOC method at the mVINIS ion source

    Directory of Open Access Journals (Sweden)

    Jovović Jovica

    2007-01-01

    Full Text Available Based on the metal-ions-from-volatile-compounds (MIVOC method with the mVINIS ion source, we have produced multiply charged ion beams from solid substances. Highly in tense, stable multiply charged ion beams of several solid substances with high melting points were extracted by using this method. The spectrum of multiply charged ion beams obtained from the element hafnium is presented here. For the first time ever, hafnium ion beam spectra were recorded at an electron cyclotron resonance ion source. Multiply charged ion beams from solid substances were used to irradiate the polymer, fullerene and glassy carbon samples at the channel for the modification of materials.

  15. Development of ion/proton beam equipment for industrial uses

    International Nuclear Information System (INIS)

    KAERI has possessed design and fabrication technologies of various ion sources including Duoplasmatron and DuoPiGatron developed by R and D projects of the long-term nuclear technology development program. In order to industrialize ion beam equipments utilizing these ion sources, a technology transfer project for a technology transfer project for a domestic firm has been performed. Under this project, engineers of the firm have been trained through classroom lectures of ion beam principles and OJT, an ion/proton beam equipment (DEMO equipment) has been designed, assembled and commissioned jointly with the engineers. Quality of the ion sources has been quantified, and technologies for ion beam equipment construction, functional test and application research have been developed. The DEMO equipment, which consists of an ion source, power supplies, vacuum, cooling and target systems, has been fabricated and tested to secure stability and reliability for industrial uses. Various characteristic tests including high voltage insulation, beam extraction, beam current measuring, etc. have been performed. This DEMO can be utilized for ion sources development as well as ion beam process development for various industrial products. Engineers of the firm have been trained for the industrialization of ion beam equipment and joined in beam application technology development to create industrial needs of beam equipment. (author)

  16. Development of ion/proton beam equipment for industrial uses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ho; Lee, J. H.; Cho, Y. S.; Joo, P. K.; Kang, S. S.; Song, W. S.; Kim, H. J.; Chang, G. H.; Bang, S. W

    1999-12-01

    KAERI has possessed design and fabrication technologies of various ion sources including Duoplasmatron and DuoPiGatron developed by R and D projects of the long-term nuclear technology development program. In order to industrialize ion beam equipments utilizing these ion sources, a technology transfer project for a technology transfer project for a domestic firm has been performed. Under this project, engineers of the firm have been trained through classroom lectures of ion beam principles and OJT, an ion/proton beam equipment (DEMO equipment) has been designed, assembled and commissioned jointly with the engineers. Quality of the ion sources has been quantified, and technologies for ion beam equipment construction, functional test and application research have been developed. The DEMO equipment, which consists of an ion source, power supplies, vacuum, cooling and target systems, has been fabricated and tested to secure stability and reliability for industrial uses. Various characteristic tests including high voltage insulation, beam extraction, beam current measuring, etc. have been performed. This DEMO can be utilized for ion sources development as well as ion beam process development for various industrial products. Engineers of the firm have been trained for the industrialization of ion beam equipment and joined in beam application technology development to create industrial needs of beam equipment. (author)

  17. Applications of heavy-negative-ion sources for materials science (invited)

    OpenAIRE

    Ishikawa, Junzo

    2000-01-01

    Applications of heavy negative ions produced by sputter-type negative-ion sources for materials science are reviewed. Submilliampere and milliampere heavy-negative-ion beams can be produced by a neutral- and ionized-alkaline–metal-bombardment-type heavy-negative-ion source and rf plasma sputter-type negative-ion sources, respectively. These negative-ion beams can be applied for materials processing such as ion implantation, ion beam etching, and ion beam deposition. In negative-ion implantati...

  18. Longitudinal compression of ion beams

    International Nuclear Information System (INIS)

    This paper examines the longitudinal compression of ion beams which is necessary in some designs of drivers intended to realize inertial thermonuclear fusion by heavy ions. Taking space-charge forces in the beams into account, two compression schemes are investigated: the first preserves the longitudinal phase-space area of the beams, and the second allows an increase of the phase-space area. The compression-system parameters are optimized for an example of a driver for inertial thermonuclear fusion by heavy ions with an energy of 10 MJ and with a pulse length of 25 ns on the target

  19. Ion sources for high-power hadron accelerators

    OpenAIRE

    Faircloth, Dan

    2013-01-01

    Ion sources are a critical component of all particle accelerators. They create the initial beam that is accelerated by the rest of the machine. This paper will introduce the many methods of creating a beam for high-power hadron accelerators. A brief introduction to some of the relevant concepts of plasma physics and beam formation is given. The different types of ion source used in accelerators today are examined. Positive ion sources for producing H+ ions and multiply charged heavy ions are ...

  20. Ion optics in an ion source system

    International Nuclear Information System (INIS)

    An analysis of ion beams from an ion source which consisted of a hemispherical anode, a plane earthed cathode, and a focusing electrode has been carried out. The focal properties of such electrode arrangement were studied using axially symmetric fields. Axial and radial electric fields were obtained as functions of the axial distance. It was found that the radial component of the gradient of potential pushes the ions towards the axis, which indicates the convergent action of the system. The effect of voltage variation between the boundary and the focusing electrode on the position of the plasma boundary are given using the experimental data of the ion source characteristics and its geometrical parameters. The advantages of plasma diffusing outside the source through a small aperture were used by applying a potential to the focusing electrode. It was possible to extract a large ion current from the expanded plasma. The system constituted a lens with a focal length of 29.4 mm. 7 figs

  1. Holifield Radioactive Ion Beam Facility Status

    International Nuclear Information System (INIS)

    The Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL) produces high-quality beams of short-lived radioactive isotopes for nuclear science research, and is currently unique worldwide in the ability to provide neutron-rich fission fragment beams post-accelerated to energies above the Coulomb barrier. HRIBF is undergoing a multi-phase upgrade. Phase I (completed 2005) was construction of the High Power Target Laboratory to provide the on-going Isotope Separator On-Line (ISOL) development program with a venue for testing new targets, ion sources, and radioactive ion beam (RIB) production techniques with high-power beams. Phase II, which is on schedule for completion in September 2009, is the Injector for Radioactive Ion Species 2 (IRIS2), a second RIB production station that will improve facility reliability and accommodate new ion sources, new RIB production targets, and some innovative RIB purification techniques, including laser applications. The Phase III goal is to substantially improve facility performance by replacing or supplementing the Oak Ridge Isochronous Cyclotron (ORIC) production accelerator with either a high-power 25-50 MeV electron accelerator or a high-current multi-beam commercial cyclotron. Either upgrade is applicable to R and D on isotope production for medical or other applications.

  2. Negative ion based neutral beam injector for JT-60U

    Science.gov (United States)

    Okumura, Y.; Araki, M.; Hanada, M.; Inoue, T.; Kunieda, S.; Kuriyama, M.; Matsuoka, M.; Mizuno, M.; Ohara, Y.; Tanaka, M.; Watanabe, K.

