WorldWideScience

Sample records for beam epitaxy growth

  1. Kinetic roughening in models of molecular-beam epitaxy growth

    International Nuclear Information System (INIS)

    A brief survey of recent progress in understanding the kinetic roughening in growth models with surface diffusion, which are relevant for growth by molecular-beam epitaxy, in given. The main emphasis is on results of computer simulations. Properties of several different models are described and compared. In particular, results for two models, the Wolf-Villain model (and its modifications) and the full diffusion model, in 1+1, 2+1 and also in higher dimensions are presented. The asymptotic behaviour of the Wolf-Villain model is of an Edwards-Wilkinson type. Both models show an unusual scaling behaviour of the height-height correlation function

  2. Epitaxial film growth and metastable phases of single crystal Dy by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K.; Homma, H.; Schuller, I.K.

    1988-04-15

    We have grown two novel epitaxial phases of dysprosium (Dy) on vanadium (V) by the molecular beam epitaxy technique. Surface structures are studied by in situ reflection high-energy electron diffraction, and bulk structures are studied by x-ray diffraction after removal from the growth chamber. The new hcp phases are approx.4% expanded uniformly in the (0001) plane and approx.9% and approx.4% expanded out of plane, along the c axes, for noninterrupted and interrupted deposition cases, respectively. We also observed (2 x 2), (3 x 3), and (4 x 4) Dy surface reconstruction patterns and a series of structural changes as the Dy film thickness increases.

  3. On the Growth of Complex Oxides by Molecular Beam Epitaxy

    Science.gov (United States)

    Fong, Dillon

    Functional materials based on complex oxides in thin film form offer new and exciting strategies for meeting many of our outstanding energy challenges through systematic control of layer sequencing, strain, etc. However, the synthesis of such oxide films can be a major challenge even when utilizing reactive molecular-beam epitaxy (MBE), a powerful deposition technique that allows the construction of materials atomic plane by atomic plane. To understand the fundamental physics of oxide growth by reactive MBE, we present in situ surface x-ray diffraction results on the growth of SrTiO3 and SrO-SrTiO3 thin films on (001)-oriented SrTiO3 substrates. For homoepitaxy, we compare sequential deposition (alternating Sr and Ti monolayer doses) with that of co-deposition of Sr and Ti, both in a background of oxygen pressure, and observe drastically different growth pathways due to the presence of a TiO2 double layer. For heteroepitaxial growth of Ruddlesden-Popper SrO-SrTiO3 films, we find that layers rearrange dynamically, resulting in layer sequences distinct from the shutter sequence. In general, the starting surface structure and composition, in combination with local thermodynamic considerations, strongly influence our ability to atomically construct new complex oxides.

  4. Growth of epitaxial ZnO films on sapphire substrates by plasma assisted molecular beam epitaxy

    Science.gov (United States)

    Hyndman, Adam R.; Allen, Martin W.; Reeves, Roger J.

    2014-03-01

    Epitaxial layers of ZnO have been grown on c-plane, (0001) sapphire substrates by plasma assisted molecular beam epitaxy. The oxygen:zinc flux ratio was found to be crucial in obtaining a film with a smooth surface and good crystallinity. When increasing film thickness from ~80 to 220 nm we observed an increase in the streakiness of RHEED images, and XRD revealed a reduction in crystal strain and increase in crystal alignment. A film with surface roughness of 0.5 nm and a XRD rocking curve FWHM of 0.1 for the main ZnO peak (0002) was achieved by depositing a low temperature ZnO buffer layer at 450 °C and then growing for 120 minutes at 700 °C with a Zn-cell temperature of 320 °C and an oxygen partial pressure of 7e-7 Torr. We found novel structures on two samples grown outside of our ideal oxygen:zinc flux ratio. SEM images of a sample believed to have been grown in a Zn-rich environment showed flower like structures up to 150 um in diameter which appear to have formed during growth. Another sample believed to have been deposited in a Zn-deficient environment had rings approximately 1.5 um in diameter scattered on its surface.

  5. Growth of very large InN microcrystals by molecular beam epitaxy using epitaxial lateral overgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, J., E-mail: kamimura@pdi-berlin.de [Department of Engineering and Applied Sciences, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Kishino, K.; Kikuchi, A. [Department of Engineering and Applied Sciences, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan); Sophia Nanotechnology Research Center, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2015-02-28

    Very thick InN (∼40 μm) was grown by molecular beam epitaxy using the epitaxial lateral overgrowth (ELO) technique. In some regions, the ELO of InN was observed as expected, indicating an important step toward fabricating quasi-bulk InN substrates. Interestingly, most parts of the sample consist of large flat-topped microcrystals and well-faceted microstructures. This is likely due to local growth condition variations during ELO, which is supported by an experiment where ELO of InN was performed on a substrate with various stripe mask patterns. TEM characterization of a flat top InN microcrystal revealed few stacking faults and only related threading dislocations. Defect-free small faceted microcrystals were also observed. The thick InN crystals show a narrow photoluminescence spectrum with a peak at 0.679 eV and linewidth of 16.8 meV at 4 K.

  6. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Comes, Ryan; Liu Hongxue; Lu Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Gu, Man [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Khokhlov, Mikhail; Wolf, Stuart A. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Guilford College, Greensboro, North Carolina 27410 (United States)

    2013-01-14

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  7. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    Science.gov (United States)

    Comes, Ryan; Gu, Man; Khokhlov, Mikhail; Liu, Hongxue; Lu, Jiwei; Wolf, Stuart A.

    2013-01-01

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  8. Epitaxial growth and new phase of single crystal Dy by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kai-Yueh; Homma, Hitoshi; Schuller, I.K.

    1987-09-01

    We have grown two novel epitaxial phases of dysprosium (Dy) on vanadium (V) by molecular beam epitaxy technique. Surface and bulk structures are studied by in-situ reflection high energy electron diffraction (RHEED) and x-ray diffraction techniques. The new hcp phases are approx.4% expanded uniformly in-plane (0001), and approx.9% and approx.4% expanded out of plane along the c-axes for non-interrupted and interrupted deposition case, respectively. We also observed (2 x 2), (3 x 3), and (4 x 4) Dy surface reconstruction patterns and a series of transitions as the Dy film thickness increases. 12 refs., 3 figs.

  9. Molecular beam epitaxy growth of InSb1−xBix thin films

    DEFF Research Database (Denmark)

    Song, Yuxin; Wang, Shumin; Saha Roy, Ivy;

    2013-01-01

    Molecular beam epitaxy growth for InSb1−xBix thin films on (100) GaAs substrates is reported. Successful Bi incorporation for 2% is achieved, and up to 70% of the incorporated Bi atoms are at substitutional sites. The effects of growth parameters on Bi incorporation and surface morphology are stu...

  10. Growth of CdTe films on GaAs by ionized cluster beam epitaxy

    Science.gov (United States)

    Tang, H. P.; Feng, J. Y.; Fan, Y. D.; Li, H. D.

    1991-06-01

    Stoichiometric epitaxial films of CdTe were grown on (100)GaAs substrates by ionized cluster beam (ICB) epitaxy. Streaky RHEED patterns indicated good crystallinity and surface flatness of the epitaxial CdTe films. CdTe(100) orientation was obtained when the substrate preheating temperature was 480°C, while CdTe growth inboth (100) and (111) orientations occured when the substrate preheating temperature was above 550°C. The characteristics of the ICB growth process were investigated and the cluster-involving growth behavior has been evidenced. When sufficient clusters were generated in the deposition beam under adequate source vapor pressures, the crystalline quality of the resulting CdTe epilayers improved significantly with the increase of kinetic energy of the CdTe clusters. The best CdTe epilayer obtained exhibited a CdTe(400) double crystal rocking curve (DCRC) having a FWHM of 630 arc sec.

  11. Growth of CdTe films on GaAs by ionized cluster beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.P.; Feng, J.Y.; Fan, Y.D.; Li, H.D. (Dept. of Materials Science and Engineering, Tsinghua Univ., Beijing (China))

    1991-06-01

    Stoichiometric epitaxial films of CdTe were grown on (100)GaAs substrates by ionized cluster beam (ICB) epitaxy. Streaky RHEED patterns indicated good crystallinity and surface flatness of the epitaxial CdTe films. CdTe(100) orientation was obtained when the substrate preheating temperature was 480degC, while CdTe growth in both (100) and (111) orientations occurred when the substrate preheating temperature was above 550degC. The characteristics of the ICB growth process were investigated and the cluster-involving growth behavior has been evidenced. When sufficient clusters were generated in the deposition beam under adequate source vapor pressures, the crystalline quality of the resulting CdTe epilayers improved significantly with the increase of kinetic energy of the CdTe clusters. The best CdTe epilayer obtained exhibited a CdTe(400) double crystal rocking curve (DCRC) having a FWHM of 630 arc sec. (orig.).

  12. High growth rate metal-organic molecular beam epitaxy for the fabrication of GaAs space solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Freundlich, A.; Newman, F.; Monier, C.; Street, S. [University of Houston, TX (United States). Space Vacuum Epitaxy Center; Dargan, P.; Levy, M. [Riber Inc., Edison, NJ (United States)

    2000-06-01

    In this work, the epitaxial growth of GaAs photovoltaic devices using metalorganic molecular beam epitaxy (MOMBE) and chemical beam epitaxy (CBE) with growth rates in excess of 3 {mu}m/h is undertaken. The performance of these preliminary devices offer encouraging evidence for MOMBE and CBE as possible alternatives to the more common metalorganic chemical vapor deposition (MOCVD) for the production of III-V solar cells. (author)

  13. InAs nanowire growth modes on Si (111) by gas source molecular beam epitaxy

    Science.gov (United States)

    Robson, M. T.; LaPierre, R. R.

    2016-02-01

    InAs nanowires (NWs) were grown on silicon substrates by gas source molecular beam epitaxy using five different growth modes: (1) Au-assisted growth, (2) positioned (patterned) Au-assisted growth, (3) Au-free growth, (4) positioned Au-assisted growth using a patterned oxide mask, and (5) Au-free selective-area epitaxy (SAE) using a patterned oxide mask. Optimal growth conditions (temperature, V/III flux ratio) were identified for each growth mode for control of NW morphology and vertical NW yield. The highest yield (72%) was achieved with the SAE method at a growth temperature of 440 °C and a V/III flux ratio of 4. Growth mechanisms are discussed for each of the growth modes.

  14. Growth of Gold-assisted Gallium Arsenide Nanowires on Silicon Substrates via Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Ramon M. delos Santos

    2008-06-01

    Full Text Available Gallium arsenide nanowires were grown on silicon (100 substrates by what is called the vapor-liquid-solid (VLS growth mechanism using a molecular beam epitaxy (MBE system. Good quality nanowires with surface density of approximately 108 nanowires per square centimeter were produced by utilizing gold nanoparticles, with density of 1011 nanoparticles per square centimeter, as catalysts for nanowire growth. X-ray diffraction measurements, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy revealed that the nanowires are epitaxially grown on the silicon substrates, are oriented along the [111] direction and have cubic zincblende structure.

  15. Epitaxial Growth of Si(111)/Er2O3(111) Structure on Si(111) by Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    XU Run; TANG Min-Yan; ZHU Yan-Yan; WANG Lin-Jun

    2011-01-01

    The Si overlayers are grown by molecular beam epitaxy on atomically smllth Er2O3(111) films prepared on Si(111) substrates. Single crystalline Si overlayers are achieved and are evident due to the spot-like reflective high energy electron diffraction(RHEED) patterns and x-ray diffraction patterns. The epitaxial relationship of the Si overlayer along the surface with respect to the orientation of EreO3 and the Si substrate is as follows:overgrown Si(111)//Er2O3(111)//Si(111).The rough surface of Si overlayers, as identified by both RHEED patterns and atomic force microscopy images, indicates a three-dimensional growth mode. The reason for this is based on the interfacial energy argument. Further growth of Er2O3 films on this rough Si overlayer leads to the polycrystalline nature of the topmost Er2O3 layer.

  16. Molecular Beam Epitaxial Growth of GaAs on (631) Oriented Substrates

    International Nuclear Information System (INIS)

    In this work, we report the study of the homoepitaxial growth of GaAs on (631) oriented substrates by molecular beam epitaxy (MBE). We observed the spontaneous formation of a high density of large scale features on the surface. The hilly like features are elongated towards the [-5, 9, 3] direction. We show the dependence of these structures with the growth conditions and we present the possibility of to create quantum wires structures on this surface

  17. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    S. S. Kushvaha

    2014-02-01

    Full Text Available We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001 substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 108 cm−2 at 750 °C than that of the low temperature grown sample (1.1 × 109 cm−2 at 730 °C. A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  18. Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Hexagonal boron nitride (h-BN) single-crystal domains were grown on cobalt (Co) substrates at a substrate temperature of 850–900 °C using plasma-assisted molecular beam epitaxy. Three-point star shape h-BN domains were observed by scanning electron microscopy, and confirmed by Raman and X-ray photoelectron spectroscopy. The h-BN on Co template was used for in situ growth of multilayer graphene, leading to an h-BN/graphene heterostructure. Carbon atoms preferentially nucleate on Co substrate and edges of h-BN and then grow laterally to form continuous graphene. Further introduction of carbon atoms results in layer-by-layer growth of graphene on graphene and lateral growth of graphene on h-BN until it may cover entire h-BN flakes

  19. Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zuo, Zheng; Liu, Jianlin, E-mail: jianlin@ece.ucr.edu [Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521 (United States)

    2015-11-23

    Hexagonal boron nitride (h-BN) single-crystal domains were grown on cobalt (Co) substrates at a substrate temperature of 850–900 °C using plasma-assisted molecular beam epitaxy. Three-point star shape h-BN domains were observed by scanning electron microscopy, and confirmed by Raman and X-ray photoelectron spectroscopy. The h-BN on Co template was used for in situ growth of multilayer graphene, leading to an h-BN/graphene heterostructure. Carbon atoms preferentially nucleate on Co substrate and edges of h-BN and then grow laterally to form continuous graphene. Further introduction of carbon atoms results in layer-by-layer growth of graphene on graphene and lateral growth of graphene on h-BN until it may cover entire h-BN flakes.

  20. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Lastras-Martínez, A., E-mail: alm@cactus.iico.uaslp.mx, E-mail: alastras@gmail.com; Ortega-Gallegos, J.; Guevara-Macías, L. E.; Nuñez-Olvera, O.; Balderas-Navarro, R. E.; Lastras-Martínez, L. F. [Instituto de Investigación en Comunicación Optica, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, San Luis Potosí, SLP 78000 (Mexico); Lastras-Montaño, L. A. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Lastras-Montaño, M. A. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106 (United States)

    2014-03-01

    We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  1. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    Directory of Open Access Journals (Sweden)

    A. Lastras-Martínez

    2014-03-01

    Full Text Available We report on real time-resolved Reflectance-difference (RD spectroscopy of GaAs(001 grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  2. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    International Nuclear Information System (INIS)

    We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors

  3. Growth of GaSb1-xBix by molecular beam epitaxy

    DEFF Research Database (Denmark)

    Song, Yuxin; Wang, Shumin; Roy, Ivy Saha;

    2012-01-01

    Molecular beam epitaxy for GaSb1-xBix is investigated in this article. The growth window for incorporation of Bi in GaSb was found. Strategies of avoiding formation of Bi droplets and enhancing Bi incorporation were studied. The Bi incorporation was confirmed by SIMS and RBS measurements. The Bi...... concentration in the samples was found to increase with increasing growth temperature and Bi flux. The position of GaSb1-xBix layer peak in XRD rocking curves is found to be correlated to Bi composition. Surface and structural properties of the samples were also investigated. Samples grown on GaSb and Ga...

  4. Molecular beam epitaxy of SrTiO3 with a growth window

    Science.gov (United States)

    Jalan, Bharat; Moetakef, Pouya; Stemmer, Susanne

    2009-07-01

    Many complex oxides with only nonvolatile constituents do not have a wide growth window in conventional molecular beam epitaxy (MBE) approaches, which makes it difficult to obtain stoichiometric films. Here it is shown that a growth window in which the stoichiometry is self-regulating can be achieved for SrTiO3 films by using a hybrid MBE approach that uses a volatile metal-organic source for Ti, titanium tetra isopropoxide (TTIP). The growth window widens and shifts to higher TTIP/Sr flux ratios with increasing temperature, showing that it is related to the desorption of the volatile TTIP. We demonstrate stoichiometric, highly perfect, insulating SrTiO3 films. The approach can be adapted for the growth of other complex oxides that previously were believed to have no wide MBE growth window.

  5. Effects of substrate orientation on the growth of InSb nanostructures by molecular beam epitaxy

    Science.gov (United States)

    Chou, C. Y.; Torfi, A.; Pei, C.; Wang, W. I.

    2016-05-01

    In this work, the effects of substrate orientation on InSb quantum structure growth by molecular beam epitaxy (MBE) are presented. Motivated by the observation that (411) evolves naturally as a stable facet during MBE crystal growth, comparison studies have been carried out to investigate the effects of the crystal orientation of the underlying GaSb substrate on the growth of InSb by MBE. By depositing InSb on a number of different substrate orientations, namely: (100), (311), (411), and (511), a higher nanostructure density was observed on the (411) surface compared with the other orientations. This result suggests that the (411) orientation presents a superior surface in MBE growth to develop a super-flat GaSb buffer surface, naturally favorable for nanostructure growth.

  6. Molecular beam epitaxy growth and optical properties of single crystal Zn3N2 films

    Science.gov (United States)

    Wu, Peng; Tiedje, T.; Alimohammadi, H.; Bahrami-Yekta, V.; Masnadi-Shirazi, M.; Wang, Cong

    2016-10-01

    Single crystal Zn3N2 films with (100) orientation have been grown by plasma-assisted molecular beam epitaxy on MgO and A-plane sapphire substrates with in situ optical reflectance monitoring of the growth. The optical bandgap was found to be 1.25-1.28 eV and an electron Hall mobility as high as 395 cm2 V-1 s-1 was measured. The films were n-type with carrier concentrations in the 1018-1019 cm-3 range.

  7. Impact of growth parameters on the morphology and microstructure of epitaxial GaAs nanowires grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.Y. [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 (China); Chen, P.P., E-mail: ppchen@mail.sitp.ac.cn [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 (China); Liao, Z.M. [Materials Engineering, University of Queensland, St. Lucia, QLD 4072 (Australia); Shi, S.X.; Sun, Y.; Li, T.X.; Zhang, Y.H. [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 (China); Zou, J. [Materials Engineering, University of Queensland, St. Lucia, QLD 4072 (Australia); Center for Microscopy and Microanalysis, University of Queensland, St. Lucia, QLD 4072 (Australia); Lu, W. [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083 (China)

    2013-12-15

    Highlights: •Defect-free wurtzite GaAs nanowires were obtained by MBE at low growth temperature. •Some GaAs nanowires grown at low temperature show the morphology of two shoulders. •High growth temperature favors the formation of nanowires with uniform diameter. •Low V/III flux ratio causes many kinked GaAs nanowires. •A phase separation of the catalyst is observed under very Ga-rich condition. -- Abstract: The effect of the growth temperature and V/III flux ratio on the morphology and microstructure of GaAs nanowires grown on GaAs (1 1 1){sub B} substrates by Au-assisted molecular beam epitaxy with solid As{sub 4} source was investigated. It has been found that a low growth temperature of 400 °C can result in defect-free wurtzite structured nanowire with syringe-like morphology, while nanowires with more homogeneous diameter can be obtained at high temperatures (500 °C and 550 °C) with many stacking faults. It was also found that, at a low V/III flux ratio, GaAs nanowires had a shrinking neck section, while a high V/III flux ratio may result in disappearance of the shrinking necking section. For the Ga very rich condition, a phase separation of the catalysts can be observed, leaving a small Au–Ga droplet covered by the outer pure Ga droplet.

  8. Investigation of the silicon ion density during molecular beam epitaxy growth

    CERN Document Server

    Eifler, G; Ashurov, K; Morozov, S

    2002-01-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate betw...

  9. Design and growth of a P N diode by molecular beam epitaxy

    International Nuclear Information System (INIS)

    In this work, design, growth and characterization of a GaAs p-n contact is presented. The contact growth has been performed by Molecular Beam Epitaxy. The n layer with thickness of 1μm and electron concentration of 6 * 1017 cm-3 has been grown on a p-type GaAs substrate with hole concentration of 1 * 1017cm-3. During growth, in situ monitoring of the layer stoichiometry has been made possible by using Reflection High Energy Electron Diffraction technique. After growth characterization was performed by the use of Hall-effect measurement, the results for the carrier concentration was further confirmed by Electrochemical Capacitance-Voltage profiling technique

  10. Epitaxial film growth study of single crystal V/Ce prepared by molecular-beam epitaxy on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Homma, H.; Yang, K.Y.; Schuller, I.K.

    1986-11-01

    The growth of epitaxial films of cerium (Ce)/vanadium (V)/on single crystal sapphires (..cap alpha..-Al/sub 2/O/sub 3/) was studied by in-situ reflection high energy electron diffraction and x-ray scattering. For the first time Ce(111) single crystal films was grown on V(110)/Al/sub 2/O/sub 3/(1120) in the Frank-van der Merwe mode. A new epitaxial orientation, different from the well known Nishiyama-Wasserman or Kurdjumov-Sachs orientations is found in the present study. Subsequent V(110) layers grow epitaxially with three equivalent domains.

  11. InAs/GaAs(001) molecular beam epitaxial growth in a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    The growth on InAs on GaAs(001) has attracted great interest and investigation over the past few decades primarily due to the opto-electronic properties of the self-assembled quantum dot (QD) arrays formed. Scanning tunnelling microscopy (STM) has been extensively employed to investigate the complicated and spontaneous mechanism of QD growth via molecular beam epitaxy (MBE). Classically, combined MBE-STM requires quenching the sample after growth and transferring it to an arsenic-free high vacuum chamber which houses the STM system. However, without access to the phenomenon as a dynamic process a basic understanding remains elusive. In order to access surface dynamics, MBE and STM must be combined into a single element. The system herein discussed allows the operation of MBE sources in an STM system relating to InAs/GaAs(001) surfaces.

  12. Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Abhinav, E-mail: praka019@umn.edu; Dewey, John; Yun, Hwanhui; Jeong, Jong Seok; Mkhoyan, K. Andre; Jalan, Bharat, E-mail: bjalan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-15

    Owing to its high room-temperature electron mobility and wide bandgap, BaSnO{sub 3} has recently become of significant interest for potential room-temperature oxide electronics. A hybrid molecular beam epitaxy (MBE) approach for the growth of high-quality BaSnO{sub 3} films is developed in this work. This approach employs hexamethylditin as a chemical precursor for tin, an effusion cell for barium, and a radio frequency plasma source for oxygen. BaSnO{sub 3} films were thus grown on SrTiO{sub 3} (001) and LaAlO{sub 3} (001) substrates. Growth conditions for stoichiometric BaSnO{sub 3} were identified. Reflection high-energy electron diffraction (RHEED) intensity oscillations, characteristic of a layer-by-layer growth mode were observed. A critical thickness of ∼1 nm for strain relaxation was determined for films grown on SrTiO{sub 3} using in situ RHEED. Scanning transmission electron microscopy combined with electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy confirmed the cube-on-cube epitaxy and composition. The importance of precursor chemistry is discussed in the context of the MBE growth of BaSnO{sub 3}.

  13. Molecular beam epitaxy growth of InSb1-xBix thin films

    DEFF Research Database (Denmark)

    Yuxin Song; Shumin Wang; Saha Roy, Ivy;

    2013-01-01

    Molecular beam epitaxy growth for InSb1-xBix thin films on (100) GaAs substrates is reported. Successful Bi incorporation for 2% is achieved, and up to 70% of the incorporated Bi atoms are at substitutional sites. The effects of growth parameters on Bi incorporation and surface morphology are stu...

  14. Molecular beam epitaxial growth of tungsten layers embedded in single crystal gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Harbison, J.P.; Hwang, D.M.; Levkoff, J.; Derkits G.E. Jr.

    1985-12-01

    We have been able to fabricate structures which consist of a thin (approx.10 nm) polycrystalline W film embedded in surrounding single crystalline GaAs by molecular beam epitaxy (MBE) using an electron beam evaporation source to deposit W metal in an ultrahigh vacuum MBE growth chamber. The entire deposition sequence can take place at elevated temperature (625--700 /sup 0/C) due to the nonreactive nature of W with respect to GaAs. Reflective high-energy diffraction and transmission electron microscopy indicate that the single crystal GaAs overgrowth proceeds by seeding from the GaAs layer beneath the W through spontaneously occurring perforations in the W layer.

  15. Molecular beam epitaxy

    CERN Document Server

    Pamplin, Brian R

    1980-01-01

    Molecular Beam Epitaxy introduces the reader to the use of molecular beam epitaxy (MBE) in the generation of III-V and IV-VI compounds and alloys and describes the semiconductor and integrated optics reasons for using the technique. Topics covered include semiconductor superlattices by MBE; design considerations for MBE systems; periodic doping structure in gallium arsenide (GaAs); nonstoichiometry and carrier concentration control in MBE of compound semiconductors; and MBE techniques for IV-VI optoelectronic devices. The use of MBE to fabricate integrated optical devices and to study semicond

  16. Investigation of the silicon ion density during molecular beam epitaxy growth

    International Nuclear Information System (INIS)

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively

  17. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    International Nuclear Information System (INIS)

    We have re-investigated growth and magnetic properties of Cr2CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr2CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr2CoGa Heusler phase, rather than Co2CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 oC. The measured small spin moment of Cr2CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr2CoGa and the existence of the disorders and phase separation

  18. Growth and properties of amorphous silicon films grown using pulsed-flow reactive plasma beam epitaxy

    Science.gov (United States)

    Dalal, Vikram L.; Knox, Ralph; Kandalaft, Nabeeh; Baldwin, Greg

    1991-01-01

    The growth and properties of a-Si:H films grown using a novel deposition technique, reactive plasma beam epitaxy, are discussed. In this technique, a remote H plasma produced in a microwave-ECR reactor is used to grow a-Si:H films at low pressures. The H ions react with SiH4 introduced near the substrate to produce the film. The flow of SiH4 is pulsed on or off, thereby achieving in-situ annealing of the film during growth by H ions and radicals. The films produced by this technique appear to have good electronic quality, and are more stable than the standard glow discharge films.

  19. Palladium assisted hetroepitaxial growth of an InAs nanowire by molecular beam epitaxy

    International Nuclear Information System (INIS)

    The palladium (Pd) assisted epitaxial growth of technologically important InAs nanowires grown on GaAs{111}B substrates using molecular beam epitaxy is reported. The grown free-standing InAs nanowires adapted a vapor–liquid–solid growth mechanism. The impacts of the catalyst particle density, growth temperature and input V/III precursor ratio have been investigated to identify better growth conditions for getting high-density non-<111>-orientated InAs nanowires. We assert here that two kind of nanowires are observed, one having a pure zinc-blende crystalline structure free of stacking faults, and the other with a defect-free wurtzite crystalline structure. However, few of them have defect imperfections too. The L- and Y-shaped nanowires confirm similar surface free energies for possible <110> growth directions. These unusual growth directions are attributed to the effect of the catalyst material as well as the surface-induced strain at the interface between the grown nanowires with substrates. The structural features of the grown nanowires are studied by employing scanning and transmission electron microscopic techniques. The obtained TEM results confirm that the nanowire catalyst interface is not a straightforward zinc-blende structured nanowire. Energy dispersive x-ray (EDX) analysis reveals that the tip of the grown nanowires with the chemical composition of Pd and In have a nearly 50:50 ratio, while the nanowire body did not have any catalyst traces other than the composition of InAs for both type of nanowires. The obtained high angle annular dark field (HAADF) TEM image for both types of nanowires along with the intensity profile provided evidence for cubic as well as hexagonal facets. (paper)

  20. Growth of semiconductor alloy InGaPBi on InP by molecular beam epitaxy

    International Nuclear Information System (INIS)

    We report the first successful growth of InGaPBi single crystals on InP substrate with Bi concentration far beyond the doping level by gas source molecular beam epitaxy. The InGaPBi thin films reveal excellent surface and structural qualities, making it a promising new III–V compound family member for heterostructures. The strain can be tuned between tensile and compressive by adjusting Ga and Bi compositions. The maximum achieved Bi concentration is 2.2 ± 0.4% confirmed by Rutherford backscattering spectroscopy. Room temperature photoluminescence shows strong and broad light emission at energy levels much smaller than the InP bandgap. (paper)

  1. Surface energies for molecular beam epitaxy growth of HgTe and CdTe

    Science.gov (United States)

    Berding, M. A.; Krishnamurthy, Srinivasan; Sher, A.

    1991-10-01

    We present results for the surface binding energies for HgTe and CdTe that will serve as input for molecular beam epitaxy growth models. We have found that the surface binding energies are surface orientation dependent and are not simply proportional to the number of first-neighbor bonds being made to the underlying layer. Moreover, because of the possibility of charge transfer between cation and anion surface states, one may have large differences between the binding energy for the first and the last atom in a given layer, and these differences will be different for the narrow-gap, less ionic materials than for the wide gap, ionic materials. We also find that the surface states associated with an isolated surface atom or vacancy are extended in materials with small gaps and small effective masses, and thus call into question the modeling of surface binding by simple pair interactions.

  2. Growth and properties of GdTiO3 films prepared by hybrid molecular beam epitaxy

    Science.gov (United States)

    Moetakef, Pouya; Ouellette, Daniel G.; Zhang, Jack Y.; Cain, Tyler A.; Allen, S. James; Stemmer, Susanne

    2012-09-01

    The paper reports on the thin film growth of a protoptype Mott insulator, ferrimagnetic GdTiO3, using shuttered molecular beam epitaxy. Substrates were (001) (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT), with and without epitaxial SrTiO3 buffer layers, respectively. It was found that on bare LSAT, the starting monolayer was crucial for stabilizing the GdTiO3 perovskite phase. The quality of the films was evaluated using structural, electric, optical and magnetic characterization. Structural characterization showed that the GdTiO3 layers were free of pyrochlore impurity phases and that the lattice parameter was close to what was expected for coherently strained, stoichiometric GdTiO3. The room temperature film resistivity was 7 Ωcm and increased with decreasing temperature, consistent with Mott insulating characteristics. The Curie temperature was 30 K and a small coercivity was observed at 2 K, in good agreement with bulk GdTiO3 properties reported in the literature.

  3. Mapping growth windows in quaternary perovskite oxide systems by hybrid molecular beam epitaxy

    Science.gov (United States)

    Brahlek, Matthew; Zhang, Lei; Zhang, Hai-Tian; Lapano, Jason; Dedon, Liv R.; Martin, Lane W.; Engel-Herbert, Roman

    2016-09-01

    Requisite to growing stoichiometric perovskite thin films of the solid-solution A'1-xAxBO3 by hybrid molecular beam epitaxy is understanding how the growth conditions interpolate between the end members A'BO3 and ABO3, which can be grown in a self-regulated fashion, but under different conditions. Using the example of La1-xSrxVO3, the two-dimensional growth parameter space that is spanned by the flux of the metal-organic precursor vanadium oxytriisopropoxide and composition, x, was mapped out. The evolution of the adsorption-controlled growth window was obtained using a combination of X-ray diffraction, atomic force microscopy, reflection high-energy electron-diffraction (RHEED), and Rutherford backscattering spectroscopy. It is found that the stoichiometric growth conditions can be mapped out quickly with a single calibration sample using RHEED. Once stoichiometric conditions have been identified, the out-of-plane lattice parameter can be utilized to precisely determine the composition x. This strategy enables the identification of growth conditions that allow the deposition of stoichiometric perovskite oxide films with random A-site cation mixing, which is relevant to a large number of perovskite materials with interesting properties, e.g., high-temperature superconductivity and colossal magnetoresistance, that emerge in solid solution A'1-xAxBO3.

  4. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Wuwei, E-mail: wfeng@cugb.edu.cn; Wang, Weihua [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zhao, Chenglong [Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Van Quang, Nguyen; Cho, Sunglae, E-mail: slcho@ulsan.ac.kr [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Dung, Dang Duc [Department of General Physics, School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi (Viet Nam)

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperature is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.

  5. Laser Molecular Beam Epitaxy Growth of BaTiO3 in Seven Thousands of Unit-Cell Layers

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan-Hong; YANG Guo-Zhen; HE Meng; ZHAO Kun; TIAN Huan-Fang; L(U) Hui-Bin; JIN Kui-Juan; CHEN Zheng-Hao; ZHOU Yue-Liang; LI Jian-Qi

    2005-01-01

    @@ BaTiO3 thin films in seven thousands of unit-cell layers have been successfully fabricated on SrTiO3 (001)substrates by laser molecular beam epitaxy. The fine streak pattern and the undamping intensity oscillation of reflection high-energy electron diffraction indicate that the BaTiO3 film was layer-by-layer epitaxial growth. The measurements of scanning electron microscopy and atomic force microscopy show that surfaces of the BaTiO3thin film are atomically smooth. The measurements of x-ray diffraction and transmission electron microscopy,as well as selected-area electron diffraction revealthat the BaTiO3 thin film is a c-oriented epitaxial crystalline structure.

  6. Molecular beam epitaxy a short history

    CERN Document Server

    Orton, J W

    2015-01-01

    This volume describes the development of molecular beam epitaxy from its origins in the 1960s through to the present day. It begins with a short historical account of other methods of crystal growth, both bulk and epitaxial, to set the subject in context, emphasising the wide range of semiconductor materials employed. This is followed by an introduction to molecular beams and their use in the Stern-Gerlach experiment and the development of the microwave MASER.

  7. Thin film growth of CaFe2As2 by molecular beam epitaxy

    Science.gov (United States)

    Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.

    2016-01-01

    Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.

  8. In-situ spectral reflectance for improving molecular beam epitaxy device growth

    Energy Technology Data Exchange (ETDEWEB)

    Breiland, W.G. [Sandia National Labs., Albuquerque, NM (United States). Chemical Processing Sciences Dept.; Hammons, B.E.; Hou, H.Q.; Killeen, K.P.; Klem, J.F.; Reno, J.L.; Sherwin, M.

    1997-05-01

    This report summarizes the development of in situ spectral reflectance as a tool for improving the quality, reproducibility, and yield of device structures grown from compound semiconductors. Although initially targeted at MBE (Molecular Beam Epitaxy) machines, equipment difficulties forced the authors to test most of their ideas on a MOCVD (Metal Organic Chemical Vapor Deposition) reactor. A pre-growth control strategy using in situ reflectance has led to an unprecedented demonstration of process control on one of the most difficult device structures that can be grown with compound semiconductor materials. Hundreds of vertical cavity surface emitting lasers (VCSEL`s) were grown with only {+-} 0.3% deviations in the Fabry-Perot cavity wavelength--a nearly ten-fold improvement over current calibration methods. The success of the ADVISOR (Analysis of Deposition using Virtual Interfaces and Spectroscopic Optical Reflectance) method has led to a great deal of interest from the commercial sector, including use by Hewlett Packard and Honeywell. The algorithms, software and reflectance design are being evaluated for patents and/or license agreements. A small company, Filmetrics, Inc., is incorporating the ADVISOR analysis method in its reflectometer product.

  9. Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy

    OpenAIRE

    Jalan, Bharat; Engel-Herbert, Roman; Wright, Nicholas J.; Stemmer, Susanne

    2009-01-01

    A hybrid molecular beam epitaxy approach for atomic-layer controlled growth of high-quality SrTiO3 films with scalable growth rates was developed. The approach uses an effusion cell for Sr, a plasma source for oxygen, and a metal-organic source titanium tetra isopropoxide for Ti. SrTiO3 films were investigated as a function of cation flux ratio on 001 SrTiO3 and LaAlO30.3Sr2AlTaO60.7 LSAT substrates. Growth conditions for stoichiometric insulating films were identified. Persistent 180 oscilla...

  10. Epitaxial growth of HgCdTe 1.55-um avalanche photodiodes by molecular beam epitaxy

    Science.gov (United States)

    de Lyon, Terence J.; Baumgratz, B.; Chapman, G. R.; Gordon, E.; Hunter, Andrew T.; Jack, Michael D.; Jensen, John E.; Johnson, W.; Johs, Blaine D.; Kosai, K.; Larsen, W.; Olson, G. L.; Sen, M.; Walker, B.

    1999-04-01

    Separate absorption and multiplication avalanche photodiode (SAM-APD) device structures, operating in the 1.1 - 1.6 micrometer spectral range, have been fabricated in the HgCdTe material system by molecular-beam epitaxy. These HgCdTe device structures, which offer an alternative technology to existing III-V APD detectors, were grown on CdZnTe(211)B substrates using CdTe, Te, and Hg sources with in situ In and As doping. The alloy composition of the HgCdTe layers was adjusted to achieve both efficient absorption of IR radiation in the 1.1 - 1.6 micrometer spectral range and low excess-noise avalanche multiplication. To achieve resonant enhancement of hole impact ionization from the split-off valence band, the Hg(subscript 1-x)Cd(subscript x)Te alloy composition in the gain region of the device, x equals 0.73, was chosen to achieve equality between the bandgap energy and spin-orbit splitting. The appropriate value of this alloy composition was determined from analysis of the 300 K bandgap and spin-orbit splitting energies of a set of calibration layers, using a combination of IR transmission and spectroscopic ellipsometry measurements. MBE-grown APD epitaxial wafers were processed into passivated mesa-type discrete device structures and diode mini-arrays using conventional HgCdTe process technology. Device spectral response, dark current density, and avalanche gain measurements were performed on discrete diodes and diode mini- arrays on the processed wafers. Avalanche gains in the range of 30 - 40 at reverse bias of 85 - 90 V and array-median dark current density below 2 X 10(superscript -4) A/cm(superscript 2) at 40 V reverse bias have been demonstrated.

  11. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    Science.gov (United States)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  12. Evolution of self-assembled InAs/Gas(001) quantum dots grown by growth-interrupted molecular beam epitaxy

    OpenAIRE

    Balzarotti, A.

    2008-01-01

    Self-assembled InAs quantum dots (QDs) grown on GaAs(001) surface by molecular beam epitaxy under continuous and growth-interruption modes exhibit two families of QDs, quasi-3D (Q3D) and 3D QDs, whose volume density evolution is quantitatively described by a rate-equation kinetic model. The volume density of small Q3D QDs decreases exponentially with time during the interruption, while the single-dot mean volume of the large QDs increases by Ostwald ripening. The kinetics of growth involves c...

  13. Molecular beam epitaxy growth of Si/SiGe bound-to-continuum quantum cascade structures for THz emission

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M. [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden)], E-mail: Ming.Zhao@imec.be; Karim, A.; Hansson, G.V. [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Ni, W.-X. [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); National Nano Device Laboratories, Hsinchu 30078, Taiwan, ROC (China); Townsend, P.; Lynch, S.A.; Paul, D.J. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE (United Kingdom)

    2008-11-03

    A Si/SiGe bound-to-continuum quantum cascade design for THz emission was grown using solid-source molecular beam epitaxy on Si{sub 0.8}Ge{sub 0.2} virtual substrates. The growth parameters were carefully studied and several samples with different boron doping concentrations were grown at optimized conditions. Extensive material characterizations revealed a high crystalline quality of the grown structures with an excellent growth control. Layer undulations resulting from a nonuniform strain field, introduced by high doping concentration, were observed. The device characterizations suggested that a modification on the design was needed in order to enhance the THz emission.

  14. Molecular beam epitaxy growth of MgZnSSe/ZnSSe Bragg mirrors controlled by in situ optical reflectometry.

    OpenAIRE

    Hegarty, John

    1995-01-01

    PUBLISHED In situ optical reflectometry at the wavelength of 488 nm was employed to control the growth of MgZnSSe/ZnSSe Bragg mirror stacks for the blue-green spectral region. 10- and 20-period layer structures of MgZnSSe/ZnSSe were grown on GaAs ~100! epilayers by molecular beam epitaxy. A room-temperature peak reflectance of 86% was obtained for the 20-period structure at the central wavelength of 474 nm. The results show that, in general, in situ optical monitoring of growth...

  15. Effect of source chemistry and growth parameters on AlGaAs grown by metalorganic molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Abernathy, C.R.; Pearton, S.J.; Baiocchi, F.A.; Ambrose, T.; Jordan, A.S. (AT and T Bell Labs., Murray Hill, NJ (USA)); Bohling, D.A.; Muhr, G.T. (Air Products and Chemicals, Inc., Allentown, PA (USA))

    1991-03-01

    We have investigated the effect of V/III ratio and substrate temperature on the growth rate, Al composition, crystallinity, and impurity concentration of AlGaAs grown by metalorganic molecular beam epitaxy (MOMBE). The effect of these growth parameters on the deposition rates of both GaAs and AlAs has also been determined. By comparing films grown from various combinations of triethylgallium (TEGa), trimethylgallium (TMGa), triethylaluminium (TEA), and trimethylamine alane (TMAAl), we have been able to further identify the surface reactions which are most important in determining film composition and quality. (orig.).

  16. Effect of N2 microplasma treatment on initial growth of GaN by metal–organic molecular beam epitaxy

    Science.gov (United States)

    Suzuki, Yohei; Kusakabe, Yasuhiro; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya; Shimizu, Kazuo

    2016-08-01

    N2 atmospheric microplasma was applied to improve the yields and reproducibility of the initial growth of GaN by metal–organic molecular beam epitaxy (MOMBE). The plasma treatment was found to be effective in cleaning the surface, and excellent flat growth was achieved even in the early stage of the growth. The effect of the air exposure after plasma treatment was also studied, and the yield of the growth was found to be largely decreased by the air exposure even after the treatment. Therefore, the oxidation of the substrate is one of main causes of the poor initial growth and the installation of the microplasma equipment in the MBE loading chamber is useful for suppressing the oxidation after the treatment. Atomic force microscopy (AFM) measurement shows that the microplasma treatment is also effective for undoing the surface double steps through etching, which is helpful for a very smooth layer-by-layer growth in the early stage of growth.

  17. High Growth Rate Metal-Organic Molecular Beam Epitaxy for the Fabrication of GaAs Space Solar Cells

    Science.gov (United States)

    Freundlich, A.; Newman, F.; Monier, C.; Street, S.; Dargan, P.; Levy, M.

    2005-01-01

    In this work it is shown that high quality GaAs photovoltaic devices can be produced by Molecular Beam Epitaxy (MBE) with growth rates comparable to metal-organic chemical vapor deposition (MOCVD) through the subsitution of group III solid sources by metal-organic compounds. The influence the III/V flux-ratio and growth temperatures in maintaining a two dimensional layer by layer growth mode and achieving high growth rates with low residual background impurities is investigated. Finally subsequent to the study of the optimization of n- and p doping of such high growth rate epilayers, results from a preliminary attempt in the fabrication of GaAs photovoltaic devices such as tunnel diodes and solar cells using the proposed high growth rate approach are reported.

  18. Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (0 0 1) substrates

    Science.gov (United States)

    Li, Yanbo; Zhang, Yang; Zhang, Yuwei; Wang, Baoqiang; Zhu, Zhanping; Zeng, Yiping

    2012-06-01

    We report on the growth of GaSb layers on GaAs (0 0 1) substrates by molecular beam epitaxy (MBE). We investigate the influence of the GaAs substrate surface treatment, growth temperature, and V/III flux ratios on the crystal quality and the surface morphology of GaSb epilayers. Comparing to Ga-rich GaAs surface preparation, the Sb-rich GaAs surface preparation can promote the growth of higher-quality GaSb material. It is found that the crystal quality, electrical properties, and surface morphology of the GaSb epilayers are highly dependent on the growth temperature, and Sb/Ga flux ratios. Under the optimized growth conditions, we demonstrate the epitaxial growth of high quality GaSb layers on GaAs substrates. The p-type nature of the unintentionally doped GaSb is studied and from the growth conditions dependence of the hole concentrations of the GaSb, we deduce that the main native acceptor in the GaSb is the Ga antisite (GaSb) defect.

  19. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    Science.gov (United States)

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; Pinchuk, Igor V.; Zhu, Tiancong; Beechem, Thomas; Kawakami, Roland K.

    2016-08-01

    We report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of deposition show a strong dependence between the Dirac point and Sr oxidation. Subsequently, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  20. Enhanced growth of highly lattice-mismatched CdSe on GaAs substrates by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jyh-Shyang, E-mail: jswang@cycu.edu.tw [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Tsai, Yu-Hsuan; Wang, Hsiao-Hua; Ke, Han-Xiang; Tong, Shih-Chang [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Chu-Shou [Graduate institute of Electro-Optical Engineering, Tatung University, Taipei 10452, Taiwan (China); Wu, Chih-Hung [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Shen, Ji-Lin [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China)

    2013-04-01

    This work demonstrates the improvement of the molecular beam epitaxial growth of zinc-blende CdSe on (0 0 1) GaAs substrate with a large lattice mismatch by introducing a small amount of Te atoms. Exposing the growing surface to Te atoms changes the reflection high-energy electron diffraction pattern from spotty to streaky together with (2 × 1) surface reconstruction, and greatly reduces the full width at half maximum of the X-ray rocking curve and increases the integral intensity of room-temperature photoluminescence by a factor of about nine.

  1. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Xu, Zhongguang; Khanaki, Alireza; Tian, Hao; Zheng, Renjing; Suja, Mohammad; Zheng, Jian-Guo; Liu, Jianlin

    2016-07-01

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layers were achieved. Based on an h-BN (5-6 nm)/G (26-27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ˜2.5-3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.

  2. Growth of GaNAs/GaAs multiple quantum well by molecular beam epitaxy using modulated N radical beam source

    International Nuclear Information System (INIS)

    GaNAs/GaAs multiple quantum well (MQW) structures have been grown on GaAs(001) substrates by molecular beam epitaxy (MBE) using modulated N radical beam source under optimized conditions, wherein the amount of N2 gas flow, RF-power and shutter sequence are systematically controlled. Clear and flat GaNAs/GaAs interfaces were observed in the cross-sectional transmission electron microscopy (TEM) measurements. Fine MQW structures originating from the precise control of the modulated N radical beam have been demonstrated as clear satellite peaks from the X-ray diffraction (XRD) measurements and sharp photoluminescence (PL) peaks. The step-like behaviors in the absorption spectra which reflect the density of state in two-dimensional systems, were clearly observed for all MQW samples. (authors)

  3. NO-assisted molecular-beam epitaxial growth of nitrogen substituted EuO

    Science.gov (United States)

    Wicks, R.; Altendorf, S. G.; Caspers, C.; Kierspel, H.; Sutarto, R.; Tjeng, L. H.; Damascelli, A.

    2012-04-01

    We have investigated a method for substituting oxygen with nitrogen in EuO thin films, which is based on molecular beam epitaxy distillation with NO gas as the oxidizer. By varying the NO gas pressure, we produce crystalline, epitaxial EuO1 -xNx films with good control over the films' nitrogen concentration. In situ x-ray photoemission spectroscopy reveals that nitrogen substitution is connected to the formation Eu3+4f6 and a corresponding decrease in the number of Eu2+4f7, indicating that nitrogen is being incorporated in its 3- oxidation state. While small amounts of Eu3+ in over-oxidized Eu1-δO thin films lead to a drastic suppression of the ferromagnetism, the formation of Eu3+ in EuO1-xNx still allows the ferromagnetic phase to exist with an unaffected Tc, thus providing an ideal model system to study the interplay between the magnetic f7 (J = 7/2) and the non-magnetic f6 (J = 0) states close to the Fermi level.

  4. Molecular-beam epitaxy growth and structural characterization of semiconductor-ferromagnet heterostructures by grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Satapathy, D.K.

    2005-12-19

    The present work is devoted to the growth of the ferromagnetic metal MnAs on the semiconductor GaAs by molecular-beam epitaxy (MBE). The MnAs thin films are deposited on GaAs by molecular-beam epitaxy (MBE). Grazing incidence diffraction (GID) and reflection high-energy electron diffraction (RHEED) are used in situ to investigate the nucleation, evolution of strain, morphology and interfacial structure during the MBE growth. Four stages of the nucleation process during growth of MnAs on GaAs(001) are revealed by RHEED azimuthal scans. GID shows that further growth of MnAs films proceed via the formation of relaxed islands at a nominal thickness of 2.5 ML which increase in size and finally coalesce to form a continuous film. Early on, an ordered array of misfit dislocations forms at the interface releasing the misfit strain even before complete coalescence occurs. The fascinating complex nucleation process of MnAs on GaAs(0 0 1) contains elements of both Volmer-Weber and Stranski-Krastanov growth. A nonuniform strain amounting to 0.66%, along the [1 -1 0] direction and 0.54%, along the [1 1 0] direction is demonstrated from x-ray line profile analysis. A high correlation between the defects is found along the GaAs[1 1 0] direction. An extremely periodic array of misfit dislocations with a period of 4.95{+-}0.05 nm is formed at the interface along the [1 1 0] direction which releases the 7.5% of misfit. The inhomogeneous strain due to the periodic dislocations is confined at the interface within a layer of 1.6 nm thickness. The misfit along the [1 -1 0] direction is released by the formation of a coincidence site lattice. (orig.)

  5. Growth temperature dependence of the surface segregation of Er atoms in GaAs during molecular beam epitaxy

    International Nuclear Information System (INIS)

    We have quantitatively studied the temperature dependence of the surface segregation of Er atoms in GaAs during molecular beam epitaxy using secondary ion mass spectroscopy. It was found that a significant number of Er atoms segregate to the growing surface at temperatures of 400°C and above and that the segregation decay length is approximately 0.5 µm at 500°C, indicating that the incorporation ratio of Er atoms into GaAs is less than 10-3. In contrast to the growth at higher temperatures, GaAs overlayer growth at a temperature as low as 300°C is effective in suppressing the surface segregation of Er and obtaining δ-doped structures. (author)

  6. Molecular beam epitaxial growth of ultrathin CdTe-CdMnTe quantum wells and their characterization

    Science.gov (United States)

    Waag, A.; Schmeusser, S.; Bicknell-Tassius, R. N.; Yakovlev, D. R.; Ossau, W.; Landwehr, G.; Uraltsev, I. N.

    1991-12-01

    We report the growth and optical characterization of CdTe/CdMnTe single quantum wells with well thicknesses ranging from 60 down to 6 Å. The single quantum wells were grown by standard molecular beam epitaxy without growth interruption and investigated by reflection, photoluminescence (PL), and excitation PL. All structures including the 6-Å-thick quantum well exhibit extraordinarily narrow photoluminescence lines. From an analysis of linewidth and Stokes shift of the photoluminescence lines informations on the structure of the CdTe/CdMnTe interfaces are derived. The good quality of those structures made it possible to identify for the first time recombination of two-dimensional free exciton magnetic polarons.

