WorldWideScience

Sample records for beam extraction kicker

  1. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    CERN Document Server

    AUTHOR|(SzGeCERN)728476; Toral Fernandez, Fernando

    In the framework of the design study of Future Linear Colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal centre-of-mass energy of 3 TeV. To achieve the luminosity requirements, Pre-Damping Rings (PDRs) and Damping Rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several injection and extraction systems are needed to inject and extract the beam from the PDRs and DRs. The work of this Thesis consists of the design, fabrication and laboratory tests of the first stripline kicker prototype for beam extraction from the CLIC DRs, although the methodology proposed can be extended to stripline kickers for any low emittance ring. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most...

  2. SNS EXTRACTION KICKER POWER SUPPLY PROTOTYPE TEST

    International Nuclear Information System (INIS)

    MI, J.L.; SANDBERG, J.; SANDERS, R.; SOUKAS, A.; ZHANG, W.

    2000-01-01

    The SNS (Spallation Neutron Source) accumulator ring Extraction System consists of a Fast kicker and a Lambertson Septum magnet. The proposed design will use 14 kicker magnets powered by an Extraction Kicker Power Supply System. They will eject the high power beam from the SNS accumulator ring into RTBT (Ring to Target Beam Tunnel) through a Lambertson Septum magnet. This paper describes some test results of the SNS Extraction Kicker power supply prototype. The high repetition rate of 60 pulse per second operation is the challenging part of the design. In the prototype testing, a 3 kA damp current of 700ns pulse-width, 200 nS rise time and 60 Hz repetition rate at 32 kV PFN operation voltage has been demonstrated. An Extraction kicker power supply system design diagram is depicted

  3. Beam-based compensation of extracted-beam displacement caused by field ringing of pulsed kicker magnets in the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Harada, Hiroyuki; Saha, Pranab Kumar; Tamura, Fumihiko; Meigo, Shin-ichiro; Hotchi, Hideaki; Hayashi, Naoki; Kinsho, Michikazu; Hasegawa, Kazuo

    2017-09-01

    Commissioned in October 2007, the 3 GeV rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex was designed for a high-intensity output beam power of 1 MW. The RCS extracts 3 GeV proton beams of two bunches by using eight pulsed kicker magnets and three DC septum magnets with 25 Hz repetition. These beams are delivered to a materials and life science experimental facility (MLF) and a 50 GeV main ring synchrotron (MR). However, the flat-top fields of the kicker magnets experience ringing that displaces the position of the extracted beam. This displacement is a major issue from the viewpoint of target integrity at the MLF and emittance growth at MR injection. To understand the flat-top uniformity of the total field of all the kickers, the uniformity was measured as the displacement of the extracted beams by using a shorter bunched beam and scanning the entire trigger timing of the kickers. The beam displacement of the first bunch exceeded the required range. Therefore, we performed beam-based measurements kicker by kicker to understand each field-ringing effect, and then we understood the characteristics (strength and temporal structure) of each ringing field. We managed to cancel out the ringing by using all the beam-based measurement data and optimizing each trigger timing. As a result, the field-ringing effect of the kickers was successfully compensated by optimizing the trigger timing of each kicker without hardware upgrades or improvements to the kicker system. By developing an automatic monitoring and correction system, we now have a higher stability of extracted beams during routine user operation. In this paper, we report our procedure for ringing compensation and present supporting experimental results.

  4. Design of fast kickers for the ISABELLE beam abort system

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Montemurro, P.A.; Baron, J.

    1981-01-01

    The ISA beam abort (extraction) system must be highly efficient, in the sense of producing minimum beam loss, and reliable to prevent serious damage to accelerator components by the circulating high-energy beams. Since the stored beams will be debunched, the low-loss requirement can be met only with ultra-thin extraction septa and/or fast-acting kickers. This paper examines the design of the ISA extraction kickers subject to a set of extraction channel constraints and a given maximum working voltage. Expressions are derived for determining system parameters for both a lumped parameter magnet and a delay-line magnet. Using these relationships, design parameters are worked out for several possible system configurations. The paper also describes the construction of a full-scale prototype module of the kicker and summarizes the preliminary test results obtained with the module

  5. Wideband current transformers for the surveillance of the beam extraction kicker system of the Large Hadron Collider

    CERN Document Server

    Defrance, C; Ducimetière, L; Vossenberg, E

    2007-01-01

    The LHC beam dumping system must protect the LHC machine from damage by reliably and safely extracting and absorbing the circulating beams when requested. Two sets of 15 extraction kicker magnets form the main active part of this system. A separate high voltage pulse generator powers each magnet. Because of the high beam energy and the consequences which could result from significant beam loss due to a malfunctioning of the dump system the magnets and generators are continuously surveyed in order to generate a beam abort as soon as an internal fault is detected. Amongst these surveillance systems, wideband current transformers have been designed to detect any erratic start in one of the generators. Output power should be enough to directly re-trigger all the power trigger units of the remaining 14 generators. The current transformers were developed in collaboration with industry. To minimize losses, high-resistivity cobalt alloy was chosen for the cores. The annealing techniques originally developed for LEP b...

  6. Wideband Precision Current Transformer for the Magnet Current of the Beam Extraction Kicker Magnet of the Large Hadron Collider

    CERN Document Server

    Gräwer, G

    2004-01-01

    The LHC beam extraction system is composed of 15 fast kicker magnets per beam to extract the particles in one turn of the collider and to safely dispose them on external absorbers. Each magnet is powered by a separate pulse generator. The generator produces a magnet current pulse with 3 us rise time, 20 kA amplitude and 1.8 ms fall time, of which 90 us are needed to dump the beam. The beam extraction system requires a high level of reliability. To detect any change in the magnet current characteristics, which might indicate a slow degradation of the pulse generator, a high precision wideband current transformer will be installed. For redundancy reasons, the results obtained with this device will be cross-checked with a Rogowski coil, installed adjacent to the transformer. A prototype transformer has been successfully tested at nominal current levels and showed satisfactory results compared with the output of a high frequency resistive coaxial shunt. The annular core of the ring type transformer is composed of...

  7. Dilution kicker for the SPS beam dump

    CERN Multimedia

    1974-01-01

    In order to reduce thermal stress on the SPS dump material, the fast-ejected beam was swept horizontally across the dump. This was done with the "dilution kicker" MKDH, still in use at the time of writing. The person on the left is Manfred Mayer. See also 7404072X.

  8. Dilution kicker for the SPS beam dump

    CERN Multimedia

    1974-01-01

    In order to reduce thermal stress on the SPS dump material, the fast-ejected beam was swept horizontally across the dump. This was done with the "dilution kicker" MKDH, still in use at the time of writing. See also 7402051X.

  9. THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    Hahn, H.

    1999-01-01

    THE ENERGY STORED IN THE RHIC BEAM IS ABOUT 200 KJ PER RING AT DESIGN ENERGY AND INTENSITY. TO PREVENT QUENCHING OF THE SUPERCONDUCTING MAGNETS OR MATERIAL DAMAGE, THE BEAM WILL BE SAFELY DISPOSED OF BY AN INTERNAL BEAM ABORT SYSTEM, WHICH INCLUDES THE KICKER MAGNETS, THE PULSED POWER SUPPLIES, AND THE DUMP ABSORBER. DISPOSAL OF HEAVY IONS, SUCH AS GOLD, IMPOSES DESIGN CONSTRAINTS MORE SEVERE THAN THOSE FOR PROTON BEAMS OF EQUAL INTENSITY. IN ORDER TO MINIMIZE THE THERMAL SHOCK IN THE CARBON-FIBER DUMP BLOCK, THE BUNCHES MUST BE LATERALLY DISPERSED

  10. Fast Extraction Kicker for the Accelerator Test Facility

    International Nuclear Information System (INIS)

    De Santis, Stefano; Urakawa, Junji; Naito, Takashi

    2007-01-01

    We present the results of a study for the design of a fast extraction kicker to be installed in the Accelerator Test Facility ring at KEK. This activity is carried on in the framework of the ATF2 project, which will be built on the KEK Tsukuba campus as an extension of the existing ATF, taking advantage of the worlds smallest normalized emittance achieved there. ATF2's primary goal is to operate as a test facility and establish the hardware and beam handling technologies envisaged for the International Linear Collider. In particular, the fast extraction kicker object of the present paper is an important component of the ILC damping rings, since its rise and fall time define the minimum distance between bunches and ultimately the damping rings length itself. Building on the initial results presented at EPAC '06, we report on the present status of the kicker design and define the minimum characteristics for pulsers and other subsystems. In addition to the original scheme with multiple stripline modules producing a total deflection of 5 mrad, we also investigated a scheme with a single kicker module for a reduced deflection of 1 mrad placed inside a closed orbit bump, which takes the electron closer to the extraction septum

  11. The SPS Fast Extraction Kicker System in LSS6

    CERN Document Server

    Gaxiola, E; Ducimetière, L; Faure, P; Kroyer, T; Versolatto, B; Vossenberg, G

    2006-01-01

    A new fast extraction has been set up in SPS LSS6 to transfer 450 GeV/c protons as well as ions to Ring 1 of the LHC, via the transfer line TI 2. The system includes four travelling wave kicker magnets, all powered in series, energised by a single PFN generator and terminated by a short circuit. The layout and the modifications to the magnets and the high voltage circuit are described along with the impact of design choices on the performance of the system. Results from laboratory tests are reported on approaches to overcome the effects of the beam induced kicker heating observed earlier, including a beam screen in form of metallic stripes printed directly onto the ferrites and the use of high Curie temperature ferrites. Prospects for further improvements are briefly discussed.

  12. Accelerator Technology: Injection and Extraction Related Hardware: Kickers and Septa

    CERN Document Server

    Barnes, M J; Mertens, V

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.7 Injection and Extraction Related Hardware: Kickers and Septa' of the Chapter '8 Accelerator Technology' with the content: 8.7 Injection and Extraction Related Hardware: Kickers and Septa 8.7.1 Fast Pulsed Systems (Kickers) 8.7.2 Electrostatic and Magnetic Septa

  13. Analysis of beam loss induced abort kicker instability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang W.; Sandberg, J.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Pai, C.; Tan, Y.

    2012-05-20

    Through more than a decade of operation, we have noticed the phenomena of beam loss induced kicker instability in the RHIC beam abort systems. In this study, we analyze the short term beam loss before abort kicker pre-fire events and operation conditions before capacitor failures. Beam loss has caused capacitor failures and elevated radiation level concentrated at failed end of capacitor has been observed. We are interested in beam loss induced radiation and heat dissipation in large oil filled capacitors and beam triggered thyratron conduction. We hope the analysis result would lead to better protection of the abort systems and improved stability of the RHIC operation.

  14. Design of kicker magnet and power supply unit for synchrotron beam injection

    International Nuclear Information System (INIS)

    Wang, Ju.

    1991-03-01

    To inject beams from the positron accumulator ring (PAR) into the synchrotron, a pulsed kicker magnet is used. The specifications of this kicker magnet and the power supply unit are listed and discussed in this report

  15. Physical and Electromagnetic Properties of Customized Coatings for SNS Injection Ceramic Chambers and Extraction Ferrite Kickers

    CERN Document Server

    Hseuh Hsiao Chaun; He, Ping; Henderson, Stuart; Pai, Chien; Raparia, Deepak; Todd, Robert J; Wang, Lanfa; Wei, Jie; Weiss, Daniel; Yung Lee, Yong

    2005-01-01

    The inner surfaces of the 248 m SNS accumulator ring vacuum chambers are coated with ~100 nm of titanium nitride (TiN) to reduce the secondary electron yield (SEY) of the chamber walls. All the ring inner surfaces are made of stainless or inconel, except those of the injection and extraction kickers. Ceramic vacuum chambers are used for the 8 injection kickers to avoid shielding of a fast-changing kicker field and to reduce eddy current heating. The internal diameter was coated with Cu to reduce the beam coupling impedance and provide passage for beam image current, and a TiN overlayer to reduce SEY. The ferrite surfaces of the 14 extraction kicker modules were coated with TiN to reduce SEY. Customized masks were used to produce coating strips of 1 cm x 5 cm with 1 to 1.5 mm separation among the strips. The masks maximized the coated area to more than 80%, while minimizing the eddy current effect to the kicker rise time. The coating method, as well as the physical and electromagnetic properties of the coating...

  16. Numerical calculation of transverse coupling impedances: Comparison to Spallation Neutron Source extraction kicker measurements

    Science.gov (United States)

    Doliwa, B.; Arévalo, E.; Weiland, T.

    2007-10-01

    The study of beam dynamics and the localization of potential sources of instabilities are important tasks in the design of modern, high-intensity particle accelerators. In the case of synchrotrons and storage rings, coupling impedance data are needed to characterize the parasitic interaction of critical components with the beam. In this article we demonstrate the application of numerical field simulations to the computation of transverse kicker coupling impedances. Based on the 3D simulation results, a parametrized model is developed to incorporate the impedance of an arbitrary pulse-forming network attached to the kicker. Detailed comparisons of numerical results with twin-wire and direct measurements are discussed at the example of the Spallation Neutron Source extraction kicker.

  17. Numerical calculation of transverse coupling impedances: Comparison to Spallation Neutron Source extraction kicker measurements

    Directory of Open Access Journals (Sweden)

    B. Doliwa

    2007-10-01

    Full Text Available The study of beam dynamics and the localization of potential sources of instabilities are important tasks in the design of modern, high-intensity particle accelerators. In the case of synchrotrons and storage rings, coupling impedance data are needed to characterize the parasitic interaction of critical components with the beam. In this article we demonstrate the application of numerical field simulations to the computation of transverse kicker coupling impedances. Based on the 3D simulation results, a parametrized model is developed to incorporate the impedance of an arbitrary pulse-forming network attached to the kicker. Detailed comparisons of numerical results with twin-wire and direct measurements are discussed at the example of the Spallation Neutron Source extraction kicker.

  18. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line

    International Nuclear Information System (INIS)

    Waldschmidt, G. J.

    1998-01-01

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1

  19. The Beam Screen for the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, MJ; Ducimetière, L; Garrel, N; Kroyer, T

    2006-01-01

    The two LHC injection kicker magnet systems must each produce a kick of 1.2 T.m with a flattop duration variable up to 7.86 ìs, and rise and fall times of less than 0.9 ìs and 3 ìs, respectively. Each system is composed of four 5 Ù transmission line kicker magnets with matched terminating resistors and pulse forming networks (PFN). The LHC beam has a high intensity, hence a beam screen is required in the aperture of the magnets This screen consists of a ceramic tube with conducting ?stripes? on the inner wall. The stripes provide a path for the image current of the beam and screen the magnet ferrites against Wake fields. The stripes initially used gave adequately low beam impedance however stripe discharges occured during pulsing of the magnet: hence further development of the beam screen was undertaken. This paper presents options considered to meet the often conflicting needs for low beam impedance, shielding of the ferrite, fast field rise time and good electrical and vacuum behaviour.

  20. An Improved Beam Screen for the LHC Injection Kickers

    CERN Document Server

    Barnes, M J; Ducimetière, L; Garrel, N; Kroyer, T

    2007-01-01

    The two LHC injection kicker magnet systems must produce a kick of 1.3 T.m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. Each system is composed of two resonant charging power supplies (RCPSs) and four 5 WW transmission line kicker magnets with matched terminating resistors and pulse forming networks (PFNs). A beam screen is placed in the aperture of the magnets: the screen consists of a ceramic tube with conductors on the inner wall. The conductors provide a path for the image current of the, high intensity, LHC beam and screen the ferrite against Wake fields. The conductors initially used gave adequately low beam coupling impedance however inter-conductor discharges occurred during pulsing of the magnet: an alternative design was discharge free at the nominal operating voltage but the impedance was too high for the ultimate LHC beam. This paper presents the results of a new development undertaken to meet the often conflicting requireme...

  1. Beam impedance of ferrite kicker magnets

    International Nuclear Information System (INIS)

    Voelker, F.; Lambertson, G.

    1989-03-01

    We have measured the longitudinal beam impedance of a typical pulsed magnet that will be used in the Advanced Light Source. The magnets are of a ferrite window-frame design with a single plate conductor on each side. Two separate power supplies are used to drive current in opposite directions in the two conductors. The continuity of the ferrite yoke is interrupted by two copper plates 1 mm thick in the center of the top and bottom of the window frame. This increases the reluctance of the magnetic path, and thus decreases the flux which couples the beam. The measurements were made by exciting a 1/8'' rod along the beam path through the magnet. This makes a 185 ohm transmission line, and it was terminated in a resistive divider at the exit end. A 3 GHz network analyzer was used to measure S 21 through the magnet, and longitudinal beam impedance was calculated from this data. The impedance is dominated by two low frequency resonances in the magnet winding and drive current. 8 figs

  2. ADVANCEMENT OF THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    ZHANG, W.; AHRENS, L.; MI, J.; OERTER, B.; SANDBERG, J.; WARBURTON, D.

    2003-01-01

    As one of the most critical system for RHIC operation, the beam abort kicker system has to be highly available, reliable, and stable for the entire operating range. Along with the RHIC commission and operation, consistent efforts have been spend to cope with immediate issues as well as inherited design issues. Major design changes have been implemented to achieve the higher operating voltage, longer high voltage hold-off time, fast retriggering and redundant triggering, and improved system protection, etc. Recent system test has demonstrated for the first time that both blue ring and yellow ring beam abort systems have achieved more than 24 hours hold off time at desired operating voltage. In this paper, we report break down, thyratron reverse arcing, and to build a fast re-trigger system to reduce beam spreading in event of premature discharge

  3. RHIC BEAM ABORT KICKER POWER SUPPLY SYSTEM COMMISSIONING EXPERIENCE AND REMAINING ISSUES

    International Nuclear Information System (INIS)

    ZHANG, W.; AHRENS, L.A.; MI, J.; OERTER, B.; SANDERS, R.; SANDBERG, J.

    2001-01-01

    The RHIC Beam Abort Kicker Power Supply Systems commissioning experience and the remaining issues will be reported in this paper. The RHIC Blue Ring Beam Abort Kicker Power Supply System initial commissioning took place in June 1999. Its identical system in Yellow Ring was brought on line during Spring 2000. Each of the RHIC Beam Abort Kicker Power Supply Systems consists of five high voltage modulators and subsystems. These systems are critical devices for RHIC machine protection and environmental protection. They are required to be effective, reliable and operating with sufficient redundancy to safely abort the beam to its beam dump at the end of accumulation or at any time when they are commanded. To deflect 66 GeV ion beam to the beam absorbers, the RHIC Beam Abort Kicker Power Supply Systems were operated at 22 kV level. The RHIC 2000 commissioning run was very successful

  4. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    Directory of Open Access Journals (Sweden)

    Yulu Huang

    2016-08-01

    Full Text Available An ultrafast kicker system is being developed for the energy recovery linac (ERL based electron circulator cooler ring (CCR in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC. In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10−1/30 (150  mA-50  mA of the cooling beam current (up to 1.5 A. Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetition rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. Off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.

  5. Transient beam losses in the LHC injection kickers from micron scale dust particles

    CERN Document Server

    Goddard, B; Baer, T; Barnes, M J; Cerutti, F; Ferrari, A; Garrel, N; Gerardin, A; Guinchard, M; Lechner, A; Masi, A; Mertens, V; Morón Ballester, R; Redaelli, S; Uythoven, J; Vlachoudis, V; Zimmermann, F

    2012-01-01

    Transient beam losses on a time scale of a few ms have been observed in the LHC injection kickers, occurring mainly shortly after beam injection with a strong correlation in time to the kicker pulsing. The beam losses, which have at times affected LHC availability, are attributed to micron scale ceramic dust particles detached from the alumina beam pipe and accelerated into the beam. The beam related observations are described, together with laboratory measurements of beam pipe contamination and kicker vibration, simulations of electric field in the beam pipe and the basic dynamic model. Energy deposition simulations modelling the beam losses are presented and compared to measurement. Extrapolations to future LHC operation at higher intensities and energies are made, and prospects for mitigation are discussed.

  6. SSC kicker impedances

    International Nuclear Information System (INIS)

    Colton, E.P.; Wang, T.F.

    1985-01-01

    The longitudinal and transverse complex impedances Z/sub l//n and Z/sub t/, respectively, have been calculated for both the SSC injection and abort kickers. The calculations assumed that no attempt was made to shield the beam from the kickers. We took the injection and abort kickers to be as specified. The injection kickers were ferrite with a single-turn design, and the abort kickers were of a ''window-frame design'' with tape wound cores

  7. Fast Kicker for High Current Beam Manipulation in Large Aperture

    CERN Document Server

    Gambaryan, V

    2017-01-01

    The pulsed deflecting magnet (kicker) project was worked out in Budker Institute of Nuclear Physics. The kicker design parameters are: impulsive force, 1 mT*m; pulse edge, 5 ns; impulse duration, 200 ns. The unconventional approach is that the plates must be replaced by a set of cylinders. The obtained magnet construction enables the field homogeneity to be controlled by changing current magnitudes in cylinders. Furthermore, we demonstrated the method of field optimization. In addition, measurement technique for the harmonic components was considered and the possibility of control harmonic components value was demonstrated.

  8. Evaluation of the Beam Coupling Impedance of New Beam Screen Designs for the LHC Injection Kicker Magnets

    CERN Document Server

    Day, H; Caspers, F; Jones, R M; Salvant, B; Métral, E

    2013-01-01

    The LHC injection kicker magnets (MKIs) have experienced a significant degree of beam induced heating since the beginning of 2011 due to the increasing intensity stored in the LHC, for long periods of time, and the relatively large broadband beam coupling impedance of the installed kicker magnets. In this paper we show the sources of impedance in the MKIs, and the effect that the beam screen dimensions have on the impedance. We show how these alter the power loss, and present an improved beam screen design that improves shielding on the magnet, whilst further improving the electrical breakdown situation.

  9. Particle kickers

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    These devices are designed to provide a current pulse of 5000 Amps which will in turn generate a fast magnetic pulse that steers the incoming beam into the LHC. Today, the comprehensive upgrade of the LHC injection kicker system is entering its final stages. The upgraded system will ensure the LHC can be refilled without needing to wait for the kicker magnets to cool, thus enhancing the performance of the whole accelerator.   An upgraded kicker magnet in its vacuum tank, with an upgraded beam screen. The LHC is equipped with two kicker systems installed at the injection points (near points 2 and 8, see schematic diagram) where the particle beams coming from the SPS are injected into the accelerator’s orbit. Each system comprises four magnets and four pulse generators in which the field rises to 0.12 Tesla in less than 900 nanoseconds and for a duration of approximately 8 microseconds. Although the injection kickers only pulse 12 times to fill the LHC up with beam, the LHC beam circ...

  10. Some fast beam kicker magnet systems at SLAC

    International Nuclear Information System (INIS)

    Bulos, F.; Cassel, R.L.; Donaldson, A.R.

    1987-01-01

    The Stanford Linear Collider requires very fast rise and fall times from its kicker magnets. The damping rings and positron source need either one or two bunches deflected from two or three that are separated in time by about 59 ns. The final focus region kicker magnets need a rise time of less than 700 ns and each one deflects only one bunch. This paper discusses the design and characteristics of a thyratron-switched, castor-oil-filled, coaxial, Blumlein line used for one bunch kicking. It discharges a 118 ns (at the base), 50 kV, 3 kA pulse into a 33 cm long, ferrite-loaded, kicker magnet of rectangular coaxial-line geometry, which in turn is terminated by a matched load. Reference is made to a Fermilab (FNAL) designed magnet and a dual-thyratron pulsar that will deflect two serial bunches in or out of the electron ring. Also, a brief description of the final focus magnet is given. Work is continuing on the various subsystem components to decrease the pulse rise and fall time, flattop ripple and jitter and to reduce some of the sources of noise and hv breakdown

  11. Some fast beam kicker magnet systems at SLAC

    International Nuclear Information System (INIS)

    Bulos, F.; Cassel, R.L.; Donaldson, A.R.; Genova, L.F.; Grant, J.A.; Mihalka, A.M.; Sukiennicki, B.A.; Tomlin, W.T.; Veldhuizen, F.T.; Walz, D.R.

    1987-01-01

    The Stanford Linear Collider requires very fast rise and fall times from its kicker magnets. The damping rings and positron source need either one or two bunches deflected from two or three that are separated in time by about 59 ns. The final focus region kicker magnets need a rise time of less than 700 ns and each one deflects only one bunch. This paper discusses the design and characteristics of a thyratron-switched, castor-oil-filled, coaxial, Blumlein line used for one bunch kicking. It discharges a 118 ns (at the base), 50 kV, 3 kA pulse into a 33 cm long, ferrite-loaded, kicker magnet of rectangular coaxial-line geometry, which in turn is terminated by a matched load. Reference is made to a Fermilab (FNAL) designed magnet and a dual-thyratron pulser that deflects two serial bunches in or out of the electron ring. Also, a brief description of the final focus magnet is given

  12. Rapid-Cycling Synchrotron extraction-kicker magent-drive system

    International Nuclear Information System (INIS)

    Suddeth, D.E.; Volk, G.J.

    1981-01-01

    The Rapid-Cycling Synchrotron (RCS) accelerator of the Intense Pulsed Neutron Source-I (IPNS-I) at Argonne National Laboratory utilizes a fast kicker magnet to provide single-turn extraction for a 500-MeV proton beam at a 30 Hz rate. The single-turn, 0.89-m-long ferrite magnet is broken up into two identical cells with four individual windings. Each winding requires a 4863-A magnetizing current into a 7.0-Ω load with a rise time of less than 100 ns and a flattop of about 140 ns. Pulse forming network (PFN) charging and switching techniques along with the components used will be described

  13. Steel Tape-wound Cut Cores as Magnet Yokes for the Beam Dump Kickers of the Large Hadron Collider

    CERN Document Server

    Mayer, M; Jansson, U; Fox, D

    2004-01-01

    Fast pulsed magnets, also called kickers, are used in particle accelerators for beam injection, extraction and similar applications. To excite these magnets, typically current pulses with rise and fall times in the range of 100 ns to 10 µs, with pulse duration of up to 100 µs and amplitudes in the order of kilo Amperes, are used. The short rise time imposes low inductance circuits and high voltage operation. The yokes are usually made out of ferrite, with reaches field saturation at about 0.5 T.

  14. Wake field in matched kicker magnet

    International Nuclear Information System (INIS)

    Miyahara, Y.

    1979-01-01

    Coherent transverse instability observed in KEK booster proton synchrotron has been reported previously. This instability is induced by the interaction of the beam with kicker magnet for the fast beam extraction. To understand the mechanism completely, it is necessary to know the wake field in detail. Here, the wake field or induced current in the kicker magnet which is terminated with matched resistance is considered

  15. Reduction of Surface Flashover of the Beam Screen of the LHC Injection Kickers

    CERN Document Server

    Barnes, M J; Calatroni, S; Caspers, F; Ducimetière, L; Gomes Namora, V; Mertens, V; Noulibos, R; Taborelli, M; Teissandier, B; Uythoven, J; Weterings, W

    2013-01-01

    The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wake fields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. LHC operation with increasingly higher bunch intensity and short bunch lengths, requires improved ferrite screening. This will be implemented by additional conductors; however these must not compromise the good high-voltage behaviour of the kicker magnets. Extensive studies have been carried out to better satisfy the often conflicting requirements for low beam coupling impedance, fast magnetic field rise-time, ultra-high vacuum and good high voltage behaviour. A new design is proposed which significantly reduces the electric field associated with the screen conductors. Results of high voltage tests are also presented.

  16. Upgrade and Tests of the SPS Fast Extraction Kicker System for LHC and CNGS

    CERN Document Server

    Gaxiola, E; Burkel, P; Carlier, E; Castronuovo, F; Ducimetière, L; Sillanoli, Y; Timmins, M; Uythoven, J

    2004-01-01

    A fast extraction kicker system has been installed in the SPS and successfully used in extraction tests in 2003. It will serve to send beam to the anticlockwise LHC ring and the CNGS neutrino facility. The magnets and pulse generators have been recuperated from an earlier installation and upgraded to fit the present application. Hardware improvements include diode stacks as replacement of the previous dump thyratron switches, a cooling system of the magnets, sensors for its ferrite temperatures and magnetic field quality assessment. In preparation of the future use for 450 GeV/c transfer to LHC and double batch extraction at 400 GeV/c for CNGS the tests comprised extractions of single bunches, twelve bunches in a single extraction and single bunches in a double extraction. The measured kick characteristics of the upgraded system are presented, along with a discussion of Pspice simulation results. Further improvements will be discussed which are intended to make the system comply with the specifications for CN...

  17. Mechanical design of ceramic beam tube braze joints for NOvA kicker magnets

    International Nuclear Information System (INIS)

    Ader, C.R.; Reilly, R.E.; Wilson, J.H.

    2010-01-01

    The NO?A Experiment will construct a detector optimized for electron neutrino detection in the existing NuMI neutrino beam. The NuMI beam line is capable of operating at 400 kW of primary beam power and the upgrade will allow up to 700 kW. Ceramic beam tubes are utilized in numerous kicker magnets in different accelerator rings at Fermi National Accelerator Laboratory. Kovar flanges are brazed onto each beam tube end, since kovar and high alumina ceramic have similar expansion curves. The tube, kovar flange, end piece, and braze foil alloy brazing material are stacked in the furnace and then brazed. The most challenging aspect of fabricating kicker magnets in recent years have been making hermetic vacuum seals on the braze joints between the ceramic and flange. Numerous process variables can influence the robustness of conventional metal/ceramic brazing processes. The ceramic-filler metal interface is normally the weak layer when failure does not occur within the ceramic. Differences between active brazing filler metal and the moly-manganese process will be discussed along with the applicable results of these techniques used for Fermilab production kicker tubes.

  18. Beam-Based Measurement of the Waveform of the LHC Injection Kickers

    CERN Document Server

    Barnes, M J; Goddard, B; Hessler, C; Mertens, V; Uythoven, J

    2010-01-01

    Proton and ion beams are injected into LHC at 450 GeV by two kicker magnet systems, producing magnetic field pulses of up to 7.8 ms flat top duration with rise and fall times of not more than 900 ns and 3 ms, respectively. Both systems are composed of four travelling wave kicker magnets, powered by pulse forming networks. One of the stringent design requirements of these systems is a field flat top and postpulse ripple of less than ±0.5 %. A carefully matched high bandwidth system is required to obtain the required pulse response. Screen conductors are placed in the aperture of the kicker magnet to provide a path for the image current of the, high intensity, LHC beam and screen the ferrite against wake fields. However, these conductors affect the field pulse response. Recent injection tests provided the opportunity to directly measure the shape of the kick field pulse, with high accuracy, using a pilot beam. This paper details the measurements and compares the results with predictions and laboratory measurem...

  19. Kicker magnet

    CERN Multimedia

    CERN PhotoLab

    1966-01-01

    The improved "bare" kicker magnet for the PS fast extraction system is here shown being mounted for testing a vacuum tank similar to the one in which it will be installed, early in 1967 in straight section 97 of the PS.

  20. Beam Induced Ferrite Heating of the LHC Injection Kickers and Proposals for Improved Cooling

    CERN Document Server

    Barnes, M J; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Mertens, V; Sobiech, Z; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01

    The two LHC injection kicker systems produce an integrated field strength of 1.3 T·m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of each magnet, which consists of a ceramic tube with conductors in the inner wall. The conductors provide a path for the beam image current and screen the ferrite yoke against wakefields. Recent LHC operation, with high intensity beam stable for many hours, resulted in significant heating of both the ferrite yoke and beam impedance reduction ferrites. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the ferrite yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. Thermal measurement data has been analysed, a thermal model developed and emissivity measurements carried out. Various measures to improve the ferrite cooling have...

  1. NuMI proton kicker extraction magnet termination resistor system

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, S.R.; Jensen, C.C.; /Fermilab

    2005-05-01

    The temperature stability of the kicker magnet termination resistor assembly directly affects the field flatness and amplitude stability. Comprehensive thermal enhancements were made to the existing Main Injector resistor assembly design to satisfy NuMI performance specifications. Additionally, a fluid-processing system utilizing Fluorinert{reg_sign} FC-77 high-voltage dielectric was built to precisely control the setpoint temperature of the resistor assembly from 70 to 120F, required to maintain constant resistance during changing operational modes. The Fluorinert{reg_sign} must be continually processed to remove hazardous breakdown products caused by radiation exposure to prevent chemical attack of system components. Design details of the termination resistor assembly and Fluorinert{reg_sign} processing system are described. Early performance results will be presented.

  2. NuMI Proton Kicker Extraction Magnet Termination Resistor System

    CERN Document Server

    Reeves, Scott

    2005-01-01

    The temperature stability of the kicker magnet termination resistor assembly directly affects the field flatness and amplitude stability of the kick. Comprehensive thermal enhancements were made to the existing Main Injector resistor assembly design to satisfy NuMI performance specifications. Additionally, a fluid-processing system utilizing Fluorinert® FC-77 high-voltage dielectric was built to precisely control the setpoint temperature of the resistor assembly from 70 to 120F, required to maintain constant resistance during changing operational modes. The Fluorinert® must be continually processed to remove hazardous breakdown products caused by radiation exposure to prevent chemical attack of system components. Design details of the termination resistor assembly and Fluorinert® processing system are described. Early performance results will be presented.

  3. SPS Injection and Beam Quality for LHC Heavy Ions With 150 ns Kicker Rise Time

    CERN Document Server

    Goddard, Brennan; Ducimetière, Laurent; Kotzian, Gerd; Uythoven, Jan; Velotti, Francesco

    2016-01-01

    As part of the LHC Injectors Upgrade project for LHC heavy ions, the SPS injection kicker system rise time needs reduction below its present 225 ns. One technically challenging option under consideration is the addition of fast Pulse Forming Lines in parallel to the existing Pulse Forming Networks for the 12 kicker magnets MKP-S, targeting a system field rise time of 100 ns. An alternative option is to optimise the system to approach the existing individual magnet field rise time (2-98%) of 150 ns. This would still significantly increase the number of colliding bunches in LHC while minimising the cost and effort of the system upgrade. The observed characteristics of the present system are described, compared to the expected system rise time, together with results of simulations and measurements with 175 and 150 ns injection batch spacing. The expected beam quality at injection into LHC is quantified, with the emittance growth and simulated tail population taking into account expected jitter and synchronisatio...

  4. PRELIMINARY TEST RESULTS OF A PROTOTYPE FAST KICKER FOR APS MBA UPGRADE

    Energy Technology Data Exchange (ETDEWEB)

    Yao, C.-Y.; Morrison, L.; Sun, X.; Wang, J.; Cours, A.; Westferro, F.; Xiao, A.; Clute, T.; Conway, Z.; Decker, G.; Lenkszus, F.; Carwardine, J.; Barcikowski, A.; Keane, R.; Brill, A.

    2017-06-25

    The APS multi-bend achromatic (MBA) upgrade storage ring plans to support two bunch fill patterns: a 48-bunch and a 324-bunch. A “swap out” injection scheme is required. In order to provide the required kick to injected beam, to minimize the beam loss and residual oscillation of injected beam, and to minimize the perturbation to stored beam during injection, the rise, fall, and flat-top parts of the kicker pulse must be within a 16.9-ns interval. Stripline-type kickers are chosen for both injection and extraction. We developed a prototype kicker that supports a ±15kV differential pulse voltage. We performed high voltage discharge, TDR measurement, high voltage pulse test and beam test of the kicker. We report the final design of the fast kicker and the test results.

  5. The beam-kicker system of the synchrotron Saturne. Magnetic field and particle orbit computations. Experimental results (1963)

    International Nuclear Information System (INIS)

    Gouttefangeas, M.; Katz, A.; Rastoix, G.

    1963-01-01

    In this report is briefly described the beam-kicker system of the synchrotron Saturne. An analysis of its operation based on the sampling method is given, as well as two methods for computing toe magnetic field produced by a set of endless conductors in the neighbourhood of a conducting shield where eddy currents are circulating. The first method leads to the resolution of a bi-dimensional Laplace equation with first kind boundary conditions (Dirichlet problem); the second one translates to electromagnetism the electrical images method currently used in electrostatics and yields the magnetic field as the sum of a triple series expansion in the general case of a set of conductors located in a parallelepipedal box. Finally are given the results obtained in computing on IBM 7090 the perturbation of the particle motion due to the beam-kicker. These results are compared with the experimental data. (authors) [fr

  6. Dynamic devices - pickups and kickers

    International Nuclear Information System (INIS)

    Lambertson, G.

    1986-08-01

    A given configuration of electrodes may be used either as a pickup or as a kicker; that duality is addressed. Some general relations between longitudinal and transverse effects and between the respones as pickup and as kicker are derived. Dynamic effects are seen to be entirely determined by the longitudinal electric fields in the direction of the beam current when the electrode is excited as a kicker. Response functions that serve as figures of merit are defined. The responses of specific examples of pickups and kickers are analyzed. An approach to the calculation of the transverse variation of coupling over the electrode aperture is preented

  7. Simulation, measurement, and mitigation of beam instability caused by the kicker impedance in the 3-GeV rapid cycling synchrotron at the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Saha, P. K.; Shobuda, Y.; Hotchi, H.; Harada, H.; Hayashi, N.; Kinsho, M.; Tamura, F.; Tani, N.; Yamamoto, M.; Watanabe, Y.; Chin, Yong Ho; Holmes, J. A.

    2018-02-01

    The transverse impedance of eight extraction pulsed kicker magnets is a strong beam instability source in the 3-GeV rapid cycling synchrotron (RCS) at the Japan Proton Accelerator Research Complex. Significant beam instability occurs even at half of the designed 1 MW beam power when the chromaticity (ξ ) is fully corrected for the entire acceleration cycle by using ac sextupole (SX) fields. However, if ξ is fully corrected only at the injection energy by using dc SX fields, the beam is stable. In order to study realistic beam instability scenarios, including the effect of space charge and to determine practical measures to accomplish 1 MW beam power, we enhance the orbit particle tracking code to incorporate all realistic time-dependent machine parameters, including the time dependence of the impedance itself. The beam stability properties beyond 0.5 MW beam power are found to be very sensitive to a number of parameters in both simulations and measurements. In order to stabilize a beam at 1 MW beam power, two practical measures based on detailed and systematic simulation studies are determined, namely, (i) proper manipulation of the betatron tunes during acceleration and (ii) reduction of the dc SX field to reduce the ξ correction even at injection. The simulation results are well reproduced by measurements, and, as a consequence, an acceleration to 1 MW beam power is successfully demonstrated. In this paper, details of the orbit simulation and the corresponding experimental results up to 1 MW of beam power are presented. To further increase the RCS beam power, beam stability issues and possible measures beyond 1 MW beam power are also considered.

  8. MI Gap Clearing Kicker Magnet Design Review

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Chris; /Fermilab

    2008-10-01

    The kicker system requirements were originally conceived for the NOvA project. NOvA is a neutrino experiment located in Minnesota. To achieve the desired neutrino flux several upgrades are required to the accelerator complex. The Recycler will be used as a proton pre-injector for the Main Injector (MI). As the Recycler is the same size as the MI, it is possible to do a single turn fill ({approx}11 {micro}sec), minimizing the proton injection time in the MI cycle and maximizing the protons on target. The Recycler can then be filled with beam while the MI is ramping to extract beam to the target. To do this requires two new transfer lines. The existing Recycler injection line was designed for 10{pi} pbar beams, not the 20{pi} proton beams we anticipate from the Booster. The existing Recycler extraction line allows for proton injection through the MI, while we want direct injection from the Booster. These two lines will be decommissioned. The new injection line from the MI8 line into the Recycler will start at 848 and end with injection kickers at RR104. The new extraction line in the RR30 straight section will start with a new extraction kicker at RR232 and end with new MI injection kickers at MI308. Finally, to reduce beam loss activation in the enclosure, a new gap clearing kicker will be used to extract uncaptured beam created during the slip stack injection process down the existing dump line. It was suggested that the MI could benefit from this type of system immediately. This led to the early installation of the gap clearing system in the MI, followed by moving the system to Recycler during NOvA. The specifications also changed during this process. Initially the rise and fall time requirements were 38 ns and the field stability was {+-}1%. The 38 ns is based on having a gap of 2 RF buckets between injections. (There are 84 RF buckets that can be filled from the Booster for each injection, but 82 would be filled with beam. MI and Recycler contain 588 RF buckets

  9. Solid State Switch Application for the LHC Extraction Kicker Pulse Generator

    CERN Document Server

    Carlier, E; Jansson, U; Schlaug, M; Schröder, G; Vossenberg, Eugène B

    1996-01-01

    A semiconductor solid state switch has been constructed and tested in the prototype extraction kicker pulse generator of CERN's Large Hadron Collider (LHC) [1]. The switch is made of 10 modified 4.5 kV, 66 mm symmetric GTO's (also called FHCT-Fast High Current Thyristor), connected in series. It holds off a d.c. voltage of 30 kV and conducts a 5 µs half-sine wave current of 20 kA with an initial di/dt of 10 kA/µs. Major advantages of the switch are the extremely low self-firing hazard, no power consumption during the ready-to-go status, instantaneous availability, simple condition control, very low noise emission during soft turn-on switching and easy maintenance. However, the inherent soft, relatively slow turn-on time is a non negligible part of the required rise time and this involves adaptation of generator components. A dynamic current range of 16 is achieved with variations in rise time, which stay within acceptable limits. Important generator improvements have been made with the series diodes and fre...

  10. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2002-01-01

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without external resistive damping, such as the RHIC abort kicker, would benefit

  11. Feasibility Study of the PS Injection for 2 GeV LIU Beams with an Upgraded KFA-45 Injection Kicker System Operating in Short Circuit Mode

    CERN Document Server

    Kramer, Thomas; Borburgh, Jan; Ducimetière, Laurent; Feliciano, Luis; Ferrero Colomo, Alvaro; Goddard, Brennan; Sermeus, Luc

    2016-01-01

    Under the scope of the LIU project the CERN PS Booster to PS beam transfer will be modified to match the requirements for the future 2 GeV beams. This paper describes the evaluation of the proposed upgrade of the PS injection kicker. Different schemes of an injection for LIU beams into the PS have been outlined in the past already under the aspect of individual transfer kicker rise and fall time performances. Homogeneous rise and fall time requirements in the whole PSB to PS transfer chain have been established which allowed to consider an upgrade option of the present injection kicker system operated in short circuit mode. The challenging pulse quality constraints require an improvement of the flat top and post pulse ripples. Both operation modes, terminated and short circuit mode are analysed and analogue circuit simulations for the present and upgraded system are outlined. Recent measurements on the installed kickers are presented and analysed together with the simulation data. First measurements verifying...

  12. Comparison of the Window-Frame RHIC-abort kicker with C-type Kicker

    International Nuclear Information System (INIS)

    Tsoupas, N.; McMahan, Brandon

    2014-01-01

    The high intensity proton bunches (~2.5x10 11 p/bunch ) circulating in RHIC increase the temperature of the ferrite-made RHIC-abort-kickers above the Curie point; as a result, the kickers cannot provide the required field to abort the beam at the beam dump. A team of experts in the CAD department worked on modifying the design of the window-frame RHIC-abort kicker to minimize the hysteresis losses responsible for the increase of the ferrite's temperature. In this technical note we report some results from the study of two possible modifications of the window-frame RHIC-abort kicker, and we compare these results with those of a propose C-type RHIC-abort kicker. We also include an Appendix where we describe a method which may further reduce the hysteresis losses of the window-frame kicker.

  13. Dealing with abort kicker prefire in the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Drozhdin, A.I.; Baishev, I.S.; Mokhov, N.V.; Parker, B.; Richardson, R.D.; Zhou, J.

    1993-05-01

    The Superconducting Super Collider uses a single-turn extraction abort system to divert the circulating beam to a massive graphite absorber at normal termination of the operating cycle or in case of any of a number of predefined fault modes. The Collider rings must be designed to be tolerant to abort extraction kicker prefires and misfires because of the large circulating beam energy. We have studied the consequences of beam loss in the accelerator due to such prefires and misfires in terms of material heating and radiation generation using full scale machine simulations and Monte-Carlo energy deposition calculations. Some results from these calculations as well as possible protective measures for minimizing the damaging effects of kicker prefire and misfire are discussed in this paper

  14. AGS fast kicker magnet system

    International Nuclear Information System (INIS)

    Weng, W.T.; Cottingham, J.G.; Foelsche, H.; Frey, W.; Ghoshroy, S.; Schmidt, C.; Tuozzolo, J.

    1981-01-01

    A new fast extraction system from the AGS will be implemented to improve the neutrino beam and to serve for ISABELLE injection. The fast kicker for the system is of an open C-type design with a field strength of 1.25 kG at 2650 amperes. The pulser system is a mismatched, discharge type PFN which is capable of delivering a pulse of 3000 amperes peak current at 30 kV dc, with a 2.7 μsec pulse width, 170 nsec rise time, and flat top ripple within +-1%. It also serves as a prototype for an ISA injection magnet, and is to be operated in UHV in the 10 -11 Torr range. Special measures to achieve this goal are also discussed

  15. Beam Extraction and Transport

    CERN Document Server

    Kalvas, T.

    2013-12-16

    This chapter gives an introduction to low-energy beam transport systems, and discusses the typically used magnetostatic elements (solenoid, dipoles and quadrupoles) and electrostatic elements (einzel lens, dipoles and quadrupoles). The ion beam emittance, beam space-charge effects and the physics of ion source extraction are introduced. Typical computer codes for analysing and designing ion optical systems are mentioned, and the trajectory tracking method most often used for extraction simulations is described in more detail.

  16. SLC kicker magnet limitations

    International Nuclear Information System (INIS)

    Cassel, R.; Donaldson, A.; Mattison, T.; Bowden, G.; Weaver, J.; Bulos, F.; Fiander, D.

    1991-01-01

    The SLC Damping Ring kicker magnets requires a fast magnetic field rise time of 58 nsec, a peak field of 800 gauss, a pulse amplitude stability of 0.01%, and a reasonable operational lifetime. The original kicker magnets designed by SLAC and at Fermi were not able to fulfill the SLC kicker requirements. Extensive studies were conducted to determine the limitation in the magnets, response of the ferrite in kicker magnet, and the modifications needed to improve the kicker magnet performance. The paper details the SLAC and Fermi kicker magnets limitation of performance

  17. High power semiconductor switches in the 12 kV, 50 kA pulse generator of the SPS beam dump kicker system

    CERN Document Server

    Bonthond, J; Faure, P; Vossenberg, Eugène B

    2001-01-01

    Horizontal deflection of the beam in the dump kicker system of the CERN SPS accelerator is obtained with a series of fast pulsed magnets. The high current pulses of 50 kA per magnet are generated with capacitor discharge type generators which, combined with a resistive free-wheel diode circuit, deliver a critically damped half-sine current with a rise-time of 25 ms. Each generator consists of two 25 kA units, connected in parallel to a magnet via a low inductance transmission line.

  18. Concept for ELENA Extraction and Beam Transfer Elements

    CERN Document Server

    Borburgh, J; Balhan, B; Barna, D; Bartmann, W; Fowler, T; Pricop, V; Sermeus, L; Vanbavinckhove, G

    2013-01-01

    In 2011 the ELENA decelerator was approved as a CERN project. Initially one extraction was foreseen, which should use a kicker and a magnetic septum which can be recuperated from an earlier installation. Since then a second extraction has been approved and a new solution was studied using only electric fields to extract the beam. This will be achieved by fast pulsing a separator, allowing single-bunch but also a full single-turn extraction from ELENA towards the experiments. The extraction and transfer requirements of ELENA are described, followed by the principal differences between the magnetic and electric field concepts. The design of electrostatic focussing and bending devices for the transfer lines will be presented. Finally the field quality which can be achieved with the separator and the concept of its power supply will be discussed.