    1992-10-01

    A 500 keV, 10 MW neutral beam injector is to be constructed in JT-60 Upgrade for the experiments of current drive and heating of heat density core plasmas. This is the first neutral beam injector in the world using negative ions as the primary ions. In the design, D- ion beams of 44 A, 500 keV are produced by two ion sources (22 A/each ion source) and neutralized in a long gas neutralizer. The total system efficiency is about 40%. The ion source is a cesium-seeded multicusp volume source having a three stage electrostatic accelerator. To reduce the stripping loss of D- ions in the accelerator, the ion source should be operated at a low pressure of 0.3 Pa with a current density of 13 mA/cm2. The first test of the full-size negative ion source is scheduled from middle of 1993.

  3. Development of ion sources for implantation technology

    International Nuclear Information System (INIS)

    Ion implantation for modification of surface properties of large areas requires ion sources of a particular type. The sources must be capable of producing rather high currents within somewhat poor vacuum conditions. Two types of source are typically used, the glow discharge and the vacuum arc. This paper describes both types. The glow discharge source has a low discharge voltage to minimize beam contamination from metal ions sputtered from the source chamber. To maintain the discharge, electrons are injected from outside the source chamber. The glow discharge source will generate up to 20 mA beam currents. The vacuum arc sources have the advantage of producing high currents of metal ions using a penning discharge. Metal ion currents up to 70 mA are mentioned

  4. Superintense ion beam with high energy density

    Science.gov (United States)

    Dudnikov, Vadim; Dudnikova, Galina

    2008-04-01

    The energy density of ion beam accumulated in a storage ring can be increased dramatically with using of space charge compensation as was demonstrated in experiments [1]. The intensity of said superintense beam can be far greater than a space charge limit without space charge compensation. The model of secondary plasma build up with secondary ion-electron emission as a source of delayed electrons has been presented and discussed. This model can be used for explanation of bunched beam instability with electron surviving after gap, for prediction of e-cloud generation in coasting and long bunches beam, and can be important for pressure rise in worm and cold sections of storage rings. A fast desorption by ion of physically adsorbed molecules can explain a ``first pulse Instability''. Application of this model for e-p instability selfstabilization and superintense circulating beam accumulation is considered. Importance of secondary plasma for high perveance ion beam stabilization in ion implantation will be considered. Preliminary results of simulation of electron and ion accumulation will be presented. [1]. Belchenko et al., Xth International Particle Accelerator Conference, Protvino, 1977, Vol. 2, p. 287.

  5. Linac4 H⁻ ion sources.

    Science.gov (United States)

    Lettry, J; Aguglia, D; Alessi, J; Andersson, P; Bertolo, S; Briefi, S; Butterworth, A; Coutron, Y; Dallocchio, A; David, N; Chaudet, E; Faircloth, D; Fantz, U; Fink, D A; Garlasche, M; Grudiev, A; Guida, R; Hansen, J; Haase, M; Hatayama, A; Jones, A; Koszar, I; Lallement, J-B; Lombardi, A M; Machado, C; Mastrostefano, C; Mathot, S; Mattei, S; Moyret, P; Nisbet, D; Nishida, K; O'Neil, M; Paoluzzi, M; Scrivens, R; Shibata, T; Steyaert, D; Thaus, N; Voulgarakis, G

    2016-02-01

    CERN's 160 MeV H(-) linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H(-) source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H(-) source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described. PMID:26932021

  6. Linac4 H- ion sources

    Science.gov (United States)

    Lettry, J.; Aguglia, D.; Alessi, J.; Andersson, P.; Bertolo, S.; Briefi, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Faircloth, D.; Fantz, U.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Hatayama, A.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Paoluzzi, M.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Voulgarakis, G.

    2016-02-01

    CERN's 160 MeV H- linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ṡ mm ṡ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H- source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H- source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described.

  7. Triple ion-beam studies of radiation damage effects in a 316LN austenitic alloy for a high power spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.H.; Rao, G.R.; Hunn, J.D.; Rice, P.M.; Lewis, M.B.; Cook, S.W.; Farrell, K.; Mansur, L.K.

    1997-09-01

    Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe{sup ++}, 360 keV He{sup +}, and 180 keV H{sup +} to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of {approximately} 1 {micro}m. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss.

  8. Triple Ion-Beam Studies of Radiation Damage Effects in a 316LN Austenitic Alloy for a High Power Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, EH

    2001-08-01

    Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe{sup 2}, 360 keV He{sup +}, and 180 keV H{sup +} to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of {approx} 1 {micro}m. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss.

  9. Triple Ion-Beam Studies of Radiation Damage Effects in a 316LN Austenitic Alloy for a High Power Spallation Neutron Source

    International Nuclear Information System (INIS)

    Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe2, 360 keV He+, and 180 keV H+ to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of ∼ 1 microm. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss

  10. Triple ion-beam studies of radiation damage effects in a 316LN austenitic alloy for a high power spallation neutron source

    International Nuclear Information System (INIS)

    Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe++, 360 keV He+, and 180 keV H+ to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of ∼ 1 microm. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss

  11. Jet laser ion source

    International Nuclear Information System (INIS)

    External laser injector of multicharged ions (MCI) is developed in which wide-aperture aberration-free wire gauze spherical shape electrodes are applied for effective MCI extraction from laser plasma and beam focusing. Axial plasma compression by solenoid magnetic field is used to reduce ion losses due to transverse movement of the scattering laser plasma. Transverse magnetic field created by another solenoid facilitates the effective laser plasma braking and consequently, leads to the narrowing of energy spectrum of plasma ions and its shift towards lower energies. 2 refs.; 3 figs

  12. Negative ion beam formation, transport and acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.G.

    1981-01-01

    The BNL Neutral Beam Development Group is working on the development of negative ion based neutral beam systems, using high current density surface plasma sources of the magnetron and hollow cathode discharge (HCD) type. With the magnetron source, the plan is to transport a 2A D/sup -/ beam through a bending magnet before acceleration to 200 keV. In experiments with a pulsed magnetron, 0.4A of H/sup -/ was transported through a 90/sup 0/, n = 1, bending magnet with 80% transmission. With the lower operating pressure in the HCD source, close coupled acceleration will be applied. The MEQALAC, RFQ, and a dc accelerating scheme with periodic quadrupole focusing are considered for reaching higher energies. A preliminary experiment was performed with quadrupole beam transport and a 3.8 mA beam was transported through a series of twelve quadrupoles, with 3 mm apertures and a total length of 7.2 cm.