  7. Growth morphology of MnAs epilayers on GaAs(1 1 1)-B substrates by molecular beam epitaxy

    Science.gov (United States)

    Etgens, V. H.; Eddrief, M.; Demaille, D.; Zheng, Y. L.; Ouerghi, A.

    2002-04-01

    MnAs epilayers were grown by molecular beam epitaxy on GaAs(1 1 1)B substrates. The morphology of epilayers has been studied by coupling several in situ techniques. Two distinct growth regimes were distinguished as a function of the substrate temperature. For the growth at 320°C, the system shows an intriguing mechanism of relaxation that produces MnAs isolated islands (the so-called "blocks") with constant height. The explanation for this mechanism associates the large mobility of atoms at this temperature with the strain due to the important misfit. At lower temperature (200°C) the surface mobility is greatly reduced which results in a more homogeneous film.

  8. Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy

    Science.gov (United States)

    Benyahia, D.; Kubiszyn, Ł.; Michalczewski, K.; Kębłowski, A.; Martyniuk, P.; Piotrowski, J.; Rogalski, A.

    2016-01-01

    Non-intentionally doped GaSb epilayers were grown by molecular beam epitaxy (MBE) on highly mismatched semi-insulating GaAs substrate (001) with 2 offcut towards [110]. The effects of substrate temperature and the Sb/Ga flux ratio on the crystalline quality, surface morphology and electrical properties were investigated by Nomarski optical microscopy, X-ray diffraction (XRD) and Hall measurements, respectively. Besides, differential Hall was used to investigate the hole concentration behaviour along the GaSb epilayer. It is found that the crystal quality, electrical properties and surface morphology are markedly dependent on the growth temperature and the group V/III flux ratio. Under the optimized parameters, we demonstrate a low hole concentration at very low growth temperature. Unfortunately, the layers grown at low temperature are characterized by wide FWHM and low Hall mobility.

  9. Patterned growth of InGaN/GaN quantum wells on freestanding GaN grating by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Wang Yongjin

    2011-01-01

    Full Text Available Abstract We report here the epitaxial growth of InGaN/GaN quantum wells on freestanding GaN gratings by molecular beam epitaxy (MBE. Various GaN gratings are defined by electron beam lithography and realized on GaN-on-silicon substrate by fast atom beam etching. Silicon substrate beneath GaN grating region is removed from the backside to form freestanding GaN gratings, and the patterned growth is subsequently performed on the prepared GaN template by MBE. The selective growth takes place with the assistance of nanoscale GaN gratings and depends on the grating period P and the grating width W. Importantly, coalescences between two side facets are realized to generate epitaxial gratings with triangular section. Thin epitaxial gratings produce the promising photoluminescence performance. This work provides a feasible way for further GaN-based integrated optics devices by a combination of GaN micromachining and epitaxial growth on a GaN-on-silicon substrate. PACS 81.05.Ea; 81.65.Cf; 81.15.Hi.

  10. Short-pulse chemical beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Suian; Cui, Jie; Aoyagi, Yoshinobu (RIKEN, The Institute of Physical and Chemical Research, Saitama (Japan)); Tanaka, Akihiko (Bentec Co., Tokyo (Japan))

    1994-03-10

    Short-pulse chemical beam epitaxy has been proposed and studied. The short pulses with supersonic characteristics and a width of milliseconds were generated by high speed valves and the related pumping lines on a purpose-built CBE system. Using a time-of-fight technique, we verified the dependence of pulse properties on the source pressures and the valve on-time. The results indicate that modulation of molecular kinetic energy and accurate control of molecule supply were obtained. GaAs epitaxial growth with use of trimethylgallium pulses was carried out and investigated by means of RHEED (reflection high-energy electron diffraction) observation. It was demonstrated that the newly developed short-pulse chemical beam epitaxy has the advantage of high controllability

  11. Atomic Layer Epitaxy of h-BN(0001) Multilayers on Co(0001) and Molecular Beam Epitaxy Growth of Graphene on h-BN(0001)/Co(0001).

    Science.gov (United States)

    Driver, M Sky; Beatty, John D; Olanipekun, Opeyemi; Reid, Kimberly; Rath, Ashutosh; Voyles, Paul M; Kelber, Jeffry A

    2016-03-22

    The direct growth of hexagonal boron nitride (h-BN) by industrially scalable methods is of broad interest for spintronic and nanoelectronic device applications. Such applications often require atomically precise control of film thickness and azimuthal registry between layers and substrate. We report the formation, by atomic layer epitaxy (ALE), of multilayer h-BN(0001) films (up to 7 monolayers) on Co(0001). The ALE process employs BCl3/NH3 cycles at 600 K substrate temperature. X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) data show that this process yields an increase in h-BN average film thickness linearly proportional to the number of BCl3/NH3 cycles, with BN layers in azimuthal registry with each other and with the Co(0001) substrate. LEED diffraction spot profile data indicate an average BN domain size of at least 1900 Å. Optical microscopy data indicate the presence of some domains as large as ∼20 μm. Transmission electron microscopy (TEM) and ambient exposure studies demonstrate macroscopic and microscopic continuity of the h-BN film, with the h-BN film highly conformal to the Co substrate. Photoemission data show that the h-BN(0001) film is p-type, with band bending near the Co/h-BN interface. Growth of graphene by molecular beam epitaxy (MBE) is observed on the surface of multilayer h-BN(0001) at temperatures of 800 K. LEED data indicate azimuthal graphene alignment with the h-BN and Co(0001) lattices, with domain size similar to BN. The evidence of multilayer BN and graphene azimuthal alignment with the lattice of the Co(0001) substrate demonstrates that this procedure is suitable for scalable production of heterojunctions for spintronic applications. PMID:26940024

  12. Plasma-assisted molecular beam epitaxy growth of ZnSnN2

    Science.gov (United States)

    Feldberg, Nathaniel; Aldous, James; Yao, Yuan; Tanveer, Imtiaz; Keen, Benjamin; Linhart, Wojciech; Veal, Tim; Song, Young-Wook; Reeves, Roger; Durbin, Steve

    2012-02-01

    The Zn-IV-nitrides are a promising series of ``earth abundant element'' semiconductors with a predicted band gap range of 0.6 eV to 5.4 eV, which, like the (Al,Ga,In)N family, spans the entire visible solar spectrum. Considering this alternative family has a number of advantages, including the avoidance of indium, the price of which has varied almost an order of magnitude over the past decade, and surface electron accumulation which is present in the In-rich alloys. Not all members of this family have yet been synthesized, in particular ZnSnN2, the most important member for PV with its predicted band gap of approximately 2 eV. We have successfully grown a series of these films using plasma-assisted molecular beam epitaxy using elemental Zn and Sn sources. In this report, we discuss the relationship between process parameters and microstructure, as well as stoichiometry as determined by Rutherford backscattering spectrometry. Additionally, we provide preliminary estimates for its bandgap energy based on photoluminescence and optical absorption.

  13. Molecular beam epitaxial growth and characterization of Al(Ga)N nanowire deep ultraviolet light emitting diodes and lasers

    Science.gov (United States)

    Mi, Z.; Zhao, S.; Woo, S. Y.; Bugnet, M.; Djavid, M.; Liu, X.; Kang, J.; Kong, X.; Ji, W.; Guo, H.; Liu, Z.; Botton, G. A.

    2016-09-01

    We report on the detailed molecular beam epitaxial growth and characterization of Al(Ga)N nanowire heterostructures on Si and their applications for deep ultraviolet light emitting diodes and lasers. The nanowires are formed under nitrogen-rich conditions without using any metal catalyst. Compared to conventional epilayers, Mg-dopant incorporation is significantly enhanced in nearly strain- and defect-free Al(Ga)N nanowire structures, leading to efficient p-type conduction. The resulting Al(Ga)N nanowire LEDs exhibit excellent performance, including a turn-on voltage of ∼5.5 V for an AlN nanowire LED operating at 207 nm. The design, fabrication, and performance of an electrically injected AlGaN nanowire laser operating in the UV-B band is also presented.

  14. Growth of ErAs nanodots by molecular beam epitaxy for application to tunneling junctions in multijunction solar cells

    Science.gov (United States)

    Hung, Chao-Yu; Sogabe, Tomah; Miyashita, Naoya; Okada, Yoshitaka

    2016-02-01

    ErAs nanodots (NDs) grown on GaAs(001) substrates by using molecular beam epitaxy (MBE) were investigated. Atomic force microscope images indicate that the size of ErAs NDs increases with deposition time and growth temperature. A calibration was performed to determine the deposition rate of ErAs in order that the size of NDs can be accurately controlled and hence optimized. Local current flow images and surface profiles around ErAs NDs were simultaneously measured to clarify the local conductivity distribution corresponding to a real space profile. Furthermore, we also fabricated and characterized an ErAs-ND-embedded GaAs tunnel junction (TJ), which resulted in a voltage drop of 30 mV for 15 A/cm2 operation current equivalent to 1000 suns concentration, which is less than one-third of that of a conventional heavily doped tunnel junction.

  15. Growth of high-quality SrTiO{sub 3} films using a hybrid molecular beam epitaxy approach

    Energy Technology Data Exchange (ETDEWEB)

    Jalan, Bharat; Engel-Herbert, Roman; Wright, Nicholas J.; Stemmer, Susanne [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2009-05-15

    A hybrid molecular beam epitaxy approach for atomic-layer controlled growth of high-quality SrTiO{sub 3} films with scalable growth rates was developed. The approach uses an effusion cell for Sr, a plasma source for oxygen, and a metal-organic source (titanium tetra isopropoxide) for Ti. SrTiO{sub 3} films were investigated as a function of cation flux ratio on (001) SrTiO{sub 3} and (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT) substrates. Growth conditions for stoichiometric insulating films were identified. Persistent (>180 oscillations) reflection high-energy electron diffraction oscillation characteristic of layer-by-layer growth were observed. The full widths at half maximum of x-ray diffraction rocking curves were similar to those of the substrates, i.e., 34 arc sec on LSAT. The film surfaces were nearly ideal with root mean square surface roughness values of less than 0.1 nm. The relationship between surface reconstructions, growth modes, and stoichiometry is discussed.

  16. Epitaxial growth of Fe3Si/CaF2/Fe3Si magnetic tunnel junction structures on CaF2/Si(111) by molecular beam epitaxy

    OpenAIRE

    Kobayashi, Ken’ichi; Suemasu, Takashi; Kuwano, Noriyuki; Hara, Daisuke; Akinaga, Hiroyuki

    2007-01-01

    The Fe3Si(24 nm)/CaF2(2 nm)/Fe3Si(12 nm) magnetic tunnel junction (MTJ) structures were grown epitaxially on CaF2/Si(111) by molecular beam epitaxy (MBE). The 12-nm-thick Fe3Si underlayer was grown epitaxially on CaF2/Si(111) at approximately 400 °C; however, the surface of the Fe3Si film was very rough, and thus a lot of pinholes are considered to exist in the 2-nm-thick CaF2 barrier layer. The average roughness (Ra) of the CaF2 barrier layer was 7.8 nm. This problem was overcome by low-temp...

  17. Epitaxial silicon nanowire growth catalyzed by gold dot arrays from electron beam lithography patterning using silane precursors

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Bjoern; Broenstrup, Gerald; Huebner, Uwe; Christiansen, Silke [Institut fuer Photonische Technologien e.V., Abt. Halbleiter Nanostrukturen, Jena (Germany)

    2010-07-01

    Ordered arrays of silicon nanowires (SiNWs) are promising building blocks for a variety of photonic, photovoltaic and sensor applications. In our approach to create SiNWs we use electron beam lithography (EBL) and thermal metal evaporation to create nano-patterned arrays of gold nanodots on a Si(111) wafer. These Au dots are subsequently used to catalyze the bottom-up growth of SiNWs that follow the vapor-liquid-solid (VLS) growth mechanism using silane in a CVD reactor. The grown nanowires are characterized structurally using SEM, TEM and electron backscatter diffraction (EBSD). We observe epitaxial growth of the SiNWs on the Si(111) wafer and we are able to control the growth direction to be either dominated by <111> or <112> directions by just changing the silane partial pressure. The lengths as well as the diameters of the wires are precisely controlled by the EBL Au dot patterning and CVD parameters. To predict wire diameters modelling is carried out that takes into account the EBL- and CVD-parameters and describes the observed experimental results very well. Furthermore we were able to create single crystalline Au-dot arrays which are very promising structures for surface enhanced raman spectroscopy (SERS) substrates.

  18. Effects of growth temperature on nonpolar a-plane InN grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rajpalke, Mohana K.; Bhat, Thirumaleshwara N.; Krupanidhi, S.B. [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India); Roul, Basanta [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India); Central Research Laboratory, Bharat Electronics, Bangalore-560013 (India); Kumar, Mahesh [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India); Centre of Excellence in Information and Communication Technology, Indian Institute of Technology, Jodhpur-342011 (India); Sinha, Neeraj [Office of Principal Scientific Advisor, Government of India, New Delhi 110011 (India); Department of Materials Science, Gulbarga University, Gulbarga 585 106 (India); Jali, V.M. [Department of Physics, Gulbarga University, Gulbarga 585 106 (India)

    2014-04-15

    Nonpolar a-plane InN films were grown on r-plane sapphire substrate by plasma assisted molecular beam epitaxy with GaN underlayer. Effect of growth temperature on structural, morphological, and optical properties has been studied. The growth of nonpolar a-plane (1 1 -2 0) orientation was confirmed by high resolution X-ray diffraction study. The film grown at 500 C shows better crystallinity with the rocking curve FWHM 0.67 and 0.85 along [0 0 0 1] and [1 -1 0 0] directions, respectively. Scanning electron micrograph shows formation of Indium droplets at higher growth temperature. Room tem-perature absorption spectra show growth temperature dependent band gap variation from 0.74-0.81 eV, consistent with the expected Burstein-Moss effect. The rectifying behaviour of the I-V curve indicates the existence of Schottky barrier at the InN and GaN interface. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Molecular-beam epitaxy growth and in situ arsenic doping of p-on-n HgCdTe heterojunctions

    Science.gov (United States)

    Arias, Jose; Zandian, M.; Pasko, J. G.; Shin, S. H.; Bubulac, L. O.; DeWames, R. E.; Tennant, W. E.

    1991-02-01

    In this paper we present, results on the growth of in situ doped p-on-n heterojunctions on HgCdTe epilayers grown on (211)B GaAs substrates by molecular-beam epitaxy (MBE). Long wavelength infrared (LWIR) photodiodes made with these grown junctions are of high performance. The n-type MBE HgCdTe/GaAs alloy epilayer in these structures was grown at Ts=185 °C and it was doped with indium (high 1014 cm-3 range) atoms. This epilayer was directly followed by the growth, at Ts=165 °C, of an arsenic-doped (1017-1018 cm-3 ) HgTe/CdTe superlattice structure which was necessary to incorporate the arsenic atoms as acceptors. After the structure was grown, a Hg annealing step was needed to interdiffuse the superlattice and obtain the arsenic-doped p-type HgCdTe layer above the indium-doped layer. LWIR mesa diodes made with this material have 77 K R0A values of 5×103, 81, 8.5, and 1.1 Ω cm2 for cutoff wavelengths of 8.0, 10.2, 10.8, and 13.5 μm, respectively; the 77 K quantum efficiency values for these diodes were greater than 55%. These recent results represent a significant step toward the demonstration of MBE as a viable growth technique for the in situ fabrication of large area LWIR focal plane arrays.

  20. Controllable Growth of Vertical Heterostructure GaTe(x)Se(1-x)/Si by Molecular Beam Epitaxy.

    Science.gov (United States)

    Liu, Shanshan; Yuan, Xiang; Wang, Peng; Chen, Zhi-Gang; Tang, Lei; Zhang, Enze; Zhang, Cheng; Liu, Yanwen; Wang, Weiyi; Liu, Cong; Chen, Chen; Zou, Jin; Hu, Weida; Xiu, Faxian

    2015-08-25

    Two dimensional (2D) alloys, especially transition metal dichalcogenides, have attracted intense attention owing to their band-gap tunability and potential optoelectrical applications. Here, we report the controllable synthesis of wafer-scale, few-layer GaTexSe1-x alloys (0 ≤ x ≤ 1) by molecular beam epitaxy (MBE). We achieve a layer-by-layer growth mode with uniform distribution of Ga, Te, and Se elements across 2 in. wafers. Raman spectroscopy was carried out to explore the composition-dependent vibration frequency of phonons, which matches well with the modified random-element-isodisplacement model. Highly efficient photodiode arrays were also built by depositing few-layer GaTe0.64Se0.36 on n-type Si substrates. These p-n junctions have steady rectification characteristics with a rectifying ratio exceeding 300 and a high external quantum efficiency around 50%. We further measured more devices on MBE-grown GaTexSe1-x/Si heterostructures across the full range to explore the composition-dependent external quantum efficiency. Our study opens a new avenue for the controllable growth of 2D alloys with wafer-scale homogeneity, which is a prominent challenge in 2D material research. PMID:26234804

  1. Growth and characterization of molecular beam epitaxy-grown Bi2Te3-xSex topological insulator alloys

    Science.gov (United States)

    Tung, Y.; Chiang, Y. F.; Chong, C. W.; Deng, Z. X.; Chen, Y. C.; Huang, J. C. A.; Cheng, C.-M.; Pi, T.-W.; Tsuei, K.-D.; Li, Z.; Qiu, H.

    2016-02-01

    We report a systematic study on the structural and electronic properties of Bi2Te3-xSex topological insulator alloy grown by molecular beam epitaxy (MBE). A mixing ratio of Bi2Se3 to Bi2Te3 was controlled by varying the Bi:Te:Se flux ratio. X-ray diffraction and Raman spectroscopy measurements indicate the high crystalline quality for the as-grown Bi2Te3-xSex films. Substitution of Te by Se is also revealed from both analyses. The surfaces of the films exhibit terrace-like quintuple layers and their size of the characteristic triangular terraces decreases monotonically with increasing Se content. However, the triangular terrace structure gradually recovers as the Se content further increases. Most importantly, the angle-resolved photoemission spectroscopy results provide evidence of single-Dirac-cone like surface states in which Bi2Te3-xSex with Se/Te-substitution leads to tunable surface states. Our results demonstrate that by fine-tuned MBE growth conditions, Bi2Te3-xSex thin film alloys with tunable topological surface states can be obtained, providing an excellent platform for exploring the novel device applications based on this compound.

  2. Growth and characterization of molecular beam epitaxy-grown Bi2Te3−xSex topological insulator alloys

    International Nuclear Information System (INIS)

    We report a systematic study on the structural and electronic properties of Bi2Te3−xSex topological insulator alloy grown by molecular beam epitaxy (MBE). A mixing ratio of Bi2Se3 to Bi2Te3 was controlled by varying the Bi:Te:Se flux ratio. X-ray diffraction and Raman spectroscopy measurements indicate the high crystalline quality for the as-grown Bi2Te3−xSex films. Substitution of Te by Se is also revealed from both analyses. The surfaces of the films exhibit terrace-like quintuple layers and their size of the characteristic triangular terraces decreases monotonically with increasing Se content. However, the triangular terrace structure gradually recovers as the Se content further increases. Most importantly, the angle-resolved photoemission spectroscopy results provide evidence of single-Dirac-cone like surface states in which Bi2Te3−xSex with Se/Te-substitution leads to tunable surface states. Our results demonstrate that by fine-tuned MBE growth conditions, Bi2Te3−xSex thin film alloys with tunable topological surface states can be obtained, providing an excellent platform for exploring the novel device applications based on this compound

  3. Avoiding polar catastrophe in the growth of polarly orientated nickel perovskite thin films by reactive oxide molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    H. F. Yang

    2016-08-01

    Full Text Available By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001- and (111-orientated polar LaNiO3 thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO3 and iso-polarity LaAlO3 substrates were chosen to achieve high-quality (001-orientated films in a layer-by-layer growth mode. For largely polar (111-orientated films, we showed that iso-polarity LaAlO3 (111 substrate was more suitable than Nb-doped SrTiO3. In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentions need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO3 based superlattices.

  4. Perspective: Oxide molecular-beam epitaxy rocks!

    Directory of Open Access Journals (Sweden)

    Darrell G. Schlom

    2015-06-01

    Full Text Available Molecular-beam epitaxy (MBE is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

  5. Perspective: Oxide molecular-beam epitaxy rocks!

    Energy Technology Data Exchange (ETDEWEB)

    Schlom, Darrell G., E-mail: schlom@cornell.edu [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA and Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

    2015-06-01

    Molecular-beam epitaxy (MBE) is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

  6. Direct growth of hexagonal InN films on 6H-SiC by radio-frequency metal-organic molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Wurtzite InN films were prepared on a 6H-SiC substrate by a self-designed plasma-assisted metal-organic molecular-beam epitaxy system without a buffer layer. In this article, the authors investigate the structural and optical properties of InN films grown on a 6H-SiC substrate. The crystallinity and microstructure of the thin film were further characterized by x-ray diffraction (XRD), field-emission scanning-electron microscopy, and transmission-electron microscopy. Electrical and optical properties were evaluated by Hall and photoluminescence (PL) measurements. XRD results indicate that InN film grown at 500 deg. C is epitaxially grown along the c-axis orientation. The two-dimensional growth mode is clearly shown in scanning-electron microscope images. Room-temperature PL spectra show that the emission peak is located at ∼0.83 eV due to the Burstein-Moss effect. In addition, the crystalline InN samples crack and peel away from the substrate at elevated growth temperature. This phenomenon may be attributed to lattice mismatch and grain coalescence while increasing the growth temperature. The narrow window of the growth temperature plays an important role in engineering the InN epitaxial growth.

  7. Growth and characterization of metamorphic InAs/GaSb tunnel heterojunction on GaAs by molecular beam epitaxy

    Science.gov (United States)

    Liu, Jheng-Sin; Clavel, Michael B.; Pandey, Rahul; Datta, Suman; Meeker, Michael; Khodaparast, Giti A.; Hudait, Mantu K.

    2016-06-01

    The structural, morphological, optical, and electrical transport characteristics of a metamorphic, broken-gap InAs/GaSb p-i-n tunnel diode structure, grown by molecular beam epitaxy on GaAs, were demonstrated. Precise shutter sequences were implemented for the strain-balanced InAs/GaSb active layer growth on GaAs, as corroborated by high-resolution X-ray analysis. Cross-sectional transmission electron microscopy and detailed micrograph analysis demonstrated strain relaxation primarily via the formation of 90° Lomer misfit dislocations (MDs) exhibiting a 5.6 nm spacing and intermittent 60° MDs at the GaSb/GaAs heterointerface, which was further supported by a minimal lattice tilt of 180 arc sec observed during X-ray analysis. Selective area diffraction and Fast Fourier Transform patterns confirmed the full relaxation of the GaSb buffer layer and quasi-ideal, strain-balanced InAs/GaSb heteroepitaxy. Temperature-dependent photoluminescence measurements demonstrated the optical band gap of the GaSb layer. Strong optical signal at room temperature from this structure supports a high-quality material synthesis. Current-voltage characteristics of fabricated InAs/GaSb p-i-n tunnel diodes measured at 77 K and 290 K demonstrated two bias-dependent transport mechanisms. The Shockley-Read-Hall generation-recombination mechanism at low bias and band-to-band tunneling transport at high bias confirmed the p-i-n tunnel diode operation. This elucidated the importance of defect control in metamorphic InAs/GaSb tunnel diodes for the implementation of low-voltage and high-performance tunnel field effect transistor applications.

  8. Molecular-beam epitaxy growth of dilute GaAsN alloys by surface nitridation

    Science.gov (United States)

    Urakami, Noriyuki; Yamane, Keisuke; Sekiguchi, Hiroto; Okada, Hiroshi; Wakahara, Akihiro

    2016-02-01

    This paper presents the growth of GaAsN pseudo-alloys by a surface nitridation method that consisted of a repeated cycle of nitridation of the GaAs (001) surface, growth interruption and growth of a GaAs overlayer. Surface reconstruction during the nitridation process changed from (2×4) to (1×4) and (3×4) phases above 540 °C with the increase of nitridation time, resulting in a higher N compositions of the alloys. It was revealed that an excessive nitridation resulted in the degradation of the photoluminescence (PL) intensity. While the N composition slightly decreased with the interruption time, less impact appeared on their crystallinity characterized by PL measurement. As a result, the N composition was controllable between 1% and 5% by the combination of growth temperatures (460-600 °C) and thicknesses of the GaAs overlayer (2-8 monolayers; MLs). The thickness of the GaAs overlayer should be designed over 4 ML to form a flat surface for the next nitridation process. The integrated PL intensity of GaAs0.97N0.03 alloys was increased by 7 times compared to the one grown by conventional growth method (continuous supply), indicating the improved crystalline quality of the GaAsN alloys.

  9. The growth of high quality CdTe on GaAs by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Reno, J.L.; Carr, M.J.; Gourley, P.L. (Sandia National Laboratories, Albuquerque, New Mexico 87185 (US))

    1990-03-01

    We have grown CdTe (111) on oriented and misoriented GaAs (100) and have characterized the layers by photoluminescence microscopy (PLM) and transmission electron microscopy (TEM). Photoluminescence microscopy showed a totally different type of defect structure for the oriented substrate than for the misoriented substrates. The CdTe grown on the misoriented substrates exhibited only threading dislocations. The CdTe grown on oriented GaAs showed fewer threading dislocations but exhibited a random structure of loops. The loop structure observed by PLM has been identified by TEM as the boundary between twinned crystallites which extend from the CdTe/GaAs interface to the CdTe surface. When viewed along the growth axis, these boundaries between the columnar twins appear as loops and segments. Surface roughness of the GaAs substrate contributes to the initial growth of twinned material. This leads to competitive growth between the twins and the creation of the observed columnar twins. We present for the first time the growth of CdTe on patterned GaAs substrates. By growing on oriented GaAs(100) substrates that had been patterned prior to growth with 12 {mu}m mesas, it is possible to grow material on the mesa top that is twin free and has a low dislocation density.

  10. Growth of CdTe-CdMnTe heterostructures by molecular beam epitaxy

    Science.gov (United States)

    Bicknell-Tassius, Robert N.

    1991-08-01

    The successful MBE growth of CdMnTe-CdTe heterostructures and superlattices has demonstrated the feasibility of growing layered structures incorporating dilute magnetic semiconductor materials (DMS). These materials exhibit new and interesting properties. These properties allow the band-gap engineering to continue after the structure has been grown through the application of an external magnetic field. During the growth process the engineering can be accomplished through traditional means, i.e., through the choice of layer thickness and/or the choice of the strain state of the structure.

  11. Epitaxial growth of M-plane GaN on ZnO micro-rods by plasma-assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Shuo-Ting You

    2015-12-01

    Full Text Available We have studied the GaN grown on ZnO micro-rods by plasma-assisted molecular beam epitaxy. From the analyses of GaN microstructure grown on non-polar M-plane ZnO surface ( 10 1 ̄ 0 by scanning transmission electron microscope, we found that the ZnGa2O4 compound was formed at the M-plane hetero-interface, which was confirmed by polarization-dependent photoluminescence. We demonstrated that the M-plane ZnO micro-rod surface can be used as an alternative substrate to grow high quality M-plane GaN epi-layers.

  12. Twenty years of molecular beam epitaxy

    Science.gov (United States)

    Cho, A. Y.

    1995-05-01

    The term "molecular beam epitaxy" (MBE) was first used in one of our crystal growth papers in 1970, after having conducted extensive surface physics studies in the late 1960's of the interaction of atomic and molecular beams with solid surfaces. The unique feature of MBE is the ability to prepare single crystal layers with atomic dimensional precision. MBE sets the standard for epitaxial growth and has made possible semiconductor structures that could not be fabricated with either naturally existing materials or by other crystal growth techniques. MBE led the crystal growth technologies when it prepared the first semiconductor quantum well and superlattice structures that gave unexpected and exciting electrical and optical properties. For example, the discovery of the fractional quantized Hall effect. It brought experimental quantum physics to the classroom, and practically all major universities throughout the world are now equipped with MBE systems. The fundamental principles demonstrated by the MBE growth of III-V compound semiconductors have also been applied to the growth of group IV, II-VI, metal, and insulating materials. For manufacturing, the most important criteria are uniformity, precise control of the device structure, and reproducibility. MBE has produced more lasers (3 to 5 million per month for compact disc application) than any other crystal growth technique in the world. New directions for MBE are to incorporate in-situ, real-time monitoring capabilities so that complex structures can be precisely "engineered". In the future, as environmental concerns increase, the use of toxic arsine and phosphine may be limited. Successful use of valved cracker cells for solid arsenic and phosphorus has already produced InP based injection lasers.

  13. Very low-temperature epitaxial growth of Mn{sub 5}Ge{sub 3} and Mn{sub 5}Ge{sub 3}C{sub 0.2} films on Ge(111) using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Matthieu, E-mail: matthieu.petit@univ-amu.fr [Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille (France); Michez, Lisa [Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille (France); Dutoit, Charles-Emmanuel; Bertaina, Sylvain; Dolocan, Voicu O. [Aix-Marseille Université, CNRS, IM2NP UMR7334, 13397 Cedex 20 Marseille (France); Heresanu, Vasile [Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille (France); Stoffel, Mathieu [Université de Lorraine, UMR CNRS 7198, Institut Jean Lamour, BP 70239, 54506 Vandeuvre-lès-Nancy (France); Le Thanh, Vinh [Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille (France)

    2015-08-31

    C-doped Mn{sub 5}Ge{sub 3} compound is ferromagnetic at temperature up to 430 K. Hence it is a potential spin injector into group-IV semiconductors. Segregation and diffusion of Mn at the Mn{sub 5}Ge{sub 3}/Ge interface could severely hinder the efficiency of the spin injection. To avoid these two phenomena we investigate the growth of Mn{sub 5}Ge{sub 3} and C-doped Mn{sub 5}Ge{sub 3} films on Ge(111) substrates by molecular beam epitaxy at room-temperature. The reactive deposition epitaxy method is used to deposit these films. Reflection high energy electron diffraction, X-ray diffraction analysis, transmission electron microscopy and atomic force microscopy indicate that the crystalline quality is very high. Magnetic characterizations by superconducting quantum interference device and ferromagnetic resonance reinforce the structural analysis results on the thin film quality. - Highlights: • Epitaxial Mn{sub 5}Ge{sub 3} and C-doped Mn{sub 5}Ge{sub 3} films grown on Ge(111) at room temperature. • Mn{sub 5}Ge{sub 3} and C-doped Mn{sub 5}Ge{sub 3} films grown by reactive deposition epitaxy. • RHEED, XRD and TEM measurements show a very high crystallinity. • Magnetic measurements support the structural analysis in the crystalline quality. • Ferromagnetic resonance linewidth is very narrow (3.5 mT at RT)

  14. X-ray diffraction study of crystal growth dynamics during molecular-beam epitaxy of III-V semiconductors

    International Nuclear Information System (INIS)

    An experimental approach to crystal growth dynamics using surface-sensitive X-ray diffraction techniques is discussed. In crystal growth, two essentially different kinds of dynamics are involved. One is the evolution of a statistical structure averaged over the sample area under consideration. The other is the temporal fluctuation of local structures associated with elemental processes of crystal growth, such as the adsorption, desorption, and diffusion of adatoms. Over the past few decades, combination of a synchrotron X-ray beamlines and specially designed crystal growth systems has played a great role in situ studies of the dynamics of average structures during the epitaxial growth of crystalline films. The recent development of coherent X-ray sources has provided an opportunity to elucidate local structure fluctuation, which is also important for solving many technological problems in crystal growth including the control of the uniformity of self-assembled nanostructures and the suppression of defects. (author)

  15. Nanostructure formation during relatively high temperature growth of Mn-doped GaAs by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Del Río-De Santiago, A.; Méndez-García, V.H. [CIACyT-UASLP, Sierra Leona Av. # 550, Lomas 2a Secc, San Luis Potosí, S.L.P. 78210, México (Mexico); Martínez-Velis, I.; Casallas-Moreno, Y.L. [Physics Department, CINVESTAV-IPN, Apdo. Postal 14470 D. F. México, México (Mexico); López-Luna, E. [CIACyT-UASLP, Sierra Leona Av. # 550, Lomas 2a Secc, San Luis Potosí, S.L.P. 78210, México (Mexico); Yu Gorbatchev, A. [IICO-UASLP, Av. Karakorum 1470, Lomas 4a. Sección, San Luis Potosí, S.L.P. 78210, México (Mexico); López-López, M. [Physics Department, CINVESTAV-IPN, Apdo. Postal 14470 D. F. México, México (Mexico); Cruz-Hernández, E., E-mail: esteban.cruz@uaslp.mx [CIACyT-UASLP, Sierra Leona Av. # 550, Lomas 2a Secc, San Luis Potosí, S.L.P. 78210, México (Mexico)

    2015-04-01

    Highlights: • The formation of different kind of nanostructures in GaMnAs layers depending on Mn concentration at relative HT-MBE is reported. In this Mn% range, it is found the formation of nanogrooves, nanoleaves, and nanowires. • It is shown the progressive photoluminescence transitions from purely GaAsMn zinc blende (for Mn% = 0.01) to a mixture of zinc blende and wurtzite GaAsMn (for Mn% = 0.2). • A critical thickness for the Mn catalyst effect was determined by RHEED. - Abstract: In the present work, we report on molecular beam epitaxy growth of Mn-doped GaAs films at the relatively high temperature (HT) of 530 °C. We found that by increasing the Mn atomic percent, Mn%, from 0.01 to 0.2, the surface morphology of the samples is strongly influenced and changes from planar to corrugated for Mn% values from 0.01 to 0.05, corresponding to nanostructures on the surface with dimensions of 200–300 nm and with the shape of leave, to nanowire-like structures for Mn% values above 0.05. From reflection high-energy electron diffraction patterns, we observed the growth mode transition from two- to three-dimensional occurring at a Mn% exceeding 0.05. The optical and electrical properties were obtained from photoluminescence (PL) and Hall effect measurements, respectively. For the higher Mn concentration, besides the Mn related transitions at approximately 1.41 eV, PL spectra sharp peaks are present between 1.43 and 1.49 eV, which we related to the coexistence of zinc blende and wurtzite phases in the nanowire-like structures of this sample. At Mn% of 0.04, an increase of the carrier mobility up to a value of 1.1 × 10{sup 3} cm{sup 2}/Vs at 77 K was found, then decreases as Mn% is further increased due to the strengthening of the ionized impurity scattering.

  16. Layer by layer growth of BaTiO 3 thin films with extremely smooth surfaces by laser molecular beam epitaxy

    Science.gov (United States)

    Wang, H. S.; Ma, K.; Cui, D. F.; Peng, Z. Q.; Zhou, Y. L.; Lu, H. B.; Chen, Z. H.; Li, L.; Yang, G. Z.

    1997-05-01

    Using pure ozone-assisted laser molecular beam epitaxy, we have grown c-axis-oriented single crystal BaTiO 3 thin films on SrTiO 3 substrates at temperatures ( Ts) of 400-750°C and under ambient gas pressures of 5 × 10 -5 to 1 × 10 -1 Pa, respectively. Stripy reflection high-energy electron diffraction (RHEED) patterns and regular RHEED intensity oscillations reveal the smooth surface and layer-by-layer epitaxial growth of the films. Scanning electron microscopy analysis shows that the films are free of pinholes, grain boundaries and outgrowths on the surface. In addition, we found a strong dependence of the film lattice constant c on Ts, which might be related to the strain in the film.

  17. Molecular Beam Epitaxy of LiMnAs

    OpenAIRE

    Novak, V.; Cukr, M.; Soban, Z.; Jungwirth, T.; Marti, X; Holy, V.; Horodyska, P.; Nemec, P.

    2010-01-01

    We report on the molecular beam epitaxy (MBE) growth of high crystalline quality LiMnAs. The introduction of a group-I alkali metal element Li with flux comparable to fluxes of Mn and As has not caused any apparent damage to the MBE system after as many as fifteen growth cycles performed on the system to date.

  18. Selective-area growth of GaN nanowires on SiO2-masked Si (111) substrates by molecular beam epitaxy

    Science.gov (United States)

    Kruse, J. E.; Lymperakis, L.; Eftychis, S.; Adikimenakis, A.; Doundoulakis, G.; Tsagaraki, K.; Androulidaki, M.; Olziersky, A.; Dimitrakis, P.; Ioannou-Sougleridis, V.; Normand, P.; Koukoula, T.; Kehagias, Th.; Komninou, Ph.; Konstantinidis, G.; Georgakilas, A.

    2016-06-01

    We analyze a method to selectively grow straight, vertical gallium nitride nanowires by plasma-assisted molecular beam epitaxy (MBE) at sites specified by a silicon oxide mask, which is thermally grown on silicon (111) substrates and patterned by electron-beam lithography and reactive-ion etching. The investigated method requires only one single molecular beam epitaxy MBE growth process, i.e., the SiO2 mask is formed on silicon instead of on a previously grown GaN or AlN buffer layer. We present a systematic and analytical study involving various mask patterns, characterization by scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, as well as numerical simulations, to evaluate how the dimensions (window diameter and spacing) of the mask affect the distribution of the nanowires, their morphology, and alignment, as well as their photonic properties. Capabilities and limitations for this method of selective-area growth of nanowires have been identified. A window diameter less than 50 nm and a window spacing larger than 500 nm can provide single nanowire nucleation in nearly all mask windows. The results are consistent with a Ga diffusion length on the silicon dioxide surface in the order of approximately 1 μm.

  19. Influence of growth transients on interface and composition uniformity of ultra thin In(As,P) and (In,Al,Ga)As epilayers grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    In this work, measurements of epitaxial growth rate transients for multiple quantum wells (MQWs) in chemical beam epitaxy (CBE) have been made. Mass spectrometry measurements of typical growth conditions were made of gas source species of the InAsxP1-x/InP system, while reflection high-energy electron diffraction (RHEED) measurements were made for the GaAs/AlxGa1-xAs and InxGa1-xAs/GaAs systems. The results of these experiments went directly into predicting the transient growth rate of thin layers for multi-quantum well photovoltaic devices. The data obtained using these techniques resulted in an improved growth interruption sequence for MQW structures in the InAsxP1-x/InP system. Improvements in overall material quality have been observed by high resolution X-ray diffraction (HRXRD). HRXRD measurements of the InAsxP1-x/InP structures yield sharp satellite peaks revealing the possibility of achieving nearly perfect interfaces. From low temperature photoluminescence, narrow emission linewidths from quantum wells indicate an enhanced compositional uniformity, and room temperature photocurrent spectroscopy reveals an improvement in device performance

  20. Growth diagram of N-face GaN (0001{sup ¯}) grown at high rate by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Hironori, E-mail: okumura@engineering.ucsb.edu; McSkimming, Brian M.; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Huault, Thomas; Chaix, Catherine [RIBER S.A., 3a Rue Casimir Perier, BP 70083, 95873 Bezons Cedex (France)

    2014-01-06

    N-face GaN was grown on free-standing GaN (0001{sup ¯}) substrates at a growth rate of 1.5 μm/h using plasma-assisted molecular beam epitaxy. Difference in growth rate between (0001{sup ¯}) and (0001) oriented GaN depends on nitrogen plasma power, and the (0001{sup ¯}) oriented GaN had only 70% of the growth rate of the (0001) oriented GaN at 300 W. Unintentional impurity concentrations of silicon, carbon, and oxygen were 2 × 10{sup 15}, 2 × 10{sup 16}, and 7 × 10{sup 16} cm{sup −3}, respectively. A growth diagram was constructed that shows the dependence of the growth modes on the difference in the Ga and active nitrogen flux, Φ{sub Ga} − Φ{sub N*}, and the growth temperature. At high Φ{sub Ga} − Φ{sub N*} (Φ{sub Ga} ≫ Φ{sub N*}), two-dimensional (step-flow and layer-by-layer) growth modes were realized. High growth temperature (780 °C) expanded the growth window of the two-dimensional growth modes, achieving a surface with rms roughness of 0.48 nm without Ga droplets.

  1. Impact of growth and annealing conditions on the parameters of Ge/Si(001) relaxed layers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yurasov, D. V., E-mail: Inquisitor@ipm.sci-nnov.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Bobrov, A. I. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Daniltsev, V. M.; Novikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, D. A. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Skorokhodov, E. V.; Shaleev, M. V.; Yunin, P. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-11-15

    Influence of the Ge layer thickness and annealing conditions on the parameters of relaxed Ge/Si(001) layers grown by molecular beam epitaxy via two-stage growth is investigated. The dependences of the threading dislocation density and surface roughness on the Ge layer thickness, annealing temperature and time, and the presence of a hydrogen atmosphere are obtained. As a result of optimization of the growth and annealing conditions, relaxed Ge/Si(001) layers which are thinner than 1 μm with a low threading dislocation density on the order of 10{sup 7} cm{sup –2} and a root mean square roughness of less than 1 nm are obtained.

  2. Growth of GaAs{sub 1−x}Bi{sub x} by molecular beam epitaxy: Trade-offs in optical and structural characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jincheng; Kim, Tong-Ho; Jiao, Wenyuan; Kong, Wei; Brown, April S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Forghani, Kamran [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Collar, Kristen [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Kuech, Thomas F. [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-07-28

    Recent work has shown that Bi incorporation increases during molecular beam epitaxy (MBE) when surface processes are kinetically limited through increased growth rate. Herein we explore how the structural and optical properties of GaAs{sub 1−x}Bi{sub x} films are modified when grown under conditions with varying degrees of kinetic limitations realized through growth temperature and growth rate changes. Within the typical window of MBE growth conditions for GaAs{sub 1−x}Bi{sub x}, we compare films with similar (∼3%) compositions grown under conditions of reduced kinetic limitations, i.e., relatively low gallium supersaturation achieved at higher temperatures (∼350 °C) and lower growth rates (∼0.5 μm/h), to those grown farther from equilibrium, specifically, higher supersaturation achieved at lower growth temperatures (∼290 °C) and higher growth rates (∼1.4 μm/h). Both the x-ray diffraction full width at half maximum of the omega-2theta scan and the 300 K photoluminescence intensity increase when samples are grown under less kinetically limited conditions. We interpret these findings in relation to the incorporation of Bi-related microstructural defects that are more readily formed during less kinetically limited growth. These defects lead to enhanced luminescence efficiency due to the spatial localization of carriers.

  3. Quantum dots-templated growth of strain-relaxed GaN on a c-plane sapphire by radio-frequency molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Guo Hao-Min; Wen Long; Zhao Zhi-Fei; Bu Shao-Jiang; Li Xin-Hua; Wang Yu-Qi

    2012-01-01

    We investigated the quantum dots-templated growth of a (0001) GaN film on a c-plane sapphire substrate.The growth was carried out in a radio-frequency molecular beam epitaxy system.The enlargement and coalescence of grains on the GaN quantum dots template was observed in the atom force microscopy images,as well as the more ideal surface morphology of the GaN epitaxial film on the quantum dots template compared with the one on the A(l)N buffer.The Ga polarity was confirmed by the reflected high energy electron diffraction patterns and the Raman spectra.The significant strain relaxation in the quantum dots-templated GaN film was calculated based on the Raman spectra and the X-ray rocking curves. Meanwhile,the threading dislocation density in the quantum dots-templated film was estimated to be 7.1 × 107 cm-2,which was significantly suppressed compared with that of the A(l)N-buffered GaN film.The roomtemperature Hall measurement showed an electron mobility of up to 1860 cm2/V· s in the two-dimensional electron gas at the interface of the Al0.25Ga0.75N/GaN heterojunction.

  4. An Effective Approach to Improving Cadmium Telluride (111)A Surface by Molecular-Beam-Epitaxy Growth of Tellurium Monolayer.

    Science.gov (United States)

    Ren, Jie; Fu, Li; Bian, Guang; Su, Jie; Zhang, Hao; Velury, Saavanth; Yukawa, Ryu; Zhang, Longxiang; Wang, Tao; Zha, Gangqiang; Guo, Rongrong; Miller, Tom; Hasan, M Zahid; Chiang, Tai-Chang

    2016-01-13

    The surface cleansing treatment of non-natural cleavage planes of semiconductors is usually performed in vacuum using ion sputtering and subsequent annealing. In this Research Article, we report on the evolution of surface atomic structure caused by different ways of surface treatment as monitored by in situ core-level photoemission measurements of Cd-4d and Te-4d atomic levels and reflection high-energy electron diffraction (RHEED). Sputtering of surface increases the density of the dangling bonds by 50%. This feature and the less than ideal ordering can be detrimental to device applications. An effective approach is employed to improve the quality of this surface. One monolayer (ML) of Te grown by the method of molecular beam epitaxy (MBE) on the target surface with heating at 300 °C effectively improves the surface quality as evidenced by the improved sharpness of RHEED pattern and a reduced diffuse background in the spectra measured by high-resolution ultraviolet photoemission spectroscopy (HRUPS). Calculations have been performed for various atomic geometries by employing first-principles geometry optimization. In conjunction with an analysis of the core level component intensities in terms the layer-attenuation model, we propose a "vacancy site" model of the modified 1 ML-Te/CdTe(111)A (2 × 2) surface. PMID:26672795

  5. Comparison of the growth kinetics of In2O3 and Ga2O3 and their suboxide desorption during plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Vogt, Patrick; Bierwagen, Oliver

    2016-08-01

    We present a comprehensive study of the In2O3 growth kinetics during plasma-assisted molecular beam epitaxy and compare it to that of the related oxide Ga2O3 [P. Vogt and O. Bierwagen, Appl. Phys. Lett. 108, 072101 (2016)]. The growth rate and desorbing fluxes were measured during growth in-situ by a laser reflectometry set-up and line-of-sight quadrupole mass spectrometer, respectively. We extracted the In incorporation as a function of the provided In flux, different growth temperatures TG, and In-to-O flux ratios r. The data are discussed in terms of the competing formation of In2O3 and desorption of the suboxide In2O and O. The same three growth regimes as in the case of Ga2O3 can be distinguished: (i) In-transport limited, O-rich (ii) In2O-desorption limited, O-rich, and (iii) O-transport limited, In-rich. In regime (iii), In droplets are formed on the growth surface at low TG. The growth kinetics follows qualitatively that of Ga2O3 in agreement with their common oxide and suboxide stoichiometry. The quantitative differences are mainly rationalized by the difference in In2O and Ga2O desorption rates and vapor pressures. For the In2O, Ga2O, and O desorption, we extracted the activation energies and frequency factors by means of Arrhenius-plots.

  6. Reaction kinetics and growth window for plasma-assisted molecular beam epitaxy of Ga2O3: Incorporation of Ga vs. Ga2O desorption

    Science.gov (United States)

    Vogt, Patrick; Bierwagen, Oliver

    2016-02-01

    A detailed study of the reaction kinetics of the plasma-assisted molecular beam epitaxy (MBE) growth of the n-type semiconducting oxide Ga2O3 is presented. The growth rate as a function of gallium flux is measured in situ by laser reflectometry at different growth temperatures (TG) and gallium-to-oxygen ratios (rGa). The flux of the suboxide Ga2O desorbed off the growth surface is identified in situ by line-of-sight quadrupole mass spectroscopy. The measurements reveal the influence of TG and rGa on the competing formation of Ga2O3 and desorption of Ga2O resulting in three different growth regimes: (i) Ga transport limited, (ii) Ga2O desorption limited, and (iii) O transport limited. As a result, we present a growth diagram of gallium oxide. This diagram illustrates the regimes of complete, partial, and no Ga incorporation as a function of TG and rGa, and thus provides guidance for the MBE growth of Ga2O3.

  7. A molecular beam epitaxy facility for in situ neutron scattering

    International Nuclear Information System (INIS)

    A molecular beam epitaxy (MBE) facility has been built to enable in situ neutron scattering measurements during growth of epitaxial layers. While retaining the full capabilities of a research MBE chamber, this facility has been optimized for polarized neutron reflectometry measurements. Optimization includes a compact lightweight portable design, a neutron window, controllable magnetic field, deposition across a large 76 mm diameter sample with exceptional flux uniformity, and sample temperatures continuously controllable from 38 to 1375 K. A load lock chamber allows for sample insertion, storage of up to 4 samples, and docking with other facilities. The design and performance of this chamber are described here.

  8. Reflectance-anisotropy study of the dynamics of molecular beam epitaxy growth of GaAs and InGaAs on GaAs(001)

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Gallegos, J.; Lastras-Martinez, A.; Lastras-Martinez, L.F. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi. Alvaro Obregon 64, San Luis Potosi (Mexico); Balderas-Navarro, R.E. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi. Alvaro Obregon 64, San Luis Potosi (Mexico); Facultad de Ciencias, Universidad Autonoma de San Luis Potosi. Alvaro Obregon 64, San Luis Potosi (Mexico)

    2008-07-01

    Reflectance-Anisotropy (RA) observations during the Molecular Beam Epitaxy (MBE) growth of zincblende semiconductors films were carried out using the E{sub 1} optical transition as a probe. We follow the kinetics of the deposition of GaAs and In{sub 0.3}Ga{sub 0.7}As on GaAs(001) at growth rates of 0.2 and 0.25 ML/s, respectively. During growth we used a constant As{sub 4} or As{sub 2} flux pressure of 5 x 10{sup -6} Torr. Clear RA-oscillations were observed during growth with a period that nearly coincides with the growth period for a Ga-As bilayer. RHEED was used as an auxiliary technique in order to obtain a correlation between RHEED and RA oscillations. On the basis of our results, we argue that RAS oscillations are mainly associated to periodic changes in surface atomic structure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Reflectance-anisotropy study of the dynamics of molecular beam epitaxy growth of GaAs and InGaAs on GaAs(001)

    International Nuclear Information System (INIS)

    Reflectance-Anisotropy (RA) observations during the Molecular Beam Epitaxy (MBE) growth of zincblende semiconductors films were carried out using the E1 optical transition as a probe. We follow the kinetics of the deposition of GaAs and In0.3Ga0.7As on GaAs(001) at growth rates of 0.2 and 0.25 ML/s, respectively. During growth we used a constant As4 or As2 flux pressure of 5 x 10-6 Torr. Clear RA-oscillations were observed during growth with a period that nearly coincides with the growth period for a Ga-As bilayer. RHEED was used as an auxiliary technique in order to obtain a correlation between RHEED and RA oscillations. On the basis of our results, we argue that RAS oscillations are mainly associated to periodic changes in surface atomic structure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Growth of pseudomorphic structures through organic epitaxy

    International Nuclear Information System (INIS)

    The control of molecular orientation in thin solid film phases of organic semiconductors is a basic factor for the exploitation of their physical properties for optoelectronic devices. We compare structural and optical properties of thin films of the organic semiconductor α-quarterthiophene grown by molecular beam epitaxy on different organic substrates. We show how epitactic interactions, characteristic of the surface of organic crystals, can drive the orientation of the crystalline overlayer and the selection of specific polymorphs and new pseudomorphic phases. We identify a key role in this phenomenon played by the marked groove-like corrugations present in some organic crystal surfaces. Since different polymorphs possess rather different performance in terms of, e.g., charge carrier mobility, this strategy is demonstrated to allow for the growth of oriented phases with enhanced physical properties, while keeping the substrate at room temperature. These results provide useful guidelines for the design of technological substrates for organic epitaxy and they substantiate the adoption of an organic epitaxy approach for the fabrication of optoelectronic devices based on thin films of organic semiconductors.