  19. Kicker Magnet and Pulser

    Energy Technology Data Exchange (ETDEWEB)

    Bulos, Fatin [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-03-04

    The SLC Project utilizes several fast kicker magnets. Their requirements vary somewhat, however, the cooling rings kickers have the most stringent requirements. In this note we describe the design of the positron ring kickers, and the reasons that led to it.

  20. Steel septum magnets for the LHC beam injection and extraction

    CERN Document Server

    Bidon, S; Guinand, M; Gyr, Marcel; Sassowsky, M; Weisse, E; Weterings, W; Abramov, A; Ivanenko, A I; Kolatcheva, E; Lapyguina, O; Ludmirsky, E; Mishina, N; Podlesny, P; Riabov, A; Tyurin, N

    2002-01-01

    The Large Hadron Collider (LHC) will be a superconducting accelerator and collider to be installed in the existing underground LEP ring tunnel at CERN. It will provide proton-proton collisions with a centre of mass energy of 14 TeV. The proton beams coming from the SPS will be injected into the LHC at 450 GeV by vertically deflecting kicker magnets and horizontally deflecting steel septum magnets (MSI). The proton beams will be dumped from the LHC with the help of two extraction systems comprising horizontally deflecting kicker magnets and vertically deflecting steel septum magnets (MSD). The MSI and MSD septa are laminated iron-dominated magnets using an all welded construction. The yokes are constructed from two different half cores, called coil core and septum core. The septum cores comprise circular holes for the circulating beams. This avoids the need for careful alignment of the usually wedge-shaped septum blades used in classical Lambertson magnets. The MSI and MSD septum magnets were designed and buil...

  1. Test fast kicker pulser

    International Nuclear Information System (INIS)

    Zhang, W.; Soukas, A.V.; Zhanf, S.Y.; Frey, W.W.; Bunicci, J.

    1989-01-01

    In this paper, a test pulser of the Brookhaven AGS Booster extraction fast kicker is described. The pulser is projected for both proton and heavy ion operation. A load of total inductance 2.15 μH is used for the test pulser. The PFN voltage is required to be below 40 kV for operation in air. Rise time of the pulse for proton extraction operation is about 120ns up to 97% of full current (1000A), and, for heavy ion extraction, 160ns up to 98% of full current (1615A). R-C compensation networks are used for pulse front edge sharpening. The flexibility of operation is obtained basically by switching an energy dumping resistor to match or mismatch the PFN impedance. Some comments on stray capacitance and stray inductance effects are included. 3 refs., 10 figs., 2 tabs

  2. AA injection kicker in its tank

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    For single-turn injection of the antiprotons, a septum at the end of the injection line made the beam parallel to the injection orbit, and a quarter of a betatron-wavelength downstream a fast kicker corrected the angle. Kicker type: lumped delay line. PFN voltage 56 kV. Bending angle 7.5 mrad; kick-strength 0.9 Tm; fall-time 95%-5% in 150 ns. The injection orbit is to the left, the stack orbit to the far right. A fast shutter near the central orbit had to be closed before the kicker fired, so as to protect the stack core from being shaken by the kicker's fringe field. The shutter is shown in closed position.

  3. A New Kicker for the TLS Longitudinal Feedback System

    CERN Document Server

    Lau, Wai-Keung; Dehler, Micha; Hsu, Kuo-Tung; Hsu, San-Yuang; Jung Chou Ping; Wei Chen, Cheng; Yang Chen Huan; Yang Tze Te

    2005-01-01

    A new longitudinal kicker that is modified from the Swiss Light Source (SLS) design to fit into the TLS storage ring. It will be served as the actuator in the longitudinal multi-bunch feedback control loop. Beam coupling impedance has been calculated by Gdfidl with a PC cluster. Previous to the installation of this new kicker, bench measurement has been performed in the laboratory to characterize this new kicker. The experimental setups for bandwidth and coaxial wire measurement of longitudinal coupling impedance and their corresponding test results will be reported. As a cross check, bead-pull measurement has also been done to verify the beam coupling measurement by coaxial wire method at the kicker center frequency. Longitudinal field profile of the accelerating mode along the beam path has also been mapped. High order cavity modes of the kicker have also been observed and their effects on the beam are evaluated.

  4. Electrostatic injection kicker for the KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    Toshikazu Adachi

    2013-05-01

    Full Text Available An electrostatic injection kicker (ES-Kicker has been developed and installed in the KEK digital accelerator, which is a synchrotron aimed at accelerating all ion species. The ES-Kicker kicks an injected ion beam horizontally into the ring orbit and consists of two main electrodes for electric field generation and three intermediate electrodes to correct field homogeneity. In our single-turn injection scheme, the circulating beam and the injected beam both pass through the electrode aperture of the kicker, so the kicker field must be turned off before arrival of the first circulating beam. The ES-Kicker is therefore operated in a pulse mode. This means that the excitation circuit for the ES-Kicker must be carefully designed, since the falling edge of the electric field is strongly affected by parasitic capacitance of this circuit, and any remaining field may disturb the circulating beam. This paper describes performance of the ES-Kicker on the basis of simulations and measurement results.

  5. Machine development studies for PSB extraction at 160 MeV and PSB to PS beam transfer

    CERN Document Server

    Forte, V; Bartmann, W; Borburgh, J; Ferrero Colomo, A; Damerau, H; Di Giovanni, G P; Coralejo Feliciano, L M; Fraser, M A; Gamba, D; Mikulec, B; Guerrero Ollacarizqueta, A; Serluca, M; Sermeus, L; Sterbini, G

    2017-01-01

    This paper collects the machine development (MD) activities for the beam transfer studies in 2016 concerning the PSB extraction and the PSB-to-PS transfer. Many topics are covered: from the 160 MeV extraction from the PSB, useful for the future commissioning activities after the connection with Linac4, to new methodologies for measuring the magnetic waveforms of kickers and dispersion reduction schemes at PS injection, which are of great interest for the LHC Injectors Upgrade (LIU) [1] project.

  6. New beam-based and direct magnetic waveform measurements of the BTx.KFA10(20) vertical recombination kickers and induced emittance blow-up simulations at 1.4 and 2 GeV

    CERN Document Server

    Forte, Vincenzo; Borburgh, Jan; Sermeus, Luc; CERN. Geneva. ATS Department

    2018-01-01

    In the framework of the LHC Injectors Upgrade (LIU) project [1], this document summarises a new reconstruction methodology for the measurement of the magnetic waveforms of the vertical re-combination kickers BT1.KFA10, BT4.KFA10 and BT2.KFA20, from data collected during several Machine Development (MD) sessions. The reconstruction has been performed in order to verify the LIU specification of the recombination kickers, which is required for a clean transfer of the longer bunches coming from the PSB after the upgrade. A beam-based methodology was developed to measure the transient magnetics dynamics of the kicker where the bunch length is comparable to the rise and/or fall times. These measurements represent a valuable way to reconstruct the mag-netic waveform of the kickers where removing them to make direct probe measurements is time consuming. A benchmarking of the beam-based measurements with field probe measurements is presented, together with realistic simulations of the vertical emittance blow-up at 1...

  7. submitter Measurements on a 20-layer 12.5 kV prototype inductive adder for the CLIC DR kickers

    CERN Document Server

    Holma, J

    2018-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The predamping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely stable field pulses during injection and extraction of bunches. The DR extraction kicker system consists of a stripline kicker and two pulse modulators. The present specification for the modulators calls for pulses with 160 ns or 900 ns flat-top duration of nominally ±12.5 kV and 305 A, with ripple of not more than ±0.02% (±2.5 V). In addition, there is a proposal to use the same modulators and striplines for dumping the beam, with ±17.5 kV stripline pulse voltage. An inductive adder is a very promising approach to meeting the CLIC DR extraction kicker specifications because analogue modulation methods can be applied to adjust the shape of the flat-top of the output w...

  8. Low-coupling impedance double-helix structure for use in a ferrite kicker magnet

    International Nuclear Information System (INIS)

    Giordano, S.

    1983-01-01

    In a machine such as the CBA, the ejection ferrite kicker magnet has a very large longitudinal and transverse coupling impedance which could destroy the beam. Using a double-helix structure that surrounds the beam, the beam-induced fields are confined within the helix and, therefore, decoupled from the kicker; but at the same time the helix is transparent to the external fields of the kicker. At first, this may seem paradoxical that the helix is opaque to the fields generated inside the structure by the beam and simultaneously transparent to the external fields generated by the kicker

  9. Design and simulation of fast pulsed kicker/bumper units for the positron accumulator ring at APS

    International Nuclear Information System (INIS)

    Wang, Ju; Volk, G.J.

    1991-01-01

    In the design of fast pulsed kicker/burner units for a positron accumulator ring (PAR) at APS, different pulse forming networks (PFN) are considered and different structures for the magnet are studied and simulated. Three fast pulsed kicker/bumper magnets are required in PAR for the beam injection and/or extraction at 450 MeV. These magnets have the same design because they have identical specifications and are expected to produce identical magnetic fields. Each kicker/bumper magnet is required to generate a magnetic field of 0.06 T with rise-time of 80 ns, a flat-top of 80 ns and a fall-time of 80 ns. This paper describes some design considerations and computer simulation results of different designs

  10. RF kicker cavity to increase control in common transport lines

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method of controlling e-beam transport where electron bunches with different characteristics travel through the same beam pipe. An RF kicker cavity is added at the beginning of the common transport pipe or at various locations along the common transport path to achieve independent control of different bunch types. RF energy is applied by the kicker cavity kicks some portion of the electron bunches, separating the bunches in phase space to allow independent control via optics, or separating bunches into different beam pipes. The RF kicker cavity is operated at a specific frequency to enable kicking of different types of bunches in different directions. The phase of the cavity is set such that the selected type of bunch passes through the cavity when the RF field is at a node, leaving that type of bunch unaffected. Beam optics may be added downstream of the kicker cavity to cause a further separation in phase space.

  11. Thermal Studies on the SPS Wideband Transverse Feedback Kicker

    CERN Document Server

    Roggen, Toon; Hofle, Wolfgang; Montesinos, Eric; CERN. Geneva. ATS Department

    2016-01-01

    As part of the SPS wideband transverse feedback system in the framework of the LHC Injector Upgrade (LIU) project, a wideband kicker design is being proposed. Vertical beam instabilities due to intensity dependent effects (electron cloud instability (ECI) and transverse mode coupling instability (TMCI)) are potentially suppressed by using a feedback system driving such a kicker system. One of the options for a kicker is a one meter long slotted-coaxial kicker, providing a substantial vertical kick strength (10ˉ5 –10ˉ4 eV.s/m) over a bandwidth ranging from nearly DC to 1 GHz. The necessary kick strength requires a total power of 4 kW. This note describes thermal studies that assisted in the material choice of the feedthroughs of the slotted-coaxial kicker and guided the design choices.

  12. A Harmonic Kicker Scheme for the Circulator Cooler Ring in the Proposed Medium Energy Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Edward W.; Hutton, Andrew M.; Kimber, Andrew J.

    2013-06-01

    The current electron cooler design for the proposed Medium Energy Electron-Ion collider (MEIC) at Jefferson Lab utilizes a circulator ring for reuse of the cooling electron bunch up to 100 times to cool the ion beams. This cooler requires a fast kicker system for injecting and extracting individual bunches in the circulator ring. Such a kicker must work at a high repetition rate, up to 7.5 to 75 MHz depending on the number of turns in the recirculator ring. It also must have a very short rise and fall time (of order of 1 ns) such that it will kick an individual bunch without disturbing the others in the ring. Both requirements are orders of magnitude beyond the present state-of-the-art as well as the goals of other on-going kicker R&D programs such as that for the ILC damping rings. In this paper we report a scheme of creating this fast, high repetition rate kicker by combining RF waveforms at multiple frequencies to create a kicker waveform that will, for example, kick every eleventh bunch while leaving the other ten unperturbed. We also present a possible implementation of this scheme as well as discuss its limitations.

  13. Stripline kicker for integrable optics test accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey A.; Didenko, Alexander; Lebedev, Valeri; Valishev, Alexander

    2016-06-30

    We present a design of a stripline kicker for Integrable Optics Test Accelerator (IOTA). For its experimental program IOTA needs two full-aperture kickers, capable to create an arbitrary controllable kick in 2D. For that reason their strengths are variable in a wide range of amplitudes up to 16 mrad, and the pulse length 100 ns is less than a revolution period for electrons. In addition, the kicker should have a physical aperture of 40 mm for a proposed operation with proton beam, and an outer size of 70 mm to fit inside existing quadrupole magnets to save space in the ring. Computer simulations using CST Microwave Studio show high field uniformity and wave impedance close to 50 {\\Omega}.

  14. System for generating double-pulsed magnetic fields in a kicker magnet

    International Nuclear Information System (INIS)

    Kawakubo, Tadamichi; Tazawa, Sichiro; Arakida, Yosio; Murasugi, Sigeru

    1991-01-01

    Two bunched beams are accelerated in the 1A ring of JHF. They are extracted for meson experiments and for neutron experiments successively. Therefore, the extraction kicker magnet should generate double-pulsed magnetic fields at intervals of about 100 μsec, with a repetition rate of 50 Hz. In order to test the feasibility of generating double pulses, we used two sets of thyratron housings and a kicker magnet for the KEK-PS-extraction system, which has an impedance of 25 Ω. Using a thyratron cathode-loaded system, the first firing induces a second misfire by a rapid voltage drop of the second thyratron cathode. A thyratron anode-loaded system does not have the above-mentioned trouble, and has succeeded in generating the desired double pulses with half of the voltage required for the usual operation of JHF (∼ 80kV). (author)

  15. The PEP-II abort kicker system

    International Nuclear Information System (INIS)

    Lamare, J de; Donaldson, A.; Kulikov, A. Lipari, J.

    1997-07-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of electron beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 uS (the beam transit time around the time). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% in 370 nS. This report discusses the design of the system controls, interlocks, power supplies, and modulator

  16. Test of very fast kicker for TESLA damping ring

    International Nuclear Information System (INIS)

    Grishanov, B.I.; Podgorny, F.V.; Shiltsev, V.D.

    1997-04-01

    We describe a very fast kicker with unique combination of high repetition rate and short pulse width. Constructionally, the device is a symmetrical counter traveling wave stripline kicker fed by semiconductor high-voltage pulse generator. Experimentally tested kicker has a full pulse width of about 7 ns, 1.4 MHz repetition rate and maximum kick strength of the order of 3 G·m. Recent achievements in high-voltage semiconductor field-effect transistors (FET) technology and goal-specific optimization of the kicker parameters allow many-fold increase of the strength, and the kicker can be very useful tool for bunch-by-bunch injection/extraction and other accelerator applications. 4 refs., 3 figs

  17. Very fast kicker for accelerator applications

    International Nuclear Information System (INIS)

    Grishanov, B.I.; Podgorny, F.V.; Shiltsev, V.D.

    1996-11-01

    We describe a very fast counter traveling wave kicker with a full pulse width of about 7 ns. Successful test experiment has been done with hi-tech semiconductor technology FET pulse generator with a MHz- range repetition rates and maximum kick strength of the order of 3 G·m. Further. increase of the strength seems to be quite possible with the FET pursers, that makes the kicker to be very useful tool for bunch-by-bunch injection/extraction and other accelerator applications

  18. The LHC injection kicker magnet

    CERN Document Server

    Ducimetière, Laurent; Barnes, M J; Wait, G D

    2003-01-01

    Proton beams will be injected into LHC at 450 GeV by two kicker magnet systems, producing magnetic field pulses of approximately 900 ns rise time and up to 7.86 s flat top duration. One of the stringent design requirements of these systems is a flat top ripple of less than ± 0.5%. Both injection systems are composed of 4 travelling wave kicker magnets of 2.7 m length each, powered by pulse forming networks (PFN's). To achieve the required kick strength of 1.2 Tm, a low characteristic impedance has been chosen and ceramic plate capacitors are used to obtain 5 Omega. Conductive stripes in the aperture of the magnets limit the beam impedance and screen the ferrite. The electrical circuit has been designed with the help of PSpice computer modelling. A full size magnet prototype has been built and tested up to 60 kV with the magnet under ultra high vacuum (UHV). The pulse shape has been precision measured at a voltage of 15 kV. After reviewing the performance requirements the paper presents the magnet...

  19. Upgrade of the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, M J; Baglin, V; Bregliozzi, G; Caspers, F; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Jimenez, J M; Magnin, N; Mertens, V; Métral, E; Salvant, B; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01

    Two LHC injection kicker systems, each comprising 4 magnets per ring, produce a kick of 1.3 T·m with a rise-time of less than 900 ns and a flattop ripple of less than ±0.5%. A beam screen is placed in the aperture of each magnet, to provide a path for the image current of the LHC beam and screen the ferrite yoke against wake fields. The screen consists of a ceramic tube with conductors in the inner wall. The initially implemented beam screen ensured a low rate of electrical breakdowns and an adequately low beam coupling impedance. Operation with increasingly higher intensity beams, stable for many hours at a time, has resulted in substantial heating of the ferrite yoke, sometimes requiring cool-down over several hours before the LHC can be refilled. During the long shutdown in 2013/2014 all eight kicker magnets will be upgraded with an improved beam screen and an increased emissivity of the vacuum tank. In addition equipment adjacent to the injection kickers and various vacuum components will be modified to...

  20. Non-local Fast Extraction from the CERN SPS at 100 and 440 GeV

    CERN Document Server

    Velotti, F M; Bartmann, W; Carlier, E; Cornelis, K; Efthymiopoulos, I; Goddard, B; Jensen, L K; Kain, V; Kowalska, M; Mertens, V; Steerenberg, R

    2013-01-01

    The Long Straight Section 2 (LSS2) of the CERN SPS is connected with the North Area (NA), to which the beam to date has always been extracted using a resonant extraction technique. For new proposed short- and long-baseline neutrino experiments, a fast single turn extraction to this experimental area is required. As there are no kickers in LSS2, and the integration of any new kickers with the existing electrostatic septum would be problematic, a solution has been developed to fast extract the beam using non-local extraction with other SPS kickers. Two different kicker systems have been used, the injection kicker in LSS1 and the stronger extraction kicker in LSS6 to extract 100 and 440 GeV beam, respectively. For both solutions a large emittance beam was extracted after 5 or 9 full betatron periods. The concept and simulation details are presented with the analysis of the aperture and beam loss considerations and experimental results collected during a series of beam tests.

  1. Dual branch high voltage pulse generator for the beam extraction of the Large Hadron Collider

    CERN Document Server

    Bonthond, J; Ducimetière, L; Jansson, U; Vossenberg, Eugène B

    2002-01-01

    The LHC beam extraction kicker system, MKD, is composed of 15 fast kicker magnets per beam to extract the particles in one turn from the collider and to dispose them, after dilution, on an external absorber. Each magnet is powered by a separate pulse generator. The original single branch generator consisted of a discharge capacitor in series with a solid state closing switch left bracket 1 right bracket operating at 30 kV. In combination with a parallel freewheel diode stack this generator produced a current pulse of 2.7 mus rise time, 18.5 kA amplitude and about 1.8 ms fall time, of which only about 90 mus are needed to dump the beam. The freewheel diode circuit is equipped with a flat top current droop compensation network, consisting of a low voltage, low stray inductance, high current discharge capacitor. Extensive reliability studies have meanwhile suggested to further increase the operational safety of this crucial system by equipping each generator with two parallel branches. This paper presents the re...

  2. Design and Testing of a Fast, 50 kV Solid-State Kicker Pulser

    International Nuclear Information System (INIS)

    Cook, E G; Hickman, B C; Lee, B S; Hawkins, S A; Gower, E J; Allen, F V; Walstrom, P L

    2002-01-01

    The ability to extract particle beam bunches from a ring accelerator in arbitrary order can greatly extend an accelerator's capabilities and applications. A prototype solid-state kicker pulser capable of generating asynchronous bursts of 50 kV pulses has been designed and tested into a 50(Omega) load. The pulser features fast rise and fall times and is capable of generating an arbitrary pattern of pulses with a maximum burst frequency exceeding 5 MHz If required, the pulse-width of each pulse in the burst is independently adjustable. This kicker modulator uses multiple solid-state modules stacked in an inductive-adder configuration where the energy is switched into each section of the adder by a parallel array of MOSFETs. Test data, capabilities, and limitations of the prototype pulser are described

  3. SPS injection kicker magnet

    CERN Document Server

    1975-01-01

    One of the first-generation SPS injection kicker magnets. Lifting the tank-lid reveals the inner structure. For a more detailed description see 7502072X. See also 7502074X and Annual Report 1975, p.162. To the left: Roland Tröhler; to the right: Giacomo Busetta.

  4. Calculation of Metallization Resistivity and Thickness for MedAustron Kickers

    CERN Document Server

    Barnes, M J; Stadlbauer, T

    2011-01-01

    The MedAustron facility, to be built in Wiener Neustadt (Austria), will provide protons and ions for both cancer therapy and research [1]. Different types of kicker magnets will be used in the facility. The kicker magnets are outside machine vacuum: each kicker magnet has a ceramic beam chamber whose inner surface is metalized. The resistivity and thickness of the metallization are chosen such that the induced eddy currents, resulting from the pulsed kicker magnetic field, do not unduly affect the rise/fall times or homogeneity of the magnetic field. A comparison of an analytical calculation and measurement is reported for the effect of metallization of a ceramic chamber in an existing kicker system at CERN. Conclusions concerning the metallization of the ceramic chambers for the MedAustron kicker magnets are presented.

  5. Magnetic field in a prototype kicker magnet for the KAON factory

    International Nuclear Information System (INIS)

    Wait, G.D.; Barnes, M.J.; Tran, H.J.

    1994-01-01

    Kicker magnets are required for all ring-to-ring transfers in the 5 rings of the proposed KAON factory. The kick must rise from 1% to 99% of full strength during the time interval of gaps (80 ns to 160 ns) created in the beam so that beam extraction losses are minimized. The kick strength must have a uniformity of ±1% over the useful aperture of the magnet. PE2D calculations have been performed to determine the uniformity of the combined electric and magnetic kick in the aperture of a TRIUMF prototype kicker magnet. Measurements of the magnetic field were performed with 50 Ω striplines while the prototype magnet was excited with a low voltage 1 MHz sine wave. The predicted and measured results for the magnetic field in the kicker magnet are in good agreement, and are presented in this paper. Circuit analysis code PSpice has been utilized to mathematically model the magnet and stripline probe, and the results of the simulations have provided a better understanding of the effect of parasitics upon the measurements

  6. Upgrade of the LHC Injection Kicker Magnets

    OpenAIRE

    Barnes, M J; Adraktas, P; Baglin, V; Bregliozzi, G; Caspers, F; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Jimenez, J M; Magnin, N; Mertens, V; Métral, E; Salvant, B

    2013-01-01

    Two LHC injection kicker systems, each comprising 4 magnets per ring, produce a kick of 1.3 T·m with a rise-time of less than 900 ns and a flattop ripple of less than ±0.5%. A beam screen is placed in the aperture of each magnet, to provide a path for the image current of the LHC beam and screen the ferrite yoke against wake fields. The screen consists of a ceramic tube with conductors in the inner wall. The initially implemented beam screen ensured a low rate of electrical breakdowns and an ...

  7. SIMULATION STUDIES OF A PROTOTYPE STRIPLINE KICKER FOR THE APS-MBA UPGRADE

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.; Yao, C.

    2017-06-25

    A prototype dual-blade stripline kicker for the APS multi-bend achromat (MBA) upgrade has been designed and developed. It was optimized with 3D CST Microwave Studio. The high voltage (HV) feedthrough and air-side connector were designed and optimized. Electromagnetic fields along the beam path, the deflecting angle, the high electric fields and their locations were calculated with 15kV differential pulse voltage applied to the kicker blades through the feedthroughs. Beam impedance and the power dissipation on different parts of the kicker and external loads were studied for a 48-bunch fill pattern. Our results show that the prototype kicker with its HV feedthroughs meets the specified requirements. The results of TDR (time-domain reflectometer) test, high voltage pulse test and beam test of the prototype kicker assembly agreed with the simulations.

  8. Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans

    Science.gov (United States)

    Barnes, M. J.; Adraktas, A.; Bregliozzi, G.; Goddard, B.; Ducimetière, L.; Salvant, B.; Sestak, J.; Vega Cid, L.; Weterings, W.; Vallgren, C. Yin

    2017-07-01

    During Run 1 of the LHC, one of the injection kicker magnets caused occasional operational delays due to beam induced heating with high bunch intensity and short bunch lengths. In addition, there were also sporadic issues with vacuum activity and electrical flashover of the injection kickers. An extensive program of studies was launched and significant upgrades were carried out during Long Shutdown 1 (LS 1). These upgrades included a new design of beam screen to reduce both beam coupling impedance of the kicker magnet and the electric field associated with the screen conductors, hence decreasing the probability of electrical breakdown in this region. This paper presents operational experience of the injection kicker magnets during the first years of Run 2 of the LHC, including a discussion of faults and kicker magnet issues that limited LHC operation. In addition, in light of these issues, plans for further upgrades are briefly discussed.

  9. Design and Development of Kickers and Septa for Medaustron

    CERN Document Server

    Borburgh, J; Barnes, M J; Fowler, T; Hinterschuster, F; Hourican, M; Kramer, T; Palm, M; Prost, A; Sermeus, L; Stadlbauer, T

    2010-01-01

    The MedAustron facility, to be built in Wiener Neustadt (Austria), will provide protons and ions for both cancer therapy and research. Different types of bumpers, septa and kickers will be used in the low energy beam transfer line, the synchrotron and the high energy extraction lines.They are presently being designed in collaboration with CERN. Both 2D and 3D finite element simulations have been carried out to verify and optimize the field strength and homogeneity for each type of magnet and, where applicable, the transient field response. The detailed designs for the injection and dump bumpers, the magnetic septa and the fast chopper dipoles are presented. A novel design for the electrostatic septa is outlined.

  10. Upgrade of the LHC Beam Dumping Protection Elements

    CERN Document Server

    Weterings, W; Balhan, B; Borburgh, J; Goddard, B; Maglioni, C; Versaci, R

    2012-01-01

    The Beam Dumping System for the Large Hadron Collider comprises for each ring a set of horizontally deflecting extraction kicker magnets, vertically deflecting steel septa, dilution kickers and finally, a couple of hundred meters further downstream, an absorber block. A mobile diluter (TCDQ) protects the superconducting quadrupole immediately downstream of the extraction as well as the arc at injection energy and the triplet aperture at top energy from bunches with small impact parameters, in case of a beam dump that is not synchronized with the particle free gap or a spontaneous firing of the extraction kickers. Simulations have shown that an asynchronous dump of a 7 TeV nominal beam into the TCDQ absorber blocks could damage it. This paper describes the proposed changes to this device in order to maintain the protection for the downstream elements while reducing the risk of damaging the TCDQ in case of such a beam loss.

  11. The Abort Kicker System for the PEP-II Storage Rings at SLAC

    International Nuclear Information System (INIS)

    Delamare, Jeffrey E

    2003-01-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 (micro)S (the beam transit time around the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the design of the system interlocks, diagnostics, and modulator with the modifications necessary to accommodate an ion clearing gap of 185nS

  12. HL-LHC kicker magnet (MKI)

    CERN Multimedia

    Brice, Maximilien

    2018-01-01

    HL-LHC kicker magnet (MKI): last vacuum test, preparation for transport to LHC transfer line in underground tunnel.The LHC injection kicker systems (MKIs) generate fast field pulses to inject the clockwise rotating beam at Point 2 and the anti-clockwise rotating beam at Point 8: there are eight MKI magnets installed in total. Each MKI magnet contains a high purity alumina tube: if an MKI magnet is replaced this tube requires conditioning with LHC beam: until it is properly conditioned, there can be high vacuum pressure due to the beam. This high pressure can also cause electrical breakdowns in the MKI magnets. A special coating (Cr2O3) has been applied to the inside of the alumina tube of an upgraded MKI magnet – this is expected to greatly reduce the pressure rise with beam. In addition, HL-LHC beam would result in excessive heating of the MKI magnets: the upgraded design includes modifications that will reduce heating, and move the power deposition to parts that will be easier to cool. Experience during 2...

  13. Initial results from beam commissioning of the LHC beam dump system

    CERN Document Server

    Goddard, B; Carlier, E; Ducimetière, L; Gallet, E; Gyr, M; Jensen, L; Jones, R; Kain, V; Kramer, T; Lamont, M; Meddahi, M; Mertens, V; Risselada, Thys; Uythoven, J; Wenninger, J; Weterings, W

    2010-01-01

    Initial commissioning of the LHC beam dump system with beam took place in August and September 2008. The preparation, setting-up and the tests performed are described together with results of the extractions of beam into the dump lines. Analysis of the first detailed aperture measurements of the extraction channels and kicker performance derived from dilution sweep shapes are presented. The performance of the other equipment subsystems is summarised, in particular that of the dedicated dump system beam instrumentation.

  14. MTN magnet for the SPS extracted beam.

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    This type of dipole magnet was used in the extracted beam lines of the North Area. It shows an opening for three different proton beam lines: a primary extracted proton beam, split by an upstream magnetic beam splitter (see photo 7612017) into three separated beams passes through different parts of its aperture: right, left up, left down. These magnets were designed to be concrete-insulated for radiation resistance. F. Streun stands on the right.

  15. AA, stochastic precooling kicker

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The freshly injected antiprotons were subjected to fast stochastic "precooling", while a shutter shielded the deeply cooled antiproton stack from the violent action of the precooling kicker. In this picture, the injection orbit is to the left, the stack orbit to the far right, the separating shutter is in open position. After several seconds of precooling (in momentum and in the vertical plane), the shutter was opened briefly, so that by means of RF the precooled antiprotons could be transferred to the stack tail, where they were subjected to further cooling in momentum and both transverse planes, until they ended up, deeply cooled, in the stack core. The fast shutter, which had to open and close in a fraction of a second was an essential item of the cooling scheme and a mechanical masterpiece. Here the shutter is in the open position. The precooling pickups were of the same design, with the difference that the kickers had cooling circuits and the pickups not. 8401150 shows a precooling pickup with the shutte...

  16. Kickers and power supplies for the Fermilab Tevatron I antiproton source

    International Nuclear Information System (INIS)

    Castellano, T.; Bartoszek, L.; Tilles, E.; Petter, J.; McCarthy, J.

    1985-05-01

    The Fermilab Antiproton Source Accumulator and Debuncher rings require 5 kickers in total. These range in design from conventional ferrite delay line type magnets, with ceramic beam tubes to mechanically complex shuttered kickers situated entirely in the Accumulator Ring's 10 -10 torr vacuum. Power supplies are thyratron switched pulse forming networks that produce microsecond width pulses of several kiloamps with less than 30 nanoseconds rise and fall times. Kicker and power supply design requirements for field strength, vacuum, rise and fall time, timing and magnetic shielding of the stacked beam in the accumulator by the eddy current shutter will be discussed. 8 refs., 3 figs., 2 tabs

  17. The beam-kicker system of the synchrotron Saturne. Magnetic field and particle orbit computations. Experimental results (1963); Le percuteur de faisceau de Saturne. Calcul du champ magnetique et des trajectoires. Verifications experimentales (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Gouttefangeas, M.; Katz, A.; Rastoix, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    In this report is briefly described the beam-kicker system of the synchrotron Saturne. An analysis of its operation based on the sampling method is given, as well as two methods for computing toe magnetic field produced by a set of endless conductors in the neighbourhood of a conducting shield where eddy currents are circulating. The first method leads to the resolution of a bi-dimensional Laplace equation with first kind boundary conditions (Dirichlet problem); the second one translates to electromagnetism the electrical images method currently used in electrostatics and yields the magnetic field as the sum of a triple series expansion in the general case of a set of conductors located in a parallelepipedal box. Finally are given the results obtained in computing on IBM 7090 the perturbation of the particle motion due to the beam-kicker. These results are compared with the experimental data. (authors) [French] Ce rapport decrit brievement le dispositif percuteur de faisceau mis en place sur le synchrotron Saturne. On y trouvera une analyse de se fonctionnement a partir de la theorie des echantillonnages. On indique egalment deux methodes de calcul du champ magnetique produit par un system de conducteurs indefinis en presence d'un blindage conducteur parcouru par des courants de Foucault: la premiere se ramene a la resolution d'une equation de Laplace a deux dimensions avec des conditions aux limites de premiere espece (probleme de Dirichlet), la seconde transpose en electromagnetisme la methode des images electriques classique en electrostatique et permet d'exprimer le champ magnetique sous la forme de la somme d'une serie triple dans le cas general d'un systeme de conducteurs contenus dans un blindage parallelepipedique. Pour terminer, on mentionne les resultats du calcul numerique de la perturbation de la trajectoire des particules sous l'effet du percuteur et on compare ces resultats aux resultats experimentaux. (auteurs)

  18. Conceptual Design of the LHC Beam Dumping Protection Elements TCDS and TCDQ

    CERN Document Server

    Goddard, B; Sans-Merce, M; Weterings, W

    2004-01-01

    The Beam Dumping System for the Large Hadron Collider, presently under construction at CERN, consists, per ring, of a set of horizontally deflecting extraction kicker magnets, vertically deflecting steel septa, dilution kickers and finally, a couple of hundred metres further downstream, an absorber block. A fixed diluter (TCDS) will protect the septa in the event of a beam dump that is not synchronised with the particle free gap or a spontaneous firing of the extraction kickers which will cause the beam to sweep over the septum. Another, mobile, diluter block (TCDQ) will protect the superconducting quadrupole immediate downstream of the extraction as well as the arc at injection energy and the triplet aperture at top energy from bunches with small impact parameters. This paper describes the conceptual design of the protection elements.

  19. A wideband slotted kicker design for SPS transverse intra-bunch feedback

    CERN Document Server

    Cesaratto, J M; Rivetta, C H; Alesini, D; Gallo, A; Zobov, M; De Santis, S; Hofle, W

    2014-01-01

    In order for the SPS to meet the beam intensity demands for the HL-LHC upgrade, control and mitigation of trans- verse beam instabilities caused by electron cloud and TMCI will be essential. For this purpose a wideband intra-bunch feedback method has been proposed, based on a 4 GS/s front end data acquisition and processing, and on a back end frequency response extending to at least 1 GHz. A slotted type kicker, similar to those used for stochastic cooling, as well as an array of stripline kickers have been considered as the terminal elements of the feedback system. A slotted TEM type kicker has been designed fulfilling the bandwidth and kick strength requirements for the SPS application. In this paper we present an updated version of the design and electromagnetic characteristics, leading into the mechanical design and construction of the kicker occurring later this year.

  20. The Beam Energy Tracking System of the LHC Beam Dumping System

    CERN Document Server

    Barlow, R A; Carlier, E; Gräwer, G; Voumard, N; Gjelsvik, R

    2005-01-01

    The LHC Beam Dumping System (LBDS) of the Large Hadron Collider (LHC), presently under construction at CERN, will be installed around the straight section 6. It comprises per ring 15 horizontally deflecting extraction kickers, followed by 1 quadrupole, 15 vertically deflecting steel septum magnets, 10 dilution kickers and, in a separate cavern several hundred meters away, an external absorber assembly. A beam dump request can occur at any moment during the operation of the collider, from injection at 450 GeV up to top energy at 7 TeV. The Beam Energy Tracking System (BETS) monitors the deflection strength of each active element of the LBDS with respect to the beam energy in order to guarantee the correct extraction trajectory over the complete operational range and under all operational conditions. Its main functions are the acquisition of the beam energy, the generation of the kick strength reference signals for the extraction and dilution kickers, the continuous checking that the kicker high voltage generat...

  1. Dynamic devices: A primer on pickups and kickers

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, D.A.; Lambertson, G.R.

    1991-11-01

    A charged-particle beam generates electromagnetic fields which in turn interact with the beam`s surroundings. These interactions can produce fields which act back on the beam itself, or, if the ``surroundings`` are of suitably designed form (e.g., sensing electrodes with electrical connection to the ``outside world``), can provide information on various properties of the beam; such electrodes are generally known as pickups. Similarly, charged- particle beams respond to the presence of externally imposed electromagnetic fields; devices used to generate such fields are generally known as kickers. As we shall show, the behavior of an electrode system when it functions as a pickup is intimately related to its behavior as a kicker. A number of papers on pickup behavior have appeared in recent years in most of which the primary emphasis has been on beam instrumentation; there have also been several workshops on the subject. There have been several papers which have treated both pickup and kicker behavior of a particular electrode system, but this has been done in the context of discussing a specialized application, such as a stochastic cooling system. The approach in the present paper is similar to that of earlier works by one of the authors, which is to provide a unified treatment of pickup and kicker behavior, and, it is hoped, to give the reader an understanding which is both general and fundamental enough to make the above references easily accessible to him. As implied by the revised title, we have done the re-writing with the non-expert in mind. We have made the introduction both lengthier and more detailed, and done the same with much of the explanatory material and discussion.

  2. The Prototype Inductive Adder With Droop Compensation for the CLIC Kicker Systems

    CERN Document Server

    Holma, J

    2014-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal center-of-mass energy of 3 TeV. The CLIC predamping rings and damping rings (DRs) will produce, through synchrotron radiation, an ultralow emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02% (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. Recently, a five-layer prototype has been built at CERN. Passive analog modulation has been applied to compensate the voltage droop, for example of the pulse capacitors. The output waveforms of the prototype inductive adder have been compared with predictions of the voltage droop and pulse shape. Conclusions are drawn concern...

  3. Measurements on Prototype Inductive Adders with Ultra-Flat-Top Output Pulses for CLIC DR Kickers

    CERN Document Server

    Holma, J; Belver-Aguilar, C

    2014-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the DR extraction kickers call for a 160 ns duration flat-top pulses of ±12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications because this topology allows the use of both passive and analogue modulation methods to adjust the output waveform. Recently, two five-layer, 3.5 kV, prototype inductive adders have been built at CERN. The first of these has been used to test the passive and active analogue modulation methods to compensate voltage droop and ripple of the output pulses. Pulse waveforms have been reco...

  4. Dynamic devices: A primer on pickups and kickers

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, D.A.; Lambertson, G.R.

    1991-11-01

    A charged-particle beam generates electromagnetic fields which in turn interact with the beam's surroundings. These interactions can produce fields which act back on the beam itself, or, if the surroundings'' are of suitably designed form (e.g., sensing electrodes with electrical connection to the outside world''), can provide information on various properties of the beam; such electrodes are generally known as pickups. Similarly, charged- particle beams respond to the presence of externally imposed electromagnetic fields; devices used to generate such fields are generally known as kickers. As we shall show, the behavior of an electrode system when it functions as a pickup is intimately related to its behavior as a kicker. A number of papers on pickup behavior have appeared in recent years in most of which the primary emphasis has been on beam instrumentation; there have also been several workshops on the subject. There have been several papers which have treated both pickup and kicker behavior of a particular electrode system, but this has been done in the context of discussing a specialized application, such as a stochastic cooling system. The approach in the present paper is similar to that of earlier works by one of the authors, which is to provide a unified treatment of pickup and kicker behavior, and, it is hoped, to give the reader an understanding which is both general and fundamental enough to make the above references easily accessible to him. As implied by the revised title, we have done the re-writing with the non-expert in mind. We have made the introduction both lengthier and more detailed, and done the same with much of the explanatory material and discussion.

  5. An integrating current transformer for fast extraction from the HIRFL-CSR main ring

    Science.gov (United States)

    Wu, Jun-Xia; Zheng, Jian-Hua; Zhao, Tie-Cheng; Mao, Rui-Shi; Yin, Yan; Yuan, You-Jin; Yang, Jian-Cheng

    2010-01-01

    For any experiment that uses the beam of an accelerator, monitoring the beam intensity is always an important concern. It is particularly useful if one can continuously measure the beam current without disturbing the beam. We report here on test experiments for an Integrating Current Transformer (ICT) used to measure fast extraction beams from the HIRFL-CSR main ring (CSRm). The laboratory tests and beam intensity measurement results are presented in this paper. The influence of the kicker noise is also analyzed.

  6. SPS Beam Steering for LHC Extraction

    CERN Document Server

    Gianfelice Wendt, E; Cornelis, K; Norderhaug Drosdal, L; Goddard, B; Kain, V; Meddahi, M; Papaphilippou, Y; Wenninger, J

    2014-01-01

    Beside producing beams for fixed target operation, the CERN Super Proton Synchrotron (SPS) accelerates beams for injection into the Large Hadron Collider (LHC). During the 2012-2013 run drifts of the extracted beam horizontal trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. The feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, has been therefore investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed. As the observed drift is mainly horizontal, the horizontal plane only will be considered.

  7. SPS Beam Steering for LHC Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, Eliana [Fermilab; Bartosik, Hannes [CERN; Cornelis, Karel [CERN; Norderhaug Drøsdal, Lene [CERN; Goddard, Brennan [CERN; Kain, Verena [CERN; Meddahi, Malika [CERN; Papaphilippou, Yannis [CERN; Wenninger, Jorg [CERN

    2014-07-01

    The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.

  8. Measurement and analysis of SPS kicker magnet heating and outgassing with Different Bunch Spacing

    CERN Document Server

    Barnes, M J; Cornelis, K; Ducimetière, L; Mahner, E; Papotti, G; Rumolo, G; Senaj, V; Shaposhnikova, E

    2010-01-01

    Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, over several hours, even above the Curie temperature of the ferrite. At present the nominal bunch spacing in the SPS is 25 ns, however for an early stage of LHC operation it is preferable to have 50 ns bunch spacing. Machine Development (MD) studies have been carried out with an inter-bunch spacing of 25 ns, 50 ns or 75 ns. For some of the SPS kicker magnets the 75 ns bunch spacing resulted in considerable beam induced heating. In addition the MDs showed that 50 ns bunch spacing could result in a very rapid pressure rise in the kicker magnet and thus cause an interlock. This paper discusses the MD observations of the SPS kickers and analyses the available d...

  9. Study and design of a new over-damped cavity kicker for the PEP II longitudinal feedback system

    International Nuclear Information System (INIS)

    Marcellini, F.; Tobiyama, M.; MacIntosh, P.; Fox, J.; Schwarz, H.; Teytelman, D.; Young, A.

    2002-01-01

    PEP-II has been running for several years using drift-tube style longitudinal kickers. They have functioned well at the design current in the HER and LER. Machine upgrade plans for PEP-II have encouraged the analysis and design of cavity kickers for the longitudinal feedback systems in PEP-II. The cavity kicker design is based on the use of an extremely low Q cavity, where the Q of the system is determined primarily by ridged waveguides coupling to external loads. This kicker design has originally developed at LNF-INFN, and is attractive for use at PEP- II to reduce the kicker impedance at frequencies outside the working bandwidth and consequently reduce the strong beam-heating of the structure and the feedthroughs. The cavity-style kicker is also better suited to external cooling, as it is without internal elements which must be cooled through either radiation or conduction out through some path. The design options, including the choice of operating frequency (9/4*RF vs. 13/4*RF), the kicker shunt impedance, the number of external coupling ports (4 vs. 8) and the selection of the kicker bandwidth, are briefly described and three different solutions are proposed. Results are presented estimating the shunt impedance, bandwidth and HOM impedances via the use of the Ansoft HFSS code

  10. First beam extracted from the SSC

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    On the 25th July 1986 the first 2,8 μA 66 MeV proton beam was successfully extracted from the separated sector cyclotron (SSC) at the National Accelerator Centre at Faure, South Africa. The beam has now also been transported for the first time down the high-energy beamline up to the last Faraday cup in front of the neutron therapy vault. A brief description of the extraction system of the SSC, consisting of an electrostatic extraction channel and two septum magnets is given

  11. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  12. Single-bunch kicker pulser

    International Nuclear Information System (INIS)

    Frey, W.W.

    1983-01-01

    The single-bunch kicker magnet is powered by a capacitor discharge pulser. The ferrite-core magnet is used to kick out one of twelve proton bunches circulating in the AGS (Alternating Gradient Synchrotron) into the experimental area. The magnet current pulse has a half-sinusoid shape, with a peak current of 2800 A. The pulse current rises and falls to zero, with minimum undershoot, in 410 nsec to minimize effects on adjacent bunches. The magnet inductance is 1.0 μHy. The pulser is mounted on the kicker magnet in the AGS ring, and is exposed to ionizing radiation. The HVDC power supply, controls, monitoring, and auxiliary circuits are housed approximately 300 feet away external to the ring. A two-gap thyratron is used to discharge the energy storage capacitor. Two hydrogen diodes are series connected to function as an inverse diode

  13. Single-bunch kicker pulser

    Energy Technology Data Exchange (ETDEWEB)

    Frey, W.W.

    1983-01-01

    The single-bunch kicker magnet is powered by a capacitor discharge pulser. The ferrite-core magnet is used to kick out one of twelve proton bunches circulating in the AGS (Alternating Gradient Synchrotron) into the experimental area. The magnet current pulse has a half-sinusoid shape, with a peak current of 2800 A. The pulse current rises and falls to zero, with minimum undershoot, in 410 nsec to minimize effects on adjacent bunches. The magnet inductance is 1.0 ..mu..Hy. The pulser is mounted on the kicker magnet in the AGS ring, and is exposed to ionizing radiation. The HVDC power supply, controls, monitoring, and auxiliary circuits are housed approximately 300 feet away external to the ring. A two-gap thyratron is used to discharge the energy storage capacitor. Two hydrogen diodes are series connected to function as an inverse diode.

  14. AN OVERVIEW OF HIGH VOLTAGE DIELECTRIC MATERIAL FOR TRAVELING WAVE KICKER MAGNET APPLICATION

    International Nuclear Information System (INIS)

    ZHANG, W.; SANDBERG, J.; TUOZZOLO, J.; CASSEL, R.; DUCIMETIERE, L.; JENSEN, C.; BARNES, M.; WAIT, G.; WANG, J.

    2002-01-01

    Pulsed high power fast kickers are being used to change beam trajectories in particle accelerators. The fast rise and fall time of pulse waveform demands a transmission line structure for the kicker deflector design. The ideal design will be parallel metal plates. However, it uses very long straight sections to achieve the required deflection. In accelerators with constrained straight sections, high permeability materials such as ferrite have to be used to gain deflection efficiency. The transmission line kicker magnet is also referred as traveling wave kicker magnet. Its construction is based on distributed 1-C cells along the longitudinal direction. The magnetic cells and capacitive cells are interleaved to simulate the characteristic impedance of a transmission line to minimize pulse reflection, and provide adequate frequency bandwidth to transmit the kicker pulse with fast rise and fall time. The magnetic cells are usually made of ferrite ceramics, but the capacitive cells have been made with different materials. For traveling wave kickers with higher impedance, the parallel plate vacuum capacitor has been used in CERN and KEK design. Others have used ceramic capacitors, printed circuit boards, and high permittivity ceramics as the capacitive cell. The high dielectric material has the advantage of compactness for low impedance kicker magnet construction. It continues to be very attractive for future kicker magnet applications. The high voltage phenomena associated with high dielectric ceramic materials have been widely reported in many industrial application areas. Their implication in the traveling wave magnet application has to be well understood. In this presentation, the areas requiring further quantitative study will be outlined

  15. Negative ion beam extraction in ROBIN

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Gourab, E-mail: bansal@ipr.res.in [Institute for Plasma Research (IPR), Bhat, Gandhinagar, Gujarat 382428 (India); Gahlaut, Agrajit; Soni, Jignesh; Pandya, Kaushal; Parmar, Kanu G.; Pandey, Ravi; Vuppugalla, Mahesh; Prajapati, Bhavesh; Patel, Amee; Mistery, Hiren [Institute for Plasma Research (IPR), Bhat, Gandhinagar, Gujarat 382428 (India); Chakraborty, Arun; Bandyopadhyay, Mainak; Singh, Mahendrajit J.; Phukan, Arindam; Yadav, Ratnakar K.; Parmar, Deepak [ITER-India, Institute for Plasma Research, A-29, Sector 25, GIDC, Gandhinagar, Gujarat 380025 (India)

    2013-10-15

    Highlights: ► A RF based negative hydrogen ion beam test bed has been set up at IPR, India. ► Ion source has been successfully commissioned and three campaigns of plasma production have been carried out. ► Extraction system (35 kV) has been installed and commissioning has been initiated. Negative ion beam extraction is immediate milestone. -- Abstract: The RF based single driver −ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 10{sup 12} cm{sup −3} is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm{sup 2} as observed in BATMAN. In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 10{sup 11} cm{sup −3} has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated.