  13. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  14. Focusing a deterministic single-ion beam

    International Nuclear Information System (INIS)

    We focus down an ion beam consisting of single 40Ca+ ions to a spot size of a few micrometers using an einzel lens. Starting from a segmented linear Paul trap, we have implemented a procedure that allows us to deterministically load a predetermined number of ions by using the potential shaping capabilities of our segmented ion trap. For single-ion loading, an efficiency of 96.7(7)% has been achieved. These ions are then deterministically extracted out of the trap and focused down to a 1σ-spot radius of (4.6±1.3) μm at a distance of 257 mm from the trap center. Compared to previous measurements without ion optics, the einzel lens is focusing down the single-ion beam by a factor of 12. Due to the small beam divergence and narrow velocity distribution of our ion source, chromatic and spherical aberration at the einzel lens is vastly reduced, presenting a promising starting point for focusing single ions on their way to a substrate.

  15. Light ion beam transport research at NRL

    International Nuclear Information System (INIS)

    Transport of light ion beams through low-pressure background gas is under investigation at NRL in support of the light-ion ICF program at Sandia National Laboratories. Scaling experiments and the field solver/orbit code ATHETA have been used to design and construct a focusing, extraction applied-B diode for transport experiments. An active anode source has been developed to provide a high proton fraction in the ion beam and a fast ion turn-on time. A very sensitive Zeeman diagnostic is being developed to determine the net current distribution in the beam/transport system. Both analytical and numerical techniques using several codes are being applied to transport modeling, leading to the capability of full system studies. (author). 1 tab., 5 figs., 10 refs

  16. Triple ion beam irradiation facility

    International Nuclear Information System (INIS)

    A unique ion irradiation facility consisting of three accelerators is described. The accelerators can be operated simultaneously to deliver three ion beams on one target sample. The energy ranges of the ions are 50 to 400 keV, 200 keV to 2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the appropriate mass range can be simultaneously implanted to the same depth in a target specimen as large as 100 mm2 in area. Typical depth ranges are 0.1 to 1.0 μm. The X-Y profiles of all three ion beams are measured by a system of miniature Faraday cups. The low-voltage accelerator can periodically ramp the ion beam energy during the implantation. Three different types of target chambers are in use at this facility. The triple-beam high-vacuum chamber can hold nine transmission electron microscopy specimens at elevated temperature during a irradiation by the three simultaneous beams. A second high-vacuum chamber on the medium-voltage accelerator beamline houses a low- and high-temperature translator and a two-axis goniometer for ion channeling measurements. The third chamber on the high-energy beamline can be gas-filled for special stressed specimen irradiations. Special applications for the surface modification of materials with this facility are described. Appendixes containing operating procedures are also included. 18 refs., 27 figs., 1 tab

  17. Electron string ion sources for carbon ion cancer therapy accelerators

    Science.gov (United States)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  18. Ion sources on basis contracted discharges

    International Nuclear Information System (INIS)

    The summary of the works about the contracted discharge with thermocathode and with cold whole cathode research was held with the purpose of their application in plasma generation on the ion beams sources

  19. Simulation of ion beam injection and extraction in an EBIS

    International Nuclear Information System (INIS)

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency

  20. Simulation of ion beam injection and extraction in an EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, J. S. [FAR-TECH, Inc., San Diego, California 92121 (United States)

    2016-02-15

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  1. Simulation of ion beam injection and extraction in an EBIS

    Science.gov (United States)

    Zhao, L.; Kim, J. S.

    2016-02-01

    An example simulation of Au+ charge breeding using FAR-TECH's integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  2. Ion beam surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kim, Nak Bae; Woo, Hyung Joo; Kim, Joon Kon; Kim, Gi Dong; Choi, Han Woo; Yoon, Yoon Yeol; Shim, Sang Kwun [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Light elements in semiconductors, superconductors, magnetic or optical storage devices and surface hardened metals may have serious effects on the electrical, chemical and physical properties. Nevertheless, it is extremely difficult to quantitatively analyze their contents with conventional surface analysis tools like SIMS, AES, ESCA. The ERD-TOF (Elastic Recoil Detection - by Time Of Flight) method has recently been developed in a few prominent accelerator laboratories and proved to be very useful for such quantitative depth profiling of light elements. This project aims to construct an ERD-TOF system which can provide routine service of light elements analysis of thin films. The TOF spectrometer used in the system can be also utilized in HIRBS (Heavy Ion Rutherford Backscattering Spectrometry) for the better resolution and sensitivity than the conventional He RBS in certain cases. The works performed this year are: 1) Optimization of the ERD-TOF system for the practical use. 2) Construction of a separate HIRBS line. 3) Development of the analysis computer program and improvement of the data acquisition system. 4) Construction of the new vacuum chamber with an automatic target controller. The optimization has been done by considering such parameters as mass resolution, depth resolution, accessible depth, detection sensitivity. All these parameters have strong correlations with the sort, energy and dose of the beams to be used, the detection angle, target angle and flight length. In a practical analysis system, one cannot change the system parameter every time although there exists only one optimum condition for one measurement. Therefore, a condition is deduced which is applicable to majority of general semiconductor samples. For the practical analysis service a separate HIRBS line has been constructed. The line use the same TOF spectrometer as ERD line but the shape of the chambers are slightly modified. A computer program DoERD is written for the rapid analysis

  3. Laser ion source for particle accelerators

    CERN Document Server

    Sherwood, T R

    1995-01-01

    There is an interest in accelerating atomic nuclei to produce particle beams for medical therapy, atomic and nuclear physics, inertial confinement fusion and particle physics. Laser Ion Sources, in which ions are extracted from plasma created when a high power density laser beam pulse strikes a solid surface in a vacuum, are not in common use. However, some new developments in which heavy ions have been accelerated show that such sources have the potential to provide the beams required for high-energy accelerator systems.

  4. Proposed LLNL electron beam ion trap

    International Nuclear Information System (INIS)

    The interaction of energetic electrons with highly charged ions is of great importance to several research fields such as astrophysics, laser fusion and magnetic fusion. In spite of this importance there are almost no measurements of electron interaction cross sections for ions more than a few times ionized. To address this problem an electron beam ion trap (EBIT) is being developed at LLNL. The device is essentially an EBIS except that it is not intended as a source of extracted ions. Instead the (variable energy) electron beam interacting with the confined ions will be used to obtain measurements of ionization cross sections, dielectronic recombination cross sections, radiative recombination cross sections, energy levels and oscillator strengths. Charge-exchange recombinaion cross sections with neutral gasses could also be measured. The goal is to produce and study elements in many different charge states up to He-like xenon and Ne-like uranium. 5 refs., 2 figs

  5. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Science.gov (United States)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  6. Molecular ion sources for low energy semiconductor ion implantation (invited)

    International Nuclear Information System (INIS)

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described

  7. Molecular ion sources for low energy semiconductor ion implantation (invited).

    Science.gov (United States)

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described. PMID:26932065

  8. Vacuum arc ion source development at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Spaedtke, P.; Emig, H.; Wolf, B.H. [GSI Darmstadt (Germany)

    1996-08-01

    Ion beams produced by the Mevva ion source are well suited for the injection into a synchrotron accelerator due to the low repetition rate (0.2 ... 5 Hz, the higher repetition rate is for the optimization of the linear accelerator only) and the short pulse length (up to 0.5ms). From the beginning of the authors experience with the Mevva ion source at GSI they tried to improve the reliability of pulse-to-pulse reproducibility and to minimize the noise on the extracted ion beam. For accelerator application this is highly necessary, otherwise the accelerator tuning and optimization becomes very difficult or even impossible. Already the beam transport becomes difficult for a noisy beam, because space charge compensation can be destroyed (at least partially). Furthermore a noisy dc-beam results in some rf-buckets which might be even empty.