  11. Growth of single-crystal columns of CoSi2 embedded in epitaxial Si on Si(111) by molecular beam epitaxy

    Science.gov (United States)

    Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin

    1989-01-01

    The codeposition of Si and Co on a heated Si(111) substrate is found to result in epitaxial columns of CoSi2 if the Si:Co ratio is greater than approximately 3:1. These columns are surrounded by an Si matrix which shows bulk-like crystalline quality based on transmission electron microscopy and ion channeling. This phenomenon has been studied as functions of substrate temperature and Si:Co ratio. Samples with columns ranging in average diameter from approximately 25 to 130 nm have been produced.

  12. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system

    Science.gov (United States)

    Rutkowski, M. M.; McNicholas, K. M.; Zeng, Zhaoquan; Brillson, L. J.

    2013-06-01

    We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift (˜1 eV) in the core level binding energies was observed.

  13. Initial growth stages of Si–Ge–Sn ternary alloys grown on Si (100) by low-temperature molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tuktamyshev, A. R., E-mail: tuktamyshev@isp.nsc.ru; Mashanov, V. I.; Timofeev, V. A.; Nikiforov, A. I.; Teys, S. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-12-15

    Temperature dependence of the critical thickness of the transition from two-dimensional to threedimensional growth of the Ge{sub 1–5x}Si{sub 4x}Sn{sub x} films grown on Si (100) by molecular-beam epitaxy in the temperature range 150–450°C has been experimentally determined. This dependence is nonmonotonic and is similar to that of the critical thickness for the transition from two-dimensional to three-dimensional growth in the case of the deposition of pure Ge on Si (100) and is caused by a change in the mechanism of two-dimensional growth. Data on the average size and the density of islands, and the ratio between the height of the islands and their lateral size are obtained by the methods of atomic force microscopy and scanning tunneling microscopy. As the growth temperature is increased from 200 to 400°C, the average size of the nanoislands increases from 4.7 to 23.6 nm.

  14. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system

    International Nuclear Information System (INIS)

    We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift (∼1 eV) in the core level binding energies was observed.

  15. Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy

    Science.gov (United States)

    Bollinger, A. T.; Wu, J.; Božović, I.

    2016-05-01

    The molecular beam epitaxy (MBE) technique is well known for producing atomically smooth thin films as well as impeccable interfaces in multilayers of many different materials. In particular, molecular beam epitaxy is well suited to the growth of complex oxides, materials that hold promise for many applications. Rapid synthesis and high throughput characterization techniques are needed to tap into that potential most efficiently. We discuss our approach to doing that, leaving behind the traditional one-growth-one-compound scheme and instead implementing combinatorial oxide molecular beam epitaxy in a custom built system.

  16. Growth of ZnO(0001) on GaN(0001)/4H-SiC buffer layers by plasma-assisted hybrid molecular beam epitaxy

    Science.gov (United States)

    Adolph, David; Tingberg, Tobias; Ive, Tommy

    2015-09-01

    Plasma-assisted molecular beam epitaxy was used to grow ZnO(0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 445 °C and an O2 flow rate of 2.5 standard cubic centimeters per minute, we obtained ZnO layers with statistically smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm as revealed by atomic force microscopy. The full-width-at-half-maximum for x-ray rocking curves obtained across the ZnO(0002) and ZnO(10 1 bar 5) reflections was 198 and 948 arcsec, respectively. These values indicated that the mosaicity of the ZnO layer was comparable to the corresponding values of the underlying GaN buffer layer. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82% and 73%, respectively, and that the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements revealed that the layers were inherently n-type and had an electron concentration of 1×1019 cm-3 and a Hall mobility of 51 cm2/V s.

  17. Lattice parameter accommodation between GaAs(111) nanowires and Si(111) substrate after growth via Au-assisted molecular beam epitaxy

    Science.gov (United States)

    Davydok, Anton; Breuer, Steffen; Biermanns, Andreas; Geelhaar, Lutz; Pietsch, Ullrich

    2012-02-01

    Using out-of-plane and in-plane X-ray diffraction techniques, we have investigated the structure at the interface between GaAs nanowires [NWs] grown by Au-assisted molecular beam epitaxy and the underlying Si(111) substrate. Comparing the diffraction pattern measured at samples grown for 5, 60, and 1,800 s, we find a plastic strain release of about 75% close to the NW-to-substrate interface even at the initial state of growth, probably caused by the formation of a dislocation network at the Si-to-GaAs interface. In detail, we deduce that during the initial stage, zinc-blende structure GaAs islands grow with a gradually increasing lattice parameter over a transition region of several 10 nm in the growth direction. In contrast, accommodation of the in-plane lattice parameter takes place within a thickness of about 10 nm. As a consequence, the ratio between out-of-plane and in-plane lattice parameters is smaller than the unity in the initial state of growth. Finally the wurtzite-type NWs grow on top of the islands and are free of strain.

  18. Effects of Ga ion irradiation on growth of GaN on SiN substrates by electron cyclotron resonance-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, J. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan) and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan) and CREST-JST, Kawaguchi Center Building, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan)]. E-mail: yanagisawa@ee.es.osaka-u.ac.jp; Matsumoto, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Fukuyama, T. [Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585 (Japan); Shiraishi, Y. [Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585 (Japan); Yodo, T. [Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585 (Japan); Akasaka, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan)

    2007-04-15

    The possibility of forming GaN layers on Ga-implanted SiN surfaces was investigated using electron cyclotron resonance-assisted molecular beam epitaxy (MBE). It is found that the GaN layer initially formed on the SiN surface by Ga implantation at room temperature was amorphous-like, but become to polycrystalline after annealing at 650 deg. C for 3 min in vacuum. After the MBE growth of GaN, a grain structure of h-GaN was observed on the Ga-implanted SiN surface. The crystallinity of the GaN grown was, however, decreased upon increasing the Ga ion fluence on the SiN surface, which might be due, at least partly, to the formation of Ga clusters by the excess Ga implanted. The present results indicate the possibility of forming patterned GaN layers on SiN by selective Ga implantation on the SiN substrate, using a focused ion beam.

  19. Buffer-layer enhanced crystal growth of BaB{sub 6} (1 0 0) thin films on MgO (1 0 0) substrates by laser molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yushi; Yamauchi, Ryosuke; Arai, Hideki; Tan, Geng [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259-J2-46, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Tsuchimine, Nobuo; Kobayashi, Susumu [Toshima Manufacturing Company Limited, 1414 Shimonomoto, Higashimatsuyama-shi, Saitama 355-0036 (Japan); Saeki, Kazuhiko; Takezawa, Nobutaka [Department of Materials Technology, Industrial Technology Center of Tochigi Prefecture, 367-1 Karinuma, Utsunomiya-shi, Tochigi 321-3224 (Japan); Mitsuhashi, Masahiko; Kaneko, Satoru [Kanagawa Industrial Technology Center, Kanagawa Prefectural Government, 705-1 Shimo-Imaizumi, Ebina, Kanagawa 243-0435 (Japan); Yoshimoto, Mamoru, E-mail: yoshimoto.m.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259-J2-46, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Patent Attorney, Tokyo Institute of Technology, 4259-J2-46, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2012-02-01

    Crystalline BaB{sub 6} (1 0 0) thin films can be fabricated on MgO (1 0 0) substrates by inserting a 2-3 nm-thick epitaxial SrB{sub 6} (1 0 0) buffer layer by pulsed laser deposition (PLD) in ultra-high vacuum (i.e., laser molecular beam epitaxy). Reflection high-energy electron diffraction and X-ray diffraction measurements indicated the heteroepitaxial structure of BaB{sub 6} (1 0 0)/SrB{sub 6} (1 0 0)/MgO (1 0 0) with the single domain of the epitaxial relationship. Conversely, BaB{sub 6} thin films without the buffer layer were not epitaxial instead they developed as polycrystalline films with a random in-plane configuration and some impurity phases. As a result, the buffer layer is considered to greatly affect the initial growth of epitaxial BaB{sub 6} thin films; therefore, in this study, buffering effects have been discussed. From the conventional four-probe measurement, it was observed that BaB{sub 6} epitaxial thin films exhibit n-type semiconducting behavior with a resistivity of 2.90 Multiplication-Sign 10{sup -1} {Omega} cm at room temperature.

  20. Effects of in situ annealing of GaAs(100) substrates on the subsequent growth of InAs quantum dots by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Cortes, H; Mejia-Garcia, C [Escuela Superior de Fisica y Matematicas del IPN, UPALM, Edif. 9, Col. Lindavista, Mexico DF 07738 (Mexico); Mendez-GarcIa, V H; Vazquez-Cortes, D [Coordinacion para la Innovacion y la Aplicacion de la Ciencia y la TecnologIa, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis PotosI, S L P 78000 (Mexico); Rojas-Ramirez, J S; Contreras-Guerrero, R; RamIrez-Lopez, M; Martinez-Velis, I; Lopez-Lopez, M, E-mail: mlopez@fis.cinvestav.mx [Physics Department, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 14-740, Mexico DF 07000 (Mexico)

    2010-04-02

    In the present work, we study the growth by molecular beam epitaxy of InAs self-assembling quantum dots (SAQDs) on GaAs(100) substrates subjected to an in situ annealing treatment. The annealing process consists of the exposition of the GaAs buffer layer surface to high temperatures for a few seconds with the shutter of an arsenic Knudsen cell closed. The purpose of the annealing is to obtain a better uniformity of the SAQD sizes. In our study we prepared different samples using the Stranski-Krastanov growth method to obtain InAs/GaAs(100) quantum dot samples with different annealing times and temperatures. Their structural and optical properties were studied by reflection high-energy electron diffraction (RHEED), high-resolution scanning electron microscopy (HRSEM), atomic force microscopy (AFM), and photoreflectance spectroscopy (PR). According to the results of AFM and HRSEM, by the thermal treatment we obtained a better distribution of quantum dot sizes in comparison with a reference sample with no treatment. The PR spectra from 0.9 to 1.35 eV presented two transitions associated with SAQDs. The energy transitions were obtained by fitting the PR spectra using the third derivative model.

  1. Effects of RF plasma parameters on the growth of InGaN/GaN heterostructures using plasma-assisted molecular beam epitaxy

    CERN Document Server

    Shim Kyu Ha; Kim, K H; Hong, S U; Cho, K I; Lee, H G; Kim, J

    1999-01-01

    The effects of rf plasma power on the structural/optical properties of GaN-based nitride epilayers grown by plasma-assisted molecular beam epitaxy have been investigated. Atomic force microscopy and high-resolution x-ray diffraction analyses revealed that the sharp interface of In sub 0 sub . sub 2 Ga sub 0 sub . sub 8 N/GaN heterostructures could be obtained by suppressing the surface roughening at high rf power. photoluminescence data suggest that the formation of damaged subsurface due to energetic particles was alleviated in the InGaN growth in comparison with the GaN growth. In our experimental set-up, the rf power of 400 W appeared to properly suppress the 3D island formation without causing defects at the subsurface of In sub 0 sub . sub 2 Ga sub 0 sub . sub 8 N. The phenomena associated with the indium incorporation could be explained by an inequality with two kinetic processes of the surface diffusion and the plasma stimulated desorption.

  2. Growth and characterization of molecular beam epitaxy-grown Bi{sub 2}Te{sub 3−x}Se{sub x} topological insulator alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Y.; Chiang, Y. F.; Chong, C. W., E-mail: cheongwei2000@yahoo.com, E-mail: jcahuang@mail.ncku.edu.tw, E-mail: makalu@nsrrc.org.tw; Deng, Z. X.; Chen, Y. C. [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Huang, J. C. A., E-mail: cheongwei2000@yahoo.com, E-mail: jcahuang@mail.ncku.edu.tw, E-mail: makalu@nsrrc.org.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center (AOTC), National Cheng Kung University, Tainan 70101, Taiwan (China); Taiwan Consortium of Emergent Crystalline Materials (TCECM), Ministry of Science and Technology, Taipei 10622, Taiwan (China); Cheng, C.-M., E-mail: cheongwei2000@yahoo.com, E-mail: jcahuang@mail.ncku.edu.tw, E-mail: makalu@nsrrc.org.tw; Pi, T.-W.; Tsuei, K.-D. [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Li, Z.; Qiu, H. [School of Electronic Science and Applied Physics, HeFei University of Technology, Anhui (China)

    2016-02-07

    We report a systematic study on the structural and electronic properties of Bi{sub 2}Te{sub 3−x}Se{sub x} topological insulator alloy grown by molecular beam epitaxy (MBE). A mixing ratio of Bi{sub 2}Se{sub 3} to Bi{sub 2}Te{sub 3} was controlled by varying the Bi:Te:Se flux ratio. X-ray diffraction and Raman spectroscopy measurements indicate the high crystalline quality for the as-grown Bi{sub 2}Te{sub 3−x}Se{sub x} films. Substitution of Te by Se is also revealed from both analyses. The surfaces of the films exhibit terrace-like quintuple layers and their size of the characteristic triangular terraces decreases monotonically with increasing Se content. However, the triangular terrace structure gradually recovers as the Se content further increases. Most importantly, the angle-resolved photoemission spectroscopy results provide evidence of single-Dirac-cone like surface states in which Bi{sub 2}Te{sub 3−x}Se{sub x} with Se/Te-substitution leads to tunable surface states. Our results demonstrate that by fine-tuned MBE growth conditions, Bi{sub 2}Te{sub 3−x}Se{sub x} thin film alloys with tunable topological surface states can be obtained, providing an excellent platform for exploring the novel device applications based on this compound.

  3. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru, E-mail: kamiya@toyota-ti.ac.jp [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Suzuki, Hidetoshi [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Sasaki, Takuo; Takahasi, Masamitu [Quantum Beam Science Center, Japan Atomic Energy Agency, Koto 1-1-1, Sayo-cho, Hyogo 679-5148 (Japan)

    2015-11-14

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures.

  4. Effects of growth temperature on high-quality In0.2Ga0.8N layers by plasma-assisted molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Zhang Dongyan; Zheng Xinhe; Li Xuefei; Wu Yuanyuan; Wang Jianfeng; Yang Hui

    2012-01-01

    High-quality In0.2Ga0.8N epilayers were grown on a GaN template at temperatures of 520 and 580 ℃ via plasma-assisted molecular beam epitaxy.The X-ray rocking curve full widths at half maximum (FWHM) of (10.2)reflections is 936 arcsec for the 50-nm-thick InGaN layers at the lower temperature.When the growth temperature increases to 580 ℃,the FWHM of (00.2) reflections for these samples is very narrow and keeps similar,while significant improvement of(10.2) reflections with an FWHM value of 612 arcsec has been observed.This improved quality in InGaN layers grown at 580 ℃ is also reflected by the much larger size of the crystalline column from the AFM results,stronger emission intensity as well as a decreased FWHM of room temperature PL from 136 to 93.9 meV.

  5. Self-assembled GaInNAs/GaAsN quantum dot lasers: solid source molecular beam epitaxy growth and high-temperature operation

    Directory of Open Access Journals (Sweden)

    Yoon SF

    2006-01-01

    Full Text Available AbstractSelf-assembled GaInNAs quantum dots (QDs were grown on GaAs (001 substrate using solid-source molecular-beam epitaxy (SSMBE equipped with a radio-frequency nitrogen plasma source. The GaInNAs QD growth characteristics were extensively investigated using atomic-force microscopy (AFM, photoluminescence (PL, and transmission electron microscopy (TEM measurements. Self-assembled GaInNAs/GaAsN single layer QD lasers grown using SSMBE have been fabricated and characterized. The laser worked under continuous wave (CW operation at room temperature (RT with emission wavelength of 1175.86 nm. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is ∼1.05 kA/cm2from a GaInNAs QD laser (50 × 1,700 µm2 at 10 °C. High-temperature operation up to 65 °C was demonstrated from an unbonded GaInNAs QD laser (50 × 1,060 µm2, with high characteristic temperature of 79.4 K in the temperature range of 10–60 °C.

  6. Silicon/Germanium Molecular Beam Epitaxy

    OpenAIRE

    Ericsson, Leif

    2006-01-01

    Molecular Beam Epitaxy (MBE) is a well-established method to grow low-dimensional structures for research applications. MBE has given many contributions to the rapid expanding research-area of nano-technology and will probably continuing doing so. The MBE equipment, dedicated for Silicon/Germanium (Si/Ge) systems, at Karlstads University (Kau) has been studied and started for the first time. In the work of starting the system, all the built in interlocks has been surveyed and connected, and t...

  7. Molecular beam epitaxy of GaAs nanowires and their sustainability for optoelectronic applications. Comparing Au- and self-assisted growth methods

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Steffen

    2011-09-28

    In this work the synthesis of GaAs nanowires by molecular beam epitaxy (MBE) using the vapour-liquid-solid (VLS) mechanism is investigated. A comparison between Au- and self-assisted VLS growth is at the centre of this thesis. While the Au-assisted method is established as a versatile tool for nanowire growth, the recently developed self-assisted variation results from the exchange of Au by Ga droplets and thus eliminates any possibility of Au incorporation. By both methods, we achieve nanowires with epitaxial alignment to the Si(111) substrates. Caused by differences during nanowire nucleation, a parasitic planar layer grows between the nanowires by the Au-assisted method, but can be avoided by the self-assisted method. Au-assisted nanowires grow predominantly in the metastable wurtzite crystal structure, while their self-assisted counterparts have the zincblende structure. All GaAs nanowires are fully relaxed and the strain arising from the lattice mismatch between GaAs and Si of 4.1 % is accommodated by misfit dislocations at the interface. Self-assisted GaAs nanowires are generally found to have vertical and non-polar side facets, while tilted and polar nanofacets were described for Au-assisted GaAs nanowires. We employ VLS nucleation theory to understand the effect of the droplet material on the lateral facets. Optoelectronic applications require long minority carrier lifetimes at room temperature. We fabricate GaAs/(Al,Ga)As core-shell nanowires and analyse them by transient photoluminescence (PL) spectroscopy. The results are 2.5 ns for the self-assisted nanowires as well as 9 ps for the Au-assisted nanowires. By temperature-dependent PL measurements we find a characteristic activation energy of 77 meV that is present only in the Au-assisted nanowires. We conclude that most likely Au is incorporated from the droplets into the GaAs nanowires and acts as a deep, non-radiative recombination centre.

  8. Growth and characterization of lattice-matched InAlN/GaN Bragg reflectors grown by plasma-assisted Molecular Beam Epitaxy

    OpenAIRE

    Gacevic, Zarko; Fernández-Garrido, Sergio; Calleja Pardo, Enrique; Luna García de la Infanta, Esperanza; Trampert, Achim

    2009-01-01

    We demonstrate six to ten period lattice-matched In(0.18) Al(0.82) N/GaN distributed Bragg reflectors with peak reflectivity centred around 400 nm, grown by molecular beam epitaxy. Thanks to the well-tuned ternary alloy composition crack-free layers have been obtained as confirmed by both optical and scanning electron microscopy. In addition, crosssectional analysis by high resolution transmission electron microscopy reveals highly periodic structure with abrupt interfaces. When the number of...

  9. Epitaxial growth of single crystal films

    Science.gov (United States)

    Lind, M. D.; Kroes, R. L.; Immorlica, A. A., Jr.

    1981-01-01

    An experiment in gallium arsenide liquid phase epitaxy (LPE) on a flight of the SPAR 6 is described. A general purpose LPE processor suitable for either SPAR or Space Transportation System flights was designed and built. The process was started before the launch, and only the final step, in which the epitaxial film is grown, was performed during the flight. The experiment achieved its objectives; epitaxial films of reasonably good quality and very nearly the thickness predicted for convection free diffusion limited growth were produced. The films were examined by conventional analytical techniques and compared with films grown in normal gravity.

  10. Growth of InAs quantum dots on vicinal GaAs substrates by molecular beam epitaxy

    Science.gov (United States)

    Weir, Nicholas; Yao, Ruizhe; Lee, Chi-Sen; Guo, Wei

    2016-10-01

    Previous work shows the benefits of using vicinal substrates but there is currently a gap in the experimental studies of the effects under different MBE growth conditions. To fully realize controllable growth while using a vicinal substrate, we systematically explore and discuss the mechanism behind the dependence of the optical characteristics of MBE grown InAs QD ensembles with different growth parameters on a vicinal substrate. In addition, the potential improvement in optical quality with a vicinal substrate over an on-axis is demonstrated and an investigation into applying a two-step growth procedure on a vicinal substrate is conducted. Photoluminescence of the grown QD ensembles shows that increasing V/III ratio increased wavelength and decreased FWHM. Decreasing substrate temperature increased wavelength and FWHM. Utilizing the two-step growth method increased both wavelength and FWHM with increased interruption time.

  11. The effect of metal-rich growth conditions on the microstructure of Sc{sub x}Ga{sub 1-x}N films grown using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, H.C.L.; Moram, M.A. [Department of Materials, Imperial College London (United Kingdom); Goff, L.E. [Department of Materials, Imperial College London (United Kingdom); Department of Physics, University of Cambridge (United Kingdom); Barradas, N.P. [CTN - Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Alves, E. [IPFN - Instituto de Plasmas e Fusao Nuclear, Lisboa (Portugal); Laboratorio de Aceleradores e Tecnologias de Radiacao, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Pereira, S. [CICECO and Department of Physics, Universidade de Aveiro (Portugal); Beere, H.E.; Farrer, I.; Nicoll, C.A.; Ritchie, D.A. [Department of Physics, University of Cambridge (United Kingdom)

    2015-12-15

    Epitaxial Sc{sub x}Ga{sub 1-x}N films with 0 ≤ x ≤ 0.50 were grown using molecular beam epitaxy under metal-rich conditions. The Sc{sub x}Ga{sub 1-x}N growth rate increased with increasing Sc flux despite the use of metal-rich growth conditions, which is attributed to the catalytic decomposition of N{sub 2} induced by the presence of Sc. Microstructural analysis showed that phase-pure wurtzite Sc{sub x}Ga{sub 1-x}N was achieved up to x = 0.26, which is significantly higher than that previously reported for nitrogen-rich conditions, indicating that the use of metal-rich conditions can help to stabilise wurtzite phase Sc{sub x}Ga{sub 1-x}N. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Molecular beam epitaxy growth of 1.55 μm GaInNAs(Sb) double quantum wells with bright and narrow photoluminescence

    Science.gov (United States)

    Gupta, J. A.; Sproule, G. I.; Wu, X.; Wasilewski, Z. R.

    2006-05-01

    GaInNAs(Sb)/GaNAs double quantum well (DQW) structures were grown on GaAs substrates using solid-source molecular beam epitaxy with N 2/Ar gas mixtures in a radio frequency plasma cell. A novel method of in situ antimony mass spectrometry is introduced which permits flux monitoring in the presence of large arsenic background pressures. For a DQW sample grown without Sb, bright and narrow (38.1 meV) room temperature photoluminescence (PL) emission at 1509 nm was achieved after optimized rapid thermal annealing. In two samples grown with antimony fluxes of approximately 0.012 and 0.028 monolayers/s the PL intensity improved and very bright PL was observed at 1518 and 1551 nm with linewidths of 33.1 and 35.0 meV, respectively. The integrated PL intensities of each of these two samples was equivalent to the emission for a reference GaInNAs/GaAs DQW sample emitting closer to 1.3 μm. More strikingly, the intensity of the Sb-free 1509 nm sample was only lower by a factor of 2. This suggests that the N 2/Ar plasma approach has benefits for the material quality, as well as providing efficient flux control, yielding good material even without Sb. High-resolution X-ray diffraction and transmission electron microscopy measurements indicate excellent crystal quality for all samples. Secondary ion mass spectrometry reveals a dramatic tendency for Sb segregation during growth, resulting in very asymmetric incorporation with most of the Sb atoms located at the top interface.

  13. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    Science.gov (United States)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  14. Chemical beam epitaxy of CdTe, HgTe, and HgCdTe

    Energy Technology Data Exchange (ETDEWEB)

    Benz, R.G. II; Wagner, B.K.; Rajavel, D.; Summers, C.J. (Physical Sciences Lab., Georgia Tech Research Inst., Atlanta, GA (USA))

    1991-05-01

    A chemical beam epitaxy (CBE) system has been implemented for the growth of CdTe, HgTe, and their alloys. The system is briefly described. Results on the cracking of the organometallic source gases are presented. Epitaxial layers have been grown from gas sources of diethylcadmium, diisopropyltelluride and Hg vapor, as well as conventional solid sources. Optical and electrical properties are reported, demonstrating the potential of CBE for growing high quality solar cell and infrared detector material. (orig.).

  15. Epitaxial growth of CZT(S,Se) on silicon

    Science.gov (United States)

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  16. Molecular beam epitaxy growth of peak wavelength-controlled InGaAs/AlGaAs quantum wells for 4.3-μm mid-wavelength infrared detection

    OpenAIRE

    Shi, Zhenwu; Wang, Lu; Zhen, Honglou; Wang, Wenxin; Chen, Hong

    2013-01-01

    InGaAs/AlGaAs multiple quantum wells used for 4.3 μm mid-wavelength infrared quantum well infrared detectors were grown by molecular beam epitaxy. In composition loss was observed and quantitatively studied by high-resolution X-ray diffraction technology. By this In composition loss effect, the energy band engineering on the photo-response wavelength is not easily achieved. A thin AlGaAs barrier grown at low temperature is used to suppress the In atom desorption, and this growth process was v...

  17. Growth of low disorder GaAs/AlGaAs heterostructures by molecular beam epitaxy for the study of correlated electron phases in two dimensions

    Science.gov (United States)

    Watson, John D.

    The unparalleled quality of GaAs/AlGaAs heterostructures grown by molecular beam epitaxy has enabled a wide range of experiments probing interaction effects in two-dimensional electron and hole gases. This dissertation presents work aimed at further understanding the key material-related issues currently limiting the quality of these 2D systems, particularly in relation to the fractional quantum Hall effect in the 2nd Landau level and spin-based implementations of quantum computation. The manuscript begins with a theoretical introduction to the quantum Hall effect which outlines the experimental conditions necessary to study the physics of interest and motivates the use of the semiconductor growth and cryogenic measurement techniques outlined in chapters 2 and 3, respectively. In addition to a generic introduction to the molecular beam epitaxy growth technique, chapter 2 summarizes some of what was learned about the material purity issues currently limiting the low temperature electron mobility. Finally, a series of appendices are included which detail the experimental methods used over the course of the research. Chapter 4 presents an experiment examining transport in a low density two-dimensional hole system in which the hole density could be varied by means of an evaporated back gate. At low temperature, the mobility reached a maximum of 2.6 x 106 cm2/Vs at a density of 6.2 x 1010 cm-2 which is the highest reported mobility in a two-dimensional hole system to date. In addition, it was found that the mobility as a function of density did not follow a power law with a single exponent. Instead, it was found that the power law varied with density, indicating a cross-over between dominant scattering mechanisms at low density and high density. At low density the mobility was found to be limited by remote ionized impurity scattering, while at high density the dominant scattering mechanism was found to be background impurity scattering. Chapter 5 details an experiment

  18. Growth of Ge films by cluster beam deposition

    CERN Document Server

    Xu, J L; Feng, J Y

    2002-01-01

    Ge epitaxial layers with reasonable quality were grown on the Si(1 1 1) substrates by cluster beam deposition (CBD) process. The growth temperature plays a dominant role in the epitaxial growth of Ge films. The substrate temperature for epitaxial growth is about 500 deg. C, which is lower than the reported critical temperature of Ge epitaxial growth by MBE and CVD. A stress induced phase transition of Ge lattice from cubic to tetragonal is also observed in the CBD process, and the mechanism is discussed.

  19. Photoluminescence Characterization of Boron-doped Si Layers Grown by Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    LI Cheng; LAI Hong-kai; CHEN Song-yan

    2005-01-01

    Photoluminescence spectra were used to characterize the boron-doped Si layers grown by molecular beam epitaxy using HBO2 as the doping source. The influence of boron doping concentration on the dislocation-related photoluminescence spectra of molecular beam epitaxy Si layers annealed at 900 ℃ was studied with different doping concentrations and growth temperature. The broad photoluminescence band(from 0.75 eV to 0.90 eV) including D1 and D2 bands was associated with high boron doping concentration in the samples, while D3 and D4 bands might be related to oxygen precipitates.

  20. Laser molecular beam epitaxy of ZnO thin films and heterostructures

    OpenAIRE

    Opel, Matthias; Geprägs, Stephan; Althammer, Matthias; Brenninger, Thomas; Gross, Rudolf

    2013-01-01

    We report on the growth of epitaxial ZnO thin films and ZnO based heterostructures on sapphire substrates by laser molecular beam epitaxy (MBE). We first discuss some recent developments in laser-MBE such as flexible ultra-violet laser beam optics, infrared laser heating systems or the use of atomic oxygen and nitrogen sources, and describe the technical realization of our advanced laser-MBE system. Then we describe the optimization of the deposition parameters for ZnO films such as laser flu...

  1. Gas source molecular beam epitaxy of GaN with hydrazine on spinel substrates

    Science.gov (United States)

    Nikishin, S. A.; Temkin, H.; Antipov, V. G.; Guriev, A. I.; Zubrilov, A. S.; Elyukhin, V. A.; Faleev, N. N.; Kyutt, R. N.; Chin, A. K.

    1998-05-01

    Growth of high quality wurtzite-structure GaN layers on (111) MgAl2O4 by gas source molecular beam epitaxy is described. Hydrazine was used as a source of active nitrogen. In situ reflection high energy electron diffraction was used to monitor the growth mode. Two-dimensional growth was obtained at temperatures above 750 °C on multi-step GaN buffer layers. The resulting GaN films show excellent luminescence properties.

  2. Epitaxial growth of MgB2 films at ambient temperature

    Science.gov (United States)

    Shishido, Hiroaki; Yoshida, Takuya; Nakagami, Takatoshi; Ishida, Takekazu

    We grew crystalline MgB2 thin films using molecular beam epitaxy at a low substrate temperature of 110 °C under an ultrahigh vacuum of about 10-6 Pa. MgB2 thin films were deposited on the (001) surface of a 4H-SiC substrate with an epitaxial Mg buffer layer. The epitaxial growth was confirmed by X-ray diffraction measurements. MgB2 thin films show a sharp superconducting transition at 27.2 K, with a relatively narrow superconducting transition width ΔTc = 0.9 K. The growth temperature was lower than any in prior reports on superconducting MgB2 thin films. The presence of the epitaxial Mg buffer layer is crucial for reducing the epitaxial temperature.

  3. Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy

    Science.gov (United States)

    Haislmaier, Ryan C.; Stone, Greg; Alem, Nasim; Engel-Herbert, Roman

    2016-07-01

    The synthesis of a 50 unit cell thick n = 4 Srn+1TinO3n+1 (Sr5Ti4O13) Ruddlesden-Popper (RP) phase film is demonstrated by sequentially depositing SrO and TiO2 layers in an alternating fashion using hybrid molecular beam epitaxy (MBE), where Ti was supplied using titanium tetraisopropoxide (TTIP). A detailed calibration procedure is outlined for determining the shuttering times to deposit SrO and TiO2 layers with precise monolayer doses using in-situ reflection high energy electron diffraction (RHEED) as feedback. Using optimized Sr and TTIP shuttering times, a fully automated growth of the n = 4 RP phase was carried out over a period of >4.5 h. Very stable RHEED intensity oscillations were observed over the entire growth period. The structural characterization by X-ray diffraction and high resolution transmission electron microscopy revealed that a constant periodicity of four SrTiO3 perovskite unit cell blocks separating the double SrO rocksalt layer was maintained throughout the entire film thickness with a very little amount of planar faults oriented perpendicular to the growth front direction. These results illustrate that hybrid MBE is capable of layer-by-layer growth with atomic level precision and excellent flux stability.

  4. Structure and optical properties of ternary alloy BeZnO and quaternary alloy BeMgZnO films growth by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Su, Longxing, E-mail: sulx@mail2.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Zhu, Yuan, E-mail: zhuy9@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Zhang, Quanlin; Chen, Mingming; Wu, Tianzhun; Gui, Xuchun [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Pan, Bicai [Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xiang, Rong [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Tang, Zikang, E-mail: phzktang@ust.hk [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2013-06-01

    Ternary alloy BeZnO and quaternary alloy BeMgZnO films were prepared on sapphire (0 0 1) substrate by radio-frequency plasma-assisted molecular beam epitaxy (RF-PAMBE). Based on X-ray diffraction (XRD) analysis, no phase segregation is observed for all the alloys. However, Be{sub x}Zn{sub 1−x}O alloys exhibit a constantly worse crystal quality than Be{sub x}Mg{sub y}Zn{sub 1−x−y}O alloys at the similar incorporation contents (i.e. x in BeZnO approximately equals to x + y in BeMgZnO). Optical transmittance spectra were recorded to determine the energy band gap of the films. BeMgZnO was revealed more effective in widening the band gap. Finally, BeZnO and BeMgZnO based MSM structure UV detectors were fabricated. BeMgZnO alloys with better crystal quality showed a favorable optical response and the cutoff wavelength shifted continuously to deep ultraviolet range, while BeZnO based detectors were found no response. This is the first report on BeMgZnO based UV detector, which is a meaningful step forward to the real application.

  5. Gas source molecular-beam epitaxial growth of TlInGaAsN double quantum well light emitting diode structures and thallium incorporation characteristics

    Science.gov (United States)

    Matsumoto, T.; Krishnamurthy, D.; Fujiwara, A.; Hasegawa, S.; Asahi, H.

    2006-10-01

    TlInGaAsN/GaAs double quantum well (DQW) structures were grown on GaAs (1 0 0) substrates by gas source molecular-beam epitaxy. It has been found that high Tl flux is needed for the incorporation of Tl into the films. Reduction in the temperature variation of electroluminescence (EL) peak energy has been observed by the addition of Tl into quantum well (QW) layers; -0.62 meV/K for the InGaAsN/GaAs DQW light emitting diodes (LEDs) and -0.53 meV/K for the TlInGaAsN/GaAs DQW LEDs. By replacing GaAs barrier layers with TlGaAs barrier layers, further reduction could be obtained; -0.35 meV/K for TlInGaAsN/TlGaAs DQW LEDs. SIMS measurements indicated that this improvement is caused by the increased incorporation of Tl into the QW layers.

  6. Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kasanaboina, Pavan Kumar [Department of Electrical and Computer Engineering, North Carolina A& T State University, Greensboro, North Carolina 27411 (United States); Ahmad, Estiak [Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA& T State University, Greensboro, North Carolina 27401 (United States); Li, Jia; Iyer, Shanthi [Department of Electrical and Computer Engineering, North Carolina A& T State University, Greensboro, North Carolina 27411 (United States); Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA& T State University, Greensboro, North Carolina 27401 (United States); Reynolds, C. Lewis; Liu, Yang [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-07

    Bandgap tuning up to 1.3 μm in GaAsSb based nanowires by incorporation of dilute amount of N is reported. Highly vertical GaAs/GaAsSbN/GaAs core-shell configured nanowires were grown for different N contents on Si (111) substrates using plasma assisted molecular beam epitaxy. X-ray diffraction analysis revealed close lattice matching of GaAsSbN with GaAs. Micro-photoluminescence (μ-PL) revealed red shift as well as broadening of the spectra attesting to N incorporation in the nanowires. Replication of the 4K PL spectra for several different single nanowires compared to the corresponding nanowire array suggests good compositional homogeneity amongst the nanowires. A large red shift of the Raman spectrum and associated symmetric line shape in these nanowires have been attributed to phonon localization at point defects. Transmission electron microscopy reveals the dominance of stacking faults and twins in these nanowires. The lower strain present in these dilute nitride nanowires, as opposed to GaAsSb nanowires having the same PL emission wavelength, and the observation of room temperature PL demonstrate the advantage of the dilute nitride system offers in the nanowire configuration, providing a pathway for realizing nanoscale optoelectronic devices in the telecommunication wavelength region.

  7. Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Bandgap tuning up to 1.3 μm in GaAsSb based nanowires by incorporation of dilute amount of N is reported. Highly vertical GaAs/GaAsSbN/GaAs core-shell configured nanowires were grown for different N contents on Si (111) substrates using plasma assisted molecular beam epitaxy. X-ray diffraction analysis revealed close lattice matching of GaAsSbN with GaAs. Micro-photoluminescence (μ-PL) revealed red shift as well as broadening of the spectra attesting to N incorporation in the nanowires. Replication of the 4K PL spectra for several different single nanowires compared to the corresponding nanowire array suggests good compositional homogeneity amongst the nanowires. A large red shift of the Raman spectrum and associated symmetric line shape in these nanowires have been attributed to phonon localization at point defects. Transmission electron microscopy reveals the dominance of stacking faults and twins in these nanowires. The lower strain present in these dilute nitride nanowires, as opposed to GaAsSb nanowires having the same PL emission wavelength, and the observation of room temperature PL demonstrate the advantage of the dilute nitride system offers in the nanowire configuration, providing a pathway for realizing nanoscale optoelectronic devices in the telecommunication wavelength region

  8. Growth of epitaxial graphene: Theory and experiment

    International Nuclear Information System (INIS)

    A detailed review of the literature for the last 5–10 years on epitaxial growth of graphene is presented. Both experimental and theoretical aspects related to growth on transition metals and on silicon carbide are thoroughly reviewed. Thermodynamic and kinetic aspects of growth on all these materials, where possible, are discussed. To make this text useful for a wider audience, a range of important experimental techniques that have been used over the last decade to grow (e.g. CVD, TPG and segregation) and characterize (STM, LEEM, etc.) graphene are reviewed, and a critical survey of most important theoretical techniques is given. Finally, we critically discuss various unsolved problems related to growth and its mechanism which we believe require proper attention in future research

  9. Low-temperature grown graphene films by using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng-Yu [Institute of Electronics, National Taiwan University, Taipei, Taiwan (China); Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei, Taiwan (China); Guo, Wei-Ching; Wang, Pro-Yao [Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, Taiwan (China); Wu, Meng-Hsun [College of Photonics, National Chiao-Tung University, Tainan, Taiwan (China); Liu, Te-Huan; Chang, Chien-Cheng [Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan (China); Pao, Chun-Wei; Lin, Shih-Yen [Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei, Taiwan (China); Lee, Si-Chen [Institute of Electronics, National Taiwan University, Taipei, Taiwan (China)

    2012-11-26

    Complete graphene film is prepared by depositing carbon atoms directly on Cu foils in a molecular beam epitaxy chamber at 300 Degree-Sign C. The Raman spectrum of the film has indicated that high-quality few-layer graphene is obtained. With back-gated transistor architecture, the characteristic current modulation of graphene transistors is observed. Following the similar growth procedure, graphitization is observed at room temperature, which is consistent with the molecular dynamics simulations of graphene growth.

  10. Epitaxial growth by monolayer restricted galvanic displacement

    Directory of Open Access Journals (Sweden)

    Vasilić Rastko

    2012-01-01

    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  11. Thermal stability of epitaxial Fe films grown on Si substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Epitaxial Fe films are grown on Si(0 0 1) and Si(1 1 1) substrates by molecular beam epitaxy at room temperature. Several samples of one Fe/Si structure are subjected to rapid thermal annealing from 100 to 500 °C. The annealing impact on the morphological, magnetic properties and interfacial heterostructures of these samples is examined by atomic force microscopy, vibrating sample magnetometer and transmission electron microscopy, respectively. The results demonstrate that the material system Fe/Si grown at room temperature exhibits an abrupt interface and is thermally stable up to a temperature of 150 °C.

  12. Effects of growth temperature on the structural and the optical properties of ZnO thin films on porous silicon grown by using plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Su; Kim, Soa Ram; Yim, Kwang Gug; Leem, Jae Young; Nam, Gi Woong [Inje University, Gimhae (Korea, Republic of); Kim, Do Yeob [Clemson University, Clemson, South Carolina (United States); Lee, Dong Yul [Samsung Electronics Co. Ltd., Yongin (Korea, Republic of); Kim, Jin Soo [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Jong Su [Yeungnam University, Gyeongsan (Korea, Republic of); Son, Jeong Sik [Kyungwoon University, Gumi (Korea, Republic of)

    2012-05-15

    Zinc oxide (ZnO) thin films were grown on Si and porous silicon (PS) at different growth temperatures in the range from 150 to 550 .deg. C by using plasma-assisted molecular beam epitaxy (PA-MBE). The effects of PS and growth temperature on the structural and the optical properties of the ZnO thin films were investigated by using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL). A higher intensity and a narrower full width at half maximum (FWHM) of the ZnO (002) diffraction peak were observed from the ZnO thin films grown on PS, indicating improved crystal quality. For the ZnO thin films grown on Si, the optical properties were gradually enhanced as the growth temperature was increased. However, the structural and the optical properties of the ZnO thin films grown on PS exhibited the largest improvement at a growth temperature of 350 .deg. C. The structural and the optical properties of the ZnO thin films, compared with the ZnO thin films grown on Si, were improved by introducing PS, and the optimum growth temperature was decreased.

  13. Shaping metal nanocrystals through epitaxial seeded growth

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  14. Transport properties of modulation-doped structures grown by molecular beam epitaxy after focused ion beam implantation

    International Nuclear Information System (INIS)

    Modulation-doped structures are grown by molecular beam epitaxy after focused ion beam writing. The growth and implantation chambers are connected in a high vacuum to minimize the effect of growth interruption. The electron channel is drastically depleted by the buried Be+ implanted region, but only slightly depleted by the buried Au+ and Au2+ implanted regions. This is because Be+ implantation forms a p-type material, while Au+ or Au2+ implantation leaves damage only in the n-type material. Be+ implantation is therefore used to fabricate 0.1 μm-wide wires with electron mobility of 2.1x105 cm2/Vs. (author)

  15. Epitaxial growth and characterization of layered magnetic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bertacco, R. [LNESS, Dipartimento di Fisica del Politecnico di Milano, via Anzani 52, Como (Italy); Cantoni, M. [LNESS, Dipartimento di Fisica del Politecnico di Milano, via Anzani 52, Como (Italy); Riva, M. [LNESS, Dipartimento di Fisica del Politecnico di Milano, via Anzani 52, Como (Italy); Tagliaferri, A. [LNESS, Dipartimento di Fisica del Politecnico di Milano, via Anzani 52, Como (Italy); Ciccacci, F. [LNESS, Dipartimento di Fisica del Politecnico di Milano, via Anzani 52, Como (Italy)]. E-mail: franco.ciccacci@fisi.polimi.it

    2005-12-15

    We describe the construction and operation of an ultrahigh-vacuum system devoted to the study of layered magnetic nanostructures. The apparatus includes two growth chambers, where specimens nanostructured along the direction of growth (heterostructures, nanometric and subnanometric thin films and multilayers) are deposited either by molecular beam epitaxy or pulsed laser deposition, and a measurement chamber, where they are analyzed in situ by a variety of electron spectroscopies. Magnetic characterization is obtained by spin resolved inverse photoemission spectroscopy and magneto optical Kerr effect technique. Vacuum transfer towards other experimental facilities is also available. As examples of application, results from half metallic magnetic oxides, such as magnetite (Fe{sub 3}O{sub 4}) and manganite (La{sub 2/3}Sr{sub 1/3}MnO{sub 3}) thin films, and ferromagnet/semiconductor interfaces (Fe/Ge(0 0 1)) are also reported.

  16. Plasma assisted molecular beam epitaxy growth and effect of varying buffer thickness on the formation of ultra-thin In0.17Al0.83N/GaN heterostructure on Si(111)

    International Nuclear Information System (INIS)

    This work reports on the detailed plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin In0.17Al0.83N/GaN heterostructures on Si(111) substrate with three different buffer thickness (600 nm, 400 nm, and 200 nm). Growth through critical optimization of growth conditions is followed by the investigation of impact of varying buffer thickness on the formation of ultra-thin 1.5 nm, In0.17Al0.83N–1.25 nm, GaN–1.5 nm, In0.17Al0.83N heterostructure, in terms of threading dislocation (TD) density. Analysis reveals a drastic reduction of TD density from the order 1010 cm−2 to 108 cm−2 with increasing buffer thickness resulting smooth ultra-thin active region for thick buffer structure. Increasing strain with decreasing buffer thickness is studied through reciprocal space mapping analysis. Surface morphology through atomic force microscopy analysis also supports our study by observing an increase of pits and root mean square value (0.89 nm, 1.2 nm, and 1.45 nm) with decreasing buffer thickness which are resulted due to the internal strain and TDs

  17. High-mobility BaSnO{sub 3} grown by oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Santosh; Schumann, Timo; Kim, Honggyu; Zhang, Jack Y.; Cain, Tyler A.; Stemmer, Susanne, E-mail: stemmer@mrl.ucsb.edu [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2016-01-01

    High-mobility perovskite BaSnO{sub 3} films are of significant interest as new wide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO{sub 3} films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnO{sub x}. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO{sub 3}. We demonstrate room temperature electron mobilities of 150 cm{sup 2} V{sup −1} s{sup −1} in films grown on PrScO{sub 3}. The results open up a wide range of opportunities for future electronic devices.

  18. Selective epitaxial growth of sub-micron structures of YBaCuO by substrate modification

    NARCIS (Netherlands)

    Blank, Dave H.A.; Damen, Cas A.J.; Kropman, Boike L.; Rogalla, Horst

    1994-01-01

    Sub-micron structures of high-Tc thin films have been realized with Selective Epitaxial Growth (SEG). Two different techniques to achieve SEG have been studied. First, narrow trenches down to 100 nm are etched into the substrate with a four-layer E-beam lithography technique. Second, amorphous metal

  19. Induced base transistor fabricated by molecular beam epitaxy

    Science.gov (United States)

    Chang, C.-Y.; Liu, W. C.; Jame, M. S.; Wang, Y. H.; Luryi, S.

    1986-09-01

    A novel three-terminal hot-electron device, the induced base transistor (IBT), has been fabricated by molecular beam epitaxy. Two-dimensional electron gas induced by the applied collector field in an undoped GaAs quantum well is used as the base of the IBT. The common-base current gain alpha has been achieved as high as 0.96 under a collector bias of 2.5 V and an emitter current of 3 mA.

  20. Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth

    International Nuclear Information System (INIS)

    In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ('alchemy') because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned

  1. Critical misfit of epitaxial growth metallic thin films

    Institute of Scientific and Technical Information of China (English)

    LI Jian-Chen; LIU Wei; JIANG Qing

    2005-01-01

    The critical misfit of epitaxial growth metallic thin films fc was thermodynamically considered. It is found that there exists a competition between the energy of the misfit dislocation of film and non-coherent interface energy of film-substrate. Equilibrium between these energies was present at a critical atomic misfit fc. When the atomic misfit is larger than the critical value, epitaxial growth does not occur. The critical misfit of the epitaxial growth thin films can be predicted. The results show that fc is proportional to the non-coherent interface energy of the film-substrate, and inversely proportional to the elastic modulus and the thickness of the film.

  2. Growth of high purity semiconductor epitaxial layers by liquid phase epitaxy and their characterization

    Indian Academy of Sciences (India)

    S Dhar

    2005-07-01

    This paper briefly describes our work and the results on the growth of several III–V epitaxial semiconductor materials in high purity form by liquid phase epitaxy (LPE) technique. Various possible sources of impurities in such growth are listed and step-by-step procedures adopted to reduce them are discussed in particular reference to the growth of GaAs layers. The technique of growing very high purity layers by treating the melt with erbium is described for the growth of InGaAs and GaSb layers.

  3. Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy

    Science.gov (United States)

    Cho, Yong-Jin; Summerfield, Alex; Davies, Andrew; Cheng, Tin S.; Smith, Emily F.; Mellor, Christopher J.; Khlobystov, Andrei N.; Foxon, C. Thomas; Eaves, Laurence; Beton, Peter H.; Novikov, Sergei V.

    2016-01-01

    We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate. PMID:27681943

  4. Growth and characterization of Hg1–CdTe epitaxial films by isothermal vapour phase epitaxy (ISOVPE)

    Indian Academy of Sciences (India)

    Manju Malhotra; Madhukar Gautam; J K Radhakrishnan; Vinod Kapoor; Sudeep Verma; Upendra Kumar; Anand Kumar; Garima Gupta; Anshu Goyal; S Sitharaman

    2005-04-01

    Growth of Hg1–CdTe epitaxial films by a new technique called asymmetric vapour phase epitaxy (ASVPE) has been carried out on CdTe and CZT substrates. The critical problems faced in normal vapour phase epitaxy technique like poor surface morphology, composition gradient and dislocation multiplication have been successfully solved. The epitaxial films have been electrically characterized by using the Hall effect and capacitance–voltage (–) measurements.

  5. Energetics of molecular-beam epitaxy models

    Science.gov (United States)

    Krishnamurthy, Srinivasan; Berding, M. A.; Sher, A.; Chen, A.-B.

    1990-10-01

    The removal energies of constituent atoms from various unreconstructed semiconductor surfaces are calculated using a Green function method. An efficient difference-equation approach within the second-neighbor tight-binding model is employed. For a compound AB, binding energies for the A and B atoms on the (111), (-1 -1 -1), (100), and (110) surfaces are calculated. Analyses are made of the energy to remove an atom from the nearly full surface and from the nearly empty surface. Results are presented for Si, GaAs, CdTe, and HgTe; and the surface sublimation energies are found to depend on surface coverage and do not display a simple linear relationship to the number of bonds broken, as is often assumed in modeling growth by MBE.

  6. Universality and geometry dependence in the class of the nonlinear molecular beam epitaxy equation

    OpenAIRE

    Carrasco, I. S. S.; Oliveira, T. J.

    2016-01-01

    We report extensive numerical simulations of growth models belonging to the nonlinear molecular beam epitaxy (nMBE) class, with flat and curved geometries. In both $d=1+1$ and $2+1$, we find that growth regime height distributions (HDs), spatial and temporal covariances are universal, but geometry-dependent, while the critical exponents are the same for flat and curved interfaces. Therefore the nMBE class does split into subclasses, as also does the Kardar-Parisi-Zhang (KPZ) class. Applying t...