  16. Effect of the Tem Mode on the kicker Impedance

    CERN Document Server

    Zannini, C; Vaccaro, VG

    2012-01-01

    The kickers are major contributors to the CERN SPS beam coupling impedance. As such, they may represent a limitation to increasing the SPS bunch current in the frame of a luminosity upgrade of the LHC. The C-Magnet supports a transverse electromagnetic (TEM) mode due to the presence of two conductors. Due to the finite length of the structure this TEM mode affects the impedance below a certain frequency (when the penetration depth in the ferrite becomes comparable to the magnetic circuit length). A theoretical model was developed to take into account also the impedance contribution due to the TEM mode. The model is found to be in good agreement with CST 3D electromagnetic (EM) simulations. It allows for generic terminations in the longitudinal direction. An example of kicker is analyzed taking into account also the external cables.

  17. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction...... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....

  18. SNS Injection and Extraction Devices

    CERN Document Server

    Raparia, Deepak

    2005-01-01

    The Spallation Neutron Source (SNS) is a second generation pulsed neutron source (1.5 MW) and is presently in the sixth year of a seven-year construction cycle at Oak Ridge National Laboratory. The operation of the facility will begin in 2006. The most stringent requirement for the SNS accelerator complex is to allow hands-on maintenance. Operational experiences show that the most losses occur in the injection and extraction. SNS accumulator ring injection and extraction has been design with grate care to reduce uncontrolled losses. Injection systems consist of fast programmable kicker magnets and DC dump magnets to paint the beam in transverse phase space. Extraction systems consist of fast kicker magnets and a Lamberton magnet to extract beam in single turn. Paper will discuss design, construction and testing of these devices.

  19. Impedance of a slotted-pipe kicker

    Energy Technology Data Exchange (ETDEWEB)

    Feng Zhou [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics

    1996-08-01

    This paper introduces the principle of a new slotted kicker simply, which is made by using vacuum pipe itself with proper slits as current conductors, and then, presents a rough estimation of its longitudinal and transverse impedance, respectively. Calculation shows that its impedance is reduced significantly compared to our present air-coil kicker. (author)

  20. Design and test of the RHIC CMD10 abort kicker

    International Nuclear Information System (INIS)

    Hahn, H.; Blaskiewicz, M.; Drees, A.; Fischer, W.; Mi, J.; Meng, W.; Montag, C.; Pai, C.; Sandberg, J.; Tsoupas, N.; Tuozzolo, J. E.; Zhang, W.

    2015-01-01

    In recent RHIC operational runs, planned and unplanned pre-fire triggered beam aborts have been observed that resulted in quenches of SC main ring magnets, indicating a weakened magnet kick strength due to beam-induced ferrite heating. An improvement program was initiated to reduce the longitudinal coupling impedance with changes to the ferrite material and the eddy-current strip geometry. Results of the impedance measurements and of magnet heating tests with CMD10 ferrite up to 190°C are reported. All 10 abort kickers in the tunnel have been modified and were provided with a cooling system for the RUN 15.

  1. Time profile of the slowly extracted beam

    CERN Document Server

    Pullia, M

    1997-01-01

    An important spin-off from accelerators is the use of synchrotrons for cancer therapy. For this application a precise control of the slow extraction is needed to satisfy the medical specifications for the online measurement and control of the delivered dose. This has led to a renewed interest in the basic theory of third-order resonance extraction. In the present paper, an analytic study of the time profile of the extracted beam is made by first considering the time profile of an elementary strip of monoenergetic particles from the side of the shrinking stable triangle. This basic result is then used to predict the characteristics of the spills for the most common extraction configurations. The influence of ripples whose period is comparable to the transit time of a particle in the resonance is also analyzed. Simulations of the extraction process that confirm the analytic study are included.

  2. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. The characteristics of this current waveform are defined by the requirements of the machine operation. The standard fixed target running mode calls for 12 booster batches of beam which leaves a rotating gap in the beam of about1.8 μs. The current waveform is required to rise to 90% of I /SUB max/ in this time to avoid beam loss from partially deflected beam. Aperture limitations in both the accelerator and the abort channel demand that the current in the magnets stays above this 90% I for the 21 μs needed to ensure all the beam has /SUP max/ left the machine. The 25 mm displacement needed to cleanly enter the abort channel at 1 TeV corresponds to a maximum current in each of the 4 modules of about20 kA. Similar constraints are needed for the Main Ring and Tevatron antiproton abort systems. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  3. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-06-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. The characteristics of this current waveform are defined by the requirements of the machine operation. The standard fixed target running mode calls for 12 booster batches of beam which leaves a rotating gap in the beams of approx.1.8 μs. The current waveform is required to rise to 90% of I/sub max/ in this time to avoid beam loss from partially deflected beam. Aperture limitations in both the accelerator and the abort channel demand that the current in the magnets stays above this 90% I/sub max/ for the 21 μs needed to ensure all the beam has left the machine. The 25 mm displacement needed to cleanly enter the abort channel at 1 TeV corresponds to a maximum current in each of the 4 modules of approx.20 kA. Similar constraints are needed for the Main Ring and Tevatron antiproton abort systems. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention is given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades are given for the two operational systems. 2 refs., 4 figs., 1 tab

  4. Feasibility of Injection/Extraction Systems for Muon FFAG Rings in the Neutrino Factory

    International Nuclear Information System (INIS)

    Pasternak, J.; Berg, J.; Aslaninejad, M.; Kelliher, D.; Machida, S.

    2010-01-01

    Non-scaling FFAG rings have been proposed for muon acceleration in a neutrino factory. In order to achieve small orbit excursion and small time of flight variation, lattices with a very compact cell structure and short straight sections are required. The resulting geometry places very challenging constraints on the injection/extraction systems. The feasibility of injection/extraction is discussed and various implementations focusing on minimization of kicker/septum strength are presented. The injection and extraction systems in the nonscaling FFAG for muon acceleration in a neutrino factory were studied in the ring based on FODO lattice. The vertical direction was found to be preferential for both injection and extraction, which allows for lower kicker strengths and facilitates the distribution of kickers due to a lower phase advance per cell in comparison with the horizontal plane. It is possible to design mirror-symmetric schemes in which the kickers can be reused for both signs of muons. The disadvantage of these solutions is a need for special magnets with large aperture in the injection/extraction region due to the large kicked beam oscillations. The strengths of the required kickers are still very challenging and the fields in the septum magnets dictates the need for a superconducting design.

  5. The AGS accelerator complex with the new fast extraction system

    International Nuclear Information System (INIS)

    Tanaka, M.; Bleser, E.J.; Glenn, J.W.; Lee, Y.Y.; Soukas, A.

    1995-01-01

    The delivery of a beam with characteristics appropriate for the g-2 muon storage ring and the filling of the RHIC heavy ion collider from the AGS main ring requires a new fast extracted beam (FEB) system. The new FEB system will be capable of performing both one-turn fast extraction and single bunch multiple extraction of either a heavy ion beam or a high intensity proton beam at a rate of 30 Hz up to 12 times per AGS cycle. The new system consists of a fast multi-pulsing kicker and an ejector septum magnet with local extraction orbit bumps

  6. Pulse magnetic field measuring system for Kicker and septum magnets of INDUS-2

    International Nuclear Information System (INIS)

    Shinde, R.S.; Yadav, R.R.; Senthil Kumar, S.; Gaud, Vinod; Veerabhadraiah, T.; Kotaiah, S.

    2005-01-01

    In Indus-2 (2.5 GeV SRS), injection of 700 MeV electron into 2.5 GeV storage ring will be accomplished using four Kicker magnets and two septum magnets. The high performance of Pulse Magnets-Kickers and Septums are important for the efficiency of beam injection. A test bench was setup for the accurate pulse magnetic field measurements. This paper will describe Pulse Magnetic field measuring system, high speed digitizer, Magnetic Probes, calibration for Pulsed Magnetic Measurements and accurate mapping of pulse magnetic field (3 μs, 50 μs and 100 μs half sine wave. (author)

  7. Pulsed modulator power supply for the g-2 muon storage ring injection kicker

    NARCIS (Netherlands)

    Mi, J.; Lee, Y. Y.; Morse, W. M.; Pai, C. I.; Pappas, G. C.; Sanders, R.; Semertzidis, Y. K.; Warburton, D.; Zapasek, R.; Jungmann, K.; Roberts, L.

    1999-01-01

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage

  8. Kink instability suppression with stochastic cooling pickup and kicker

    Energy Technology Data Exchange (ETDEWEB)

    Hao Y.; Blaskiewicz, M.; Litvinenko, V.N.; Ptitsyn, V.

    2012-05-20

    The kink instability is one of the major beam dynamics issues of the linac-ring based electron ion collider. This head-tail type instability arises from the oscillation of the electron beam inside the opposing ion beam. It must be suppressed to achieve the desired luminosity. There are various ways to suppress the instability, such as tuning the chromaticity in the ion ring or by a dedicated feedback system of the electron beam position at IP, etc. However, each method has its own limitation. In this paper, we will discuss an alternative opportunity of suppressing the kink instability of the proposed eRHIC at BNL using the existing pickup-kicker system of the stochastic cooling system in RHIC.

  9. LHC beam dumping system Extraction channel layout and acceptance

    CERN Document Server

    Goddard, B; Uythoven, J; Veness, R; Weterings, W

    2003-01-01

    The LHC beam dumping system must safely abort the LHC beams under all conditions, including those resulting from abnormal behaviour of machine elements or subsystems of the beam dumping system itself. The extraction channels must provide sufficient aperture both for the circulating and extracted beams, over the whole energy range and under various beam parameters. These requirements impose tight constraints on the tolerances of various extraction channel components, and also on the allowed range of beam positions in the region of these components. Operation of the beam dumping system under various fault states has been considered, and the resulting apertures calculated. After describing briefly the beam dumping system and the extraction channel geometry, the various assumptions made in the analysis are presented, before deriving tolerance limits for the relevant equipment and beam parameters.

  10. Extraction and beam transfer for the SHiP facility

    CERN Document Server

    Goddard, Brennan; Borburgh, Jan; Balhan, Bruno; Le Godec, Gilles; Zerlauth, Markus; Tommasini, Davide; Kain, Verena; Cornelis, Karel; Wenninger, Jorg; Jensen, Lars; Todd, Benjamin; Bauche, Jeremie; Puccio, Bruno

    2015-01-01

    This document summarises the key feasibility issues associated with the SPS extraction and beam transfer systems required for the SHiP facility. It describes the expected performance limits of the electrostatic septa, the expected beam losses during extraction and consequences, the design of the new beamline geometry and equipment systems and the expected extracted spill structure.

  11. Beam Based Calibration of Slow Orbit Bump in the NSLS Booster

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Shaftan, T.; Rose, J.

    2009-05-04

    The orbit bumps in NSLS booster are used to move the beam orbit within 2mm of the extraction septum aperture on a time scale of millisecond at extraction in order to reduce the requirement on the amplitude of the fast extraction kicker. This may cause charge losses since before extraction, the beam stays on the distorted orbit for thousands of revolutions. In order to find the optimal orbit bump setpoint, which brings the maximum distortion at the extraction position and minimum distortions everywhere else, we developed an extraction model and performed an experiment to validate it. Afterwards, the model was applied to optimize the extraction process.

  12. Extracted-beam-detection system around synchrotron saturne

    International Nuclear Information System (INIS)

    Anne, Remy; Milleret, Gerard; Giuliani, Arlette; Lefol, Andre; Perret, Robert; Poupard, Joseph; Trogno, Andre; Van den Bossche, Maurice; N'Guyen Sieu Viet.

    1977-07-01

    The extracted-beam-detection system working around the synchrotron Saturne is presented. The whole system is composed of about forty multiwire chambers used for beam tuning and providing beams profiles. Optic beam parameters such as position, divergence, dimension, emittance can be easily measured, or calculated with a program running on a computer. They are working in large range intensity beams (10 2 to 5.10 11 p/cm 2 /s of protons, alpha particles, deutons, pions, tritons and electrons [fr

  13. Analysis of RHIC beam dump pre-fires

    International Nuclear Information System (INIS)

    Zhang, W.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Sandberg, J.; Tan, Y.

    2011-01-01

    It has been speculated that the beam may cause instability of the RHIC Beam Abort Kickers. In this study, we explore the available data of past beam operations, the device history of key modulator components, and the radiation patterns to examine the correlations. The RHIC beam abort kicker system was designed and built in the 90's. Over last decade, we have made many improvements to bring the RHIC beam abort kicker system to a stable operational state. However, the challenge continues. We present the analysis of the pre-fire, an unrequested discharge of kicker, issues which relates to the RHIC machine safety and operational stability.

  14. Impedance Measurements on the LHC Dump Kicker Prototype

    CERN Document Server

    González, C; Dyachkov, M

    1998-01-01

    In this paper we demonstrate that a thin layer of metallization on the inner surface of the ceramic pipe in an abort kicker will provide an effective way to screen the kicker's magnets from the electr omagnetic fields generated by the LHC bunches. The other objective of this paper was to measure the kicker impedance in a wide frequency range (up to 1 GHz).

  15. Neutralization principles for the Extraction and Transport of Ion Beams

    CERN Document Server

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  16. The 12-GeV/c beam transfer and absorber lines for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Mao, N.; McGill, J.; Gerig, R.; Brown, K.

    1994-08-01

    The beam optics of the 12-GeV/c proton beam transfer line between the Low Energy Booster (LEB) and the Medium Energy Booster (MEB) at the Superconducting Super Collider is presented. The beam is extracted from the LEB vertically and is injected into the MEB through a vertical Lambertson magnet and a horizontal kicker. The beamline has high flexibility for amplitude and dispersion function matching. Effects of various errors in the transfer line are studied, and a beam position correction scheme is proposed. The beam optics of the 12-GeV/c absorber line transporting the beam from the LEB to an absorber during the LEB commissioning is also presented

  17. Hollow beam formation in the extraction region of ECRIS

    International Nuclear Information System (INIS)

    Batygin, Y.; Goto, A.; Yano, Y.

    1995-01-01

    Beam optics in the extraction system of an ECR ion source (ECRIS) are examined both analytically and numerically, by taking nonlinear effect due to aberrations of einzel lens into account. It is shown that this effect can cause hollow beam formation. Simple analytical criteria to keep the good beam quality in the focusing system are given. (author)

  18. New control techniques for extraction of bevalac beams

    International Nuclear Information System (INIS)

    Nyman, M.; Chu, W.; Mehlman, B.; Mirer, W.; Oakley, H.; Renner, T.; Stover, G.; Tekawa, M.

    1985-05-01

    Beams of accelerated heavy ions can now be delivered as one-second-long dc pulses with minimal fluctuations in instantaneous flux. Pulse duration can be held constant to within 1% while keeping a high non-varying extraction efficiency which minimizes pulse-to-pulse position shift in the extracted beam. In addition, differing beam intensities over several orders of magnitude can be delivered. Computer adjustment of all measurement and control devices results in linear operation over three orders of magnitude of beam intensity. Control of beam structure is accomplished by a unique combination of dual slope integrators and phase forward ''predictive'' circuits in the feedback loop

  19. Simulation of extraction of high current uranium beams

    International Nuclear Information System (INIS)

    Xiang, W.; Spaedtke, P.; Hollinger, R.; Galonska, M.; Heymach, F.

    2005-01-01

    To generate uranium ion beam with high current and high brightness to fill up the heavy ion synchrotron SIS to its space charge limit, the behavior of the uranium ion beam in the extraction system and the postacceleration system for a high current metal vapor vacuum arc ion source has been investigated using the KOBRA3-INP code. The beam trajectory and space charge map in the extraction system as well as space profiles and the emittance diagrams of the ion beam along the beam line are presented. The influences of degree of the space charge compensation on the characteristics of the extracted ion beam are discussed. The results show that the ion beam has to be space charge compensated from the screening electrode to the entrance of the acceleration gap; otherwise the transport would not be possible. Simulation also quantitatively supports the experimental results under the assumption of the full space charge compensation in the drift sections

  20. Approach to increase beam intensity extracted from a cyclotron

    Science.gov (United States)

    Nakao, M.; Hojo, S.; Katagiri, K.; Miyahara, N.; Noda, A.; Noda, K.; Sugiura, A.; Wakui, T.; Smirnov, V.; Vorozhtsov, S.; Goto, A.

    2017-09-01

    To increase the beam intensity of cyclotrons used for producing radionuclides, beam loss during extraction must be reduced. Extraction efficiency is limited by the beam parameters in front of the deflector, especially angular distribution. Computer simulation of the second harmonic mode for 18 MeV protons, which is frequently used, has been carried out to understand beam behavior in a cyclotron. The extraction efficiency is determined by the width of the angular distribution of particles in the phase space plot at the deflector. An effective method to reduce the width is to shorten the bunch at injection. The simulation shows that the bunch phase length at injection must be ⩽30° to realize a 30 μA extraction beam current and satisfy the deflector heat limit of 200 W.

  1. Manufacture of electrostatic septum for extracting particle beam

    International Nuclear Information System (INIS)

    Tokumoto, Shuichi

    1979-01-01

    In the main ring of National Laboratory for High Energy Physics, fast and slow extractions of accelerated proton beam are carried out by using electrostatic septa. The electrostatic septum is an apparatus to deflect beam by an electrostatic field, basically composed of a couple of parallel plate electrodes installed in a vacuum chamber. The electrostatic septum is required to satisfy the following two conditions: it must be very thin and flat to reduce the loss of extracted beam, and sufficiently high electric field must be generated to deflect beam in a limited length. The structure and manufacture of electrostatic septa are described. The manufacturing is explained by dividing a septum into an anode and a cathode, terminals introducing high voltage, a vacuum chamber, and high voltage circuit. The performance is also described on the experiments for no-beam condition and beam extraction. Beam extraction has been carried out over 1500 hours thus far, the average beam intensity being 1 x 10 12 ppp, and extraction efficiency more than 90%. There have been no serious failure to affect the performance nor metal wire breakage. They have satisfied their purposes, being used for both fast and slow extractions. Presently, lengthening of the electrostatic field region is being planned to increase the length of the septa to 1.5 m per unit. (Wakatsuki, Y.)

  2. Measurement report on the LHC injection kicker ripple denition and maximum pulse length (MD 1268)

    CERN Document Server

    Bartmann, Wolfgang; Kotzian, Gerd; Stoel, Linda; Velotti, Francesco Maria; Vlachodimitropoulos, Vasileios; Wiesner, Christoph; CERN. Geneva. ATS Department

    2016-01-01

    The present LHC lling scheme uses a batch spacing which corresponds to the design report specication of the injection kicker rise time. A reduction of the batch spacing can be directly used to increase luminosity without detrimental eect on beam stability. Therefore, measurements were performed to understand if a tighter batch spacing would lead to increased injection oscillations of a the rst and last bunches of a bunch train and eventually also a growth of the transverse emittance. The results of theses measurement were used to dene the minimum possible batch spacing for an acceptable emittance growth. Another measurement was performed to test if a batch consisting of 320 bunches can be injected instead of the nominal 288 bunch trains. This bunch train is dierently produced in the LHC injectors and features an optimum between beam stability and luminosity gain. The pulse length of the injection kicker was measured to ensure the full batch can be injected at once.

  3. Magnetic Waveform Measurements of the PS Injection Kicker KFA45 and Future Emittance Growth Estimates

    CERN Document Server

    Forte, Vincenzo; Ferrero Colomo, Alvaro; CERN. Geneva. ATS Department

    2018-01-01

    In the framework of the LHC Injectors Upgrade (LIU) project [1], this document summarises the beam-based measurement of the magnetic waveform of the PS injection kicker KFA45 [2], from data collected during several Machine Development (MD) sessions in 2016 and 2017. In the first part of the document, the measurement methodology is introduced and the results presented and compared with the specification required for a clean transfer of the bunches coming from the PSB after the upgrade. These measurements represent, to date, the only way to reconstruct the magnetic waveform. In the second part, kicker magnetic waveform PSpice®[3] simulations are compared and tuned to the measurements. Finally the simulated (validated through measurements) waveforms are used to estimate the future expected emittance growth for the different PS injection schemes, both for (LIU target) LHC and fixed target beams.

  4. Cooling of the LHC Injection Kicker Magnet Ferrite Yoke: Measurements and Future Proposals

    CERN Document Server

    Sobiech, Z; Bouleghlimat, S; Ducimetière, L; Garlaschè, M; Kramer, T; Namora, V; Noulibos, R; Sillanoli, Y; Weterings, W

    2014-01-01

    LHC operation with high intensity beam, stable for many hours, resulted in significant heating of the ferrite yoke of the LHC Injection Kicker Magnets. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. The beam screen, which screens the ferrite yoke from wakefields, has been upgraded to limit ferrite heating. In addition it is important to improve the cooling of the ferrite yoke: one method is to increase the internal emissivity of the cylindrical vacuum tank, in which the kicker magnet is installed. This paper describes a method developed for measuring the emissivity of the inside of the tanks, which has been benchmarked against measurements of the ferrite yoke temperature during heat treatment in an oven and transient thermal simulations. Conclusions are drawn regarding an ion bombardment technique evaluated...

  5. Beam extraction control systems of the fast-cycling synchrotron

    International Nuclear Information System (INIS)

    Toumanian, A.; Zapolski, N.; Nickogosian, V.; Ananian, A.; Kazarian, A.; Khoetsian, M.; Agababian, A.; Matevosian, A.

    1992-01-01

    A compact system controlling the extraction of different beams (gamma, electron, synchrotron radiation) in single and simultaneous operation modes at high electromagnetic disturbances level based on using one computer of IBM PC/AT type is described. (author)

  6. Collimator for the SPS extracted beam

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    This is a water cooled copper collimator (TCSA) which has exactly the shape of the cross section of the downstream magnetic beam splitter. Parts of the blown up primary proton beam pass above/below and left through this collimator. A small part of the protons is absorbed in the thin copper wedges. In this way the downstream magnetic splitter of the same cross section receives already a beam where its magnetic wedges are no longer hit by protons. The upstream, water cooled collimator, more resistant to protons, has cast a 'shadow' onto the downstream magnetic splitter, less resistant to protons. Gualtero Del Torre stands on the left.

  7. Simulations of Beam Injection and Extraction into Ion Sources

    CERN Document Server

    Cavenago, Marco

    2005-01-01

    Charge breeding, consistiting of injecting singly charged ion into ECRIS(Electron Cyclotron Resonance Ion Sources) to extract an highly charged ion beam, is a promising technique for rare or radioactive ion beam. Efficiency and extracted beam temperature are dominated by the strong collisional diffusion of charged ion inside source. A computer code, named BEAM2ECR, written to simulate details of the injection, ionization, collision and extraction processes is described.* A model of injection plasma sheath and of source fringe field were recently added. Neutral injection is also supported, for comparison with other techniques, like gas feeding or metal vapor injection. Results, clearly favouring near axis injection for most cases are described. Code is written in C-language and possibility of concurrent execution over a Linux cluster was recently added.

  8. Design of the injection kicker magnet system for CERN's 14 TeV proton collider LHC

    International Nuclear Information System (INIS)

    Ducimetiere, L.; Jansson, U.; Schroeder, G.H.; Vossenberg, E.B.; Barnes, M.J.; Wait, G.D.

    1995-08-01

    Two counter-rotating proton beams will be injected into the LHC at an energy of 450 GeV by two kicker magnet systems, producing magnetic field pulses of approximately 750 ns rise time and 6.6 micros flat top duration. To avoid dilution of the beam emittance during injection, a stringent design requirement of the system is a flat top ripple of the magnetic field of less than ±0.5%. Both injection systems are composed of 4 travelling wave kicker magnets of 2.17 m length each, powered by pulse forming networks (PFN's) and matched to their characteristic impedance. To achieve the high required kick strength of 1.2 Tm, for a compact and cost efficient design, a comparably low characteristic impedance of 5 Ω has been chosen. The electrical circuit of the system is being designed with the help of PSpice computer modeling. Most known parasitic elements are included in the model to obtain a realistic pulse response prediction. The present paper reports on design and modeling results of the LHC injection kicker magnet system that has several novel and demanding design requirements

  9. Equalizer design techniques for dispersive cables with application to the SPS wideband kicker

    Science.gov (United States)

    Platt, Jason; Hofle, Wolfgang; Pollock, Kristin; Fox, John

    2017-10-01

    A wide-band vertical instability feedback control system in development at CERN requires 1-1.5 GHz of bandwidth for the entire processing chain, from the beam pickups through the feedback signal digital processing to the back-end power amplifiers and kicker structures. Dispersive effects in cables, amplifiers, pickup and kicker elements can result in distortions in the time domain signal as it proceeds through the processing system, and deviations from linear phase response reduce the allowable bandwidth for the closed-loop feedback system. We have developed an equalizer analog circuit that compensates for these dispersive effects. Here we present a design technique for the construction of an analog equalizer that incorporates the effect of parasitic circuit elements in the equalizer to increase the fidelity of the implemented equalizer. Finally, we show results from the measurement of an assembled backend equalizer that corrects for dispersive elements in the cables over a bandwidth of 10-1000 MHz.

  10. Dynamic structural analysis of the TPSG4 & TPSG6 beam diluters

    CERN Document Server

    Massidda, L; Kadi, Y; Balhan, B

    2005-01-01

    In this report we present the technical specification for the numerical model and the study of the dynamic structural behaviour of the beam diluter elements (TPSG4 & 6) protecting the extraction septum magnets (MSE & MST) in the event of an asynchronous firing of the extraction kickers (MKE). The deposited energy densities, estimated by the high-energy particle transport code FLUKA, were converted to internal heat generation rates according to the time dependence of the extracted beam. The transient response to this thermal load was obtained by solving the power deposition and structural deformation problem by the spectral-element code ELSE.

  11. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    International Nuclear Information System (INIS)

    Spädtke, Peter

    2014-01-01

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation

  12. Test~of~Beam~Extraction~by~Crystal~Channeling~at~the~SPS: A First Step towards a LHC Extracted Beam

    CERN Multimedia

    2002-01-01

    % RD22 \\\\ \\\\ The availability of a beam extracted out of the LHC accelerator would open up very interesting possibilities for B-physics, in particular for the study of CP-violation. Channeling in bent crystals appears to be the most promising method to produce an extracted beam of intensity $\\sim$~10$^{8}$ p/sec. This would provide as many as 10$^{10}$ $ B \\bar{B} $ pairs per year of run, two orders of magnitude more than could be produced by an e$^+$e$^-$ B-factory with L~=~10$^{34}$ cm$^{-2}$s$^{-1}$ We propose a R\\&D program to study beam extraction at the CERN SPS, using a silicon bent crystal to be installed in the SPS beam pipe and placed next to the beam in such a way as to intercept the beam halo. Transverse excitation of the beam in presence of non-linearities will be used to create halo conditions similar to what are expected for LHC.

  13. Investigation of an Ultrafast Harmonic Resonant RF Kicker

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yulu [Univ. of Chinese Academy of Sciences (CAS), Beijing (China)

    2016-10-01

    square pulse, and get a Flat-Top waveform which will give a uniform kick over the bunch length of the kicked electron bunches, thus the transverse emittance of these kicked electron bunches can be maintained. By using two identical kickers with the betatron phase advance of 180 degree or its odd multiples, the residual kick voltage wave slopes at the unkicked bunch position will be totally cancelled out. Flat-Top waveform combined with two kicker scheme, the transverse emittance of the cooling electron bunches will be conserved during the whole injection, recirculation, and ejection processes. In the cavity design part, firstly, the cavity geometry is optimized to get high transverse shunt impedance thus less than 100 W of RF losses on the cavity wall can be achieved for all these 10 harmonic modes. To support all these 10 harmonic modes, group of four QWRs are adopted with the mode distribution of 5:3:1:1. In the multi-frequency cavities such as the five-mode-cavity and the three-mode-cavity, tunings are required to achieve the design frequencies for each mode. Slight segments of taper design on the inner conductor help to get the frequencies to be exactly on the odd harmonic modes. Stub tuners equal to the number of resonant modes are inserted to the outer conductor wall to compensate the frequency shifts due manufacturing errors and other perturbations during the operation such as the change of the cavity temperature. Single loop couple is designed for all harmonic modes in each cavity. By adjusting its loop size, position and rotation, it is possible to get the fundamental mode critical coupled and other higher harmonic modes slightly over coupled. A broadband circulator will be considered for absorbing the reflected power. Finally in this part, multipole field components due to the asymmetric cylindrical structure around the beam axis of the cavity as well as the beam-induced higher order mode (HOM) issues will be analyzed and discussed in this thesis. A half

  14. LHC Beam Dump System: Analysis of beam commissioning, performance and the consequences of abnormal operation

    CERN Document Server

    Kramer, Thomas

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. It is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missin...

  15. The PS Booster's ejection kicker: full house.

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    The modules of the Booster's four-storied full-aperture kicker pretty much fill their vacuum tank (front cover removed). In the original 800 MeV version, the delay-type modules were pulsed at 30 kV from a Pulse-Forming-Network (PFN), yielding a field risetime as short as 60 ns. The fieldstrength was 0.1 T at a current of 1200 A. The modules are made from steel plates and ferrite slabs. The ferrite's high initial outgassing rate presented a serious vacuum problem for a long time.

  16. Magnetic measurements of the steel septum magnet used for extraction: MSDC01

    CERN Document Server

    Cornuet, D; Leclère, P

    2002-01-01

    The proton beams extracted from the LHC are dumped on external absorbers by horizontally deflecting kicker magnets and vertically deflecting steel septum magnets. For this system there are three variants of steel septum magnets MSD A, MSD B and MSD C, which will be produced by the Institute of High Energy Physics (IHEP, Protvino/Russia). This document gives the results of the magnetic measurements at CERN on the first magnet of the series: MSDC01.

  17. DESIGN OF BEAM-EXTRACTION SEPTUM MAGNET FOR THE SNS

    International Nuclear Information System (INIS)

    TSOUPAS, N.; LEE, Y.Y.; RANK, J.; TUOZZOLO, J.

    2001-01-01

    The beam-extraction process from the SNS accumulator ring [1,2] requires a Lambertson septum magnet. In this paper we discuss the geometrical and magnetic field requirements of the magnet and present results obtained from two and three dimensional magnetic field calculations that shows the field quality in the regions of interest of the septum magnet

  18. Beam optics of the AmPS extraction line

    International Nuclear Information System (INIS)

    Hoekstra, R.

    1991-01-01

    The design of the Amsterdam Pulse Stretcher includes a feasibility study of part of the extraction trajectory. The latter includes some proposed curves projected through the hall of the beam switch yard. Since extraction is performed in the north line of the ring and the connection to the trajectory of the spectrometers is planned in a trajectory parallel to the east line of the ring the curves contain bending magnets for bending 90 degrees either by only two magnets or by making use of ring bending magnets in the same way as the ring curves are constructed. The bending through 90 degrees has optimal imaging properties of a unit cell much the same as the curves in the ring. This one-to-one (or one-to-minus-one) property is intended to shift the known required beam dimensions stream upwards from a defined point in the trajectory of the spectrometers to be able to create the dimensions at this shifted point by means of a so called beam transformer, placed in between the extraction point and this position. This report deals with the further developments with respect to the extraction trajectory. (author). 5 refs.; 9 figs.; 3 tabs

  19. Possibility of high efficient beam extraction from the CERN SPS with a bent crystal. Simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Scandale, W. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Laboratoire de l' AccelerateurLineaire (LAL), Universite Paris SudOrsay, Orsay (France); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Kovalenko, A.D.; Taratin, A.M. [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2017-03-11

    The extraction of the SPS beam of 270 GeV/c protons assisted by a bent crystal was studied by simulation. Two methods for delivering the SPS beam onto a crystal were considered: transverse diffusion and orbit bump of the beam. It was shown that the main condition for high efficient beam extraction with a bent crystal, which is a small divergence of the incident beam, can be fulfilled. Extraction efficiency up to 99% can be reached for both methods of the beam delivering. The irradiation of the electrostatic septum wires during the beam extraction can be considerably reduced.

  20. Harmonic Kicker RF Cavity for the Jefferson Lab Electron-Ion Collider EM Simulation, Modification, and Measurements

    Science.gov (United States)

    Overstreet, Sarah; Wang, Haipeng

    2017-09-01

    An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.

  1. The new control system of the SPS injection kicker

    CERN Document Server

    Antoine, A; Marchand, A; Verhagen, H

    2002-01-01

    The SPS accelerator will be used as injector for the LHC and has to be adapted to the LHC requirements. The tight specification on beam blow-up and bunch spacing in the SPS has required an upgrade program of the SPS injection kicker in order to obtain a reduction of the magnetic field ripple to less than ± 0.5% and of the magnet current rise time to less than 145 ns. In this context, the slow control part has been entirely rebuilt on the basis of off-the-shelf industrial components. A hierarchical architecture based on a SIEMENS S7-400 master programmable logic controller interconnected through PROFIBUS-DP to S7-300 deported and decentralised I/Os has been implemented. Integration of in-house specific G-64 hardware systems inside this industrial environment has been done through a PROFIBUS-DP to G-64 intelligent interface based on an OEM fieldbus mezzanine board on one side and an FPGA implementing the required functionality on the other. Simultaneously, the fast timing system has been completely reshuffled ...

  2. Betatron with demagnetization of magnetic circuit with extracted electron beam

    International Nuclear Information System (INIS)

    Rychkov, M.M.; Chakhlov, V.L.; Chertov, A.S.

    2003-01-01

    The magnetic scheme of the betatron with the magnetic circuit demagnetization, wherein the excitation winding is switched on consecutively and contrarily with the compensation winding is described. The experimental study on the betatron magnetic system with the magnetic circuit demagnetization is carried out on the basis of the electromagnet of the series-produced betatron MIB-6. The feed-up scheme, providing for the electrons lead-out beyond the emitter limits at the end of the acceleration cycle is developed for this magnetic system. The start-up of the betatron with the magnetic circuit demagnetization onto the kinetic energy of the accelerated electrons in the extracted beam, of 6 MeV with the radiation pulse recurrence frequency of 50 Hz is accomplished. The curves for the dose fields distribution of the extracted electron beam are presented [ru

  3. Electron beam extraction system with a ring radiation field

    International Nuclear Information System (INIS)

    Auslender, V.L.; Kuksanov, N.K.; Polyakov, V.A.; Salimov, R.A.; Chertok, I.L.

    1979-01-01

    Description and results of testings of two electron beam extraction systems for shaping of a circular irradiation field are given. One of the systems contains three 20 cm long outlet windows arranged at 120 deg angle with respect to each other. Tests at the ILU-6 accelerator have shown that the given system provides 150 mm zone irradiation from three sides. Beam utilization factor when irradiating three 40 mm dia tubes amounted to 35% which provides capacity of 2.5 txMrad/h at 20 kW beam power. The other extraction system includes two C-form magnets producing nonuniform and opposing magnetic fields. This system tests at the EhLV-2 accelerator have shown that at 0.8-1.5 MeV electron energy it is possible to irradiate of 60 and 100 mm dia objects, accordingly. The system may be used together with both constant-action and pulse-action accelerators having extraction with linear scanning [ru

  4. The H line: a brand new beam line for fundamental physics at the J-PARC muon facility

    International Nuclear Information System (INIS)

    Kawamura, N; Shimomura, K; Miyake, Y; Toyoda, A; Saito, N; Mihara, S; Aoki, M

    2013-01-01

    The muon facility, J-PARC (Muon Science Establishment; MUSE), has been operated since first beam in 2008. Starting with a 200 kW proton beam, the beam intensity has reached 3×10 6 / muons/s, the most intense pulsed muon beam in the world. A 2 cm thick graphite target permits the extraction of four secondary muon beams. A brand new beam line, the H line, is planned to be constructed. The new beam line is designed to have a large acceptance, will provide the ability to tune the momentum, and use a kicker magnet and/or Wien filter. This beam line will provide an intense beam for experiments that require high statistics and must occupy the experimental areas for a relatively long period.

  5. Risk Assessment of the Chopper Dipole Kicker Magnets for the MedAustron Facility

    CERN Document Server

    Kramer, T; Barnes, M J; Benedikt, M; Fowler, T

    2011-01-01

    The MedAustron facility, to be built in Wiener Neustadt (Austria), will provide protons and ions for both cancer therapy and research [1]. Different types of kicker magnets will be used in the accelerator complex, including fast beam chopper dipoles: these allow the beam to be switched on and off for routine operational reasons or in case of emergency. Main requirements for the beam chopper system are safety and reliability. A criticality analysis, to chart the probability of failure modes against the severity of their consequences of the fault, has been carried out for the chopper dipole system. This "Failure Mode, Effects, and Criticality Analysis" (FMECA), has been used to highlight failure modes with relatively high probability and severity of consequences: conservative ratings of critical components and appropriate redundancy, together with measurements and interlocks, have been used to reduce the probability and criticality of faults. This paper gives an overview of the Risk Assessment approach and pres...

  6. Nanosecond high-voltage generators for supplying the kickers of charged particle accelerators

    International Nuclear Information System (INIS)

    Korchuganov, V.N.; Matveev, Yu.G.; Shvedov, D.A.

    2000-01-01

    The high-voltage nanosecond generators (VNG) of rectangular pulses, developed for supplying the injection and extraction kickers of the accelerator-storage complexes are considered in this work. The pulse hydrogen thyratrons and gas-filled discharges are used as commutators in those generators. If necessary, the VNG pulses fronts may be shortened up to 2-3 ns in the coaxial lines, filled with ferrite rings. The mechanism of the pulse fronts shortening was considered earlier. The basis parameters of the VNG various types are presented [ru

  7. Characteristic time structure in slow resonant extracted beam

    International Nuclear Information System (INIS)

    Crebbin, K.C.

    1983-08-01

    The phase diagram for resonant extraction is normally shown as a sharp line, passing through the unstable fixed point, dividing the stable region from the unstable region. This line is a sharp boundary line in the limiting mathematical case where the particle passes through all points on the line. In the physical case, a specific particle occupies only a limited number of phase points along the line. As a result, the line becomes a band of finite width containing a number of regions of stability and instability. The width of this band and the time structure extracted from this band is related to the tune shift and shape of the perturbation used in the extraction system. This paper discusses the physical reasons for this effect and presents computer calculations showing the time structure for the NU equals two-thirds extraction system in the Bevalac. Photomultiplier pictures of beam structure taken before and after recent changes in the perturbation magnet show similar changes in time structure corresponding to changes in operating values of the NU shift used for extraction

  8. The New SPS Extraction Channel for LHC and CNGS

    CERN Document Server

    Goddard, B; Schröder, G; Weterings, W; Uythoven, J

    2000-01-01

    The Large Hadron Collider (LHC) and CERN Neutrino to Gran Sasso (CNGS) projects require the construction of a new fast-extraction system in the long straight section LSS4 of the Super Proton Synchrotron (SPS) at CERN. A conventional DC septum magnet will be used, in conjunction with the installation of horizontal and vertical extraction bumpers, main quadrupoles with enlarged apertures, extraction kicker magnets and additional hardware protection, instrumentation, controls and electronics. The extraction channel must be able to accept the bright LHC proton beam at 450 GeV/c, and also the high intensity, large emittance fixed target CNGS proton beam at the nominal 400 GeV/c extraction momentum. This paper describes the extraction channel to be installed in 2003, and shows how the requirements for both the LHC and CNGS project can be met.

  9. Optical Matching of Slowly Extracted Beam with Transport System at HIMAC

    CERN Document Server

    Furukawa, Takuji; Katsumata, Masashi; Noda, Koji; Shibuya, Shinji; Shiraishi, Tadahiro; Takada, Eiichi; Torikoshi, Masami; Uesugi, Takehiro; Yamada, Satoru

    2005-01-01

    The optical matching between the ring and the transport line plays important role in order to control the beam size and profile after the transport. At HIMAC, thus, we have studied the optical matching of the slowly extracted beam. As a result, it was verified that the beam size of the slowly extracted beam were controlled owing to the optical matching. It was also found that small deviation of quadrupole strength in the ring brings orbit distortion at the transport system.

  10. Extraction of high-intensity ion beams from a laser plasma by a pulsed spherical diode

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Oguri

    2005-06-01

    Full Text Available High-current Cu^{+} ion beams were extracted from a laser-produced plasma using a pulsed high-voltage multiaperture diode driven by an induction cavity. The amplitude and the duration of the extraction voltage were 130 kV and 450 ns, respectively. During the extraction, explosive beam divergence due to the strong space-charge force was suppressed by the focusing action of the gap between concentric hemispheres. Modulation of the extracted beam flux due to the plasma prefill in the gap has been eliminated by using a biased control grid put on the anode holes. By means of this extraction scheme we obtained a rectangular beam pulse with a rise time as short as ≈100  ns. The beam current behind the cathode was limited to ≈0.1   A, owing to space-charge effects, as well as to poor geometrical transmission through the cathode sphere. From the measurement of the extracted beam current density distribution along the beam axis and the beam profile measurement, we found a beam waist slightly downstream of the spherical center of the diode structure. The measured beam behavior was consistent with numerical results obtained via a 3D particle code. No serious degradation of the beam emittance was observed for the grid-controlled extraction scheme.

  11. Unified monitors for extracted proton beam diagnostics in the IHEP channels

    International Nuclear Information System (INIS)

    Gvakhariya, T.V.; Gres', V.N.; Davydenko, Yu.P.

    1985-01-01

    Equipment complex, used for extracted beam monitoring at the U-70 synchrotron is described. The main parameters of detectors, used for the beam profile and position, its intensity and loss measurement, as well as of data acquisition and processing system are considered. For the beam profile and position measuring secondary emission multichannel chambers are used. To determine the beam intensity during fast extraction a beam current transformer is used, and as for the slow extractionasecondary emission sealed chamber is used. Beam losses are measured with the use of ionization chambers with geometry close to2π

  12. Control of the MKQA tuning and aperture kickers of the LHC

    CERN Document Server

    Barlow, R A; Pianfetti, J P; Senaj, V; Cattin, M; CERN. Geneva. TE Department

    2009-01-01

    The large hadron collider (LHC) at CERN has been equipped with four fast pulsed kicker magnets in RA43 situated at point 4 which are part of the measurement system for the tune and the dynamic aperture of the LHC beam (Beam 1 and Beam 2). For the tune measurement 'Q', the magnets will excite oscillations in part of the beam. This is achieved by means of a generator producing a 5 µs base half-sine pulse of 1.2 kA [1] amplitude, superimposed with a 3rd harmonic to produce a 2 µs flat top. A kick repetition rate of 2 Hz will be possible. To measure the dynamic aperture 'A' of the LHC at different beam energies, the same magnets will also be driven by a more powerful generator which produces a 43 µs base half-sine current pulse of 3.8 kA. For the 'A' mode a thyristor is used as switching element inside the generator. A final third mode named 'AC dipole' will rely on the beam being excited coherently at a frequency close but outside its Eigen-frequencies by an oscillating dipole field. The beam is expected to o...

  13. Increasing Extracted Beam Current Density in Ion Thrusters through Plasma Potential Modification

    Science.gov (United States)

    Arthur, Neil; Foster, John

    2015-09-01

    A gridded ion thruster's maximum extractable beam current is determined by the space charge limit. The classical formulation does not take into account finite ion drift into the acceleration gap. It can be shown that extractable beam current can be increased beyond the conventional Child-Langmuir law if the ions enter the gap at a finite drift speed. In this work, ion drift in a 10 cm thruster is varied by adjusting the plasma potential relative to the potential at the extraction plane. Internal plasma potential variations are achieved using a novel approach involving biasing the magnetic cusps. Ion flow variations are assessed using simulated beam extraction in conjunction with a retarding potential analyzer. Ion beam current density changes at a given total beam voltage in full beam extraction tests are characterized as a function of induced ion drift velocity as well.

  14. One magnet module of the full-aperture kicker

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Nine such modules, in a single vacuum tank, form the complete kicker. Ferrite rings (not visible), in conjunction with the capacitance between the plates, create the electrical equivalent of a transmission line. A fast 40 kV pulse is applied, and field rise times of 70-80 nanoseconds can be obtained.

  15. DIAGNOSIS OF THE LOW EMITTANCE BEAM IN ATF DR EXTRACTION LINE

    International Nuclear Information System (INIS)

    McCormick, Douglas

    2003-01-01

    The ATF (Accelerator Test Facility in KEK) damping ring has been designed to produce the low emittance beam required by future linear colliders. In the design, the normalized vertical emittance of the ATF damping ring is 3.0E-8 radm which corresponds to the vertical beam size of about 10 micron in the extraction line. The emittance of the beam extracted from the ATF damping ring is measured with four wire scanners located in a dispersion free region of the extraction line. The optics of the extraction line is also studied. We will report the method and the result of the emittance measurement at the extraction line

  16. First Results for the Beam Commissioning of the CERN Multi-Turn Extraction

    CERN Document Server

    Gilardoni, S; Benedetto, E; Bohl, T; Cettour Cave, S; Cornelis, K; Damerau, H; Follin, F; Fowler, T; Franchi, A; Freyermuth, P; Genoud, H; Giachino, R; Giovannozzi, M; hancock, S; Le Borgne, Y; Manglunki, D; Métral, G; Pereira, L; Ridewood, J; Riva, Y; Schokker, M; Sermeus, L; Steerenberg, R; Vandorpe, B; Wenninger, J

    2010-01-01

    The Multi-Turn Extraction (MTE), a new type of extraction based on beam trapping inside stable islands in horizontal phase space, has been commissioned during the 2008 run of the CERN Proton Synchrotron. Both singleand multi-bunch beams with a total intensity up to 1.4 1013 protons have been extracted with efficiencies up to 98%. Furthermore, injection tests in the CERN Super Proton Synchrotron were performed, with the beam then accelerated and extracted to produce neutrinos for the CERN Neutrino-to-Gran Sasso experiments. The results of the extensive measurement campaign are presented and discussed in detail.

  17. Extraction Compression and Acceleration of High Line Charge Density Ion Beams

    CERN Document Server

    Henestroza, Enrique; Grote, D P; Peters, Craig; Yu, Simon

    2005-01-01

    HEDP applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba)2

  18. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    International Nuclear Information System (INIS)

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed

  19. Monitoring the extracted proton beam at the SPS

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Fluorescent screens in front of the target positions allow a precise adjustement in front of them. A similar photo was recorded at the beam dump at the beam injection into the SPS, see Weekly Bulletin of April 1976.

  20. Analysis of ferrite heating of the LHC injection kickers and proposals for future reduction of temperature

    CERN Document Server

    Barnes, M J; Garrel, N; Goddard, B; Mertens, V; Weterings, W

    2012-01-01

    The two LHC injection kicker magnet (MKI) systems must produce a kick of 1.3 T.m with a flat top duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of the magnets: the screen consists of a ceramic tube with conductors on the inner wall. The conductors provide a path for the image current of the high intensity LHC beam and screen the ferrite against wake fields. The conductors initially used gave adequately low beam coupling impedance however screen conductor discharges occurred during pulsing of the magnet; hence an alternative design with fewer screen conductors was implemented to meet the often conflicting requirements for low beam coupling impedance, fast magnetic field rise-time and good high voltage behaviour. During 2011 the LHC was operated with high intensity beam, coasting for many hours at a time, resulting in heating of the ferrite yoke of the MKIs. This paper presents an analysis of thermal measurement dat...