  9. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al+ ion beam

    International Nuclear Information System (INIS)

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al+ ion current with a density of 167 μA/cm2 is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 109 cm−3 to 6 × 1010 cm−3 and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge

  10. High-energy accelerator for beams of heavy ions

    Science.gov (United States)

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  11. A Parallel 3D Model for The Multi-Species Low Energy Beam Transport System of the RIA Prototype ECR Ion Source Venus

    International Nuclear Information System (INIS)

    The driver linac of the proposed Rare Isotope Accelerator (RIA) requires a great variety of high intensity, high charge state ion beams. In order to design and to optimize the low energy beamline optics of the RIA front end,we have developed a new parallel three-dimensional model to simulate the low energy, multi-species ion beam formation and transport from the ECR ion source extraction region to the focal plane of the analyzing magnet. A multisection overlapped computational domain has been used to break the original transport system into a number of each subsystem, macro-particle tracking is used to obtain the charge density distribution in this subdomain. The three-dimensional Poisson equation is solved within the subdomain and particle tracking is repeated until the solution converges. Two new Poisson solvers based on a combination of the spectral method and the multigrid method have been developed to solve the Poisson equation in cylindrical coordinates for the beam extraction region and in the Frenet-Serret coordinates for the bending magnet region. Some test examples and initial applications will also be presented

  12. Main magnetic focus ion source with the radial extraction of ions

    CERN Document Server

    Ovsyannikov, V P

    2015-01-01

    In the main magnetic focus ion source, atomic ions are produced in the local ion trap created by the rippled electron beam in focusing magnetic field. Here we present the novel modification of the room-temperature hand-size device, which allows the extraction of ions in the radial direction perpendicular to the electron beam across the magnetic field. The detected X-ray emission evidences the production of Ir$^{44+}$ and Ar$^{16+}$ ions. The ion source can operate as the ion trap for X-ray spectroscopy, as the ion source for the production of highly charged ions and also as the ion source of high brightness.

  13. Main magnetic focus ion source with the radial extraction of ions

    Science.gov (United States)

    Ovsyannikov, V. P.; Nefiodov, A. V.

    2016-01-01

    In the main magnetic focus ion source, atomic ions are produced in the local ion trap created by the rippled electron beam in focusing magnetic field. Here we present the novel modification of the room-temperature hand-size device, which allows the extraction of ions in the radial direction perpendicular to the electron beam across the magnetic field. The detected X-ray emission evidences the production of Ir44+ and Ar16+ ions. The ion source can operate as the ion trap for X-ray spectroscopy, as the ion source for the production of highly charged ions and also as the ion source of high brightness.

  14. Detection systems for radioactive ion beams

    International Nuclear Information System (INIS)

    Two main methods are used to produce radioactive ion beams: -) the ISOL method (isotope separation on-line) in which the stable beam interacts with a thick target, the reaction products diffuse outside the target and are transferred to a source where they are ionized, a mass separator and a post-accelerator drive the selected radioactive ions to the right energy; -) the in-flight fragmentation method in which the stable beam interacts with a thin target, the reaction products are emitted from the target with a restricted angular distribution and a velocity close to that of the incident beam, the experimenter has to take advantage from the reaction kinetics to get the right particle beam. Characteristic time is far longer with the ISOL method but the beam intensity is much better because of the use of a post-accelerator. In both cases, the beam intensity is lower by several orders of magnitude than in the case of a stable beam. This article presents all the constraints imposed by radioactive beams to the detection systems of the reaction products and gives new technical solutions according to the type of nuclear reaction studied. (A.C.)

  15. Preliminary Experimental Study of Ion Beam Extraction of EAST Neutral Beam Injector

    Institute of Scientific and Technical Information of China (English)

    XU Yong-Jian; HU Chun-Dong; LIU Sheng; XIE Ya-Hong; LIANG Li-Zhen; JIANG Cai-Chao

    2012-01-01

    Neutral beam injection is recognized as one of the most effective means for plasma heating.The preliminary data of ion beam extraction is obtained on the EAST neutral beam injector test-stand.Beam extraction from the ion source of EAST-NBI is verified by measuring the beam current with a Faraday cup and by analyzing the results obtained by means of water calorimetric measurement on the temperature rises of water cooling the accelerator electrodes.

  16. High repetition rate intense ion beam diode

    International Nuclear Information System (INIS)

    A magnetically insulated ion beam diode with a gas-breakdown plasma anode has been successfully developed recently. In this paper, the authors report the experiment results of operating a version of this diode at a 1-Hz repetition rate. Intense ion beams (100ns, 200Kv and 20kA per pulse) are generated by using an inductive voltage to breakdown an annular hydrogen gas puff (8.5cm mean radius, and 160cm2 in area), and magnetically driving the resulting plasma toward a magnetically insulated accelerating gap. The high voltage pulses on the accelerating gap are supplied using two thyratron switch chassises which are connected to the diode through a series of capacitors coupled with saturable inductors. To understand the operation of the diode, the anode plasma source and the extracted ion beams are characterized by using various diagnostics

  17. 11. international conference on ion sources

    International Nuclear Information System (INIS)

    This document gathers the summaries of the presentations made at ICIS05 (international conference on ion sources). It can be organized into 3 main topics: 1) 'fundamentals and theory' that deals with plasma, beam extraction, transport and emittance, diagnostics and simulation; 2) 'various types of ion sources' that include ECRIS, EBIS, microwave, negative, radioactive, polarized and laser ion sources, and charge breeders; and 3) 'ion sources and applications' in fields like accelerator injection, fusion energy, space propulsion, mass spectrometry, and neutron and cluster and rare nuclide production