  7. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    Science.gov (United States)

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  8. Control of ion content and nitrogen species using a mixed chemistry plasma for GaN grown at extremely high growth rates >9 μm/h by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Gunning, Brendan P.; Clinton, Evan A.; Merola, Joseph J.; Doolittle, W. Alan, E-mail: alan.doolittle@ece.gatech.edu [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Bresnahan, Rich C. [Veeco Instruments, St. Paul, Minnesota 55127 (United States)

    2015-10-21

    Utilizing a modified nitrogen plasma source, plasma assisted molecular beam epitaxy (PAMBE) has been used to achieve higher growth rates in GaN. A higher conductance aperture plate, combined with higher nitrogen flow and added pumping capacity, resulted in dramatically increased growth rates up to 8.4 μm/h using 34 sccm of N{sub 2} while still maintaining acceptably low operating pressure. It was further discovered that argon could be added to the plasma gas to enhance growth rates up to 9.8 μm/h, which was achieved using 20 sccm of N{sub 2} and 7.7 sccm Ar flows at 600 W radio frequency power, for which the standard deviation of thickness was just 2% over a full 2 in. diameter wafer. A remote Langmuir style probe employing the flux gauge was used to indirectly measure the relative ion content in the plasma. The use of argon dilution at low plasma pressures resulted in a dramatic reduction of the plasma ion current by more than half, while high plasma pressures suppressed ion content regardless of plasma gas chemistry. Moreover, different trends are apparent for the molecular and atomic nitrogen species generated by varying pressure and nitrogen composition in the plasma. Argon dilution resulted in nearly an order of magnitude achievable growth rate range from 1 μm/h to nearly 10 μm/h. Even for films grown at more than 6 μm/h, the surface morphology remained smooth showing clear atomic steps with root mean square roughness less than 1 nm. Due to the low vapor pressure of Si, Ge was explored as an alternative n-type dopant for high growth rate applications. Electron concentrations from 2.2 × 10{sup 16} to 3.8 × 10{sup 19} cm{sup −3} were achieved in GaN using Ge doping, and unintentionally doped GaN films exhibited low background electron concentrations of just 1–2 × 10{sup 15} cm{sup −3}. The highest growth rates resulted in macroscopic surface features due to Ga cell spitting, which is an engineering challenge still to be

  9. Control of ion content and nitrogen species using a mixed chemistry plasma for GaN grown at extremely high growth rates >9 μm/h by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Utilizing a modified nitrogen plasma source, plasma assisted molecular beam epitaxy (PAMBE) has been used to achieve higher growth rates in GaN. A higher conductance aperture plate, combined with higher nitrogen flow and added pumping capacity, resulted in dramatically increased growth rates up to 8.4 μm/h using 34 sccm of N2 while still maintaining acceptably low operating pressure. It was further discovered that argon could be added to the plasma gas to enhance growth rates up to 9.8 μm/h, which was achieved using 20 sccm of N2 and 7.7 sccm Ar flows at 600 W radio frequency power, for which the standard deviation of thickness was just 2% over a full 2 in. diameter wafer. A remote Langmuir style probe employing the flux gauge was used to indirectly measure the relative ion content in the plasma. The use of argon dilution at low plasma pressures resulted in a dramatic reduction of the plasma ion current by more than half, while high plasma pressures suppressed ion content regardless of plasma gas chemistry. Moreover, different trends are apparent for the molecular and atomic nitrogen species generated by varying pressure and nitrogen composition in the plasma. Argon dilution resulted in nearly an order of magnitude achievable growth rate range from 1 μm/h to nearly 10 μm/h. Even for films grown at more than 6 μm/h, the surface morphology remained smooth showing clear atomic steps with root mean square roughness less than 1 nm. Due to the low vapor pressure of Si, Ge was explored as an alternative n-type dopant for high growth rate applications. Electron concentrations from 2.2 × 1016 to 3.8 × 1019 cm−3 were achieved in GaN using Ge doping, and unintentionally doped GaN films exhibited low background electron concentrations of just 1–2 × 1015 cm−3. The highest growth rates resulted in macroscopic surface features due to Ga cell spitting, which is an engineering challenge still to be addressed. Nonetheless, the dramatically

  10. Growth of epitaxial iron nitride ultrathin film on zinc-blende gallium nitride

    International Nuclear Information System (INIS)

    The authors report the growth of iron nitride on zinc-blende gallium nitride using molecular beam epitaxy. First, zinc-blende GaN is grown on a magnesium oxide substrate having (001) orientation; second, an ultrathin layer of FeN is grown on top of the GaN layer. In situ reflection high-energy electron diffraction is used to monitor the surface during growth, and a well-defined epitaxial relationship is observed. Cross-sectional transmission electron microscopy is used to reveal the epitaxial continuity at the gallium nitride-iron nitride interface. Surface morphology of the iron nitride, similar to yet different from that of the GaN substrate, can be described as plateau valley. The FeN chemical stoichiometry is probed using both bulk and surface sensitive methods, and the magnetic properties of the sample are revealed.

  11. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Krockenberger, Y.

    2006-07-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  12. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    International Nuclear Information System (INIS)

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  13. HgTe and CdTe epitaxial layers and HgTe–CdTe superlattices grown by laser molecular beam epitaxy

    OpenAIRE

    Cheung, J. T.; Niizawa, G.; Moyle, J.; Ong, N. P.; Paine, B. M.; Vreeland, T., Jr.

    1986-01-01

    CdTe and HgTe epilayers and HgTe/CdTe superlattices have been grown by laser molecular beam epitaxy (laser MBE) on CdTe substrates. The power density of the laser radiation used to evaporate source materials was found to be a very important growth parameter. The superlattice structures have been characterized by helium ion backscattering spectrometry, x-ray double crystal diffractometry, and low temperature electrical transport measurements. Results indicate good crystallinity and very strong...

  14. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured GaxIn1−xP (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique

  15. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu; Zuo, Jianmin; Braun, Paul V., E-mail: pbraun@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Sardela, Mauro [Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Balaji, Manavaimaran; Lourdudoss, Sebastian; Sun, Yan-Ting [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, Royal Institute of Technology (KTH), Electrum 229, 164 40 Kista (Sweden)

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured Ga{sub x}In{sub 1−x}P (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

  16. Study of structural properties of cubic InN films on GaAs(001) substrates by molecular beam epitaxy and migration enhanced epitaxy

    International Nuclear Information System (INIS)

    InN epitaxial films with cubic phase were grown by rf-plasma-assisted molecular beam epitaxy (RF-MBE) on GaAs(001) substrates employing two methods: migration-enhanced epitaxy (MEE) and conventional MBE technique. The films were synthesized at different growth temperatures ranging from 490 to 550 °C, and different In beam fluxes (BEPIn) ranging from 5.9 × 10−7 to 9.7 × 10−7 Torr. We found the optimum conditions for the nucleation of the cubic phase of the InN using a buffer composed of several thin layers, according to reflection high-energy electron diffraction (RHEED) patterns. Crystallographic analysis by high resolution X-ray diffraction (HR-XRD) and RHEED confirmed the growth of c-InN by the two methods. We achieved with the MEE method a higher crystal quality and higher cubic phase purity. The ratio of cubic to hexagonal components in InN films was estimated from the ratio of the integrated X-ray diffraction intensities of the cubic (002) and hexagonal (1011) planes measured by X-ray reciprocal space mapping (RSM). For MEE samples, the cubic phase of InN increases employing higher In beam fluxes and higher growth temperatures. We have obtained a cubic purity phase of 96.4% for a film grown at 510 °C by MEE.

  17. GaN grown on (1 1 1) single crystal diamond substrate by molecular beam epitaxy

    Science.gov (United States)

    Dussaigne, A.; Malinverni, M.; Martin, D.; Castiglia, A.; Grandjean, N.

    2009-10-01

    GaN epilayers are grown on (1 1 1) oriented single crystal diamond substrate by ammonia-source molecular beam epitaxy. Each step of the growth is monitored in situ by reflection high energy electron diffraction. It is found that a two-dimensional epitaxial wurtzite GaN film is obtained. The surface morphology is smooth: the rms roughness is as low as 1.3 nm for 2×2 μm 2 scan. Photoluminescence measurements reveal pretty good optical properties. The GaN band edge is centred at 3.469 eV with a linewidth of 5 meV. These results demonstrate that GaN heteroepitaxially grown on diamond opens new rooms for high power electronic applications.

  18. Cleaning chemistry of InSb(100) molecular beam epitaxy substrates

    Science.gov (United States)

    Vasquez, R. P.; Lewis, B. F.; Grunthaner, F. J.

    1983-01-01

    InSb has been used as a substrate for molecular beam epitaxy. For good epitaxial growth, a substrate surface which is smooth and clean on an atomic scale is required. Chemical cleaning procedures provide an oxide film to passivate the surface. This film is then desorbed by in situ heating. The material forming the film should, therefore, have a high vapor pressure at some temperature less than the substrate melting temperature. A chloride film appears to satisfy the latter requirement. The present investigation is, therefore, concerned with the formation of a chloride film rather than an oxide film. Carbon contamination has been found to cause problems in chemical cleaning procedures. The level of carbon contamination found in the case of chloride film formation, is therefore compared with the corresponding level observed in procedures using oxide films. It appears that a chloride film grown in connection with a short exposure time to a Cl2 plasma is preferable to other passivation films studied.

  19. Epitaxial growth of tungsten nanoparticles on alumina and spinel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Suarez, T; Lopez-Esteban, S; Pecharroman, C; Esteban-Cubillo, A; Moya, J S [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Cientificas (CSIC), C/ Sor Juana Ines de la Cruz 3, 28049, Cantoblanco, Madrid (Spain); Diaz, L A; Torrecillas, R [Nanomaterials and Nanotechnology Research Center (CINN), Consejo Superior de Investigaciones CientIficas (CSIC), C/ Francisco Pintado Fe 26, 33011, Oviedo, Asturias (Spain); Gremillard, L [Universite de Lyon, INSA-Lyon, MATEIS, UMR CNRS 5510, 20 avenue Albert Einstein, Villeurbanne F-69621 (France)], E-mail: jsmoya@icmm.csic.es

    2008-05-28

    Isolated tungsten nanoparticles ({alpha}-W and {beta}-W phase) were synthesized and epitaxially grown on alumina and spinel particle surfaces with an average tungsten size of {<=}20 nm for a low tungsten content (of {<=}1.5 vol%). Using tungsten (VI) ethoxide alcoholic solutions, tungsten trioxide hydrated precursors were attached to a ceramic grains surface as a nanoparticle coating. High-resolution transmission electron microscopy (HRTEM) micrographs showed epitaxial interfaces between alumina, spinel and metallic tungsten. This epitaxial growth is assumed to be due to the effect of water vapour on the sublimation of ortho-tungstic acid during the reduction process in a hydrogen atmosphere. The planes involved in the epitaxy were found to be (22-bar 0){sub Al2O3} parallel (121){sub W} and (311){sub MgAl2O4} parallel (110){sub W}.

  20. Stabilizing CrO by epitaxial growth

    NARCIS (Netherlands)

    Rogojanu, Oana Corina; Sawatzky, G.A; Tjeng, L.H

    2002-01-01

    This thesis describes the efforts to stabilize chromium monoxide (CrO) as a thin epitaxial film on various substrates. The most stable and common oxidation phase for chromium is in chromium sesquioxide (Cr2O3). CrO does not exist as a bulk material in nature, therefore we have to grow it in a artifi

  1. Electrical properties of scandium nitride epitaxial films grown on (100) magnesium oxide substrates by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Ohgaki, Takeshi; Watanabe, Ken; Adachi, Yutaka; Sakaguchi, Isao; Hishita, Shunichi; Ohashi, Naoki; Haneda, Hajime [Environment and Energy Materials Research Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2013-09-07

    Scandium nitride (ScN) films were grown on (100) MgO single crystals by a molecular beam epitaxy method. The effects of growth conditions, including [Sc]/[N] ratio, growth temperature, and nitrogen radical state, on the electrical properties of the ScN films were studied. The ScN films comprised many small columnar grains. Hall coefficient measurements confirmed that the ScN films were highly degenerate n-type semiconductors and that the carrier concentration of the ScN films was sensitive to the growth temperature and the nitrogen radical states during the film growth. The carrier concentrations of the ScN films ranged from 10{sup 19}–10{sup 21} cm{sup −3} while the Hall mobilities ranged from 50–130 cm{sup 2}·V{sup −1}·s{sup −1} for undoped films. The temperature-dependent Hall coefficient measurements showed that the carrier concentration is nearly independent of temperature, indicating that the change in resistivity with temperature is explained by a change in the Hall mobility. The temperature-dependence of the Hall mobility was strongly affected by the growth conditions.

  2. Epitaxial growth of zinc oxide thin films on silicon

    International Nuclear Information System (INIS)

    Epitaxial zinc oxide thin films were grown on Si(111) using aluminum nitride and magnesium oxide/titanium nitride buffer layers. The resultant films were examined using transmission electron microscopy, X-ray diffraction, electrical conductivity, and photoluminescence spectroscopy. The following epitaxial relationships were observed in the ZnO/AlN/Si(111) heterostructure: ZnO[0001] parallel AlN[0001] parallel Si[111] along the growth direction, and ZnO[21-bar 1-bar 0] parallel AlN[21-bar 1-bar 0] parallel Si[011-bar] along the in-plane direction. Domain-matching epitaxial growth of TiN on Si(111) substrate allows successful epitaxial growth of MgO and ZnO layers in a ZnO/MgO/TiN/Si(111) heterostructure. The epitaxial relationships observed for this heterostructure were ZnO[0001] parallel MgO/TiN/Si[111] along the growth direction and ZnO[21-bar 1-bar 0] parallel MgO/TiN/Si[011-bar] along in-plane direction. The resultant ZnO films demonstrate excellent electrical and optical properties. ZnO thin films exhibit extremely bright ultraviolet luminescence with relatively weak green-band emission

  3. Epitaxial few-layer graphene: towards single crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Hibino, H; Kageshima, H; Nagase, M, E-mail: hibino@will.brl.ntt.co.j [NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198 (Japan)

    2010-09-22

    We review our research towards single-crystal growth of epitaxial few-layer graphene (FLG) on SiC substrates. We have established a method for evaluating the number of graphene layers microscopically using low-energy electron microscopy. Scanning probe microscopy in air is also useful for estimating the number-of-layers distribution in epitaxial FLG. The number-of-layers dependence of the work function and C1s binding energy is determined using photoelectron emission microscopy. We investigate the growth processes of epitaxial FLG on the basis of the microscopic observations of surface morphology and graphene distribution. To gain insights into the growth mechanism, we calculate the SiC surface structures with various C coverages using a first-principles scheme. Uniform bilayer graphene a few micrometres in size is obtained by annealing in UHV.

  4. Study of surface kinetic effects in the Molecular Beam Epitaxy (MBE) growth of III-V compounds by Reflection High Energy Electron Diffraction (RHEED) analysis

    International Nuclear Information System (INIS)

    A comparative surface kinetic study at MBE on (100) Ga As, Al Sb, Ga Sb and InSb surfaces has been presented. The growth mode evolution was determined in all cases by measurements of RHEED oscillation intensity. The temperature dependence of surface diffusion length for Al, Ga and In adatoms on the Ga As, Al As, Al Sb, Ga Sb and InSb was founded. The result shows that interface roughness in heterostructures depends strongly not only on substrate temperature but also on growth rate. (author). 7 refs., 4 figs., 1 tab

  5. Importance of growth temperature on achieving lattice-matched and strained InAlN/GaN heterostructure by plasma-assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    K. Jeganathan

    2014-09-01

    Full Text Available We investigate the role of growth temperature on the optimization of lattice-matched In0.17Al0.83N/GaN heterostructure and its structural evolutions along with electrical transport studies. The indium content gradually reduces with the increase of growth temperature and approaches lattice-matched with GaN having very smooth and high structural quality at 450ºC. The InAlN layers grown at high growth temperature (480ºC retain very low Indium content of ∼ 4 % in which cracks are mushroomed due to tensile strain while above lattice matched (>17% layers maintain crack-free compressive strain nature. The near lattice-matched heterostructure demonstrate a strong carrier confinement with very high two-dimensional sheet carrier density of ∼2.9 × 1013 cm−2 with the sheet resistance of ∼450 Ω/□ at room temperature as due to the manifestation of spontaneous polarization charge differences between InAlN and GaN layers.

  6. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA; Tung, I. C. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA; Chang, S. -H. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Bhattacharya, A. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Fong, D. D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Freeland, J. W. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA; Hong, Hawoong [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  7. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Freeland, J. W.; Hong, Hawoong, E-mail: hhong@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Tung, I. C. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Chang, S.-H.; Bhattacharya, A.; Fong, D. D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-01-15

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  8. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy.

    Science.gov (United States)

    Lee, J H; Tung, I C; Chang, S-H; Bhattacharya, A; Fong, D D; Freeland, J W; Hong, Hawoong

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques. PMID:26827327

  9. Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy

    OpenAIRE

    Song, Can-Li; Wang, Yi-Lin; Jiang, Ye-Ping; Zhang, Yi; Chang, Cui-Zu; Wang, Lili; He, Ke; Chen, Xi; Jia, Jin-Feng; Wang, Yayu; Fang, Zhong; Dai, Xi; Xie, Xin-Cheng; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2010-01-01

    Atomically flat thin films of topological insulator Bi2Se3 have been grown on double-layer graphene formed on 6H-SiC(0001) substrate by molecular beam epitaxy. By a combined study of reflection high energy electron diffraction and scanning tunneling microscopy, we identified the Se-rich condition and temperature criterion for layer-by-layer growth of epitaxial Bi2Se3 films. The as-grown films without doping exhibit a low defect density of 1.0\\pm 0.2x1011/cm2, and become a bulk insulator at a ...

  10. Composition control of quinary GaInNAsSb alloy grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Miyashita, Naoya; Ahsan, Nazmul; Okada, Yoshitaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Islam, Muhammad Monirul [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan)

    2013-11-15

    In order to precisely control the composition of quinary GaInNAsSb alloy, we investigated the incorporation behavior of constituent atoms during atomic hydrogen-assisted molecular beam epitaxial growth. The nitrogen (N) composition, in comparison of GaNAs and GaNAsSb, increased by the supply of antimony (Sb). However, addition of indium (In) decreases the N composition during Sb mediated growth of GaInNAsSb, which enables obtaining the same N composition when an adequate In composition is chosen. It was revealed that Sb incorporation was increased when (i) In composition decreased, (ii) Sb flux increased, (iii) growth temperature decreased, and (iv) growth rate increased. These results are thought to be related to the effect of competitive role among strain, coverage, desorption, and segregation. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Antimony segregation in stressed SiGe heterostructures grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    The effects of the growth temperature, composition, and elastic strains in separate layers on the segregation of antimony are studied experimentally for stressed SiGe structures grown by molecular beam epitaxy. It is established that the growth conditions and parameters of the structures exert an interrelated influence on the segregation of Sb: the degree of the influence of the composition and elastic stresses in the SiGe layers on Sb segregation depends on the growth temperature. It is shown that usage of a method previously proposed by us for the selective doping of silicon structures with consideration for the obtained dependences of Sb segregation on the growth conditions and parameters of the SiGe layers makes it possible to form SiGe structures selectively doped with antimony

  12. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Patrick; Bierwagen, Oliver [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin (Germany)

    2015-02-23

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga{sub 2}O{sub 3}, In{sub 2}O{sub 3}, and SnO{sub 2} on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga{sub 2}O, In{sub 2}O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO{sub 2}, somewhat lower for In{sub 2}O{sub 3}, and the lowest for Ga{sub 2}O{sub 3}. Our findings can be generalized to further oxides that possess related sub-oxides.

  13. 3英寸Si基碲镉汞分子束外延工艺研究%Research on molecular beam epitaxy growth HgCdTe film on 3 in Si based substrate

    Institute of Scientific and Technical Information of China (English)

    巩锋; 周立庆; 王经纬; 刘铭; 常米; 强宇

    2012-01-01

    随着红外焦平面阵列规模的扩大,由于尺寸和成本的限制,传统晶格匹配的碲锌镉衬底逐渐成为碲镉汞红外焦平面探测器发展的瓶颈,大尺寸、低成本硅基碲镉汞材料应运而生.本文采用分子束外延工艺生长获得了3 in Si基中波碲镉汞薄膜材料,通过采用金相显微镜、傅里叶红外光谱仪、双晶X射线衍射仪、湿化学腐蚀位错密度(EPD)法、Hall测试系统等检测手段对Si基中波碲镉汞分子束外延薄膜材料进行表面、光学、结构和电学性能表征,并采用标准平面器件工艺制备中波640 ×512焦平面探测阵列进行材料验证,结果表明该材料性能与国际先进水平相当.%The traditional lattice matched CdZnTe substrate for HgCdTe infrared focal plane arrays becomes an bottle neck gradually due to current size and cost limitation of bulk CdZnTe. As larger infrared focal plane array sizes are required for future devices,large area Si based substrates will become a requirement for HgCdTe growth in order to obtain the cost-efficiency of future systems. This paper reports the growth of MWIR HgCdTe material on 3 in CdTe/Si substrates by Molecular Beam Epitaxy technology. The optical, electrical and structural properties of epi-layers with smooth surface morphology was measured with Optical microscope,Fourier transform infrared spectrometer,X-ray diffraction rocking curve,Etch-pit density and Hall system. 640 ×512 arrays were fabricated from this material and imaging was demonstrated. All the results indicate the properties of this material has achieved top level in the world.

  14. Disorder and defect formation mechanisms in molecular-beam-epitaxy grown silicon epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Akbari-Sharbaf, Arash [Department of Physics and Astronomy, University of Western Ontario, London, ON, Canada N6A 3K7 (Canada); Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J. [Institute for Microstructural Sciences, National Research Council, Ottawa, ON, Canada K1A 0R6 (Canada); Fanchini, Giovanni, E-mail: gfanchin@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, ON, Canada N6A 3K7 (Canada); Department of Chemistry, University of Western Ontario, London, ON, Canada N6A 5B7 (Canada)

    2013-01-01

    We investigate the role of disorder, stress and crystallite size in determining the density of defects in disordered and partially ordered silicon thin films deposited at low or moderate temperatures by molecular beam epitaxy. We find that the paramagnetic defect density measured by electron spin resonance (ESR) is strongly dependent on the growth temperature of the films, decreasing from ∼ 2 · 10{sup 19} cm{sup −3} at 98 °C to ∼ 1 · 10{sup 18} cm{sup −3} at 572 °C. The physical nature of the defects is strongly dependent on the range of order in the films: ESR spectra consistent with dangling bonds in an amorphous phase are observed at the lowest temperatures, while the ESR signal gradually becomes more anisotropic as medium-range order improves and the stress level (measured both by X-ray diffraction and Raman spectroscopy) is released in more crystalline films. Anisotropic ESR spectra consistent with paramagnetic defects embedded in an epitaxial phase are observed at the highest growth temperature (572 °C). - Highlights: ► Disordered Si epilayers were grown by molecular beam epitaxy. ► Growth has been carried out at temperatures T = 98 °C–514 °C. ► A correlation between defect density and disorder in the films has been found. ► Lack of medium range order and stress cause the formation of defects at low T. ► At high T, defects are associated to grain boundaries and oriented stacking faults.

  15. AlN interlayer to improve the epitaxial growth of SmN on GaN (0001)

    Science.gov (United States)

    Vézian, S.; Damilano, B.; Natali, F.; Khalfioui, M. Al; Massies, J.

    2016-09-01

    An in situ study of the epitaxial growth of SmN thin films on Ga-polar GaN (0001) templates by molecular beam epitaxy is reported. Using X-ray photoelectron spectroscopy we found that Ga segregates at the surface during the first stages of growth. We showed that the problem related to Ga surface segregation can be simply suppressed by growing a few monolayers of AlN before starting the SmN growth. This results in a significant improvement of the crystallinity of SmN thin films assessed by X-ray diffraction.

  16. Microstructure of InxGa1−xN nanorods grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Transmission electron microscopy is used to examine the structure and composition of InxGa1−xN nanorods grown by plasma-assisted molecular beam epitaxy. The results confirm a core–shell structure with an In-rich core and In-poor shell resulting from axial and lateral growth sectors respectively. Atomic resolution mapping by energy-dispersive x-ray microanalysis and high angle annular dark field imaging show that both the core and the shell are decomposed into Ga-rich and In-rich platelets parallel to their respective growth surfaces. It is argued that platelet formation occurs at the surfaces, through the lateral expansion of surface steps. Studies of nanorods with graded composition show that decomposition ceases for x ≥ 0.8 and the ratio of growth rates, shell:core, decreases with increasing In concentration. (paper)

  17. Reduction in the crystal defect density of Zn Se layers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lopez L, M.; Perez C, A.; Luyo A, J.; Melendez L, M.; Tamura, M. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del instituto politecnico Nacional, A.P. 14-740, 07000 Mexico D.F. (Mexico); Mendez G, V.H.; Vidal, M.A. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)

    2000-07-01

    We present a study of the molecular beam epitaxial (MBE) grown of Zn Se layers on Ga-As and Si substrates. For the growth on GaAs substrates we investigated the effects of introducing buffer layers of Al{sub x}Ga{sub 1-x} As and In{sub x}Ga{sub 1-x} As with x = 0.01. Moreover, an analysis by secondary ion mass spectroscopy revealed that the use of AlGaAs buffer layers effectively suppress the Ga segregation onto the Zn Se layers surface. On the other hand, for the growth of Zn Se on Si substrates, we achieved a significant improvement in the crystal quality of Zn Se by irradiating the Si substrates with plasma of nitrogen prior to the growth. (Author)

  18. Si Incorporation in InP Nanowires Grown by Au-Assisted Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Lorenzo Rigutti

    2009-01-01

    Full Text Available We report on the growth, structural characterization, and conductivity studies of Si-doped InP nanowires grown by Au-assisted molecular beam epitaxy. It is shown that Si doping reduces the mean diffusion length of adatoms on the lateral nanowire surface and consequently reduces the nanowire growth rate and promotes lateral growth. A resistivity as low as 5.1±0.3×10−5 Ω⋅cm is measured for highly doped nanowires. Two dopant incorporation mechanisms are discussed: incorporation via catalyst particle and direct incorporation on the nanowire sidewalls. The first mechanism is shown to be less efficient than the second one, resulting in inhomogeneous radial dopant distribution.

  19. Reduction in the crystal defect density of Zn Se layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    We present a study of the molecular beam epitaxial (MBE) grown of Zn Se layers on Ga-As and Si substrates. For the growth on GaAs substrates we investigated the effects of introducing buffer layers of AlxGa1-x As and InxGa1-x As with x = 0.01. Moreover, an analysis by secondary ion mass spectroscopy revealed that the use of AlGaAs buffer layers effectively suppress the Ga segregation onto the Zn Se layers surface. On the other hand, for the growth of Zn Se on Si substrates, we achieved a significant improvement in the crystal quality of Zn Se by irradiating the Si substrates with plasma of nitrogen prior to the growth. (Author)

  20. Influence of Growth Parameters of Frequency-Radio Plasma Nitrogen Source on Extending Emission Wavelengths from 1.31 μm to 1.55 μm GaInNAs/GaAs Quantum Wells Grown by Molecular-Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    WU Dong-Hai; WU Rong-Han; NIU Zhi-Chuan; ZHANG Shi-Yong; NI Hai-Qiao; HE Zhen-Hong; ZHAO Huan; PENG Hong-Ling; YANG Xiao-Hong; HAN Qin

    2006-01-01

    @@ High (42.5%) indium content GaInNAs/GaAs quantum wells with room temperature emission wavelength from 1.3 μm to 1.5 μm range were successfully grown by Radio Frequency Plasma Nitrogen source assisted Molecular Beam Epitaxy. The growth parameters of plasma power and N2 flow rate were optimized systematically to improve the material quality. Photoluminescence and transmission electron microscopy measurements showed that the optical and crystal quality of the 1.54μm GaInNAs/GaAs QWs was kept as comparable as that in 1.31 μm.

  1. Epitaxial Growth, Processing and Characterization of Semiconductor Nanostructures

    OpenAIRE

    Borgström, Magnus

    2003-01-01

    This thesis deals with the growth, processing and characterization of nano-sized structures, eg., self-assembled quantum dots and nano-wires. Such structures are promising candidates for the realization of nano-scale electronic and optical devices, like for instance single electron transistors, resonant tunneling devices, and single photon emitters. For such purposes, the main focus of this work has been on the controlled growth of self-assembled quantum dots. For epitaxy, which is the fundam...

  2. Ion beam assisted film growth

    CERN Document Server

    Itoh, T

    2012-01-01

    This volume provides up to date information on the experimental, theoretical and technological aspects of film growth assisted by ion beams.Ion beam assisted film growth is one of the most effective techniques in aiding the growth of high-quality thin solid films in a controlled way. Moreover, ion beams play a dominant role in the reduction of the growth temperature of thin films of high melting point materials. In this way, ion beams make a considerable and complex contribution to film growth. The volume will be essential reading for scientists, engineers and students working in thi

  3. Metallic impurities in gallium nitride grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    McHugo, S.A.; Krueger, J.; Kisielowski, C. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Transition metals are often encountered in trace amounts in semiconductors. They have been extensively studied in most elemental and compound systems, since they form deep donor and/or acceptor levels which usually degrade the electronic and optical material properties. Only very little is known about transition metals in recent III-V semiconducting materials, such as GaN, AlN and InN. These few studies have been done exclusively on Metal-Organic Chemical Vapor Deposition (MOCVD) or Hybrid Vapor Phase Epitaxy HVPE-grown GaN. Preliminary x-ray fluorescence studies at the Advanced Light Source, beamline 10.3.1, Lawrence Berkeley National Laboratory have revealed that GaN materials grown by Molecular Beam Epitaxy (MBE) have Fe, Ni and Cr as the dominant transition metal contaminants. This finding is commensurate with the extremely high concentrations of hydrogen, carbon and oxygen (up to 10{sup 20} cm{sup {minus}3}) measured by Secondary Ion Mass Spectroscopy (SIMS). Preliminary work using the mapping capabilities of the x-ray fluorescence microprobe revealed the metal impurities were inhomogeneously distributed over the film. Future work of this collaboration will be to find a correlation between the existence of transition metals in MBE films, as revealed by x-ray fluorescence, and Photoluminescence (PL) spectra taken in the infrared region. Also, the authors will make use of the 1 {mu}m spatial resolution of x-ray microprobe to locate the contaminants in relation to structural defects in the GaN films. Because of the large strain caused by the lattice mismatch between the GaN films and the substrates, the films grow in a columnar order with high densities of grain boundaries and dislocations. These structural defects offer preferential sites for metal precipitation or agglomeration which could degrade the optical properties of this material more so than if the impurities were left dissolved in the GaN.

  4. Surfactant-assisted epitaxial growth and magnetism of Fe films on Cu(111)

    Energy Technology Data Exchange (ETDEWEB)

    Nino, M A; Camarero, J; Miguel, J J de; Miranda, R [Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, Cantoblanco, 28049-Madrid (Spain); Gomez, L [Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Instituto de Fisica Rosario, 2000-Rosario (Argentina); Ferron, J [Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Departamento de Materiales, Facultad de IngenierIa Quimica, UNL, 3000 Santa Fe (Argentina)

    2008-07-02

    The magnetic properties of thin epitaxial layers of Fe grown on Cu(111) depend sensitively on the films' structure and morphology. A combination of experiments and numerical simulations reveals that the use of a surfactant monolayer (ML) of Pb during molecular beam epitaxy (MBE) growth at room temperature reduces the amount of interdiffusion at the Cu-Fe interface, retards the fcc-to-bcc transformation by about 2 ML and substantially increases the films' coercivity. The origin of all these alterations to the magnetic behavior can be traced back to the structural modifications provoked by the surfactant during the early growth stages. These results open the way for the controlled fabrication of custom-designed materials with specific magnetic characteristics.

  5. Molecular beam epitaxial regrowth on diffraction gratings for vertical-cavity, surface-emitting laser-based integrated optoelectronics

    International Nuclear Information System (INIS)

    Epitaxial regrowth techniques, using molecular beam epitaxy, were optimized for the inclusion of submicron diffraction gratings within a vertically resonant structure. Various growth conditions including chemical surface preparation, growth rate, and regrown interfacial structure were studied to determine the quality of the regrown materials and structures. Characteristics such as dislocation density and growth planarity (flatness of the regrown layers) were of particular importance due to the vertical geometry and resonance requirements of the structure. Threading dislocation densities of ≅3x106 cm-2 were measured, by means of transmission electron microscopy, in the regrown structures using optimized regrowth processes. Layer thickness variations, due to growth on nonplanar surfaces (diffraction gratings), were characterized using modeling and optical reflectometry. With these results, inclusion of diffraction gratings has been demonstrated with the accurate control over layer thickness needed for use in vertically oriented devices such as vertical-cavity, surface-emitting lasers, and resonant cavity photodetectors

  6. Carbon doping of GaN with CBr4 in radio-frequency plasma-assisted molecular beam epitaxy

    OpenAIRE

    Green, D S; Mishra, U. K.; Speck, J.S.

    2004-01-01

    Carbon tetrabromide (CBr4) was studied as an intentional dopant during rf plasma molecular beam epitaxy of GaN. Secondary ion mass spectroscopy was used to quantify incorporation behavior. Carbon was found to readily incorporate under Ga-rich and N-rich growth conditions with no detectable bromine incorporation. The carbon incorporation [C] was found to be linearly related to the incident CBr4 flux. Reflection high-energy electron diffraction, atomic force microscopy and x-ray diffraction wer...

  7. Comparison of Morphology Evolution of Ge(001) Homoepitaxial Films Grown by Pulsed Laser Deposition and Molecular Beam Epitaxy

    OpenAIRE

    McCamy, James W.; Shin, Byungha; Leonard, John P.; Aziz, Michael

    2005-01-01

    Using a dual Molecular Beam Epitaxy (MBE)-Pulsed Laser Deposition (PLD) Ultra-High Vacuum chamber, we have conducted the first experiments under identical thermal, background, and surface preparation conditions to compare Ge(001) homoepitaxial growth morphology in PLD and MBE. We find that in PLD with low kinetic energy and in MBE the film morphology evolves in a similar fashion: initially irregularly shaped mounds form, followed by pyramidal mounds with edges of the square-base along direc...

  8. Radical-source molecular beam epitaxy of ZnO-based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sadofiev, Sergey

    2009-10-27

    This work focuses on the development of the novel growth approaches for the fabrication of Group II-oxide materials in the form of epitaxial films and heterostructures. It is shown that molecular-beam epitaxial growth far from thermal equilibrium allows one to overcome the standard solubility limit and to alloy ZnO with MgO or CdO in strict wurtzite phase up to mole fractions of several 10 %. In this way, a band-gap range from 2.2 to 4.4 eV can be covered. A clear layer-by-layer growth mode controlled by oscillations in reflection high-energy electron diffraction makes it possible to fabricate atomically smooth heterointerfaces and well-defined quantum well structures exhibiting prominent band-gap related light emission in the whole composition range. On appropriately designed structures, laser action from the ultraviolet down to green wavelengths and up to room temperature is achieved. The properties and potential of the ''state-of-the-art'' materials are discussed in relation to the advantages for their applications in various optoelectronic devices. (orig.)

  9. Structural and optical properties of self-catalytic GaAs:Mn nanowires grown by molecular beam epitaxy on silicon substrates

    DEFF Research Database (Denmark)

    Gas, Katarzyna; Sadowski, Janusz; Kasama, Takeshi;

    2013-01-01

    Mn-doped GaAs nanowires were grown in the self-catalytic growth mode on the oxidized Si(100) surface by molecular beam epitaxy and characterized by scanning and transmission electron microscopy, Raman scattering, photoluminescence, cathodoluminescence, and electron transport measurements. The tra......Mn-doped GaAs nanowires were grown in the self-catalytic growth mode on the oxidized Si(100) surface by molecular beam epitaxy and characterized by scanning and transmission electron microscopy, Raman scattering, photoluminescence, cathodoluminescence, and electron transport measurements...

  10. Growth temperature dependent structural and magnetic properties of epitaxial Co2FeAl Heusler alloy films

    Science.gov (United States)

    Qiao, Shuang; Nie, Shuaihua; Zhao, Jianhua; Zhang, Xinhui

    2013-06-01

    The structural and magnetic properties of a series of Co2FeAl Heusler alloy films grown on GaAs(001) substrate by molecular beam epitaxy have been studied. The epitaxial Co2FeAl films with an ordered L21 structure have been successfully obtained at growth temperature of 433 K, with an in-plane cubic magnetic anisotropy superimposed with an unusual uniaxial magnetic anisotropy. With increasing growth temperature, the ordered L21 structure degrades. Meanwhile, the uniaxial anisotropy decreases and eventually disappears above 673 K. The interfacial bonding between As and Co or Fe atom is suggested to be responsible for the additional uniaxial anisotropy.

  11. Epitaxial growth of Fe on GaN(0001): Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Calarco, R.; Meijers, R.; Kaluza, N.; Guzenko, V.A.; Thillosen, N.; Schaepers, Th.; Lueth, H. [Institute of Thin Films and Interfaces (ISG1) and CNI - Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, 52425 Juelich (Germany); Fonin, M.; Krzyk, S.; Ghadimi, R.; Beschoten, B.; Guentherodt, G. [II. Physikalisches Institut, RWTH Aachen, 52056 Aachen (Germany)

    2005-04-01

    We report results on growth studies of Fe on GaN, in particular with respect to structural and magnetic properties. The growth of GaN has been carried out by molecular beam epitaxy (MBE) and metal organic vapour phase epitaxy (MOVPE) on Si(111) and Al{sub 2}O{sub 3} substrates, respectively. Fe depositions of different thicknesses were performed in ultra high vacuum (UHV) at room temperature using an electron-beam evaporation set-up. X-ray diffraction analysis shows that the iron films are crystalline and indications of a (110) bcc orientation of the film are observed. By means of scanning tunneling microscopy (STM) epitaxial islands of Fe on the GaN(0001) surface, on a scale of 500 x 500 nm{sup 2}, have been observed. The experimentally determined magnetic hysteresis loops, with the magnetic field applied parallel to the sample surface, show a coercive field that decreases as the temperature increases; at 300 K and 50 K we measure a coercive field of 12 G and 36 G, respectively. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. The study of in situ scanning tunnelling microscope characterization on GaN thin film grown by plasma assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    The epitaxial growth of GaN by Plasma Assisted Molecular Beam Epitaxy was investigated by Scanning Tunnelling Microscope (STM). The GaN film was grown on initial GaN (0001) and monitored by in situ Reflection High Energy Electron Diffraction and STM during the growth. The STM characterization was carried out on different sub-films with increased thickness. The growth of GaN was achieved in 3D mode, and the hexagonal edge of GaN layers and growth gradient were observed. The final GaN was of Ga polarity and kept as (0001) orientation, without excess Ga adlayers or droplets formed on the surface.

  13. Interfaces in InAs/GaSb Superlattices Grown by Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    GUO Jie; SUN Wei-Guo; PENG Zhen-Yu; ZHOU Zhi-Qiang; XU Ying-Qiang; NIU Zhi-Chuan

    2009-01-01

    @@ Short period InAs(4ML)/GaSb(SML) superlattices (SLs) with InSb- and mixed-like (or Ga1-xInxAs1-ySby-like) interfaces (IFs) are grown by molecular-beam epitaxy (MBE) on (001) GaSh substrates at optimized growth temperature. Raman scattering reveals that two kinds of IFs can be formed by controlling shutter sequences. X-ray diffraction (XRD) and atomic force microscopy (AFM) demonstrate that SLs with mixed-like IFs are more sensitive to growth temperature than that with InSb-like IFs. The photoluminescence (PL) spectra of SLs with mixed-like IFs show a stronger intensity and narrower line width than with InSb-like IFs. It is concluded that InAs/GaSb SLs with mixed-like IFs have better crystalline and optical properties.

  14. Molecular beam epitaxy of thick InGaN(0001) films: Effects of substrate temperature on structural and electronic properties

    Science.gov (United States)

    Papadomanolaki, E.; Bazioti, C.; Kazazis, S. A.; Androulidaki, M.; Dimitrakopulos, G. P.; Iliopoulos, E.

    2016-03-01

    Indium gallium nitride films with compositions close to the middle of the miscibility gap and thickness approximately up to 0.5 μm were epitaxially grown on GaN(0001) by plasma-assisted molecular beam epitaxy at growth temperatures spanning a range of 400-590 °C. Epilayers were characterized by X-ray diffraction, transmission electron microscopy and Hall effect measurements. The effect of substrate temperature during growth, on the structural and electronic properties of the films, was studied. Single phase films, with record high electron mobilities were obtained at lower temperatures. Increased growth temperatures led to epilayers with higher defect densities and phase separation. Strain relaxation through sequestration layering and introduction of multiple basal stacking faults was observed at such temperatures.

  15. High quality YBCO superconductive thin films fabricated by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    CHEN; Fan

    2001-01-01

    [1]Hirata,K.,Yamamoto,K.,Iijinma,J.et al.,Tunneling measurements on superconductor/insulator/superconductor junctions using single-crystal YBa2Cu3O7-x thin films,Appl.Phys.Lett.,1990,56(7):683-685.[2]Kingston,J.J.,Wellstood,F.C.,Lerch,P.et al.,Multilayer YBa2Cu3Ox-SrTiO3-YBa2Cu3Ox films for insulating crossovers,Appl.Phys.Lett.,1990,56(2):189-191.[3]Grundler,D.,Krumme,J.P.,David,B.et al.,YBa2Cu3O7 ramp-type junctions and superconducting quantum interference devices with an ultra thin barrier of NdGaO3,Appl.Phys.Lett.,1994,65(14):1841-1843.[4]Yang Guozhen,Lu Huibin,Chen Zhenghao et al.,Laser molecular beam epitaxy system and its key technologies,Science in China (in Chinese),Ser.A,1998,28(3):260-265.[5]Wang Ning,Lu Huibin,Chen,W.Z.et al.,Morphology and microstructure of BaTiO3/SrTiO3 superlattices grown on SrTiO3 by laser molecular-beam epitaxy,Appl.Phys.Lett.,1999,75(22):3464-3466.[6]Chen Li-Chyng,Particulates generated by pulsed laser ablation,in Pulsed Laser Deposition of Thin Films (eds.Chrisey,D.B.,Hulber,G.K.),New York:John Wiley & Sons,Inc.,1994,167-198.[7]Wang,H.S.,Dietsche,W.,Eissler,D.et al.,Molecular beam epitaxial growth and structure properties of DyBa2Cu3O7-y,J.Crys.Growth,1993,126:565-577.[8]Kita,R.,Hase,T.,Itti,R.et al.,Synthesis of CuO films using mass-separated,low-energy O+ ion beams,Appl.Phys.Lett.,1992,60(21):2684-2685.[9]Lu Huibin,Zhou Yueliang,Yang Guozhen et al.,Active gas source for thin film preparation,Chinese Patent (in Chinese),1996,No.ZL 96219046.2.[10]Wang Jing,Chen Fan,Zhao Tong et al.,Fabrication of high stable DC-SQUIDS with L-MBE YBCO thin films,Chinese Journal of Low Temperature Physics (in Chinese),1999,21(1):13-16.

  16. Growth and characterization of dilute nitride GaNxP1−x nanowires and GaNxP1−x/GaNyP1−y core/shell nanowires on Si (111) by gas source molecular beam epitaxy

    OpenAIRE

    Sukrittanon, S.; Kuang, Y. J.; Dobrovolsky, Alexandr; Kang, Won-Mo; Jang, Ja-Soon; Kim, Bong-Joong; Chen, Weimin; Buyanova, Irina; Tu, C. W.

    2014-01-01

    We have demonstrated self-catalyzed GaN xP1−x and GaN xP1−x/GaNyP1−y core/shell nanowire growth by gas-source molecular beam epitaxy. The growth window for GaN xP1−x nanowires was observed to be comparable to that of GaP nanowires (∼585 °C to ∼615 °C). Transmission electron microscopy showed a mixture of cubic zincblende phase and hexagonal wurtzite phase along the [111] growth direction in GaN xP1−x nanowires. A temperature-dependent photoluminescence (PL) study performed on GaN xP1−x/GaNyP1...

  17. Transmission electron microscopy study of CdTe(111) grown on GaAs(100) by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Reno, J.L.; Carr, M.J.; Gourley, P.L. (Sandia National Laboratory, Albuquerque, New Mexico 87185 (USA))

    1990-05-01

    We have used transmission electron microscopy to investigate CdTe(111) grown on GaAs(100) by molecular-beam epitaxy. The loop structure previously observed by photoluminescence microscopy has been identified as the boundary between twinned microcrystallites that extend from the CdTe/GaAs interface to the CdTe surface. When viewed along the growth axis, these boundaries between the columnar twins appear as loops and segments. Surface roughness of the GaAs substrate contributes to the initial growth of twinned material. This leads to competitive growth between the twins and the creation of the observed columnar twins.

  18. Big-Data RHEED analysis for understanding epitaxial film growth processes

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Rama K [ORNL; Tselev, Alexander [ORNL; Baddorf, Arthur P [ORNL; Kalinin, Sergei V [ORNL

    2014-10-28

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in-situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED image, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the dataset are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of RHEED image sequence. This approach is illustrated for growth of LaxCa1-xMnO3 films grown on etched (001) SrTiO3 substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the assymetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.

  19. Epitaxial growth and electronic properties of mixed valence YbAl3 thin films

    Science.gov (United States)

    Chatterjee, Shouvik; Sung, Suk Hyun; Baek, David J.; Kourkoutis, Lena F.; Schlom, Darrell G.; Shen, Kyle M.

    2016-07-01

    We report the growth of thin films of the mixed valence compound YbAl3 on MgO using molecular-beam epitaxy. Employing an aluminum buffer layer, epitaxial (001) films can be grown with sub-nm surface roughness. Using x-ray diffraction, in situ low-energy electron diffraction, and aberration-corrected scanning transmission electron microscopy, we establish that the films are ordered in the bulk as well as at the surface. Our films show a coherence temperature of 37 K, comparable to that reported for bulk single crystals. Photoelectron spectroscopy reveals contributions from both f13 and f12 final states establishing that YbAl3 is a mixed valence compound and shows the presence of a Kondo Resonance peak near the Fermi-level.

  20. Direct Measurements of Island Growth and Step-Edge Barriers in Colloidal Epitaxy

    KAUST Repository

    Ganapathy, R.

    2010-01-21

    Epitaxial growth, a bottom-up self-assembly process for creating surface nano- and microstructures, has been extensively studied in the context of atoms. This process, however, is also a promising route to self-assembly of nanometer- and micrometer-scale particles into microstructures that have numerous technological applications. To determine whether atomic epitaxial growth laws are applicable to the epitaxy of larger particles with attractive interactions, we investigated the nucleation and growth dynamics of colloidal crystal films with single-particle resolution. We show quantitatively that colloidal epitaxy obeys the same two-dimensional island nucleation and growth laws that govern atomic epitaxy. However, we found that in colloidal epitaxy, step-edge and corner barriers that are responsible for film morphology have a diffusive origin. This diffusive mechanism suggests new routes toward controlling film morphology during epitaxy.

  1. Highly ordered growth of PTCDA on epitaxial bilayer graphene

    Science.gov (United States)

    Meissner, Matthias; Gruenewald, Marco; Sojka, Falko; Udhardt, Christian; Forker, Roman; Fritz, Torsten

    2012-11-01

    For using the unique electronic properties of graphene in future nanoelectronic devices, control of the band structure is essential. While it has been shown already in the literature that this can be achieved by the deposition of organic molecules, little attention has been paid so far to the precise structural characterization of the interface. Here, we report on the epitaxial growth of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) layers on graphene, epitaxially grown on silicon carbide (SiC). The description of low energy electron diffraction (LEED) patterns of graphene on SiC by multiscattering is revisited. By means of a home-made algorithm used to correct radial distortions of the LEED images we are able to provide precise structural data of the PTCDA layers. By that, two different point-on-line types of PTCDA could be identified, one of which has neither been reported on graphite nor on graphene before.

  2. Crystal nucleation and near-epitaxial growth in nacre

    CERN Document Server

    Olson, Ian C; Tamura, Nobumichi; Kunz, Martin; Gilbert, Pupa U P A

    2013-01-01

    Nacre, the iridescent inner lining of many mollusk shells, interests materials scientists because of its unique brick-and-mortar periodic structure at the sub-micron scale and its remarkable resistance to fracture. However, it remains unclear how nacre forms. Here we present 20-nm, 2{\\deg}-resolution Polarization-dependent Imaging Contrast (PIC) images of shells from 15 species, mapping nacre tablets and their orientation patterns, showing where crystals nucleate and how they grow in nacre. In all shells we found stacks of co-oriented aragonite (CaCO3) tablets arranged into vertical columns or staggered diagonally. Only near the nacre-prismatic boundary are disordered crystals nucleated, as spherulitic aragonite. Overgrowing nacre tablet crystals are most frequently co-oriented with the underlying spherulitic aragonite or with another tablet, connected by mineral bridges. Therefore aragonite crystal growth in nacre is epitaxial or near-epitaxial, with abrupt or gradual changes in orientation, with c-axes with...

  3. Growth and characterization of YAG:Cr4+epitaxial films

    Science.gov (United States)

    Ubizskii, Sergii B.; Syvorotka, Igor M.; Melnyk, Sergii S.; Matkovskii, Andrej O.; Kopczynski, Krzysztof; Mierczyk, Zygmunt; Frukacz, Zygmunt

    1999-03-01

    Epitaxial films with thickness of 10 - 250 micrometers of yttrium aluminum garnet (YAG) doped with Cr were grown by liquid phase epitaxy technique on YAG:Nd substrates. Co-doping with Mg2+ is used to force the Cr4+ valent state formation. Dependence of absorption spectra of obtained films on melt-solution composition, growth conditions and thermal treatment in reducing and oxidizing atmospheres is studied. A very intensive absorption band in UV region with maximum at 275 nm was found both in co-doped and YAG:Mg2+ epifilms caused probably by oxygen vacancies compensating the excess charge of Mg2+. Its intensity correlates with Cr4+ content in the film in that way: it decreases with Cr4+ entering in the film. The absorption being characteristic for YAG:Cr4+ crystals is found in co-doped films grown at higher temperatures (1000 - 1100 degree(s)C). The processes occurring during annealing are discussed.