  1. Development of a Beam-based Phase Feedforward Demonstration at the CLIC Test Facility (CTF3)

    CERN Document Server

    AUTHOR|(CDS)2083344; Christian, Glenn

    The Compact Linear Collider (CLIC) is a proposal for a future linear electron--positron collider that could achieve collision energies of up to 3~TeV. In the CLIC concept the main high energy beam is accelerated using RF power extracted from a high intensity drive beam, achieving an accelerating gradient of 100~MV/m. This scheme places strict tolerances on the drive beam phase stability, which must be better than $0.2^\\circ$ at 12~GHz. To achieve the required phase stability CLIC proposes a high bandwidth (${>}17.5$~MHz), low latency drive beam ``phase feedforward'' (PFF) system. In this system electromagnetic kickers, powered by 500~kW amplifiers, are installed in a chicane and used to correct the phase by deflecting the beam on to longer or shorter trajectories. A prototype PFF system has been installed at the CLIC Test Facility, CTF3; the design, operation and commissioning of which is the focus of this work. Two kickers have been installed in the pre-existing chicane in the TL2 transfer line at CTF3 for t...

  2. Simulating the Beam-line at CERN's ISOLDE Experiment

    CERN Document Server

    McGrath, Casey

    2013-01-01

    Maximizing the optical matching along portions of the ISOLDE beam-line and automating this procedure will make it easier for scientists to determine what the strengths of the electrical elds of each beam-line element should be in order to reduce particle loss. Simulations are run using a program called MAD-X, however, certain issues were discovered that hindered an immediate success of the simulations. Specifically, the transfer matrices for electrostatic components like the switchyards, kickers, and electric quadrupoles were missing from the original coding. The primary aim of this project was to design these components using AutoCAD and then extract the transfer matrices using SIMION. Future work will then implement these transfer matrices into the MAD-X code to make the simulations of the beam-line more accurate.

  3. High-intensity positive beams extracted from a compact double-chamber ion source

    International Nuclear Information System (INIS)

    Huck, H.; Somacal, H.; Di Gregorio, D.E.; Fernandez Niello, J.O.; Igarzabal, M.; Di Paolo, H.; Reinoso, M.

    2005-01-01

    This work presents the design and development of a simple ion source, the associated ion extraction optics, and the beam transport of a low-energy and high-current proton accelerator. In its actual version, the ion source can deliver positive proton currents up to 100 mA. This rather high beam current is achieved by adding a small ionization chamber between the discharge chamber containing the filament and the extraction electrode of the ion source. Different parameters of the ion source and the injection beam line are evaluated by means of computer simulations to optimize the beam production and transmission

  4. LHC Report: The beam is back at the LHC

    CERN Multimedia

    Reyes Alemany

    2015-01-01

    A series of sector beam tests paved the way for the start-up of the LHC in 2008 and 2009. These tests and the follow-up of the issues that arose were part of the process that led to a smooth start-up with beam.   Given this experience, sector tests were scheduled to take place several weeks before the 2015 start-up. On the weekend of 6-9 March, beam from the SPS was injected into both LHC injection regions, followed by a first pass through the downstream LHC sectors. For the clockwise LHC beam (called “beam 1”) this meant passing through ALICE and into Sector 2-3, while the anticlockwise beam (called “beam 2”) was threaded through LHCb and all the way from Point 8 to Point 6, where it was extracted by the beam dump kickers onto the beam dump block. The dry runs in the previous weeks were mainly targeted at preparation for the sector tests. The systems tested included: injection, timing, synchronisation and beam instrumentation. The beam interlock ...

  5. Simulation of the LHC injection kicker impedance test bench

    CERN Document Server

    Tsutsui, H

    2003-01-01

    The coupling impedance measurements of the LHC injection kicker test bench are simulated by HFSS code. The simulation gives qualitatively good agreement with the measurement. In order to damp the resonances, some ferrite rings are tested in the simulation. Longitudinal resonances are damped by a ferrite ring of large tan$\\delta_{\\mu}$. The effect of the ferrite ring is small for damping the transverse impedance resonance around 30 MHz.

  6. MARS Tracking Simulations for the Mu2e Slow Extracted Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Nagaslaev, Vladimir [Fermilab; Rakhno, Igor [Fermilab

    2015-06-01

    Particle tracking taking into account interactions with fields and materials is necessary for proper evaluation of the resonant extraction losses and geometry optimization for the extraction beam line. This paper describes the tracking simulations for the Mu2e Resonant Extraction and discusses the geometry choices made based on these simulations.

  7. Reduction of outgas from the components of the J-PARC kicker magnet

    International Nuclear Information System (INIS)

    Kamiya, Junichiro; Ogiwara, Norio; Kinsho, Michikazu; Takayanagi, Tomohiro

    2005-01-01

    The extraction kickers in Rapid Cycling Synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) are installed in the vacuum chamber against electrical discharge. Therefore, outgas from the components have large effects on the vacuum system of the accelerator. We have succeeded in reducing the outgas from the components, which are made of ferrite core and aluminum alloy, by baking them before construction of the magnet. The ferrite cores were baked at 200degC in the vacuum about 300 hours, while the components made of aluminum alloy at 150degC about 70 hours. Main outgas from both materials was known to be water by mass spectroscopy, and the pressure after baking has been decreased by two or three order of magnitude. We also report the reduction method for outgas while the magnet is stored in. (author)

  8. Modeling of direct beam extraction for a high-charge-state fusion driver

    Science.gov (United States)

    Anderson, O. A.; Grant Logan, B.

    A newly proposed type of multicharged ion source offers the possibility of an economically advantageous high-charge-state fusion driver. Multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity, simplifying or eliminating the need for charge-state separation downstream. Very large currents (hundreds of amperes) can be extracted from this type of source. Several arrangements are possible. For example, the laser plasma could be tailored for storage in a magnetic bucket, with beam extracted from the bucket. A different approach, described in this report, is direct beam extraction from the expanding laser plasma. We discuss extraction and focusing for the particular case of a 4.1 MV beam of Xe 16+ ions. The maximum duration of the beam pulse is limited by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The extraction electrode contains a solenoid for beam focusing. Our design studies were carried out first with an envelope code and then with a self-consistent particle code. Results from our initial model showed that hundreds of amperes could be extracted, but that most of this current missed the solenoid entrance or was intercepted by the wall and that only a few amperes were able to pass through. We conclude with an improved design which increases the surviving beam to more than 70 A.

  9. Beam extraction studies at 900 GeV using a channeling crystal

    Directory of Open Access Journals (Sweden)

    R. A. Carrigan, Jr.

    2002-04-01

    Full Text Available Luminosity-driven channeling extraction has been observed for the first time in a 900 GeV study at the Fermilab Tevatron. This experiment, Fermilab E853, demonstrated that useful TeV level beams can be extracted from a superconducting accelerator during high luminosity collider operations without unduly affecting the background at the collider detectors. Multipass extraction was found to increase the efficiency of the process significantly. The beam extraction efficiency was about 25%. Studies of time dependent effects found that the turn-to-turn structure was governed mainly by accelerator beam dynamics. Based on the results of this experiment, it is feasible to construct a parasitic 5–10 MHz proton beam from the Tevatron collider.

  10. Current Compensation of Hydrogen Ion Beam Extracted from PIG with Metal-Hydride Cathode

    International Nuclear Information System (INIS)

    Borisko, V.N.; Sereda, I.N.; Klochko, E.V.; Tseluyko, A.F.; Afanas'eva, I.A.

    2006-01-01

    The effect of extracted hydrogen ion beam compensation from reflective discharge with metal-hydride cathode that sufficiently widens the possible field of applying plasma sources of such type is found. The evolution of energy distribution function of ions extracted along the axial direction from reflective discharge with metal-hydride cathode depending on external parameters of the discharge is investigated. The electron distribution functions which compensate hydrogen ion beam are determined

  11. Results from the 2009 beam commissioning of the CERN multi-turn extraction

    CERN Document Server

    Benedetto, E; Bohl, T; Cettour Cave, S; Cornelis, K; Cotte, D; Damerau, H; Delrieux, M; Fleuret, J; Fowler, T; Follin, F; Franchi, A; Freyermuth, P; Genoud, H; Gilardoni, S; Giovannozzi, M; Hancock, S; Hans, O; Le Borgne, Y; Manglunki, D; Matli, E; Métral, E; Métral, G; Newman, M; Pereira, L; Peters, F; Riva, Y; Roncarolo, F; Sermeus, L; Steerenberg, R; Vandorpe, B; Wenninger, J

    2010-01-01

    Following the analysis of the results obtained during the first year of beam commissioning of the CERN multiturn extraction, a number of changes have been introduced in the beam manipulations performed in the CERN Proton Synchrotron. This includes a different control of the linear chromaticity, the setting of the nonlinear magnets used to split the beam, and the longitudinal structure in the PS. The results obtained during the 2009 run are presented and discussed in detail, including the beam performance in both the PS and the SPS.

  12. Computer simulation of 2-D and 3-D ion beam extraction and acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Shunji; Nakajima, Yuji [Saitama Univ., Urawa (Japan). Faculty of Engineering

    1997-03-01

    The two-dimensional code and the three-dimensional code have been developed to study the physical features of the ion beams in the extraction and acceleration stages. By using the two-dimensional code, the design of first electrode(plasma grid) is examined in regard to the beam divergence. In the computational studies by using the three-dimensional code, the axis-off model of ion beam is investigated. It is found that the deflection angle of ion beam is proportional to the gap displacement of the electrodes. (author)

  13. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  14. Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron

    CERN Document Server

    Garcia, J B

    2011-01-01

    The proton beams used for the fixed target physics at the Super Proton Synchrotron (SPS) are extracted from the Proton Synchrotron ( PS) by a multiturn technique called continuous transfer (CT). During the CT extraction, large losses are observed in locations where the machine aperture should be large enough to accommodate the circulating beam. This limits the maximum intensity deliverable due to the induced stray radiation outside the PS tunnel. Scattered particles from the interaction with the electrostatic septum are identified as the possible source of these losses. This article presents a detailed study aiming to understand the origin of losses and propose possible cures. The simulations could reproduce accurately the beam loss pattern measured in real machine operation and determine the beam shaving, intrinsic to the extraction process, as the cause for the unexpected losses. Since these losses are unavoidable, the proposed solution implies a new optics scheme displacing the losses to a region with bett...

  15. MEASURED TRANSVERSE COUPLING IMPEDANCE OF RHIC INJECTION AND ABORT KICKERS

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2001-01-01

    Concerns regarding possible transverse instabilities in RHIC and the SNS pointed to the need for measurements of the transverse coupling impedance of ring components. The impedance of the RHIC injection and abort kicker was measured using the conventional method based on the S 21 forward transmission coefficient. A commercial 450 Ω twin-wire Lecher line were used and the data was interpreted via the log-formula. All measurements, were performed in test stands fully representing operational conditions including pulsed power supplies and connecting cables. The measured values for the transverse coupling impedance in kick direction and perpendicular to it are comparable in magnitude, but differ from Handbook predictions

  16. Estimation of acceptance of the beam extraction system of K500 superconducting cyclotron

    International Nuclear Information System (INIS)

    Paul, S.; Bhunia, U.; Agrawal, A.; Debnath, J.; Dutta, A.; Pradhan, J.; Dey, M.K.

    2015-01-01

    The extraction system of the KSOO superconducting cyclotron consists of two electrostatic deflectors and eight passive magnetic channels, spanning over an azimuthal length of 330 degrees, with radial aperture of ∼6 mm. The radial position of the elements can be varied within ±6 mm. The extraction path is within the fringing field of the cyclotron. So, different positions of the magnetic elements change the optical properties of the extraction system, as seen by the beam. Here we have approximated the entire extraction path by a series of equivalent combined function magnetic elements, having variable field and gradient for different ion species and energies. The acceptance of the extraction system at the entry of first deflector has been determined. The accelerated beam can be extracted only if its emittance matches with this acceptance aperture. The acceptance calculation also predicts the tolerance limit of the magnetic field imperfections in the acceleration zone. (author)

  17. Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tianhuan [Indiana Univ., Bloomington, IN (United States)

    2011-08-01

    The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

  18. Latest Performance Results from the FONT5 Intra-train Beam Position and Angle Feedback System at ATF2

    CERN Document Server

    Christian, G B; Bett, D R; Blaskovic Kraljevic, N; Burrows, P N; Davis, M R; Gerbershagen, A; Perry, C; Constance, B; Resta-Lopez, J

    2012-01-01

    A prototype Interaction Point beam-based feedback system for future electron-positron colliders, such as the International Linear Collider, has been designed and tested on the extraction line of the KEK Accelerator Test Facility (ATF). The FONT5 intra-train feedback system aims to stabilize the beam orbit by correcting both the position and angle jitter in the vertical plane on bunch-tobunch time scales, providing micron-level stability at the entrance to the ATF2 final-focus system. The system comprises three stripline beam position monitors (BPMs) and two stripline kickers, custom low-latency analogue front-end BPM processors, a custom FPGA-based digital processing board with fast ADCs, and custom kickerdrive amplifiers. The latest results from beam tests at ATF2 will be presented, including the system latency and correction performance.

  19. Design, analysis and measurement of very fast kicker magnets at SLAC

    International Nuclear Information System (INIS)

    Weaver, J.N.; Bowden, G.B.; Bulos, F.

    1989-03-01

    Recent experience with SLC has shown that very fast, ferrite-loaded, transmission-line, beam-kicker magnets can cause significant and undesirable distortion of a 1.5-2.5 kA, 20-4- kV pulse as it travels through the magnet. In general, there is a net lengthening of the pulse, with increases in its rise and fall times, a decrease in amplitude, and an unsymmetrical rounding of the flattop. In this partially tutorial treatise, a number of practical design considerations are discussed in terms of equivalent circuits, magnet circuit dispersion and dissipation, undesired circuit shunting and coupling, high-voltage breakdown problems and high-order-mode losses that lead to beam tube heating. These effects are linked to the properties of the materials, the presence of radiation and realizable magnet topologies. Measurements and calculations of some of these characteristics for several magnet designs are reviewed. The results presented come from a truly eclectic effort. 8 refs., 1 fig

  20. Crystal extraction: Alignment of crystal with respect to the beam

    CERN Document Server

    Gyr, Marcel

    1992-01-01

    The program CRYSTAL.BAS allows to calculate the exact alignment of the crystal with respect to thebeam. It is written in QBasic and installed on server USRV_865 connected to the PC network. This note describes how to access and to run this program from any PC which is connected to the network NICE. The angle of the two crystals actually installed has been scanned over a relatively wide range and at different positions with respect to the ideal closed orbit, thereafter referred to as beam center line. The signal (Volt) produced by the position sensitive detectors (PSD) intercepting the reflected laser beams used to monitor the crystal alignment, is plotted in the attached figures.

  1. Protecting LHC components against radiation resulting from an unsynchronized beam abort

    International Nuclear Information System (INIS)

    Mokhov, Nikolai V.

    2001-01-01

    The effect of possible accidental beam loss in the LHC on the IP5 and IP6 insertion elements is studied via realistic Monte Carlo simulations. The scenario studied is beam loss due to unsynchronized abort at an accidental prefire of one of the abort kicker modules. Simulations show that this beam loss would result in severe heating of the IP5 and IP6 superconducting (SC) quadrupoles. Contrary to the previous considerations with a stationary set of collimators in IP5, collimators in IP6 close to the cause are proposed: a movable collimator upstream of the Q4 quadrupole and a stationary one upstream of the extraction septumMSD. The calculated temperature rise in the optimal set of collimators is quite acceptable. All SC magnets are protected by these collimators against damage

  2. Protecting LHC Components Against Radiation Resulting From an Unsynchronized Beam Abort

    CERN Document Server

    Drozhdin, A I; Mokhov, N V; Rakhno, I L; Weisse, E

    2001-01-01

    The effect of possible accidental beam loss in the LHC on the IP5 and IP6 insertion elements is studied via realistic Monte Carlo simulations. The scenario studied is beam loss due to unsynchronized abort at an accidental prefire of one of the abort kicker modules. Simulations show that this beam loss would result in severe heating of the IP5 and IP6 superconducting (SC) quadrupoles. Contrary to the previous considerations with a stationary set of collimators in IP5, collimators in IP6 close to the cause are proposed: a movable collimator upstream of the Q4 quadrupole and a stationary one upstream of the extraction septum MSD. The calculated temperature rise in the optimal set of collimators is quite acceptable. All SC magnets are protected by these collimators against damage.

  3. Design of inductively detuned RF extraction cavities for the Relativistic Klystron Two Beam Accelerator

    International Nuclear Information System (INIS)

    Henestroza, E.; Yu, S.S.; Li, H.

    1995-04-01

    An inductively detuned traveling wave cavity for the Relativistic Klystron Two Beam Accelerator expected to extract high RF power at 11. 424 GHz for the 1 TeV Center of Mass Next Linear Collider has been designed. Longitudinal beam dynamics studies led to the following requirements on cavity design: (a) Extraction of 360 MW of RF power with RF component of the current being 1.15 kAmps at 11.424 GHz, (b) Inductively detuned traveling wave cavity with wave phase velocity equal to 4/3 the speed of light, (c) Output cavity with appropriate Q ext and eigenfrequency for proper matching. Furthermore, transverse beam dynamics require low shunt impedances to avoid the beam break-up instability. We describe the design effort to meet these criteria based on frequency-domain and time-domain computations using 2D- and 3D- electromagnetic codes

  4. Magnetic field extraction of trap-based electron beams using a high-permeability grid

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, N. C.; Danielson, J. R.; Surko, C. M., E-mail: csurko@physics.ucsd.edu [Physics Department, University of California, 9500 Gilman Drive, San Diego, La Jolla, California 92093 (United States)

    2015-07-15

    A method to form high quality electrostatically guided lepton beams is explored. Test electron beams are extracted from tailored plasmas confined in a Penning-Malmberg trap. The particles are then extracted from the confining axial magnetic field by passing them through a high magnetic permeability grid with radial tines (a so-called “magnetic spider”). An Einzel lens is used to focus and analyze the beam properties. Numerical simulations are used to model non-adiabatic effects due to the spider, and the predictions are compared with the experimental results. Improvements in beam quality are discussed relative to the use of a hole in a high permeability shield (i.e., in lieu of the spider), and areas for further improvement are described.

  5. PIC (Particle-in-Cell) simulation study on the beam extraction of intense ECR ion source

    International Nuclear Information System (INIS)

    Yang Yao; Zhang Wenhui; Ma Hongyi; Wu Qi; Fang Xing; Liu Zhanwen; Zhao Hongwei; Yao Ze'en

    2012-01-01

    Electromagnetic particle tracking program MAGIC was used to perform the simulation of beam extraction from high current ECR (Electron Cyclotron Resonance) ion source in this paper. The process of beam particles collision with residual gas was included in the simulation and the spatial distribution patterns of secondary electrons and slow ions from residual gas ionization were shown. Issues of radial space charge self-field, current density distribution and beam emittance were discussed. Simulation results illustrated that beam emittance grows quickly (about 3 times) in the extraction space, the space charge self-field would be neutralized partially by secondary electrons, which makes emittance down. Simulation figures also show that slow ions accumulation is an important contributing factor of negative bias electrode ignition, and this problem was described in the paper. (authors)

  6. Optimization of cold neutron beam extraction at ESS

    DEFF Research Database (Denmark)

    Schönfeldt, Troels; Batkov, K.; Klinkby, Esben Bryndt

    from which the moderator is viewed. This study does not only show changes in both cold and thermal neutron flux, depending on extraction position, but also shows that there are significant differences in the wavelength spectrum and origin of neutrons depending on the angel of view.......The present study takes its origin in the baseline design of European Spallation Source where a cold and a thermal moderator are situated next to each other enabling bispectral extraction. The study aims at mapping the differences in various neutron distributions depending on the angle and position...

  7. Device for measurement of the intensity and the time structure of the extracted beam

    International Nuclear Information System (INIS)

    Kozelov, A.V.; Lebedev, A.A.; Medved', S.A.; Mikhajlov, Yu.V.

    1994-01-01

    The module is intented for measuring the time structure and the intensity (up to 10 7 s -1 ) of an extracted beam of charged particles and synchronizing the data acquisition system with particle damp from an accelerator. 16-digit counters operating by turn are used for counting the input pulses at measuring the beam intensity during the controlled time interval (from 4 μs up 4 ms). The obtained data are recorded into the memory of 1 K x 16 capacity. It allows to analyze the time structure of a beam up to harmonics ∼ 100 kHz. 4 refs., 2 figs

  8. High Efficiency Energy Extraction from a Relativistic Electron Beam in a Strongly Tapered Undulator

    Science.gov (United States)

    Sudar, N.; Musumeci, P.; Duris, J.; Gadjev, I.; Polyanskiy, M.; Pogorelsky, I.; Fedurin, M.; Swinson, C.; Kusche, K.; Babzien, M.; Gover, A.

    2016-10-01

    We present results of an experiment where, using a 200 GW CO2 laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54-cm-long strongly tapered helical magnetic undulator, extracting over 30% of the initial electron beam energy to coherent radiation. These results, supported by simulations of the radiation field evolution, demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.

  9. A feasibility study of H sup - beam extraction technique using YAG laser

    CERN Document Server

    Meigo, S I; Hasegawa, K; Ikeda, Y; Nakagawa, S; Oigawa, H

    2002-01-01

    Under a framework of JAERI-KEK joint project of high intensity proton accelerator, as for research and develop of the accelerator driven nuclear transmutation of the long lived radioactive nuclide, it is planed to built the Transmutation Physics Experiment Facility (TEF-P) and the Transmutation Engineering Experiment Facility (TEF-E). The TEF-P is used for the experiments for subcritical system coupled with a spallation neutron target bombarded with 600-MeV proton beam accelerated by the LINAC. To limit the maximum thermal power less than 500 W at the TEF-P, an incident beam power should be less than 10 W. On the contrary, at the TEF-E, high power beam of 200 kW is requested. Both high and low power beams are demanded for the transmutation facilities. It is difficult to deliver a low power beam to the TEF-P. Conventional beam extraction technique with a thin foil, is not desirable because the scattering of the beam at the foil requires the massive shield. Therefore, we study a new technique to extract a small...

  10. Measurement of the extracted electron beam profile by means of a proportional chamber

    International Nuclear Information System (INIS)

    Arakelyan, E.A.; Bayatyan, G.L.; Vartanyan, G.S.; Grigoryan, N.K.; Kechechyan, A.D.; Marikyan, G.G.

    1982-01-01

    The description is given of a system for charged particles beam profile measurement used for the extracted electron beam monitoring at the Erevan synchrotron. The system is based on a proportional chamber with dimensions of 128x128 mm and 2 mm spacing of signal wires. The coordinate is determined by the interwire delay method. The microelectronic cells are used as delay elements. The information is extracted for the amplitude analysis. The load of the system has been as high as 2x10 4 c -1 per wire

  11. Device for continuous control of parameters of the beam extracted from a cyclotron

    International Nuclear Information System (INIS)

    Rezvov, V.A.; Yudin, L.I.

    1975-01-01

    A device has been developed for continuous monitoring of the parameters of an extracted cyclotron beam; the device is based on using two capacitive sensors with stroboscopic signal conversion, which are placed at the beginning of the ion duct and at its end in front of the target. The device allows a) determination of the shape of the microbunches, b) measurement of their duration and phase, and c) determination of the intensity and energy of the extracted beam. The threshold sensitivity of the device is approximately 20 nA for a signal-to-noise ratio of approximately 1. The intrinsic settling time of the signals is approximately 1 nsec

  12. A correction scheme for the hexapolar error of an ion beam extracted from an ECRIS

    International Nuclear Information System (INIS)

    Spaedtke, P.; Lang, R.; Maeder, J.; Maimone, F.; Rossbach, J.; Tinschert, K.

    2012-01-01

    The extraction of any ion beam from ECRIS is determined by the good confinement of such ion sources. It has been shown earlier, that the ions are coming from the places, where the confinement is the weakest. The assumption that the low energy ions are strongly bound to the magnetic field lines require furthermore, that only these ions starting on a magnetic field line going through the extraction aperture can be extracted. Depending on the setting of the magnetic field, these field lines may come from the loss lines at plasma chamber radius. Because the longitudinal position of these field lines depends on the azimuthal position at the extraction electrode, the ions are extracted from different magnetic flux densities. Whereas the solenoidal component can only be transferred into another phase space projection, the hexapolar component can be compensated by an additional hexapole after the first beam line focusing solenoid. The hexapole has to be rotatable in azimuthal direction and moveable in longitudinal direction. For a good correction the beam needs to have such a radial phase space distribution, that the force given by this hexapole acts on the aberrated beam exactly in such a way that it creates a linear distribution after that correction. The paper is followed by the slides of the presentation. (authors)

  13. Extractable proteins from electron beam (EB) irradiated natural rubber (NR) latex

    International Nuclear Information System (INIS)

    Feroza Akhtar; Fumio Yoshii; Keizo Makuuchi

    1996-01-01

    The protein assay of natural rubber latex (NRL) vulcanized by low energy electron beam (EB, 300 keV, 30 mA) has been carried out using Bicinchoninic acid (BCA) reagent. Extractable protein in irradiated latex film was determined by measuring the absorption of colored solution at 562 nm using UV spectrometer. The effect of various radiation doses on the extractable protein content of NRL was investigated. It was ,found that the quantities of extractable protein increases with radiation dose. When compared with ,gamma-ray irradiated samples the same trend was observed. Electron beam irradiated latex films are leached in 1% (ammonia water for various lengths of time. From the results it was established that within 2 hours of leaching in ammonia water most of the extractable protein (96%) were removed from rubber film

  14. Simulations of beam trajectory for position target optimization of extraction system output beams cyclotron proton Decy-13

    International Nuclear Information System (INIS)

    Idrus Abdul Kudus; Taufik

    2015-01-01

    Positioning and track simulation beam the cyclotron Decy-13 for laying optimization the target system have been done using lorentz force function and scilab 5.4.1 simulation. Magnetic field and electric field is calculated using Opera3D/Tosca as a simulation input. Used radio frequency is 77.66 MHz with the amplitude voltage is 40 kV is obtained energy 13 MeV. The result showed that the coordinates of the laying of the target system in a vacuum chamber is located at x = -389 mm and y = 445 mm with the width of the output beam is 10 mm. The laying stripper position for the output in center target is located at x = -76 mm and y =416 mm from the center coordinate on the center of dee with the energy of proton is 13 MeV at the point of beam extraction carbon foil. The changes position laying is carried out on range x = -70; y = 424 mm until x = - 118; y = 374 mm result for shifting area stripper which is still capable of deflection the electron beam. (author)

  15. Using cone beam computed thomography in planning the extraction of impacted third molars

    OpenAIRE

    Vlahović Zoran; Đorđević Aleksandar; Đorđević Filip; Stanišić Jelena

    2016-01-01

    The panoramic radiography is the most used diagnostic imaging method in planning impacted lower third molar extractions. However, often panoramic radiography does not provide enough information in treatment planning for performing safely surgical extraction of impacted third molars. CBCT (Cone beam computed tomography) provides more precise information in diagnostic analysis especially for planning surgical procedures where complications can be expected due to close relationship between mandi...

  16. Improved Light Extraction Efficiency by Photonic Crystal Arrays on Transparent Contact Layer Using Focused Ion Beams

    International Nuclear Information System (INIS)

    Wu, G.M.; Tsai, B.H.; Kung, S.F.; Wu, C.F.

    2011-01-01

    Nitride-based thin-film materials have become increasingly important for the high brightness light-emitting diode applications. The improvements in light extraction and lower power consumption are highly desired. Although the internal quantum efficiency of GaN-based LED has been relatively high, only a small fraction of light can be extracted. In this study, a new design of two-dimensional photonic crystal array has been prepared on the top transparent contact layer of indium-tin oxide film to improve the light extraction efficiency using focused ion beam. The acceleration voltage of the Ga dual-beam nanotechnology system SMI 3050 was 30 kV and the ion beam current was 100 pA. The cylindrical air holes had the diameter of 150 nm and depth of 100 nm. The micro photoluminescence analysis results showed that the light output intensity could be 1.5 times of that of the non-patterned control sample. In addition, the structural damage from the focused ion beam drilling of GaN step could be eliminated. The excellent I-V characteristics have been maintained, and the external light extraction efficiency would be still improved for the LED devices. (author)

  17. Portable test bench for the studies concerning ion sources and ion beam extraction and focusing systems

    International Nuclear Information System (INIS)

    Cordero Lopez, F.

    1961-01-01

    A portable test bench is described, which was designed to check ion sources, ion beam extraction and focusing systems before its use in a 600 KeV Cockcroft-Walton accelerator. The vacuum possibilities of the system are specially analyzed in connection with its particular use. The whole can be considered as a portable accelerator of low energy (50 keV). (Author)

  18. Design of Air-Cooled Beam Dump for Extraction Line of PS Booster

    CERN Document Server

    Perillo-Marcone, A; Venturi, V; Antonakakis, T; Vlachoudis, V; Nowak, E; Mason, G; Battistin, M; Czapski, M; Sgobba, S

    2013-01-01

    A new beam dump has been designed, which withstands the future proton beam extracted from the Proton Syncrotron Booster (PSB) at CERN, consisting of up to 1E14 protons per pulse at 2 GeV after its upgrade in 2018/2019. In order to be able to efficiently release the deposited heat, the new dump will be made out of a single cylindrical block of a copper alloy and cooled by forced ventilation. In order to determine the energy density distribution deposited by the beam in the dump, Monte Carlo simulations were performed using FLUKA, and thermomechanical analyses carried out by importing the energy density into Ansys. In addition, CFD simulations of the airflow were carried out in order to accurately estimate the heat transfer convection coefficient on the surface of the dump. This paper describes the design process and highlights the constraints of integrating a new dump for increased beam power into the existing facility.

  19. Electromagnetic Coupling Between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System

    CERN Document Server

    Andreazza, W; Bravin, E; Caspers, F; Garlasch`e, M; Gras, J; Goldblatt, A; Lefevre, T; Jones, R; Metral, E; Nosych, A; Roncarolo_, F; Salvant, B; Trad, G; Veness, R; Vollinger, C; Wendt, M

    2013-01-01

    The CERN LHC is equipped with two Synchrotron Radiation Monitor (BSRT) systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.

  20. Construction of a new Tevatron collider beam abort dump

    International Nuclear Information System (INIS)

    Hanna, B.; Crawford, C.

    1991-01-01

    As part of the Collider upgrade a new abort system is to be installed in the Tevatron at AO. It consists of two sets of fast kickers and two 90% full aperture graphite beam dumps. This system will abort both protons and antiprotons. Details of the beam dump design and construction are presented

  1. First results from negative ion beam extraction in ROBIN in surface mode

    Science.gov (United States)

    Pandya, Kaushal; Gahlaut, Agrajit; Yadav, Ratnakar K.; Bhuyan, Manas; Bandyopadhyay, Mainak; Das, B. K.; Bharathi, P.; Vupugalla, Mahesh; Parmar, K. G.; Tyagi, Himanshu; Patel, Kartik; Bhagora, Jignesh; Mistri, Hiren; Prajapati, Bhavesh; Pandey, Ravi; Chakraborty, Arun. K.

    2017-08-01

    ROBIN, the first step in the Indian R&D program on negative ion beams has reached an important milestone, with the production of negative ions in the surface conversion mode through Cesium (Cs) vapor injection into the source. In the present set-up, negative hydrogen ion beam extraction is effected through an extraction area of ˜73.38 cm2 (146 apertures of 8mm diameter). The three grid electrostatic accelerator system of ROBIN is fed by high voltage DC power supplies (Extraction Power Supply System: 11kV, 35A and Acceleration Power Supply System: 35kV, 15A). Though, a considerable reduction of co-extracted electron current is usually observed during surface mode operation, in order to increase the negative ion current, various other parameters such as plasma grid temperature, plasma grid bias, extraction to acceleration voltage ratio, impurity control and Cs recycling need to be optimized. In the present experiments, to control and to understand the impurity behavior, a Cryopump (14,000 l/s for Hydrogen) is installed along with a Residual Gas Analyzer (RGA). To characterize the source plasma, two sets of Langmuir probes are inserted through the diagnostic flange ports available at the extraction plane. To characterize the beam properties, thermal differential calorimeter, Doppler Shift Spectroscopy and electrical current measurements are implemented in ROBIN. In the present set up, all the negative ion beam extraction experiments have been performed by varying different experimental parameters e.g. RF power (30-70 kW), source operational pressure (0.3 - 0.6Pa), plasma grid bias voltage, extraction & acceleration voltage combination etc. The experiments in surface mode operation is resulted a reduction of co-extracted electron current having electron to ion ratio (e/i) ˜2 whereas the extracted negative ion current density was increased. However, further increase in negative ion current density is expected to be improved after a systematic optimization of the

  2. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  3. A study on effective extraction of isoflavones from soy germ using the electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Hoon [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongup-si, 580-185 Jeollabuk-do (Korea, Republic of); Choi, Tae Beom [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongup-si, 580-185 Jeollabuk-do (Korea, Republic of); Department of Chemistry, Dongguk University, 3 Pildong, Chunggu, Seoul 100-715 (Korea, Republic of); Kim, Sang Wook [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongup-si, 580-185 Jeollabuk-do (Korea, Republic of)], E-mail: swkim@kaeri.re.kr; Hur, Min Goo; Yang, Seung Dae [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongup-si, 580-185 Jeollabuk-do (Korea, Republic of); Yu, Kook Hyun [Department of Chemistry, Dongguk University, 3 Pildong, Chunggu, Seoul 100-715 (Korea, Republic of)], E-mail: yukook@dongguk.edu

    2009-07-15

    Soy germ was irradiated with 2 MeV electron beam with different doses ranging from 1 to 20 kGy. The amount of isoflavones from irradiated soy germ was compared with those from natural soy germ by extracting with ethanol and methanol. The changed amounts of isoflavones were measured by high-performance liquid chromatography with standard calibration curve. Each extract of soy germ was quantified for antioxidant activity with 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging method. The amount of isoflavones was found to be increased after electron-beam irradiation. Particularly ethanol extract with 15 kGy irradiated soy germ contained the maximum amount of isoflavones. Antioxidant activity of irradiated soy germ was higher than that of natural soy germ.

  4. Improvement of extraction efficiency from a compact synchrotron for proton beam therapy by applying particle tracking analysis

    International Nuclear Information System (INIS)

    Ebina, Futaro; Umezawa, Masumi; Hiramoto, Kazuo

    2013-01-01

    Various types of synchrotrons are used for particle beam therapy. In particle beam therapy, especially in proton beam therapy, downsizing of the accelerator system is a major concern. A compact synchrotron dedicated for proton beam therapy is presented. The synchrotron is horizontally weakly focusing and consists of 4 H-type zerogradient dipole magnets and 4 quadrupole magnets. The circumference of the ring is a little shorter than 18 m, and the energies are up to 230MeV. Beam extraction from the synchrotron is performed by RF-driven slow extraction technology. Two sextupole magnets set in adjacent straight sections form a horizontal separatrix which is fixed during the beam extraction. Horizontal RF voltage excites betatron oscillation of the circulating beam, and protons exceeding the separatrix are extracted by an electrostatic deflector and a horizontal septum dipole magnet. To achieve adequately high extraction efficiency, the relationship between the extraction efficiency and the horizontal chromaticity of the ring is analyzed by particle tracking simulation. The horizontal chromaticity with maximum extraction efficiency is half of the theoretical value because of the distortion of the horizontal separatrix for the extraction. With this chromaticity, the spiral-step of the extracted particle is independent of the momentum deviation of the particle, and the separatrix across the electrostatic septum electrodes is superpositioned.

  5. Beam extraction from a laser-driven multicharged ion source (abstract)

    Science.gov (United States)

    Anderson, O. A.; Logan, B. Grant

    1998-02-01

    A newly proposed type of multicharged ion source has several potential advantages over existing types and a number of useful applications. The basic principle is that multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity (Ref. Reference 1). Thus, charge state separation downstream is simplified or made unnecessary. Another advantage is that large currents (hundreds of amperes) can be extracted. This type of source could be used for heavy-ion fusion drivers (see Ref. Reference 1) or storage rings. There are also industrial application such as materials processing. We describe conceptual design studies for several specific cases. For example, we discuss extraction and focusing of a 4.1 MV, 144 A beam of Xe16+ ions from an expanding plasma created by an intense laser. The maximum duration of the beam pulse is determined by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The initially diverging beam can be refocused to a small radius or made parallel by a combination of electrostatic and solenoid focusing. Our design studies are carried out first with an envelope code to determine the proper focusing parameters and then with a self-consistent particle code to optimize the beam quality. We present results from both codes and discuss several applications of this type of ion source.

  6. Magnetic study of extraction elements of compact cyclotron beam with AGOR superconducting coils

    International Nuclear Information System (INIS)

    Gustafsson, S.

    1991-12-01

    The extraction system of the superconducting cyclotrons is normally making a large use of electric extractors followed by magnetostatic elements. The electric field limit initially hoped for (14 MV/m) has been shown to be too optimistic. A more realistic value is around 10 MV/m in the concerned geometries. The first element of the AGOR extraction system is an electrostatic channel where the maximum electric field is limited to 10.5 MV/m. The smaller separation between the internal beam and the extracted beam at the entrance of the first magnetic element is compensated by the replacement of the usual magnetostatic channels with high power electromagnetic channels placed in the reduced space close to the internal beam and where the horizontal position can be adjusted according to the kind of ion accelerated and its energy. The fringing field very close to the channels is controlled with the help of correction coils reducing the perturbations of the internal beam trajectories to an acceptable level

  7. The beam slow extraction from a magnetic ring of Moscow meson facility

    International Nuclear Information System (INIS)

    Gusev, O.A.; Malitsky, N.D.; Severgin, Yu.P.; Titov, V.A.; Shukeilo, I.A.; Aseev, V.N.; Grachev, M.I.; Lobashev, V.M.; Ostroumov, P.N.; Ponomaryov, O.V.

    1990-01-01

    The beam slow extraction from the circular accelerators or stretcher rings is generally realized by the resonant excitation of betratron oscillations. A precise betatron frequency control is proved to be quite necessary for high-efficient slow ejection. The Coulomb field turns out to have a significant influence upon the slow extraction from the high-current medium energy proton storage rings. It prevents resonant excitation at a reasonable rate and reduces the ejection efficiency. The proton storage ring of Moscow meson facility is an example of a stretcher with a noticeable beam space charge. The detailed investigation of the resonant ejection, having been performed for our stretcher, resulted in the conclusion that extracted beam average current should be limited by the value of 50 mA, which is only 10% of the linac design current. The search for the alternative version to the resonant ejection made us to analyze in details and to develop an old-fashioned method, based on the radial betatron oscillation excitation while the beam is being gradually shifted onto the thin target. (author) 5 refs., 4 figs

  8. Accidental beam loss in superconducting accelerators: Simulations, consequences of accidents and protective measures

    International Nuclear Information System (INIS)

    Drozhdin, A.; Mokhov, N.; Parker, B.

    1994-02-01

    The consequences of an accidental beam loss in superconducting accelerators and colliders of the next generation range from the mundane to rather dramatic, i.e., from superconducting magnet quench, to overheating of critical components, to a total destruction of some units via explosion. Specific measures are required to minimize and eliminate such events as much as practical. In this paper we study such accidents taking the Superconducting Supercollider complex as an example. Particle tracking, beam loss and energy deposition calculations were done using the realistic machine simulation with the Monte-Carlo codes MARS 12 and STRUCT. Protective measures for minimizing the damaging effects of prefire and misfire of injection and extraction kicker magnets are proposed here

  9. Improvement of extracted ion beam from cold cathode Penning ion source

    Science.gov (United States)

    Radwan, Samah I.; El-Khabeary, H.; Helal, A. G.

    2018-03-01

    A direct current cold cathode Penning ion source is operated at the optimum parameters and pressure equal to 7×10-4 mmHg using argon gas. It consists of a copper cylindrical hollow anode and two movable molybdenum discs cathodes are placed symmetrically at two ends of the anode. Argon ion beam is extracted from the ion source by using extractor of different aperture diameter equal to 2.5, 3, 3.5, 4 and 4.5 mm respectively. The extractor is placed at different distances from the ion exit aperture equal to 5, 10, 15 and 20 mm respectively. It is found that at extractor aperture diameter equal to 3.5 mm, ion exit aperture - extractor distance equal to 10 mm and extraction potential applied on the extractor is equal to -500 V, the optimum extracted ion beam current equal to 543 μA can be obtained. A comparison for Penning ion source without and with the extractor is made at the same optimum operating parameters, it is found that the extracted ion beam current from Penning ion source with the extractor increases about twice its initial value of Penning ion source without the extractor.

  10. Simulation of the CERN GTS-LHC ECR ion source extraction system with lead and argon ion beams

    CERN Document Server

    Toivanen, V; Küchler, D; Lombardi, A; Scrivens, R; Stafford-Haworth, J

    2014-01-01

    A comprehensive study of beam formation and beam transport has been initiated in order to improve the performance of the CERN heavy ion injector, Linac3. As part of this study, the ion beam extraction system of the CERN GTS-LHC 14.5 GHz Electron Cyclotron Resonance Ion Source (ECRIS) has been modelled with the ion optical code IBSimu. The simulations predict self-consistently the triangular and hollow beam structures which are often observed experimentally with ECRIS ion beams. The model is used to investigate the performance of the current extraction system and provides a basis for possible future improvements. In addition, the extraction simulation provides a more realistic representation of the initial beam properties for the beam transport simulations, which aim to identify the performance bottle necks along the Linac3 low energy beam transport. The results of beam extraction simulations with Pb and Ar ion beams from the GTS-LHC will be presented and compared with experimental observations.

  11. Electrochemical chloride extraction of a beam polluted by chlorides after 40 years in the sea

    OpenAIRE

    BOUTEILLER, Véronique; LAPLAUD, André; MALOULA, Aurélie; MORELLE, René Stéphane; DUCHESNE, Béatrice; MORIN, Mathieu

    2006-01-01

    A beam element, naturally polluted by chlorides after 40 years of a marine tidal exposure, has been treated by electrochemical chloride extraction. The chloride profiles, before and after treatment, show that free chlorides are extrated with an efficiency of 70 % close to the steel, 50 % in the intermediate cover and only 5 % at the concrete surface. From the electrochemical characterizations (before, after, 1, 2 and 17 months after treatment), the steel potential values can, semehow, indicat...

  12. Improvements of the beam timing structure during a slow extraction from the 70 GeV IFVE accelerator

    International Nuclear Information System (INIS)

    Vorob'ev, V.K.; Levin, A.V.; Mojzhes, L.L.; Myznikov, K.P.; Tatarenko, V.M.; Fedotov, Yu.S.

    1977-01-01

    To improve the density uniformity of an extracted beam in the slow extraction system of the IFVE accelerator a correlation analysis of a timing structure of a proton beam is developed. A passive filter for a power supply system of an annular electromagnet is reconstructed by introduction of a double-loop circuit to reduce pulsations of 600 Hz main frequency and higher harmonics. To suppress accelerator field pulsations of subharmonic components from 50 to 300 Hz an active filter was introduced, where high Q qualities band filters were inserted. Using the above methods of pulsation suppression permits to improve the density uniformity of the extracted beam

  13. Safety Analysis of the Movable Absorber TCDQ in the LHC Beam Dumping System

    CERN Document Server

    Filippini, R

    2009-01-01

    The LHC Beam Dumping System nominally dumps the beam synchronously with the passage of the particle free beam abort gap at the beam dump extraction kickers. In the case of an asynchronous beam dump the TCDQ absorber protects the machine aperture. It is a single sided collimator, positioned close to the beam and it has to follow the beam position and beam size during the energy ramp. This report assesses the different failure scenarios of TCDQ positioning and their likelihood. The failure probability for the two TCDQ systems together is estimated to be 3.6 E-05 (mean value) for one year of LHC operation. This corresponds to a SIL4 safety level, which is considered sufficient. The three dominant failure modes are highlighted. The calculated failure probability refers to scenarios that are generated and developed inside the TCDQ system. Potential failure sources not included are the interaction with external systems: the transmission of the start signal to the PLC from a dedicated timing card and the manual opti...

  14. Simulations of Full Impact of the LHC Beam With a Solid Graphite Target

    CERN Document Server

    Tahir, N A; Brugger, M; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H

    2009-01-01

    The Large Hadron Collider (LHC) will operate with 7~TeV/c protons with a luminosity of 10$^{34}$ cm$^{-2}$s$^{-1}$. This requires two beams, each with 2808 bunches. The nominal intensity per bunch is 1.15$\\;\\times\\;$10$^{11}$ protons and the total energy stored in each beam is 362 MJ. In previous papers, the mechanisms causing equipment damage in case of a failure of the machine protection system was discussed, assuming that the entire beam is deflected onto a copper target. Another failure scenario is the deflection of beam, or part of it, into carbon material. Carbon collimators and beam absorbers are installed in many locations around the LHC close to the beam, since carbon is the material that is most suitable to absorb the beam energy without being damaged. In case of a failure, it is very likely that such absorbers are hit first, for example, when the beam is accidentally deflected. Some type of failures need to be anticipated, such as accidental firing of injection and extraction kicker magnets leading...

  15. New AGS fast extraction system

    International Nuclear Information System (INIS)

    Weng, W.T.

    1980-09-01

    Both the high energy physics program and ISA injection require an improved fast extraction system from the AGS. The proposed new system consists of a fast kicker at H5 and an ejector magnet at H10. The H5 kicker is capable of producing 1.2 mrad deflection and rising up to 99% strength in 150 nsec with flat top ripple within +- 1%. It is found that the focusing strengths and positions of UQ3-UQ7 have to be modified to achieve an achromatic condition at the end of 8 0 -bend. Also, the conceptual design of the H5 magnet and the pulser system are discussed

  16. High precision electron beam diagnostic system for high current long pulse beams

    International Nuclear Information System (INIS)

    Chen, Y J; Fessenden, T; Holmes, C; Nelson, S D; Selchow, N.

    1999-01-01

    As part of the effort to develop a multi-axis electron beam transport system using stripline kicker technology for DARHT II applications, it is necessary to precisely determine the position and extent of long high energy beams (6-40 MeV, 1-4 kA, 2 microseconds) for accurate position control. The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (<20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt measurements performed using capacitive pick-off probes. Likewise, transmission line traveling wave probes have problems with multi-bounce effects due to these longer pulse widths. Finally, the high energy densities experienced in these applications distort typical foil beam position measurements

  17. Characteristics of intense multispecies metallic ion beams extracted from plasma of a pulsed cathodic arc

    Science.gov (United States)

    Shipilova, O. I.; Chernich, A. A.; Paperny, V. L.

    2017-10-01

    The energy spectra of a metallic ion beam extracted by a three-grid extractor from the plasma of a pulsed vacuum arc (pulse duration of 200 μs, discharge current Id of up to 100 A and ion current of up to 0.6 A) are studied by means of an electrostatic energy analyzer in a range of the extraction voltage Uext of up to 10 keV. It is found that the most probable ion energy Em/Z is markedly less than eUext, and the difference between these values as well as the width of the spectra decrease with increasing Uext or/and decreasing Id. It is found as well that the spectra contain "tails" of ions with energies significantly exceeding Em/Z. The shape of the spectra differs at various phases of the pulse, so that Em/Z in the initial transition phase is considerably more than that in the quasi-stationary phase. As possible causes of these effects, the nonmatched ion optics of the extraction gap and the action of the non-neutralized space charge of the extracted ion beam moving through the drift gap are considered.