  18. 11. international conference on ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, D.; Lyneis, C.; Cheng, D.; Galloway, M.L.; Leitner, M.; Todd, D.S.; Ciavola, G.; Gammino, S.; Celona, L.; Ando, L.; Torrisi, L.; Cavenago, M.; Galata, A.; Spaedtke, P.; Tinschert, K.; Lang, R.; Iannucci, R.; Leroy, R.; Barue, C.; Hitz, D.; Koivisto, H.; Suominen, P.; Tarvainen, O.; Beijers, H.; Brandenburg, S.; Vanrooyen, D.; Hillo, C.; Kuchler, D.; Homeyer, H.; Rohrich, J.; Schachter, L.; Dobrescu, S.; Nakagawa, T.; Higurashi, Y.; Kidera, M.; Aihara, T.; Kase, M.; Goto, A.; Yang, Y.; Zhao, H.W.; Zhang, Z.M.; Zhang, X.Z.; Guo, X.H.; He, W.E.; Sun, L.T.; Yuan, P.; Song, M.T.; Xie, Z.Q.; Cao, Y.; Zhan, W.L.; Wei, B.W.; Bricault, P.; Lau, C.; Essabaa, S.; Cheikh Mhamed, M.; Bajeat, O.; Ducourtieux, M.; Lefort, H.; Panteleev, V.N.; Barzakh, A.E.; Fedorov, D.V.; Ionan, A.M.; Mezilev, K.A.; Moroz, F.V.; Orlov, S.Y.; Volkov, Y.M.; Andrighetto, A.; Lhersonneau, G.; Rizzi, V.; Tecchio, L.B.; Dubois, M.; Gaubert, G.; Jardins, P.; Lecesne, N.; Leroy, R.; Pacquet, J.Y.; Saint Laurent, M.G.; Villari, A.C.O.; Bajeat, O.; Essabaa, S.; Lau, C.; Menna, M.; Franberg, H.; Ammann, M.; Gdggeler, H.W.; Koster, U.; Allen, F.; Biedermann, C.; Radtke, R.; Ames, F.; Baartman, R.; Bricault, P.; Jayamanna, K.; Lamy, T.; McDonald, M.; Olivo, M.; Schmorl, P.; Yuan, D.H.L.; Asaji, T.; Sasaki, H.; Kato, Y.; Atabaev, B.; Radjabov, S.S.; Akhmadjanova, M.K.; Yuzikaeva, F.R.; Baoqun, Cui; Liqiang, Li; Yingjun, Ma; Shengyun, Zhu; Cong, Jiang

    2005-07-01

    This document gathers the summaries of the presentations made at ICIS05 (international conference on ion sources). It can be organized into 3 main topics: 1) 'fundamentals and theory' that deals with plasma, beam extraction, transport and emittance, diagnostics and simulation; 2) 'various types of ion sources' that include ECRIS, EBIS, microwave, negative, radioactive, polarized and laser ion sources, and charge breeders; and 3) 'ion sources and applications' in fields like accelerator injection, fusion energy, space propulsion, mass spectrometry, and neutron and cluster and rare nuclide production.

  19. Multiple Electron Stripping of Heavy Ion Beams

    International Nuclear Information System (INIS)

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters

  20. Study on space charge compensation in negative hydrogen ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, A. L.; Chen, J. E. [University of Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China)

    2016-02-15

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  1. Study on space charge compensation in negative hydrogen ion beam

    Science.gov (United States)

    Zhang, A. L.; Peng, S. X.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Chen, J. E.

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H+ beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H- beam from a 2.45 GHz microwave driven H- ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  2. Study on space charge compensation in negative hydrogen ion beam

    International Nuclear Information System (INIS)

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H+ beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H− beam from a 2.45 GHz microwave driven H− ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results

  3. Atomic Beam Merging and Suppression of Alkali Contaminants in Multi Body High Power Targets: Design and Test of Target and Ion Source Prototypes at ISOLDE

    CERN Document Server

    Bouquerel, Elian J A; Lettry, J; Stora, T

    2009-01-01

    The next generation of high power ISOL-facilities will deliver intense and pure radioactive ion beams. Two key issues of developments mandatory for the forthcoming generation of ISOL target-ion source units are assessed and demonstrated in this thesis. The design and production of target and ion-source prototypes is described and dedicated measurements at ISOLDE-CERN of their radioisotope yields are analyzed. The purity of short lived or rare radioisotopes suffer from isobaric contaminants, notably alkalis which are highly volatile and easily ionized elements. Therefore, relying on their chemical nature, temperature controlled transfer lines were equipped with a tube of quartz that aimed at trapping these unwanted elements before they reached the ion source. The successful application yields high alkali-suppression factors for several elements (ie: 80, 82mRb, 126, 142Cs, 8Li, 46K, 25Na, 114In, 77Ga, 95, 96Sr) for quartz temperatures between 300ºC and 1100ºC. The enthalpies of adsorption on quartz were measu...

  4. Nanophotonic Ion Sources

    Science.gov (United States)

    Stolee, Jessica A.; Walker, Bennett N.; Chen, Yong; Vertes, Akos

    2010-10-01

    Interactions between laser radiation and photonic structures at elevated laser intensities give rise to the production of positive and negative ions from adsorbates. These new types of ion sources exhibit properties that are significantly different from conventional laser desorption ionization sources. In this contribution comparisons are made between matrix-assisted laser desorption ionization (MALDI) of biomolecules with ion production from laser-induced silicon microcolumn arrays (LISMA) and nanopost arrays (NAPA). The sharp increase of ion yields from the nanophotonic ion sources follow a power law behavior with an exponent of up to n≈7, whereas in the case of MALDI n≈5. The strong field enhancement in the vicinity of the columns and posts scales with their aspect ratio. Slender high aspect ratio posts show reduced laser fluence threshold for ionization. Posts with diameters at or below the thermal diffusion length demonstrate high surface temperatures due to the radial confinement of the deposited energy. As a consequence enhanced fragmentation, i.e., lower survival yield of the molecular ions is observed. The origin of protons in the ionization of adsorbates was identified as the entrapped residues of the solvent.

  5. High energy ion beam mixing

    International Nuclear Information System (INIS)

    Experimental investigations have been made on the parameters which can be used to control the mixing profiles, and the width of intermixed layers in film-substrate systems being irradiated by high energy heavy ion beams. The samples were irradiated by ion beams of Au, Cu, and Si with energies of 1.5 to 3 MeV. Typical examples of the RBS spectra are presented and discussions are made on the extent of contribution of binary collisions on the interfacial mixing. The experimental and simulation results show that the interfacial mixing is dominated by the binary collisions. (author)

  6. High-brightness picosecond ion beam source based on BNL Terawatt CO2 laser: Proof-of-principle experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnikov, Peter

    2012-10-04

    Under the continuing DOE support, we have: o assembled the basic experiment setup and then continued expanding it to include diverse diagnostics and to accommodate gas jet targets in addition to metal foils; o conducted an extensive study of our novel laser, significantly enhanced laser beam diagnostics, and improved relevant laser parameters; o turned our experiments into a truly international endeavor with active collaboration of close to 20 researchers in US, UK, and Germany; o conducted the first ever experiments with proton and ion acceleration by lasers interacting with overcritical plasma of gas jets; o for the first time directly observed radiation pressure acceleration of protons, including quasi-monoenergetic spectra promising for future applications; o for the first time directly observed quasi-stable, bubble-like plasma structures that likely evolved from relativistic laser-plasma solitons (post-solitons). Thus, we have confirmed a strong potential of a picosecond TW CO2 laser as a research tool in laser-plasma science and as a promising vehicle for future applications of laser ion acceleration. This has led to apparent increase of the interest in mid-IR laser ion acceleration. In particular, another major research group began extensive proton acceleration experiments with their own CO2 laser at UCLA. As a result, the mechanisms responsible for laser proton acceleration in gas jets have become somewhat clearer. It is also important to note that modest DOE funding played the role of a seed support ensuring the formation of a multinational research team, whose members contributed its time and equipment with value well in excess of that seed amount.