  4. Photoluminescence characteristics of Pb-doped, molecular-beam-epitaxy grown ZnSe crystal layers

    International Nuclear Information System (INIS)

    The characteristic green photoluminescence emission and related phenomena in Pb-doped, molecular-beam-epitaxy (MBE)-grown ZnSe crystal layers were investigated to explore the nature of the center responsible for the green emission. The intensity of the green emission showed a distinct nonlinear dependence on excitation intensity. Pb-diffused polycrystalline ZnSe was similarly examined for comparison. The characteristic green emission has been observed only in MBE-grown ZnSe crystal layers with moderate Pb doping. The results of the investigations on the growth conditions, luminescence, and related properties of the ZnSe crystal layers suggest that the green emission is due to isolated Pb replacing Zn and surrounded with regular ZnSe lattice with a high perfection

  5. High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Meng; Zhao, Yuning; Yan, Xiaodong; Li, Guowang; Verma, Jai; Fay, Patrick [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Nomoto, Kazuki; Zhu, Mingda; Hu, Zongyang; Protasenko, Vladimir; Song, Bo; Xing, Huili Grace; Jena, Debdeep, E-mail: djena@cornell.edu [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Departments of ECE and MSE, Cornell University, Ithaca, New York 14853 (United States); Bader, Samuel [Departments of ECE and MSE, Cornell University, Ithaca, New York 14853 (United States)

    2015-12-07

    Molecular beam epitaxy grown GaN p-n vertical diodes are demonstrated on single-crystal GaN substrates. A low leakage current <3 nA/cm{sup 2} is obtained with reverse bias voltage up to −20 V. With a 400 nm thick n-drift region, an on-resistance of 0.23 mΩ cm{sup 2} is achieved, with a breakdown voltage corresponding to a peak electric field of ∼3.1 MV/cm in GaN. Single-crystal GaN substrates with very low dislocation densities enable the low leakage current and the high breakdown field in the diodes, showing significant potential for MBE growth to attain near-intrinsic performance when the density of dislocations is low.

  6. Greatly improved interfacial passivation of in-situ high κ dielectric deposition on freshly grown molecule beam epitaxy Ge epitaxial layer on Ge(100)

    Energy Technology Data Exchange (ETDEWEB)

    Chu, R. L. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Liu, Y. C.; Lee, W. C.; Huang, M. L.; Kwo, J., E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, T. D.; Hong, M., E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Pi, T. W. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

    2014-05-19

    A high-quality high-κ/Ge interface has been achieved by combining molecule beam epitaxy grown Ge epitaxial layer and in-situ deposited high κ dielectric. The employment of Ge epitaxial layer has sucessfully buried and/or removed the residue of unfavorable carbon and native oxides on the chemically cleaned and ultra-high vacuum annealed Ge(100) wafer surface, as studied using angle-resolved x-ray photoelectron spectroscopy. Moreover, the scanning tunneling microscopy analyses showed the significant improvements in Ge surface roughness from 3.5 Å to 1 Å with the epi-layer growth. Thus, chemically cleaner, atomically more ordered, and morphologically smoother Ge surfaces were obtained for the subsquent deposition of high κ dielectrics, comparing with those substrates without Ge epi-layer. The capacitance-voltage (C-V) characteristics and low extracted interfacial trap density (D{sub it}) reveal the improved high-κ/Ge interface using the Ge epi-layer approach.

  7. Epitaxy physical principles and technical implementation

    CERN Document Server

    Herman, Marian A; Sitter, Helmut

    2004-01-01

    Epitaxy provides readers with a comprehensive treatment of the modern models and modifications of epitaxy, together with the relevant experimental and technological framework. This advanced textbook describes all important aspects of the epitaxial growth processes of solid films on crystalline substrates, including a section on heteroepitaxy. It covers and discusses in details the most important epitaxial growth techniques, which are currently widely used in basic research as well as in manufacturing processes of devices, namely solid-phase epitaxy, liquid-phase epitaxy, vapor-phase epitaxy, including metal-organic vapor-phase epitaxy and molecular-beam epitaxy. Epitaxy’s coverage of science and texhnology thin-film is intended to fill the need for a comprehensive reference and text examining the variety of problems related to the physical foundations and technical implementation of epitaxial crystallization. It is intended for undergraduate students, PhD students, research scientists, lecturers and practic...

  8. Epitaxial growth of AlN films via plasma-assisted atomic layer epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Nepal, N.; Qadri, S. B.; Hite, J. K.; Mahadik, N. A.; Mastro, M. A.; Eddy, C. R. Jr. [U.S. Naval Research Laboratory, Washington, DC 20375 (United States)

    2013-08-19

    Thin AlN layers were grown at 200–650 °C by plasma assisted atomic layer epitaxy (PA-ALE) simultaneously on Si(111), sapphire (1120), and GaN/sapphire substrates. The AlN growth on Si(111) is self-limited for trimethyaluminum (TMA) pulse of length > 0.04 s, using a 10 s purge. However, the AlN nucleation on GaN/sapphire is non-uniform and has a bimodal island size distribution for TMA pulse of ≤0.03 s. The growth rate (GR) remains almost constant for T{sub g} between 300 and 400 °C indicating ALE mode at those temperatures. The GR is increased by 20% at T{sub g} = 500 °C. Spectroscopic ellipsometry (SE) measurement shows that the ALE AlN layers grown at T{sub g} ≤ 400 °C have no clear band edge related features, however, the theoretically estimated band gap of 6.2 eV was measured for AlN grown at T{sub g} ≥ 500 °C. X-ray diffraction measurements on 37 nm thick AlN films grown at optimized growth conditions (T{sub g} = 500 °C, 10 s purge, 0.06 s TMA pulse) reveal that the ALE AlN on GaN/sapphire is (0002) oriented with rocking curve full width at the half maximum (FWHM) of 670 arc sec. Epitaxial growth of crystalline AlN layers by PA-ALE at low temperatures broadens application of the material in the technologies that require large area conformal growth at low temperatures with thickness control at the atomic scale.

  9. Red vertical-cavity surface-emitting lasers grown by solid-source molecular beam epitaxy

    Science.gov (United States)

    Saarinen, M.; Xiang, N.; Vilokkinen, V.; Melanen, P.; Orsila, S.; Uusimaa, P.; Savolainen, P.; Toivonen, M.; Pessa, M.

    2001-07-01

    Plastic optical fibres, which have a local attenuation minimum at 650 nm, have attracted much interest for low-cost short-haul communication systems. Red vertical-cavity surface-emitting lasers (VCSELs) provide a potential solution as light sources for these systems. The operation of vertical cavity emitters is based on a Fabry-Perot microcavity, which is formed by placing an optically active region inside of two parallel mirrors. These mirrors are usually formed epitaxially. So far, metal organic chemical vapour deposition (MOCVD) has been the major technology used for growing visible VCSELs. Recently, an alternative growth method—solid-source molecular beam epitaxy (SSMBE)—has been introduced to be a viable solution to the fabrication of these structures. The authors present the first MBE-grown visible AlGaInP vertical-cavity surface-emitting lasers. A laser with a 10 μm emitting window has an external quantum efficiency of 6.65% under continuous wave operation and it is still lasing at 45°C. Furthermore, a threshold current less than 1.0 mA is obtained for a device, which has an 8 μm emitting window.

  10. Magnetotransport in MgO-based magnetic tunnel junctions grown by molecular beam epitaxy (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, S., E-mail: stephane.andrieu@univ-lorraine.fr; Bonell, F.; Hauet, T.; Montaigne, F. [Institut Jean Lamour, Nancy University/CNRS, Bd des Aiguillettes, BP239, 54506 Vandoeuvre-lès-Nancy (France); Calmels, L.; Snoeck, E. [CEMES, CNRS and Toulouse University, 29 rue Jeanne Marvig, 31055 Toulouse (France); Lefevre, P.; Bertran, F. [Synchrotron SOLEIL-CNRS, L' Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette cedex (France)

    2014-05-07

    The strong impact of molecular beam epitaxy growth and Synchrotron Radiation characterization tools in the understanding of fundamental issues in nanomagnetism and spintronics is illustrated through the example of fully epitaxial MgO-based Magnetic Tunnel Junctions (MTJs). If ab initio calculations predict very high tunnel magnetoresistance (TMR) in such devices, some discrepancy between theory and experiments still exists. The influence of imperfections in real systems has thus to be considered like surface contaminations, structural defects, unexpected electronic states, etc. The influence of possible oxygen contamination at the Fe/MgO(001) interface is thus studied, and is shown to be not so detrimental to TMR as predicted by ab initio calculations. On the contrary, the decrease of dislocations density in the MgO barrier of MTJs using Fe{sub 1−x}V{sub x} electrodes is shown to significantly increase TMR. Finally, unexpected transport properties in Fe{sub 1−X}Co{sub x}/MgO/Fe{sub 1−X}Co{sub x} (001) are presented. With the help of spin and symmetry resolved photoemission and ab initio calculation, the TMR decrease for Co content higher than 25% is shown to come from the existence of an interface state and the shift of the empty Δ1 minority spin state towards the Fermi level.

  11. Effects of substrate and ambient gas on epitaxial growth indium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, M. [National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Atomistilor Str. 109, L22 P.O. Box. MG-36, 077125 Bucharest-Magurele (Romania); Seiler, W. [PIMM, UMR CNRS 8006 Arts et Métiers ParisTech, 151 Boulevard de l’Hopital, 75013 Paris (France); Hebert, C. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7588, INSP, F-75005 Paris (France); CNRS, UMR 7588, INSP, F-75005 Paris (France); Matei, E. [National Institute of Materials Physics (NIMP), Atomistilor Str. 105 bis, P.O. Box MG-7, 077125 Magurele-Ilfov (Romania); Perrière, J., E-mail: jacques.perriere@insp.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7588, INSP, F-75005 Paris (France); CNRS, UMR 7588, INSP, F-75005 Paris (France)

    2014-07-01

    Indium oxide thin films were grown by pulsed electron beam deposition method at 500 °C on c-cut sapphire and (0 0 1) oriented LaAlO{sub 3} single crystal substrates in oxygen or argon gas. The effects of ambient gas and substrate symmetry on the growth of indium oxide thin films were studied. Stoichiometric In{sub 2}O{sub 3} films are formed in oxygen, while oxygen deficient In{sub 2}O{sub 2.5} films are grown in argon, with In metallic nanoclusters embedded in a In{sub 2}O{sub 3} matrix (nanocomposite films). In both cases, epitaxial In{sub 2}O{sub 3} films having the bixbyite phase were grown with various orientation relationships, depending upon the substrate symmetry and gas ambient (oxygen or argon). Domain matching epitaxy was used to describe the precise in-plane epitaxial film–substrate relationships. The differences in film texture were correlated to the differences in growth conditions, while the differences in the film properties were correlated to the film oxygen composition.

  12. Effects of Ga-flux on Optical Properties and Morphology of GaN Grown via Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    YANG Jing-hai; GONG Jie; FAN Hou-gang; YANG Li-li; ZHANG Yong-jun; Zseb(o)k O.; CHEN Gang

    2004-01-01

    A series of GaN layers was grown on sapphire (0001) substrates under various growth conditions by means of the molecular beam epitaxy(MBE) method, the optical characteristics and surface morphologies of the samples were studied. The results show that the line width of the GaN emission gradually decreases and the peak shifts under the Ga-rich condition by increasing the Ga-flux on keeping all other growth conditions unchanged. It has been also found that the resulted morphology is directly related to the Ga-flux.

  13. Growth of epitaxial CdTe/CdS heterostructures for single crystal thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, K.; Tiwari, A.N.; Blunier, S.; Zogg, H. [Swiss Federal Inst. of Tech., Zuerich (Switzerland). Arbeitsgemeinschaft fuer Industrielle Forschung

    1994-12-31

    Epitaxial CdTe/CdS heterostructures have been grown by molecular beam epitaxy onto BaF{sub 2} covered Si (111) substrates. An epitaxial BaF{sub 2} buffer is used for compatibility reasons, and because of easier dissolution during the lift-off processing. Epitaxy of cubic CdS (111) layers on BaF{sub 2}/Si (111) is achieved; electron channeling patterns exhibit a three-fold symmetry which is a characteristic for cubic crystal structures. The growth kinetics and structural properties of epitaxial CdS and CdTe/CdS have been studied with reflection high energy electron diffraction, Rutherford backscattering spectrometry and X-ray diffraction rocking curve measurements.the full width at half maximum of the (222) CdS and (333) CdTe X-ray peaks are {approximately} 1,150 arc sec for 2.7 and 3.4 {micro}m thick CdS and CdTe layers, respectively. To fabricate CdTe/CdS single crystal thin film solar cells, a lift-off process has been developed to remove the epitaxial layers from the Si substrates.

  14. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R., E-mail: smitha2@ohio.edu [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States)

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  15. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    International Nuclear Information System (INIS)

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  16. Epitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anode

    OpenAIRE

    Khunsin, W.; Sotomayor Torres, C. M.; O'Dwyer, Colm

    2013-01-01

    Unique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribu...

  17. Growth of c-plane ZnO on γ-LiAlO{sub 2} (1 0 0) substrate with a GaN buffer layer by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, T. [Department of Materials and Optoelectronic Science/Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China); Lu, C.-Y.J. [Department of Materials and Optoelectronic Science/Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Schuber, R. [Institute of Applied Physics/DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, DE-76131 Karlsruhe (Germany); Chang, L., E-mail: lwchang@mail.nsysu.edu.tw [Department of Materials and Optoelectronic Science/Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Schaadt, D.M. [Institute of Applied Physics/DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, DE-76131 Karlsruhe (Germany); Institute of Energy Research and Phyiscal Technologies, Clausthal Technical University, Am Stollen 19B, D-38640 Goslar (Germany); Chou, M.M.C.; Ploog, K.H. [Department of Materials and Optoelectronic Science/Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China); Chiang, C.-M. [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC (China)

    2015-10-01

    Highlights: • ZnO epilayers were grown on LiAlO{sub 2} (1 0 0) substrate with a GaN buffer layer by MBE. • A high Zn/O flux ratio is beneficial for reducing the density of screw dislocations. • Reciprocal space maps demonstrate that the misfit strain in ZnO has been relaxed. • No interfacial layer is formed at ZnO/GaN interface using a Zn pre-exposure strategy. - Abstract: C-plane ZnO epilayers were grown on LiAlO{sub 2} (1 0 0) substrate with a GaN buffer layer by plasma assisted molecular beam epitaxy. Both the X-ray rocking curves and the transmission electron microscopy analyses indicate that the ZnO epilayers exhibit a lower threading dislocation density (∼1 × 10{sup 10} cm{sup −2}) as compared to those grown on LiAlO{sub 2} substrate without the buffer layer. A high Zn/O flux ratio is beneficial for reducing the density of screw-type dislocations. Reciprocal space maps demonstrate that the misfit strain has been relaxed. No interfacial layer is formed at the ZnO/GaN interface by using a Zn pre-exposure strategy. The ZnO epilayers exhibit a strong near band edge emission at 3.28 eV at room temperature with a negligible green band emission.

  18. Growth of c-plane ZnO on γ-LiAlO2 (1 0 0) substrate with a GaN buffer layer by plasma assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Highlights: • ZnO epilayers were grown on LiAlO2 (1 0 0) substrate with a GaN buffer layer by MBE. • A high Zn/O flux ratio is beneficial for reducing the density of screw dislocations. • Reciprocal space maps demonstrate that the misfit strain in ZnO has been relaxed. • No interfacial layer is formed at ZnO/GaN interface using a Zn pre-exposure strategy. - Abstract: C-plane ZnO epilayers were grown on LiAlO2 (1 0 0) substrate with a GaN buffer layer by plasma assisted molecular beam epitaxy. Both the X-ray rocking curves and the transmission electron microscopy analyses indicate that the ZnO epilayers exhibit a lower threading dislocation density (∼1 × 1010 cm−2) as compared to those grown on LiAlO2 substrate without the buffer layer. A high Zn/O flux ratio is beneficial for reducing the density of screw-type dislocations. Reciprocal space maps demonstrate that the misfit strain has been relaxed. No interfacial layer is formed at the ZnO/GaN interface by using a Zn pre-exposure strategy. The ZnO epilayers exhibit a strong near band edge emission at 3.28 eV at room temperature with a negligible green band emission

  19. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-08-31

    We report the growth and characterization of III-nitride ternary thin films (Al{sub x}Ga{sub 1−x}N, In{sub x}Al{sub 1−x}N and In{sub x}Ga{sub 1−x}N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxyGrowth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures.

  20. Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth.

    Science.gov (United States)

    Munshi, A Mazid; Dheeraj, Dasa L; Fauske, Vidar T; Kim, Dong-Chul; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2012-09-12

    By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells. PMID:22889019

  1. Growth and characterization of epitaxial NiMnSb/ZnTe/NiMnSb magnetic multilayers

    Science.gov (United States)

    Gerhard, F.; Naydenova, T.; Baussenwein, M.; Schumacher, C.; Gould, C.; Molenkamp, L. W.

    2016-02-01

    The half-metal ferromagnet NiMnSb, with its high spin polarization, low magnetic damping and tunable magnetic anisotropy, is a promising material for applications in spin torque devices. We develop the epitaxial growth of NiMnSb/ZnTe/NiMnSb heterostructures, aiming towards the realization of an all-NiMnSb based magnetic tunneling junction (MTJ). Layers are grown in situ by Molecular Beam Epitaxy (MBE) and Atomic Layer Epitaxy (ALE) methods. By tuning Mn content, the magnetic anisotropy of each of the two NiMnSb layers is adjusted in order to achieve mutually orthogonal uniaxial anisotropies. SQUID measurements of the magnetization along orthogonal crystal directions [110] and [ 1 1 bar 0] confirm that the two layers have mutually orthogonal anisotropy. High Resolution X-Ray Diffraction measurements and simulations confirm the nominal layer stack and demonstrate the high crystalline quality of the individual layers. Such layer stacks provide a potential basis for TMR-based spin-torque devices such as spin-torque oscillators.

  2. Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Atomically flat thin films of topological insulator Bi2Se3 have been grown on double-layer graphene formed on 6H-SiC(0001) substrate by molecular beam epitaxy. By a combined study of reflection high energy electron diffraction and scanning tunneling microscopy, we identified the Se-rich condition and temperature criterion for layer-by-layer growth of epitaxial Bi2Se3 films. The as-grown films without doping exhibit a low defect density of 1.0±0.2x1011/cm2, and become a bulk insulator at a thickness of ten quintuple layers, as revealed by in situ angle resolved photoemission spectroscopy measurement.

  3. Epitaxial growth with pulsed deposition: Submonolayer scaling and Villain instability

    DEFF Research Database (Denmark)

    Hinnemann, Berit; Hinrichsen, H.; Wolf, D.E.

    2003-01-01

    It has been observed experimentally that under certain conditions, pulsed laser deposition (PLD) produces smoother surfaces than ordinary molecular beam epitaxy (MBE). So far, the mechanism leading to the improved quality of surfaces in PLD is not yet fully understood. In the present work, we...... investigate the physical properties of a simple model for PLD, in which the transient mobility of adatoms and diffusion along edges is neglected. Analyzing the crossover from MBE to PLD, the scaling properties of the time-dependent nucleation density as well as the influence of Ehrlich-Schwoebel barriers, we...... find that there is indeed a range of parameters, where the surface quality in PLD is better than in MBE. However, since the improvement is weak and occurs only in a small range of parameters we conclude that deposition in pulses alone cannot explain the experimentally observed smoothness of PLD...

  4. Molecular beam epitaxy of InN dots on nitrided sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Romanyuk, Yaroslav E.; Dengel, Radu-Gabriel; Stebounova, LarissaV.; Leone, Stephen R.

    2007-04-20

    A series of self-assembled InN dots are grown by radio frequency (RF) plasma-assisted molecular beam epitaxy (MBE) directly on nitrided sapphire. Initial nitridation of the sapphire substrates at 900 C results in the formation of a rough AlN surface layer, which acts as a very thin buffer layer and facilitates the nucleation of the InN dots according to the Stranski-Krastanow growth mode, with a wetting layer of {approx}0.9 nm. Atomic force microscopy (AFM) reveals that well-confined InN nanoislands with the greatest height/width at half-height ratio of 0.64 can be grown at 460 C. Lower substrate temperatures result in a reduced aspect ratio due to a lower diffusion rate of the In adatoms, whereas the thermal decomposition of InN truncates the growth at T>500 C. The densities of separated dots vary between 1.0 x 10{sup 10} cm{sup -2} and 2.5 x 10{sup 10} cm{sup -2} depending on the growth time. Optical response of the InN dots under laser excitation is studied with apertureless near-field scanning optical microscopy and photoluminescence spectroscopy, although no photoluminescence is observed from these samples. In view of the desirable implementation of InN nanostructures into photonic devices, the results indicate that nitrided sapphire is a suitable substrate for growing self-assembled InN nanodots.

  5. Semiconductor-ferromagnet core-shell nanowires grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hilse, Maria; Takagaki, Yukihiko; Herfort, Jens; Herrmann, Claudia; Ramsteiner, Manfred; Breuer, Steffen; Geelhaar, Lutz; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2010-07-01

    The special geometry of nanowires (NWs) offers the possibility to elastically absorb lattice mismatch strain. Thus, axial and radial NW heterostructures consisting of dissimilar materials can be grown with high quality. In addition, spin dependent functionalities are introduced to NW devices when a ferromagnet is incorporated into these heterostructures. MnAs is one of the attractive materials as it is ferromagnetic at room temperature (the Curie temperature is about 40 C). In this work, we combine GaAs and MnAs in a NW core-shell geometry by means of molecular beam epitaxy (MBE). The GaAs NWs were grown using the Au-assisted vapor-liquid-solid mechanism on GaAs(111)B substrates. The MnAs growth took place under the typical conditions for planar growth on GaAs. A curving of the NWs is observed if the sample stage is not rotated during MnAs overgrowth, evidencing the diffusion length of Mn being less than the perimeter of the NWs. By analyzing the planar film and NW shell thicknesses, we demonstrate the MnAs growth to take place by direct deposition on the NW sidewalls. NWs exhibit a hexagonal cross section indicating the c-axis, i.e., the magnetic hard axis of MnAs to be parallel to the NW axis. This orientation is confirmed by magnetization measurements and magnetic-force microscopy.

  6. Growth of Epitaxial gamma-Al2O3 Films on Rigid Single-Crystal Ceramic Substrates and Flexible, Single-Crystal-Like Metallic Substrates by Pulsed Laser Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Junsoo [ORNL; Goyal, Amit [ORNL; Wee, Sung Hun [ORNL

    2009-01-01

    Epitaxial -Al2O3 thin films were grown on diverse substrates using pulsed laser deposition. The high quality of epitaxial growth and cubic structure of -Al2O3 films was confirmed by x-ray diffraction. SrTiO3 and MgO single crystal substrates were used to optimize the growth conditions for epitaxial -Al2O3 film. Under the optimized conditions, epitaxial -Al2O3 thin films were grown on flexible, single-crystal-like, metallic templates. These included untextured Hastelloy substrates with a biaxially textured MgO layer deposited using ion-beam-assisted-deposition and biaxially textured Ni-W metallic tapes with epitaxially grown and a biaxially textured, MgO buffer layer. These biaxially textured, -Al2O3 films on flexible, single-crystal-like substrates are promising for subsequent epitaxial growth of various complex oxide films used for electrical, magnetic and electronic device applications.

  7. InAsP/InGaAsP Strained Microstructures Grown by Gas Source Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    CHEN Yi-Qiao; CHEN Jian-Xin; ZHANG Yong-Gang; LI Ai-Zhen; K. Frbjdh; B. Stotz

    2000-01-01

    Device quality InAsP/InGaAsP strained multiquantum-well (MQW) structures are successfully grown by using gas source molecular beam epitaxy method. The grown MQW and InGaAsP quanternary alloy are characterized by using x-ray diffraction, room temperature photoluminescence measurements, confirming that optimum growth condition and high quality material have been obtained for device application. The grown laser structures are processed into ridge waveguide lasers. A threshold current as low as 16mA at 250C for 300μm long device has been obtained. Temperature-dependent light-current measurement shows a characteristic temperature of75K.

  8. Stimulated emission from a CdTe/HgCdTe separate confinement heterostructure grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Mahavadi, K.K.; Bleuse, J.; Sivananthan, S.; Faurie, J.P. (Microphysics Laboratory, Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60680 (USA))

    1990-05-21

    We present the results of low-temperature photoluminescence and stimulated emission experiments performed on a CdTe/Hg{sub 0.45}Cd{sub 0.55}Te/Hg{sub 0.67}Cd{sub 0.33}Te multiquantum well separate confinement heterostructure grown by molecular beam epitaxy. The photoluminescence results suggest that because of the growth conditions, there is a strong interdiffusion in the multiquantum well region. Pulsed stimulated emission was observed from this structure up to 77 K.

  9. (GaMn)As: GaAs-based III?V diluted magnetic semiconductors grown by molecular beam epitaxy

    Science.gov (United States)

    Hayashi, T.; Tanaka, M.; Nishinaga, T.; Shimada, H.; Tsuchiya, H.; Otuka, Y.

    1997-05-01

    We have grown novel III-V diluted magnetic semiconductors, (Ga 1 - xMn x)As, on GaAs substrates by low-temperature molecular beam epitaxy using strong nonequilibrium growth conditions. When the Mn concentration x is relatively low (≲0.08), homogeneous alloy semiconductors, GaMnAs, are grown with zincblende structure and slightly larger lattice constants than that of GaAs, whereas inhomogeneous structures with zincblende GaMnAs (or GaAs) plus hexagonal MnAs are formed when x is relatively high. Magnetization measurements indicate that the homogeneous GaMnAs films have ferromagnetic ordering at low temperature.

  10. Scanning Tunneling Microscopy Studies of Topological Insulators Grown by Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Xue Qikun

    2012-03-01

    Full Text Available We summarize our recent scanning tunneling microscopy (STM study of topological insulator thin films grown by molecular beam epitaxy (MBE, which includes the observation of electron standing waves on topological insulator surface and the Landau quantization of topological surface states. The work has provided valuable information to the understanding of intriguing properties of topological insulators, as predicted by theory.

  11. Growth and features of epitaxial graphene on SiC

    International Nuclear Information System (INIS)

    Recent progress of epitaxial graphene on SiC was reviewed, focusing on its growth and structural and electronic features. Homogeneous graphene can be grown on SiC(0001) on a wafer scale, however on SiC(0001-bar) multilayer but rotationally stacked graphene with monolayer like electronic property grows. HRTEM revealed the formation mechanism and structural features of graphene on the both surfaces. The high structural and electronic quality of the grown graphene is monitored by Raman spectroscopy and magneto-transport characterization. High-resolution ARPES measurements of the electronic dispersion around the K-bar-point retrieved the ABA and ABC stacked trilayer graphene. The measurements also directly revealed that electronic structures of graphene were manipulated by transfer doping and atomic intercalation. In particular, p- and n-doped regions on a meso-scale and the p–n junctions prepared on SiC via controlling intercalation of Ge exhibited ballistic transport and Klein tunneling, which predicted novel potentials on to epitaxial graphene on SiC. (author)

  12. Isotype InGaN/GaN heterobarrier diodes by ammonia molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Fireman, Micha N.; Browne, David A.; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Mishra, Umesh K. [Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106 (United States)

    2016-02-07

    The design of isotype InGaN/GaN heterobarrier diode structures grown by ammonia molecular beam epitaxy is presented. On the (0001) Ga-polar plane, a structure consisting of a surface n{sup +} GaN contact layer, followed by a thin InGaN layer, followed by a thick unintentionally doped (UID) GaN layer, and atop a buried n{sup +} GaN contact layer induces a large conduction band barrier via a depleted UID GaN layer. Suppression of reverse and subthreshold current in such isotype barrier devices under applied bias depends on the quality of this composite layer polarization. Sample series were grown under fixed InGaN growth conditions that varied either the UID GaN NH{sub 3} flow rate or the UID GaN thickness, and under fixed UID GaN growth conditions that varied InGaN growth conditions. Decreases in subthreshold current and reverse bias current were measured for thicker UID GaN layers and increasing InGaN growth rates. Temperature-dependent analysis indicated that although extracted barrier heights were lower than those predicted by 1D Schrödinger Poisson simulations (0.9 eV–1.4 eV for In compositions from 10% to 15%), optimized growth conditions increased the extracted barrier height from ∼11% to nearly 85% of the simulated values. Potential subthreshold mechanisms are discussed, along with those growth factors which might affect their prevalence.

  13. Electron beam pumped III-V nitride vertical cavity surface emitting lasers grown by molecular beam epitaxy

    Science.gov (United States)

    Ng, Hock Min

    The design and fabrication by molecular beam epitaxy of a prototype vertical cavity laser based on the III-V nitrides were investigated in this work. The bottom mirror of the laser consists of distributed Bragg reflectors (DBRs) based on quarterwave AlN (or AlxGa1-xN) and GaN layers. Such DBRs were designed for maximum reflectivity in the spectral region from 390--600 nm. The epitaxial growth of these two binaries on each other revealed that while AlN grows on GaN in a two-dimensional mode (Frank-van der Merwe mode), GaN grows on AlN in a three-dimensional mode (Stranski-Krastanov mode). In spite of that, DBRs with peak reflectance up to 99% and bandwidths of 45nm were fabricated. The measured reflectance spectra were compared with simulations using the transmission matrix method. The mechanical stability of these DBR structures due to non-uniform distribution of strain arising from lattice or thermal mismatch of the various components were also addressed. The active region of the laser consists of InGaN/GaN multiple quantum wells (MQWs). The existence of up to the third order diffraction peaks in the x-ray diffraction spectra suggests that the interfaces between InGaN and GaN are sharp with little interdiffusion at the growth temperature. The photoluminescence and cathodoluminescence spectra were analyzed to determine the optical quality of the MQWs. The best MQWs were shown to have a single emission peak at 397nm with full width half maximum (FWHM) of 11nm. Cathodoluminescence studies showed that there are spatially localized areas of intense light emission. The complete device was formed on (0001) sapphire substrates using the previously described DBRs as bottom mirrors and the MQWs as the active region. The top mirror of the device consists of metallic silver. The device was pumped by an electron beam from the top mirror side and the light output was collected from the sapphire side. Measurements at 100K showed narrowing of the linewidth with increasing pump

  14. Single-crystalline BaTiO3 films grown by gas-source molecular beam epitaxy

    Science.gov (United States)

    Matsubara, Yuya; Takahashi, Kei S.; Tokura, Yoshinori; Kawasaki, Masashi

    2014-12-01

    Thin BaTiO3 films were grown on GdScO3 (110) substrates by metalorganic gas-source molecular beam epitaxy. Titanium tetra-isopropoxide (TTIP) was used as a volatile precursor that provides a wide growth window of the supplied TTIP/Ba ratio for automatic adjustment of the film composition. Within the growth window, compressively strained films can be grown with excellent crystalline quality, whereas films grown outside of the growth window are relaxed with inferior crystallinity. This growth method will provide a way to study the intrinsic properties of ferroelectric BaTiO3 films and their heterostructures by precise control of the stoichiometry, structure, and purity.

  15. Structural and Electrical Properties of MoTe2 and MoSe2 Grown by Molecular Beam Epitaxy.

    Science.gov (United States)

    Roy, Anupam; Movva, Hema C P; Satpati, Biswarup; Kim, Kyounghwan; Dey, Rik; Rai, Amritesh; Pramanik, Tanmoy; Guchhait, Samaresh; Tutuc, Emanuel; Banerjee, Sanjay K

    2016-03-23

    We demonstrate the growth of thin films of molybdenum ditelluride and molybdenum diselenide on sapphire substrates by molecular beam epitaxy. In situ structural and chemical analyses reveal stoichiometric layered film growth with atomically smooth surface morphologies. Film growth along the (001) direction is confirmed by X-ray diffraction, and the crystalline nature of growth in the 2H phase is evident from Raman spectroscopy. Transmission electron microscopy is used to confirm the layered film structure and hexagonal arrangement of surface atoms. Temperature-dependent electrical measurements show an insulating behavior that agrees well with a two-dimensional variable-range hopping model, suggesting that transport in these films is dominated by localized charge-carrier states. PMID:26939890

  16. Epitaxial growth of CoSi2 on Si(001) by reactive deposition epitaxy: Island growth and coalescence

    International Nuclear Information System (INIS)

    Epitaxial CoSi2 layers, which are phase pure but contain {111} twins, are grown on Si(001) at 700 deg. C by reactive deposition epitaxy. Transmission electron microscopy analyses show that the initial formation of CoSi2(001) follows the Volmer-Weber mode characterized by the independent nucleation and growth of three-dimensional islands whose evolution we follow as a function of deposited Co thickness t Co in order to understand the origin of the observed twin density. We find that there are two families of island shapes: inverse pyramids and platelets. The rectangular-based pyramidal islands extend along orthogonal directions, bounded by four {111} CoSi2/Si interfaces, and grow with a cube-on-cube orientation with respect to the substrate: (001)CoSi2 parallel (001)Si and [100]CoSi2 parallel [100]Si. Platelet-shaped CoSi2 islands are bounded across their long directions by {111} twin planes (i.e. {111}(001)CoSi2 parallel {111}Si) and their narrow directions by {511}CoSi2 parallel {111}Si interfaces. The top and bottom surfaces are {22-bar1}, with {22-bar1}CoSi2||(001)Si, and {1-bar1-bar1}, with {1-bar1-bar1}CoSi2 parallel {11-bar1}Si, respectively. The early stages of film growth (t Co ≤ 13 A) are dominated by the twinned platelets due to a combination of higher nucleation rates resulting from a larger number of favorable adsorption sites in the Si(001)2 x 1 surface unit cell and rapid elongation of the platelets along preferred directions. However, at t Co ≥ 13 A island coalescence becomes significant as orthogonal platelets intersect and block elongation along fast growth directions. In this regime, where both twinned and untwinned island number densities have saturated, further island growth becomes dominated by the untwinned islands. A continuous epitaxial CoSi2(001) layer, with a twin density of 2.8 x 1010 cm-2, is obtained at t Co = 50 A

  17. Structural and morphological evolution of gallium nitride nanorods grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    The morphological and structural evolution is presented for GaN nanorods grown by chemical beam epitaxy on (0001) Al2O3 substrates. Their structural and optical properties are investigated by x-ray diffraction, scanning and transmission electron microscopy, and temperature-dependent photoluminescence measurements. While increasing the growth temperature and the flow rate of radio-frequency nitrogen radical, the three-dimensional growth mode will be enhanced to form one-dimensional nanostructures. The high density of well-aligned nanorods with a diameter of 30-50 nm formed uniformly over the entire sapphire substrate. The x-ray diffraction patterns and transmission electron microscopic images indicate that the self-assembled GaN nanorods are a pure single crystal and preferentially oriented in the c-axis direction. Particularly, the ''S-shape'' behavior with localization of ∼10 meV observed in the temperature-dependent photoluminescence might be ascribed to the fluctuation in crystallographic defects and composition.

  18. Plasma-assisted molecular beam epitaxy of (11-22)-oriented 3-nitrides

    International Nuclear Information System (INIS)

    This work reports on the molecular-beam epitaxial growth of (1122)-oriented semi-polar nitride semiconductors using m-sapphire substrates. The (1122) crystallographic orientation is predefined by AlN deposition on m-sapphire under N excess. On top of this AlN buffer layer, undoped or Si-doped two-dimensional GaN(1122) films are formed under Ga-rich conditions, with a stabilized Ga-excess ad-layer of about 1.05±0.10 ML. In contrast, Mg tends to segregate on the GaN surface, inhibiting the self-regulated Ga excess film. Nevertheless, uniform Mg incorporation can be obtained, and p-type conductivity was achieved. GaN/AlN quantum wells are synthesized by deposition of the binary compounds under the above-described conditions. In the case of GaN/AlN quantum dots, the three-dimensional transition is induced by a growth interruption under vacuum. The reduction of the internal electric field in GaN/AlN nano-structures is confirmed by the blue shift of the photoluminescence spectrum and by the short photoluminescence decay times measured at low temperature. These results are consistent with theoretical calculations of the electronic structure. (author)

  19. Molecular beam epitaxy of GeTe-Sb{sub 2}Te{sub 3} phase change materials studied by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shayduk, Roman

    2010-05-20

    The integration of phase change materials into semiconductor heterostructures may lead to the development of a new generation of high density non-volatile phase change memories. Epitaxial phase change materials allow to study the detailed structural changes during the phase transition and to determine the scaling limits of the memory. This work is dedicated to the epitaxial growth of Ge-Sb-Te phase change alloys on GaSb(001). We deposit Ge-Sb-Te (GST) films on GaSb(001) substrates by means of molecular beam epitaxy (MBE). The film orientation and lattice constant evolution is determined in real time during growth using grazing incidence X-ray diffraction (GID). The nucleation stage of the growth is studied in situ using reflection high energy electron diffraction (RHEED). Four growth regimes of GST on GaSb(001) were observed: amorphous, polycrystalline, incubated epitaxial and direct epitaxial. Amorphous film grows for substrate temperatures below 100 C. For substrate temperatures in the range 100-160 C, the film grows in polycrystalline form. Incubated epitaxial growth is observed at temperatures from 180 to 210 C. This growth regime is characterized by an initial 0.6nm thick amorphous layer formation, which crystallizes epitaxially as the film thickness increases. The determined lattice constant of the films is 6.01 A, very close to that of the metastable GST phase. The films predominantly possess an epitaxial cube-on-cube relationship. At higher temperatures the films grow epitaxially, however the growth rate is rapidly decreasing with temperature. At temperatures above 270 C the growth rate is zero. The composition of the grown films is close to 2:2:5 for Ge, Sb and Te, respectively. The determined crystal structure of the films is face centered cubic (FCC) with a rhombohedral distortion. The analysis of X-ray peak widths gives a value for the rhombohedral angle of 89.56 . We observe two types of reflections in reciprocal space indicating two FCC sublattices in

  20. Late growth stages and post-growth diffusion in organic epitaxy: PTCDA on Ag(111)

    OpenAIRE

    Krause, B.; Duerr, A. C.; Schreiber, F.; Dosch, H.; Seeck, O.H.

    2004-01-01

    The late growth stages and the post-growth diffusion of crystalline organic thin films have been investigated for 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on Ag(111), a model system in organic epitaxy. In situ x-ray measurements at the anti-Bragg point during the growth show intensity oscillations followed by a time-independent intensity which is independent of the growth temperature. At T > 350 K, the intensity increases after growth up to a temperature-dependent saturation value...

  1. Lutetium-doped EuO films grown by molecular-beam epitaxy

    OpenAIRE

    Melville, A; Mairoser, T.; Mannhart, J.; Schlom, D. G.; Schmehl, A.; Shai, D. E.; Monkman, E. J.; Harter, J. W.; Heeg, T.; Holländer, B; Schubert, J; Shen, K. M.

    2012-01-01

    The effect of lutetium doping on the structural, electronic, and magnetic properties of epitaxial EuO thin films grown by reactive molecular-beam epitaxy is experimentally investigated. The behavior of Lu-doped EuO is contrasted with doping by lanthanum and gadolinium. All three dopants are found to behave similarly despite differences in electronic configuration and ionic size. Andreev reflection measurements on Lu-doped EuO reveal a spin-polarization of 96% in the conduction band, despite n...

  2. Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus.

    Science.gov (United States)

    Zhang, Jia Lin; Zhao, Songtao; Han, Cheng; Wang, Zhunzhun; Zhong, Shu; Sun, Shuo; Guo, Rui; Zhou, Xiong; Gu, Cheng Ding; Yuan, Kai Di; Li, Zhenyu; Chen, Wei

    2016-08-10

    Blue phosphorus, a previously unknown phase of phosphorus, has been recently predicted by theoretical calculations and shares its layered structure and high stability with black phosphorus, a rapidly rising two-dimensional material. Here, we report a molecular beam epitaxial growth of single layer blue phosphorus on Au(111) by using black phosphorus as precursor, through the combination of in situ low temperature scanning tunneling microscopy and density functional theory calculation. The structure of the as-grown single layer blue phosphorus on Au(111) is explained with a (4 × 4) blue phosphorus unit cell coinciding with a (5 × 5) Au(111) unit cell, and this is verified by the theoretical calculations. The electronic bandgap of single layer blue phosphorus on Au(111) is determined to be 1.10 eV by scanning tunneling spectroscopy measurement. The realization of epitaxial growth of large-scale and high quality atomic-layered blue phosphorus can enable the rapid development of novel electronic and optoelectronic devices based on this emerging two-dimensional material. PMID:27359041

  3. Ge-on-Si: Single-Crystal Selective Epitaxial Growth in a CVD Reactor

    NARCIS (Netherlands)

    Sammak, A.; De Boer, W.B.; Nanver, L.K.

    2012-01-01

    A standard Si/SiGe ASM CVD reactor that was recently modified for merging GaAs and Si epitaxial growth in one system is utilized to achieve intrinsic and doped epitaxial Ge-on-Si with low threading dislocation and defect densities. For this purpose, the system is equipped with 2% diluted GeH4 as the

  4. GaSb film growth by liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cruz, M.L.; Martinez-Juarez, J.; Lopez-Salazar, P. [CIDS-ICUAP, BUAP, Av. 14 Sur y San Claudio, C.U. Edif.103C, Col. Sn Manuel, C.P. 72570, Puebla, Pue. (Mexico); Diaz, G.J. [Centro de Investigacion y Estudios Avanzados, IPN, Av. IPN 2508, Col. Sn. Pedro Zacatenco, C.P. 07360, D.F. (Mexico)

    2010-04-15

    Doped GaSb (Gallium Antimonide) films on p-GaSb substrates have been obtained by means of a low-cost and fast-growth method: the liquid phase epitaxy (LPE) technique. The growth temperature was 400 C, and the growth time was varied between1 and 5 min. Characterization of the films was performed by means of high resolution X-ray Diffraction, low temperature-photoluminescence and current-voltage curve measurements. The X-ray diffraction pattern confirms a zincblende-type crystal structure with a high-thin peak centred at 30.36 . The PL spectra at 27 K allowed to confirm the band-gap energy to be 0.8 eV and the I-V curves presented a PN junction behavior which corresponds to the obtained structured. Metal contacts of Au-Zn and Au-Ge were placed to perform electrical characterization (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Growth and characterization of dilute nitride GaNxP1−x nanowires and GaNxP1−x/GaNyP1−y core/shell nanowires on Si (111) by gas source molecular beam epitaxy

    International Nuclear Information System (INIS)

    We have demonstrated self-catalyzed GaNxP1−x and GaNxP1−x/GaNyP1−y core/shell nanowire growth by gas-source molecular beam epitaxy. The growth window for GaNxP1−x nanowires was observed to be comparable to that of GaP nanowires (∼585 °C to ∼615 °C). Transmission electron microscopy showed a mixture of cubic zincblende phase and hexagonal wurtzite phase along the [111] growth direction in GaNxP1−x nanowires. A temperature-dependent photoluminescence (PL) study performed on GaNxP1−x/GaNyP1−y core/shell nanowires exhibited an S-shape dependence of the PL peaks. This suggests that at low temperature, the emission stems from N-related localized states below the conduction band edge in the shell, while at high temperature, the emission stems from band-to-band transition in the shell as well as recombination in the GaNxP1−x core.

  6. GaAs-based long-wavelength InAs bilayer quantum dots grown by molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Zhu Yan; Li Mifeng; He Jifang; Yu Ying; Ni Haiqiao; Xu Yingqiang; Wang Juan; He Zhenhong; Niu Zhichuan

    2011-01-01

    Molecular beam epitaxy growth ofa bilayer stacked InAs/GaAs quantum dot structure on a pure GaAs matrix has been systemically investigated.The influence of growth temperature and the InAs deposition of both layers on the optical properties and morphologies of the bilayer quantum dot (BQD) structures is discussed.By optimizing the growth parameters,InAs BQD emission at 1.436μm at room temperature with a narrower FWHM of 27 meV was demonstrated.The density of QDs in the second layer is around 9 × 109 to 1.4 × 1010 cm-2.The BQD structure provides a useful way to extend the emission wavelength of GaAs-based material for quantum functional devices.

  7. Formation of strained interfaces in AlSb/InAs multilayers grown by molecular beam epitaxy for quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaï, J.; Warot-Fonrose, B.; Gatel, C., E-mail: christophe.gatel@cemes.fr; Ponchet, A. [CEMES CNRS-UPR 8011, Université de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse (France); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS-Universidad de Zaragoza, Toulouse (France); Teissier, R.; Baranov, A. N. [IES CNRS-UMR 5214, 34095 Montpellier (France); Magen, C. [Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS-Universidad de Zaragoza, Toulouse (France); Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA)—ARAID and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain)

    2015-07-21

    Structural and chemical properties of InAs/AlSb interfaces have been studied by transmission electron microscopy. InAs/AlSb multilayers were grown by molecular beam epitaxy with different growth sequences at interfaces. The out-of-plane strain, determined using high resolution microscopy and geometrical phase analysis, has been related to the chemical composition of the interfaces analyzed by high angle annular dark field imaging. Considering the local strain and chemistry, we estimated the interface composition and discussed the mechanisms of interface formation for the different growth sequences. In particular, we found that the formation of the tensile AlAs-type interface is spontaneously favored due to its high thermal stability compared to the InSb-type interface. We also showed that the interface composition could be tuned using an appropriate growth sequence.

  8. Epitaxial crystallization and nucleation during MeV-ion beam processing of amorphous GaAs surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, T. [Jena Univ. (Germany). Inst. fuer Festkoerperphysik; Glaser, E. [Jena Univ. (Germany). Inst. fuer Festkoerperphysik; Schulz, R. [Jena Univ. (Germany). Inst. fuer Festkoerperphysik; Kaiser, U. [Jena Univ. (Germany). Inst. fuer Festkoerperphysik; Safran, G. [Research Institute for Technical Physics, P.O. Box 76, H-1325 Budapest (Hungary)

    1996-06-01

    <100> -GaAs wafers were preamorphized in a thin surface layer using 50 keV {sup 14}N{sup +}-ions. Ion beam induced epitaxial crystallization (IBIEC) and interfacial amorphization (IBIIA) were studied as a function of the target temperature using MeV Ar{sup +}- or Kr{sup +}-ions. Backscattering experiments and electron microscopy show that the IBIEC process is stopped above a critical irradiation temperature due to enhanced ion beam induced nucleation and growth of crystallites. At a fixed dose an optimum irradiation temperature for IBIEC was found, at which the recrystallized layer thickness has a maximum and crystallite formation is negligible. This offers the possibility to crystallize much larger layer thicknesses than {approx}65 nm which stands for the maximum value reported up to now. (orig.).

  9. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    Science.gov (United States)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  10. Formation of Ge-Sn nanodots on Si(100 surfaces by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Yu Ing-Song

    2011-01-01

    Full Text Available Abstract The surface morphology of Ge0.96Sn0.04/Si(100 heterostructures grown at temperatures from 250 to 450°C by atomic force microscopy (AFM and scanning tunnel microscopy (STM ex situ has been studied. The statistical data for the density of Ge0.96Sn0.04 nanodots (ND depending on their lateral size have been obtained. Maximum density of ND (6 × 1011 cm-2 with the average lateral size of 7 nm can be obtained at 250°C. Relying on the reflection of high energy electron diffraction, AFM, and STM, it is concluded that molecular beam growth of Ge1-xSnx heterostructures with the small concentrations of Sn in the range of substrate temperatures from 250 to 450°C follows the Stranski-Krastanow mechanism. Based on the technique of recording diffractometry of high energy electrons during the process of epitaxy, the wetting layer thickness of Ge0.96Sn0.04 films is found to depend on the temperature of the substrate.

  11. Characterization of molecular beam epitaxy grown β-Nb2N films and AlN/β-Nb2N heterojunctions on 6H-SiC substrates

    Science.gov (United States)

    Nepal, Neeraj; Katzer, D. Scott; Meyer, David J.; Downey, Brian P.; Wheeler, Virginia D.; Storm, David F.; Hardy, Matthew T.

    2016-02-01

    β-Nb2N films and AlN/β-Nb2N heterojunctions were grown by molecular beam epitaxy (MBE) on 6H-SiC. The epitaxial nature and β-Nb2N phase were determined by symmetric and asymmetric high-resolution X-ray diffraction (HRXRD) measurements, and were confirmed by grazing incidence diffraction measurements using synchrotron photons. Measured lattice parameters and the in-plane stress of β-Nb2N on 6H-SiC were c = 5.0194 Å, a = 3.0558 Å, and 0.2 GPa, respectively. The HRXRD, transmission electron microscopy, and Raman spectroscopy revealing epitaxial growth of AlN/β-Nb2N heterojunctions have identical orientations with the substrate, abrupt interfaces, and bi-axial stress of 0.88 GPa, respectively. The current finding opens up possibilities for the next generation of high-power devices that cannot be fabricated at present.

  12. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  13. Structural and optical properties of Cd 0.7Hg 0.3Te-CdTe heterostructures grown by molecular beam epitaxy

    Science.gov (United States)

    Lentz, G.; Magnea, N.; Mariette, H.; Tuffigo, H.; Feuillet, G.; Fontenille, J.; Ligeon, E.; Saminadayar, K.

    1990-04-01

    Layers and single quantum wells of Cd xHg 1- xTe with x ⋍ 0.7 have been grown by molecular beam epitaxy. Structural analysis shows that growth free of defects (twins, dislocations) can be achieved on (111)Te Cd 0.96Zn 0.04Te substrates. The Photoluminescence analysis of the layers and the wells reveal that they are efficient light emittors in the 1.3-1.5 μm range.

  14. Effect of Polar Discontinuity on the Growth of Epitaxial LaNiO3 Ultrathin Films

    Science.gov (United States)

    Tung, I.-Cheng; Luo, G.; Morgan, D.; Lee, J. H.; Hong, H.; Chang, S. H.; Eastman, J. A.; Fong, D. D.; Bedzyk, M. J.; Freeland, J. W.

    2014-03-01

    We have conducted a detailed microscopic study of epitaxial LaNiO3 ultrathin films grown on (001) SrTiO3 as a function of thickness by using oxide molecular beam epitaxy with in-situ surface x-ray diffraction and soft x-ray absorption spectroscopy at the Advanced Photon Source to explore the influence of polar mismatch on the resulting structural and electronic properties. Our data demonstrate that the initial layers on the nonpolar SrTiO3 surface exhibit a smaller than expected out-of-plane lattice-spacing with a Ni valence of 2+. As the film becomes thicker, the lattice constant expands to its elastic limit, and the Ni valence approaches 3+. We will also discuss the energetics for vacancy formation during the initial growth as determined by density functional theory calculations. Work at the APS, Argonne is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Advanced Photon Source, Argonne National Laboratory.

  15. GaN Bulk Growth and Epitaxy from Ca-Ga-N Solutions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR proposal addresses the liquid phase epitaxy (LPE) of gallium nitride (GaN) films using nitrogen-enriched metal solutions. Growth of GaN from solutions...

  16. GaN Bulk Growth and Epitaxy from Ca-Ga-N Solutions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovations proposed here are Ka-band (38 GHz) group III-nitride power FETs and the dislocation density reducing epitaxial growth methods (LPE) needed for their...