  18. Study of Slow Beam Extraction Through the Third Order Resonance with Transverse Phase Space Manipulation by a Mono-Frequency RFKO

    CERN Document Server

    Miyamoto, Atsushi; Hinode, Fujio; Kawai, Masayuki; Shinto, Katsuhiro; Tanaka, Takumi

    2005-01-01

    An electron pulse-stretcher ring (STB ring) has a function which converts a pulse beam generated by RF linac into a quasi-continuous beam. Circulating beam in the ring is extracted by the third order resonance. Since there is no accelerating field in the ring, the beam approaches a transverse resonance condition due to synchrotron radiation loss with finite chromaticity. The extracted beam from the ring has some spread in time and space corresponding to injected beam from linac even if the injected beam is perfectly matched to the ring optics. However, the extracted beam emittance can be reduced by applying a phase space manipulation using an RF shaker. Under the influence of perturbation using an RF shaker driven by a mono-frequency, the betatron amplitude of circulating beam can be controlled in order to reduce the extracted beam emittance. The experimental results will be reported in this conference.

  19. Improved beam extraction for a negative hydrogen ion source for the LHC injector chain upgrade, Linac4

    CERN Document Server

    Midttun, Øystein; Scrivens, Richard

    In the scope of an upgrade of the injector chain of CERN’s accelerator complex, a new linear accelerator, Linac4, is under construction. This accelerator will replace the existing 50 MeV proton linac, Linac2. By increasing the beam energy to 160 MeV, Linac4 makes it possible to double the brightness in the PSB, and ultimately increase the luminosity in the LHC. Linac4 will accelerate beams of negative hydrogen (H-) to be injected into the PSB by multi-turn, charge exchange injection. The ion source was initially based on the non-caesiated RF-volume source from DESY. However, the beam extraction from this source could not handle the 45 keV beam energy required by the RFQ. A new beam extraction system has therefore been designed, via IBSimu simulations [1], to extract and transport the H- ion beam respecting the Linac4 requirements. Key features of the extraction system is a tuneable puller voltage to adapt the extraction field to the ion and electron beam currents, and a magnetized Einzel lens to dump the co...

  20. Maxillary sinus pneumatization after maxillary molar extraction assessed with cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yu Hoa; Nah, Kyung Soo; Cho, Bong Hae [Department of Oral and Maxillofacial Radiology, College of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    2009-09-15

    The purpose of this study was to examine the inferior expansion of the maxillary sinus floor following maxillary molar extraction. Cone beam computed tomographic images of 59 subjects were used to evaluate the height difference of the maxillary sinus floor between extraction sites and contralateral dentate sites. The height of the maxillary sinus floor was defined as the vertical distance to the Frankfort plane from the level of the anterior nasal spine to the most inferior point of the sinus floor. We examined the difference in sinus pneumatization according to the number of missing teeth and the vertical relationship of the molar roots to the sinus floor. The inferior expansion of the maxillary sinus floor was 1.20 {+-} 1.86 mm on the maxillary first molar and 1.90 {+-} 2.42 mm on the maxillary second molar. Increased expansion was observed in cases where two proximate molars were extracted. There was no significant difference in sinus pneumatization following extraction according to the vertical relationship of the molar roots to the sinus floor. The results of this study confirm that sinus pneumatization occurs following maxillary molar extraction. In situations where pneumatization can affect treatment after molar extraction, three-dimensional radiography should be considered.

  1. Extraction of Coulomb crystals from a paul-trap ion source for nano-beam generation

    International Nuclear Information System (INIS)

    Izawa, Kenji; Ito, Kiyokazu; Higaki, Hiroyuki; Okamoto, Hiromi

    2009-01-01

    As is well-known, a single-species plasma confined in a compact trap system naturally forms a spatially ordered configuration near the absolute zero. Such a unique state of matter is called 'Coulomb crystal'. The emittance of this strongly coupled plasma is close to the ultimate limit, far below those of regular particle beams. This implies that, if we can somehow accelerate a crystal without serious heating, an ultralow-emittance beam becomes available. To test this idea, we produce a string Coulomb crystal in a linear Paul trap by laser cooling and then try to extract it by switching off the axial confinement potential. Preliminary experimental results indicate that it is possible to transport the crystal while roughly maintaining its linear ordered structure. (author)

  2. Structure and organization of automation subsystem for control of beam extraction from a fast-cycling synchrotron

    International Nuclear Information System (INIS)

    Agababyan, A.G.; Ananyan, S.G.; Grigiryan, V.G.

    1989-01-01

    The status of development of an automation subsystem for control of beam extraction from the Erevan synchrotron is described. The hardware complex of the subsystem contains the RPT-80 microcomputer, seven units of automated control for the beam extraction channel, a timer unit for synchronization of the accelerator output devices, a unit for monitoring status signals, an ADS, an interface with the synchrotron, a commutation line between RPT80 and the host ES1010 computer. As a result pilot operation the beam energy spread instability has been reduced 15 times. 5 refs.; 1 fig

  3. Optics measurements and transfer line matching for the SPS injection of the CERN Multi-Turn Extraction beam

    CERN Document Server

    Benedetto, E; Cettour Cave, S; Follin, F; Gilardoni, S; Giovannozzi, M; Roncarolo, F

    2010-01-01

    Dispersion and beam optics measurements were carried out in the transfer line between the CERN PS and SPS for the new Multi-Turn Extraction beam. Since the extraction conditions of the four islands and the core are different and strongly dependent on the non-linear effects used to split the beam in the transverse plane, a special care was taken during the measurement campaigns. Furthermore, an appropriate strategy was devised to minimize the overall optical mismatch at SPS injection. All this led to a new optical configuration that will be presented in the paper.

  4. BEAMS: backbone extraction and merge strategy for the global many-to-many alignment of multiple PPI networks

    DEFF Research Database (Denmark)

    Alkan, Ferhat; Erten, Cesim

    2014-01-01

    on backbone extraction and merge strategy (BEAMS) for the problem. We finally show, through experiments based on biological significance tests, that the proposed BEAMS algorithm performs better than the state-of-the-art approaches. Furthermore, the computational burden of the BEAMS algorithm in terms...... of execution speed and memory requirements is more reasonable than the competing algorithms. AVAILABILITY AND IMPLEMENTATION: Supplementary material including code implementations in LEDA C++, experimental data and the results are available at http://webprs.khas.edu.tr/~cesim/BEAMS.tar.gz....

  5. Leg mass characteristics of accurate and inaccurate kickers--an Australian football perspective.

    Science.gov (United States)

    Hart, Nicolas H; Nimphius, Sophia; Cochrane, Jodie L; Newton, Robert U

    2013-01-01

    Athletic profiling provides valuable information to sport scientists, assisting in the optimal design of strength and conditioning programmes. Understanding the influence these physical characteristics may have on the generation of kicking accuracy is advantageous. The aim of this study was to profile and compare the lower limb mass characteristics of accurate and inaccurate Australian footballers. Thirty-one players were recruited from the Western Australian Football League to perform ten drop punt kicks over 20 metres to a player target. Players were separated into accurate (n = 15) and inaccurate (n = 16) groups, with leg mass characteristics assessed using whole body dual energy x-ray absorptiometry (DXA) scans. Accurate kickers demonstrated significantly greater relative lean mass (P ≤ 0.004) and significantly lower relative fat mass (P ≤ 0.024) across all segments of the kicking and support limbs, while also exhibiting significantly higher intra-limb lean-to-fat mass ratios for all segments across both limbs (P ≤ 0.009). Inaccurate kickers also produced significantly larger asymmetries between limbs than accurate kickers (P ≤ 0.028), showing considerably lower lean mass in their support leg. These results illustrate a difference in leg mass characteristics between accurate and inaccurate kickers, highlighting the potential influence these may have on technical proficiency of the drop punt.

  6. Abort Gap Cleaning using the Transverse Feedback System Simulation and Measurements in the SPS for the LHC Beam Dump System

    CERN Document Server

    Koschik, A; Höfle, Wolfgang; Kotzian, G; Kramer, Daniel; Kramer, T

    2008-01-01

    The critical and delicate process of dumping the beams of the LHC requires very low particle densities within the $3 \\mu$s of the dump kicker rising edge. High beam population in this so-called 'abort gap' might cause magnet quenches or even damage. Constant refilling due to diffusion processes is expected which will be counter-acted by an active abort gap cleaning system employing the transverse feedback kickers. In order to assess the feasibility and performance of such an abort gap cleaning system, simulations and measurements with beam in the SPS have been performed. Here we report on the results of these studies.

  7. A study on the effects of electron beam irradiation on tooth extraction wound healing in rats

    International Nuclear Information System (INIS)

    Suzuki, Akiyoshi

    1983-01-01

    The wound of the upper jaw 3 days after the first molar tooth extraction in female rats was exposed to 1,500 rads (Group 2) and 2,000 rads (Group 3) of the 10 MeV electron beams, and its pathohistological changes were compared with those of rats with the tooth extraction alone (control group). In the control group, the tooth extraction wound was covered with epithelium 10 days later and new bones were formed 17 days later. Wound healing with the epithelium was seen in all irradiated rats 24 days later. The formation of the new teeth was seen 24 days later in the Group 2 and 38 days later in Group 3. Cell infiltration under the epithelial layers was still observed in some of the Group 3, although the wound was covered with epithelium, and the new bone covering the extraction wound was formed 38 days later. Healing was prolonged in Group 3, as compared with that in Group 2. (Namekawa, K.)

  8. Using cone beam computed thomography in planning the extraction of impacted third molars

    Directory of Open Access Journals (Sweden)

    Vlahović Zoran

    2016-01-01

    Full Text Available The panoramic radiography is the most used diagnostic imaging method in planning impacted lower third molar extractions. However, often panoramic radiography does not provide enough information in treatment planning for performing safely surgical extraction of impacted third molars. CBCT (Cone beam computed tomography provides more precise information in diagnostic analysis especially for planning surgical procedures where complications can be expected due to close relationship between mandibular canal and lower impacted third molars. The aim of this study is comparative analysis of panoramic radiography and CBCT in evaluating the topographic relationship between mandibular canal and impacted third molars. The study included 50 patients with close relationship between mandibular canal and impacted third molars detected using panoramic radiography. After panoramic radiography analysis CBCT was performed in order to diagnose, plan and prevent complications during the surgical tooth extraction. CBCT examination considered comparative analysis with panoramic radiography, marking, volume rendering and assessment of mandibular canal in buccolingual direction. Out of total patients where suprimposition of mandibular canal and impacted third molar on panoramic radiography was detected, in 32 patients mandibular chanal was localised on lingual side. Mandibular canal was positioned at bucal side in 18 of 50 patients. Results of this research indicate that panoramic radiography can be useful in everyday practice for diagnosis, planning and preparing lower third molar extractions, but in cases where close relationship between mandibular canal and lower third molars is detected CBCT is recommended as more precise radiographic imaging method in order to prevent complications.

  9. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  10. Design of the extraction arc for the 2nd beam line of the free-electron laser FLASH

    International Nuclear Information System (INIS)

    Scholz, Matthias

    2014-01-01

    In this thesis, I deal with the design of the extraction arc for the second beam line of FLASH, an FEL (Free-Electron Laser) user facility at DESY Hamburg. Both beam lines will use the same linear accelerator and their separation will take place behind the last accelerating module. I present the constraints for the extraction arc given by the beam line layout of the existing machine, by the building environment of the new beam line and in particular, by coherent synchrotron radiation (CSR). The impact from CSR is presented, and I show how to mitigate these effects and what that means for the beam line design. The optimization of the extraction arc was done applying the downhill simplex algorithm which is presented, first in its basic form to explain the operation principle and then in a more advanced version as used in the applied program. I introduce in this thesis the final layout of the extraction arc including the following matching section. This layout fulfills all given constraints and can provide the required electron beam quality for FEL operation. In order to prove this, I present start-to-end simulations for different bunch charges and for two different wavelengths.

  11. Online Measurement of the Energy Spread of Multi-Turn Beam in the Fermilab Booster at Injection

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J. [Brown U.; Bhat, C. M. [Fermilab; Hendricks, B. S. [Fermilab

    2017-07-01

    We have developed a computer program interfaced with the ACNET environment of Fermilab accelerators to measure energy spread of the proton beam from the LINAC at an injection into the Booster. It uses a digitizing oscilloscope and provides users an ability to configure the scope settings for optimal data acquisition from a resistive wall current monitor. When the program is launched, a) a one shot timeline is generated to initiate beam injection into the Booster, b) a gap of about 40 ns is produced in the injected beam using a set of fast kickers, c) collects line charge distribution data from the wall current monitor for the first 200 μs from the injection and d) performs complete data analysis to extract full beam energy spread of the beam. The program also gives the option to store the data for offline analyses. We illustrate a case with an example. We also present results on beam energy spread as a function of beam intensity from recent measurements.

  12. LHC beam dump system : analysis of beam commissioning, performance and the consequences of abnormal operation

    International Nuclear Information System (INIS)

    Kramer, T.

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. lt is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. lt is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missing MKD elements. Therefore a sophisticated simulation environment was developed based on the use of the MAD-X tracking code. A system of tracking jobs was set up to study failure cases and losses for various dump events. Those jobs can be distributed to available CPU power and be calculated in parallel. Studies into the consequences of abnormal beam dump actions have been performed. Different error scenarios have been evaluated including an asynchronous dump action, prefire cases, and the impact of different orbit and collimator settings. Losses at locations in the ring and the beam dump transfer lines have been quantified as a function of different settings of the dump system protection elements. The implications for the setup and operation of these protection elements are discussed. Particle distributions can be created according to the used orbit. Simulations with different orbit parameters (including magnet field errors, beam position read out errors

  13. Transverse beam splitting made operational: Recent progress of the multi-turn extraction at the CERN proton synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Borburgh, Jan; Damjanovic, Sanja; Gilardoni, Simone; Giovannozzi, Massimo; Hourican, Michael; Kahle, Karsten; Michels, Olivier; Sterbini, Guido; Hernalsteens, Cedric; Le Godec, Gilles

    2016-01-01

    Following a successful commissioning period, the Multi-Turn Extraction (MTE) at the CERN Proton Synchrotron (PS) has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS) since September 2015. This exceptional extraction technique was proposed to replace the long-serving Continuous Transfer (CT) extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of non-linear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and non-linear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. The results of the related experimental and simulation studies, a summary ...

  14. Energy spread and time structure of ion beams extracted from the ReA-EBIT rare isotope charge breeder

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Thomas M.; Lapierre, Alain; Schwarz, Stefan; Kittimanapun, Kritsada; Bollen, Georg [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States)

    2015-01-09

    The ReA re-accelerator of the National Superconducting Cyclotron Laboratory at Michigan State University utilizes an Electron Beam Ion Trap (EBIT) for charge breeding thermalized rare isotope beams. Recent commissioning measurements have been performed to characterize the performance of this EBIT. The energy spread of extracted highly charged ion beams was measured to be about 0.3% of the total beam energy. From this, the temperature of the ion ensemble in the trap is calculated to be kT{sub q}/q = 31eV for O{sup 7+}, while it is kT{sub q}/q = 25eV for K{sup 15+}. In addition initial results are presented for two extraction schemes developed to spread highly charged ion pulses in time.

  15. Natural frequency extraction of a beam-moving mass system with periodic passages using its pseudo-natural frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Esmaeil; Keshmiri, Mehdi [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2016-07-15

    Wind turbines, helicopters, and turbo-machineries' rotary motion, along with a variety of nonlinear structures linearized with their periodic limit cycles, may all contain time-periodic terms in their equations of motion even if the equations remain linear. The purpose of this study is to model these systems into a beam-moving mass system. Natural frequencies of the beam are calculated using past work in which pseudo-natural frequencies of a beam-moving mass system were extracted, followed by the homotopy perturbation method. The findings of this study are valuable to the industry, and they decrease error margin in resonance range assessment. This approach indicates that for beam-moving mass systems, extraction of natural frequencies that ignore the moving mass effect can lead to inaccurate results, whereas only a limited amount of physical data are needed obtain accurate calculations. Furthermore, this study used homotopy perturbation for operational modal analysis purposes and not for solving nonlinear equations.

  16. Alignment and girder position of MSE septa in the new LSS4 extraction channel of the SPS

    CERN Document Server

    Balhan, B; Rizzo, A; Weterings, W; CERN. Geneva. SPS and LHC Division

    2002-01-01

    For the extraction of the beam from the Super Proton Synchrotron (SPS) to ring 2 of the Large Hadron Collider (LHC) and the CERN Neutrino to Gran Sasso (CNGS)facility, a new fast-extraction system is being constructed in the long straight section LSS4 of the SPS. Besides extraction bumpers, enlarged aperture quadrupoles and extraction kicker magnets (MKE), six conventional DC septum magnets (MSE) are used. These magnets are mounted on a single rigid support girder, pre-aligned so as to follow the trajectory of the extracted beam and optimise the available aperture. The girder has been motorised in order to optimise the local SPS aperture during setting up, so as to avoid the risk of circulating beam impact on the septum coils. In this note, we briefly present the trajectory and apertures of the beam, we describe the calculations and methods that have been used to determine the magnet position on the girder, and finally we report on the details of the girder movement and alignment.

  17. Design study of the SPS beam dumping system

    CERN Document Server

    Faugeras, Paul E; Schröder, G H

    1973-01-01

    An internal beam dumping system is needed for the SPS, in order to prevent uncontrolled loss of the beam in the accelerator. Several possible dumping schemes have been studied and compared in Ref. (1), and the method using fast kicker magnets has been chosen. The beam dumping system will use a pair of kicker magnets, which deflect the beam verti-cally onto the absorber blocks, and the beam will be dumped in one SPS revolution. It has been shown$^{(1)}$ that dumping a ow emittance beam of 10$^{13}$ ppp at 400 GeV/c leads to severe thermal problems in the absorber blocks. In particular, dumping the beam with fast kickers induces in the absorber blocks instantaneous temperature rises. These depend on the proton density distributions in the beam and the material used for the block and can be at least as high as l000$^{°}$C in case of aluminium. Although the values of these temperature spikes cannot be calculated with good accuracy, they are certainly higher than permitted for a reliable absorber block design. It...

  18. submitter Light Extraction From Scintillating Crystals Enhanced by Photonic Crystal Structures Patterned by Focused Ion Beam

    CERN Document Server

    Modrzynski, Pawel; Knapitsch, Arno; Kunicki, Piotr; Lecoq, Paul; Moczala, Magdalena; Papakonstantinou, Ioannis; Auffray, Etiennette

    2016-01-01

    “Photonic Crystals (PhC)” have been used in a variety of fields as a structure for improving the light extraction efficiency from materials with high index of refraction. In previous work we already showed the light extraction improvement of several PhC covered LYSO crystals in computer simulations and practical measurements. In this work, new samples are made using different materials and techniques which allows further efficiency improvements. For rapid prototyping of PhC patterns on scintillators we tested a new method using “Focused Ion Beam (FIB)” patterning. The FIB machine is a device similar to a “Scanning Electron Microscope (SEM)”, but it uses ions (mainly gallium) instead of electrons for the imaging of the samples' surface. The additional feature of FIB devices is the option of surface patterning in nano-scale which was exploited for our samples. Three samples using FIB patterning have been produced. One of them is a direct patterning of the extraction face of a 0.8×0.8×10 $mm^3$ LYS...

  19. Design for simultaneous acceleration of stable and unstable beams in a superconducting heavy-ion linear accelerator for RISP

    Science.gov (United States)

    Kim, Jongwon; Son, Hyock-Jun; Park, Young-Ho

    2017-11-01

    The post-accelerator of isotope separation on-line (ISOL) system for rare isotope science project (RISP) is a superconducting linear accelerator (SC-linac) with a DC equivalent voltage of around 160 MV. An isotope beam extracted from the ISOL is in a charge state of 1+ and its charge state is increased to n+ by charge breeding with an electron beam ion source (EBIS). The charge breeding takes tens of ms and the pulse width of extracted beam from the EBIS is tens of μs, which operates at up to 30 Hz. Consequently a large portion of radio frequency (rf) time of the post SC-linac is unused. The post-linac is equipped also with an electron cyclotron resonance (ECR) ion source for stable ion acceleration. Thanks to the large phase acceptance of SC-linac, it is possible to accelerate simultaneously both stable and radioisotope ions with a similar charge to mass ratio by sharing rf time. This operation scheme is implemented for RISP with the addition of an electric chopper and magnetic kickers. The facility will be capable of providing the users of the ISOL and in-flight fragmentation (IF) systems with different beams simultaneously, which would help nuclear science users in obtaining a beam time as high-precision measurements often need long hours.

  20. Novel technique for injecting and extracting beams in a circular hadron accelerator without using septum magnets

    Directory of Open Access Journals (Sweden)

    Andrea Franchi

    2015-07-01

    Full Text Available With a few exceptions, all on-axis injection and extraction schemes implemented in circular particle accelerators, synchrotrons, and storage rings, make use of magnetic and electrostatic septa with systems of slow-pulsing dipoles acting on tens of thousands of turns and fast-pulsing dipoles on just a few. The dipoles create a closed orbit deformation around the septa, usually referred to as an orbit bump. A new approach is presented which obviates the need for the septum deflectors. Fast-pulsing elements are still required, but their strength can be minimized by choosing appropriate local accelerator optics. This technique should increase the beam clearance and reduce the usually high radiation levels found around the septa and also reduce the machine impedance introduced by the fast-pulsing dipoles. The basis of the technique is the creation of stable islands around stable fixed points in horizontal phase space. The trajectories of these islands may then be adjusted to match the position and angle of the incoming or outgoing beam.

  1. Novel technique for injecting and extracting beams in a circular hadron accelerator without using septum magnets

    Science.gov (United States)

    Franchi, Andrea; Giovannozzi, Massimo

    2015-07-01

    With a few exceptions, all on-axis injection and extraction schemes implemented in circular particle accelerators, synchrotrons, and storage rings, make use of magnetic and electrostatic septa with systems of slow-pulsing dipoles acting on tens of thousands of turns and fast-pulsing dipoles on just a few. The dipoles create a closed orbit deformation around the septa, usually referred to as an orbit bump. A new approach is presented which obviates the need for the septum deflectors. Fast-pulsing elements are still required, but their strength can be minimized by choosing appropriate local accelerator optics. This technique should increase the beam clearance and reduce the usually high radiation levels found around the septa and also reduce the machine impedance introduced by the fast-pulsing dipoles. The basis of the technique is the creation of stable islands around stable fixed points in horizontal phase space. The trajectories of these islands may then be adjusted to match the position and angle of the incoming or outgoing beam.

  2. Control of parameters of the beam slow extraction from a synchrophasotron on-line with the ES-1010 and VT-1010B computers

    International Nuclear Information System (INIS)

    Volkov, V.I.; Efimov, L.G.; Issinskij, I.B.; Kolpakov, I.F.; Kulikov, I.I.

    1981-01-01

    Description of the system for beam control during slow extraction from the Dubna synchrotron is presented. The ES-1010 minicomputer is the main computer in the system. Measuring and control of the accele-- rator parameters in the operation mode of slow extraction, of the magnetic field index frequency of the accelerating voltage, intensity of the circulating beam, and spatial characteristics of the extracted beam are conducted by means of the control system. Stabilization of parameters of the extracted beam, monitoring of beams of accelerating nuclei, provision of the operator-computer dialogue are carried out by means of this system. Application of the system at the synchrotron permitted to reduce time of tuning the accelerator modes and improve characteristics of the extracted beams [ru

  3. Modeling of beam-induced damage of the LHC tertiary collimators

    Directory of Open Access Journals (Sweden)

    E. Quaranta

    2017-09-01

    Full Text Available Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore crucial for safe operation and for predicting possible limitations in the overall machine performance. For this, a three-step simulation approach is presented, based on tracking simulations followed by calculations of energy deposited in the impacted material and hydrodynamic simulations to predict the thermomechanical effect of the impact. This approach is applied to metallic collimators at the CERN Large Hadron Collider (LHC, which in standard operation intercept halo protons, but risk to be damaged in the case of extraction kicker malfunction. In particular, tertiary collimators protect the aperture bottlenecks, their settings constrain the reach in β^{*} and hence the achievable luminosity at the LHC experiments. Our calculated damage levels provide a very important input on how close to the beam these collimators can be operated without risk of damage. The results of this approach have been used already to push further the performance of the present machine. The risk of damage is even higher in the upgraded high-luminosity LHC with higher beam intensity, for which we quantify existing margins before equipment damage for the proposed baseline settings.

  4. Beam lifetime measurement and analysis in Indus-2 electron ...

    Indian Academy of Sciences (India)

    injection septum, four injection kickers, four RF cavities and five insertion devices. Indus-2 synchrotron radiation facility consists of a pre-injector (microtron, which deliv- ers 20 MeV electron beam of 0.5 μs pulse width), an injector (booster synchrotron, which raises beam energy from 20 MeV to 550 MeV) and the storage ring ...

  5. Biomechanical predictors of ball velocity during punt kicking in elite rugby league kickers

    OpenAIRE

    Sinclair, Jonathan Kenneth; Taylor, Paul John; Atkins, Stephen; Hobbs, Sarah Jane

    2016-01-01

    Punt kicking is integral to the attacking and defensive elements of rugby league and the ability to kick the ball with high\\ud velocity is desirable. This study aimed to identify important technical aspects of kicking linked to the generation of ball\\ud velocity. Maximal punt kicks were obtained from six elite rugby league kickers using a 10-camera motion capture system.\\ud Three-dimensional kinematics of the lower extremities was obtained. Regression analysis with ball velocity as criterion\\...

  6. Thermal analysis of the LHC injection kicker magnets

    Science.gov (United States)

    Vega, L.; Abánades, A.; Barnes, M. J.; Vlachodimitropoulos, V.; Weterings, W.

    2017-07-01

    The CERN Large Hadron Collider LHC is equipped with two fast pulsed magnet systems (MKIs) that inject particle beams coming from the injector chain. Operation with high intensity beams for many hours can lead to significant beam induced heating of the ferrite yokes of the MKIs. When the ferrite exceeds the Curie temperature of 125°C it loses its magnetic properties, preventing further injection until the ferrite cools down, potentially causing a delay of several hours. Hence important upgrades of the beam-screen were implemented after Run 1 of LHC. However, the High-Luminosity (HL) LHC will be operated with significantly higher intensity beams and hence additional measures are required to limit the ferrite temperature. These magnets operate under ultra-high vacuum conditions: convection is negligible and, as a result of low emissivity of the inside of the vacuum tanks, thermal radiation is limited. A detailed study of the thermal behaviour of these magnets is reported and compared with measurements. In addition several options to improve cooling of the ferrites are presented and analysed.

  7. Design of an Inductive Adder for the FCC injection kicker pulse generator

    Science.gov (United States)

    Woog, D.; Barnes, M. J.; Ducimetière, L.; Holma, J.; Kramer, T.

    2017-07-01

    The injection system for a 100 TeV centre-of-mass collider is an important part of the Future Circular Collider (FCC) study. Due to issues with conventional kicker systems, such as self-triggering and long term availability of thyratrons and limitations of HV-cables, innovative design changes are planned for the FCC injection kicker pulse generator. An inductive adder (IA) based on semiconductor (SC) switches is a promising technology for kicker systems. Its modular design, and the possibility of an active ripple suppression are significant advantages. Since the IA is a complex device, with multiple components whose characteristics are important, a detailed design study and construction of a prototype is necessary. This paper summarizes the system requirements and constraints, and describes the main components and design challenges of the prototype IA. It outlines the results from simulations and measurements on different magnetic core materials as well as on SC switches. The paper concludes on the design choices and progress for the prototype to be built at CERN.

  8. Radiologic study of the healing process of the extracted socket of beagle dogs using cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Won; Lee, Won; Lee, Byung Do [Department of Oral and Maxillofacial Radiology, School of Dentistry, Wonkwang University, Iksan (Korea, Republic of); Kim, De Sok [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-03-15

    To longitudinally observe the healing process of extracted socket and the alterations of the residual ridge in healthy adult dogs using cone beam CT (CBCT). The mandibular premolars of two beagle dogs were removed and the extraction sites were covered with the gingival tissue. CBCTs (3D X-ray CT scanner, Alphard vega, Asahi Co.) were taken at baseline and at 1 week interval for 12 weeks. Radiographic density of extracted wounds was measured on normalized images with a custom-made image analysis program. The amount of alveolar crestal resorption after the teeth extraction was measured with a reformatted three-dimensional image using CBCT. Bony healing pattern of extracted wound of each group was also longitudinally observed and analyzed. Dimensional changes occurred during the first 6 weeks following the extraction of dogs' mandibular premolars. The reduction of the height of residual ridge was more pronounced at the buccal than at the lingual aspect of the extraction socket. Radiographic density of extracted wounds increased by week 4, but the change in density stabilized after week 6. New bone formation was observed at the floor and the peripheral side of extracted socket from week 1. The entrance of extracted socket was sealed by a hard-tissue bridge at week 5. The healing process of extracted wound involved a series of events including new bone formation and residual ridge resorption.

  9. Radiologic study of the healing process of the extracted socket of beagle dogs using cone beam CT

    International Nuclear Information System (INIS)

    Cho, Bong Won; Lee, Won; Lee, Byung Do; Kim, De Sok

    2009-01-01

    To longitudinally observe the healing process of extracted socket and the alterations of the residual ridge in healthy adult dogs using cone beam CT (CBCT). The mandibular premolars of two beagle dogs were removed and the extraction sites were covered with the gingival tissue. CBCTs (3D X-ray CT scanner, Alphard vega, Asahi Co.) were taken at baseline and at 1 week interval for 12 weeks. Radiographic density of extracted wounds was measured on normalized images with a custom-made image analysis program. The amount of alveolar crestal resorption after the teeth extraction was measured with a reformatted three-dimensional image using CBCT. Bony healing pattern of extracted wound of each group was also longitudinally observed and analyzed. Dimensional changes occurred during the first 6 weeks following the extraction of dogs' mandibular premolars. The reduction of the height of residual ridge was more pronounced at the buccal than at the lingual aspect of the extraction socket. Radiographic density of extracted wounds increased by week 4, but the change in density stabilized after week 6. New bone formation was observed at the floor and the peripheral side of extracted socket from week 1. The entrance of extracted socket was sealed by a hard-tissue bridge at week 5. The healing process of extracted wound involved a series of events including new bone formation and residual ridge resorption.

  10. Extracting Wair from the electron beam measurements of Domen and Lamperti.

    Science.gov (United States)

    Tessier, Frédéric; Cojocaru, Claudiu D; Ross, Carl K

    2018-01-01

    The average energy expended by an energetic electron to create an ion pair in dry air, W air , is a key quantity in radiation dosimetry. Although W air is well established for electron energies up to about 3 MeV, there is limited data for higher energies. The measurements by Domen and Lamperti [Med. Phys. 3, 294-301 (1976)] using electron beams in the energy range from 15 to 50 MeV can, in principle, be used to deduce values for W air , if the electron stopping power of graphite and air are known. A previous analysis of these data revealed an anomalous variation of 2% in W air as a function of the electron energy. We use Monte Carlo simulation techniques to reanalyze the original data and obtain new estimates for W air , and to investigate the source of the reported anomaly. Domen and Lamperti (DL) reported the ratio of the response of a graphite calorimeter to that of a graphite ionization chamber for broad beams of electrons with energies between 15 and 50 MeV and at different depths in graphite (including depths well beyond the range of the primary electrons, i.e., in the bremsstrahlung photon regime). Using a detailed EGSnrc model of the DL apparatus, as well as up-to-date stopping powers, we compute the dose ratio between the ionization chamber cavity and the calorimeter core, for plane-parallel electron beams. This dose ratio, multiplied by the DL measured ratio, provides a direct estimate for W air . Despite an improved analysis of the original work, the extracted values of W air still exhibit an increase as the mean electron energy at the point of measurement decreases below about 15 MeV. This anomalous trend is dubious physically, and inconsistent with extensive data for W air obtained at lower energies. A thorough sensitivity analysis indicates that this trend is unlikely to stem from errors in extrapolation and correction procedures, uncertainties in electron stopping powers, or bias in calorimetry or ionization chamber measurements. However, we find

  11. Beam size reduction of a several hundred-keV compact ion microbeam system by improving the extraction condition in an ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yasuyuki; Ohkubo, Takeru; Kamiya, Tomihiro; Saitoh, Yuichi

    2015-04-01

    A several hundred-keV compact ion microbeam system with a three-stage acceleration lens has been developed to form an ion beam of several micrometers in diameter. In a previous study of the Ohkubo et al. (2013) and Ishii et al. (2014), a hydrogen beam of 143 keV having 17 μm diameter was experimentally formed using such a microbeam system. It was demonstrated that a three-stage acceleration lens functioned as a focusing lens and indicated that the beam diameter (hereinafter referred to as the “beam size”) depended on the extraction voltage to generate the ion beam and the vacuum pressure in the extraction space in a plasma-type ion source. In this study, the hydrogen beam sizes were experimentally measured at 130 keV as functions of the extraction voltage and vacuum pressure to form the beam size with several micrometers in diameter. These two relationships showed that beam sizes were reduced in the extraction voltage range of 400–500 V and when the vacuum pressure was lowered to a minimum value of 5.33 × 10{sup −5} Pa. In addition, the result showed that the beam size was dominantly influenced by the vacuum pressure. Consequently, a hydrogen beam 5.8 μm in diameter was formed experimentally—the smallest beam yet obtained.

  12. \\title{MARS15 Simulation Studies in the CMS Detector of Some LHC Beam Accident Scenarios}

    CERN Document Server

    Bhat, Pushpalatha C; Striganov, S.I; Singh, Amandeep

    2009-01-01

    \\begin{abstract} The CMS tracker, made of silicon strips and pixels and silicon-based electronics, is vulnerable to effects of radiation exposure during the LHC operation. Of much concern is the potential for damage from a high instantaneous dose to the pixel detectors and electronics located only a few centimeters from the beam in the event of a fast accidental beam loss. One of the worst case scenarios for such a beam loss is an unintended firing of an abort kicker module, referred to as the kicker pre-fire. MARS15 simulation studies of radiation loads in CMS for the kicker pre-fire scenario are described in this paper. It is found that, in a kicker pre-fire accident, in a time span of about 100 ns, the innermost pixel layer may see a radiation dose of about 0.02 Gy \\-- equivalent to a fluence of $\\sim 6\\times 10^{7}$ MIPs/$cm^2$. No discernible damage to the pixel detectors or the electronics were seen at these levels of fluence in recent beam tests. We note that the dose is about 1000 times smaller t...

  13. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Niu, Hongsen.

    1995-01-01

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T e ) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n e ) is in the range 10 8 --10 10 -cm at the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 near the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10 4 --10 5 downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z 2 intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z 2 fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument

  14. Evaluation of Beam Losses and Energy Depositions for a Possible Phase II Design for LHC Collimation

    CERN Document Server

    Lari, L; Bracco, C; Brugger, M; Cerutti, F; Doyle, E; Ferrari, A; Keller, L; Lundgren, S; Keller, L; Mauri, M; Redaelli, S; Sarchiapone, L; Smith, J; Vlachoudis, V; Weiler, T

    2008-01-01

    The LHC beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can ...

  15. Power secant method applied to natural frequency extraction of Timoshenko beam structures

    Directory of Open Access Journals (Sweden)

    C.A.N. Dias

    Full Text Available This work deals with an improved plane frame formulation whose exact dynamic stiffness matrix (DSM presents, uniquely, null determinant for the natural frequencies. In comparison with the classical DSM, the formulation herein presented has some major advantages: local mode shapes are preserved in the formulation so that, for any positive frequency, the DSM will never be ill-conditioned; in the absence of poles, it is possible to employ the secant method in order to have a more computationally efficient eigenvalue extraction procedure. Applying the procedure to the more general case of Timoshenko beams, we introduce a new technique, named "power deflation", that makes the secant method suitable for the transcendental nonlinear eigenvalue problems based on the improved DSM. In order to avoid overflow occurrences that can hinder the secant method iterations, limiting frequencies are formulated, with scaling also applied to the eigenvalue problem. Comparisons with results available in the literature demonstrate the strength of the proposed method. Computational efficiency is compared with solutions obtained both by FEM and by the Wittrick-Williams algorithm.

  16. Comparison of gamma ray and electron beam irradiation on extraction yield, morphological and antioxidant properties of polysaccharides from tamarind seed

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Jae-Kyung [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Graduate school of Food and Biotechnology, Korea University, Seoul 146-701 (Korea, Republic of); Srinivasan, Periasamy; Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Hyun-Jin [Graduate school of Food and Biotechnology, Korea University, Seoul 146-701 (Korea, Republic of); Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Tamarind (Tamarindus indica L) seed polysaccharide (TSP) is of great important due to its various biological activities. The present investigation was carried out to compare extraction yield, morphological characteristics, average molecular weights and antioxidant activities of TSP from gamma- and electron beam (EB)-irradiated tamarind kernel powder. The tamarind kernel powder was irradiated with 0, 5 and 10 kGy by gamma ray (GR) and electron beam, respectively. The extraction yield of TSP was increased significantly by EB and GR irradiation, but there was no significant difference between irradiation types. Morphological studies by scanning electron microscope showed that TSP from GR-irradiated tamarind seed had a fibrous structure, different from that of EB irradiated with a particle structures. The average molecular weight of TSP was decreased by the irradiation, and EB treatment degraded more severely than GR. Superoxide radical scavenging ability and total antioxidant capacity of EB-treated TSP showed higher than those of GR-treated TSP.

  17. Comparison of gamma ray and electron beam irradiation on extraction yield, morphological and antioxidant properties of polysaccharides from tamarind seed

    Science.gov (United States)

    Choi, Jong-il; Kim, Jae-Kyung; Srinivasan, Periasamy; Kim, Jae-Hun; Park, Hyun-Jin; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    Tamarind ( Tamarindus indica L) seed polysaccharide (TSP) is of great important due to its various biological activities. The present investigation was carried out to compare extraction yield, morphological characteristics, average molecular weights and antioxidant activities of TSP from gamma- and electron beam (EB)-irradiated tamarind kernel powder. The tamarind kernel powder was irradiated with 0, 5 and 10 kGy by gamma ray (GR) and electron beam, respectively. The extraction yield of TSP was increased significantly by EB and GR irradiation, but there was no significant difference between irradiation types. Morphological studies by scanning electron microscope showed that TSP from GR-irradiated tamarind seed had a fibrous structure, different from that of EB irradiated with a particle structures. The average molecular weight of TSP was decreased by the irradiation, and EB treatment degraded more severely than GR. Superoxide radical scavenging ability and total antioxidant capacity of EB-treated TSP showed higher than those of GR-treated TSP.

  18. Modeling of the negative ions extraction from a hydrogen plasma source. Application to ITER Neutral Beam Injector

    International Nuclear Information System (INIS)

    Mochalskyy, S.

    2011-12-01

    The development of a high performance negative ion (NI) source constitutes a crucial step in the construction of a Neutral Beam Injector of the future fusion reactor ITER. NI source should deliver 40 A of H - or of D - . To address this problem in a realistic way, a 3D particles-in-cell electrostatic collisional code was developed. Binary collisions between the particles are introduced using Monte-Carlo collision scheme. This code called ONIX was used to investigate the plasma properties and the transport of the charged particles close to a typical extraction aperture. Results obtained from this code are presented in this thesis. They include negative ions and electrons 3D trajectories. The ion and electron current density profiles are shown for different local magnetic field configurations. Results of production, destruction, and transport of H - in the extraction region are also presented. The production of H - is investigated via 3 atomic processes: 1) electron dissociative attachment to the vibrationally excited molecules H 2 (v) in the volume, 2) interaction of the positive ions H + and H 2 + with the aperture wall and 3) collisions of the neutral gas H, H 2 with aperture wall. The influence of each process on the total extracted NI current is discussed. The extraction efficiency of H - from the volume is compared to the one of H - coming from the wall. Moreover, a parametric study of the H - surface production is presented. Results show the role of sheath behavior in the vicinity of the aperture developing a double layer structure responsible of the NI extraction limitations. The 2 following issues are also analysed. First the influence of the external extracted potential value on the formation of negative sheath and secondly the strength of the magnetic filter on the total extracted NI and co-extracted electron current. The suppression of the electron beam by the negative ion produced at the plasma grid wall is also discussed. Results are in good agreement

  19. Characterising electron beam welded dissimilar metal joints to study residual stress relaxation from specimen extraction

    International Nuclear Information System (INIS)

    Abburi Venkata, K.; Truman, C.E.; Smith, D.J.; Bhaduri, A.K.

    2016-01-01

    Nuclear power plants require dissimilar metal weld joints to connect the primary steam generator made from ferritic steel to the intermediate heat exchanger made from austenitic steel. Such joints are complex because of the mismatch in the thermal and the mechanical properties of the materials used in the joint. Electron Beam (EB) welding is emerging as a promising technique to manufacture dissimilar joints providing a great many advantages over conventional welding techniques, in terms of low heat input, high heat intensity, narrow fusion and heat affected zones, deeper penetration and increased welding speeds. However before this method can be considered for implementation in an actual plant, it is essential for a careful and a comprehensive outlining of the joint characteristics and the apparent effects on performance during service. In the present study, an EB welded joint was manufactured using austenitic AISI 316LN stainless steel and a ferritic-martensitic P91 steel, without the addition of filler material. Neutron diffraction measurement was conducted on the welded plate to measure the residual stress distribution across the weld as well as through the thickness of the plate. A finite element analysis was conducted on a two-dimensional cross-sectional model using ABAQUS code to simulate the welding process and predict the residual stresses, implementing the effects of solid-state phase transformation experienced by P91 steel. The predicted residual stresses were transferred to a 3D finite element model of the plate to simulate the machining and extraction of a C(T) blank specimen from the welded plate and the extent of stress relaxation is studied.

  20. Computer experiments on ion beam cooling and guiding in fair-wind gas cell and extraction RF-funnel system

    International Nuclear Information System (INIS)

    Varentsov, Victor; Wada, Michiharu

    2004-01-01

    Here we present results of the further development of two novel ideas in the field of slow RI-beams production. They are a fair-wind gas cell concept for big-size high-pressure buffer gas cells and a new approach to the extraction system. For this purpose, detailed gas dynamic simulations based on the solution of a full system of time-dependent Navier-Stokes equations have been performed for both the fair-wind gas cell of 500 mm length at 1 bar helium buffer gas pressure and the RF-funnel extraction system at low buffer gas pressure. The results of gas dynamic calculations were used for detailed microscopic Monte Carlo ion-beam trajectory simulations under the combined effect of the buffer gas flow and electric fields of the RF-funnels. The obtained results made it apparent that the use of the fair-wind gas cell concept and extraction RF-funnels look very promising for production of high-quality low-energy RI-beams

  1. 2 TeV HEB beam abort at the SSCL

    International Nuclear Information System (INIS)

    Schailey, R.; Bull, J.; Clayton, T.; Kocur, P.; Mokhov, N.

    1993-05-01

    The High Energy Booster (HEB) of the Superconducting Super Collider Laboratory (SSCL) will require a full aperture beam abort over a dynamic energy range of 200 GeV to 2 TeV. Since the HEB is a bi-polar machine, both clockwise (CW) and the counter-clockwise (CCW) beam aborts are required. Also, the stored beam energy of 6.55 MJ in the superconducting HEB imposes upon the full aperture requirement. In this report, we describe the abort channels in the HEB utility straight sections, aperture restrictions, mechanical interferences and solutions, kicker misfires, and a 1 TeV beam absorber

  2. 2 TeV HEB beam abort at the SSCL

    International Nuclear Information System (INIS)

    Schailey, R.; Bull, J.; Clayton, T.; Kocur, P.; Mokhov, N.V.

    1993-01-01

    The High Energy Booster (HEB) of the Superconducting Super Collider Laboratory (SSCL) will require a full aperture beam abort over a dynamic energy range of 200 GeV to 2 TeV. Since the HEB is a bi-polar machine, both clockwise (CW) and counter-clockwise (CCW) beam aborts are required. Also, the stored beam energy of 6.55 MJ in the superconducting HEB imposes the full aperture requirement. In this report, the authors describe the abort channels in the HEB utility straight sections, aperture restrictions, mechanical interferences and solutions, kicker misfires, and a 2 TeV beam absorber

  3. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    Science.gov (United States)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Fantz, U.; Franzen, P.; Minea, T.

    2014-10-01

    The development of a large area (Asource,ITER = 0.9 × 2 m2) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (Asource,BATMAN ≈ 0.32 × 0.59 m2) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child-Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion-ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated extracted currents, both ions

  4. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  5. High energy extraction of electron beam pumped KrF lasers at multi atmospheres

    NARCIS (Netherlands)

    Kleikamp, B.M.H.H.; Witteman, W.J.

    1984-01-01

    The construction is described of a simple and compact KrF laser with electron beam excitation. The electron beam is generated in a coaxial vacuum diode, driven directly by a ten-stage coaxial Marx generator. A flat MgF2 outcoupler and a suprasil roof prism, protected by an MgF2 window, proved to be

  6. Design and installation of the MSE septum system in the new LSS4 extraction channel of the SPS

    CERN Document Server

    Balhan, B; Guinand, R; Luiz, F; Rizzo, A; Weterings, W; CERN. Geneva. AB Department

    2003-01-01

    For the extraction of the beam from the Super Proton Synchrotron (SPS) to ring 2 of the Large Hadron Collider (LHC) and the CERN Neutrino to Gran Sasso (CNGS) facility, a new fast-extraction system has been installed in the long straight section LSS4 of the SPS. Besides extraction bumpers, enlarged aperture quadrupoles and extraction kicker magnets (MKE), six conventional DC septum magnets (MSE) are used. These magnets are mounted on a single mobile retractable support girder, which is motorised in order to optimise the local SPS aperture during setting up. The MSE septa are connected by a so-called plug-in system to a rigid water-cooled bus bar, which itself is powered by water-cooled cables. In order to avoid destruction of the septum magnet coils by direct impact of the extracted beam, a dilution element (TPSG) has been placed immediately upstream of the first septum coil. The whole system is kept at the required vacuum pressure by ion pumps attached to separate modules (MP). In this note we present the de...

  7. Characterization of an ion beam produced by extraction and acceleration of ions from a wire plasma source

    International Nuclear Information System (INIS)

    Gueroult, R.

    2011-09-01

    In this study we first model a DC low pressure wire plasma source and then characterize the properties of an ion gun derived from the plasma source. In order to study the properties of the derived ion gun, we develop a particle-in-cell code fitted to the modelling of the wire plasma source operation, and validate it by confrontation with the results of an experimental study. In light of the simulation results, an analysis of the wire discharge in terms of a collisional Child-Langmuir ion flow in cylindrical geometry is proposed. We interpret the mode transition as a natural reorganization of the discharge when the current is increased above a threshold value which is a function of the discharge voltage, the pressure and the inter-electrodes distance. In addition, the analysis of the energy distribution function of ions impacting the cathode demonstrates the ability to extract an ion beam of low energy spread around the discharge voltage assuming that the discharge is operated in its high pressure mode. An ion source prototype allowing the extraction and acceleration of ions from the wire source is then proposed. The experimental study of such a device confirms that, apart from a shift corresponding to the accelerating voltage, the acceleration scheme does not spread the ion velocity distribution function along the axis of the beam. It is therefore possible to produce tunable energy (0 - 5 keV) ion beams of various ionic species presenting limited energy dispersion (∼ 10 eV). The typical beam currents are about a few tens of micro-amperes, and the divergence of such a beam is on the order of one degree. A numerical modelling of the ion source is eventually conducted in order to identify potential optimizations of the concept. (author)

  8. Broadband feedback systems for the damping of coherent beam instabilities in the stretcher ring ELSA; Breitbandige Feedback-Systeme zur Daempfung kohaerenter Strahlinstabilitaeten am Stretcherring ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Andre

    2012-12-15

    At the Electron Stretcher Facility ELSA an upgrade of the internal beam current up to 200 mA would be desirable in order to increase the intensity of the extracted electron beam for the future experimental hadron physics program. However, such an upgrade is mainly limited by the excitation of coherent beam instabilities in the stretcher ring. As active counteraction, broadband bunch-by-bunch feedback-systems for the longitudinal, as well as for both transverse planes were installed. After detection of the motion of each of the 27 4 stored bunches via beam position monitors, the systems determine independent correction signals for each bunch using digital signal processors. The amplified correction signals are applied to the beam by means of broadband longitudinal and transverse kicker structures. The detailed setup, the commissioning procedure and measurement results of the damping performance of the systems are presented. In addition, the operation of the longitudinal system during the fast energy ramp of 4 GeV/s from 1.2 GeV to 3.2 GeV is investigated.