  7. Development of a microwave ion source for ion implantations

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N., E-mail: Nbk-Takahashi@shi.co.jp; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T. [Technology Research Center, Sumitomo Heavy Industries Ltd., Yokosuka, Kanagawa 237-8555 (Japan)

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  8. Production and ion-ion cooling of highly charged ions in electron string ion source.

    Science.gov (United States)

    Donets, D E; Donets, E D; Donets, E E; Salnikov, V V; Shutov, V B; Syresin, E M

    2009-06-01

    The scheme of an internal injection of Au atoms into the working space of the "Krion-2" electron string ion source (ESIS) was applied and tested. In this scheme Au atoms are evaporated from the thin tungsten wire surface in vicinity of the source electron string. Ion beams with charge states up to Au51+ were produced. Ion-ion cooling with use of C and O coolant ions was studied. It allowed increasing of the Au51+ ion yield by a factor of 2. Ions of Kr up to charge state 28+ were also produced in the source. Electron strings were first formed with injection electron energy up to 6 keV. Methods to increase the ESIS ion output are discussed. PMID:19566200

  9. An advanced negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, Alexey A., E-mail: gonchar@iop.kiev.ua; Dobrovolsky, Andrey N.; Goretskii, Victor P. [Institute of Physics National Academy of Science in Ukraine, Kiev 03028 (Ukraine)

    2016-02-15

    The results of investigation of emission productivity of negative particles source with cesiated combined discharge are presented. A cylindrical beam of negative hydrogen ions with density about 2 A/cm{sup 2} in low noise mode on source emission aperture is obtained. The total beam current values are up to 200 mA for negative hydrogen ions and up to 1.5 A for all negative particles with high divergence after source. The source has simple design and can produce stable discharge with low level of oscillation.

  10. Using neutral beams as a light ion beam probe (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi, E-mail: chenxi@fusion.gat.com [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831 (United States); Heidbrink, W. W. [University of California Irvine, Irvine, California 92697 (United States); Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Kramer, G. J.; Nazikian, R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Austin, M. E. [University of Texas at Austin, Austin, Texas 78712 (United States); Hanson, J. M. [Columbia University, New York, New York 10027 (United States); Zeng, L. [University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15

    By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and (2) various commonly available diagnostics as its detector. These born trapped particles can traverse the plasma core on their inner banana leg before returning to the plasma edge. Orbital displacements (the forces on fast ions) caused by internal instabilities or edge perturbing fields appear as modulated signal at an edge detector. Adjustments in the q-profile and plasma shape that determine the first orbit, as well as the relative position of the source and detector, enable studies under a wide variety of plasma conditions. This diagnostic technique can be used to probe the impact on fast ions of various instabilities, e.g., Alfvén eigenmodes (AEs) and neoclassical tearing modes, and of externally imposed 3D fields, e.g., magnetic perturbations. To date, displacements by AEs and by externally applied resonant magnetic perturbation fields have been measured using a fast ion loss detector. Comparisons with simulations are shown. In addition, nonlinear interactions between fast ions and independent AE waves are revealed by this technique.

  11. The dynamics of radiation damage by focused ion beams in the ion beam synthesis

    International Nuclear Information System (INIS)

    The following topics were covered: direct ion implantation, focused ion beams, cobalt silicides (CoSi2), RBS, ion beam synthesis, CoSi2 ion beam synthesis by focused ion beams in Si(111), germanium FIB implantation in Si(111), radiation damage at FIB implantation, models and simulation. (WL)

  12. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al{sup +} ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Weichsel, T., E-mail: tim.weichsel@fep.fraunhofer.de; Hartung, U.; Kopte, T. [Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, 01277 Dresden (Germany); Zschornack, G. [Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Kreller, M.; Philipp, A. [DREEBIT GmbH, 01900 Grossroehrsdorf (Germany)

    2015-09-15

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al{sup +} ion current with a density of 167 μA/cm{sup 2} is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10{sup 9} cm{sup −3} to 6 × 10{sup 10} cm{sup −3} and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  13. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  14. Developing high brightness beams for heavy ion driven inertial fusion

    OpenAIRE

    Kwan, J.W.; Ahle, L.A.; Anders, A; Bieniosek, F.M.; Chacon-Golcher, E.; Grote, D. P.; Henestroza, E.; Leung, K.N.; Molvik, A.W.

    2001-01-01

    Heavy ion fusion (HIF) drivers require large currents and bright beams. In this paper we review the two different approaches for building HIF injectors and the corresponding ion source requirements. The traditional approach uses large aperture, low current density ion sources, resulting in a very large injector system. A more recent conceptual approach merges high current density mini-beamlets into a large current beam in order to significantly reduce the size of the injector. Experimen...

  15. Electron string ion sources for carbon ion cancer therapy accelerators

    CERN Document Server

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  16. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  17. The University of Washington polarized ion source

    International Nuclear Information System (INIS)

    A colliding-beams polarized ion source has been in operation for nuclear physics experiments at the University of Washington tandem-linac facility since late 1987. Thermal beams of polarized atomic hydrogen or deuterium are ionized by charge exchange in collisions with a collinear, fast, neutral cesium beam. Negative ions are extracted and the polarization symmetry axis is precessed to any desired direction in a crossed-field spin precessor. The design of the cesium beam system differs from previous sources in that magnetic deflection and focusing are used and beams of several milliamperes at energies of 40 keV are produced. The source is controlled by a microprocessor based system which is connected via fiber optic links to the main linac control and data acquisition computers. To date, currents of 1μA and polarizations in excess of 90% have been produced. 3 refs., 2 figs

  18. Materials Science with Ion Beams

    CERN Document Server

    Bernas, Harry

    2010-01-01

    This book introduces materials scientists and designers, physicists and chemists to the properties of materials that can be modified by ion irradiation or implantation. These techniques can help design new materials or to test modified properties; novel applications already show that ion-beam techniques are complementary to others, yielding previously unattainable properties. Also, ion-beam interactions modify materials at the nanoscale, avoiding the often detrimental results of lithographic or chemical techniques. Here, the effects are related to better-known quasi-equilibrium thermodynamics, and the consequences to materials are discussed with concepts that are familiar to materials science. Examples addressed concern semiconductor physics, crystal and nanocluster growth, optics, magnetism, and applications to geology and biology.