  17. Low phonon energy Nd:LaF3 channel waveguide lasers fabricated by molecular beam epitaxy

    OpenAIRE

    Bhutta, T.; Chardon, A.M.; Shepherd, D. P.; Daran, E.; Serrano, C.; Munoz-Yague, A.

    2001-01-01

    We report the first fabrication and laser operation of channel waveguides based on LaF3 planar thin films grown by molecular beam epitaxy. To our knowledge, this is the lowest phonon energy dielectric material to have shown guided-wave laser operation to date. A full characterization, in terms of spectroscopy, laser results, and propagation losses, is given for the planar thin films upon which the channel waveguides are based. Two channel-fabrication methods are then described, the first invo...

  18. Carrier dynamics in ZnxCd1-xO films grown by molecular beam epitaxy

    Science.gov (United States)

    Cheng, F. J.; Lee, Y. C.; Hu, S. Y.; Lin, Y. C.; Tiong, K. K.; Chou, W. C.

    2016-05-01

    In this work, the carrier dynamics in Zn1-xCdxO thin films with different Cd contents grown by molecular beam epitaxy system have been investigated using photoluminescence and time-resolved photoluminescence measurements. The carrier lifetime can be estimated from the PL decay curve fitted by triple exponential function. The emission energy dependence and temperature dependence of the PL decay time indicate that carrier localization dominate the luminescence mechanism of the ZnCdO alloy semiconductor.

  19. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    Science.gov (United States)

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  20. Growth and Characterization of Epitaxial Oxide Thin Films

    OpenAIRE

    Garg, Ashish

    2001-01-01

    Epitaxial oxide thin films are used in many technologically important device applications. This work deals with the deposition and characterization of epitaxial WO3 and SrBi2Ta2O9 (SBT) thin films on single crystal oxide substrates. WO3 thin films were chosen as a subject of study because of recent findings of superconductivity at surfaces and twin boundaries in the bulk form of this oxide. Highly epitaxial thin films would be desirable in order to be able to create a device withi...

  1. Surface composition of BaTiO{sub 3}/SrTiO{sub 3}(001) films grown by atomic oxygen plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, A.; Stanescu, D.; Jegou, P.; Magnan, H. [CEA, IRAMIS, SPCSI, F-91191 Gif-sur-Yvette (France); Mocuta, C. [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Jedrecy, N. [Institut des Nano Sciences de Paris, UPMC-Sorbonne Universites, CNRS-UMR7588, 75005 Paris (France)

    2012-12-01

    We have investigated the growth of BaTiO{sub 3} thin films deposited on pure and 1% Nb-doped SrTiO{sub 3}(001) single crystals using atomic oxygen assisted molecular beam epitaxy and dedicated Ba and Ti Knudsen cells. Thicknesses up to 30 nm were investigated for various layer compositions. We demonstrate 2D growth and epitaxial single crystalline BaTiO{sub 3} layers up to 10 nm before additional 3D features appear; lattice parameter relaxation occurs during the first few nanometers and is completed at {approx}10 nm. The presence of a Ba oxide rich top layer that probably favors 2D growth is evidenced for well crystallized layers. We show that the Ba oxide rich top layer can be removed by chemical etching. The present work stresses the importance of stoichiometry and surface composition of BaTiO{sub 3} layers, especially in view of their integration in devices.

  2. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility

    OpenAIRE

    Yuryev Vladimir; Arapkina Larisa

    2011-01-01

    Abstract Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temper...

  3. Ge-on-Si: Single-Crystal Selective Epitaxial Growth in a CVD Reactor

    OpenAIRE

    Sammak, A.; De Boer, W.B.; Nanver, L. K.

    2012-01-01

    A standard Si/SiGe ASM CVD reactor that was recently modified for merging GaAs and Si epitaxial growth in one system is utilized to achieve intrinsic and doped epitaxial Ge-on-Si with low threading dislocation and defect densities. For this purpose, the system is equipped with 2% diluted GeH4 as the main precursor gas for Ge deposition; and 0.7% diluted AsH3 and B2H6 precursor gases as well as a TriMethylGallium (TMGa) bubbler system for As, B and Ga doping of epitaxial Ge, respectively. The ...

  4. Growth and magnetic properties of ultrathin epitaxial FeO films and Fe/FeO bilayers on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Kozioł-Rachwał, A., E-mail: akoziol@agh.edu.pl [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków (Poland); National Institute of Advanced Industrial Science and Technology, Spintronics Research Center, Tsukuba, Ibaraki 305-8568 (Japan); Ślęzak, T. [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków (Poland); Nozaki, T.; Yuasa, S. [National Institute of Advanced Industrial Science and Technology, Spintronics Research Center, Tsukuba, Ibaraki 305-8568 (Japan); Korecki, J. [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków (Poland); Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków (Poland)

    2016-01-25

    Ultrathin FeO(001) films were grown via molecular beam epitaxy on MgO(001) using reactive deposition of Fe. The growth conditions were adjusted toward stabilization of the wüstite phase, the existence of which was confirmed by means of conversion electron Mössbauer spectroscopy. It was shown how the metallic Fe overlayer modified the chemical state and the magnetic properties of the FeO oxide. Finally, we observed the exchange bias for an epitaxial Fe/FeO bilayer grown on MgO(001)

  5. Epitaxial Growth of High-Quality Silicon Films on Double-Layer Porous Silicon

    Institute of Scientific and Technical Information of China (English)

    黄宜平; 竺士炀; 李爱珍; 王瑾; 黄靖云; 叶志镇

    2001-01-01

    The epitaxial growth of a high-quality silicon layer on double-layer porous silicon by ultra-high vacuum/chemical vapour deposition has been reported. The two-step anodization process results in a double-layer porous silicon structure with a different porosity. This double-layer porous silicon structure and an extended low-temperature annealing in a vacuum system was found to be helpful in subsequent silicon epitaxial growth. X-ray diffraction,cross-sectional transmission electron microscopy and spreading resistance testing were used in this work to study the properties of epitaxial silicon layers grown on the double-layer porous silicon. The results show that the epitaxial silicon layer is of good crystallinity and the same orientation with the silicon substrate and the porous silicon layer.

  6. Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuhan, E-mail: yw9ep@virginia.edu; Kittiwatanakul, Salinporn; Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Comes, Ryan B. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Wolf, Stuart A. [Department of Materials Science and Engineering and Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2015-03-15

    Epitaxial NbO{sub 2} thin films were synthesized on Al{sub 2}O{sub 3} (0001) substrates via reactive bias target ion beam deposition. X-ray diffraction and Raman spectra were used to confirm the tetragonal phase of pure NbO{sub 2}. Through XPS, it was found that there was a ∼1.3 nm thick Nb{sub 2}O{sub 5} layer on the surface and the bulk of the thin film was NbO{sub 2}. The epitaxial relationship between the NbO{sub 2} film and the substrate was determined. Electrical transport measurement was measured up to 400 K, and the conduction mechanism was discussed.

  7. Formation of GaP nanostructures on GaAs (100) by droplet molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Prongjit, P.; Pankaow, N.; Thainoi, S.; Panyakeow, S.; Ratanathammaphan, S. [Semiconductor Device Research Laboratory (NanoTec Center of Excellence), Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand)

    2012-07-15

    In this contribution, we have demonstrated the fabrication of tensile strained GaP nanostructures on GaAs (100) substrates by droplet epitaxy using molecular beam epitaxy. The GaP nanostructures are ring-like structure due to crystallization with low P{sub 2} pressure. The density of GaP ring-like nanostructures varies between 8.92 x 10{sup 8}-2.17 x 10{sup 9} cm{sup -2} and the average of diameter varies between 88.4-133 nm with increasing the Ga amount deposition in the range of 2.4-4.8 ML. The photoluminescence result shows the tensile strain-modified band gap effect of GaP nanostructure in GaAs matrix and it also confirms the high-quality of GaP nanocrystal (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Fabrication of atomically smooth SrRuO3 thin films by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High-quality SrRuO3 (SRO) thin films and SrTiO3/SRO bilayer were grown epitaxially on SrTiO3 (STO)(001) substrates by laser molecular beam epitaxy. The results of in situ observation of reflection high-energy electron diffraction and ex situ X-ray diffraction θ -2θ scan indicate that the SRO thin films have good crystallinity. The measurements of atomic force microscopy and scan tunneling microscopy reveal that the surface of the SRO thin film is atomically smooth. The resistivity of the SRO thin film is 300 μΩ·cm at room temperature. Furthermore, the transmission electron microscopy study shows that the interfaces of STO/SRO and SRO/STO are very clear and no interfacial reaction layer was observed. The experimental results show that the SRO thin film is an excellent electrode material for devices based on perovskite oxide materials.

  9. Control growth of silicon nanocolumns' epitaxy on silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Su Kong, E-mail: sukong1985@yahoo.com.my [University of Malaya, Low Dimensional Materials Research Centre, Department of Physics (Malaysia); Dee, Chang Fu [Universiti Kebangsaan Malaysia (UKM), Institute of Microengineering and Nanoelectronics (IMEN) (Malaysia); Yahya, Noorhana [Universiti Teknologi PETRONAS, Faculty of Science and Information Technology (Malaysia); Rahman, Saadah Abdul [University of Malaya, Low Dimensional Materials Research Centre, Department of Physics (Malaysia)

    2013-04-15

    The epitaxial growth of Si nanocolumns on Si nanowires was studied using hot-wire chemical vapor deposition. A single-crystalline and surface oxide-free Si nanowire core (core radius {approx}21 {+-} 5 nm) induced by indium crystal seed was used as a substance for the vapor phase epitaxial growth. The growth process is initiated by sidewall facets, which then nucleate upon certain thickness to form Si islands and further grow to form nanocolumns. The Si nanocolumns with diameter of 10-20 nm and aspect ratio up to 10 can be epitaxially grown on the surface of nanowires. The results showed that the radial growth rate of the Si nanocolumns remains constant with the increase of deposition time. Meanwhile, the radial growth rates are controllable by manipulating the hydrogen to silane gas flow rate ratio. The optical antireflection properties of the Si nanocolumns' decorated SiNW arrays are discussed in the text.

  10. Epitaxial growth of III-V compounds for electroluminescent light sources

    Science.gov (United States)

    Chu, T. L.; Smeltzer, R. K.

    1973-01-01

    The epitaxial growth techniques used in the fabrication of III-V compound electroluminescent devices are reviewed. Both vapor and liquid phase epitaxial techniques are discussed, including the applications of these techniques to well established materials as well as newer materials. The state of the art of light-emitting devices fabricated from members of the III-V compounds and their solid solutions is also reviewed.

  11. Growth of GaAsBi alloy under alternated bismuth flows by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Chine, Z.; Fitouri, H.; Zaied, I.; Rebey, A.; El Jani, B.

    2011-09-01

    A successful method to epitaxy GaAsBi layer on (0 0 1) GaAs substrate is proposed. During growth, alternated trimethyl bismuth (TMBi) flows were used. These TMBi flashes were switched on for a short time. The growth was monitored in situ by laser reflectometry using a 632.8 nm beam. The reflectance signal is found to change significantly during both bismuth flashes and GaAs growth stages. High-resolution X-ray diffraction (HRXRD), secondary ion mass spectroscopy (SIMS) and photoreflectance spectroscopy (PR) have been used to characterize the obtained GaAsBi layer. HRXRD curve shows a diffraction peak that can be attributed to a GaAsBi epilayer. SIMS measurements of GaAsBi layer suggest that bismuth diffuses faster near the interface. The PR spectrum indicates the band-to-band transition in GaAsBi layer. The band gap energy was determined by adjusting the PR spectrum with a multilayer model.

  12. Electrical and Optical Studies of Defect Structure of HgCdTe Films Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Świątek, Z.; Ozga, P.; Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytsky, H. V.

    2016-07-01

    Electrical and optical studies of defect structure of HgCdTe films grown by molecular beam epitaxy (MBE) are performed. It is shown that the peculiarity of these films is the presence of neutral defects formed at the growth stage and inherent to the material grown by MBE. It is assumed that these neutral defects are the Te nanocomplexes. Under ion milling, they are activated by mercury interstitials and form the donor centers with the concentration of 1017 cm-3, which makes it possible to detect such defects by measurements of electrical parameters of the material. Under doping of HgCdTe with arsenic using high temperature cracking, the As2 dimers are present in the arsenic flow and block the neutral Te nanocomplexes to form donor As2Te3 complexes. The results of electrical studies are compared with the results of studies carried out by micro-Raman spectroscopy.

  13. Catalyst-free highly vertically aligned ZnO nanoneedle arrays grown by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.; Chiu, K.C. [Chung Yuan Christian University, Department of Physics, Chung-Li (China); Chung Yuan Christian University, Center for Nano-Technology, Chung-Li (China); Yang, C.S. [Tatung University, Graduate Institute of Electro-Optical Engineering, Taipei (China); Chen, P.I.; Su, C.F.; Chen, W.J. [Chung Yuan Christian University, Department of Physics, Chung-Li (China); Chou, W.C. [National Chiao Tung University, Department of Electrophysics, Hsin-Chu (China)

    2009-11-15

    This work describes the growth of highly vertically aligned ZnO nanoneedle arrays on wafer-scale catalyst-free c-plane sapphire substrates by plasma-assisted molecular beam epitaxy under high Zn flux conditions. The photoluminescence spectrum of the as-grown samples reveals strong free exciton emissions and donor-bound exciton emissions with an excellent full width at half maximum (FWHM) of 1.4 meV. The field emission of highly vertically aligned ZnO nanoneedle arrays closely follows the Fowler-Nordheim theory. The turn-on electric field was about 5.9 V/{mu}m with a field enhancement factor {beta} of around 793. (orig.)

  14. Catalyst-free highly vertically aligned ZnO nanoneedle arrays grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Wang, J. S.; Yang, C. S.; Chen, P. I.; Su, C. F.; Chen, W. J.; Chiu, K. C.; Chou, W. C.

    2009-11-01

    This work describes the growth of highly vertically aligned ZnO nanoneedle arrays on wafer-scale catalyst-free c-plane sapphire substrates by plasma-assisted molecular beam epitaxy under high Zn flux conditions. The photoluminescence spectrum of the as-grown samples reveals strong free exciton emissions and donor-bound exciton emissions with an excellent full width at half maximum (FWHM) of 1.4 meV. The field emission of highly vertically aligned ZnO nanoneedle arrays closely follows the Fowler-Nordheim theory. The turn-on electric field was about 5.9 V/µm with a field enhancement factor β of around 793.

  15. Epitaxial Growth of Metastable hcp-Ni and hcp-NiFe Thin Films on Au(100)fcc Single-Crystal Underlayers and Their Structure Characterization

    Science.gov (United States)

    Ohtake, Mitsuru; Sato, Yoichi; Higuchi, Jumpei; Tanaka, Takahiro; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-10-01

    Metastable hcp-Ni and hcp-NiFe epitaxial thin films are prepared on Au(100)fcc single-crystal underlayers by molecular beam epitaxy. The epitaxial growth and the transformation from metastable hcp to more stable fcc phase are studied by in-situ reflection high-energy electron diffraction. In an early stage of film growth, hcp(1120) crystal is stabilized through hetero-epitaxial growth. The epitaxial orientation relationship between the film and the underlayer is determined to be hcp(1120)[0001], hcp(1120)[1100] ∥ Au(100)[001]fcc. With increasing the film thickness, the hcp structure starts to transform into fcc structure. High-resolution transmission electron microscopy shows that the film consists of a mixture of hcp and fcc crystals and that a large number of stacking faults exist parallel to the close-packed plane. The results suggest that the hcp structure starts to transform from these stacking faults into fcc structure in the lateral direction by atomic displacement parallel to the hcp(0001) close-packed plane. The crystallographic orientation relationships between the hcp and transformed fcc crystals are determined to be fcc(110)[111], fcc(110)[111] ∥ hcp(1120)[0001] and fcc(110)[112], fcc(110)[112] ∥ hcp(1120)[1100].

  16. Surface stability and the selection rules of substrate orientation for optimal growth of epitaxial II-VI semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Wan-Jian [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Department of Physics & Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606 (United States); Yang, Ji-Hui; Zaunbrecher, Katherine; Gessert, Tim; Barnes, Teresa; Wei, Su-Huai, E-mail: Suhuai.Wei@nrel.gov [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Yan, Yanfa [Department of Physics & Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606 (United States)

    2015-10-05

    The surface structures of ionic zinc-blende CdTe (001), (110), (111), and (211) surfaces are systematically studied by first-principles density functional calculations. Based on the surface structures and surface energies, we identify the detrimental twinning appearing in molecular beam epitaxy (MBE) growth of II-VI compounds as the (111) lamellar twin boundaries. To avoid the appearance of twinning in MBE growth, we propose the following selection rules for choosing optimal substrate orientations: (1) the surface should be nonpolar so that there is no large surface reconstructions that could act as a nucleation center and promote the formation of twins; (2) the surface structure should have low symmetry so that there are no multiple equivalent directions for growth. These straightforward rules, in consistent with experimental observations, provide guidelines for selecting proper substrates for high-quality MBE growth of II-VI compounds.

  17. Optical and structural properties of microcrystalline GaN on an amorphous substrate prepared by a combination of molecular beam epitaxy and metal–organic chemical vapor deposition

    Science.gov (United States)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal–organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  18. Optical and Structural Properties of Microcrystalline GaN on an Amorphous Substrate Prepared by a Combination of Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  19. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Fischer, I. A.; Schulze, J. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Benedetti, A. [CACTI, Univ. de Vigo, Campus Universitario Lagoas Marcosende 15, Vigo (Spain); Zaumseil, P. [IHP GmbH, Innovations for High Performance Microelectronics, Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Cerqueira, M. F.; Vasilevskiy, M. I. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Stefanov, S.; Chiussi, S. [Dpto. Fisica Aplicada, Univ. de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2015-12-28

    We report on the fabrication and structural characterization of epitaxially grown ultra-thin layers of Sn on Ge virtual substrates (Si buffer layer overgrown by a 50 nm thick Ge epilayer followed by an annealing step). Samples with 1 to 5 monolayers of Sn on Ge virtual substrates were grown using solid source molecular beam epitaxy and characterized by atomic force microscopy. We determined the critical thickness at which the transition from two-dimensional to three-dimensional growth occurs. This transition is due to the large lattice mismatch between Ge and Sn (≈14.7%). By depositing Ge on top of Sn layers, which have thicknesses at or just below the critical thickness, we were able to fabricate ultra-narrow GeSn multi-quantum-well structures that are fully embedded in Ge. We report results on samples with one and ten GeSn wells separated by 5 and 10 nm thick Ge spacer layers that were characterized by high resolution transmission electron microscopy and X-ray diffraction. We discuss the structure and material intermixing observed in the samples.

  20. Molecular Beam Epitaxy-Grown InGaN Nanowires and Nanomushrooms for Solid State Lighting

    KAUST Repository

    Gasim, Anwar A.

    2012-05-01

    InGaN is a promising semiconductor for solid state lighting thanks to its bandgap which spans the entire visible regime of the electromagnetic spectrum. InGaN is grown heteroepitaxially due to the absence of a native substrate; however, this results in a strained film and a high dislocation density—two effects that have been associated with efficiency droop, which is the disastrous drop in efficiency of a light-emitting diode (LED) as the input current increases. Heteroepitaxially grown nanowires have recently attracted great interest due to their property of eliminating the detrimental effects of the lattice mismatch and the corollary efficiency droop. In this study, InGaN nanowires were grown on a low-cost Si (111) substrate via molecular beam epitaxy. Unique nanostructures, taking the form of mushrooms, have been observed in localized regions on the samples. These nanomushrooms consist of a nanowire body with a wide cap on top. Photoluminescence characterization revealed that the nanowires emit violet-blue, whilst the nanomushrooms emit a broad yellow-orange-red luminescence. The simultaneous emission from the nanowires and nanomushrooms forms white light. Structural characterization of a single nanomushroom via transmission electron microscopy revealed a simultaneous increase in indium and decrease in gallium at the interface between the body and the cap. Furthermore, the cap itself was found to be indium-rich, confirming it as the source of the longer wavelength yellow-orange-red luminescence. It is believed that the nanomushroom cap formed as a consequence of the saturation of growth on the c-plane of the nanowire. It is proposed that the formation of an indium droplet on the tip of the nanowire saturated growth on the c-plane, forcing the indium and gallium adatoms to incorporate on the sidewall m-planes instead, but only at the nanowire tip. This resulted in the formation of a mushroom-like cap on the tip. How and why the indium droplets formed is not

  1. In situ photoelectron spectroscopy of molecular-beam-epitaxy grown surfaces

    CERN Document Server

    Oshima, M; Okabayashi, J; Ono, K

    2003-01-01

    Two in situ high-resolution synchrotron radiation photoelectron spectroscopy (SRPES) systems combined with a molecular beam epitaxy (MBE) chamber for III-V compound semiconductors and a laser MBE chamber for strongly correlated oxide films, respectively, have been designed and fabricated to analyze intrinsic and surface/interface electronic structures of these unique materials. The importance of the in situ SRPES has been demonstrated by the results of 1) Si surface nanostructures, 2) GaAs surfaces/interfaces and nanostructures, 3) MnAs magnetic nanostructures, and 4) strongly-correlated La sub 1 sub - sub x Sr sub x MnO sub 3 surfaces/interfaces and superstructures.

  2. Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy

    OpenAIRE

    Federico Baiutti; Georg Christiani; Gennady Logvenov

    2014-01-01

    In this paper we present the atomic-layer-by-layer oxide molecular beam epitaxy (ALL-oxide MBE) which has been recently installed in the Max-Planck Institute for Solid State Research and we report on its present status, providing some examples that demonstrate its successful application in the synthesis of different layered oxides, with particular reference to superconducting La2CuO4 and insulator-to-metal La2−xSrxNiO4. We briefly review the ALL-oxide MBE technique and its unique capabilities...

  3. Luminescence characterization of CdTe:In grown by molecular beam epitaxy

    Science.gov (United States)

    Bassani, F.; Tatarenko, S.; Saminadayar, K.; Bleuse, J.; Magnea, N.; Pautrat, J. L.

    1991-06-01

    We report on the incorporation of indium as a shallow donor in CdTe by molecular beam epitaxy. Using proper surface stoichiometry conditions, we demonstrate that it is possible to incorporate and activate up to 1018 cm-3 indium impurities. The doped layers have been characterized by secondary-ion mass spectroscopy, capacitance-voltage and Hall-effect measurements. Photoluminescence (PL) and resonant excitation of the PL clearly identify indium as the chemical dopant, acting as an effective mass donor with an energy of 14 meV. Incorrect stoichiometry conditions lead to a poor dopant activity and to complex centers formation.

  4. Perspective: Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    Directory of Open Access Journals (Sweden)

    J. Wu

    2015-06-01

    Full Text Available Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  5. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds

    International Nuclear Information System (INIS)

    Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.

  6. Deep electron traps in CdTe:In films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zakrzewski, A.K.; Dobaczewski, L.; Karczewski, G.; Wojtowicz, T.; Kossut, J. [Institute of Physics, Polish Academy of Science, Warsaw (Poland)

    1995-12-31

    N-type indium CdTe grown on n{sup +}-GaAs molecular beam epitaxy has been studied by the standard deep level transient spectroscopy and the isothermal Laplace-transform deep level transient spectroscopy. It was found that the Cd/Te flux ratio strongly influences the deep level transient spectroscopy results. The unusual temperature dependence of the electron emission rate in films grown at nearly stoichiometric conditions may point out that the observed defect is resonant with the conduction band. (author). 5 refs, 1 fig.

  7. Growth and characterization of epitaxial aluminum layers on gallium-arsenide substrates for superconducting quantum bits

    Science.gov (United States)

    Tournet, J.; Gosselink, D.; Miao, G.-X.; Jaikissoon, M.; Langenberg, D.; McConkey, T. G.; Mariantoni, M.; Wasilewski, Z. R.

    2016-06-01

    The quest for a universal quantum computer has renewed interest in the growth of superconducting materials on semiconductor substrates. High-quality superconducting thin films will make it possible to improve the coherence time of superconducting quantum bits (qubits), i.e., to extend the time a qubit can store the amplitude and phase of a quantum state. The electrical losses in superconducting qubits highly depend on the quality of the metal layers the qubits are made from. Here, we report on the epitaxy of single-crystal Al (011) layers on GaAs (001) substrates. Layers with 110 nm thickness were deposited by means of molecular beam epitaxy at low temperature and monitored by in situ reflection high-energy electron diffraction performed simultaneously at four azimuths. The single-crystal nature of the layers was confirmed by ex situ high-resolution x-ray diffraction. Differential interference contrast and atomic force microscopy analysis of the sample’s surface revealed a featureless surface with root mean square roughness of 0.55 nm. A detailed in situ study allowed us to gain insight into the nucleation mechanisms of Al layers on GaAs, highlighting the importance of GaAs surface reconstruction in determining the final Al layer crystallographic orientation and quality. A highly uniform and stable GaAs (001)-(2× 4) reconstruction reproducibly led to a pure Al (011) phase, while an arsenic-rich GaAs (001)-(4× 4) reconstruction yielded polycrystalline films with an Al (111) dominant orientation. The near-atomic smoothness and single-crystal character of Al films on GaAs, in combination with the ability to trench GaAs substrates, could set a new standard for the fabrication of superconducting qubits.

  8. Large-area selective CVD epitaxial growth of Ge on Si substrates

    NARCIS (Netherlands)

    Sammak, A.; De Boer, W.; Nanver, L.K.

    2011-01-01

    Selective epitaxial growth of crystalline Ge on Si in a standard ASM Epsilon 2000 CVD reactor is investigated for the fabrication of Ge p+n diodes. At the deposition temperature of 700˚C, most of the lattice mismatch-defects are trapped within first 300nm of Ge growth and good quality single crystal

  9. Growing high-quality ternary CdMnTe epilayers by molecular beam epitaxy on Si substrates and its mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jyh-Shyang, E-mail: jswang@cycu.edu.tw [Department of Physics, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China); Tong, Shih-Chang; Tsai, Yu-Hsuan; Tsai, Wei-jiun [Department of Physics, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China); Yang, Chu-Shou; Chang, Yi-Hsin [Graduate Institute of Electro-Optical Engineering, Tatung University, Taipei 10452, Taiwan (China); Cheng, Yung-Chen [Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan (China); Wu, Chih-Hung [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Yuan, Chi-Tsu; Shen, Ji-Lin [Department of Physics, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China)

    2015-10-15

    Cd(Mn,Zn)Te-based ternary compound semiconductors with wide band-gaps are important in the detection of radiation and photovoltaic applications. This study characterizes Cd{sub 1-x}Mn{sub x}Te epilayers on Si substrates with various Mn compositions grown by molecular beam epitaxy. The surface smoothness, crystallinity and optical quality all are significantly improved with increasing Mn content. The Cd{sub 0.61}Mn{sub 0.39}Te epilayer with a thickness of only about 500 nm yields a full width at half maximum of the X-ray rocking curve of 165 arcsec. Photoluminescence spectra at 10 K show that the intensity of defect-related emissions is much lower than that of binary CdTe epilayers, reaching zero from the samples with high Mn content, while the integral intensity of the exciton-related emissions is increased by more than two orders of magnitude. Raman scattering spectra reveal that the intensity of the Te–Te related defect vibration modes falls significantly as the Mn content increase, even disappearing altogether in the samples with high Mn content. This work proposes that incorporating Mn atoms during epitaxial growth can promote the decomposition of Te{sub 2} sources, owing to the high sticking coefficient of Mn and the high cohesive energy of the Mn–Te bond, and then reduce the number of Te–Te related stacking fault defects, yielding high-quality CdMnTe epilayers. Our results herein demonstrate that the CdMnTe ternary epilayers are much more promising in terms of material quality than the CdZnTe ternary epilayers. - Highlights: • High-quality ternary CdMnTe were grown on Si substrates by molecular beam epitaxy. • The material qualities were significantly improved with increasing Mn content. • The Te–Te related defects were greatly reduced with increasing Mn content. • We report an enhanced growth of CdTe-based epilayers by the incorporation of Mn atoms.

  10. Large domain growth of GaN epitaxial films on lattice-matched buffer layer ScAlMgO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Katase, Takayoshi [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)], E-mail: katase@lucid.msl.titech.ac.jp; Nomura, Kenji [ERATO-SORST, JST, in Frontier Research Center, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ohta, Hiromichi [ERATO-SORST, JST, in Frontier Research Center, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Graduate School of Engineering, Nagoya University, Furo, Chikusa-ku, Nagoya 464-8603 (Japan); Yanagi, Hiroshi [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); ERATO-SORST, JST, in Frontier Research Center, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Hirano, Masahiro [ERATO-SORST, JST, in Frontier Research Center, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Frontier Research Center, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Hosono, Hideo [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); ERATO-SORST, JST, in Frontier Research Center, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Frontier Research Center, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2009-04-15

    A homologous series compound ScAlO{sub 3}(MgO) (SCAM) has a superior lattice matching as small as {approx}1.4% in a-axis with GaN. This paper reports an efficient fabrication process of a single-crystalline SCAM buffer layer on a (1 1 1) yttria-stabilized zirconia (YSZ) substrate using pulsed laser deposition (PLD). A 10-nm thick ZnO epitaxial layer was used to induce solid-phase epitaxial growth of an amorphous (a-) SCAM layer formed at room temperature on (1 1 1) YSZ. It was found that the addition of excess Sc{sub 2}O{sub 3} and ZnO to a SCAM target used for PLD was needed to obtain single-crystalline SCAM films with atomically flat terraces-and-steps surfaces. The resulting single-crystalline SCAM films were examined as buffer layers to grow GaN by molecular beam epitaxy with a plasma nitrogen source. The GaN films were grown epitaxially on the SCAM/YSZ substrates with the epitaxial relationship of [0 0 0 1] GaN||[0 0 0 1] SCAM||[1 1 1] YSZ and [1 0 0] GaN||[11-20] SCAM||[1-10] YSZ. The SCAM buffer layers enhanced lateral growth of the GaN films owing to the good lattice matching.

  11. Epitaxial Growth of Graphene on 6H-SiC (0001) by Thermal Annealing

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; LIU Zhong-Liang; KANG Chao-Yang; PAN Hai-Bin; WEI Shi-Qiang; XU Peng-Shou; GAO Yu-Qiang; XU Xian-Gang

    2009-01-01

    An epitaxial graphene (EG) layer is successfully grown on a Si-terminated 6H-SiC (0001) substrate by the method of thermal annealing in an ultrahigh vacuum molecular beam epitaxy chamber.The structure and morphology of the EG sample are characterized by reflection high energy diffraction (RHEED),Raman spectroscopy and atomic force microscopy (AFM).Graphene diffraction streaks can be seen in RHEED.The G and 2D peaks of graphene are clearly observed in the Raman spectrum.The AFM results show that the graphene nominal thickness is about 4-10 layers.

  12. Epitaxial growth of amorphous Ge films deposited on single-crystal Ge

    OpenAIRE

    M. G. Grimaldi; Mäenpää, M. (Markus); Paine, B. M.; Nicolet, M-A.; Lau, S. S.; Tseng, W. F.

    1981-01-01

    The epitaxial growth of amorphous Ge films deposited onto 110 Ge substrate is demonstrated. Substrate cleaning prior to deposition involves only conventional chemical procedures. The growth appears to be a strong function of the interface cleanliness. Two different growth mechanisms are observed: (a) a direct transition from amorphous to single-crystalline layer and (b) the growth involving the transition of amorphous to polycrystals to single crystal.

  13. Epitaxial growth of ZnSe and ZnSe/CdSe nanowires on ZnSe

    Energy Technology Data Exchange (ETDEWEB)

    Bellet-Amalric, E.; Bounouar, S.; Kheng, K. [CEA-CNRS-UJF Group, Nanophysique et Semiconducteurs, CEA Grenoble, INAC, 17 rue des Martyrs, 38 054 Grenoble (France); Elouneg-Jamroz, M.; Bougerol, C.; Hertog, M. den; Genuist, Y.; Poizat, J.P.; Andre, R.; Tatarenko, S. [CEA-CNRS-UJF Group, Nanophysique et Semiconducteurs, Institut Neel, BP 166, 38 042 Grenoble (France)

    2010-06-15

    We report the molecular beam epitaxy (MBE) growth of ZnSe nanowires (NWs) on a ZnSe(100) epilayer assisted by gold catalyst. Gold dewetting assists in the formation of nanotrenches along the [0-1-1] direction in the ZnSe buffer layer. Nucleation of the gold catalyst in the trenches leads to the growth of NWs preferentially in directions orthogonal to the trenches. The wires adopt mostly the wurtzite type structure and grow along the c-axis. CdSe quantum dots were inserted in the ZnSe NWs. The CdSe insertions systematically adopt a cubic zinc-blende arrangement with a[111] growth axis, as confirmed by transmission electron microscopy. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.

    Science.gov (United States)

    Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei

    2013-02-01

    High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)(H)//GaN(0001)(H)(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.

  15. Effect of thickness on the microstructure of GaN films on Al203 (0001) by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Liu Ying-Ying; Zhu Jun; Luo Wen-Bo; Hao Lan-Zhong; Zhang Ying; Li Yan-Rong

    2011-01-01

    Heteroepitaxia1l GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy.The growth processes are in-situ monitored by reflection high energy electron diffraction.It is revealed that the growth mode of GaN transformed from three-dimensional (3D) island mode to two-dimensional (2D) layer-by-layer mode with the increase of thickness.This paper investigates the interfacial strain relaxation of GaN films by analysing their diffraction patterns.Calculation shows that the strain is completely relaxed when the thickness reaches 15 nm.The surface morphology evolution indicates that island merging and reduction of the island-edge barrier provide an effective way to make GaN films follow a 2D layer-by-layer growth mode.The 110-nm GaN films with a 2D growth mode have smooth regular hexagonal shapes.The X-ray diffraction indicates that thickness has a significant effect on the crystallized quality of GaN thin films.

  16. Hybrid ZnO/GaN distributed Bragg reflectors grown by plasma-assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    David Adolph

    2016-08-01

    Full Text Available We demonstrate crack-free ZnO/GaN distributed Bragg reflectors (DBRs grown by hybrid plasma-assisted molecular beam epitaxy using the same growth chamber for continuous growth of both ZnO and GaN without exposure to air. This is the first time these ZnO/GaN DBRs have been demonstrated. The Bragg reflectors consisted up to 20 periods as shown with cross-sectional transmission electron microscopy. The maximum achieved reflectance was 77% with a 32 nm wide stopband centered at 500 nm. Growth along both (0001 and (000 1 ̄ directions was investigated. Low-temperature growth as well as two-step low/high-temperature deposition was carried out where the latter method improved the DBR reflectance. Samples grown along the (0001 direction yielded a better surface morphology as revealed by scanning electron microscopy and atomic force microscopy. Reciprocal space maps showed that ZnO(000 1 ̄ /GaN reflectors are relaxed whereas the ZnO(0001/GaN DBRs are strained. The ability to n-type dope ZnO and GaN makes the ZnO(0001/GaN DBRs interesting for various optoelectronic cavity structures.

  17. Hybrid ZnO/GaN distributed Bragg reflectors grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Adolph, David; Zamani, Reza R.; Dick, Kimberly A.; Ive, Tommy

    2016-08-01

    We demonstrate crack-free ZnO/GaN distributed Bragg reflectors (DBRs) grown by hybrid plasma-assisted molecular beam epitaxy using the same growth chamber for continuous growth of both ZnO and GaN without exposure to air. This is the first time these ZnO/GaN DBRs have been demonstrated. The Bragg reflectors consisted up to 20 periods as shown with cross-sectional transmission electron microscopy. The maximum achieved reflectance was 77% with a 32 nm wide stopband centered at 500 nm. Growth along both (0001) and (000 1 ¯ ) directions was investigated. Low-temperature growth as well as two-step low/high-temperature deposition was carried out where the latter method improved the DBR reflectance. Samples grown along the (0001) direction yielded a better surface morphology as revealed by scanning electron microscopy and atomic force microscopy. Reciprocal space maps showed that ZnO(000 1 ¯ )/GaN reflectors are relaxed whereas the ZnO(0001)/GaN DBRs are strained. The ability to n-type dope ZnO and GaN makes the ZnO(0001)/GaN DBRs interesting for various optoelectronic cavity structures.

  18. Kinetic model of SiGe selective epitaxial growth using RPCVD technique

    OpenAIRE

    Kolahdouz, M.; Maresca, L; Ghandi, R; Khatibi, Ali; Radamson, H.

    2010-01-01

    Recently, selective epitaxial growth (SEG) of B-doped SiGe layershas been used in recessed source/drain (S/D) of pMOSFETs. Theuniaxial induced strain enhances the carrier mobility in the channel.In this work, a detailed model for SEG of SiGe has been developed topredict the growth rate and Ge content of layers indichlorosilane(DCS)-based epitaxy using a reduced-pressure CVDreactor. The model considers each gas precursor contributions fromthe gas-phase and the surface.The gas flow and temperat...

  19. Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy

    Science.gov (United States)

    Rong, Xin; Wang, Xinqiang; Chen, Guang; Pan, Jianhai; Wang, Ping; Liu, Huapeng; Xu, Fujun; Tan, Pingheng; Shen, Bo

    2016-05-01

    Residual stress in AlN films grown by molecular beam epitaxy (MBE) has been studied by Raman scattering spectroscopy. A strain-free Raman frequency and a biaxial stress coefficient for E2(high) mode are experimentally determined to be 657.8 ± 0.3 cm-1 and 2.4 ± 0.2 cm-1 / GPa, respectively. By using these parameters, the residual stress of a series of AlN layers grown under different buffer layer conditions has been investigated. The residual compressive stress is found to be obviously decreased by increasing the Al/N beam flux ratio of the buffer layer, indicating the generation of tensile stress due to stronger coalescence of AlN grains, as also confirmed by the in-situ reflection high energy electron diffraction (RHEED) monitoring observation. The stronger coalescence does lead to improved quality of AlN films as expected.

  20. MBE (Molecular Beam Epitaxial) growth characterization and electronic device processing of HgCdTe, HgZnTe related heterojunctions and HgCdTe-CdTe superlattices

    Science.gov (United States)

    Faurie, Jean-Pierre

    1987-06-01

    As the MBE growth technique has continued to improve for Hg(1-x)Cd(x)Te films, the prospects for films of larger area have begun to be explored. These larger area films are important for imaging arrays and will be especially vital in the future for the efficient production of Hg(1-x)Cd(x)Te material. The growth of MBE of uniform Hg(1-x)Cd(x)Te epilayer on a large substrate is very difficult to achieve because of the non-uniform distribution of the fluxes and on the non-uniform temperature of the substrate.

  1. Direct observation of epitaxial organic film growth: temperature-dependent growth mechanisms and metastability.

    Science.gov (United States)

    Marchetto, Helder; Schmidt, Thomas; Groh, Ullrich; Maier, Florian C; Lévesque, Pierre L; Fink, Rainer H; Freund, Hans-Joachim; Umbach, Eberhard

    2015-11-21

    The growth of the first ten layers of organic thin films on a smooth metallic substrate has been investigated in real-time using the model system PTCDA on Ag(111). The complex behaviour is comprehensively studied by electron microscopy, spectroscopy and diffraction in a combined PEEM/LEEM instrument revealing several new phenomena and yielding a consistent picture of this layer growth. PTCDA grows above room temperature in a Stranski-Krastanov mode, forming three-dimensional islands on a stable bi-layer, in competition with metastable 3rd and 4th layers. Around room temperature this growth mode changes into a quasi layer-by-layer growth, while at temperatures below about 250 K a Vollmer-Weber-like behaviour is observed. By means of laterally resolved soft X-ray absorption spectroscopy the orientation of all adsorbed molecules is found to be homogeneously flat lying on the surface, even during the growth process. The films grow epitaxially, showing long-range order with rotational domains. For the monolayer these domains could be directly analysed, showing an average size of several micrometers extending over substrate steps. PMID:26462749

  2. Synthesis of semimetal A{sub 3}Bi (A = Na, K) thin films by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jing, E-mail: wenj07@126.com [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Guo, Hua [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Yan, Chen-Hui [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Zhen-Yu; Chang, Kai; Deng, Peng; Zhang, Teng [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Zhang, Zhi-Dong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Ji, Shuai-Hua [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Wang, Li-Li; He, Ke; Ma, Xu-Cun [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Xi; Xue, Qi-Kun [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China)

    2015-02-01

    Highlights: • First realization of MBE growth of Na{sub 3}Bi on Si(1 1 1)-7 × 7. • The lattice of Na{sub 3}Bi is rotated 30 degree to substrate. • ARPES reveals multi-linear cone structure near Fermi surface. • K{sub 3}Bi was successfully grown on Na{sub 3}Bi/Si(1 1 1)–7 × 7. - Abstract: Three-dimensional (3D) Dirac cones are predicted to reside in semimetals A{sub 3}Bi (A = Na, K). By using molecular beam epitaxy (MBE) and scanning tunneling microscopy (STM), we have successfully established the growth conditions for Na{sub 3}Bi thin films on Si(1 1 1)-7 × 7, and determined that the lattice of Na{sub 3}Bi is rotated by 30 degree with respect to that of Si(1 1 1)-7 × 7. The Na{sub 3}Bi/Si(1 1 1)-7 × 7 thin film was further used as the substrate for the growth of K{sub 3}Bi. The 3D Dirac-cone-like electronic band structures of Na{sub 3}Bi and K{sub 3}Bi have been clearly revealed by angle resolved photoelectron spectroscopy (ARPES)

  3. Demonstration of isotype GaN/AlN/GaN heterobarrier diodes by NH{sub 3}-molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Fireman, Micha N.; Browne, David A.; Mazumder, Baishakhi; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Mishra, Umesh K. [Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106 (United States)

    2015-05-18

    The results of vertical transport through nitride heterobarrier structures grown by ammonia molecular beam epitaxy are presented. Structures are designed with binary layers to avoid the effects of random alloy fluctuations in ternary nitride barriers. The unintentional incorporation of Ga in the AlN growth is investigated by atom probe tomography and is shown to be strongly dependent on both the NH{sub 3} flowrate and substrate temperature growth parameters. Once nominally pure AlN layer growth conditions are achieved, structures consisting of unintentionally doped (UID) GaN spacer layers adjacent to a nominally pure AlN are grown between two layers of n+ GaN, from which isotype diodes are fabricated. Varying the design parameters of AlN layer thickness, UID spacer layer thickness, and threading dislocation density show marked effects on the vertical transport characteristics of these structures. The lack of significant temperature dependence, coupled with Fowler-Nordheim and/or Milliken-Lauritsen analysis, point to a prevalently tunneling field emission mechanism through the AlN barrier. Once flatband conditions in the UID layer are achieved, electrons leave the barrier with significant energy. This transport mechanism is of great interest for applications in hot electron structures.

  4. Demonstration of isotype GaN/AlN/GaN heterobarrier diodes by NH3-molecular beam epitaxy

    International Nuclear Information System (INIS)

    The results of vertical transport through nitride heterobarrier structures grown by ammonia molecular beam epitaxy are presented. Structures are designed with binary layers to avoid the effects of random alloy fluctuations in ternary nitride barriers. The unintentional incorporation of Ga in the AlN growth is investigated by atom probe tomography and is shown to be strongly dependent on both the NH3 flowrate and substrate temperature growth parameters. Once nominally pure AlN layer growth conditions are achieved, structures consisting of unintentionally doped (UID) GaN spacer layers adjacent to a nominally pure AlN are grown between two layers of n+ GaN, from which isotype diodes are fabricated. Varying the design parameters of AlN layer thickness, UID spacer layer thickness, and threading dislocation density show marked effects on the vertical transport characteristics of these structures. The lack of significant temperature dependence, coupled with Fowler-Nordheim and/or Milliken-Lauritsen analysis, point to a prevalently tunneling field emission mechanism through the AlN barrier. Once flatband conditions in the UID layer are achieved, electrons leave the barrier with significant energy. This transport mechanism is of great interest for applications in hot electron structures

  5. Analysis of Mg content of Zn1-xMgxO film grown on sapphire substrates by plasma-assisted molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    YAN Fengping; JIAN Shuisheng; K. Ogata; K. Koike; S. Sasa; M. Inoue; M. Yano

    2004-01-01

    The Mg content of Zn1-xMgxO film grown on A-sapphire substrates by plasma-assisted molecular beam epitaxy is measured by inductively coupled plasma (ICP)and electronic probe microanalysis (EPMA). A theoretical model for analyzing the difference in the Mg content between Zn-rich and Zn-deficient conditions in the growth process is established, and the mathematical relation between Mg content and the temperature of the Mg cell is formulated under Zn-rich condition. The formula derived is proven to be correct by experiments.

  6. Effect of Fe coating of nucleation sites on epitaxial growth of Fe oxide nanocrystals on Si substrates

    Science.gov (United States)

    Ishibe, Takafumi; Watanabe, Kentaro; Nakamura, Yoshiaki

    2016-08-01

    We studied the effect of Fe coating on the epitaxial growth of Fe3O4 nanocrystals (NCs) over Fe-coated Ge epitaxial nuclei on Si(111). To completely cover Ge nuclei with Fe, some amount of Fe (>8 monolayers) must be deposited. Such covering is a key to epitaxial growth because an Fe coating layer prevents the oxidation of Ge surfaces during Fe3O4 formation, resulting in the epitaxial growth of Fe3O4 on them. This study demonstrates that an appropriate Fe coating of nucleation sites leads to the epitaxial growth of Fe3O4 NCs on Si substrates, indicating the realization of environmentally friendly and low-cost Fe3O4 NCs as the resistance random access memory material.

  7. Epitaxial Growth of a Methoxy-Functionalized Quaterphenylene on Alkali Halide Surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Sun, Rong; Parisi, Jürgen;

    2015-01-01

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of lowenergy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X...

  8. Integration of carbon nanotubes with semiconductor technology: fabrication of hybrid devices by III–V molecular beam epitaxy

    DEFF Research Database (Denmark)

    Stobbe, Søren; Lindelof, P. E.; Nygård, J.

    2006-01-01

    on incorporation of singlewall nanotubes in III–V semiconductor heterostructures grown by molecular beam epitaxy (MBE). We demonstrate that singlewall carbon nanotubes can be overgrown using MBE; electrical contacts to the nanotubes are obtained by GaMnAs grown at 250 °C. The resulting devices can exhibit field...

  9. Characterization of CdTe, HgTe, and Hg1-xCdxTe grown by chemical beam epitaxy

    Science.gov (United States)

    Wagner, B. K.; Rajavel, D.; Benz, R. G.; Summers, C. J.

    1991-10-01

    Detailed characterization of chemical beam epitaxially (CBE) grown CdTe and Hg1-xCdxTe layers are reported. These characterizations include photoluminescence, infrared transmission, energy dispersive x-ray analysis, and variable temperature (10-300 K) Hall effect and resistivity measurements. The results indicate that high quality HgCdTe layers can be grown by CBE.

  10. New synthesis method for the growth of epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yu, X.Z. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, Department of Physics, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Hwang, C.G.; Jozwiak, C.M.; Koehl, A. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Schmid, A.K. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94709 (United States); Lanzara, A., E-mail: ALanzara@lbl.gov [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2011-04-15

    Highlights: {yields} We report a new straightforward method for the synthesis of micrometer scale graphene sheets. {yields} The process is based on a face to face mehtod in which two SiC substrates are placed one on top of the other and are heated simultaneously, leading to highly homogeneous samples. {yields} The number of graphene layers is determined by the annealing temperature. - Abstract: As a viable candidate for an all-carbon post-CMOS electronics revolution, epitaxial graphene has attracted significant attention. To realize its application potential, reliable methods for fabricating large-area single-crystalline graphene domains are required. A new way to synthesize high quality epitaxial graphene, namely 'face-to-face' method, has been reported in this paper. The structure and morphologies of the samples are characterized by low-energy electron diffraction, atomic force microscopy, angle-resolved photoemission spectroscopy and Raman spectroscopy. The grown samples show better quality and larger length scales than samples grown through conventional thermal desorption. Moreover, the graphene thickness can be easily controlled by changing annealing temperature.

  11. Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi

    Science.gov (United States)

    Steele, J. A.; Lewis, R. A.; Horvat, J.; Nancarrow, M. J. B.; Henini, M.; Fan, D.; Mazur, Y. I.; Schmidbauer, M.; Ware, M. E.; Yu, S.-Q.; Salamo, G. J.

    2016-01-01

    Herein we investigate a (001)-oriented GaAs1−xBix/GaAs structure possessing Bi surface droplets capable of catalysing the formation of nanostructures during Bi-rich growth, through the vapour-liquid-solid mechanism. Specifically, self-aligned “nanotracks” are found to exist trailing the Bi droplets on the sample surface. Through cross-sectional high-resolution transmission electron microscopy the nanotracks are revealed to in fact be elevated above surface by the formation of a subsurface planar nanowire, a structure initiated mid-way through the molecular-beam-epitaxy growth and embedded into the epilayer, via epitaxial overgrowth. Electron microscopy studies also yield the morphological, structural, and chemical properties of the nanostructures. Through a combination of Bi determination methods the compositional profile of the film is shown to be graded and inhomogeneous. Furthermore, the coherent and pure zincblende phase property of the film is detailed. Optical characterisation of features on the sample surface is carried out using polarised micro-Raman and micro-photoluminescence spectroscopies. The important light producing properties of the surface nanostructures are investigated through pump intensity-dependent micro-PL measurements, whereby relatively large local inhomogeneities are revealed to exist on the epitaxial surface for important optical parameters. We conclude that such surface effects must be considered when designing and fabricating optical devices based on GaAsBi alloys. PMID:27377213

  12. Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi

    Science.gov (United States)

    Steele, J. A.; Lewis, R. A.; Horvat, J.; Nancarrow, M. J. B.; Henini, M.; Fan, D.; Mazur, Y. I.; Schmidbauer, M.; Ware, M. E.; Yu, S.-Q.; Salamo, G. J.

    2016-07-01

    Herein we investigate a (001)-oriented GaAs1‑xBix/GaAs structure possessing Bi surface droplets capable of catalysing the formation of nanostructures during Bi-rich growth, through the vapour-liquid-solid mechanism. Specifically, self-aligned “nanotracks” are found to exist trailing the Bi droplets on the sample surface. Through cross-sectional high-resolution transmission electron microscopy the nanotracks are revealed to in fact be elevated above surface by the formation of a subsurface planar nanowire, a structure initiated mid-way through the molecular-beam-epitaxy growth and embedded into the epilayer, via epitaxial overgrowth. Electron microscopy studies also yield the morphological, structural, and chemical properties of the nanostructures. Through a combination of Bi determination methods the compositional profile of the film is shown to be graded and inhomogeneous. Furthermore, the coherent and pure zincblende phase property of the film is detailed. Optical characterisation of features on the sample surface is carried out using polarised micro-Raman and micro-photoluminescence spectroscopies. The important light producing properties of the surface nanostructures are investigated through pump intensity-dependent micro-PL measurements, whereby relatively large local inhomogeneities are revealed to exist on the epitaxial surface for important optical parameters. We conclude that such surface effects must be considered when designing and fabricating optical devices based on GaAsBi alloys.