  9. Experiments on the margin of beam induced quenches a superconducting quadrupole magnet in the LHC

    CERN Document Server

    Bracco, C; Bednarek, M J; Nebot Del Busto, E; Goddard, B; Holzer, E B; Nordt, A; Sapinski, M; Schmidt, R; Solfaroli Camillocci, M; Zerlauth, M

    2012-01-01

    Protection of LHC equipment relies on a complex system of collimators to capture injected and circulating beam in case of LHC kicker magnet failures. However, for specific failures of the injection kickers, the beam can graze the injection protection collimators and induce quenches of downstream superconducting magnets. This occurred twice during 2011 operation and cannot be excluded during future operation. Tests were performed during Machine Development periods of the LHC to assess the quench margin of the quadrupole located just downstream of the last injection protection collimator in point 8. In addition to the existing Quench Protection System, a special monitoring instrumentation was installed at this magnet to detect any resistance increase below the quench limit. The correlation between the magnet and Beam Loss Monitor signals was analysed for different beam intensities and magnet currents. The results of the experiments are presented.

  10. BEAM TRANSPORT LINES FOR THE BSNS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI, J.

    2006-06-26

    This paper presents the design of two beam transport lines at the BSNS: one is the injection line from the Linac to the RCS and the other is the target line from the RCS to the target station. In the injection beam line, space charge effects, transverse halo collimation, momentum tail collimation and debunching are the main concerned topics. A new method of using triplet cells and stripping foils is used to collimate transverse halo. A long straight section is reserved for the future upgrading linac and debuncher. In the target beam line, large halo emittance, beam stability at the target due to kicker failures and beam jitters, shielding of back-scattering neutrons from the target are main concerned topics. Special bi-gap magnets will be used to reduce beam losses in the collimators in front of the target.

  11. Antigenotoxic potential of Asparagus racemosus root extract against electron beam radiation induced micronuclei formation in Swiss albino mice

    International Nuclear Information System (INIS)

    Bhandary, B. Satheesh Kumar; Sharmila, K.P.; Suchetha Kumari, N.; Bhat, Vadish S.; Shetty, Jayaram; Peter, Alex John; Jose, Jerish M.; Fernandes, Ronald

    2016-01-01

    To evaluate the antigenotoxic potential of Asparagus Racemosus Root ethanolic extract (ARE) against electron beam radiation induced micronuclei formation in Swiss albino mice. Micronucleus assay was performed in the bone marrow of Swiss albino mice according to the method of Hosseinimehr et al., 2003. The experimental animals were orally administered 200 mg/kg body weight of ARE once daily for 15 consecutive days. At the end of experimental period, the animals were euthanized and the bone marrow was collected from the femur. Control (C), Radiation control (RC) and drug control (DC) group was also maintained. The number of radiation induced Micronucleated Polychromatic Erythrocytes (MnPCE) and Micronucleated Normochromatic Erythrocytes were decreased in the ARE treated mice which was statistically significant (p<0.05) compared to radiation control group. Present findings demonstrate the antigenotoxic potential of ARE against electron beam radiation induced micronuclei formation which may be attributed to scavenging of radiation-induced free radicals

  12. How gamma-rays and electron-beam irradiation would affect the antimicrobial activity of differently processed wild mushroom extracts?

    Science.gov (United States)

    Alves, M J; Fernandes, Â; Barreira, J C M; Lourenço, I; Fernandes, D; Moura, A; Ribeiro, A R; Salgado, J; Antonio, A; Ferreira, I C F R

    2015-03-01

    The effects of irradiation (gamma-rays and electron-beams), up to 10 kGy, in the antimicrobial activity of mushroom species (Boletus edulis, Hydnum repandum, Macrolepiota procera and Russula delica) differently processed (fresh, dried, freeze) were evaluated. Clinical isolates with different resistance profiles from hospitalized patients in Local Health Unit of Mirandela, Northeast of Portugal, were used as target micro-organisms. The mushrooms antimicrobial activity did not suffer significant changes that might compromise applying irradiation as a possible mushroom conservation technology. Two kGy dose (independently of using gamma-rays or electron-beams) seemed to be the most suitable choice to irradiate mushrooms. This study provides important results in antimicrobial activity of extracts prepared from irradiated mushroom species. © 2014 The Society for Applied Microbiology.

  13. Development of a PIXE (Particle Induced X-ray Emission) analysis device using an extracted proton beam

    International Nuclear Information System (INIS)

    Saidi, A.

    1989-01-01

    The experimental device described allows the extention of the PIXE (Particle Induced X-ray Emission) method to the analysis, by means of proton beams, of solid or liquid samples, which can not be analyzed under vacuum conditions. The homogeneity of the surfaces to be analysed and elements (in the atmosphere) which absorb X-rays must be taken into account. Liquid samples do not need special care. The results show that: at high energies, the extracted beam sensibility is of the same order of magnitude as those obtained under vacuum; at low energies, the performance under vacuum conditions is better. The particles energy losses, at the exit membrane and in the outer atmosphere, decrease the X-rays production efficiency [fr

  14. A new design of the sputter type metal ion source and its characteristics of ion beam extraction

    International Nuclear Information System (INIS)

    Kim, W.; Choi, B.H.; Jin, J.T.; Jung, K.S.; Do, S.H.; Chung, K.H.

    1993-01-01

    In an attempt to get a high current metal ion beam of various solid elements including refractory metals, a gaseous duoPIGatron ion source was modified by placing a grid type cathode and a sputter target in the PIG chamber. Tungsten mesh was adopted as the cathode grid, and Ar gas was used for a support gas for sputter induction. For Cu, Fe, and Al, ion current and ratio of the metal ion were obtained at various conditions of sputtering voltage, support gas pressure, arc current, magnet current, and beam extraction voltage. Results showed that the metal current density is linearly changed with the sputtering voltage and magnet current. Ratio of the metal ion in the total current is larger at lower support gas pressure. Current densities for Al, Cu, and Fe were 4 mA/cm 2 , 5.5 mA/cm 2 , and 2 mA/cm 2 , respectively, at an arc current of 3 A, extraction voltage of 20 kV, and a sputtering voltage of 1 kV. Ratios of the metals in the extracted ion currents were 9%, 8%, and 5% for Al, Cu, and Fe, respectively

  15. Radioprotective effect of Tamarindus indica pod extract in Swiss albino mice exposed to whole body electron beam radiation

    International Nuclear Information System (INIS)

    Nandini, S.; Suchetha Kumari, N.; Ganesh Sanjeev; D'sa, Prima

    2013-01-01

    The objective of the study was to investigate the radioprotective effect of Tamarindus indica pod extract against radiation induced damage.The effect of 100 mg of hydroalcoholic extract of Tamarindus indica pod was studied in Swiss albino mice exposed to 6 Gy whole body electron beam radiation. Treatment of mice with extract for 15 days before irradiation reduced the symptoms of radiation sickness when compared with the untreated irradiated group. The irradiated animals showed an elevation in lipid peroxidation and reduction in glutathione, total antioxidants and antioxidant enzymes such as glutathione peroxidase and catalase activities. Radiation induced mice has shown micronucleus in the bone marrow cells. Treatment of mice with Tamarindus indica pod extract before irradiation caused a significant reduction in lipid peroxidation followed by significant elevation in reduced glutathione, total antioxidants, glutathione peroxidase and catalase activity. It also showed a reduction in the micronucleus formation in bone marrow cells. Results indicate that the radioprotective activity of Tamarindus indica pod extract may be due to free radical scavenging attributed as a result of increased antioxidant level in mice. (author)

  16. Emittance matching of a slow extracted beam for a rotating gantry

    Science.gov (United States)

    Fujimoto, T.; Iwata, Y.; Matsuba, S.; Fujita, T.; Sato, S.; Shirai, T.; Noda, K.

    2017-09-01

    The introduction of a heavy-ion rotating gantry is in progress at the Heavy Ion Medical Accelerator in Chiba (HIMAC) for realizing high-precision cancer therapy using heavy ions. A scanning irradiation method will be applied to this gantry course with 48-430 MeV/u beam energy. In the rotating gantry, the horizontal and vertical beam parameters are coupled by its rotation. To maintain a circular spot shape at the isocenter irrespective of the gantry angle, achieving symmetric phase space distribution of the horizontal and vertical beam at the entrance of the rotating gantry is necessary. Therefore, compensating the horizontal and vertical emittance is necessary. We consider using a thin scatterer method to compensate the emittance. After considering the optical design for emittance matching, the scatterer device is located in the high-energy beam transport line. In the beam commissioning, we confirm that the symmetrical spot shape is obtained at the isocenter without depending on the gantry angle.

  17. Analysis and calibration of the noise voltage between the damper plates used for beam diffusion during the crystal extraction experiment

    CERN Document Server

    Gyr, Marcel; Klem, J T; Louwerse, R; Milstead, I

    1995-01-01

    The analogue noise signal produced by a WAVETEK function generator, which is used to excite one of the horizontal dampers BDH 21437 or BDH 21451 for blowing up the beam during the crystal extraction MDs, has been analysed to determine its r.m.s. value as a function of the selected attenuation. The input/output characteristics of damper Nº 2 (BDH 21451) has been measured in order to calibrate the r.m.s. kicks (diffusion speed) which a particle experiences on its passage through the damper.

  18. E-beam pumping and energy extraction from large-aperture KrF amplifiers

    Science.gov (United States)

    Zvorykin, V. D.; Arlantsev, S. V.; Bakaev, V. G.; Levchenko, A. O.; Molchanov, A. G.; Ustinovskii, N. N.

    2006-01-01

    Experiments were performed at 100-J-class GARPUN KrF laser installation on optimization of e-beam pumping and amplification of 20-ns pulses in e-beam-pumped amplifiers with gain volumes of 10 × 10 × 100 cm 3 and 16 × 18 × 100 cm 3. Amplified spontaneous emission (ASE) was measured in the near field close to the output window and in the far field along the amplifier axis. Suppression of transverse ASE by amplification of a laser signal was also investigated. The experimental data were compared with numerical simulations of e-beam transport using Monte Carlo code and 3-D numerical simulations of large-aperture single-pass and double-pass KrF laser amplifiers. Finally, the verified numerical codes were applied for optimization studies of large-scale KrF amplifiers with output energy up to 10 kJ being developed for Inertial Fusion Energy application.

  19. Electronic regulation of the SPS extraction quadrupole current pulse shape for improved stability of the extracted beam

    CERN Document Server

    Carlier, E; Vossenberg, Eugène B; CERN. Geneva. SPS and LEP Division

    1996-01-01

    In order to minimise the event pile-up and therefore optimise the detection efficiency, Chorus and Nomad experiments ask for a long and rectangular spill profile. At present the fast-slow extractio n is generated by driving the beam into a quadrupolar-octopolar resonance by exciting a quadrupole magnet with a semi-trapezoidal current [1]. The trapezoidal pulse shape is obtained by dischargin g a capacitor into the magnet coils. After a few milliseconds of undamped discharge a fixed resistor is switched into the circuit. The attenuation is then higher and the sine wave continues with a lower gradient. The two gradients can be adjusted by varying the initial capacitor voltage and the time at which the resistor is switched into the circuit. A further degree of freedom in determini ng the spill shape has been added by allowing the possibility of changing the second slope value independently of the initial conditions. This task is achieved by means of a variable current sour ce added in parallel to the fixed resis...

  20. Collider and detector protection at beam accidents

    International Nuclear Information System (INIS)

    Rakhno, I.L.; Mokhov, N.V.; Drozhdin, A.I.

    2003-01-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section

  1. Collider and Detector Protection at Beam Accidents

    International Nuclear Information System (INIS)

    Rakhno, I.L.; Mokhov, N.V.; Drozhdin, A.I.

    2003-01-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section

  2. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  3. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  4. Effects of providing advance cues during a soccer penalty kick on the kicker's rate of success.

    Science.gov (United States)

    Núñez, F Javier; Oño, Antonio; Raya, Antonio; Bilbao, Alfonso

    2010-12-01

    The effect of explicitly providing goalkeeper's movement advanced cue to the kicker during a real penalty kick task was assessed. 32 expert soccer players (M age= 23.2 yr.), who were divided into four groups: an experimental group, a discovery group, a placebo group, and a control group, participated. Rate of success in the task was assessed, as well as goals, decision times, and ball flight times. Providing an advance cue significantly improved the players' rate of success relative to players without the advance cue; this difference was still present after 1 and 7 days without training. The experimental group adapted better to the time range within which the response could be effective, while the discovery group showed adaptations. Explicit instructions about the advance cues available from goalkeepers' actions before the dive during practice can improve penalty kick performance.

  5. On the modification to the SNS extracted proton beam to allow for a transmission target

    International Nuclear Information System (INIS)

    Reading, D.H.

    1979-07-01

    The present SNS proton beam line consists of a series of triplets of quadrupoles with an achromatic bend such that the protons are taken from the accelerator ring into Hall 3, down its centre line onto the target. The modification described here has been prompted by the demands of a proposed negative pion bio-medical beam line, and the adaption replaces the last three triplets QT12, QT13 and QT14 (Quadrupoles Q41 to Q49 incl.). It begins at an achromatic waist in the original design, and by the use of three triplets of greater aperture produces a further small waist for a target station before focussing the 'object' produced by this transmission target onto the SNS target. (UK)

  6. Characterising electron beam welded dissimilar metal joints to study residual stress relaxation from specimen extraction

    OpenAIRE

    Abburi Venkata, Kiranmayi; Truman, Christopher E; Smith, David J; Bhaduri, Arun K

    2016-01-01

    Nuclear power plants require dissimilar metal weld joints to connect the primary steam generator made from ferritic steel to the intermediate heat exchanger made from austenitic steel. Such joints are complex because of the mismatch in the thermal and the mechanical properties of the materials used in the joint. Electron Beam (EB) welding is emerging as a promising technique to manufacture dissimilar joints providing a great many advantages over conventional welding techniques, in terms of lo...

  7. Signal shape registration in the JINR synchrophasotron slowly extracted beam parameter control system

    International Nuclear Information System (INIS)

    Volkov, V.I.; Kulikov, I.I.; Romanov, S.V.

    1982-01-01

    Signal shape registration in the JINR synchrophasotron slowly estracted beam parameter control system on-line with the ES-1010 computer is described. 32 input signals can be connected to the registrator. The maximum measurement rate of signal shape registration is about 38 kHz. The registrator consists of 32-channel analog multiplexer, 10-bit analog-to-digital converter, 1024-word buffer memory and control circuits. For information representation the colour TV monitor is used

  8. Extraction of electron beam dose parameters from EBT2 film data scored in a mini phantom.

    Science.gov (United States)

    O'Reilly, Dedri; Smit, Cobus J L; du Plessis, Freek C P

    2013-09-01

    Quality assurance of medical linear accelerators includes dosimetric parameter measurement of therapeutic electron beams e.g. relative dose at a depth of 80% (R₈₀). This parameter must be within a tolerance of 0.2 cm of the declared value. Cumbersome water tank measurements can be regarded as a benchmark to measure electron depth dose curves. A mini-phantom was designed and built, in which a strip of GAFCHROMIC® EBT2 film could be encased tightly for electron beam depth dose measurement. Depth dose data were measured for an ELEKTA Sl25 MLC, ELEKTA Precise, and ELEKTA Synergy (Elekta Oncology Systems, Crawley, UK) machines. The electron beam energy range was between 4 and 22 MeV among the machines. A 10 × 10 cm² electron applicator with 95 cm source-surface-distance was used on all the machines. 24 h after irradiation, the EBT2 film strips were scanned on Canon CanoScan N670U scanner. Afterwards, the data were analysed with in-house developed software that entailed optical density to dose conversion, and optimal fitting of the PDD data to de-noise the raw data. From the PDD data R₈₀ values were solved for and compared with acceptance values. A series of tests were also carried out to validate the use of the scanner for film Dosimetry. These tests are presented in this study. It was found that this method of R₈₀ evaluation was reliable with good agreement with benchmark water tank measurements using a commercial parallel plate ionization chamber as the radiation detector. The EBT2 film data yielded R₈₀ values that were on average 0.06 cm different from benchmark water tank measured R₈₀ values.

  9. Influence of magnification on extraction efficiency in laser resonators with non-overlapping beams

    International Nuclear Information System (INIS)

    González, M G; Garea, M T; Santiago, G D; Peuriot, A L

    2015-01-01

    The magnification and the Fresnel number determine the mode profile and losses in a bare unstable resonator. Upon inclusion of gain, both the beam pattern and the reflectivity are changed, more than in a stable cavity, because the counter-propagation intensities differ spatially and saturate the amplifier in a way that alters the mode profile, the reflectivity and the conditions of optimal operation. In this paper we present a numerical study of two types of cavities and compute the mode profile and losses in presence of an amplifier that saturates homogeneously. We compare these results with experimental data obtained on a TEA CO 2 laser. (paper)

  10. Intensity measurements of slowly extracted heavy ion beams from the SIS

    International Nuclear Information System (INIS)

    Heeg, P.; Peters, A.; Strehl, P.

    1994-11-01

    The paper reports about performance tests of newly designed Secondary Electron Monitors (SEM), Ionization Chambers (IC) and Multi Diode Counters (MDC). Especially the linearity of the detectors with respect to the specific energy loss will be discussed. Calibration has been performed by means of scintillation particle counters at the lower end of the intensity region. The status of the Cryogenic Current Comparator (CCC), which is provided for absolute measurements and calibration of detectors above some nA of beam current is reported, too. (orig.)

  11. Production of zero energy radioactive beams through extraction across superfluid helium surface

    NARCIS (Netherlands)

    Takahashi, N; Huang, WX; Gloos, K; Dendooven, P; Pekola, JP; Aysto, J

    A radioactive Ra-223 source was immersed in superfluid helium at 1.2-1.7 K. Electric fields transported recoiled Rn-219 ions in the form of snowballs to the surface and further extracted them across the surface. The ions were focussed onto an aluminium foil and alpha particle spectra were taken with

  12. Modeling of negative ion extraction from a magnetized plasma source: Derivation of scaling laws and description of the origins of aberrations in the ion beam

    Science.gov (United States)

    Fubiani, G.; Garrigues, L.; Boeuf, J. P.

    2018-02-01

    We model the extraction of negative ions from a high brightness high power magnetized negative ion source. The model is a Particle-In-Cell (PIC) algorithm with Monte-Carlo Collisions. The negative ions are generated only on the plasma grid surface (which separates the plasma from the electrostatic accelerator downstream). The scope of this work is to derive scaling laws for the negative ion beam properties versus the extraction voltage (potential of the first grid of the accelerator) and plasma density and investigate the origins of aberrations on the ion beam. We show that a given value of the negative ion beam perveance correlates rather well with the beam profile on the extraction grid independent of the simulated plasma density. Furthermore, the extracted beam current may be scaled to any value of the plasma density. The scaling factor must be derived numerically but the overall gain of computational cost compared to performing a PIC simulation at the real plasma density is significant. Aberrations appear for a meniscus curvature radius of the order of the radius of the grid aperture. These aberrations cannot be cancelled out by switching to a chamfered grid aperture (as in the case of positive ions).

  13. I. The theory of aberrations of quadrupole focusing arrays. II. Ion optical design of high quality extracted synchrotron beams with application to the bevatron

    Energy Technology Data Exchange (ETDEWEB)

    Meads, Jr, Philip Francis [Univ. of California, Berkeley, CA (United States). Applied Science and Technology

    1963-05-15

    In Part One they formulate in a general way the problem of analyzing and evaluating the aberrations of quadrupole magnet beam systems, and of characterizing the shapes and other properties of the beam envelopes in the neighborhood of foci. They consider all aberrations, including those due to misalignments and faulty construction, through third order in small parameters, for quadrupole beam systems. One result of this study is the development of analytic and numerical techniques for treating these aberrations, yielding useful expressions for the comparison of the aberrations of different beam systems. A second result of this study is a comprehensive digital computer program that determines the magnitude and nature of the aberrations of such beam systems. The code, using linear programming techniques, will adjust the parameters of a beam system to obtain specified optical properties and to reduce the magnitude of aberrations that limit the performance of that system. They examine numerically, in detail, the aberrations of two typical beam systems. In Part Two, they examine the problem of extracting the proton beam from a synchrotron of 'H' type magnet construction. They describe the optical studies that resulted in the design of an external beam from the Bevatron that is optimized with respect to linear, dispersive, and aberration properties and that uses beam elements of conservative design. The design of the beam is the result of the collaboration of many people representing several disciplines. They describe the digital computer programs developed to carry out detailed orbit studies which were required because of the existence of large second order aberrations in the beam.

  14. Statistical signal processing techniques for coherent transversal beam dynamics in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Alhumaidi, Mouhammad

    2015-03-04

    Transversal coherent beam oscillations can occur in synchrotrons directly after injection due to errors in position and angle, which stem from inaccurate injection kicker reactions. Furthermore, the demand for higher beam intensities is always increasing in particle accelerators. The wake fields generated by the traveling particles will be increased by increasing the beam intensity. This leads to a stronger interaction between the beam and the different accelerator components, which increases the potential of coherent instabilities. Thus, undesired beam oscillations will occur when the natural damping is not enough to attenuate the oscillations generated by the coherent beam-accelerator interactions. The instabilities and oscillations can be either in transversal or longitudinal direction. In this work we are concerned with transversal beam oscillations only. In normal operation, transversal beam oscillations are undesired since they lead to beam quality deterioration and emittance blow up caused by the decoherence of the oscillating beam. This decoherence is caused by the tune spread of the beam particles. The emittance blow up reduces the luminosity of the beam, and thus the collision quality. Therefore, beam oscillations must be suppressed in order to maintain high beam quality during acceleration. A powerful way to mitigate coherent instabilities is to employ a feedback system. A Transversal Feedback System (TFS) senses instabilities of the beam by means of Pickups (PUs), and acts back on the beam through actuators, called kickers. In this thesis, a novel concept to use multiple PUs for estimating the beam displacement at the position with 90 phase advance before the kicker is proposed. The estimated values should be the driving feedback signal. The signals from the different PUs are delayed such that they correspond to the same bunch. Subsequently, a weighted sum of the delayed signals is suggested as an estimator of the feedback correction signal. The

  15. The relationship between visible light emission and species fraction of the hydrogen ion beams extracted from 2.45 GHz microwave discharge

    CERN Document Server

    Cortázar, O D; Tarvainen, O; Kalvas, T; Koivisto, H

    2015-01-01

    The relationship between Balmer-α and Fulcher-band emissions with extracted H +, H+2 , and H+3 ions is demonstrated for a 2.45 GHz microwave discharge. Ion mass spectra and optical measurements of Balmer-α and Fulcher-band emissions have been obtained with a Wien Filter having an optical view-port on the plasma chamber axis. The beam of approximately 1 mA is analyzed for different plasma conditions simultaneously with the measurement of light emissions both with temporal resolution. The use of visible light emissions as a valuable diagnostic tool for monitoring the species fraction of the extracted beams is proposed.

  16. Protective effect of Asparagus racemosus root extract against lethal total - body electron beam radiation induced damage in Swiss albino mice

    International Nuclear Information System (INIS)

    Sharmila, K.P.; Bhandary, B. Satheesh Kumar; Suchetha Kumari, N.; Bhat, Vadish S.; Shetty, Jayaram; Peter, Alex John; Jose, Jerish M.; Fernandes, Ronald

    2016-01-01

    To investigate the protective effect of Asparagus Racemosus Root ethanolic extract (ARE) in Swiss albino mice against acute lethal total - body Electron beam irradiation. Swiss Albino mice were used for the assessment of radiation induced sickness and 30 day survival analysis. Survival studies were determined using the Kaplan-Meier survival curves. The maximum survival was observed in the experimental mice pretreated with 200 mg/kg.b.wt. of ARE which also reduced the radiation sickness characteristics. This dose was considered as an optimal dose for radioprotection. Treatment of mice with ARE before irradiation delayed the onset of mortality as compared with the untreated irradiated controls. Present findings demonstrate the potential of ARE in mitigating radiation-induced mortality, which may be attributed to its free radical scavenging and increased antioxidant potential

  17. Observation and comparative analysis of proton beam extraction or collimation by different planar channels of a bent crystal

    Directory of Open Access Journals (Sweden)

    A. G. Afonin

    2012-08-01

    Full Text Available In the experiment the efficiency of the 50 GeV proton beam extraction from accelerator by means of a bent crystal as a function of crystal orientation was measured. This allowed one to make a comparative analysis of efficiencies of high-energy protons deflection by different crystal atomic planes with different values of the electrostatic field. The results of simulation of high-energy protons deflection by means of crystal atomic planes and crystal atomic strings are also presented in the article. In the case of planar channeling the simulation shows a good agreement with experimental data. In the case of proton motion in the regime of stochastic scattering by bent atomic strings the simulation shows that angles of particle deflection are much greater than the critical channeling angle.

  18. Regenerative Needs Following Alveolar Ridge Preservation Procedures in Compromised and Noncompromised Extraction Sockets: A Cone Beam Computed Tomography Study.

    Science.gov (United States)

    Koutouzis, Theofilos; Lipton, David

    2016-01-01

    The aim of this study was to evaluate the necessity for additional regenerative procedures following healing of compromised and noncompromised extraction sockets with alveolar ridge preservation procedures through the use of virtual implant imaging software. The cohort was comprised of 87 consecutive patients subjected to a single maxillary tooth extraction with an alveolar ridge preservation procedure for subsequent implant placement. Patients were divided into two main groups based on the integrity of the buccal bone plate following teeth extraction. Patients in the compromised socket (CS) group (n = 52) had partial or complete buccal bone plate loss, and patients in the noncompromised socket (NCS) group (n = 35) exhibited no bone loss of their socket walls following tooth extraction. Following 4 to 6 months of healing, all patients had a cone beam computed tomography (CBCT) study. Root-formed implants were placed virtually in an ideal prosthetic position. The number of implants per group and location (anterior, premolar, molar) exhibiting exposed buccal implant surface was calculated. In the CS group, 5 out of 19 anterior implants (26.3%), 4 out of 14 premolar implants (28.5%), and 7 out of 19 molar implants (36.8%) had exposed buccal surfaces. In the NCS group, 4 out of 9 anterior implants (44.4%), 2 out of 9 premolar implants (22.2%), and 4 out of 17 molar implants (23.5%) had exposed buccal surfaces. There were no statistically significant differences for intragroup and intergroup comparisons (χ² test, P > .05). This study failed to find statistically significant differences in the frequency of implants with exposed buccal surfaces placed virtually, following treatment of compromised and noncompromised sockets. A high proportion (22% to 44%) of sites had implants that potentially needed additional regenerative procedures.

  19. A Novel Eddy Current Septum Magnet for SPS Extraction towards LHC and CNGS

    CERN Document Server

    Schröder, G H; Carlier, E; Dieperink, J H; Ducimetière, L; Goddard, B; Lázár, C; Mayer, M; Vossenberg, Eugène B; Weterings, W

    2000-01-01

    A new East Fast-Extraction System is under construction in the SPS, to supply particles with a maximum batch length of 7.8 us and 10.5 us to the LHC and to CNGS (CERN Neutrino to Gran Sasso), respectively. The extraction septum magnets actually used at the SPS have been designed for slow extraction over several seconds, have large cooling and electrical power demands and need frequently maintenance in a high radiation environment. A fast system of only 250 us pulse duration has therefore been developed, using a half-sine excitation pulse with a superimposed third harmonic. The short pulse duration requires very thin magnetic yoke laminations, which can not easily be stamped and stacked. Profiting from a development for the LHC beam dump kicker magnets, the yoke is therefore built-up from tape-wound cylindrical cores, employing 50 um thick Si-steel tape. Thirty two cores are stacked longitudinally to produce a yoke of 3.2 meter length. The aperture is cut radial into each cylinder. The cores are radial compres...

  20. The Septum Magnet System of the New Fast Extraction Channel of the SPS at CERN

    CERN Document Server

    Balhan, B; Rizzo, A; Weterings, W

    2004-01-01

    In the Long Straight Section LSS4 of the Super Proton Synchrotron (SPS) at CERN, a new fast extraction system has been installed in order to extract the beam to ring 2 of the Large Hadron Collider (LHC) and the CERN Neutrino to Gran Sasso facility (CNGS). The system consists of horizontal closed orbit bumper magnets, extraction kicker magnets, enlarged aperture quadrupoles and six conventional DC electromagnetic septum magnets (MSE). A protection element (TPSG) has been placed immediately upstream of the first septum coil. The septum magnets and TPSG are mounted on a single mobile retractable support girder. The MSE septa are connected by a so-called plug-in system to a rigid water-cooled bus-bar, powered by water-cooled cables. The whole system is kept at the required vacuum pressure by ion pumps attached to separate pumping modules. In this note we present the design features and parameters of the MSE septum magnets, describe the function of the related main equipment elements, briefly report on the control...

  1. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    Science.gov (United States)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  2. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2015-02-01

    Full Text Available The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC. However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  3. SLIM (SEM for Low Interception Monitoring) An Innovative Non-Destructive Beam Monitor for the Extraction Lines of a Hadrontherapy Centre

    CERN Document Server

    Badano, L; Pezzetta, M; Molinari, G

    2003-01-01

    Real time monitoring of hadrontherapy beam intensity and profile is a critical issue for the optimisation of the dose delivery to the patient carcinogenic tissue, the patient safety and the operation of the accelerator complex. For this purpose an innovative beam monitor, based on the secondary emission of electrons by a nonperturbative, sub-micron thick Al target placed directly in the extracted beam path, is being proposed. The secondary electrons, accelerated by an electrostatics focusing system, are detected by a monolithic silicon position sensitive sensor, which provides the beam intensity and its position with a precision of 1 mm at 10 kHz frame rate. The conceptual design and the engineering study optimised for hadrontherapy, together with the results of the preliminary tests of the first system prototype, will be presented.

  4. LHC Abort Gap Filling by Proton Beam

    CERN Document Server

    Fartoukh, Stéphane David; Shaposhnikova, Elena

    2004-01-01

    Safe operation of the LHC beam dump relies on the possibility of firing the abort kicker at any moment during beam operation. One of the necessary conditions for this is that the number of particles in the abort gap should be below some critical level defined by quench limits. Various scenarios can lead to particles filling the abort gap. Time scales associated with these scenarios are estimated for injection energy and also coast where synchrotron radiation losses are not negligible for uncaptured particle motion. Two cases are considered, with RF on and RF off. The equilibrium distribution of lost particles in the abort gap defines the requirements for maximum tolerable relative loss rate and as a consequence the minimum acceptable longitudinal lifetime of the proton beam in collision.

  5. Influence of Electron Beam Irradiation on Peptide of Haruan Traditional Extract (HTE) for Oral Drug Delivery

    International Nuclear Information System (INIS)

    Ibrahim Ijang

    2015-01-01

    Haruan or Channa striatus is source of protein, Haruan extract is well known in the region for having a medicinal quality and widely consumed. It is great advantage if this product could be administered by oral rather than injection because oral route of drug delivery is still preferred by the vast majority of patients. However protein and peptides can be denatured or degraded by conditions included the acidic pH of the stomach and presence of endogenous enzymes. In order to protect or prevent digestion and degradation of the protein in the stomach and to ensure the protein reach to gastro intestinal (GI) tract, CMS nano gel system was developed using electron irradiation method. However stability of HTE toward radiation needed to be ensured before being used for the next level. In this study, the HTE was radiated with electron radiation. Its stability was analysed in term of physical aspect by looking at the colour difference, melting point by using Differential Scanning Calorimetry (DSC) and in terms of chemical aspect which include molecular bonds by using Fourier Transform Infrared (FTIR). The results of this study were that no apparent colour difference was seen on the HTE before and after irradiation. Those are supported by FTIR and DSC analysis results that showed that there were no change of molecular bonds and melting point, compared between no irradiation and irradiation HTE during electron irradiation up to 30 KGy. Statistically the test showed no significant difference at p<0.005 within melting temperatures. (author)

  6. A novel technique for injecting and extracting beams in a circular hadron accelerator without using septum magnets

    CERN Document Server

    AUTHOR|(SzGeCERN)395725

    2015-01-01

    With a few exceptions, all on-axis injection and extraction schemes implemented in circular particle accelerators, synchrotrons, and storage rings, make use of magnetic and electrostatic septa with systems of slow-pulsing dipoles acting on tens of thousands of turns and fast-pulsing dipoles on just a few. The dipoles create a closed orbit deformation around the septa, usually referred to as an orbit bump. A new approach is presented which obviates the need for the septum deflectors. Fastpulsing elements are still required, but their strength can be minimized by choosing appropriate local accelerator optics. This technique should increase the beam clearance and reduce the usually high radiation levels found around the septa and also reduce the machine impedance introduced by the fast-pulsing dipoles. The basis of the technique is the creation of stable islands around stable fixed points in horizontal phase space. The trajectories of these islands may then be adjusted to match the position and angle of the inco...

  7. Characteristic findings on panoramic radiography and cone-beam CT to predict paresthesia after extraction of impacted third molar.

    Science.gov (United States)

    Harada, Nana; Beloor Vasudeva, Subash; Matsuda, Yukiko; Seki, Kenji; Kapila, Rishabh; Ishikawa, Noboru; Okano, Tomohiro; Sano, Tsukasa

    2015-01-01

    The purpose of this study was to compare findings on the relationship between impacted molar roots and the mandibular canal in panoramic and three-dimensional cone-beam CT (CBCT) images to identify those that indicated risk of postoperative paresthesia. The relationship between impacted molars and the mandibular canal was first classified using panoramic images. Only patients in whom the molar roots were either in contact with or superimposed on the canal were evaluated using CBCT. Of 466 patients examined using both panoramic and CBCT images, 280 underwent surgical extraction of an impacted molar, and 15 of these (5%) reported postoperative paresthesia. The spatial relationship between the impacted third molar root and the mandibular canal was determined by examining para-sagittal sections (lingual, buccal, inter-radicular, inferior, and combinations) obtained from the canal to the molar root and establishing the proximity of the canal to the molar root (in contact with or without loss of the cortical border and separate). The results revealed that darkening of the roots with interruption of the mandibular canal on panoramic radiographs and the inter-radicular position of the canal in CBCT images were characteristic findings indicative of risk of postoperative paresthesia. These results suggest that careful surgical intervention is required in patients with the above characteristics.

  8. The effect of electron range on electron beam induced current collection and a simple method to extract an electron range for any generation function

    International Nuclear Information System (INIS)

    Lahreche, A.; Beggah, Y.; Corkish, R.

    2011-01-01

    The effect of electron range on electron beam induced current (EBIC) is demonstrated and the problem of the choice of the optimal electron ranges to use with simple uniform and point generation function models is resolved by proposing a method to extract an electron range-energy relationship (ERER). The results show that the use of these extracted electron ranges remove the previous disagreement between the EBIC curves computed with simple forms of generation model and those based on a more realistic generation model. The impact of these extracted electron ranges on the extraction of diffusion length, surface recombination velocity and EBIC contrast of defects is discussed. It is also demonstrated that, for the case of uniform generation, the computed EBIC current is independent of the assumed shape of the generation volume. -- Highlights: → Effect of electron ranges on modeling electron beam induced current is shown. → A method to extract an electron range for simple form of generation is proposed. → For uniform generation the EBIC current is independent of the choice of it shape. → Uses of the extracted electron ranges remove some existing literature ambiguity.

  9. SLIM (secondary emission monitor for low interception monitoring) an innovative non-destructive beam monitor for the extraction lines of a hadrontherapy centre

    International Nuclear Information System (INIS)

    Gibson, P.N.; Holzwarth, U.; Abbas, K.

    2005-01-01

    Real time monitoring of hadron therapy beam intensity and profile is a critical issue for the optimisation of dose delivery to carcinogenic tissue, patient safety and operation of the accelerator complex. For this purpose an innovative beam monitor, SLIM (Secondary electron emission for Low Interception Monitoring) is being developed in the framework of the EC-funded SUCIMA (Silicon Ultra-fast Cameras for electrons and gamma sources In Medical Application) project. The detector system is based on the secondary emission of electrons by a non-perturbative, sub-micron thick Al foil placed directly in the extracted beam path. The secondary electrons, accelerated by an electrostatic focusing system, are detected by a monolithic silicon position-sensitive sensor, which provides the beam intensity and its position with a precision of 1 mm at 10 kHz frame rate. The results of the laboratory tests of the first system prototype with thermoionic electrons emitted from a hot Tungsten wire are presented together with the measurements performed on a low intensity hadron beam at the Cyclotron of the Joint Research Centre in Ispra. (author)

  10. Effect of a metallized chamber upon the field response of a kicker magnet: simulations results and analytical calculations

    CERN Document Server

    Barnes, M J; Atanasov, M G; Kramer, T; Stadlbauer, T

    2012-01-01

    Metallized racetrack vacuum chambers will be used in the pulsed magnets of the Austrian cancer therapy and research facility, MedAustron. It is important that the metallization does not unduly degrade field rise and fall times or the flattop of the field pulse in the kicker magnets. This was of particular concern for a tune kicker magnet, which has a specified rise and fall time of 100 ns. The impact of the metallization, upon the transient field response, has been studied using Finite Element Method (FEM) simulations: the dependency of the field response to the metallization thickness and resistivity are presented in this paper and formulae for the field response, for a ramped transient excitation current, are given. An equivalent circuit for the metallization allows the effect of an arbitrary excitation to be studied, with a circuit simulator, and the circuit optimized. Furthermore, results of simulations of the effect of a magnetic brazing collar, located between the ceramic vacuum chamber and flange, of t...

  11. A waveguide overloaded cavity as longitudinal kicker for the DA{Phi}NE bunch-by-bunch feedback system

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, A.; Boni, R.; Ghigo, A.; Marcellini, F.; Serio, M.; Zobov, M. [Instituto Nazionale de Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1996-08-01

    The multibunch operation of DA{Phi}NE calls for a very efficient feedback system to damp the coupled-bunch longitudinal instabilities. A collaboration program among SLAC, LBL and LNF laboratories on this subject led to the development of a time domain, digital system based on digital signal processors that has been already successfully tested at ALS. The feedback chain ends with the longitudinal kicker, an electromagnetic structure capable of transferring the proper energy correction to each bunch. A cavity kicker for the DA{Phi}NE bunch-by-bunch longitudinal feedback system based on a pill-box loaded by six waveguides has been designed and a full-scale aluminium prototype has been fabricated at LNF. Both simulations and measurements have shown a peak shunt impedance of about 750 ohm and a bandwidth of about 220 MHz. The large shunt impedance allows to economize on the costly feedback power. Moreover, the damping waveguides drastically reduce the device HOM longitudinal and transverse impedances. One cavity pre ring will be sufficient to operate the machine up to 30 bunches while a second device per ring together with a feedback power improvement will be necessary to reach the ultimate current. (G.T.)

  12. Beam diagnostics

    CERN Document Server

    Raich, U

    2008-01-01

    Most beam measurements are based on the electro-magnetic interaction of fields induced by the beam with their environment. Beam current transformers as well as beam position monitors are based on this principle. The signals induced in the sensors must be amplified and shaped before they are converted into numerical values. These values are further treated numerically in order to extract meaningful machine parameter measurements. The lecture introduces the architecture of an instrument and shows where in the treatment chain digital signal analysis can be introduced. Then the use of digital signal processing is presented using tune measurements, orbit and trajectory measurements as well as beam loss detection and longitudinal phase space tomography as examples. The hardware as well as the treatment algorithms and their implementation on Digital Signal Processors (DSPs) or in Field Programmable Gate Arrays (FPGAs) are presented.

  13. OPERATIONAL EXPERIENCE WITH BEAM ABORT SYSTEM FOR SUPERCONDUCTING UNDULATOR QUENCH MITIGATION*

    Energy Technology Data Exchange (ETDEWEB)

    Harkay, Katherine C.; Dooling, Jeffrey C.; Sajaev, Vadim; Wang, Ju

    2017-06-25

    A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance of the abort system—kick amplitudes and loss distributions of all bunches—was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss monitor (BLM) diagnostics described elsewhere [1,2]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.

  14. Using the Orbit Tracking Code Z3CYCLONE to Predict the Beam Produced by a Cold Cathode PIG Ion Source for Cyclotrons under DC Extraction

    CERN Document Server

    Forringer, Edward

    2005-01-01

    Experimental measurements of the emittance and luminosity of beams produced by a cold-cathode Phillips Ionization Guage (PIG) ion source for cyclotrons under dc extraction are reviewed. (The source being studied is of the same style as ones that will be used in a series of 250 MeV proton cyclotrons being constructed for cancer therapy by ACCEL Inst, Gmbh, of Bergisch Gladbach, Germany.) The concepts of 'plasma boundary' and 'plasma temperature' are presented as a useful set of parameters for describing the initial conditions used in computational orbit tracking. Experimental results for r-pr and z-pz emittance are compared to predictions from the MSU orbit tracking code Z3CYCLONE with results indicating that the code is able to predict the beam produced by these ion sources with adequate accuracy such that construction of actual cyclotrons can proceed with reasonably prudent confidence that the cyclotron will perform as predicted.

  15. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  16. A real time status monitor for transistor bank driver power limit resistor in boost injection kicker power supply

    Energy Technology Data Exchange (ETDEWEB)

    Mi, J.; Tan, Y.; Zhang, W.

    2011-03-28

    For years suffering of Booster Injection Kicker transistor bank driver regulator troubleshooting, a new real time monitor system has been developed. A simple and floating circuit has been designed and tested. This circuit monitor system can monitor the driver regulator power limit resistor status in real time and warn machine operator if the power limit resistor changes values. This paper will mainly introduce the power supply and the new designed monitoring system. This real time resistor monitor circuit shows a useful method to monitor some critical parts in the booster pulse power supply. After two years accelerator operation, it shows that this monitor works well. Previously, we spent a lot of time in booster machine trouble shooting. We will reinstall all 4 PCB into Euro Card Standard Chassis when the power supply system will be updated.

  17. V123 Beam Synchronous Encoder Module

    International Nuclear Information System (INIS)

    Kerner, T.; Conkling, C. R.; Oerter, B.

    1999-01-01

    The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiberoptic and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring

  18. Power combiners/dividers for loop pickup and kicker arrays for FNAL stochastic cooling rings

    International Nuclear Information System (INIS)

    Johnson, J.K.; Nemetz, R.

    1985-05-01

    The anti-proton accumulator and debuncher at FNAL will use stochastic methods to ''cool'' the beam. Pairs of quarter-wavelength directional-coupler loops are used to detect and kick the beam. The loops are copper plates which are flush with the upper and lower wall of a rectangular beam pipe. The plates, when surrounded by a properly sized pocket, form a 100-ohm transmission-line directional coupler. As the beam passes, a signal which gives position and time information, is induced in the plates. But, because the signal levels are low (<.5 picowatts per pair), a power combiner (usually several primary combiners feeding a secondary combiner) is used to combine the outputs of many loops. Subsequently, the combined signal is amplified, filtered and then fed into a divider, (that is, a combiner operating in reverse). The divider distributes the signal into a different set of loops which modify (kick) the beam's position. Since the loop couplers are arranged linearly, in arrays of various lengths, combiners also provide a convenient method of reducing the number of vacuum feedthroughs and preamplifiers and their related costs in performance and dollars. In this note we describe various stripline combiner systems that add the outputs of 4, 8, 16 or 32 loops

  19. Application of Chebyshev Formalism to Identify Nonlinear Magnetic Field Components in Beam Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Spata, Michael [Old Dominion Univ., Norfolk, VA (United States)

    2012-08-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the frequencies that were applied to the kickers with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. Chebyshev polynomials and their unique properties allow one to directly quantify the magnitude of the nonlinearity with the minimum error. A calibration standard was developed using one of the sextupole magnets in a CEBAF beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the magnets in the Transport Recombiner beamline to measure their multipole content as a function of transverse position within the magnets.

  20. Liquid chromatography-particle beam electron ionization mass spectrometry method for analysis of botanical extracts: evaluation of ephedrine alkaloids in standard reference materials.

    Science.gov (United States)

    Castro, Joaudimir; Krishna, M V Balarama; Marcus, R Kenneth

    2010-01-01

    The preliminary validation of a high-performance liquid chromatography particle beam mass spectrometry method (HPLC-PB/MS) with electron impact ionization source for analysis of botanical extracts is presented. The LC-PB/MS system was evaluated for the analysis of ephedrine alkaloids using ephedra-containing National Institute of Standards and Technology dietary supplement standard reference materials (SRMs) 3241 Ephedra Sinica Stapf Native Extract and 3242 Ephedra Sinica Stapf Commercial Extract. The ephedrine alkaloids were separated by reversed-phase chromatography using a phenyl column at room temperature. A linear gradient method with a mobile phase composition varying from 5:95 [MeOH:0.1% trifluoroacetic acid (TFA) in water] to 20:80 (MeOH:0.1% TFA in water) at a flow rate of 1.0 ml/min, with an analysis time of less than 20 min, was used. The source block temperature was evaluated to determine the optimal operating conditions by monitoring the intensities and fragmentation patterns of the ephedrine alkaloids. Ephedrine and N-methylephedrine were taken as a representative of the test alkaloids. The LODs on the sub-nanogram level were achieved, with ephedrine, pseudoephedrine, and methylephedrine in the SRMs quantified by a standard addition method with recoveries of > or = 86% and RSDs of < or = 14% (n = 3).

  1. Study of X-Ray and $\\gamma$-Ray Spectra from Antiprotonic Atoms at the Slowly Extracted Antiproton Beam of LEAR

    CERN Multimedia

    2002-01-01

    This experiment will study the X-ray spectra of antiprotonic atoms and the $\\gamma$ spectra of residual nuclei after the antiproton absorption. We intend to begin with measurements on selected isotopically pure targets. Strong interaction effects, the antiproton absorption and the atomic cascade are analysed through the measurement of energies, lineshapes, relative and absolute intensities of all observable lines. The experiments are continued to determine st in resolved fine structure levels and in different isotopes of the same element. Coincidence techniques may be applied. All components of the experimental set-up are already existing from previous experiments and we could begin the measurements with any slowly extracted beam of low energy at LEAR.

  2. Digital transverse beam dampers from the Brookhaven AGS

    International Nuclear Information System (INIS)

    Smith, G.A.; Castillo, V.; Roser, T.; Van Asselt, W.; Witkover, R.; Wong, V.

    1995-01-01

    A wide band, digital damper system has been developed and is in use at the Brookhaven Alternating Gradient Synchrotron (AGS). The system consists of vertical and horizontal capacitive pickups, analog and digital processing electronics, four 500 Watt wide band power amplifiers, and two pairs of strip line beam kickers. The system is currently used to damp transverse coherent instabilities and injection errors, in both planes, for protons and all species of heavy ions. This paper discusses the system design and operation, particularly with regard to stabilization of the high intensity proton beam. The analog and digital signal processing techniques used to achieve optimum results are discussed. Operational data showing the effect of the damping are presented

  3. Ion Accelerator Merges Several Beams

    Science.gov (United States)

    Aston, G.

    1984-01-01

    Intense ion beam formed by merging multiple ion beamlets into one concentrated beam. Beamlet holes in graphite screen and focusing grids arranged in hexagonal pattern. Merged beam passes through single hole in each of aluminum accelerator and decelerator grids. Ion extraction efficiency, beam intensity, and focusing improved.