  19. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Science.gov (United States)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  20. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  1. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    International Nuclear Information System (INIS)

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described

  2. Applications of Cold Cathode PIG Ion Source in Lithography

    International Nuclear Information System (INIS)

    The cold cathode Penning ion source (PIG) of axial type could be modified to produce ion and electron beam with a considerable amount to use it in the lithography process. Lithography is a new applications of ion/electron beam at which one can use the ion/ or electron beam as a pencil to write and draw on a metal surface. The electron beam takes 1/3 the time needed for ion beam to make good picture. So that with the help of ion/or electron beam lithography one can mark tools, parts, instruments, and equipment with names, numbers, designs, trademark or brand name in few seconds. It is an easy process, quick and an inexpensive method. Firstly, operating characteristics of this ion source is studied. Lithography application of ion source with optimum conditions is done. Later, the hardness and the tensile strength is measured and each of them increases with increasing time

  3. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  4. Arc-Discharge Ion Sources for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    A miniature multiple beamlet approach to an injector system was recently proposed in order to reduce the size, cost, and power requirements of the injector. The beamlets of very high current density are needed to meet the brightness requirement. Besides vacuum arc ion sources, cold-cathode gas ion sources are candidates for this application. Vacuum-arc metal ion sources and vacuum-arc-like gas ion sources are discussed. Experiments are presented that focus on the short-pulse plasma composition and ion charge state distribution. Mg and Sr have been identified as the most promising metals leading to mono-species beams when 20 μs arc pulses are used. It is shown that the efficient production of gas ions requires the presence of a magnetic field

  5. Microlocalization during ion beam analysis

    International Nuclear Information System (INIS)

    Three techniques were investigated for identifying microregions of the sample examined by an ion beam during analysis. First, the feasibility of obtaining topographic information by detecting bursts of secondary electrons as individual ions strike the sample was studied. The efficiency of detection was sensitive to sample/detector geometry and to detector operation parameters. Second, the author wanted to determine the location where each ion passed through the sample by detecting the ions with a phosphor coupled with a position sensitive detector. Initially, he used a photomultiplier tube (PMT) to detect light from the phosphor. The PMT was sufficiently sensitive both to detect the light emitted upon bombardment of the phosphor by a single ion and to provide a start signal for particle-induced desorption time-of-flight mass spectroscopy. Third, two track recording materials for locating where the ions passed through the sample were evaluated. The polycarbonate track detector recorded the integrated beam spot image, which was revealed with post-analysis etching and SEM observation. The fluorophlogopite track detector recorded tracks which could be observed by TEM without etching

  6. The beam optics of the Argonne Positive-Ion Injector

    International Nuclear Information System (INIS)

    The beam optics for Phase I of the Argonne Positive-Ion Injector linac system have been studied for a representative set of beams. The results of this study indicate that high charge state beams from an ECR source can be accelerated without significantly increasing the transverse or longitudinal emittance of the initial beam. It is expected that the beam quality from the PII-ATLAS system will be at least as good as presently achieved with the tandem-ATLAS system

  7. Ion sources for systematic gas cell studies

    International Nuclear Information System (INIS)

    The FRS Ion Catcher, a test facility for the low energy branch (LEB) of the Super-FRS, has been commissioned and successfully tested. The current setup consists of a gas filled cryogenic stopping cell (CSC) to thermalise exotic nuclei, a diagnostic unit to monitor and transport the stopped and extracted ion beam into the multiple-reflection time-of-flight mass-spectrometer (MR-TOF-MS), where they are identified by precision mass measurements. The MR-TOF-MS can also be used to provide isobarically clean beams for experiments further downstream. To investigate ion transport and extraction processes of the CSC three different ion sources are in use inside the CSC. A movable radioactive ion source is mounted to test the ion transport depending on the initial ion position. A multiple target laser ablation ion source is mounted to test the mass and time dependency of the ion transport and extraction. It also provides calibration ions for the MR-TOF-MS. For investigating intensity limitations due to space charge and plasma effects and the cleanliness of the CSC an electrical discharge ion source is installed.

  8. High current ion source development at Frankfurt

    International Nuclear Information System (INIS)

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H--sources each delivering a 70 mA H--beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs

  9. Electron Beam Ion Trap and its Applications

    Science.gov (United States)

    Zou, Yaming

    2013-03-01

    Electron Beam Ion Traps (EBIT), initially developed at LLNL, are sophisticated devices capable of acting both as highly charged ion (HCI) light sources and ion sources. As a HCI light source, they can basically provide light from emission states of any charge state of any element in the periodic table, hence almost unique for spectroscopic research. Furthermore, the emitting ions are almost at rest compared to those produced by heavy ion accelerators or storage rings, much less bothered with Doppler shifts and line broadening. Because of its flexibility in producing various ions, it is very good for studies along iso-electronic sequences, and along iso-nuclear charge sequences to reveal physical properties behind experimental phenomenon. In an EBIT, a thin plasma can be formed with basically any elements, and more important with almost mono-energy electrons. On top of this, the electron energy can be tuned in the range of few hundreds eV to above one hundred keV. This property made it possible to use an EBIT for detail studies of processes in hot plasmas, so as to make disentangling studies of hot plasmas and to assist plasma diagnostics for temperature, density, electromagnetic field, as well as ion moving...

  10. Spectrometric determination of the species distribution of hydrogen and deuterium in the multi-megawatt ion sources (PINI) of the neutral beam injectors NI-1 and NI-2 of TEXTOR

    International Nuclear Information System (INIS)

    The ion species fractions of hydrogen H+, H2+, H3+ and deuterium D+, D2+, D3+ in the extracted beam of the multi-megawatt ion sources (PINI) of the neutral beam injectors of TEXTOR are determined. The measurements are obtained from two grating spectrometers of 0.5 m focal length with a light guiding system of 50 mm aperture using the Doppler shifted Hα/Dα-light of the accelerated beam particles. The spectral resolution obtained is 0.76 A with a 50 μm entrance slit. The ion source is a bucket source (modified JET PINI) with a multipole magnetic field in checkerboard arrangement. The species fraction measurements are performed as function of beam current, ion source pressure and beam pulse length. The results for hydrogen and deuterium at particle energies of 20-55 keV and beam currents of 13-87 A show no significant difference between neutral injector I and II. For 55 keV and a beam current of 87 A in hydrogen and 63 A in deuterium a species mix of 67.2:24.5:8.4% (H+:H2+:H3+) and of 69.1:23.8:7.1% (D+:D2+:D3+) is obtained. (orig.)

  11. A laser ablation source for offline ion production at LEBIT

    Science.gov (United States)

    Izzo, C.; Bollen, G.; Bustabad, S.; Eibach, M.; Gulyuz, K.; Morrissey, D. J.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Valverde, A. A.

    2016-06-01

    A laser ablation ion source has been developed and implemented at the Low-Energy Beam and Ion Trap (LEBIT) facility at the National Superconducting Cyclotron Laboratory. This offline ion source enhances the capabilities of LEBIT by providing increased access to ions used for calibration measurements and checks of systematic effects as well as stable and long-lived ions of scientific interest. The design of the laser ablation ion source and a demonstration of its successful operation are presented.