  13. A GaAs/GaInP dual junction solar cell grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    We report the recent result of GaAs/GaInP dual-junction solar cells grown by all solid-state molecular-beam-epitaxy (MBE). The device structure consists of a GaIn0.48P homojunction grown epitaxially upon a GaAs homojunction, with an interconnected GaAs tunnel junction. A photovoltaic conversion efficiency of 27% under the AM1.5 globe light intensity is realized for a GaAs/GaInP dual-junction solar cell, while the efficiencies of 26% and 16.6% are reached for a GaAs bottom cell and a GaInP top cell, respectively. The energy loss mechanism of our GaAs/GaInP tandem dual-junction solar cells is discussed. It is demonstrated that the MBE-grown phosphide-containing III—V compound semiconductor solar cell is very promising for achieving high energy conversion efficiency. (semiconductor devices)

  14. Erbium doping of silicon and silicon carbide using ion beam induced epitaxial crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Boucaud, P.; Julien, F.H.; Lourtioz, J.M.; Bernas, H.; Clerc, C.; Chaumont, J. [Univ. Paris XI, Orsay (France); Bodnar, S.; Regolini, J.L. [France Telecom CNET-CNS, Meylan (France); Lin, X.W. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    Erbium doping of silicon and silicon carbide using implantation followed by ion beam induced epitaxial crystallization (IBIEC) is investigated. The implanted concentration of Er was 1.4 at.% in both cases. In Si(100), Rutherford backscattering/channeling revealed that about 40% of the Er atoms evolved upon rapid thermal annealing from an undetermined position (room temperature) to an interstitial tetrahedral position (650 C) and finally to a substitutional position (950 C). The remaining Er atoms were presumably trapped in the small precipitates visible in high resolution transmission electron microscopy. The photoluminescence at 1.54 {micro}m of Er{sup 3+} is enhanced with annealing and persists up to room temperature after a 950 C 1 min anneal. The high concentration of optically active Er atoms is illustrated by the lack of saturation of the photoluminescence at high pumping excitation intensity. Erbium was also implanted into cubic silicon carbide films prepared by chemical vapor deposition on Si at 900 C. Both solid phase epitaxy (SPE) and IBIEC were performed. After a 950 C anneal, the low temperature photoluminescence at 1.54 {micro}m after IBIEC was five times higher in SiC than in silicon. The difference in photoluminescence linewidth between IBIEC (broad lines) and SPE (sharp lines) is explained in terms of interactions between optically active erbium atoms.

  15. Graphene films grown on sapphire substrates via solid source molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Tang Jun; Kang Chao-Yang; Li Li-Min; Liu Zhong-Liang; Yan Wen-Sheng; Wei Shi-Qiang; Xu Peng-Shou

    2012-01-01

    A method for growing graphene on a sapphire substrate by depositing an SiC buffer layer and then annealing at high temperature in solid source molecular beam epitaxy(SSMBE)equipment was presented.The structural and electronic properties of the samples were characterized by reflection high energy diffraction(RHEED),X-ray diffractionφ scans,Raman spectroscopy,and near edge X-ray absorption fine structure(NEXAFS)spectroscopy.The results of the RHEED and φ scan,as well as the Raman spectra,showed that an epitaxial hexagonal α-SiC layer was grown on the sapphire substrate.The results of the Raman and NEXAFS spectra revealed that the graphene films with the AB Bernal stacking structure were formed on the sapphire substrate after annealing.The layer number of the graphene was between four and five,and the thickness of the unreacted SiC layer was about 1-1.5 mm.

  16. Method for rapid, controllable growth and thickness, of epitaxial silicon films

    Science.gov (United States)

    Wang, Qi; Stradins, Paul; Teplin, Charles; Branz, Howard M.

    2009-10-13

    A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

  17. Improving surface smoothness and photoluminescence of CdTe(1 1 1)A on Si(1 1 1) substrates grown by molecular beam epitaxy using Mn atoms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jyh-Shyang, E-mail: jswang@cycu.edu.tw [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Tsai, Yu-Hsuan; Chen, Chang-Wei; Dai, Zi-Yuan; Tong, Shih-Chang [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Chu-Shou [Graduate Institute of Electro-Optical Engineering, Tatung University, Taipei 10452, Taiwan (China); Wu, Chih-Hung [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Yuan, Chi-Tsu; Shen, Ji-Lin [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China)

    2014-04-01

    Highlights: • CdTe(1 1 1)A epilayers were grown on Si(1 1 1) substrates by molecular beam epitaxy. • We report an enhanced growth using Mn atoms. • The significant improvements in surface quality and optical properties were found. - Abstract: This work demonstrates an improvement of the molecular beam epitaxial growth of CdTe(1 1 1)A epilayer on Si(1 1 1) substrates using Mn atoms. The reflection high-energy electron diffraction patterns show that the involvement of some Mn atoms in the growth of CdTe(1 1 1)A is even more effective than the use of a buffer layer with a smooth surface for forming good CdTe(1 1 1)A epilayers. 10 K Photoluminescence spectra show that the incorporation of only 2% Mn significantly reduced the intensity of defect-related emissions and considerably increased the integral intensity of exciton-related emissions by a large factor of about 400.

  18. Growth and characterization of AlGaN/GaN/AlGaN double-heterojunction high-electron-mobility transistors on 100-mm Si(111) using ammonia-molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Ravikiran, L.; Radhakrishnan, K., E-mail: ERADHA@ntu.edu.sg; Yiding, Lin; Ng, G. I. [NOVITAS-Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Dharmarasu, N.; Agrawal, M.; Arulkumaran, S.; Vicknesh, S. [Temasek Laboratories@NTU, Nanyang Technological University, Singapore 637553 (Singapore)

    2015-01-14

    To improve the confinement of two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistor (HEMT) heterostructures, AlGaN/GaN/AlGaN double heterojunction HEMT (DH-HEMT) heterostructures were grown using ammonia-MBE on 100-mm Si substrate. Prior to the growth, single heterojunction HEMT (SH-HEMT) and DH-HEMT heterostructures were simulated using Poisson-Schrödinger equations. From simulations, an AlGaN buffer with “Al” mole fraction of 10% in the DH-HEMT was identified to result in both higher 2DEG concentration (∼10{sup 13 }cm{sup −2}) and improved 2DEG confinement in the channel. Hence, this composition was considered for the growth of the buffer in the DH-HEMT heterostructure. Hall measurements showed a room temperature 2DEG mobility of 1510 cm{sup 2}/V.s and a sheet carrier concentration (n{sub s}) of 0.97 × 10{sup 13 }cm{sup −2} for the DH-HEMT structure, while they are 1310 cm{sup 2}/V.s and 1.09 × 10{sup 13 }cm{sup −2}, respectively, for the SH-HEMT. Capacitance-voltage measurements confirmed the improvement in the confinement of 2DEG in the DH-HEMT heterostructure, which helped in the enhancement of its room temperature mobility. DH-HEMT showed 3 times higher buffer break-down voltage compared to SH-HEMT, while both devices showed almost similar drain current density. Small signal RF measurements on the DH-HEMT showed a unity current-gain cut-off frequency (f{sub T}) and maximum oscillation frequency (f{sub max}) of 22 and 25 GHz, respectively. Thus, overall, DH-HEMT heterostructure was found to be advantageous due to its higher buffer break-down voltages compared to SH-HEMT heterostructure.

  19. Emittance growth from electron beam modulation

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  20. Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Federico Baiutti

    2014-05-01

    Full Text Available In this paper we present the atomic-layer-by-layer oxide molecular beam epitaxy (ALL-oxide MBE which has been recently installed in the Max-Planck Institute for Solid State Research and we report on its present status, providing some examples that demonstrate its successful application in the synthesis of different layered oxides, with particular reference to superconducting La2CuO4 and insulator-to-metal La2−xSrxNiO4. We briefly review the ALL-oxide MBE technique and its unique capabilities in the deposition of atomically smooth single-crystal thin films of various complex oxides, artificial compounds and heterostructures, introducing our goal of pursuing a deep investigation of such systems with particular emphasis on structural defects, with the aim of tailoring their functional properties by precise defects control.

  1. Thermal stability of CdZnO thin films grown by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    CdZnO thin films with near-band-edge (NBE) photoluminescence (PL) emission from 2.39 eV to 2.74 eV were grown by plasma-assisted molecular-beam epitaxy on c-plane sapphire substrates with 800 deg. C in situ annealing. CdZnO thin films evolve from pure wurtzite (wz) structure, to mixture of wz and rock-salt (rs) structures confirmed by X-ray diffraction studies. Rapid-thermo-annealing (RTA) was performed on in situ annealed CdZnO samples. Pure wz CdZnO shows insignificant NBE PL peak shift after RTA, while mixture structure CdZnO shows evident blue shifts due to phase change after annealing, indicating the rs phase CdZnO changes to wz phase CdZnO during RTA process.

  2. Fe-doped InN layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Iron(Fe)-doped InN (InN:Fe) layers have been grown by molecular beam epitaxy. It is found that Fe-doping leads to drastic increase of residual electron concentration, which is different from the semi-insulating property of Fe-doped GaN. However, this heavy n-type doping cannot be fully explained by doped Fe-concentration ([Fe]). Further analysis shows that more unintentionally doped impurities such as hydrogen and oxygen are incorporated with increasing [Fe] and the surface is degraded with high density pits, which probably are the main reasons for electron generation and mobility reduction. Photoluminescence of InN is gradually quenched by Fe-doping. This work shows that Fe-doping is one of good choices to control electron density in InN.

  3. Deep levels in Ga-doped ZnSe grown by molecular-beam epitaxy

    Science.gov (United States)

    Venkatesan, S.; Pierret, R. F.; Qiu, J.; Kobayashi, M.; Gunshor, R. L.; Kolodziejski, L. A.

    1989-10-01

    Results of a deep-level transient spectroscopy study of Ga-doped ZnSe thin films grown by molecular-beam epitaxy are presented. Two prominent deep levels were observed in all the samples investigated. The concentration of the trap detected at 0.34 eV below the conduction-band edge was essentially independent of the doping concentration and is attributed to native defects arising from Se vacancies in the ZnSe films. The second level with an activation energy of 0.26 eV shows a very strong doping dependence and is tentatively identified as arising from dopant-site (gallium-on-zinc-site) defects complexed with selenium vacancies. Preliminary results also indicate that planar doping of ZnSe significantly reduces the concentration of the Ga-vacancy complex.

  4. Characterisation of multiple carrier transport in indium nitride grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Quantitative mobility spectrum analysis (QMSA) was performed on multiple magnetic field Hall effect measurements of indium nitride grown by molecular beam epitaxy. This enables two clearly distinct electron species to be identified, which are attributed to the bulk and a surface accumulation layer. In this material, single magnetic field data corresponds to neither electron species, as both contribute significantly to the total conduction. The bulk electron distribution has an extracted average Hall mobility of 3570 cm2/(Vs) at 300 K with a concentration of 1.5 x 1017 cm-3, while the surface electrons have sheet charge density that is an order of magnitude higher than previously reported surface concentrations. The high quality bulk characteristics revealed emphasise the importance of using multi-carrier analysis when performing transport measurements on InN. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  5. Molecular-Beam Epitaxially Grown MgB2 Thin Films and Superconducting Tunnel Junctions

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Laloë

    2011-01-01

    Full Text Available Since the discovery of its superconducting properties in 2001, magnesium diboride has generated terrific scientific and engineering research interest around the world. With a of 39 K and two superconducting gaps, MgB2 has great promise from the fundamental point of view, as well as immediate applications. Several techniques for thin film deposition and heterojunction formation have been established, each with its own advantages and drawbacks. Here, we will present a brief overview of research based on MgB2 thin films grown by molecular beam epitaxy coevaporation of Mg and B. The films are smooth and highly crystalline, and the technique allows for virtually any heterostructure to be formed, including all-MgB2 tunnel junctions. Such devices have been characterized, with both quasiparticle and Josephson tunneling reported. MgB2 remains a material of great potential for a multitude of further characterization and exploration research projects and applications.

  6. High quality YBCO superconductive thin films fabricated by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High quality YBa2Cu3O6+x (YBCO) superconductive thin films have been fabricated on the SrTiO3(100) substrate using laser molecular beam epitaxy (laser-MBE).The active oxygen source was used,which made the necessary ambient oxygen pressure be 2-3 orders lower than that in pulsed laser deposition (PLD).Tc0 is 85-87 K,and Jc~1.0×106 A/cm2.Atomic force microscopy (AFM) measurements show that no obvious particulates can be observed and the root mean square roughness is 7.8 nm.High stability DC superconducting quantum interference devices (DC-SQUID) was fabricated using this YBCO thin film.

  7. Investigation of Localized States in GaAsSb Epilayers Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Gao, Xian; Wei, Zhipeng; Zhao, Fenghuan; Yang, Yahui; Chen, Rui; Fang, Xuan; Tang, Jilong; Fang, Dan; Wang, Dengkui; Li, Ruixue; Ge, Xiaotian; Ma, Xiaohui; Wang, Xiaohua

    2016-01-01

    We report the carrier dynamics in GaAsSb ternary alloy grown by molecular beam epitaxy through comprehensive spectroscopic characterization over a wide temperature range. A detailed analysis of the experimental data reveals a complex carrier relaxation process involving both localized and delocalized states. At low temperature, the localized degree shows linear relationship with the increase of Sb component. The existence of localized states is also confirmed by the temperature dependence of peak position and band width of the emission. At temperature higher than 60 K, emissions related to localized states are quenched while the band to band transition dominates the whole spectrum. This study indicates that the localized states are related to the Sb component in the GaAsSb alloy, while it leads to the poor crystal quality of the material, and the application of GaAsSb alloy would be limited by this deterioration. PMID:27381641

  8. Epitaxial growth of Ge-Sb-Te based phase change materials

    International Nuclear Information System (INIS)

    Ge-Sb-Te based phase change materials are considered as a prime candidate for optical and electrical data storage applications. With the application of an optical or electrical pulse, they can be reversibly switched between amorphous and crystalline state, thereby exhibiting large optical and electrical contrast between the two phases, which are then stored as information in the form of binary digits. Single crystalline growth is interesting from both the academic and industrial perspective, as ordered Ge-Sb-Te based metamaterials are known to exhibit switching at reduced energies. The present study deals with the epitaxial growth and analysis of Ge-Sb-Te based thin films. The first part of the thesis deals with the epitaxial growth of GeTe. Thin films of GeTe were grown on highly mismatched Si(111) and (001) substrates. On both the substrate orientations the film grows along [111] direction with an amorphous-to-crystalline transition observed during the initial stages of growth. The amorphous-to-crystalline transition was studied in-vivo using azimuthal reflection high-energy electron diffraction scans and grazing incidence X-ray diffraction. In the second part of the thesis epitaxy and characterization of Sb2Te3 thin films are presented. The third part of the thesis deals with the epitaxy of ternary Ge-Sb-Te alloys. The composition of the films are shown to be highly dependent on growth temperatures and vary along the pseudobinary line from Sb2Te3 to GeTe with increase in growth temperatures. A line-of-sight quadrupole mass spectrometer was used to reliably control the GeSbTe growth temperature. Growth was performed at different Ge, Sb, Te fluxes to study the compositional variation of the films. Incommensurate peaks are observed along the [111] direction by X-ray diffraction. The possibility of superstructural vacancy ordering along the [111] direction is discussed.

  9. Epitaxial growth of Ge-Sb-Te based phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Perumal, Karthick

    2013-07-30

    Ge-Sb-Te based phase change materials are considered as a prime candidate for optical and electrical data storage applications. With the application of an optical or electrical pulse, they can be reversibly switched between amorphous and crystalline state, thereby exhibiting large optical and electrical contrast between the two phases, which are then stored as information in the form of binary digits. Single crystalline growth is interesting from both the academic and industrial perspective, as ordered Ge-Sb-Te based metamaterials are known to exhibit switching at reduced energies. The present study deals with the epitaxial growth and analysis of Ge-Sb-Te based thin films. The first part of the thesis deals with the epitaxial growth of GeTe. Thin films of GeTe were grown on highly mismatched Si(111) and (001) substrates. On both the substrate orientations the film grows along [111] direction with an amorphous-to-crystalline transition observed during the initial stages of growth. The amorphous-to-crystalline transition was studied in-vivo using azimuthal reflection high-energy electron diffraction scans and grazing incidence X-ray diffraction. In the second part of the thesis epitaxy and characterization of Sb{sub 2}Te{sub 3} thin films are presented. The third part of the thesis deals with the epitaxy of ternary Ge-Sb-Te alloys. The composition of the films are shown to be highly dependent on growth temperatures and vary along the pseudobinary line from Sb{sub 2}Te{sub 3} to GeTe with increase in growth temperatures. A line-of-sight quadrupole mass spectrometer was used to reliably control the GeSbTe growth temperature. Growth was performed at different Ge, Sb, Te fluxes to study the compositional variation of the films. Incommensurate peaks are observed along the [111] direction by X-ray diffraction. The possibility of superstructural vacancy ordering along the [111] direction is discussed.

  10. Ultrafast carrier dynamics and the role of grain boundaries in polycrystalline silicon thin films grown by molecular beam epitaxy

    Science.gov (United States)

    Titova, Lyubov V.; Cocker, Tyler L.; Xu, Sijia; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Hegmann, Frank A.

    2016-10-01

    We have used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 °C to 572 °C. By controlling the growth temperature, thin silicon films ranging from completely amorphous to polycrystalline with minimal amorphous phase can be achieved. Film morphology, in turn, determines its photoconductive properties: in the amorphous phase, carriers are trapped in bandtail states on sub-picosecond time scales, while the carriers excited in crystalline grains remain free for tens of picoseconds. We also find that in polycrystalline silicon the photoexcited carrier mobility is carrier-density-dependent, with higher carrier densities mitigating the effects of grain boundaries on inter-grain transport. In a film grown at the highest temperature of 572 °C, the morphology changes along the growth direction from polycrystalline with needles of single crystals in the bulk of the film to small crystallites interspersed with amorphous silicon at the top of the film. Depth profiling using different excitation wavelengths shows corresponding differences in the photoconductivity: the photoexcited carrier lifetime and mobility are higher in the first 100-150 nm from the substrate, suggesting that thinner, low-temperature grown polycrystalline silicon films are preferable for photovoltaic applications.

  11. InN nanorods prepared with CrN nanoislands by plasma-assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Young Sheng-Joue

    2011-01-01

    Full Text Available Abstract The authors report the influence of CrN nanoisland inserted on growth of baseball-bat InN nanorods by plasma-assisted molecular beam epitaxy under In-rich conditions. By inserting CrN nanoislands between AlN nucleation layer and the Si (111 substrate, it was found that we could reduce strain form Si by inserting CrN nanoisland, FWHM of the x-ray rocking curve measured from InN nanorods from 3,299 reduced to 2,115 arcsec. It is due to the larger strain from lattice miss-match of the film-like InN structure; however, the strain from lattice miss-match was obvious reduced owing to CrN nanoisland inserted. The TEM images confirmed the CrN structures and In droplets dissociation from InN, by these results, we can speculate the growth mechanism of baseball-bat-like InN nanorods.

  12. Abnormal optical behaviour of InAsSb quantum dots grown on GaAs substrate by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rihani, J. [Laboratoire de Photovoltaique et de Semiconducteurs, Centre de Recherche des Sciences et Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)], E-mail: rihani_jaouher@yahoo.fr; Ben Sedrine, N. [Laboratoire de Photovoltaique et de Semiconducteurs, Centre de Recherche des Sciences et Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia); Sallet, V.; Harmand, J.C. [Laboratoire de Photonique et de Nanostructures, CNRS Route de Nozay 91 460 Marcoussis (France); Oueslati, M. [Unite nanoelectronique Faculte des Sciences de Tunis, Campus Universitaire, Elmanar 2092 Tunis (Tunisia); Chtourou, R. [Laboratoire de Photovoltaique et de Semiconducteurs, Centre de Recherche des Sciences et Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)

    2008-07-01

    InAs(Sb) quantum dots (QDs) samples were grown on GaAs (001) substrate by Molecular Beam Epitaxy (MBE). The structural characterization by Atomic Force Microscopy (AFM) of samples shows that InAsSb islands size increases strongly with antimony incorporation in InAs/GaAs QDs and decreases with reducing the growth temperature from 520 deg. C to 490 deg. C. Abnormal optical behaviour was observed in room temperature (RT) photoluminescence (PL) spectra of samples grown at high temperature (520 deg. C). Temperature dependent PL study was investigated and reveals an anomalous evolution of emission peak energy (EPE) of InAsSb islands, well-known as 'S-inverted curve' and attributed to the release of confined carriers from the InAsSb QDs ground states to the InAsSb wetting layer (WL) states. With only decreasing the growth temperature, the S-inverted shape was suppressed indicating a fulfilled 3D-confinement of carriers in the InAsSb/GaAs QD sample.

  13. Growth mechanisms for Si epitaxy on O atomic layers: Impact of O-content and surface structure

    Science.gov (United States)

    Jayachandran, Suseendran; Billen, Arne; Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Moussa, Alain; Caymax, Matty; Bender, Hugo; Vandervorst, Wilfried; Heyns, Marc; Delabie, Annelies

    2016-10-01

    The epitaxial growth of Si layers on Si substrates in the presence of O atoms is generally considered a challenge, as O atoms degrade the epitaxial quality by generating defects. Here, we investigate the growth mechanisms for Si epitaxy on O atomic layers (ALs) with different O-contents and structures. O ALs are deposited by ozone (O3) or oxygen (O2) exposure on H-terminated Si at 50 °C and 300 °C respectively. Epitaxial Si is deposited by chemical vapor deposition using silane (SiH4) at 500 °C. After O3 exposure, the O atoms are uniformly distributed in Si-Si dimer/back bonds. This O layer still allows epitaxial seeding of Si. The epitaxial quality is enhanced by lowering the surface distortions due to O atoms and by decreasing the arrival rate of SiH4 reactants, allowing more time for surface diffusion. After O2 exposure, the O atoms are present in the form of SiOx clusters. Regions of hydrogen-terminated Si remain present between the SiOx clusters. The epitaxial seeding of Si in these structures is realized on H-Si regions, and an epitaxial layer grows by a lateral overgrowth mechanism. A breakdown in the epitaxial ordering occurs at a critical Si thickness, presumably by accumulation of surface roughness.

  14. Silicon thin film growth by low temperature liquid phase epitaxy for photovoltaic applications

    International Nuclear Information System (INIS)

    In this thesis is presented an economic, clean and innovating way to carry out silicon substrate in thin layer for photovoltaic applications. It is based on layer growth by low temperature liquid phase epitaxy on silicon substrates embrittled by ion implantation. The aim of this work is to find experimental conditions to decrease the epitaxy temperature (≤800 C instead of 1050 C) while conserving a relatively high growth velocity. An innovating method has been implemented; it consists to use two different baths: the first one Al-Sn-Si allows to de-oxidize the silicon substrate surface without using hydrogen and the second one containing Sn-Si allows the growth of a thick layer of silicon. Uniform layers of a thickness of 15μm have been obtained after three hours of growth. Thermodynamic studies exploiting the phase diagrams of ternary or quaternary mixtures have been carried out to reach high growth velocity. Tin and copper based alloys have been chosen, tin for lowering the temperature and copper for increasing the silicon solubility. Layers of 30 μm have been obtained after two hours of growth. It has been shown too that this epitaxy step could be compatible with the technology of ion implantation embrittlement. (O.M.)

  15. Molecular beam epitaxy and characterization of thin Bi2Se3 films on Al2O3 (110)

    Science.gov (United States)

    Tabor, Phillip; Keenan, Cameron; Urazhdin, Sergei; Lederman, David

    2011-07-01

    The structural and electronic properties of thin Bi2Se3 films grown on Al2O3 (110) by molecular beam epitaxy are investigated. The epitaxial films grow in the Frank-van der Merwe mode and are c-axis oriented. They exhibit the highest crystallinity, the lowest carrier concentration, and optimal stoichiometry at a substrate temperature of 200 °C determined by the balance between surface kinetics and desorption of Se. The crystallinity of the films improves with increasing Se/Bi flux ratio. Our results enable studies of thin topological insulator films on inert, non-conducting substrates that allow optical access to both film surfaces.

  16. Thick orientation-patterned growth of GaP on wafer-fused GaAs templates by hydride vapor phase epitaxy for frequency conversion

    Science.gov (United States)

    Vangala, Shivashankar; Kimani, Martin; Peterson, Rita; Stites, Ron; Snure, Michael; Tassev, Vladimir

    2016-10-01

    Quasi-phase-matched (QPM) GaP layers up to 300 μm thick have been produced by low-pressure hydride vapor phase epitaxy (LP-HVPE) overgrowth on orientation-patterned GaAs (OPGaAs) templates fabricated using a wafer-fusion bonding technique. The growth on the OPGaAs templates resulted in up to 200 μm thick vertically propagating domains, with a total GaP thickness of 300 μm. The successful thick growth on OPGaAs templates is the first step towards solving the material problems associated with unreliable material quality of commercially available GaP wafers and making the whole process of designing QPM frequency conversion devices molecular beam epitaxy free and more cost-effective.

  17. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate

    International Nuclear Information System (INIS)

    We investigated the molecular beam epitaxy growth of three-dimensional (3D) Ge quantum dot crystals (QDCs) on periodically pit-patterned Si substrates. A series of factors influencing the growth of QDCs were investigated in detail and the optimized growth conditions were found. The growth of the Si buffer layer and the first quantum dot (QD) layer play a key role in the growth of QDCs. The pit facet inclination angle decreased with increasing buffer layer thickness, and its optimized value was found to be around 21°, ensuring that all the QDs in the first layer nucleate within the pits. A large Ge deposition amount in the first QD layer favors strain build-up by QDs, size uniformity of QDs and hence periodicity of the strain distribution; a thin Si spacer layer favors strain correlation along the growth direction; both effects contribute to the vertical ordering of the QDCs. Results obtained by atomic force microscopy and cross-sectional transmission electron microscopy showed that 3D ordering was achieved in the Ge QDCs with the highest ever areal dot density of 1.2 × 1010 cm−2, and that the lateral and the vertical interdot spacing were ∼10 and ∼2.5 nm, respectively. (paper)

  18. Epitaxial growth of III-V nitrides and phase separation and ordering in indium gallium nitride alloys

    Science.gov (United States)

    Doppalapudi, Dharanipal

    The family of III-V nitrides are wide band-gap semiconductors with a broad range of opto-electronic applications in LEDs, laser diodes, UV detectors as well as high temperature/high frequency devices. Due to the lack of good quality native substrates, GaN is grown on foreign substrates that have a lattice and thermal mismatch with GaN. This results in a material with a high density of defects, which in turn adversely affects the opto-electronic properties of the epilayer. In this study, GaN films were epitaxially grown on various substrates (C-plane sapphire, A-plane sapphire, SiC and ZnO) by molecular beam epitaxy. Additionally, GaN homoepitaxy onto laterally overgrown thick GaN substrates was investigated. It was demonstrated that the polarity of the GaN film plays a major role in determining the properties of the films. The growth parameters were optimized to eliminate inversion domain boundaries, which result in domains of opposite polarity in the GaN lattice. For growth on A-plane sapphire, it was found that substrate nitridation and low temperature buffer deposition are critical in order to obtain good epitaxial growth, in spite of the relatively small mismatch between the film and substrate. A crystallographic model was developed to explain this observation. By optimizing growth parameters, GaN films with excellent structural, transport, optical and device properties were grown. The second part of this research involves growth of ternary alloys and superlattice structures, which are essential in the fabrication of many devices. It was found that the InN-GaN pseudo-binary system is not homogeneous over the entire composition range. Due to the mismatch between the tetrahedral radii of GaN and InN, InGaN alloys exhibited phase separation and long-range atomic ordering. Investigations of InxGa1-xN films grown over a wide range of compositions by XRD and TEM showed that the predominant strain relieving mechanism was phase separation in films with x > 0.2, and

  19. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy

    Science.gov (United States)

    Treu, J.; Speckbacher, M.; Saller, K.; Morkötter, S.; Döblinger, M.; Xu, X.; Riedl, H.; Abstreiter, G.; Finley, J. J.; Koblmüller, G.

    2016-02-01

    We delineate the optimized growth parameter space for high-uniformity catalyst-free InGaAs nanowire (NW) arrays on Si over nearly the entire alloy compositional range using selective area molecular beam epitaxy. Under the required high group-V fluxes and V/III ratios, the respective growth windows shift to higher growth temperatures as the Ga-content x(Ga) is tuned from In-rich to Ga-rich InGaAs NWs. Using correlated x-ray diffraction, transmission electron microscopy, and micro-photoluminescence spectroscopy, we identify structural defects to govern luminescence linewidths in In-rich (x(Ga) 0.6) NWs, whereas limitations at intermediate Ga-content (0.4 blue-shifted to red-shifted photoluminescence emission relative to the band edge emission of the bulk ZB InGaAs phase.

  20. Structure of CdTe-Cd1 - xMnxTe multiple quantum wells grown on (001) InSb substrates by molecular beam epitaxy

    Science.gov (United States)

    Williams, G. M.; Cullis, A. G.; Whitehouse, C. R.; Ashenford, D. E.; Lunn, B.

    1989-09-01

    Molecular beam epitaxy has been used to prepare multiple quantum well structures of CdTe/Cd1-xMnxTe on (001) InSb substrates. The growth of such a system on InSb allows the use of particularly low growth temperatures, hence minimizing interdiffusion effects. This study presents the first transmission electron microscope investigation of this multilayer system grown on InSb. The work clearly demonstrates that multiple quantum wells of high structural quality can be grown reproducibly over a wide range of layer thicknesses. The importance of efficient substrate surface cleaning prior to growth is demonstrated. In order to grow high structural quality multilayers, the choice of buffer layer is also important and a possible explanation for this observation is given.

  1. High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2

    Science.gov (United States)

    Diaz, Horacio Coy; Ma, Yujing; Chaghi, Redhouane; Batzill, Matthias

    2016-05-01

    Growth of transition metal dichalcogenide heterostructures by molecular beam epitaxy (MBE) promises synthesis of artificial van der Waals materials with controllable layer compositions and separations. Here, we show that MBE growth of 2H-MoTe2 monolayers on MoS2 substrates results in a high density of mirror-twins within the films. The grain boundaries are tellurium deficient, suggesting that Te-deficiency during growth causes their formation. Scanning tunneling microscopy and spectroscopy reveal that the grain boundaries arrange in a pseudo periodic "wagon wheel" pattern with only ˜2.6 nm repetition length. Defect states from these domain boundaries fill the band gap and thus give the monolayer an almost metallic property. The band gap states pin the Fermi-level in MoTe2 and thus determine the band-alignment in the MoTe2/MoS2 interface.

  2. Topography and structure of ultrathin topological insulator Sb2Te3 films on Si(111) grown by means of molecular beam epitaxy

    Science.gov (United States)

    Lanius, M.; Kampmeier, J.; Kölling, S.; Mussler, G.; Koenraad, P. M.; Grützmacher, D.

    2016-11-01

    We have studied the growth process of the topological insulator (TI) Sb2 Te3 on Si(111) by scanning tunneling microscopy. High quality thin films from more than 22 nm down to 1 nm in thickness have been deposited by molecular beam epitaxy. To determine the thickness and domain formation of the films, x-ray reflectivity and x-ray diffraction were utilized. In comparison to previous studies of the TI Bi2 Te3 , the growth mechanism of Sb2 Te3 shows a similar transition from nucleation and growth in Sb-Te and Te-Te bilayers, respectively, to mound formation for thicker films. Atom probe tomography measurements reveal a intermixed interface between Sb2 Te3 and Si(111) substrate. These findings can explain the high density of defects and domains.

  3. Growth of epitaxial {gamma}-Al{sub 2}O{sub 3} films on rigid single-crystal ceramic substrates and flexible, single-crystal-like metallic substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Junsoo, E-mail: jshin@ornl.go [Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Goyal, Amit [Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wee, Sung-Hun [Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2009-08-03

    Epitaxial {gamma}-Al{sub 2}O{sub 3} thin films were grown on diverse substrates using pulsed laser deposition. The high quality of epitaxial growth and cubic structure of {gamma}-Al{sub 2}O{sub 3} films was confirmed by X-ray diffraction. SrTiO{sub 3} and MgO single crystal substrates were used to optimize the growth conditions for epitaxial {gamma}-Al{sub 2}O{sub 3} film. Under the optimized conditions, epitaxial {gamma}-Al{sub 2}O{sub 3} thin films were grown on flexible, single-crystal-like, metallic templates. These included untextured Hastelloy substrates with a biaxially textured MgO layer deposited using ion-beam-assisted-deposition and biaxially textured Ni-W metallic tapes with epitaxially grown and a biaxially textured, MgO buffer layer. These biaxially textured, {gamma}-Al{sub 2}O{sub 3} films on flexible, single-crystal-like substrates are promising for subsequent epitaxial growth of various complex oxide films used for electrical, magnetic and electronic device applications.

  4. Evidence for Germanene growth on epitaxial hexagonal (h)-AlN on Ag(1 1 1)

    Science.gov (United States)

    d'Acapito, F.; Torrengo, S.; Xenogiannopoulou, E.; Tsipas, P.; Marquez Velasco, J.; Tsoutsou, D.; Dimoulas, A.

    2016-02-01

    In this work, a structural analysis of Ge layers deposited by molecular beam epitaxy (MBE) on Ag(1 1 1) surfaces with and without an AlN buffer layer have been investigated by x-ray Absorption Spectroscopy (XAS) at the Ge-K edge. For the Ge layers deposited on h-AlN buffer layer on Ag(1 1 1) an interatomic Ge-Ge distance {{R}\\text{Ge-\\text{Ge}}}=2.38 Å is found, typical of 2-Dimensional Ge layers and in agreement with the theoretical predictions for free standing low-buckled Germanene presented in literature. First principles calculations, performed in the density functional theory (DFT) framework, supported the experimental RHEED and XAS findings, providing evidence for the epitaxial 2-D Ge layer formation on h-AlN/Ag(1 1 1) template.

  5. Highly Crystalline Films of Organic Small Molecules with Alkyl Chains Fabricated by Weak Epitaxy Growth.

    Science.gov (United States)

    Zhu, Yangjie; Chen, Weiping; Wang, Tong; Wang, Haibo; Wang, Yue; Yan, Donghang

    2016-05-12

    Because side-chain engineering of organic conjugated molecules has been widely utilized to tune organic solid-state optoelectronic properties, the achievement of their high-quality films is important for realizing high-performance devices. Here, highly crystalline films of an organic molecule with short alkyl chains, 5,8,15,18-tetrabutyl-5,8,15,18-tetrahydroindolo[3,2-a]indole[30,20:5,6]quinacridone (C4-IDQA), are fabricated by weak epitaxy growth, and highly oriented, large-area, and continuous films are obtained. Because of the soft matter properties, the C4-IDQA molecules can adjust themselves to realize commensurate epitaxy growth on the inducing layers and exhibited good lattice matching in the thin film phase. The crystalline phase is also observed in thicker C4-IDQA films. The growth behavior of C4-IDQA on the inducing layer is further investigated, including the strong dependence of film morphologies on substrate temperatures and deposition rates due to the poor diffusion ability of C4-IDQA molecules. Moreover, highly crystalline films and high electron field-effect mobility are also obtained for the small molecule N,N'-dioctyl-3,4:9,10-perylene tetracarboxylic diimide (C8-PTCDI), which demonstrate that the weak epitaxy growth method could be an effective way to fabricate highly crystalline films of organic small molecules with flexible side chains. PMID:27116036

  6. Epitaxial growth of in-plane-dimerized, single phase NbO2 thin films for metal-insulator transition applications

    Science.gov (United States)

    Posadas, Agham; Hadamek, Tobias; O'Hara, Andy; Demkov, Alexander

    2015-03-01

    NbO2 is a exhibits a metal-insulator transition that may have potential applications in electronic devices. The strong conductivity change in NbO2 occurs along the dimerization direction and for devices utilizing NbO2 as a channel material (in-plane transport) such as transistors, one would like the dimerization direction to be in the plane of the film. The electrical properties of Nb oxides are strongly dependent on the oxidation state of Nb. It is therefore critical to be able to control the oxidation state of Nb during growth. Here, we describe the epitaxial growth of in-plane-dimerized NbO2 using molecular beam epitaxy on a variety of substrates (STO, LSAT, MgO, BTO and GaN), growth temperatures, and oxygen-to-niobium flux ratios. We show that the particular substrate used significantly affects the bulk and surface crystallinity, as well as the degree of oxidation. We also show the evolution of the valence and core level photoemission spectra of Nb oxides as a function of oxygen-to-niobium flux ratio and point out the optimum growth conditions to achieve phase-pure, epitaxial NbO2 films.

  7. Formation of extended defects in 4H-SiC epitaxial growth and development of a fast growth technique

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchida, Hidekazu; Ito, Masahiko; Kamata, Isaho; Nagano, Masahiro [Central Research Institute of Electric Power Industry (CRIEPI), Nagasaka, Yokosuka, Kanagawa (Japan)

    2009-07-15

    This paper surveys extended defects in 4H-SiC epilayers and reports recent results concerning fast epitaxial growth. Synchrotron X-ray topography, transmission electron microscopy, Nomarski optical microscopy and defect selective etching analysis are applied to investigate the nucleation and propagation of carrot defects, basal plane Frank-type defects, polytype inclusions and basal plane dislocations (BPDs) in 4H-SiC epitaxial growth. In the development of the 4H-SiC fast epitaxial growth technique, a very high growth rate of up to 250{mu}m/h is obtained in a newly developed vertical hot-wall-type reactor under low system pressure using a H{sub 2}+SiH{sub 4}+C{sub 3}H{sub 8} system. Good thickness and impurity doping uniformity are also obtained simultaneously over a large area, with the retention of a high growth rate. A 4H-SiC epilayer virtually free from BPDs is obtained on a 4 off Si-face substrate. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huijun; Hou, Zhonghuai, E-mail: hzhlj@ustc.edu.cn [Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-08-28

    Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be C{sub 1}-attachment for concave growth-front segments and C{sub 5}-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.

  9. A Minimal Model for Large-scale Epitaxial Growth Kinetics of Graphene

    CERN Document Server

    Jiang, Huijun

    2015-01-01

    Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be $C_{1}$-attachment for concave growth front segments and $C_{5}$-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.

  10. High-Resistivity Semi-insulating AlSb on GaAs Substrates Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Vaughan, E. I.; Addamane, S.; Shima, D. M.; Balakrishnan, G.; Hecht, A. A.

    2016-04-01

    Thin-film structures containing AlSb were grown using solid-source molecular beam epitaxy and characterized for material quality, carrier transport optimization, and room-temperature radiation detection response. Few surface defects were observed, including screw dislocations resulting from shear strain between lattice-mismatched layers. Strain was also indicated by broadening of the AlSb peak in x-ray diffraction measurements. Threading dislocations and interfacial misfit dislocations were seen with transmission electron microscopy imaging. Doping of the AlSb layer was introduced during growth using GaTe and Be to determine the effect on Hall transport properties. Hall mobility and resistivity were largest for undoped AlSb samples, at 3000 cm2/V s and 106 Ω cm, respectively, and increased doping levels progressively degraded these values. To test for radiation response, p-type/intrinsic/ n-type (PIN) diode structures were grown using undoped AlSb on n-GaAs substrates, with p-GaSb cap layers to protect the AlSb from oxidation. Alpha-particle radiation detection was achieved and spectra were produced for 241Am, 252Cf, and 239Pu sources. Reducing the detector surface area increased the pulse height observed, as expected based on voltage-capacitance relationships for diodes.

  11. Characterization of GaNxAs1-x Alloy Grown on GaAs by Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    李联合; 张伟; 潘钟; 林耀望; 吴荣汉

    2000-01-01

    The GaNxAs1-x alloy has been investigated which is grown on GaAs (100) substrate by molecular beam epitaxy with a DC-plasma nitrogen source. The samples are characterized by high resolution X-ray diffraction (HRXRD) and low temperature photoluminescence (PL) measurements. Both HRXRD and PL measurements demonstrate that the crystalline and optical qualities of GaNxAs1-x alloy degrade rapidly with the increase of N composition. The nitrogen composition of 4.5 % can be obtained in GaNxAs1-x/GaAs quantum well by optimizing growth conditions,through which a photoluminescence peak of 1201nm is observed at a low temperature (10 K). The dependence of GaNxAs1-x band gap energy on the nitrogen composition in this investigation corresponds very well with that of the theoretical one based on the dielectric model when considering the effect of the strain. At the same time,we also demonstrate that the bowing parameter of GaNxAs1-x alloy is composition dependent.

  12. Antimony segregation in Ge and formation of n-type selectively doped Ge films in molecular beam epitaxy

    International Nuclear Information System (INIS)

    Antimony segregation in Ge(001) films grown by molecular beam epitaxy was studied. A quantitative dependence of the Sb segregation ratio in Ge on growth temperature was revealed experimentally and modeled theoretically taking into account both the terrace-mediated and step-edge-mediated segregation mechanisms. A nearly 5-orders-of-magnitude increase in the Sb segregation ratio in a relatively small temperature range of 180–350 °C was obtained, which allowed to form Ge:Sb doped layers with abrupt boundaries and high crystalline quality using the temperature switching method that was proposed earlier for Si-based structures. This technique was employed for fabrication of different kinds of n-type Ge structures which can be useful for practical applications like heavily doped n+-Ge films or δ-doped layers. Estimation of the doping profiles sharpness yielded the values of 2–5 nm per decade for the concentration gradient at the leading edge and 2–3 nm for the full-width-half-maximum of the Ge:Sb δ-layers. Electrical characterization of grown Ge:Sb structures revealed nearly full electrical activation of Sb atoms and the two-dimensional nature of charge carrier transport in δ-layers

  13. Molecular beam epitaxy of CdTe and HgCdTe on large-area Si(100)

    Science.gov (United States)

    Sporken, R.; Lange, M. D.; Faurie, Jean-Pierre

    1991-09-01

    The current status of molecular beam epitaxy (MBE) of CdTe and HgCdTe on Si(100) is reviewed. CdTe and HgCdTe grow in the (111)B orientation on Si(100); monocrystalline films with two domains are obtained on most nominal Si(100) substrates, single domain films are grown on misoriented substrates and on nominal Si(100) preheated to 900-950 degree(s)C. Double-crystal x-ray rocking curves (DCRCs) with full-width at half-maximum (FWHM) as low as 110 arcsec are reported for HgCdTe on silicon; these layers are n-type, and electron mobilities higher than 5 X 104 cm2V-2s-1 are measured at 23 K for x equals 0.26. Excellent thickness and composition uniformity is obtained: standard deviation of the CdTe thickness 0.4% of the average thickness on 2-in. and 2.3% on 5-in., standard deviation of the Cd concentration in the HgCdTe layers 0.6% of the average concentration on 3-in. and 2.4% on 5-in. First results regarding growth of CdTe on patterned Si substrates are also reported.

  14. Effects of AIN nucleation layer thickness on crystal quality of AIN grown by plasma-assisted molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Ren Fan; Hao Zhi-Biao; Hu Jian-Nan; Zhang Chen; Luo Yi

    2010-01-01

    In this paper,the effects of thickness of AIN nucleation layer grown at high temperature on AIN epi-layer crystalline quality are investigated.Crack-free AIN samples with various nucleation thicknesses are grown on sapphire substrates by plasma-assisted molecular beam epitaxy.The AIN crystalline quality is analysed by transmission electron microscope and x-ray diffraction(XRD)rocking curves in both(002)and(102)planes.The surface profiles of nucleation layer with different thicknesses after in-situ annealing are also analysed by atomic force microscope.A critical nucleation thickness for realising high quality AIN films is found.When the nucleation thickness is above a certain value,the(102)XRD full width at half maximum(FWHM)of AIN bulk increases with nucleation thickness increasing,whereas the(002)XRD FWHM shows an opposite trend.These phenomena can be attributed to the characteristics of nucleation islands and the evolution of crystal grains during AIN main layer growth.

  15. GaN layers with different polarities prepared by radio frequency molecular beam epitaxy and characterized by Raman scattering

    Institute of Scientific and Technical Information of China (English)

    Zhong Fei; Li Xin-Hua; Qiu Kai; Yin Zhi-Jun; Ji Chang-Jian; Cao Xian-Cun; Han Qi-Feng; Chen Jia-Rong; Wang Yu-Qi

    2007-01-01

    GaN layers with different polarities have been prepared by radio-frequency molecular beam epitaxy (RF-MBE) and characterized by Raman scattering. Polarity control are realized by controlling Al/N flux ratio during high temperature AlN buffer growth. The Raman results illustrate that the N-polarity GaN films have frequency shifts at A1(LO) mode because of their high carrier density; the forbidden A1 (TO) mode occurs for mixed-polarity GaN films due to the destroyed translation symmetry by inversion domain boundaries (IDBS); Raman spectra for Ga-polarity GaN films show that they have neither frequency shifts mode nor forbidden mode. These results indicate that Ga-polarity GaN films have a better quality, and they are in good agreement with the results obtained from the room temperature Hall mobility. The best values of Ga-polarity GaN films are 1042 cm2/Vs with a carrier density of 1.0×1017 cm-3.

  16. Optical properties and structural investigations of (11-22)-oriented GaN/Al{sub 0.5}Ga{sub 0.5}N quantum wells grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, Daniel; Gil, Bernard; Bretagnon, Thierry [CNRS, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France); Université de Montpellier, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France); Brault, Julien; Vennéguès, Philippe; Nemoz, Maud; Mierry, Philippe de; Damilano, Benjamin; Massies, Jean [CNRS Centre de Recherche sur l' Hétéro-Epitaxie et ses Applications, 06560 Valbonne (France); Bigenwald, Pierre [Institut Pascal, Campus des Cézeaux, 24 avenue des Landais, 63171 Aubière Cedex (France)

    2015-07-14

    We have grown (11-22)-oriented GaN/Al{sub 0.5}Ga{sub 0.5}N quantum wells (QWs) using molecular beam epitaxy on GaN (11-22)-oriented templates grown by metal-organic vapor phase epitaxy on m-plane oriented sapphire substrates. The performance of epitaxial growth of GaN/Al{sub 0.5}Ga{sub 0.5}N heterostructures on the semi-polar orientation (11-22) in terms of surface roughness and structural properties, i.e., strain relaxation mechanisms is discussed. In addition, high resolution transmission electron microscopy reveals very smooth QW interfaces. The photoluminescence of such samples are strictly originating from radiative recombination of free excitons for temperatures above 100 K. At high temperature, the population of localized excitons, moderately trapped (5 meV) at low temperature, is negligible.

  17. Epitaxial growth of atomically flat gadolinia-doped ceria thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Epitaxial growth of Ce0.8Gd0.2O2(CGO) films on (001) TiO2-terminated SrTiO3 substrates by pulsed laser deposition was investigated using in situ reflective high energy electron diffraction. The initial film growth shows a Stransky-Krastanov growth mode. However, this three-dimensional island formation is replaced by a two-dimensional island nucleation during further deposition, which results in atomically smooth CGO films. The obtained high-quality CGO films may be attractive for the electrolyte of solid-oxide fuel cells operating at low temperature. (orig.)

  18. Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth

    International Nuclear Information System (INIS)

    In the present contribution we review basic mathematical results for three physical systems involving self-organizing solid or liquid films at solid surfaces. The films may undergo a structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively. We highlight similarities and differences of the three systems based on the observation that in certain limits all of them may be described using models of similar form, i.e. time evolution equations for the film thickness profile. Those equations represent gradient dynamics characterized by mobility functions and an underlying energy functional. Two basic steps of mathematical analysis are used to compare the different systems. First, we discuss the linear stability of homogeneous steady states, i.e. flat films, and second the systematics of non-trivial steady states, i.e. drop/hole states for dewetting films and quantum-dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying solution structure might be very complex as in the case of epitaxial growth but can be better understood when comparing the much simpler results for the dewetting liquid film. We furthermore show that the numerical continuation techniques employed can shed some light on this structure in a more convenient way than time-stepping methods. Finally we discuss that the usage of the employed general formulation does not only relate seemingly unrelated physical systems mathematically, but does allow as well for discussing model extensions in a more unified way.

  19. Nanoporous films for epitaxial growth of single crystal semiconductor materials : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowen, Adam M.; Koleske, Daniel David; Fan, Hongyou; Brinker, C. Jeffrey; Burckel, David Bruce; Williams, John Dalton; Arrington, Christian L.; Steen, William Arthur

    2007-10-01

    This senior council Tier 1 LDRD was focused on exploring the use of porous growth masks as a method for defect reduction during heteroepitaxial crystal growth. Initially our goal was to investigate porous silica as a growth mask, however, we expanded the scope of the research to include several other porous growth masks on various size scales, including mesoporous carbon, photolithographically patterned SU-8 and carbonized SU-8 structures. Use of photolithographically defined growth templates represents a new direction, unique in the extensive literature of patterned epitaxial growth, and presents the possibility of providing a single step growth mask. Additional research included investigation of pore viability via electrochemical deposition into high aspect ratio photoresist. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

  20. Copper ion implanted aluminum nitride dilute magnetic semiconductors (DMS) prepared by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A., E-mail: attaullah77@yahoo.com [National Institute of Lasers and Optronics (NILOP), PO Nilore, Islamabad (Pakistan); DMME, Pakistan Institute of Engineering and Applied Science (PIEAS), PO Nilore, Islamabad (Pakistan); Ahmad, Jamil [DMME, Pakistan Institute of Engineering and Applied Science (PIEAS), PO Nilore, Islamabad (Pakistan); Ahmad, Ishaq [Experimental Physics Lab, National Center for Physics (NCP), Islamabad (Pakistan); Mehmood, Mazhar [DMME, Pakistan Institute of Engineering and Applied Science (PIEAS), PO Nilore, Islamabad (Pakistan); Mahmood, Arshad [National Institute of Lasers and Optronics (NILOP), PO Nilore, Islamabad (Pakistan); Rasheed, Muhammad Asim [DMME, Pakistan Institute of Engineering and Applied Science (PIEAS), PO Nilore, Islamabad (Pakistan)

    2014-10-30

    Highlights: • AlN:Cu dilute magnetic semiconductors were successfully prepared by molecular beam epitaxy followed by Cu{sup +} implantation. • Room temperature ferromagnetism was observed after annealing the samples at appropriate temperature. • XRD and Raman spectrometry excluded the possibility of formation of any secondary phases. • By doping intrinsically nonmagnetic dopants (Cu), it has been proved experimentally that their precipitates do not contribute to ferromagnetism. • The reason for ferromagnetism in Cu-doped AlN as observed was explained on the basis of p–d hybridization mechanism (Wu et al.). - Abstract: Diluted magnetic semiconductor (DMS) AlN:Cu films were fabricated by implanting Cu{sup +} ions into AlN thin films at various ion fluxes. AlN films were deposited on c-plane sapphire by molecular beam epitaxy followed by Cu{sup +} ion implantation. The structural and magnetic characterization of the samples was performed through Rutherford backscattering and channeling spectrometry (RBS/C), X-ray diffraction (XRD), Raman spectroscopy, vibrating sample magnetometer (VSM) and SQUID. Incorporation of copper into the AlN lattice was confirmed by RBS, while XRD revealed that no new phase was formed as a result of ion implantation. RBS also indicated formation of defects as a result of implantation process and the depth and degree of damage increased with an increase in ion fluence. Raman spectra showed only E{sub 2} (high) and A{sub 1} (LO) modes of wurtzite AlN crystal structure and confirmed that no secondary phases were formed. It was found that both Raman modes shift with Cu{sup +} fluences, indicating that Cu ion may go to interstitial or substitutional sites resulting in distortion or damage of lattice. Although as implanted samples showed no magnetization, annealing of the samples resulted in appearance of room temperature ferromagnetism. The saturation magnetization increased with both the annealing temperature as well as with ion

  1. A modified hot wall epitaxy technique for the growth of CdTe and Hg sub 1-x Cd sub x epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Rogalski, A.; Piotrowski, J. (Inst. of Technical Physics, WAT, Warsaw (Poland)); Gronkowski, J. (Inst. of Experimental Physics, Warsaw Univ. (Poland))

    1990-10-15

    A modified hot wall epitaxy technique has been used for the growth of high quality CdTe epilayers on GaAs substrates. X-ray topographic analysis indicates that these epilayers have device quality crystalline structures. The possibility of growth of Hg{sub 1-x}Cd{sub x}Te epilayers in this deposition system has been demonstrated for the first time. (orig.).