  4. Beam Techniques - Beam Control and Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  5. Selective generation and extraction of low emittance electrons from plasmas: A new concept for E-beam cathodes

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1991-01-01

    It is shown that hollow cathode discharges can operate in a mode characterized by a two-component electron energy distribution: bulk electrons with a thermal distribution with a temperature of a few electron volts, and a component of fast electrons with an energy of about 30 eV and a thermal spread of about 0.1 eV. Measurements of both parallel and perpendicular energy spreads confirm the existence of fast, low energy spread electrons. Selective extraction of these electrons can form the basis of a high current, high brightness electron gun which could be well suited for EBIS applications. 8 refs., 4 figs., 1 tab

  6. 3D Terahertz Beam Profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Jepsen, Peter Uhd

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...... profiles. For the two-color air-plasma, we measure a conical beam profile that is focused to a bell-shape at the beam waist, whereas we observe a Gaussian beam profile for the THz beam generated from the LiNbO3 crystal....

  7. A Computer Program to Measure the Energy Spread of Multi-turn Beam in the Fermilab Booster at Injection

    Science.gov (United States)

    Nelson, Jovan; Bhat, Chandrashekhara; Hendricks, Brian

    2016-03-01

    We have developed a computer program interfaced with the ACNET environment for Fermilab accelerators in order to measure the energy spread of the injected proton beam from the LINAC, at the energy of 400 MeV. This program allows the user to configure a digitizing oscilloscope and timing devices to optimize data acquisition from a resistive wall current monitor. When the program is launched, it secures control of the oscilloscope and then generates a ``one-shot'' timeline which initiates injection into the Booster. Once this is complete, a kicker is set to create a notch in the beam and the line charge distribution data is collected by the oscilloscope. The program then analyzes this data in order to obtain notch width, beam revolution period, and beam energy spread. This allows the program to be a possible useful diagnostic tool for the beginning of the acceleration cycle for the proton beam. Thank you to the SIST program at Fermilab.

  8. IKOR - An isochronous pulse compressor ring for proton beams

    International Nuclear Information System (INIS)

    Schaffer, G.

    1981-06-01

    This report contains the results of a study carried out for an isochronous compressor ring IKOR which compresses the 500 μs linac macropulses into pulses of 0.68 μs length. Its basic component is a ring magnet with alternating gradient and separated functions. Due to the isochronous operation, an rf system can be avoided which otherwise would be necessary in order to maintain a void in the circulating beam for the purpose of ejection. Injection is performed by charge exchange. The H - beam of the accelerator is first converted into a H 0 beam by stripping off one electron by a high gradient magnet placed in the transfer channel. Subsequently, the beam is converted into a proton beam by removing the remaining electron through a stripping foil in the ring. IKOR will be filled in 658 turns. Immediately after filling, the beam is ejected in a single turn via a kicker and a septum magnet and is transported to the spallation target. Because of the high intensity of 2.7 x 10 14 protons per pulse and, secondly, due to the high repetition rate of 100 Hz, beam dynamics and radiation protection aspects dominate the design and are, for this reason, treated in detail. (orig.)

  9. Portable test bench for the studies concerning ion sources and ion beam extraction and focusing systems; Banco de pruebas portatil para el estudio de fuentes de iones y de la extraccion y enfoque del haz de iones

    Energy Technology Data Exchange (ETDEWEB)

    Cordero Lopez, F.

    1961-07-01

    A portable test bench is described, which was designed to check ion sources, ion beam extraction and focusing systems before its use in a 600 KeV Cockcroft-Walton accelerator. The vacuum possibilities of the system are specially analyzed in connection with its particular use. The whole can be considered as a portable accelerator of low energy (50 keV). (Author)

  10. A Kicker Pulse Generator for Measurement of the Tune and Dynamic Aperture in the LHC

    CERN Document Server

    Carlier, E; Vossenberg, E

    2007-01-01

    The large hadron collider (LHC) at CERN will be equipped with fast pulsed two-function magnets, which will be part of the measurement system for the tune and the dynamic aperture. For the tune measurement, the magnets will excite coherent oscillations of part of the beam. This is achieved by means of a generator producing a 5.1 mus base half-sine pulse of 1.2 kA amplitude, superimposed with a 3rd harmonic to produce a -2 mus flat top. A kick repetition rate of 2 Hz is possible. The maximum generator voltage is 3.3 kV, with a dynamic range of about 20. A 5.2 kV press-pack capsule IGBT is used as switching element. A fast 30 A gate driver is used for triggering. The generator pulse current interruption is obtained with an extra-fast small recovery series diode. Several advantages of the press-pack IGBT construction with respect to conventional IGBT modules will be discussed. To measure the dynamic aperture of the LHC at different beam energies, the same magnets will also be driven by a more powerful generator w...

  11. SPIDER beam dump as diagnostic of the particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Sartori, E. [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Dalla Palma, M.; Brombin, M.; Pasqualotto, R. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-11-15

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  12. Experimental study of the molecular beam destruction by beam-beam and beam-background scattering

    International Nuclear Information System (INIS)

    Bossel, U.; Dettleff, G.

    1974-01-01

    The extraction of flow properties related to the molecular motion normal to stream lines of an expanding gas jet from observed intensity profiles of supersonic beams is critically assessed. The perturbation of the profile curves by various effects is studied for a helium beam. Exponential laws appear to describe scattering effects to a satisfactory degree

  13. Generating picosecond x-ray pulses in synchrotron light sources using dipole kickers

    Directory of Open Access Journals (Sweden)

    W. Guo

    2007-02-01

    Full Text Available The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of nonzero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained from a 27-ps electron bunch at the Advanced Photon Source. Based on this principle, we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1–2 kHz, which can be used for pump-probe experiments.

  14. Changes to the LHC Beam Dumping System for LHC Run 2

    CERN Document Server

    Uythoven, Jan; Borburgh, Jan; Carlier, Etienne; Gabourin, Stéphane; Goddard, Brennan; Magnin, Nicolas; Senaj, Viliam; Voumard, Nicolas; Weterings, Wim

    2014-01-01

    The LHC beam dumping system performed according to expectations during Run 1 of the LHC (2009 – 2013). A brief overview of the experience is given, including a summary of the observed performance by comparison to expectations. An important number of changes are applied to the beam dumping system during the present Long Shutdown in order to further improve its safety and performance. They include the addition of a direct link between the Beam Interlock System and the re-triggering system of the dump kickers, the modification of the uninterrupted electrical power distribution architecture, the upgrade of the HV generators, the consolidation of the trigger synchronisation system, the modifications to the triggering system of the power switches and the changes to the dump absorbers TCDQ.

  15. Beam structure studies of low-energy ion beams

    Science.gov (United States)

    Saadatmand, K.; Schneider, J. D.; Geisik, C.; Stevens, R. R.

    1991-05-01

    The ion beam structure at various axial positions along the beam-transport line has been monitored and studied utilizing a fluor screen and a video camera. The fluor material is aluminum oxide that is plasma-jet sprayed onto the surface of an aluminum or a water-cooled copper substrate. The visual representation of the beam structure is digitized and enhanced through use of false-color coding and displayed on a TV monitor for the on-line viewing by the experimentalist. Digitized video signals are stored for further off-line processing and extracting more information about the beam, such as beam profiles. This inexpensive and effective diagnostic enables the experimentalist to observe the real-time beam response (such as evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position) to parameter changes.

  16. Non-linear beam dynamics tests in the LHC: LHC dynamic aperture MD on Beam 2 (24th of June 2012)

    CERN Document Server

    Maclean, E H; Persson, T H B; Redaelli, S; Schmidt, F; Tomas, R; Uythoven, J

    2013-01-01

    This MD note summarizes measurements performed on LHC Beam 2 during the non-linear machine development (MD) of 24 June 2012. The aim of the measurement was to observe the dynamic aperture of LHC Beam 2, and obtain turn-by-turn (TbT) betatron oscillation data, enabling the study of amplitude detuning and resonance driving terms (RDTs). The regular injections required by the MD also represented an opportunity to test a new coupling feedback routine based on the analysis of injection oscillation data. Initial measurements were performed on the nominal state of the LHC at injection. On completion of this study the Landau octupoles were turned off and corrections for higher-order chromaticities were implemented to reduce the non-linearity of the machine as far as possible. A second set of measurements were then performed. All studies were performed using the LHC aperture kicker (MKA).

  17. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  18. Facial bone alterations on maxillary anterior single implants for immediate placement and provisionalization following tooth extraction: a superimposed cone beam computed tomography study.

    Science.gov (United States)

    Morimoto, Taichiro; Tsukiyama, Yoshihiro; Morimoto, Keizo; Koyano, Kiyoshi

    2015-12-01

    The purpose of this cone beam computed tomography (CBCT) study was to describe the facial bone changes around single implants for immediate placement and provisionalization following tooth extraction in the maxillary anterior. The data between 2008 and 2013 were collected retrospectively. Superimposed facio-palatal cross-sectional CBCT images for the implants were derived from preoperative and postoperative radiographs via standardized CBCT processes. Horizontal and vertical facial measurements on the implants were identified at preoperative and approximately 1-year postoperative follow-ups. Correlation coefficient for those parameters was evaluated. A total of 12 single implants in 12 patients were included in this study. The mean loading period was 13.3 months (range 12-15 months). The median data of preoperative bone thickness 0.54 mm (A), preoperative vertical bone level 1.46 mm (B), postoperative bone thickness 1.77 mm (C), postoperative vertical bone level 1.08 mm (D), horizontal distance from outer surface of preoperative facial bone to implant surface 2.08 mm (E), horizontal gap distance 1.41 mm (E-A), horizontal bone resorption -0.26 mm (E-C), and vertical bone resorption -0.25 mm (B-D) were obtained. The data at the implant platform level (IPL) were selected for the horizontal measurements. Spearman's analysis demonstrated statistically significant correlations between B and D, C and E, E and E-A, and B and E-C (P Immediate placement and provisionalization of single implants procedure in the maxillary anterior showed excellent outcomes with the small facial bone alterations around the implants. Neither preoperative facial bone thickness nor horizontal gap distance influenced the amount of facial bone resorptions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. LS1 Report: alive and kicking!

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Following eleven months of meticulous maintenance and consolidation works, the LHC's extraction kicker magnets (MKDs) and its pulse generators are back in the accelerator for a new phase of tests. Used to dump the beam, these kicker magnets are essential for the safety of the machine.   Pulse generators for the extraction kicker magnets at Point 6. The high voltage cables leading to the magnets can be seen in red. The LHC's kicker magnets are something rather special. Unlike most of the accelerator's extraction magnets, they only operate for a short period of time and focus on providing a quick "kick" to deflect the beam. If fact, they are permanently under voltage to be ready to go, and have only 3 microseconds in order to establish their kicking pulse! This means they have to be very powerful - with the help of their own high-powered pulse generators - and extremely well in synch - with the help of control and electronic specialists. "Du...

  20. High intensity beam dump for the Tevatron beam abort system

    International Nuclear Information System (INIS)

    Kidd, J.; Mokhov, N.; Murphy, T.; Palmer, M.; Toohig, T.; Turkot, F.; VanGinneken, A.

    1981-01-01

    The beam abort system proposed for the Fermilab Tevatron Accelerator will extract the proton beam from the ring in a single turn (approximately 20/mu/s) and direct it to an external beam dump. It is the function of the beam dump to absorb the unwanted beam and limit the escaping radiation to levels that are acceptable to the surrounding populace and apparatus. A beam dump that is expected to meet these requirements has been designed and constructed. Detailed design of the dump, including considerations leading to the choice of materials, are given. 6 refs

  1. Extraction for ISABELLE

    International Nuclear Information System (INIS)

    Claus, J.; Foelsche, H.

    1981-01-01

    The design specifications for ISABELLE, a superconducting proton storage ring facility under construction at Brookhaven National Laboratory call for circulating beam intensities of up to 6 x 10 14 protons at 400 GeV energy in each ring. The energy stored in the beam is 41 Megajoules, an order of magnitude more than what has been dealt with in the past. This beam energy cannot be safely disposed of within the confines of the ISABELLE lattice if damage to the dump or quenching of the superconducting magnets is to be avoided. Therefore the full intensity beam must be extracted from the storage rings under all circumstances of emergency or routine beam disposal. Beam losses in excess of 10 -3 of the full beam can jeoardize the extraction components and lead to magnet quenching as well. In this note a conceptual design of the extraction system is summarized and the major constraints which lead to the parameters chosen are discussed

  2. Numerical Calculation of Beam Coupling Impedances in the Frequency Domain using FIT

    CERN Document Server

    Niedermayer, U

    2012-01-01

    The transverse impedance of kicker magnets is considered to be one of the main beam instability sources in the projected SIS-100 at FAIR and also in the SPS at CERN. The longitudinal impedance can contribute to the heat load, which is especially a concern in the cold sections of SIS-100 and LHC. In the high frequency range, commercially available time domain codes like CST Particle Studio serve to calculate the impedance but they are inapplicable at medium and low frequencies which become more important for larger size synchrotrons. We present the ongoing work of developing a Finite Integration Technique (FIT) solver in frequency domain which is based on the Parallel and Extensible Toolkit for Scientific computing (PETSc) framework in C++. Proper beam adapted boundary conditions are important to validate the concept. The code is applied to an inductive insert used to compensate the longitudinal space charge impedance in low energy machines. Another application focuses on the impedance contribution of a ferrit...

  3. First optics and beam dynamics studies on the MAX IV 3 GeV storage ring

    Science.gov (United States)

    Leemann, S. C.; Sjöström, M.; Andersson, Å.

    2018-03-01

    The MAX IV 3 GeV storage ring is the first light source to make use of a multibend achromat lattice to reach ultralow emittance. After extensive commissioning efforts, the storage ring is now ramping up its user program. We present results from beam commissioning of the MAX IV 3 GeV storage ring as well as a summary of the beam dynamics studies that have so for been carried out. We report on injection and accumulation using a single dipole kicker, top-up injection, slow orbit feedback, restoring the linear optics to design, effects of in-vacuum undulators with closed gaps, adjusting nonlinear optics to achieve design chromaticity correction and dynamic aperture sufficient for high injection efficiency and large Touschek lifetime.

  4. Target and orbit feedback simulations of a muSR beam line at BNL

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-28

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. For a dc beam an ideal µSR flux for surface µ+ should be about 40 kHz/mm2. In this report we show how this flux could be achieved in a beam line using the AGS complex at BNL for a source of protons. We also determined that an orbit feedback system with a pair of thin silicon position monitors and kickers would miss the desired flux by at least an order of magnitude, even with perfect time resolution and no multiple scattering.

  5. Ion beam notcher using a laser

    Energy Technology Data Exchange (ETDEWEB)

    Ray Tomlin

    2001-07-20

    The FNAL LINAC will soon be asked to produce beam at 7.5 Hz. FNAL LINAC extraction involves sweeping the H-minus beam over a Lambertson magnet. The higher repetition rates are expected to activate the Lambertson magnet. A pulsed laser has been installed to make a notch in the beam so that beam will not sweep over the magnet.

  6. Determination of beam coupling impedance in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, Uwe

    2016-07-01

    The concept of beam coupling impedance describes the electromagnetic interaction of uniformly moving charged particles with their surrounding structures in the Frequency Domain (FD). In synchrotron accelerators, beam coupling impedances can lead to beam induced component heating and coherent beam instabilities. Thus, in order to ensure the stable operation of a synchrotron, its impedances have to be quantified and their effects have to be controlled. Nowadays, beam coupling impedances are mostly obtained by Fourier transform of wake potentials, which are the results of Time Domain (TD) simulations. However, at low frequencies, low beam velocity, or for dispersive materials, TD simulations become unhandy. In this area, analytical calculations of beam coupling impedance in the FD, combined with geometry approximations, are still widely used. This thesis describes the development of two electromagnetic field solvers to obtain the beam coupling impedance directly in the FD, where the beam velocity is only a parameter and dispersive materials can be included easily. One solver is based on the Finite Integration Technique (FIT) on a staircase mesh. It is implemented both in 2D and 3D. However, the staircase mesh is inefficient on curved structures, which is particularly problematic for the modeling of a dipole source, that is required for the computation of the transverse beam coupling impedance. This issue is overcome by the second solver developed in this thesis, which is based on the Finite Element Method (FEM) on an unstructured triangular mesh. It is implemented in 2D and includes an optional Surface Impedance Boundary Condition (SIBC). Thus, it is well suited for the computation of longitudinal and transverse impedances of long beam pipe structures of arbitrary cross-section. Besides arbitrary frequency and beam velocity, also dispersive materials can be chosen, which is crucial for the computation of the impedance of ferrite kicker magnets. Numerical impedance

  7. Damping Ring Kickers

    Energy Technology Data Exchange (ETDEWEB)

    Bulos, Fatin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tomlin, Bill T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Weaver, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-03-04

    The principle of the design of these magnets was discussed in CN-72. Fig. 1 shows what the total system looks like. Such a system was completed last January and since then we have been evaluating its performance.

  8. Determination of intensity and position of the extracted electron beam at ELSA by means of high-frequency resonators; Bestimmung von Intensitaet und Position des extrahierten Elektronenstrahls an ELSA mittels Hochfrequenzresonatoren

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Thorsten

    2012-06-15

    The electron stretcher facility ELSA provides an electron beam of a few hundred pA used for the generation of bremsstrahlung photons probing the nucleon structure in a detector setup. For the correct interpretation of the events registered, the persistence of the beam position over time is crucial. Its continuous monitoring has been enabled by setting up a measurement system based on resonant cavities. Position signals at a frequency of 1.5 GHz and below one aW of power can be abstracted from the beam without degrading its quality. After frequency down-conversion to a few kHz, a narrow bandwidth detection performed by lock-in amplifiers separates them from noise. A maximum sample rate of 9 Hz and a resolution of one tenth of a millimeter could be achieved. The position signals have to be normalized to the beam current which is monitored by another dedicated resonator. The measurement precision down to a few pA allows for the accelerator extraction mechanism to be controlled by a feedback loop in order to obtain the respective requested current. (orig.)

  9. Cyclotrons for high-intensity beams

    CERN Document Server

    Seidel, Mike

    2013-01-01

    This paper reviews the important physical and technological aspects of cyclotrons for the acceleration of high-intensity beams. Special emphasis is given to the discussion of beam loss mechanisms and extraction schemes.

  10. Ion beam monitoring

    International Nuclear Information System (INIS)

    McKinney, C.R.

    1980-01-01

    An ion beam analyzer is specified, having an ion source for generating ions of a sample to be analyzed, means for extracting the sample ions, means for focusing the sample ions into a beam, separation means positioned along the ion beam for selectively deflecting species of ions, and means for detecting the selected species of ions. According to the specification, the analyzer further comprises (a) means for disabling at least a portion of the separation means, such that the ion beam from the source remains undeflected; (b) means located along the path of the undeflected ion beam for sensing the sample ions; and (c) enabling means responsive to the sensing means for automatically re-enabling the separation means when the sample ions reach a predetermined intensity level. (author)

  11. Coherent beam-beam effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1992-01-01

    There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)

  12. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    Science.gov (United States)

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  13. The 12 kV, 50 kA Pulse Generator for the SPS MKDH Horizontal Beam Dump Kicker System,equipped with Semiconductor Switches

    CERN Document Server

    Bonthond, J; Faure, P; Vossenberg, Eugène B; CERN. Geneva. SPS and LHC Division

    2001-01-01

    The high current pulses for the MKDH magnets are generated with capacitor discharge type generators which, combined with a resistive free-wheel diode circuit, deliver a critically damped half-sine current with a rise-time of 25 ms. Each generator consists of two 25 kA units, connected in parallel to a magnet via low inductance transmission lines. They are equipped with a stack of four Fast High Current Thyristors, together with snubber capacitors, a voltage divider and a specially designed trigger transformer.

  14. Superresolution beams

    CSIR Research Space (South Africa)

    Ngcobo, S

    2011-11-01

    Full Text Available zones capable of introducing a phase shift of zero or p on the alternately out of phase rings of the TEMp0 beams into a unified phase and then focusing the rectified beam to generate a high resolution beam which has a Gaussian beam intensity distribution...

  15. A Stochastic Slow Extraction Scheme For U70 Synchrotron

    CERN Document Server

    Ivanov, S

    2004-01-01

    Outcomes of a feasibility study for a low-budget sto-chastic slow extraction system in the U70 proton synchro-tron of IHEP are reported. The existing 200 MHz (spill) RF system is to be employed as a longitudinal kicker. It will be driven by a sum of a non-random RF carrier plus an additive random amplitude-modulated signal - either quadrature or in-phase, or both. A few novel solutions to be implemented in the longitudinal diffusion technique that would force protons into the conventional 3-rd order transverse extraction resonance are foreseen so as to com-ply with the technical constraints inherent in U70. Getting a-few-seconds-long and high-quality spills is assessed as being viable with the system in question.

  16. Beam diagnostic developments at the cooler synchrotron COSY-J ...

    Indian Academy of Sciences (India)

    extraction a universal spill detector was developed and tested in the extraction beam line. Keywords. Beam diagnostic ... and storage ring) and extraction beam lines to the external experiments. In each region there are ... The Fourier transform of the acquired data represents immediately the betatron tune. 3.1 Tune meter ...

  17. Maintenance of raw and cooked ready-to-eat product quality of infused poultry meats with selected plant extracts during electron beam irradiation and after storage

    Science.gov (United States)

    Rababah, Taha

    The purpose of this study included: preparing plant extracts and evaluating these extracts for total phenolics and antioxidant activities (AA); infusing extract/combination that demonstrates superior AA into chicken breast and irradiating at 3.0 kGy; evaluating the physicochemical properties of irradiated and non-irradiated raw and cooked chicken breast at 5°C for 12 days and -20°C for 9 months; and selecting the extracts that demonstrated desirable AA, infusing these extracts into chicken breast and evaluating head-space volatiles, and conducting sensory evaluation. The total phenolic content and AA of the plant extracts ranged from 24.8 to 92.5 mg/g dry material (conjugated diene of methyl linoleate) and 3.4 to 86.3%, respectively. The AA of plant extracts using oxidative stability instrument were 4.6 to 10.2 h (Induction time). Green tea and grape seed extracts had the highest AA within several plant extracts, and were selected to retard lipid oxidation in further studies. Fresh boneless and skinless chicken breast meats were vacuum infused with varying concentrations of antioxidants: Green tea and grape seed extracts alone/in combination and tert-butylhydroquinone. The results showed that irradiation had no significant effect on pH, water holding capacity, but increased the redness and carbonyls in raw meats (p extracts into meats increased lightness and decreased redness as well as hardness and shear force. Irradiation increased TBARS, hexanal, and pentanal values in raw and cooked meats. Addition of plant extracts decreased the amount of TBARS, hexanal, pentanal, and carbonyl values. Similar results were observed when the samples were stored at -20°C for 9 months. Descriptive sensory flavor results showed that irradiation did not affect the flavor attributes. Consumer, descriptive, and instrumental results showed that irradiation increased toughness, green tea improved the meat color, and the panel indicated that irradiation decreased the tenderness of the

  18. Characterization of an Electron Gun for Hollow Electron Beam Collimation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Siqi [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2012-08-01

    Hollow electron beam collimation (HEBC) is a new technique developed to complement conventional beam collimation system to remove beam halo in a controlled fashion. We study the characteristics of the electron gun that produces the hollow electron beam. Cathode yield and beam profile measurements are used to extract information on gun performance. Results of characteristic measurements are presented.

  19. A new analysis procedure to extract fusion excitation function with large beam energy dispersions: application to the 6Li+120Sn and 7Li+119Sn

    Directory of Open Access Journals (Sweden)

    Di Pietro Alessia

    2017-01-01

    Full Text Available In the present paper it is described an analysis procedure suited for experiments where cross-sections strongly varying with energy are measured using beams having large energy dispersion. These cross-sections are typically the sub-barrier fusion excitation function of reactions induced by radioactive beams. The large beam energy dispersion, typical of these experiments, can lead to ambiguities in the association of the effective beam energy to the reaction product yields and consequently to an error in the determination of the excitation function. As a test case, the approach is applied to the experiments 6Li+120Sn and 7Li+119Sn measured in the energy range 14 MeV ≤ Ec.m. ≤28 MeV. The complete fusion cross sections are deduced from activation measurements using the stacked target technique. The results of these experiments, that employ the two weakly-bound stable Li isotopes, show that the complete fusion cross sections above the barrier are suppressed of about 70% and 85% with respect to the Universal Fusion Function, used as a standard reference, in the 6Li and 7Li induced reactions respectively. Moreover, the excitation functions of the two systems at energies below the barrier, do not show significant differences, despite the two systems have different n-transfer Qvalue.

  20. First Operational Experience with the LHC Beam Dump Trigger Synchronisation Unit

    CERN Document Server

    Antoine, A; Magnin, N; Juteau, P; Voumard, N

    2011-01-01

    Two LHC Beam Dumping Systems (LBDS) remove the counter-rotating beams safely from the collider during setting up of the accelerator, at the end of a physics run and in case of emergencies. Dump requests can come from 3 different sources: the machine protection system in emergency cases, the machine timing system for scheduled dumps or the LBDS itself in case of internal failures. These dump requests are synchronized with the 3 μs beam abort gap in a fail-safe redundant Trigger Synchronization Unit (TSU) based on a Digital Phase Locked Loop (DPLL), locked onto the LHC beam revolution frequency with a maximum phase error of 40 ns. The synchronized trigger pulses coming out of the TSU are then distributed to the high voltage generators of the beam dump kickers through a redundant fault-tolerant trigger distribution system. This paper describes the operational experience gained with the TSU since its commissioning with beam in 2009, and highlights the improvements, which have been implemented f...

  1. Beam-beam and impedance

    CERN Document Server

    White, S.

    2014-07-17

    As two counter-rotating beams interact they can give rise to coherent dipole modes. Under the influence of impedance these coherent beam-beam modes can couple to higher order head-tail modes and lead to strong instabilities. A fully self-consistent approach including beam-beam and impedance was used to characterize this new coupled mode instability and study possible cures such as a transverse damper and high chromaticity.

  2. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  3. LEAR: antiproton extraction lines

    CERN Multimedia

    Photographic Service

    1992-01-01

    Antiprotons, decelerated in LEAR to a momentum of 100 MeV/c (kinetic energy of 5.3 MeV), were delivered to the experiments in an "Ultra-Slow Extraction", dispensing some 1E9 antiprotons over times counted in hours. Beam-splitters and a multitude of beam-lines allowed several users to be supplied simultaneously.

  4. Beam cooling

    OpenAIRE

    Danared, H

    2006-01-01

    Beam cooling is the technique of reducing the momentum spread and increasing the phase-space density of stored particle beams. This paper gives an introduction to beam cooling and Liouville’s theorem, and then it describes the three methods of active beam cooling that have been proven to work so far, namely electron cooling, stochastic cooling, and laser cooling. Ionization cooling is also mentioned briefly.

  5. Molecular beams

    International Nuclear Information System (INIS)

    Pendelbury, J.M.; Smith, K.F.

    1987-01-01

    Studies with directed collision-free beams of particles continue to play an important role in the development of modern physics and chemistry. The deflections suffered by such beams as they pass through electric and magnetic fields or laser radiation provide some of the most direct information about the individual constituents of the beam; the scattering observed when two beams intersect yields important data about the intermolecular forces responsible for the scattering. (author)

  6. First Experiments on Stochastic Cooling of Heavy Ion Beams at the ESR

    CERN Document Server

    Caspers, Friedhelm; Nolden, F; Schwinn, A

    1998-01-01

    At the experimental storage ring ESR of GSI, one half of the foreseen pick-up and kicker tanks are installed, the rest will follow in 1998. First experimental tests of the stochastic precooling system have been performed since April 1997. Longitudinal Palmer cooling was successfully demonstrated. E-folding cooling times of 8.6 seconds were determined with carbon beams. No significant dependence of the cooling time on the number of particles was observed during these first tests. This may be explained by a low signal to noise ratio of the signals obtained from the pick-ups in the present configuration. With heavy ions in higher charge states faster cooling times are expected. The experiments are an important step towards the realization of experiments with radioactive fragments, e.g. in order to measure nuclear masses or half-lives of stripped exotic ions.

  7. Beam Transfer and Machine Protection

    CERN Document Server

    Kain, V

    2016-01-01

    Beam transfer, such as injection into or extraction from an accelerator, is one of the most critical moments in terms of machine protection in a high-intensity machine. Special equipment is used and machine protection aspects have to be taken into account in the design of the beam transfer concepts. A brief introduction of the principles of beam transfer and the equipment involved will be given in this lecture. The main concepts of machine protection for injection and extraction will be presented, with examples from the CERN SPS and LHC.

  8. A beam source model for scanned proton beams.

    Science.gov (United States)

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-07

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  9. Feedback control and beam diagnostic algorithms for a multiprocessor DSP system

    International Nuclear Information System (INIS)

    Teytelman, D.; Claus, R.; Fox, J.; Hindi, H.; Linscott, I.; Prabhakar, S.

    1996-09-01

    The multibunch longitudinal feedback system developed for use by PEP-II, ALS and DAΦNE uses a parallel array of digital signal processors to calculate the feedback signals from measurements of beam motion. The system is designed with general-purpose programmable elements which allow many feedback operating modes as well as system diagnostics, calibrations and accelerator measurements. The overall signal processing architecture of the system is illustrated. The real-time DSP algorithms and off-line postprocessing tools are presented. The problems in managing 320 K samples of data collected in one beam transient measurement are discussed and the solutions are presented. Example software structures are presented showing the beam feedback process, techniques for modal analysis of beam motion(used to quantify growth and damping rates of instabilities) and diagnostic functions (such as timing adjustment of beam pick-up and kicker components). These operating techniques are illustrated with example results obtained from the system installed at the Advanced Light Source at LBL

  10. Beam diagnostics

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-01-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the open-quotes Boosterclose quotes and open-quotes ATLASclose quotes linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates

  11. H- beam neutralization measurements in a solenoidal beam transport system

    International Nuclear Information System (INIS)

    Sherman, J.; Pitcher, E.; Stevens, R.; Allison, P.

    1992-01-01

    H minus beam space-charge neutralization is measured for 65-mA, 35-keV beams extracted from a circular-aperture Penning surface-plasma source, the small-angle source. The H minus beam is transported to a RFQ matchpoint by a two-solenoid magnet system. Beam noise is typically ±4%. A four-grid analyzer is located in a magnetic-field-free region between the two solenoid magnets. H minus potentials are deduced from kinetic energy measurements of particles (electrons and positive ions) ejected radially from the beam channel by using a griddled energy analyzer. Background neutral gas density is increased by the introduction of additional Xe and Ar gases, enabling the H minus beam to become overneutralized

  12. Analysis of methods for obtaining of a uniform particle distribution on a target on its irradiation by a beam of the krypton ions extracted from the implantator IC-100

    CERN Document Server

    Gikal, B N; Kazarinov, N

    2002-01-01

    Some methods of the target uniform irradiation by heavy ions have been analyzed. As a result the scanning system for the sup 8 sup 4 Kr sup 1 sup 5 sup + ion beam extracted from the cyclotron IC-100 has been chosen and worked up. It consists of two deflecting yokes creating horizontal and vertical magnetic fields. The yokes are supplied by generators of saw-tooth current having the definitely fixed frequencies. When both generators work synchronously the centre of mass of the ion beam 'draws' a pattern on the target. The dimensions of the pattern cells are determined by the ratio of these frequencies. The correlation between the generator frequencies when heterogeneity of the particle density distribution does not exceed the required value of +- 5% is obtained. It has been shown that for the moving target the chosen scanning scheme allows one to obtain its uniform density distribution. For the slow target velocities (20-50 cm/s) this scheme also allows one to compensate the collapse in the particle density di...

  13. Elliptical beams.

    Science.gov (United States)

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2008-12-08

    A very general beam solution of the paraxial wave equation in elliptic cylindrical coordinates is presented. We call such a field an elliptic beam (EB). The complex amplitude of the EB is described by either the generalized Ince functions or the Whittaker-Hill functions and is characterized by four parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integrability are studied in detail. Special cases of the EB are the standard, elegant, and generalized Ince-Gauss beams, Mathieu-Gauss beams, among others.

  14. The Next Linear Collider Extraction Line Design

    OpenAIRE

    Nosochkov, Y.; Raubenheimer, T. O.; Thompson, K.; Woods, M.

    2001-01-01

    The two main functions of the NLC extraction line include: 1) transmission of the outgoing disrupted beam and secondary particles to the dump with minimal losses; and 2) beam diagnostics and control. In this report, we describe the extraction line optics, present the results of tracking studies, and discuss the extraction line instrumentation.

  15. Computer simulation of high current uranium beams for the injection beam line of the UNILAC

    International Nuclear Information System (INIS)

    Xiang, W.; Spaedtke, P.; Hollinger, R.; Galonska, M.; Heymach, F.

    2004-07-01

    In an attempt to generate an ion beam with high current and high brightness for the design ion, the computer code KOBRA3-INP has been used to evaluate the extraction system, the DC post-acceleration system as well as the quadrupole transport beam line, and to study the behavior of the ion beam in the combined system. (orig.)

  16. Superresolution beams

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-07-01

    Full Text Available positions of p zeros of intensity distributions on the Gaussian beam, resulting to a generation of TEMp0 beams where there are minimum losses. The LGBs are well-known family of exact orthogonal solutions of free-space paraxial wave equation in cylindrical...

  17. SU-E-J-150: Four-Dimensional Cone-Beam CT Algorithm by Extraction of Physical and Motion Parameter of Mobile Targets Retrospective to Image Reconstruction with Motion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [Ohio Northern University, Ada, OH (United States)

    2015-06-15

    Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing phases

  18. The Efficacy of Immediate Implant Placement in Extraction Sockets for Alveolar Bone Preservation: A Clinical Evaluation Using Three-Dimensional Cone Beam Computerized Tomography and Resonance Frequency Analysis Value.

    Science.gov (United States)

    Qabbani, Ali Al; Razak, Noor Hayati A; Kawas, Sausan Al; Sheikh Abdul Hamid, Suzina; Wahbi, Saad; Samsudin, A R

    2017-06-01

    The aim of this study was to determine the efficacy of immediate implant placement with alveolar bone augmentation on socket preservation following atraumatic tooth extraction and comparing it with a tooth alveolar socket that was allowed to heal in a conventional way.Twenty medically fit patients (8 males and 12 females aged between 18 and 40 years) who needed noncomplicated tooth extraction of mandibular premolar teeth were divided randomly and equally into 2 groups. In Group I, the empty extraction socket was left untreated and allowed to heal in a conventional way. In Group II, the immediate implant was placed and the gap between the implant and the inner buccal plate surface of the socket wall was filled with lyophilized bovine bone granules and the wound was covered with pericardium membrane. The patients were followed up clinically and radiologically for regular reviews at 1 week, 3 months, and 9 months postoperative. Cone beam computerized tomography images of the alveolar ridge and socket were analyzed to determine the structural changes of the alveolar ridge. Resonance frequency analysis was measured at 9 months for Group II to assess the degree of secondary stability of the implants by using Osstell machine.A significant difference of bone resorption of 1.49 mm (confidence interval, CI 95%, 0.63-2.35) was observed within the control group at 3 months, and 1.84 mm (P ≤ 0.05) at 9 months intervals. No significant changes of bone resorption were observed in Group II. Comparison between groups showed a highly significant difference at 3 months; 2.56 mm (CI 95% 4.22-0.90) and at 9 months intervals; 3.2 mm (CI 95%, 4.70-1.62) P ≤ 0.001 between Group I and II. High resonance frequency analysis values were observed at 9 months postoperative in Group II.In conclusion, the insertion of immediate implants in fresh extraction sockets together with grafting the circumferential gap between the bony socket wall and the implant surface with bovine

  19. Effects of various cone-beam computed tomography settings on the detection of recurrent caries under restorations in extracted primary teeth

    Energy Technology Data Exchange (ETDEWEB)

    Kamburoglu, Kivanc; Sonmez, Gul; Kurt, Hakan; Berktas, Zeynep Serap [Dept. of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara (Turkmenistan); Ozen, Dogukan [Dept. of Biostatistics, Faculty of Veterinary Medicine, Ankara University, Ankara (Turkmenistan)

    2017-06-15

    The aim of this study was to assess the ex vivo diagnostic ability of 9 different cone-beam computed tomography (CBCT) settings in the detection of recurrent caries under amalgam restorations in primary teeth. Fifty-two primary teeth were used. Twenty-six teeth had dentine caries and 26 teeth did not have dentine caries. Black class II cavities were prepared and restored with amalgam. In the 26 carious teeth, recurrent caries were left under restorations. The other 26 intact teeth that did not have caries served as controls. Teeth were imaged using a 100×90-mm field of view and a 0.2-mm voxel size with 9 different CBCT settings. Four observers assessed the images using a 5-point scale. Kappa values were calculated to assess observer agreement. CBCT settings were compared with the gold standard using a receiver operating characteristic analysis. The area under the curve (AUC) values for each setting were compared using the chi-square test, with a significance level of α=.05. Intraobserver kappa values ranged from 0.366 to 0.664 for observer 1, from 0.311 to 0.447 for observer 2, from 0.597 to 1.000 for observer 3, and from 0.869 to 1 for observer 4. Furthermore, interobserver kappa values among the observers ranged from 0.133 to 0.814 for the first reading and from 0.197 to 0.805 for the second reading. The highest AUC values were found for setting 5 (0.5916) and setting 3 (0.5886), and were not found to be statistically significant (P>.05). Variations in tube voltage and tube current did not affect the detection of recurrent caries under amalgam restorations in primary teeth.

  20. Effects of various cone-beam computed tomography settings on the detection of recurrent caries under restorations in extracted primary teeth

    International Nuclear Information System (INIS)

    Kamburoglu, Kivanc; Sonmez, Gul; Kurt, Hakan; Berktas, Zeynep Serap; Ozen, Dogukan

    2017-01-01

    The aim of this study was to assess the ex vivo diagnostic ability of 9 different cone-beam computed tomography (CBCT) settings in the detection of recurrent caries under amalgam restorations in primary teeth. Fifty-two primary teeth were used. Twenty-six teeth had dentine caries and 26 teeth did not have dentine caries. Black class II cavities were prepared and restored with amalgam. In the 26 carious teeth, recurrent caries were left under restorations. The other 26 intact teeth that did not have caries served as controls. Teeth were imaged using a 100×90-mm field of view and a 0.2-mm voxel size with 9 different CBCT settings. Four observers assessed the images using a 5-point scale. Kappa values were calculated to assess observer agreement. CBCT settings were compared with the gold standard using a receiver operating characteristic analysis. The area under the curve (AUC) values for each setting were compared using the chi-square test, with a significance level of α=.05. Intraobserver kappa values ranged from 0.366 to 0.664 for observer 1, from 0.311 to 0.447 for observer 2, from 0.597 to 1.000 for observer 3, and from 0.869 to 1 for observer 4. Furthermore, interobserver kappa values among the observers ranged from 0.133 to 0.814 for the first reading and from 0.197 to 0.805 for the second reading. The highest AUC values were found for setting 5 (0.5916) and setting 3 (0.5886), and were not found to be statistically significant (P>.05). Variations in tube voltage and tube current did not affect the detection of recurrent caries under amalgam restorations in primary teeth

  1. Numerical calculation of beam coupling impedances in synchrotron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haenichen, Lukas

    2016-07-01

    , particle velocities significantly lower than the speed of light occur and the commonly applied ultra-relativistic limit case may no longer be practicable. Ferrite-loaded kicker magnets are commonly used to achieve abrupt changes of the beam direction of motion and contribute to the coupling impedance due to hysteresis properties of the ferrite material. These coupling impedance contributions must be determined in order to assess the feedback action on the traversing particles of the beam. After introducing important mathematical relations and presentation of two calculation methods, a few reference examples are discussed, which can be treated by means of the classical electromagnetic field theory. After showing that the simulation results are in accordance with the corresponding analytical results, the focus is put on simulation models that represent actual components of the FAIR (Facility for Antiproton and Ion Research GmbH) SIS100 synchrotron accelerator.

  2. Capture, Electron-Cooling and Compression of Antiprotons in a Large Penning-Trap for Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

    CERN Multimedia

    2002-01-01

    % PS200 \\\\ \\\\The availability of ultra-low energy antiprotons is a crucial ingredient for the execution of the gravity measurements PS200. We have developed a method to provide such low energy antiprotons based on a large Penning trap (the PS200 catching trap). This system can accept a fast-extracted pulse from LEAR, reduce the energy of the antiprotons in the pulse from 5.9~MeV to several tens of kilovolts using a degrading foil, and then capture the antiprotons in a large Penning trap. These antiprotons are cooled by electrons previously admitted to the trap and are collected in a small region at the center of the trap. We have demonstrated our capability to capture up to 1~million antiprotons from LEAR in a single shot, electron cool these antiprotons, and transfer up to 95\\% of them into the inner, harmonic region. A storage time in excess of 1 hour was observed. These results have been obtained with the cryogenic trap vacuum coupled to a room temperature vacuum at about l0$ ^- ^{1} ^0 $ Torr, which is an...

  3. OPERATIONAL EXPERIENCE WITH FAST FIBER-OPTIC BEAM LOSS MONITORS FOR THE ADVANCED PHOTON SOURCE STORAGE RING SUPERCONDUCTING UNDULATORS

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, J.; Harkay, K.; Sajaev, V.; Shang, H.

    2017-06-25

    Fast fiber-optic (FFO) beam loss monitors (BLMs) installed with the first two superconducting undulators (SCUs) in the Advanced Photon Source storage ring have proven to be a useful diagnostic for measuring deposited charge (energy) during rapid beam loss events. The first set of FFOBLMs were installed outside the cryostat of the short SCU, a 0.33-m long device, above and below the beam centerline. The second set are mounted with the first 1.1-mlong SCU within the cryostat, on the outboard and inboard sides of the vacuum chamber. The next 1.1-m-long SCU is scheduled to replace the short SCU later in 2016 and will be fitted with FFOBLMs in a manner similar to original 1.1-m device. The FFOBLMs were employed to set timing and voltage for the abort kicker (AK) system. The AK helps to prevent quenching of the SCUs during beam dumps [1] by directing the beam away from the SC magnet windings. The AK is triggered by the Machine Protection System (MPS). In cases when the AK fails to prevent quenching, the FFOBLMs show that losses often begin before detection by the MPS.

  4. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    Science.gov (United States)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  5. Use of electron gun to regulate the radio-frequency plasma performance and beam optics

    Science.gov (United States)

    Abdelaziz, M. E.; Awaad, Z.; Zakhary, S. G.; Abdel-Ghaffar, A. M.

    1994-04-01

    The addition of electrons in both rf plasma and ion beam extracted from a rf ion source enhanced the source's performance and beam optics. The increase of plasma intensity increases the charge state of the extracted ions. The mixing of electrons with the ions within the ion beam decreases the space charge effect on beam expansion.

  6. Large area ion and plasma beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Waldorf, J. [IPT Ionen- und Plasmatech. GmbH, Kaiserslautern (Germany)

    1996-06-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.).

  7. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    Waldorf, J.

    1996-01-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  8. Limitations of dynamic beam delivery systems

    International Nuclear Information System (INIS)

    Chu, W.T.; Kuenning, R.W.

    1987-01-01

    The heavy charged-particle beams which have been extracted from the accelerator and channeled to the treatment rooms are usually small in diameter compared to the target volumes. Many different methods have been devised to spread out the beams in order to cover the entire target volume with a uniform dose. When using the double-scattering beam delivery method, the entire target volume is irradiated simultaneously; whereas, in the other beam delivery methods, such as the wobbler system or the raster scanning system, a relatively small beam spot is moved around to cover the entire target volume with a uniform dose and only a part of the target volume is irradiated at a time. The latter methods are therefore called dynamic beam delivery methods, and the double scattering method is called a passive beam delivery method. In this note, the dose uniformities achievable using the dynamic beam delivery systems are analyzed, and the requirements placed on the systems specifications are discussed

  9. Molecular beams

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    1985-01-01

    This book is a timeless and rather complete theoretical and experimental treatment of electric and magnetic resonance molecular-beam experiments for studying the radio frequency spectra of atoms and molecules. The theory of interactions of the nucleus with atomic and molecular fields is extensively presented. Measurements of atomic and nuclear magnetic moments, electric multipole moments, and atomic fine and hyperfine structure are detailed. Useful but somewhat outdated chapters on gas kinetics, molecular beam design, and experimental techniques are also included

  10. Beam transport

    International Nuclear Information System (INIS)

    1988-01-01

    Considerable experience has now been gained with the various beam transport lines, and a number of minor changes have been made to improve the ease of operation. These include: replacement of certain little-used slits by profile monitors (harps or scanners); relocation of steering magnets, closer to diagnostic harps or profile scanners; installation of a scanner inside the isocentric neutron therapy system; and conversion of a 2-doublet quadrupole telescope (on the neutron therapy beamline) to a 2-triplet telescope. The beam-swinger project has been delayed by very late delivery of the magnet iron to the manufacturer, but is now progressing smoothly. The K=600 spectrometer magnets have now been delivered and are being assembled for field mapping. The x,y-table with its associated mapping equipment is complete, together with the driver software. One of the experimental areas has been dedicated to the production of collimated neutron beams and has been equipped with a bending magnet and beam dump, together with steel collimators fixed at 4 degrees intervals from 0 degrees to 16 degrees. Changes to the target cooling and shielding system for isotope production have led to a request for much smaller beam spot sizes on target, and preparations have been made for rearrangement of the isotope beamline to permit installation of quadrupole triplets on the three beamlines after the switching magnet. A practical system of quadrupoles for matching beam properties to the spectrometer has been designed. 6 figs

  11. Dumping the decelerated beams of CLIC

    CERN Document Server

    Jeanneret, Bernard

    2011-01-01

    The spent drive beam must be cleanly extracted and bent away from the decelerator axis at the end of each CLIC decelerator in order to leave space for injecting a fresh beam train in the next sector. Then the spent beam must be safely absorbed. A compact extraction system made of a single dipole is proposed. The spent beam is driven to a water dump located at 20m downstream of the extraction point and transversely 6m away of the axis of the main linac. An adequate spread of the beam impact map on the dump offers small temperature excursions in both the dump and its entrance window, allowing for reliable operation and a long lifetime of the system.

  12. Fixed target beams

    CERN Document Server

    Kain, V; Cettour-Cave, S; Cornelis, K; Fraser, M A; Gatignon, L; Goddard, B; Velotti, F

    2017-01-01

    The CERN SPS (Super Proton Synchrotron) serves asLHC injector and provides beam for the North Area fixedtarget experiments. At low energy, the vertical acceptancebecomes critical with high intensity large emittance fixed tar-get beams. Optimizing the vertical available aperture is a keyingredient to optimize transmission and reduce activationaround the ring. During the 2016 run a tool was developed toprovide an automated local aperture scan around the entirering.The flux of particles slow extracted with the1/3inte-ger resonance from the Super Proton Synchrotron at CERNshould ideally be constant over the length of the extractionplateau, for optimum use of the beam by the fixed target ex-periments in the North Area. The extracted intensity is con-trolled in feed-forward correction of the horizontal tune viathe main SPS quadrupoles. The Mains power supply noiseat 50 Hz and harmonics is also corrected in feed-forwardby small amplitude tune modulation at the respective fre-quencies with a dedicated additional quad...

  13. Beam Interlocks for LHC and SPS

    CERN Document Server

    Dinius, A; Gimeno-Vicente, J; Nouchi, P; Puccio, B; Schmidt, R; Wenninger, J

    2003-01-01

    The Large Hadron Collider at CERN (LHC) will operate at 7 TeV/c with a luminosity of 10 cms. This requires two beams with about 3^10 protons/beam, corresponding to a stored energy of about 350 MJ, sufficient to heat and melt 500 kg of copper. Protection of equipment from damage in case of uncontrolled beam losses is challenging. Injection of the beam from the SPS to the LHC could already damage equipment and is only permitted when all LHC systems are correctly prepared. In case of an uncontrolled loss of the circulating LHC beams, it is required to extract the beams into a specially designed target as soon as possible. Beam loss monitors and equipment for hardware surveillance are distributed around the 26 km long accelerator. In case of failures or beam losses, the beam interlock system is informed and sends a dump request to the beam dumping system. The beam interlock system also inhibits injection when the LHC is not ready for beam. In this paper the requirements for the beam interlock system are discussed...