  12. Buffer gas cooling of ion beams

    International Nuclear Information System (INIS)

    The cooling action of a buffer gas on ions contained within it can be used to cool an ion beam, thereby greatly improving its emittance and energy spread. It can also be used to greatly enhance the collection of an ion beam in an electromagnetic trap. The basic principles will be introduced in the context of a prototype system for such a beam cooler

  13. RF synchronized short pulse laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Yamazaki, Atsushi [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2016-02-15

    A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at the exit of RF resonator by a probe.

  14. Resonant ionization by laser beams: application to ions sources and to study the nuclear structure of radioactive tellurium isotopes; Ionisation resonante par faisceaux laser: application aux sources d'ions et a l'etude de la structure des noyaux radioactifs de tellure

    Energy Technology Data Exchange (ETDEWEB)

    Sifi, R

    2007-07-15

    The radioactive ion beams that are produced through current isotope separators are well separated according to the A mass but not according to the Z parameter. The resonant ionization through laser beams applied to ion sources allows the production of radioactive ion beam in a very selective and efficient way by eliminating the isobaric contamination. The first chapter is dedicated to the resonant ionization by laser beams, we describe the principle, the experimental setting, the lasers used, the ionization schemes and the domain of application. The second chapter deals with the application of resonant ionization to laser ion sources for the production of radioactive ion beams. We present experimental tests performed for getting copper ion beams. Resonant ionization through laser is also used in the spectroscopy experiments performed at the Isolde (isotope separation on-line device) installation in CERN where more than 20 elements are ionized very efficiently. The technique is based on a frequency scanning around the excitation transition of the atoms in order to probe the hyperfine structure. Laser spectroscopy allows the determination of the hyperfine structure as well as the isotopic shift of atoms. In the third chapter the method is applied to the spectroscopy of tellurium atoms. First, we define the 2 parameters on which the extraction is based: charge radius and nuclear moments, then we present several theoretical models that we have used to assess our experimental results. (A.C.)

  15. Development of negative ion beam accelerators for high power neutral beam systems

    International Nuclear Information System (INIS)

    A 500 keV negative ion source for JT-60U and a 1 MeV ion source for ITER are being developed at JAERI. Beam acceleration test of the JT-60U negative ion source, that is designed to produce a 500 keV, 22 A D- beam for 10 S, has started. The ion source consists of a cesium seeded volume negative ion generator and a three-stage multi-aperture accelerator. Up to now, D- ion beam of 410 keV, 6.1 A, 0.2 s, 2.5MW was accelerated. This is the world record of deuterium negative ion beam current and negative ion beam power. On the other hand, to demonstrate negative ion acceleration up to an energy of 1 MeV for ITER, the authors constructed a five-stage electrostatic accelerator and a 1MV/1A test facility called MeV Test Facility (MTF). The accelerator was conditioned up to a high voltage of 760 kV without beam. The H- ion beam was successfully accelerated up to the energy of 700 keV with a drain current of 230 mA for 1 s

  16. 9. Heavy ion beam driver and its interactions with matter

    International Nuclear Information System (INIS)

    This document gathers 15 articles whose titles are: 1) Perspectives of the GSI accelerator complex (Darmstadt, Germany) for fusion driver studies, 2) Energy loss of 6 MeV/u 56Fe ions in Z-pinch helium plasma as a function of charge state and plasma density, 3) Creation of high-energy-density matter using intense beams of energetic heavy ions, 4) Space resolved charge state distribution of fast ions inside matter, 5) Beam final transport and focusing in heavy ion beam inertial confinement fusion, 6) Beam-plasma interaction study with laser plasma induced from solid hydrogen, 7) Magnetized cylindrical targets for heavy ion fusion, 8) Beam-plasma experiments at Riken, 9) Repetitive induction module for ion acceleration, 10) Simulations of recent and future experiments on heating of rare gas solid by heavy ions, 11) Charge-changing processes of low-energy heavy ions in a dense non-hydrogenic plasma, 12) Development of high-brightness ion sources using moderate power lasers, 13) Induction beam buncher for relativistic heavy ion beams, 14) Simple calculation of surface layer thickness of various IFE reactor candidate material ablated by high fluence X-ray, and 15) Hydro processes in high temperature dense plasma under the impact of intense ion beams

  17. Applications of EHD-ion sources in SIMS

    International Nuclear Information System (INIS)

    Because of their high brillance and their small energy spread EHD ion sources are well qualified for focused ion beams. This work describes the build-up and the main properties of a designed indium EHD ion source. It is used as primary gun in a scanning ion microprobe. The advantages of this new source instead of a O2 - duoplasmatron ion source are described and demonstrated by selected examples. (Author)

  18. A negative ion source test facility

    Energy Technology Data Exchange (ETDEWEB)

    Melanson, S.; Dehnel, M., E-mail: morgan@d-pace.com; Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Stewart, T.; Jackle, P.; Withington, S. [D-Pace, Inc., P.O. Box 201, Nelson, British Columbia V1L 5P9 (Canada); Philpott, C.; Williams, P.; Brown, S.; Jones, T.; Coad, B. [Buckley Systems Ltd., 6 Bowden Road, Mount Wellington, Auckland 1060 (New Zealand)

    2016-02-15

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  19. Ion beam sputter implantation method

    International Nuclear Information System (INIS)

    By means of ion beam atomizing or sputtering an integrally composed coating, the composition of which continuously changes from 100% of the substrate to 100% of the coating, can be surfaced on a substrate (e.g. molten quartz on plastic lenses). In order to do this in the facility there is directed a primary beam of accelerated noble gas ions on a target from the group of the following materials: SiO2, Al2O3, Corning Glass 7070, Corning Glass 7740 or borosilicate glass. The particles leaving the target are directed on the substrate by means of an acceleration potential of up to 10 KV. There may, however, be coated also metal layers (Ni, Co) on a mylar film resulting in a semireflecting metal film. (RW)

  20. Obliquely incident ion beam figuring

    Science.gov (United States)

    Zhou, Lin; Dai, Yifan; Xie, Xuhui; Li, Shengyi

    2015-10-01

    A new ion beam figuring (IBF) technique, obliquely incident IBF (OI-IBF), is proposed. In OI-IBF, the ion beam bombards the optical surface obliquely with an invariable incident angle instead of perpendicularly as in the normal IBF. Due to the higher removal rate in oblique incidence, the process time in OI-IBF can be significantly shortened. The removal rates at different incident angles were first tested, and then a test mirror was processed by OI-IBF. Comparison shows that in the OI-IBF technique with a 30 deg incident angle, the process time was reduced by 56.8%, while keeping the same figure correcting ability. The experimental results indicate that the OI-IBF technique is feasible and effective to improve the surface correction process efficiency.