  14. Quantum beams

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru

    2003-01-01

    Present state and future prospect are described on quantum beams for medical use. Efforts for compactness of linac for advanced cancer therapy have brought about the production of machines like Accuray's CyberKnife and TOMOTHERAPY (Tomo Therapy Inc.) where the acceleration frequency of X-band (9-11 GHz) is used. For cervical vein angiography by the X-band linac, a compact hard X-ray source is developed which is based on the (reverse) Compton scattering through laser-electron collision. More intense beam and laser are necessary at present. A compact machine generating the particle beam of 10 MeV-1 GeV (laser-plasma accelerator) for cancer therapy is also developed using the recent compression technique (chirped-pulse amplification) to generate laser of >10 TW. Tokyo University is studying for the electron beam with energy of GeV order, for the laser-based synchrotron X-ray, and for imaging by the short pulse ion beam. Development of advanced compact accelerators is globally attempted. In Japan, a virtual laboratory by National Institute of Radiological Sciences (NIRS), a working group of universities and research facilities through the Ministry of Education, Culture, Sports, Science and Technology, started in 2001 for practical manufacturing of the above-mentioned machines for cancer therapy and for angiography. Virtual Factory (Inc.), a business venture, is to be stood in future. (N.I.)

  15. Polarized deuteron beam at the Dubna synchrophasotron

    International Nuclear Information System (INIS)

    Ershov, V.P.; Fimushkin, V.V.; Gai, G.I.

    1990-01-01

    The experimental equipment and setup used to accelerate a polarized deuteron beam at the Dubna synchrophasotron are briefly described. Basic characteristics of the cryogenic source of polarized deuterons POLARIS are presented. The results of measurements of the intensity of the accelerated beam, vector and tensor polarization at the output of the linac LU-20, inside the synchrophasotron ring and in the extracted beam are given. 16 refs.; 9 figs.; 3 tabs

  16. High current DC ion beams

    International Nuclear Information System (INIS)

    Shubaly, M.R.; de Jong, M.S.

    1983-01-01

    Development of high-current cw accelerators such as ZEBRA and FMIT, use of high current dc ion beams in industry for sputtering and material treatment, and scientific applications such as heavy-ion fusion and plasma physics diagnostics have provided the impetus for ion source development programs at many laboratories. At Chalk River, development of efficient plasma generators and reliable extraction columns to provide high quality beams of hydrogen, nitrogen, argon and xenon is underway. DC beams of up to 850 mA (limited by available power supplies) of hydrogen, 200 mA of nitrogen, 155 mA of argon and 100 mA of xenon have been produced with good reliability. DuoPIGatrons, with and without magnetic cusps, are used to generate a high density, reasonably quiescent plasma. Multi-aperture accel-decel columns are used for extraction with shaped apertures and beamlet steering to improve beam quality. This paper describes the performance of these sources and identifies some of the remaining problems. Guidelines for extraction column design, and experience with transporting high current beams are also presented

  17. The ELENA Beam Diagnostics Systems

    CERN Document Server

    Tranquille, G

    2013-01-01

    The Extra Low ENergy Antiproton ring (ELENA) to be built at CERN is aimed at substantially increasing the number of antiprotons to the low energy antiproton physics community. It will be a small machine which will decelerate low intensity beams (<4x107) from 5.3 MeV to 100 keV and will be equipped with an electron cooler to avoid beam losses during the deceleration and to significantly reduce beam phase space at extraction. To measure the beam parameters from the extraction point of the Antiproton Decelerator (AD), through the ELENA ring and all the way to the experiments, many systems will be needed to ensure that the desired beam characteristics are obtained. Particular attention needs to be paid to the performance of the electron cooler which depends on reliable instrumentation in order to efficiently cool the antiprotons. This contribution will present the different monitors that have been proposed to measure the various beam parameters as well as some of the developments going on to further improve th...

  18. A simple beam analyser

    International Nuclear Information System (INIS)

    Lemarchand, G.

    1977-01-01

    (ee'p) experiments allow to measure the missing energy distribution as well as the momentum distribution of the extracted proton in the nucleus versus the missing energy. Such experiments are presently conducted on SACLAY's A.L.S. 300 Linac. Electrons and protons are respectively analysed by two spectrometers and detected in their focal planes. Counting rates are usually low and include time coincidences and accidentals. Signal-to-noise ratio is dependent on the physics of the experiment and the resolution of the coincidence, therefore it is mandatory to get a beam current distribution as flat as possible. Using new technologies has allowed to monitor in real time the behavior of the beam pulse and determine when the duty cycle can be considered as being good with respect to a numerical basis

  19. BEAM-BEAM SIMULATIONS FOR DOUBLE-GAUSSIAN BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    MONTAG, C.; MALITSKY, N.; BEN-ZVI, I.; LITVINENKO, V.

    2005-05-16

    Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-gaussian beams. Here we report the effect of low-frequency random tune modulations on diffusion in double-gaussian beams and compare the effects to those in beam-beam interactions with regular gaussian beams and identical tune shift parameters.

  20. BEAM-BEAM SIMULATIONS FOR DOUBLE-GAUSSIAN BEAMS

    International Nuclear Information System (INIS)

    MONTAG, C.; MALITSKY, N.; BEN-ZVI, I.; LITVINENKO, V.

    2005-01-01

    Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-gaussian beams. Here we report the effect of loW--frequency random tune modulations on diffusion in double-gaussian beams and compare the effects to those in beam-beam interactions with regular gaussian beams and identical tune shift parameters

  1. Beam-Beam Simulations for Double-Gaussian Beams

    CERN Document Server

    Montag, Christoph; Litvinenko, Vladimir N; Malitsky, Nikolay

    2005-01-01

    Electron cooling together with intra-beam scattering results in a transverse distribution that can best be described by a sum of two Gaussians, one for the high-density core and one for the tails of the distribution. Simulation studies are being performed to understand the beam-beam interaction of these double-Gaussian beams. Here we report the effect of low-frequency random tune modulations on diffusion in double-Gaussian beams and compare the effects to those in beam-beam interactions with regular Gaussian beams and identical tuneshift parameters.

  2. Beam optics study of a negative ion source for neutral beam injection application at ASIPP

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiang-Long; Liang, Li-Zhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jiang, Cai-Chao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Xie, Ya-Hong, E-mail: xieyh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chun-Dong; Li, Jun; Gu, Yu-Ming; Chen, Yu-Qian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Jing-Yong; Wu, Ming-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    In order to study the generation and extraction of negative ions for neutral beam injection application, a negative ion source is being designed and constructed at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Through a four electrode grids system inside the accelerator, a negative ion beam will be extracted and accelerated up to −60 kV on a reduced scale extraction area of 12 × 50 cm{sup 2} (the area of PG apertures is 185 cm{sup 2}). The beam optics is a key issue for the accelerator design, and greatly determine the source experimental performance in term of beam current, heat load on the grid, beam divergence, and so on. In this paper, the trajectories of electrons and negative ions were simulated in the electrode grids of the negative ion source. The filter capability of electron deflection magnet on the co-extracted electrons is evaluated and confirmed. The negative ion beam optics was designed according to the calculated results of beam divergence and beam radius along the beamlet in different acceleration voltages. The deflection effect of the electron deflection magnet on the negative ion beam was investigated in the single beamlet case and multi-beamlets case.

  3. Beam structure and transverse emittance studies of high-energy ion beams

    International Nuclear Information System (INIS)

    Saadatmand, K.; Johnson, K.F.; Schneider, J.D.

    1991-01-01

    A visual diagnostic technique has been developed to monitor and study ion beam structure shape and size along a transport line. In this technique, a commercially available fluorescent screen is utilized in conjunction with a video camera. This visual representation of the beam structure is digitized and enhanced through use of false-color coding and displayed on a TV monitor for on-line viewing. Digitized information is stored for further off-line processing (e.g., extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of transverse emittance (or angular spread) measurement to this technique. This diagnostic allows real-time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position). 3 refs., 5 figs

  4. Beam structure and transverse emittance studies of high-energy ion beams

    Science.gov (United States)

    Saadatmand, K.; Johnson, K. F.; Schneider, J. D.

    1991-05-01

    A visual diagnostic technique was developed to monitor and study ion beam structure shape and size along a transport line. In this technique, a commercially available fluorescent screen is utilized in conjunction with a video camera. This visual representation of the beam structure is digitized and enhanced through use of false color coding and displayed on a TV monitor for on-line viewing. Digitized information is stored for further off-line processing (e.g., extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of transverse emittance (or angular spread) measurement to this technique. This diagnostic allows real time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position).

  5. SPS slow extraction septa

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    SPS long straight section (LSS) with a series of 5 septum tanks for slow extraction (view in the direction of the proton beam). There are 2 of these: in LSS2, towards the N-Area; in LSS6 towards the W-Area. See also Annual Report 1975, p.175.

  6. Method for energy recovery of spent ERL beams

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Frank; Hannon, Fay; Rimmer, Robert; Whitney, R. Roy

    2018-01-16

    A method for recovering energy from spent energy recovered linac (ERL) beams. The method includes adding a plurality of passive decelerating cavities at the beam dump of the ERL, adding one or more coupling waveguides between the passive decelerating cavities, setting an adequate external Q (Qext) to adjust to the beam loading situation, and extracting the RF energy through the coupling waveguides.

  7. MEV Energy Electrostatic Accelerator Ion Beam Emittance Measurement

    OpenAIRE

    I.G. Ignat’ev; M.I. Zakharets; S.V. Kolinko; D.P. Shulha

    2014-01-01

    The testing equipment was designed, manufactured and tried out permitting measurements of total current, current profile and emittance of an ion beam extracted from the ion beam. MeV energy electrostatic accelerator ion H + beam emittance measurement results are presented.

  8. Consideration of beam plasma ion-source

    International Nuclear Information System (INIS)

    Sano, Fumimichi; Kusano, Norimasa; Ishida, Yoshihiro; Ishikawa, Junzo; Takagi, Toshinori

    1976-01-01

    Theoretical and experimental analyses and their comparison were made on the plasma generation and on the beam extraction for the beam plasma ion-source. The operational principle and the structure of the ion-source are explained in the first part. Considerations are given on the electron beam-plasma interaction and the resulting generation of high frequency or microwaves which in turn increases the plasma density. The flow of energy in this system is also explained in the second part. The relation between plasma density and the imaginary part of frequency is given by taking the magnetic flux density, the electron beam energy, and the electron beam current as parameters. The relations between the potential difference between collector and drift tube and the plasma density or the ion-current are also given. Considerations are also given to the change of the plasma density due to the change of the magnetic flux density at drift tube, the change of the electron beam energy, and the change of the electron beam current. The third part deals with the extraction characteristics of the ion beam. The structure of the multiple-aperture electrode and the relation between plasma density and the extracted ion current are explained. (Aoki, K.)

  9. Beam transport

    International Nuclear Information System (INIS)

    1988-01-01

    The beam diagnostic components for both the transfer and the high-energy beamlines perform well except for some of the scanners whose noise pick-up has become a problem, especially at low beam intensities. This noise pick-up is primarily due to deterioration of the bearings in the scanner. At some locations in the high-energy beamlines, scanners were replaced by harps as the scanners proved to be practically useless for the low-intensity beams required in the experimental areas. The slits in the low-energy beamline, which are not water-cooled, have to be repaired at regular intervals because of vacuum leaks. Overheating causes the ceramic feedthroughs to deteriorate resulting in the vacuum leaks. Water-cooled slits have been ordered to replace the existing slits which will later be used in the beamlines associated with the second injector cyclotron SPC2. The current-measurement system will be slightly modified and should then be much more reliable. 3 figs

  10. Proton beam source

    International Nuclear Information System (INIS)

    Auslender, V.L.; Lazarev, V.N.; Panfilov, A.D.

    1979-01-01

    A proton pulse source with penning discharge and a cathode needle in the discharge chamber is described. The source is simple in design and has a great service life. An electromagnet induces a magnetic field of the order of 700 Oe along the axis of the discharge chamber. In this field the discharge is ignited between the left and right cathodes when a positive voltage is applied to the anode. A hole in the recess of the right cathode serves to provide the injection of plasma into the accelerating gap. The cathodes and the anode unit are set into a sleeve welded to magnet poles. Through a magnetic circuit this unit is placed on a high-voltage ceramic insulator. For extraction and initial shaping of an ion beam with a divergence angle of 3 0 use is made of extraction electrodes which form the Pierce optics. Further shaping of the ion beam is realized by an electrostatic lens. Tungsten grids in the holes of grounded electrodes increase the focusing effect of the lens. At the input of the first accelerating gap of an accelerator the described source provides an ion peak current of 140 mA at 65% content of protons and a normalized emittance of no more than 4x10 -5 cmxrad

  11. Design consideration of relativistic klystron two-beam accelerator for suppression of beam-break-up

    International Nuclear Information System (INIS)

    Li, H.; Houck, T.L.; Yu, S.; Goffeney, N.

    1994-03-01

    It is demonstrated in this simulation study that by using the scheme of operating rf extraction structures on the betatron nodes of electron drive beam in conjunction with adequate de-Q-ing, appropriate choice of geometries for the rf structures (reducing transverse impedence) and/or staggered tuning we can suppress the overall growth of transverse instabilities to 4 e-folds in a relativistic klystron two-beam accelerator with 200 extraction cavities

  12. Beam divergence scaling in neutral beam injectors

    International Nuclear Information System (INIS)

    Holmes, A.J.T.

    1976-01-01

    One of the main considerations in the design of neutral beam injectors is to monimize the divergence of the primary ion beam and hence maximize the beam transport and minimize the input of thermal gas. Experimental measurements of the divergence of a cylindrical ion beam are presented and these measurements are used to analyze the major components of ion beam divergence, namely: space charge expansion, gas-ion scattering, emittance and optical aberrations. The implication of these divergence components in the design of a neutral beam injector system is discussed and a method of maximizing the beam current is described for a given area of source plasma

  13. Design issues of radioactive ion beam facilities

    International Nuclear Information System (INIS)

    Lieuvin, M.

    1996-01-01

    There is an increasing interest in Radioactive Ion Beams throughout the world. These ions open new domains of research for nuclear physics, nuclear astrophysics and atomic physics. Two methods are used for the production of these beams: fragmentation of a primary, high energy heavy ion beam passing through a thin target or nuclei production in a thick target bombarded either by a heavy ion beam, a proton beam or by neutrons. When radioactive species are produced in a thick target, they must be extracted, ionised, separated, identified and finally accelerated. This requires a radioactive ion source, a mass separator and a post accelerator. This paper reviews these two methods, their respective domains and the specific problems related to the control and the accelerator of radioactive ion beams. (author). 39 refs., 3 figs., 2 tabs

  14. Doppler-shifted neutral beam line shape and beam transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O`Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-{alpha} line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3{degrees} (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9{degrees}. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9{degrees}. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of {approximately}75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2{degrees}, rather than the 4.95{degrees} subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence.

  15. Doppler-shifted neutral beam line shape and beam transmission

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-α line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3 degrees (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9 degrees. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9 degrees. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2 degrees, rather than the 4.95 degrees subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence

  16. Beam screens for the LHC beam pipes

    CERN Multimedia

    Patrice Loïez

    1997-01-01

    Cross-section of LHC prototype beam pipes showing the beam screens. Slits in the screens allow residual gas molecules to be pumped out and become frozen to the walls of the ultra-cold beam pipe. Beam screens like these have been designed to line the beam pipes, absorbing radiation before it can hit the magnets and warm them up, an effect that would greatly reduce the magnetic field and cause serious damage.

  17. Emittance growth due to space charge compensation and beam intensity instabilities in negative ion beams

    Directory of Open Access Journals (Sweden)

    C. A. Valerio-Lizarraga

    2018-03-01

    Full Text Available The need to extract the maximum beam intensity with low transversal emittance often comes with the drawback of operating the ion source to limits where beam current instabilities arise, such fluctuations can change the beam properties producing a mismatch in the following sections of the machine. The space charge compensation (SCC generated by the beam particles colliding with the residual gas reaches a steady state after a build-up time. This paper shows how once in the steady state, the beam ends with a transversal emittance value bigger than the case without compensation. In addition, we study how the beam intensity variation can disturb the SCC dynamics and its impact on the beam properties. The results presented in this work come from 3-D simulations using tracking codes taking into account the secondary ions to estimate the degree of the emittance growth due to space charge and SCC.

  18. Emittance growth due to space charge compensation and beam intensity instabilities in negative ion beams

    Science.gov (United States)

    Valerio-Lizarraga, C. A.

    2018-03-01

    The need to extract the maximum beam intensity with low transversal emittance often comes with the drawback of operating the ion source to limits where beam current instabilities arise, such fluctuations can change the beam properties producing a mismatch in the following sections of the machine. The space charge compensation (SCC) generated by the beam particles colliding with the residual gas reaches a steady state after a build-up time. This paper shows how once in the steady state, the beam ends with a transversal emittance value bigger than the case without compensation. In addition, we study how the beam intensity variation can disturb the SCC dynamics and its impact on the beam properties. The results presented in this work come from 3-D simulations using tracking codes taking into account the secondary ions to estimate the degree of the emittance growth due to space charge and SCC.

  19. Beam geometry selection using sequential beam addition.

    Science.gov (United States)

    Popple, Richard A; Brezovich, Ivan A; Fiveash, John B

    2014-05-01

    The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. For situations in which beam geometry has a significant effect on the objective function, SBA can identify arrangements equivalent to equiangular

  20. Beam geometry selection using sequential beam addition

    Energy Technology Data Exchange (ETDEWEB)

    Popple, Richard A., E-mail: rpopple@uabmc.edu; Brezovich, Ivan A.; Fiveash, John B. [Department of Radiation Oncology, The University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294 (United States)

    2014-05-15

    Purpose: The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. Methods: The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. Results: In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. Conclusions: For situations in which beam geometry has a significant effect on the objective function, SBA can identify

  1. Irreversible processes in beam emittance shaping at an ion source outlet

    International Nuclear Information System (INIS)

    Batalin, V.A.

    1984-01-01

    The value of the minimal possible emittance of ion beam extracted from gas-discharge source was estimated by the methods of nonequilibrium thermodynamics. Criterion for evaluation of ion optics quality and efficiency of beam formation in the system of ion extraction was obtained by correlation of mentioned value with beam emittance measured in the experiment

  2. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  3. Intense relativistic electron beam: generation and propagation

    International Nuclear Information System (INIS)

    Mittal, K.C.; Mondal, J.

    2010-01-01

    A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V 3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)

  4. DESIGN OF ILC EXTRACTION LINE FOR 20 MRAD CROSSING ANGLE

    International Nuclear Information System (INIS)

    Nosochkov, Y.; Moffeit, K.; Seryi, A.; Woods, M.; SLAC; Arnold, R.; Massachusetts U., Amherst; Oliver, W.; Tufts U.; Parker, B.; Brookhaven; Torrence, E.; Oregon U.

    2005-01-01

    One of the two ILC Interaction Regions will have a large horizontal crossing angle which would allow to extract the spent beams in a separate beam line. In this paper, the extraction line design for 20 mrad crossing angle is presented. This beam line transports the primary e + /e - and beamstrahlung photon beams from the IP to a common dump, and includes diagnostic section for energy and polarization measurements. The optics is designed for a large energy acceptance to minimize losses in the low energy tail of the disrupted beam. The extraction optics, diagnostic instrumentation and particle tracking simulations are described

  5. Evaluation of beam divergence of a negative hydrogen ion beam using Doppler shift spectroscopy diagnostics

    Science.gov (United States)

    Deka, A. J.; Bharathi, P.; Pandya, K.; Bandyopadhyay, M.; Bhuyan, M.; Yadav, R. K.; Tyagi, H.; Gahlaut, A.; Chakraborty, A.

    2018-01-01

    The Doppler Shift Spectroscopy (DSS) diagnostic is in the conceptual stage to estimate beam divergence, stripping losses, and beam uniformity of the 100 keV hydrogen Diagnostics Neutral Beam of International Thermonuclear Experimental Reactor. This DSS diagnostic is used to measure the above-mentioned parameters with an error of less than 10%. To aid the design calculations and to establish a methodology for estimation of the beam divergence, DSS measurements were carried out on the existing prototype ion source RF Operated Beam Source in India for Negative ion Research. Emissions of the fast-excited neutrals that are generated from the extracted negative ions were collected in the target tank, and the line broadening of these emissions were used for estimating beam divergence. The observed broadening is a convolution of broadenings due to beam divergence, collection optics, voltage ripple, beam focusing, and instrumental broadening. Hence, for estimating the beam divergence from the observed line broadening, a systematic line profile analysis was performed. To minimize the error in the divergence measurements, a study on error propagation in the beam divergence measurements was carried out and the error was estimated. The measurements of beam divergence were done at a constant RF power of 50 kW and a source pressure of 0.6 Pa by varying the extraction voltage from 4 kV to10 kV and the acceleration voltage from 10 kV to 15 kV. These measurements were then compared with the calorimetric divergence, and the results seemed to agree within 10%. A minimum beam divergence of ˜3° was obtained when the source was operated at an extraction voltage of ˜5 kV and at a ˜10 kV acceleration voltage, i.e., at a total applied voltage of 15 kV. This is in agreement with the values reported in experiments carried out on similar sources elsewhere.

  6. Beam-beam effects in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  7. Crystalline beams

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1989-01-01

    Ions in a storage ring are confined to a mean orbit by focusing elements. To a first approximation these may be described by a constant harmonic restoring force: F = -Kr. If the particles in the frame moving along with the beam have small random thermal energies, then they will occupy a cylindrical volume around the mean orbit and the focusing force will be balanced by that from the mutual repulsion of the particles. Inside the cylinder only residual two-particle interactions will play a significant role and some form of ordering might be expected to take place. The results of some of the first MD calculations showed a surprising result: not only were the particles arranged in the form of a tube, but they formed well-defined layers: concentric shells, with the particles in each shell arranged in a hexagonal lattice that is characteristic of two-dimensional Coulomb systems. This paper discusses the condense layer structure

  8. Cyclotron for Beam Therapy Application

    CERN Document Server

    Alenitsky, Yu G; Karamysheva, G A; Kostromin, S A; Mitsyn, G V; Molokanov, A G; Onishchenko, L M; Samsonov, E V; Vorozhtsov, S B; Zaplatin, N L

    2005-01-01

    The basic parameters of the proton isochronous cyclotron on the fixed energy are considered. The energy of protons is $E_{p}\\sim $ 220~MeV, intensity of the extracted beam is $I_{p}\\sim $ 0.1~$\\mu$A. The cyclotron is projected on the basis of compact magnet with four sectors and the diameter of poles 300 cm. Two dees of the accelerating system are located in valleys.

  9. Efficiency evaluation of slow extraction from the synchrotron

    International Nuclear Information System (INIS)

    Kazarinov, N.Yu.; Mikhajlov, V.A.

    1986-01-01

    Analytical calculation of slow extraction of the beam out of the JINR synchrotron is made. The formulae for evaluation of the sextupole amplitudes and phases, quadrupole lens gradient range are obtained, the connection with circulated and extracted beam parameters is shown. The formulae for calculating optimal position of the septum-magnet or electrostatic septum are presented. On this basis the formula for estimating the efficiency of beam slow extraction out of the synchrotron is obtained under assumption that in the septum region during the extraction a quasistationary distribution of the beam density occurs

  10. Injection and extraction for cyclotrons

    CERN Document Server

    Kleeven, W

    2006-01-01

    The main design goals for beam injection are explained and special problems related to a central region with internal ion source are considered. The principle of a PIG source is addressed. The issue of vertical focusing in the cyclotron centre is briefly discussed. Several examples of numerical simulations are given. Different ways of (axial) injection are briefly outlined. A proposal for a magnetostatic axial inflector is given. Different solutions for beam extraction are treated. These include the internal target, extraction by stripping, resonant extraction using a deflector and self-extraction. The different ways of creating a turn-separation are explained. The purpose of different types of extraction devices such as harmonic coils, deflectors and gradient corrector channels are outlined. Several illustrations are given in the form of photographs and drawings.

  11. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  12. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  13. Beam Diagnostics of the Small Isochronous Ring

    Energy Technology Data Exchange (ETDEWEB)

    Felix Marti; Eduard Pozdeyev

    2004-07-01

    The purpose of this paper is to describe the beam diagnostic systems in the Small Isochronous Ring (SIR) developed and built at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). SIR is a small-scale experiment that simulates the dynamics of intense beams in large accelerators. A 20 to 30 keV hydrogen or deuterium ion bunch is injected in the ring, extracted after a variable number of turns and its longitudinal profile is studied. Some of the diagnostic tools available in SIR include an emittance measurement system in the injection line, scanning wires in different sections of the ring, phosphor screens at the injection and extraction points and a fast Faraday cup in the extraction line. The design of these systems and the kind of beam information they provide are discussed in detail.

  14. Measuring beam losses in the THI project

    International Nuclear Information System (INIS)

    David, L.; Duneau, P.; Lecorche, E.; Lermine, P.; Lemaitre, E.; Ulrich, M.

    1997-01-01

    The goal of the THI project (High Intensity Transport) is to upgrade the GANIL facilities by increasing the beam by a factor of 15, at least for light ions. This higher intensity is required by the radioactive beam facility SPIRAL starting in September 1997, to generate the new nuclear species in the solid target-source (ISOL method). For the control system, the most important issues are now to tune the accelerators while minimizing the beam losses at each stage of acceleration and when not possible, to have a fast beam loss detection signal. This system is composed of probes which deliver a signal to stop the beam when there's too much intensity lost and when not, a logarithmic value of the beam intensity. These probes are linked to a front end VME crate on the network, and in the control room, on the workstations, a graphical user interface program displays the beam variations using logarithmic scales. This program is also used to center the beam while injecting in or ejecting from the main cyclotrons by tuning the steerers, the magnetic elements inside, and the electrostatic deflector to be able to separate and extract the last beam turn. (author)

  15. Beam emittance measurements on multicusp ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Sarstedt, M.; Lee, Y.; Leung, K.N. [and others

    1995-08-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 {mu}m patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf-pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of an rf-generated plasma.

  16. Beam emittance measurements on multicusp ion sources

    International Nuclear Information System (INIS)

    Sarstedt, M.; Lee, Y.; Leung, K.N.

    1995-08-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 μm patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf-pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of an rf-generated plasma

  17. Electron beam control for barely separated beams

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method for achieving independent control of multiple beams in close proximity to one another, such as in a multi-pass accelerator where coaxial beams are at different energies, but moving on a common axis, and need to be split into spatially separated beams for efficient recirculation transport. The method for independent control includes placing a magnet arrangement in the path of the barely separated beams with the magnet arrangement including at least two multipole magnets spaced closely together and having a multipole distribution including at least one odd multipole and one even multipole. The magnetic fields are then tuned to cancel out for a first of the barely separated beams to allow independent control of the second beam with common magnets. The magnetic fields may be tuned to cancel out either the dipole component or tuned to cancel out the quadrupole component in order to independently control the separate beams.

  18. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  19. Design of a negative ion neutral beam system for TNS

    International Nuclear Information System (INIS)

    Easoz, J.R.

    1978-05-01

    A conceptual design of a neutral beam line based on the neutralization of negative deuterium ions is presented. This work is a detailed design of a complete neutral beam line based on using negative ions from a direct extraction source. Anticipating major technological advancements, beam line components have been scaled including the negative ion sources and components for the direct energy recovery of charged beams and high speed cryogenic pumping. With application to the next step in experimental fusion reactors (TNS), the neutral beam injector system that has been designed provides 10 MW of 200 keV neutral deuterium atoms. Several arms are required for plasma ignition

  20. Beam dynamics design of the Compact Linear Collider Drive Beam injector

    International Nuclear Information System (INIS)

    Hajari, Sh. Sanaye; Shaker, H.; Doebert, S.

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The longitudinal and transverse beam dynamics of the Drive Beam injector has been studied in detail and optimized. The injector consists of a thermionic gun followed by a bunching system, some accelerating structures, and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher, and a traveling wave buncher all embedded in a solenoidal magnetic field. The main characteristic of the Drive Beam injector is the phase coding process done by the sub-harmonic bunching system operating at half the acceleration frequency. This process is essential for the frequency multiplication of the Drive Beam. During the phase coding process the unwanted satellite bunches are produced that adversely affects the machine power efficiency. The main challenge is to reduce the population of particles in the satellite bunches in the presence of strong space-charge forces due to the high beam current. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimizing the injector performance compared to the existing model studied for the Conceptual Design Report (CDR). The emphasis of the optimization was on decreasing the satellite population, the beam loss in the magnetic chicane and limiting the beam emittance growth in transverse plane

  1. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  2. ISR beam scrapers

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Beam scrapers seen in the direction of the beam. The two horizontal scraper foils are near the centre of the beam pipe andthe two scrapers for protection of the vacuum chamber are further outside. In the lower part of the beam pipe is the vertical halo scraping blade.

  3. Telecommunication using muon beams

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location

  4. Analysis of orthotropic beams

    Science.gov (United States)

    Jen Y. Liu; S. Cheng

    1979-01-01

    A plane-stress analysis of orthotropic or isotropic beams is presented. The loading conditions considered are: (1) a concentrated normal load arbitrarily located on the beam, and (2) a distributed normal load covering an arbitrary length of the beam. exhibit close agreement with existing experimental data from Sitka spruce beams. Other loading conditions can similarly...

  5. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  6. LANSCE beam current limiter

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1996-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described

  7. Detection of Ground Motion effects on the beam trajectory at ATF2

    CERN Document Server

    Renier, Y; Tomas, R; Schulte, D

    2012-01-01

    The ATF2 experiment is currently demonstrating the feasibility of the beam delivery system for the future linear collider. The orbit feedback is very critical to obtain the nanometer vertical beam size at the interaction point and in the case of CLIC, ground motion effects on the beam must be corrected. In this respect, as a proof of principle of a ground motion feed forward, the ground motion effects on the beam trajectory are extracted from the beam position monitor readings.

  8. Simulation and beam line experiments for the superconducting ECRion source VENUS

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Damon S.; Leitner, Daniela; Grote, David P.; Lyneis, ClaudeM.

    2007-09-10

    The particle-in-cell code Warp has been enhanced toincorporate both two- and three-dimensional sheath extraction modelsgiving Warp the capability of simulating entire ion beam transportsystems including the extraction of beams from plasma sources. In thisarticle we describe a method of producing initial ion distributions forplasma extraction simulations in electron cyclotron resonance (ECR) ionsources based on experimentally measured sputtering on the source biaseddisc. Using this initialization method, we present preliminary resultsfor extraction and transport simulations of an oxygen beam and comparethem with experimental beam imaging on a quartz viewing plate for thesuperconducting ECR ion source VENUS.

  9. Simulation and beam line experiments for the superconducting ECR ion source VENUS

    International Nuclear Information System (INIS)

    Todd, Damon S.; Leitner, Daniela; Grote, David P.; Lyneis, ClaudeM.

    2007-01-01

    The particle-in-cell code Warp has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving Warp the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disc. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS

  10. Ion beam characteristics of a gas filled accelerator tube

    International Nuclear Information System (INIS)

    Berg, R.S.; Bickes, R.W. Jr.; Boers, J.E.; Shope, L.A.

    1980-01-01

    A gas filled tube used to produce a pulsed neutron flux with the D(T, 4 He)n reaction is described. Deuterium and tritium ions generated in a reflex discharge are extracted and accelerated to 100 keV by means of an accelerator electrode onto a deutero-tritide target electrode. The electrodes are designed to focus the ion beam onto the target. Total tube currents consisting of extracted ions, unsuppressed secondary electrons, and ions generated by interactions with the background gas are typically 100mA. Characteristics of the extracted ion beam are discussed. Accelerating voltages greater than 50kV are required to focus the beam through the accelerator aperture for configurations that give beams with the proper energy density at the target. The perveance of the beam is defined. Maximum perveance values are 2 to 10 nanopervs. Tube focussing and neutron production characteristics are described

  11. Ion beam diagnosis

    International Nuclear Information System (INIS)

    Strehl, P.

    1994-04-01

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  12. A machine protection beam position monitor system

    International Nuclear Information System (INIS)

    Medvedko, E.; Smith, S.; Fisher, A.

    1998-01-01

    Loss of the stored beam in an uncontrolled manner can cause damage to the PEP-II B Factory. We describe here a device which detects large beam position excursions or unexpected beam loss and triggers the beam abort system to extract the stored beam safely. The bad-orbit abort trigger beam position monitor (BOAT BPM) generates a trigger when the beam orbit is far off the center (>20 mm), or rapid beam current loss (dI/dT) is detected. The BOAT BPM averages the input signal over one turn (136 kHz). AM demodulation is used to convert input signals at 476 MHz to baseband voltages. The detected signal goes to a filter section for suppression of the revolution frequency, then on to amplifiers, dividers, and comparators for position and current measurements and triggering. The derived current signal goes to a special filter, designed to perform dI/dT monitoring at fast, medium, and slow current loss rates. The BOAT BPM prototype test results confirm the design concepts

  13. Cryogenic Beam Loss Monitoring for the LHC

    CERN Document Server

    Kurfuerst, C; Sapinski, M

    A Beam Loss Monitoring (BLM) system was installed on the outside surface of the LHC magnet cryostats to protect the accelerator equipment from beam losses. The protection is achieved by extracting the beam from the ring in case thresholds imposed on measured radiation levels are exceeded. Close to the interaction regions of the LHC, the present BLM system is sensitive to particle showers generated in the interaction region of the two beams. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. The particle showers measured by the present BLM configuration are partly shielded by the cryostat and the iron yoke of the magnets. The system can hence be optimised by locating beam loss monitors as close as possible to the protected element, i. e. the superconducting coils, inside the cold mass of the magnets in superfluid helium at 1.9 K. T...

  14. CTF3 Drive Beam Injector Optimisation

    CERN Document Server

    AUTHOR|(CDS)2082899; Doebert, S

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The main feasibility issues of the two-beam acceleration scheme are being demonstrated at CLIC Test Facility 3 (CTF3). The CTF3 Drive Beam injector consists of a thermionic gun followed by the bunching system and two accelerating structures all embedded in solenoidal magnetic field and a magnetic chicane. Three sub-harmonic bunchers (SHB), a prebuncher and a travelling wave buncher constitute the bunching system. The phase coding process done by the sub-harmonic bunching system produces unwanted satellite bunches between the successive main bunches. The beam dynamics of the CTF3 Drive Beam injector is reoptimised with the goal of improving the injector performance and in particular decreasing the satellite population, the beam loss in the magnetic chicane and the beam emittance in transverse plane compare to the original model based on P. Ur...

  15. Modular low-voltage electron beams

    International Nuclear Information System (INIS)

    Berejka, A.J.; Avnery, Tovi; Carlson, Carl

    2004-01-01

    Modular, low-voltage systems have simplified electron beam (EB) technology for industrial uses and for research and development. Modular EB units are produced in quantity as sealed systems that are evacuated at the factory eliminating the need for vacuum pumps at the point of use. A simple plug-out--plug-in method of replacement eliminates downtime for servicing. Use of ultra-thin beam windows (<10 μm of titanium foil), solid-state 19 in. (48 cm) rack-mounted power supplies, an innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, combine for ease of use and electrical transfer efficiency at voltages that can be varied between 80 and 150 kV and with high beam currents (up to 40 mA across the 25 cm window). These electron systems are available in three widths, the standard 25 cm and new 5 and 40 cm beams. Traditional uses in the graphic arts and coatings areas as well as uses in surface sterilization have found these compact, lightweight (approximately 15 kg) modular beams of interest. Units have been configured around complex shapes to enable three-dimensional surface curing (as for coatings on aluminum tubing) to be achieved at high production rates. Details of the beam construction and some industrial uses are discussed

  16. Modular low-voltage electron beams

    Science.gov (United States)

    Berejka, Anthony J.; Avnery, Tovi; Carlson, Carl

    2004-09-01

    Modular, low-voltage systems have simplified electron beam (EB) technology for industrial uses and for research and development. Modular EB units are produced in quantity as sealed systems that are evacuated at the factory eliminating the need for vacuum pumps at the point of use. A simple plug-out—plug-in method of replacement eliminates downtime for servicing. Use of ultra-thin beam windows (innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, combine for ease of use and electrical transfer efficiency at voltages that can be varied between 80 and 150 kV and with high beam currents (up to 40 mA across the 25 cm window). These electron systems are available in three widths, the standard 25 cm and new 5 and 40 cm beams. Traditional uses in the graphic arts and coatings areas as well as uses in surface sterilization have found these compact, lightweight (approximately 15 kg) modular beams of interest. Units have been configured around complex shapes to enable three-dimensional surface curing (as for coatings on aluminum tubing) to be achieved at high production rates. Details of the beam construction and some industrial uses are discussed.

  17. Reconstruction of negative hydrogen ion beam properties from beamline diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Benjamin

    2014-09-25

    For the experimental fusion reactor ITER, which should show the feasibility of sustaining a fusion plasma with a positive power balance, some technology still has to be developed, amongst others also the plasma heating system. One heating technique is the neutral beam injection (NBI). A beam of fast deuterium atoms is injected into the fusion plasma. By heavy particle collisions the beam particles give their energy to the plasma. A NBI system consists of three major components. First, deuterium ions are generated in a low temperature, low pressure plasma of an ion source. At ITER, the requirements on the beam energy of 1 MeV cause the necessity of negative charged deuterium ions. Secondly, the ions are accelerated within an acceleration system with several grids, where the plasma grid is the first grid. The grids are on different descending high voltage potentials. The source itself is on the highest negative potential. Thirdly, the fast deuterium ions have to be neutralised. This thesis deals with the second step in the mentioned beam system, the ion acceleration and beam formation. The underlying experiments and measurements were carried out at the testbeds BATMAN (BAvarianTest MAchine for Negative ions) and ELISE (Extraction from a Large Ion Source Experiment) at the Max-Planck-Institut fuer Plasmaphysik Garching (IPP Garching). The main goal of this thesis is to provide a tool which allows the determination of the beam properties. These are beam divergence, stripping losses and beam inhomogeneity. For this purpose a particle trajectory code has been developed from scratch, namely BBC-NI (Bavarian Beam Code for Negative Ions). The code is able to simulate the whole beam and the outcome of several beam diagnostic tools. The data obtained from the code together with the measurements of the beam diagnostic tools should allow the reconstruction of the beam properties. The major beam diagnostic tool, which is used in this thesis, is the beam emission spectroscopy

  18. Power losses in the international linear collider 20 mrad extraction ...

    Indian Academy of Sciences (India)

    to the emission of hard beamstrahlung photons, which can then turn into coherent pairs. A careful design of the extraction line must be performed in order to transport the outgoing charged beams and beamstrahlung photons from the interaction point to their dump. In this study, we estimate the beam losses in the extraction ...

  19. Calculation of injection and extraction orbits for the IPCR SSC

    International Nuclear Information System (INIS)

    Goto, A.; Yano, Y.; Kishida, N.; Nakanishi, N.; Wada, T.

    1982-01-01

    Calculations of beam trajectories in the injection and extraction systems for the IPCR SSC were done and the characteristics of those elements were determined. Beam centering for single turn extraction by use of first harmonic fields were also studied. The rather simple conditions at the injection point for a well-centered acceleration orbit are also discussed

  20. Longitudinal stability of the LHC beam in the SPS

    CERN Document Server

    Shaposhnikova, Elena

    2001-01-01

    Longitudinal beam stability is analysed for the LHC Beam in the SPS. The most critical area is shown to be the top energy. Analysis explains some results of measurements with the beam done d uring the MDs last year. The possibility of using this cycle for CNGS is considered as well. There, without special requirements on bunch parameters at extraction, the impedance limitations move to the lowest energy. An option with low transition energy is presented also.

  1. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  2. The diagnostic neutral beam system for text

    International Nuclear Information System (INIS)

    Hammond, D.P.; Burgin, D.; Coupland, J.R.; DeVere, A.P.C.; Green, T.S.; Klein, H.H.

    1986-01-01

    The detection of highly stripped impurity ions in a Tokamak plasma by means of charge exchange with a probing neutral beam is an interesting and developing technique. Such a beam system is being designed and manufactured by the Culham Laboratory under contract to the University of Texas at Austin. The specification is for a high brightness beam of hydrogen atoms of 30-50 keV energy with a current density of 30 mA/cm/sup 2/ in the target plane. The pulse length is 100 mS, and the beam has to be capable of being modulated at high frequency (≥ 1 KHz) to improve the overall detection capability of the diagnostic system. The total extracted current at 50 KV is 7.2A. The design has been based on a ''bucket'' type plasma source with a four-electrode extraction array of circular apertures. Low perveance extraction is used to obtain both high brightness and freedom from high voltage breakdown, in view of the high degree of reliability needed. Details of performance of the beam line measured during commissioning tests at Culham are given

  3. Revisit of combined parallel-beam/cone-beam or fan-beam/cone-beam imaging.

    Science.gov (United States)

    Zeng, Gengsheng L

    2013-10-01

    This aim of this paper is to revisit the parallel-beam/cone-beam or fan-beam/cone-beam imaging configuration, and to investigate whether this configuration has any advantages. Twenty years ago, it was suggested to simultaneously use a parallel-beam (or a fan-beam) collimator and a cone-beam collimator to acquire single photon emission computed tomography data. The motivation was that the parallel-beam (or the fan-beam) collimator can provide sufficient sampling, while the cone-beam collimator is able to provide higher photon counts. Even with higher total counts, this hybrid system does not give significant improvement (if any) in terms of image noise and artifacts reduction. If a conventional iterative maximum-likelihood expectation-maximization algorithm is used to reconstruct the image, the resultant reconstruction may be worse than the parallel-beam-only (or fan-beam-only) system. This paper uses the singular value decomposition (SVD) analysis to explain this phenomenon. The SVD results indicate that the parallel-beam-only and the fan-beam-only system outperform the combined systems. The optimal imaging system does not necessary to be the one that generates the projections with highest signal-to-noise ratio and best resolution.

  4. ICAN: High power neutral beam generation

    International Nuclear Information System (INIS)

    Moustaizis, S.D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J.E.; Balcou, P.

    2015-01-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi- fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to a few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration. (authors)

  5. Molecular-beam scattering

    International Nuclear Information System (INIS)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N 2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl → NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2 2 P/sub 3/2/) and Na(3 2 P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included

  6. Section of CMS Beam Pipe Removed

    CERN Document Server

    2013-01-01

    Seven components of the beam pipe located at the heart of the CMS detector were removed in recent weeks. The delicate operations were performed in several stages as the detector was opened. Video of the extraction of one section: http://youtu.be/arGuFgWM7u0

  7. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  8. Synchronous characterization of semiconductor microcavity laser beam.

    Science.gov (United States)

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  9. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  10. T10 Beam Studies & Beam Simulation

    CERN Document Server

    Bergmann, Michael Georges; Van Dijk, Maarten; CERN. Geneva. EN Department

    2017-01-01

    In order to test detector components before their installation in actual experiments, one uses test beams in which one can control particle typ, momentum and size to high degree. For this project the focus of a secondary beam at T10 in the East Area at CERN was analysed using an AZALEA telescope from DESY.

  11. MODELLING SLOW EXTRACTION INDUCED RADIOACTIVITY IN SPS LSS2

    CERN Document Server

    Araujo Martinez, Aurora Cecilia; CERN. Geneva. TE Department

    2017-01-01

    The Accelerator and Beam Transfer (ABT) group is investigating the impact of recent proposals to extract higher proton intensities to Fixed Target experiments at the SPS. The 400 GeV high-energy proton beam is typically extracted over a few seconds using a resonant slow-extraction technique that induces small but unavoidable beam losses on the extraction equipment in SPS LSS2. In this report, the induced radioactivity for 2016-2017 is used to predict future activation levels and cool-down times, using a past intervention as a reference to predict dose to the personnel carrying-out maintenance of the accelerator.

  12. External proton and Li beams

    International Nuclear Information System (INIS)

    Schuff, Juan A.; Burlon, Alejandro A.; Debray, Mario E.; Kesque, Jose M.; Kreiner, Andres J.; Stoliar, Pablo A.; Naab, Fabian; Ozafran, Mabel J.; Vazquez, Monica E.; Perez de la Hoz, A.; Somacal, Hector; Valda, Alejandro; Canevas, S.; Ruffolo, M.; Tasat, D.R.; Muhlmann, M. C.

    2000-01-01

    In the frame of a feasibility study to introduce proton therapy in Argentina in a collaborative agreement between the Physics and Radiobiology Departments of the National Atomic Energy Commission or Argentina and the Centre de Protontherapie de Orsay, France, external proton and Li beams were produced at the TANDAR accelerator in Buenos Aires. The specific aim of this work was to start radiobiology studies on cell cultures and small laboratory animals. In particular we seek to determine here the relative biological effectiveness, RBE, for proton and Li beams as a function of energy for different tumor and normal cell lines. The 24 MeV proton beam was diffused using a 25 μm gold foil and extracted through a Kapton window to obtain a homogeneous field (constant to 95%) of about 7 cm in diameter. Measurements were carried out with quasi-monoenergetic beams (of 20.2 ± 0.07 MeV, 2.9 ± 0.10 MeV y 1.5 ± 0.1 MeV for protons and 21.4 ± 0.4 MeV for Lithium). Proton fluence and Bragg peaks were measured. The dose delivered in each case was monitored on-line with a calibrated transmission ionization chamber. Three cell lines PDV, PDVC 57 and V 79 (as a reference) were irradiated with γ-rays, proton and lithium beams with linear energy transfer (LET) from 2 to 100 keV/μm. RBE values in the range of 1.2-5.9 were obtained. In addition preliminary studies on chromosomal aberrations and viability of alveolar macrophages were carried out. (author)

  13. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  14. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  15. Beam Loss in Linacs

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  16. Beam scanning system

    International Nuclear Information System (INIS)

    Enge, H.A.

    1977-01-01

    A system for deflecting a beam of particles having different momenta, preferably through a 90 0 angle, so as to cause the beam to impinge upon a moving target and to scan across the target is described. The system includes a means responsive to a beam from a suitable source for causing the beam to periodically scan in a scanning plane and further means for deflecting the periodically scanned beam through the desired angle in a deflection plane so that the deflected beam impinges on the target. Means are included in the system for reducing the momentum dispersion at the target in both the deflection and the scanning planes and for spatially focussing the beam so as to produce a desired beam diameter at the target

  17. Crossed beam experiments

    International Nuclear Information System (INIS)

    Dolder, K.T.

    1976-01-01

    Many natural phenomena can only be properly understood if one has a detailed knowledge of interactions involving atoms, molecules, ions, electrons or photons. In the laboratory these processes are often studied by preparing beams of two types of particle and observing the reactions which occur when the beams intersect. Some of the more interesting of these crossed beam experiments and their results are discussed. Proposals to extend colliding beam techniques to high energy particle physics are also outlined. (author)

  18. Use of off-axis injection as an alternative to geometrically merging beams in an energy-recovering linac

    Science.gov (United States)

    Douglas, David R [York County, VA

    2012-01-10

    A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.

  19. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  20. Beams 92: Proceedings

    International Nuclear Information System (INIS)

    Mosher, D.; Cooperstein, G.

    1993-01-01

    This report contains papers on the following topics: Ion beam papers; electron beam, bremsstrahlung, and diagnostics papers; radiating Z- pinch papers; microwave papers; electron laser papers; advanced accelerator papers; beam and pulsed power applications papers; pulsed power papers; and these papers have been indexed separately elsewhere