  2. Fabrication and characterization of silicon nanowires by means of molecular beam epitaxy; Herstellung und Charakterisierung von Silizium-Nanodraehten mittels Molekularstrahlepitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Luise

    2007-06-19

    In this work, basic processes of silicon whisker growth were examined. For the first time, Si nanowhiskers were produced under UHV conditions by Molecular Beam Epitaxy (MBE) and characterized by different analysis methods afterwards. The existence of Au/Si droplets on a Si(111) substrate surface is a precondition of this growth method. Analyses of the temporal development of the Au/Si droplets during the whisker growth show a decrease of the number of small droplets resp. whiskers during the whisker growth with increasing growth time. This behaviour, i.e. the dissolution of smaller droplets/whiskers and the growth of larger ones in parallel can be explained by Ostwald ripenning. The diffusion-determined material transition of gold, which occurs during this process, is theoretically described by the Lifshitz-Slyozov-Wagner (LSW)-Theory. After this theory only whiskers grow which radii are larger than the critical radius. The whisker radii are temperature dependend whereas analogous whisker radii exist for identical growth times. Electron microscopy analysis show that all whiskers possess a hexagonal but no cylindrical habitus. The planes that form during the growth are crystallographic (111) planes. The growth of Si nanowhiskers under MBE conditions is determined by the Vapour Liquid Solid (VLS) mechanism and by surface diffusion of Si atoms. (orig.)

  3. Epitaxial Growth of Permalloy Thin Films on MgO Single-Crystal Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru; Tanaka, Takahiro; Matsubara, Katsuki; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: ohtake@futamoto.elect.chuo-u.ac.jp [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2011-07-06

    Permalloy (Py: Ni - 20 at. % Fe) thin films were prepared on MgO single-crystal substrates of (100), (110), and (111) orientations by molecular beam epitaxy. Py crystals consisting of fcc(100) and hcp(112-bar 0) orientations epitaxially nucleate on MgO(100) substrates. With increasing the substrate temperature, the volume ratio of fcc(100) to hcp(112-bar 0) crystal increases. The metastable hcp(112-bar 0) structure transforms into more stable fcc(110) structure with increasing the film thickness. Py(110){sub fcc} single-crystal films are obtained on MgO(110) substrates, whereas Py films epitaxially grow on MgO(111) substrates with two types of fcc(111) variants whose orientations are rotated around the film normal by 180 deg. each other. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of these fcc-Py films agree within {+-}0.4% with the values of bulk fcc-Py crystal, suggesting that the strains in the films are very small. High-resolution transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the films around the Py/MgO(100) and the Py/MgO(110) interfaces to reduce the lattice mismatches. The magnetic properties are considered to be reflecting the magnetocrystalline anisotropies of bulk fcc-Py and/or metastable hcp-Py crystals and the shape anisotropy caused by the surface undulations.

  4. Interface engineering in epitaxial growth of layered oxides via a conducting layer insertion

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yu; Meng, Dechao; Wang, Jianlin [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui (China); Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui (China); Ma, Chao [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui (China); Zhai, Xiaofang, E-mail: xfzhai@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui (China); Huang, Haoliang; Fu, Zhengping; Peng, Ranran [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui (China); Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui (China); Brown, Gail J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7707 (United States); and others

    2015-07-06

    There is a long-standing challenge in the fabrication of layered oxide epitaxial films due to their thermodynamic phase-instability and the large stacking layer number. Recently, the demand for high-quality thin films is strongly pushed by their promising room-temperature multiferroic properties. Here, we find that by inserting a conducting and lattice matched LaNiO{sub 3} buffer layer, high quality m = 5 Bi{sub 6}FeCoTi{sub 3}O{sub 18} epitaxial films can be fabricated using the laser molecular beam epitaxy, in which the atomic-scale sharp interface between the film and the metallic buffer layer explains the enhanced quality. The magnetic and ferroelectric properties of the high quality Bi{sub 6}FeCoTi{sub 3}O{sub 18} films are studied. This study demonstrates that insertion of the conducting layer is a powerful method in achieving high quality layered oxide thin films, which opens the door to further understand the underline physics and to develop new devices.

  5. Morphology and electronic properties of metal organic molecular beam epitaxy grown ZnO on hydrogen passivated 6H-SiC(0001)a)

    Science.gov (United States)

    Andres, Stefan; Pettenkofer, Christian; Speck, Florian; Seyller, Thomas

    2008-05-01

    Thin ZnO films were grown on hydrogen passivated 6H-SiC(0001) substrates by metal organic molecular beam epitaxy. The initial growth as well as the electronic properties of the growing interface were monitored by low electron diffraction and photoelectron spectroscopy (PES). From the PES intensities of the substrate and ZnO film a layered Frank-van-der-Merwe-like growth mode could be observed within the first 10nm. The ZnO films grow preferentially in (0001) direction and show a pronounced facetting in the {101¯2} direction. The experimentally determined band alignment reveals band offsets of ΔEVBM≈1.6eV and ΔECBM≈1.2eV between the valence and conduction bands, respectively. With growing ZnO thickness a band bending of about -0.51eV is observed in the SiC substrate.

  6. Evaluation of HgCdTe on GaAs Grown by Molecular Beam Epitaxy for High-Operating-Temperature Infrared Detector Applications

    Science.gov (United States)

    Wenisch, J.; Schirmacher, W.; Wollrab, R.; Eich, D.; Hanna, S.; Breiter, R.; Lutz, H.; Figgemeier, H.

    2015-09-01

    Molecular beam epitaxy (MBE) growth of HgCdTe (MCT) on alternative substrates enables production of both cheaper and more versatile (third-generation) infrared (IR) detectors. After rapid progress in the development of MBE-grown MCT on GaAs in recent years, the question of whether the considerable benefits of this material system are also applicable to high-operating-temperature (HOT) applications demands attention. In this paper, we present a mid-wavelength-IR 640 × 512 pixel, 15- μm-pitch focal-plane array with operability of 99.71% at operating temperature of 120 K and low dark current density. In the second part of the paper, MBE growth of short-wavelength IR material with Cd fraction of up to 0.8 is investigated as the basis for future evaluation of the material for low-light-level imaging HOT applications.

  7. Stereo-epitaxial growth of single-crystal Ni nanowires and nanoplates from aligned seed crystals

    Science.gov (United States)

    Lee, Hyoban; Yoo, Youngdong; Kang, Taejoon; Lee, Jiyoung; Kim, Eungwang; Fang, Xiaosheng; Lee, Sungyul; Kim, Bongsoo

    2016-05-01

    Epitaxially grown anisotropic Ni nanostructures are promising building blocks for the development of miniaturized and stereo-integrated data storage kits because they can store multiple magnetic domain walls (DWs). Here, we report stereo-epitaxially grown single-crystalline Ni nanowires (NWs) and nanoplates, and their magnetic properties. Vertical and inclined Ni NWs were grown at the center and edge regions of c-cut sapphire substrates, respectively. Vertical Ni nanoplates were grown on r-cut sapphire substrates. The morphology and growth direction of Ni nanostructures can be steered by seed crystals. Cubic Ni seeds grow into vertical Ni NWs, tetrahedral Ni seeds grow into inclined Ni NWs, and triangular Ni seeds grow into vertical Ni nanoplates. The shapes of the Ni seeds are determined by the interfacial energy between the bottom plane of the seeds and the substrates. The as-synthesized Ni NWs and nanoplates have blocking temperature values greater than 300 K at 500 Oe, verifying that these Ni nanostructures can form large magnetic DWs with high magnetic anisotropy properties. We anticipate that epitaxially grown Ni NWs and nanoplates will be used in various types of 3-dimensional magnetic devices.Epitaxially grown anisotropic Ni nanostructures are promising building blocks for the development of miniaturized and stereo-integrated data storage kits because they can store multiple magnetic domain walls (DWs). Here, we report stereo-epitaxially grown single-crystalline Ni nanowires (NWs) and nanoplates, and their magnetic properties. Vertical and inclined Ni NWs were grown at the center and edge regions of c-cut sapphire substrates, respectively. Vertical Ni nanoplates were grown on r-cut sapphire substrates. The morphology and growth direction of Ni nanostructures can be steered by seed crystals. Cubic Ni seeds grow into vertical Ni NWs, tetrahedral Ni seeds grow into inclined Ni NWs, and triangular Ni seeds grow into vertical Ni nanoplates. The shapes of the Ni

  8. Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Low-temperature AlN buffer layers grown via plasma-assisted molecular beam epitaxy on Si (111) were found to significantly affect the subsequent growth morphology of GaN nanowires. The AlN buffer layers exhibited nanowire-like columnar protrusions, with their size, shape, and tilt determined by the AlN V/III flux ratio. GaN nanowires were frequently observed to adopt the structural characteristics of the underlying AlN columns, including the size and the degree of tilt. Piezoresponse force microscopy and polarity-sensitive etching indicate that the AlN films and the protruding columns have a mixed crystallographic polarity. Convergent beam electron diffraction indicates that GaN nanowires are Ga-polar, suggesting that Al-polar columns are nanowire nucleation sites for Ga-polar nanowires. GaN nanowires of low density could be grown on AlN buffers that were predominantly N-polar with isolated Al-polar columns, indicating a high growth rate for Ga-polar nanowires and suppressed growth of N-polar nanowires under typical growth conditions. AlN buffer layers grown under slightly N-rich conditions (V/III flux ratio = 1.0 to 1.3) were found to provide a favorable growth surface for low-density, coalescence-free nanowires.

  9. Epitaxial growth of micrometer-sized Cu-pyramides on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Seyffarth, Susanne; Krebs, Hans-Ulrich [Institut fuer Materialphysik, Universitaet Goettingen (Germany)

    2009-07-01

    Studying the morphology of thin metallic films is very important regarding the properties of these films. Therefore thin Cu films on Si(111) and Si(100) substrates were prepared using pulsed laser deposition (PLD) in ultra high vacuum. At elevated substrate temperatures above 200 C epitaxial growth of three dimensional pyramides with edge lengths of about five micrometers and heights up to 500 nanometers is observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The base area of these islands is a triangle for Si(111) and a square for Si(100) depending on the orientation of the substrate. Epitaxial relationships with the Si substrates were studied using X-ray diffraction analysis (XRD). Furthermore periodic alignments of the pyramidal islands was achieved. The shape of the pyramidal islands was influenced by alloying Ni during deposition process. Additionally the decomposition of the Cu-islands was examined.

  10. Optical second harmonic imaging as a diagnostic tool for monitoring epitaxial oxide thin-film growth

    International Nuclear Information System (INIS)

    Optical second harmonic generation is proposed as a tool for non-invasive, non-destructive, real-time, in-situ imaging of oxide epitaxial film growth. The films can be monitored by surface imaging with a lateral resolution of ≤1 μm on an area of size up to 1 cm2. We demonstrate the potential of the proposed technique by an ex-situ analysis of thin epitaxial SrTiO3 films grown on (1 1 0) NdGaO3 single crystals. Our data show that second harmonic generation provides complementary information to established in-situ monitoring techniques such as reflection high-energy electron diffraction. We demonstrate that this technique can reveal otherwise elusive in-plane inhomogeneities of electrostatic, chemical or structural nature. The presence of such inhomogeneities is independently confirmed by scanning probe microscopy

  11. Epitaxial Growth of Hard Ferrimagnetic Mn3Ge Film on Rhodium Buffer Layer

    Directory of Open Access Journals (Sweden)

    Atsushi Sugihara

    2015-06-01

    Full Text Available Mn\\(_3\\Ge has a tetragonal Heusler-like D0\\(_{22}\\ crystal structure, exhibiting a large uniaxial magnetic anisotropy and small saturation magnetization due to its ferrimagnetic spin structure; thus, it is a hard ferrimagnet. In this report, epitaxial growth of a Mn\\(_3\\Ge film on a Rh buffer layer was investigated for comparison with that of a film on a Cr buffer layer in terms of the lattice mismatch between Mn\\(_3\\Ge and the buffer layer. The film grown on Rh had much better crystalline quality than that grown on Cr, which can be attributed to the small lattice mismatch. Epitaxial films of Mn\\(_3\\Ge on Rh show somewhat small coercivity (\\(H_{\\rm c}\\ = 12.6 kOe and a large perpendicular magnetic anisotropy (\\(K_{\\rm u}\\ = 11.6 Merg/cm\\(^3\\, comparable to that of the film grown on Cr.

  12. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    Science.gov (United States)

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO. PMID:25835032

  13. Polarized infrared reflectance study of free standing cubic GaN grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.C., E-mail: saicheonglee86@yahoo.com [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ng, S.S.; Hassan, H. Abu; Hassan, Z.; Zainal, N. [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Novikov, S.V.; Foxon, C.T.; Kent, A.J. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2014-07-01

    Optical properties of free standing cubic gallium nitride grown by molecular beam epitaxy system are investigated by a polarized infrared (IR) reflectance technique. A strong reststrahlen band, which reveals the bulk-like optical phonon frequencies, is observed. Meanwhile, continuous oscillation fringes, which indicate the sample consists of two homogeneous layers with different dielectric constants, are observed in the non-reststrahlen region. By obtaining the first derivative of polarized IR reflectance spectra measured at higher angles of incidence, extra phonon resonances are identified at the edges of the reststrahlen band. The observations are verified with the theoretical results simulated based on a multi-oscillator model. - Highlights: • First time experimental studies of IR optical phonons in bulk like, cubic GaN layer. • Detection of extra phonon modes of cubic GaN by polarized IR reflectance technique. • Revelation of IR multiphonon modes of cubic GaN by first derivative numerical method. • Observation of multiphonon modes requires very high angle of incidence. • Resonance splitting effect induced by third phonon mode is a qualitative indicator.

  14. Photoluminescence of localized excitons in ZnCdO thin films grown by molecular beam epitaxy

    Science.gov (United States)

    Wu, T. Y.; Huang, Y. S.; Hu, S. Y.; Lee, Y. C.; Tiong, K. K.; Chang, C. C.; Shen, J. L.; Chou, W. C.

    2016-07-01

    We have investigated the luminescence characteristics of Zn1-xCdxO thin films with different Cd contents grown by molecular beam epitaxy system. The temperature-dependent photoluminescence (PL) and excitation power-dependent PL spectra were measured to clarify the luminescence mechanisms of the Zn1-xCdxO thin films. The peak energy of the Zn1-xCdxO thin films with increasing the Cd concentration is observed as redshift and can be fitted by the quadratic function of alloy content. The broadened full-width at half-maximum (FWHM) estimated from the 15 K PL spectra as a function of Cd content shows a larger deviation between the experimental values and theoretical curve, which indicates that experimental FWHM values are affected not only by alloy compositional disorder but also by localized excitons occupying states in the tail of the density of states. The Urbach energy determined from an analysis of the lineshape of the low-energy side of the PL spectrum and the degree of localization effect estimated from the temperature-induced S-shaped PL peak position described an increasing mean exciton-localization effects in ZnCdO films with increasing the Cd content. In addition, the PL intensity and peak position as a function of excitation power are carried out to clarify the types of radiative recombination and the effects of localized exciton in the ZnCdO films with different Cd contents.

  15. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    Science.gov (United States)

    Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.; Dippo, Pat; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Barnes, Teresa M.; Myers, Thomas H.

    2016-08-01

    Heterostructures with CdTe and CdTe1-xSex (x ˜ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ˜ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ˜6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.

  16. Current transport in ZnO/Si heterostructure grown by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Teng Xiao-Yun; Wu Yan-Hua; Yu Wei; Gao Wei; Fu Guang-Sheng

    2012-01-01

    The n-ZnO/p-Si heterojunction was fabricated by depositing high quality single crystalline aluminium-doped n-type ZnO film on p-type Si using the laser molecular beam epitaxy technique. The heterojunction exhibited a good rectifying behavior.The electrical properties of the heterojunction were investigated by means of temperature dependence current density-voltage measurements.The mechanism of the current transport was proposed based on the band structure of the heterojunction.When the applied bias V is lower than 0.15 V,the current follows the Ohmic behavior.When 0.15 V < V < 0.6 V,the transport property is dominated by diffusion or recombination in the junction space charge region,while at higher voltages (V > 0.6 V),the space charge limited effect becomes the main transport mechanism.The current-voltage characteristic under illumination was also investigated.The photovoltage and the short circuit current density of the heterojunction aproached 270 mV and 2.10 mA/cm2,respectively.

  17. Molecular-beam epitaxy of CdTe on large area Si(100)

    Science.gov (United States)

    Sporken, R.; Lange, M. D.; Faurie, J. P.; Petruzzello, J.

    1991-10-01

    We have grown CdTe directly on 2- and 5-in. diam Si(100) by molecular-beam epitaxy and characterized the layers by in situ reflection high-energy electron diffraction, double crystal x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and low-temperature photoluminescence. The films are up to 10-μm thick and mirror-like over their entire surface. Even on 5-in. diam wafers, the structural and thickness uniformity is excellent. Two domains, oriented 90° apart, are observed in the CdTe films on oriented Si(100) substrates, whereas single-domain films are grown on Si(100) titled 6° or 8° toward [011]. The layers on misoriented substrates have better morphology than those on oriented Si(100), and the substrate tilt also eliminates twinning in the CdTe layers. First attempts to grow HgCdTe on Si(100 with a CdTe buffer layer have produced up to 10-μm thick layers with cutoff wavelengths between 5 and 10-μm and with an average full width at half-maximum of the double-crystal x-ray diffraction peaks of 200 arc s.

  18. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zaunbrecher, Katherine N. [Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA; National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Kuciauskas, Darius [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Swartz, Craig H. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; Dippo, Pat [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Edirisooriya, Madhavie [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; Ogedengbe, Olanrewaju S. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; Sohal, Sandeep [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; Hancock, Bobby L. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; LeBlanc, Elizabeth G. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; Jayathilaka, Pathiraja A. R. D. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; Barnes, Teresa M. [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Myers, Thomas H. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA

    2016-08-29

    Heterostructures with CdTe and CdTe 1-xSex (x ~ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ~ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ~6 um, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 us with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 us.

  19. Effects of magnesium contents in ZnMgO ternary alloys grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Sheng-Yao, E-mail: shenghu2729@yahoo.com [Department of Digital Technology Design, Tungfang Design Institute, Hunei, Kaohsiung 82941, Taiwan (China); Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Weng, Yu-Hsiang [Department of Electrical Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2015-07-05

    Highlights: • ZnMgO alloys with different Mg contents have been produced by MBE. • Optical and structural properties have been measured and investigated. • Stress is tensile and is increased as the increasing of Mg contents. • The asymmetric behavior of the Raman mode was influenced due to the Mg contents. - Abstract: Ternary alloys of ZnMgO samples with different magnesium contents have been grown by molecular beam epitaxy on the sapphire substrates. Room temperature photoluminescence energy of ZnMgO shifted as high as 3.677 eV by increasing Mg contents corresponding to the higher Urbach average localization energy which indicates more randomness in the alloys with higher Mg contents. XRD results are also verified that the c-axis length decreases as the increasing Mg contents linking to the increased tensile stress produced by the Mg atoms. Raman spectra analyzed by the spatial correlation model to describe that the linewidth Γ is decreased but the correlation length L is increased as the increasing of Mg contents.

  20. Epitaxial growth and oxidation of thin gold and ruthenium films

    OpenAIRE

    Langsdorf, Daniel Wolfgang

    2015-01-01

    In the present work the growth and redox behavior of thin Au islands or films with various thicknesses (two to five layers) deposited on Ru(0001) was studied by x-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). By exposure of atomic oxygen at room temperature, small oxidized gold nanoparticles are formed by the fragmentation of the metallic gold islands or film. For smaller exposures of atomic oxygen (gleich vier Goldlagen) deutlich weniger Partikel geformt werde...

  1. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    Science.gov (United States)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke

    2015-02-01

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50-200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10-50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.

  2. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2015-02-23

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.

  3. Oriented Metallic Nano-Objects on Crystalline Surfaces by Solution Epitaxial Growth.

    Science.gov (United States)

    Liakakos, Nikolaos; Achkar, Charbel; Cormary, Benoit; Harmel, Justine; Warot-Fonrose, Bénédicte; Snoeck, Etienne; Chaudret, Bruno; Respaud, Marc; Soulantica, Katerina; Blon, Thomas

    2015-10-27

    Chemical methods offer the possibility to synthesize a large panel of nanostructures of various materials with promising properties. One of the main limitations to a mass market development of nanostructure based devices is the integration at a moderate cost of nano-objects into smart architectures. Here we develop a general approach by adapting the seed-mediated solution phase synthesis of nanocrystals in order to directly grow them on crystalline thin films. Using a Co precursor, single-crystalline Co nanowires are directly grown on metallic films and present different spatial orientations depending on the crystalline symmetry of the film used as a 2D seed for Co nucleation. Using films exposing 6-fold symmetry surfaces such as Pt(111), Au(111), and Co(0001), the Co heterogeneous nucleation and epitaxial growth leads to vertical nanowires self-organized in dense and large scale arrays. On the other hand, using films presenting 4-fold symmetry surfaces such as Pt(001) and Cu(001), the Co growth leads to slanted wires in discrete directions. The generality of the concept is demonstrated with the use of a Fe precursor which results in Fe nanostructures on metallic films with different growth orientations which depend on the 6-fold/4-fold symmetry of the film. This approach of solution epitaxial growth combines the advantages of chemistry in solution in producing shape-controlled and monodisperse metallic nanocrystals, and of seeded growth on an ad hoc metallic film that efficiently controls orientation through epitaxy. It opens attractive opportunities for the integration of nanocrystals in planar devices. PMID:26302309

  4. Non-Epitaxial Thin-Film Indium Phosphide Photovoltaics: Growth, Devices, and Cost Analysis

    Science.gov (United States)

    Zheng, Maxwell S.

    In recent years, the photovoltaic market has grown significantly as module prices have continued to come down. Continued growth of the field requires higher efficiency modules at lower manufacturing costs. In particular, higher efficiencies reduce the area needed for a given power output, thus reducing the downstream balance of systems costs that scale with area such as mounting frames, installation, and soft costs. Cells and modules made from III-V materials have the highest demonstrated efficiencies to date but are not yet at the cost level of other thin film technologies, which has limited their large-scale deployment. There is a need for new materials growth, processing and fabrication techniques to address this major shortcoming of III-V semiconductors. Chapters 2 and 3 explore growth of InP on non-epitaxial Mo substrates by MOCVD and CSS, respectively. The results from these studies demonstrate that InP optoelectronic quality is maintained even by growth on non-epitaxial metal substrates. Structural characterization by SEM and XRD show stoichiometric InP can be grown in complete thin films on Mo. Photoluminescence measurements show peak energies and widths to be similar to those of reference wafers of similar doping concentrations. In chapter 4 the TF-VLS growth technique is introduced and cells fabricated from InP produced by this technique are characterized. The TF-VLS method results in lateral grain sizes of >500 mum and exhibits superior optoelectronic quality. First generation devices using a n-TiO2 window layer along with p-type TF-VLS grown InP have reached ˜12.1% power conversion efficiency under 1 sun illumination with VOC of 692 mV, JSC of 26.9 mA/cm2, and FF of 65%. The cells are fabricated using all non-epitaxial processing. Optical measurements show the InP in these cells have the potential to support a higher VOC of ˜795 mV, which can be achieved by improved device design. Chapter 5 describes a cost analysis of a manufacturing process using an

  5. Effects of surface impurities on epitaxial graphene growth

    Science.gov (United States)

    del Campo, Valeria; Henríquez, Ricardo; Häberle, Patricio

    2013-01-01

    The focus of this report is to explore the large scale growth of graphene on Ru(0 0 0 1) and verify the possible effects of crystallographic defects and impurities in the quality of the synthesized material. After a Low Pressure Chemical Vapor Deposition (LP-CVD) process we obtained a graphene film accompanied by other types of graphitic structures. Impurities on the ruthenium surface behaved as nucleation sites in the formation of carbon islands several micrometers wide. The morphological structure of these islands is constituted by carbon discs with diameters in the range of few to several hundred nanometers and thicknesses always below 1 nm.

  6. Microstructural Properties of Single Crystalline PbTe Thin Films Grown on BaF2(111) by Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    SI Jian-Xiao; WU Hui-Zhen; XU Tian-Ning; CAO Chun-Fang; HUANG Zhan-Chao

    2005-01-01

    @@ Single crystal PbTe thin films have been grown on BaF2 (111) by using solid source molecular beam epitaxy.The studies of evolution of the surface morphology with the increasing growth temperature from 375 to 525℃by AFM show that PbTe epilayers exhibit smooth surface morphologies with atomic layer scale roughness and are crack free. It is found that for PbTe grown at 475℃, the morphology is dominated by triangles and the rms roughness is 3.987nm. Compared to the rms roughnesses of 0.432nm and 0.759nm for the samples grown at 375 and 525℃ respectively, the surface of the PbTe layer grown at 475℃ is much rougher. This roughening transition is due to the interaction between the elastic relaxation and the plastic relaxation during the strain relaxation process. In contrast to the result of the morphology that the PbTe epitaxial layer grown at 375℃ has most smooth surface, as observed from the line width of x-ray diffraction curves at higher growth temperature improves the crystal quality of the single-crystalline PbTe layer.

  7. Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles

    DEFF Research Database (Denmark)

    He, Maoshuai; Jiang, Hua; Liu, Bilu;

    2013-01-01

    on crystalline substrates via epitaxial growth techniques. Here, we have accomplished epitaxial formation of monometallic Co nanoparticles with well-defined crystal structure, and its use as a catalyst in the selective growth of SWNTs. Dynamics of Co nanoparticles formation and SWNT growth inside an atomic......Controlling chirality in growth of single-walled carbon nanotubes (SWNTs) is important for exploiting their practical applications. For long it has been conceptually conceived that the structural control of SWNTs is potentially achievable by fabricating nanoparticle catalysts with proper structures...

  8. Atomically thin epitaxial template for organic crystal growth using graphene with controlled surface wettability.

    Science.gov (United States)

    Nguyen, Nguyen Ngan; Jo, Sae Byeok; Lee, Seong Kyu; Sin, Dong Hun; Kang, Boseok; Kim, Hyun Ho; Lee, Hansol; Cho, Kilwon

    2015-04-01

    A two-dimensional epitaxial growth template for organic semiconductors was developed using a new method for transferring clean graphene sheets onto a substrate with controlled surface wettability. The introduction of a sacrificial graphene layer between a patterned polymeric supporting layer and a monolayer graphene sheet enabled the crack-free and residue-free transfer of free-standing monolayer graphene onto arbitrary substrates. The clean graphene template clearly induced the quasi-epitaxial growth of crystalline organic semiconductors with lying-down molecular orientation while maintaining the "wetting transparency", which allowed the transmission of the interaction between organic molecules and the underlying substrate. Consequently, the growth mode and corresponding morphology of the organic semiconductors on graphene templates exhibited distinctive dependence on the substrate hydrophobicity with clear transition from lateral to vertical growth mode on hydrophilic substrates, which originated from the high surface energy of the exposed crystallographic planes of the organic semiconductors on graphene. The optical properties of the pentacene layer, especially the diffusion of the exciton, also showed a strong dependency on the corresponding morphological evolution. Furthermore, the effect of pentacene-substrate interaction was systematically investigated by gradually increasing the number of graphene layers. These results suggested that the combination of a clean graphene surface and a suitable underlying substrate could serve as an atomically thin growth template to engineer the interaction between organic molecules and aromatic graphene network, thereby paving the way for effectively and conveniently tuning the semiconductor layer morphologies in devices prepared using graphene. PMID:25798655

  9. Abbreviated epitaxial growth mode (AGM) method for reducing cost and improving quality of LEDs and lasers

    Energy Technology Data Exchange (ETDEWEB)

    Tansu, Nelson; Chan, Helen M; Vinci, Richard P; Ee, Yik-Khoon; Biser, Jeffrey

    2013-09-24

    The use of an abbreviated GaN growth mode on nano-patterned AGOG sapphire substrates, which utilizes a process of using 15 nm low temperature GaN buffer and bypassing etch-back and recovery processes during epitaxy, enables the growth of high-quality GaN template on nano-patterned AGOG sapphire. The GaN template grown on nano-patterned AGOG sapphire by employing abbreviated growth mode has two orders of magnitude lower threading dislocation density than that of conventional GaN template grown on planar sapphire. The use of abbreviated growth mode also leads to significant reduction in cost of the epitaxy. The growths and characteristics of InGaN quantum wells (QWs) light emitting diodes (LEDs) on both templates were compared. The InGaN QWs LEDs grown on the nano-patterned AGOG sapphire demonstrated at least a 24% enhancement of output power enhancement over that of LEDs grown on conventional GaN templates.

  10. Plasma-assisted molecular beam epitaxy of strain-compensated a-plane InGaN/AlGaN superlattices

    International Nuclear Information System (INIS)

    Strain-compensated InGaN/AlGaN structures can enable the growth of thick layers of InGaN epitaxial films far beyond the critical thickness for InGaN grown pseudomorphically to GaN. In this paper, we demonstrate the epitaxial growth of high-quality strain-compensated a-plane In0.12Ga0.88N/Al0.19Ga0.81N superlattices up to 5 times thicker than the critical thickness on free-standing a-plane GaN substrates by plasma-assisted molecular beam epitaxy (PA-MBE). The superlattices consist of 50 to 200 periods of 10 nm thick In0.12Ga0.88N and 6 nm thick Al0.19Ga0.81N layers. The structures are characterized using a double crystal X-ray diffractometer, asymmetric reciprocal space mapping, and atomic force microscopy. We use X-ray diffraction to determine the strain, composition, degree of relaxation, and superlattice period of our samples. The structural characteristics of periodic structures containing from 50 to 200 periods are compared to single layer, uncompensated In0.12Ga0.88N films. A 100 period structure exhibited only 15% relaxation compared to 69% relaxation for the bulk In0.12Ga0.88N film grown with the same total InGaN thickness but without strain-compensating layers. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Increase in the diffusion length of minority carriers in Al{sub x}Ga{sub 1–x}N alloys ({sub x} = 0–0.1) fabricated by ammonia molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Malin, T. V., E-mail: mal-tv@mail.ru; Gilinsky, A. M.; Mansurov, V. G.; Protasov, D. Yu.; Kozhuhov, A. S. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Yakimov, E. B. [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Zhuravlev, K. S. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-10-15

    The room-temperature diffusion length of minority carriers in n-Al{sub 0.1}Ga{sub 0.9}N layers grown by ammonia molecular beam epitaxy on sapphire (0001) substrates used in structures for ultraviolet photodetectors is studied. Measurements were performed using the spectral dependence of the photocurrent recorded in a built-in p–n junction for thin samples and using the induced electron-current procedure for films up to 2 µm thick. The results show that the hole diffusion length in n-AlGaN films is 120–150 nm, which is larger than in GaN films grown under similar growth conditions by a factor of 3–4. This result can be associated with the larger lateral sizes characteristic of hexagonal columns in AlGaN layers grown by molecular beam epitaxy. No increase in the hole diffusion length is observed for thicker films.

  12. Epitaxial growth of bcc-Fe{sub x}Co{sub 100-x} thin films on MgO(1 1 0) single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.j [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Nishiyama, Tsutomu; Shikada, Kouhei [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2010-07-15

    Fe{sub x}Co{sub 100-x} (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe{sub x}Co{sub 100-x} film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe{sub x}Co{sub 100-x} crystals with very small errors less than +-0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe{sub 50}Co{sub 50}/MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.

  13. Oxygen pressure dependent VO{sub 2} crystal film preparation and the interfacial epitaxial growth study

    Energy Technology Data Exchange (ETDEWEB)

    Fan, L.L.; Wu, Y.F. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029 (China); Si, C. [Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049 (China); Zou, C.W., E-mail: czou@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029 (China); Qi, Z.M.; Li, L.B.; Pan, G.Q. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029 (China); Wu, Z.Y., E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029 (China); Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049 (China)

    2012-07-31

    High quality VO{sub 2} crystal films have been prepared on sapphire substrates by pulsed laser deposition method and the effects of oxygen pressure on the crystal phase structure are investigated. Results indicate that the phases and microstructures of VO{sub 2} films are strongly sensitive to oxygen pressure. High oxygen pressure tends to form coarse B-VO{sub 2} nanocrystals while low pressure favors a flat M1-VO{sub 2} film epitaxial growth. X-ray diffraction {phi}-scan patterns confirm the [020] epitaxial growth orientation of the M1-VO{sub 2} film and the in-plane lattice epitaxial relationship at the interface is also examined. Raman spectra indicate that M1-VO{sub 2} phase has much stronger Raman scattering modes than B-VO{sub 2}, and the clear phonon modes further confirm the idea stoichiometry of VO{sub 2} crystal film. Infrared transmittance spectra as the function of temperature are recorded and the results show that M1-VO{sub 2} crystal films undergo a distinct infrared transmittance variation across metal insulator transition boundary, while B-VO{sub 2} exhibits negligible thermochromic switching properties in the temperature range concerned. The pronounced phase transition behavior of the M1-VO{sub 2} crystal film makes it a promising candidate for optical filter/switch and smart window applications in the future. - Highlights: Black-Right-Pointing-Pointer High quality VO{sub 2} films with different phase structures were obtained by PLD method. Black-Right-Pointing-Pointer High oxygen pressure tends to form B-VO{sub 2} while low pressure favors M1-VO{sub 2} film. Black-Right-Pointing-Pointer {phi}-scan XRD confirms the [020] epitaxial growth orientation of the M1-VO{sub 2} film. Black-Right-Pointing-Pointer The epitaxial relationship is explained based on domain matching theory. Black-Right-Pointing-Pointer M1-VO2 film shows excellent optical property in infrared range.

  14. Photoluminescence from GaAs nanodisks fabricated by using combination of neutral beam etching and atomic hydrogen-assisted molecular beam epitaxy regrowth

    Energy Technology Data Exchange (ETDEWEB)

    Kaizu, Toshiyuki; Okada, Yoshitaka [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Tamura, Yosuke; Igarashi, Makoto; Hu, Weiguo; Tsukamoto, Rikako [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamashita, Ichiro [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Samukawa, Seiji [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2012-09-10

    We have fabricated GaAs nanodisk (ND) structures by using a combination of neutral beam etching process and atomic hydrogen-assisted molecular beam epitaxy regrowth. We have observed clear photoluminescence (PL) emissions from GaAs NDs. The peak energy showed a blueshift due to the quantum confinement in three spatial dimensions, and it agreed with the theoretically estimated transition energy. The PL results also showed that the cap-layer disks act as radiative recombination centers. We have confirmed that the PL emission originates from the GaAs NDs, and our approach is effective for the fabrication of high quality ND structures.

  15. Glancing-angle ion enhanced surface diffusion on gaAs(001) during molecular beam epitaxy.

    Science.gov (United States)

    DeLuca, P M; Ruthe, K C; Barnett, S A

    2001-01-01

    We describe the effects of glancing incidence 3-4 keV Ar ion bombardment on homoepitaxial growth on vicinal GaAs(001). The average adatom lifetime on surface terraces, measured during growth using specular ion scattering, decreased monotonically with increasing ion current density. The results indicated that surface diffusivity was increased by the ions. The ion beam also suppressed growth oscillations and decreased the film surface roughness. This indicates a change from two-dimensional island nucleation to step-flow growth due to increased adatom surface diffusivity. A simple model, involving direct momentum transfer from ions to adatoms, is shown to be consistent with the measured enhanced diffusion. PMID:11177806

  16. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films

    Science.gov (United States)

    Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat

    2013-11-01

    We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO3 film grown on (La0.3Sr0.7)(Al0.65Ta0.35)O3 (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ˜12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness.

  17. Dielectric and Structural Properties of SrTiO_3 Thin Films Grown by Laser Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Dielectric and Structural Properties of SrTiO_3 Thin Films Grown by Laser Molecular Beam Epitaxy[1]Hao J H,Gao J,Wang Z,et al.Interface structure and phase of epitaxial SrTi O3(110)thin fil ms grown directly on silicon[J].Appl Phys Lett,2005,87:131908. [2]Hao J H,Gao J,Wang HK.SrTi O3(110)thin fil ms grown directly on different oriented silicon substrates[J].Appl Phys A,2005,81:1233. [3]Aki mov I A,Sirenko A A,Clark A M,et al.Electric-field-induced soft-mode hardening in SrTi O3fil ms[J].Phys Rev Lett...

  18. X—ray reflectivity measurement of δ—doped erbium profile in silicon molecular—beam epitaxial layer

    Institute of Scientific and Technical Information of China (English)

    JunWan; Q.J.Jia; 等

    1999-01-01

    Synchrontron radiation x-ray reflectivity measurement is used to study the concentration profile of a δ-doped Er layer in Si epitaxial film grown by molecular-beam epitaxy.The oscillation of the reflectivity amplitude as a function of reflection angle is observed in the experiment.By doing a theoretical simulation.the concentration profile of Er atoms could be deried.It is shown that the originally grown δ-doped Er layer changes into an expionentially decayed function due to the Er segregation.The temperature dependence of the 1/e decay length indicates that the segregation is a kinetically limited process.The activation energy is determined to be 0.044±0.005eV.

  19. Structural properties of SrO thin films grown by molecular beam epitaxy on LaAlO3 substrates

    Science.gov (United States)

    Maksimov, O.; Heydemann, V. D.; Fisher, P.; Skowronski, M.; Salvador, P. A.

    2006-12-01

    SrO films were grown on LaAlO3 substrates by molecular beam epitaxy and characterized using reflection high-energy electron diffraction (RHEED) and x-ray diffraction (XRD). The evolution of the RHEED pattern is discussed as a function of film thickness. 500Å thick SrO films were relaxed and exhibited RHEED patterns indicative of an atomically smooth surface having uniform terrace heights. Films had the epitaxial relationship (001)SrO‖(001)LaAlO3; [010]SrO‖[110]LaAlO3. This 45° in-plane rotation minimizes mismatch and leads to films of high crystalline quality, as verified by Kikuchi lines in the RHEED patterns and narrow rocking curves of the (002) XRD peak.

  20. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-01

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  1. Molecular beam epitaxy deposition of Gd2O3 thin films on SrTiO3 (100) substrate

    Science.gov (United States)

    Wang, Jinxing; Hao, Jinghua; Zhang, Yangyang; Wei, Hongmei; Mu, Juyi

    2016-06-01

    Gd2O3 thin films are grown on the SrTiO3 (100) substrate by molecular beam epitaxy (MBE) deposition. X-ray diffraction (XRD) analysis, conventional transmission electron microscopy (TEM) and aberration-corrected scanning transmission electron microscopy (STEM) are performed to investigate the microstructure of deposited thin films. It is found that the as-deposited thin film possesses a very uniform thickness of ∼40 nm and is composed of single cubic phase Gd2O3 grains. STEM and TEM observations reveal that Gd2O3 thin film grows epitaxially on the SrTiO3 (100) substrate with (001)Gd2O3//(100)STO and [110]Gd2O3//[001]STO orientations. Furthermore, the Gd atoms are found to diffuse into the SrTiO3 substrate for a depth of one unit cell and substitute for the Sr atoms near the interface.

  2. Layer-by-layer epitaxial growth of a Bi sub 2 Sr sub 2 CuO sub 6 thin film on a Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T.; Kawai, T.; Kitahama, K.; Kawai, S. (The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567, Japan (JP)); Shigaki, I.; Kawate, Y. (Superconducting Cryogenic Technology Center, Kobe Steel, Ltd., Takatsukadai 1-chome, Nishi-ku, Kobe 651-22, (Japan))

    1991-05-06

    The epitaxial growth of a Bi{sub 2}Sr{sub 2}CuO{sub 6} (2201) thin film on a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (2212) single crystal has been performed using computer-controlled laser molecular beam epitaxy. The surface of the 2212 single crystal used as the substrate is smooth and invariant under the growth condition at 640 {degree}C in NO{sub 2} pressure of 1{times}10{sup {minus}5} mbar. The growth process of the 2201 film has been observed by {ital in} {ital situ} reflection high-energy electron diffraction (RHEED), and the layer-by-layer growth of the 2201 phase is confirmed by the oscillation of RHEED intensities. During the growth, a modulated surface structure which is characteristic of the Bi cuprate crystals is always present.

  3. Hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Tuocheng; Jia, Zhenzhao; Yan, Baoming; Yu, Dapeng; Wu, Xiaosong, E-mail: xswu@pku.edu.cn [State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2015-01-05

    We demonstrate hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC. Compared with the conventional thermal decomposition technique, the size of the growth domain by this method is substantially increased and the thickness variation is reduced. Based on the morphology of epitaxial graphene, the role of hydrogen is revealed. It is found that hydrogen acts as a carbon etchant. It suppresses the defect formation and nucleation of graphene. It also improves the kinetics of carbon atoms via hydrocarbon species. These effects lead to increase of the domain size and the structure quality. The consequent capping effect results in smooth surface morphology and suppression of multilayer growth. Our method provides a viable route to fine tune the growth kinetics of epitaxial graphene on SiC.

  4. Atomic layer epitaxy

    Science.gov (United States)

    Goodman, Colin H. L.; Pessa, Markus V.

    1986-08-01

    Atomic layer epitaxy (ALE) is not so much a new technique for the preparation of thin films as a novel modification to existing methods of vapor-phase epitaxy, whether physical [e.g., evaporation, at one limit molecular-beam epitaxy (MBE)] or chemical [e.g., chloride epitaxy or metalorganic chemical vapor deposition (MOCVD)]. It is a self-regulatory process which, in its simplest form, produces one complete molecular layer of a compound per operational cycle, with a greater thickness being obtained by repeated cycling. There is no growth rate in ALE as in other crystal growth processes. So far ALE has been applied to rather few materials, but, in principle, it could have a quite general application. It has been used to prepare single-crystal overlayers of CdTe, (Cd,Mn)Te, GaAs and AlAs, a number of polycrystalline films and highly efficient electroluminescent thin-film displays based on ZnS:Mn. It could also offer particular advantages for the preparation of ultrathin films of precisely controlled thickness in the nanometer range and thus may have a special value for growing low-dimensional structures.

  5. Atom probe tomography characterisation of a laser diode structure grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Samantha E.; Humphreys, Colin J.; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Smeeton, Tim M.; Hooper, Stewart E.; Heffernan, Jonathan [Sharp Laboratories of Europe Limited, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4GB (United Kingdom); Saxey, David W.; Smith, George D. W. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom)

    2012-03-01

    Atom probe tomography (APT) has been used to achieve three-dimensional characterization of a III-nitride laser diode (LD) structure grown by molecular beam epitaxy (MBE). Four APT data sets have been obtained, with fields of view up to 400 nm in depth and 120 nm in diameter. These data sets contain material from the InGaN quantum well (QW) active region, as well as the surrounding p- and n-doped waveguide and cladding layers, enabling comprehensive study of the structure and composition of the LD structure. Two regions of the same sample, with different average indium contents (18% and 16%) in the QW region, were studied. The APT data are shown to provide easy access to the p-type dopant levels, and the composition of a thin AlGaN barrier layer. Next, the distribution of indium within the InGaN QW was analyzed, to assess any possible inhomogeneity of the distribution of indium (''indium clustering''). No evidence for a statistically significant deviation from a random distribution was found, indicating that these MBE-grown InGaN QWs do not require indium clusters for carrier localization. However, the APT data show steps in the QW interfaces, leading to well-width fluctuations, which may act to localize carriers. Additionally, the unexpected presence of a small amount (x = 0.005) of indium in a layer grown intentionally as GaN was revealed. Finally, the same statistical method applied to the QW was used to show that the indium distribution within a thick InGaN waveguide layer in the n-doped region did not show any deviation from randomness.

  6. Low Temperature Epitaxy Growth and Kinetic Modeling of SiGe for BiCMOS Application

    OpenAIRE

    Salemi, Arash

    2011-01-01

    There is an ambition of continuously decreasing thermal budget in CMOS and BiCMOS processing, thus low temperature epitaxy (LTE) (350-650°C) with chemical vapor deposition (CVD) technique in order to have faster process with low cost. One of the growth issues at low temperatures is gas quality where the oxygen and moisture contamination becomes critical for the epilayers quality. If the level amount of contamination is not controlled, the silicon dioxide islands are formed and the oxygen leve...

  7. Influence of AlN Buffer Thickness on GaN Grown on Si(111) by Gas Source Molecular Beam Epitaxy with Ammonia

    Institute of Scientific and Technical Information of China (English)

    LIN Guo-Qiang; ZENG Yi-Ping; WANG Xiao-Liang; LIU Hong-Xin

    2008-01-01

    Hexagonal GaN is grown on a Si(111) substrate with AlN as a buffer layer by gas source molecular beam epitaxy(GSMBE) with ammonia. The thickness of AlN buffer is changed from 9 to 72nm. When the thickness of AlN buffer is 36nm, the surface morphology and crystal quality of GaN is optimal. The in-situ reflection high energy electron diffraction (RHEED) reveals that the transition to a two-dimensional growth mode of AlN is the key to the quality of GaN. However, the thickness of AlN buffer is not so critical to the residual in-plane tensile stress in GaN grown on Si(111) by GSMBE for AlN thickness between 9 to 72nm.

  8. Interfacial structure of molecular beam epitaxial grown cubic-GaN films on GaAs(001) probed by x-ray gazing-angle specular reflection

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    We report on a study of interfacial structure of GaN films grown on GaAs(001) substrates by plasma-assisted molecular beam epitaxy using x-ray grazing-angle specular reflection.We show that interfacial layers with electron densities differing from those of GaN and GaAs were formed upon deposition of GaN.It is also found that the interfacial structure of our systems depends strongly on the course of the initial layer deposition.The phase purity of the GaN films was examined by x-ray reciprocal space mapping.A simple kinetic growth model suggested by our results has been presented.

  9. Nanoelectronic devices--resonant tunnelling diodes grown on InP substrates by molecular beam epitaxy with peak to valley current ratio of 17 at room temperature

    Institute of Scientific and Technical Information of China (English)

    Zhang Yang; Zeng Yi-Ping; Ma Long; Wang Bao-Qiang; Zhu Zhan-Ping; Wang Liang-Chen; Yang Fu-Hua

    2006-01-01

    This paper reports that InAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current density of 3kA/cm2 has been obtained for diodes with AlAs barriers of ten monolayers, and an In0.53Ga0.47As well of eight monolayers with four monolayers of InAs insert layer. The effects of growth interruption for smoothing potential barrier interfaces have been investigated by high resolution transmission electron microscope.

  10. Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process.

    Science.gov (United States)

    Ishiyama, Takeshi; Nakagawa, Shuhei; Wakamatsu, Toshiki

    2016-07-28

    The growth of epitaxial Si nanowires by a metal-catalyst-free process has been investigated as an alternative to the more common metal-catalyzed vapor-liquid-solid process. The well-aligned Si nanowires are successfully grown on a (111)-oriented Si substrate without any metal catalysts by a thermal treatment using silicon sulfide as a Si source at approximately 1200 °C. The needle-shaped Si nanowires, which have a core-shell structure that consists of a single-crystalline Si core along the direction consistent with the substrate direction and a surface coating of silicon oxide, are grown by a metal-catalyst-free process. In this process, the silicon sulfide in the liquid phase facilitates the nucleation and nanowire growth. In contrast, oxygen-rich nanowires that consist of crystalline Si at the tip and lumpy silicon oxide on the body are observed in a sample grown at 1300 °C, which disturbs the epitaxial growth of Si nanowires.

  11. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    International Nuclear Information System (INIS)

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al2O3 substrates indicated polycrystalline films with a LiAlO2 secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides

  12. Investigation of Hg1-xCdxTe epitaxial vapor phase growth under isothermal conditions

    Directory of Open Access Journals (Sweden)

    ZORAN DJINOVIC

    1999-08-01

    Full Text Available The Hg1-xCdxTe layers were grown by vapor phase epitaxy on Cd-terminated s111c CdTe single crystal substrates from a HgTe solid source under isothermal conditions in a semi-closed system with controlled Hg vapor pressure. The growth kinetics were investigated in the temperature region from 420 °C to 550 °C with different source to substrate spacings, varying from 1 to 11 mm. It was found that the dependence of the growth rate on temperature could be well described by an Arrhenius type equation with an activation energy of 80 kJ/mol in the investigated temperature interval. The activation energies for the crystallization were the same for all the investigated source to substrate spacing. This activation energy value points to the importance of a solid-state diffusion process in the Hg1-xCdxTe/CdTe epitaxial couple obtained by isothermal growth under the given experimental conditions.

  13. Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process

    Science.gov (United States)

    Ishiyama, Takeshi; Nakagawa, Shuhei; Wakamatsu, Toshiki

    2016-07-01

    The growth of epitaxial Si nanowires by a metal-catalyst-free process has been investigated as an alternative to the more common metal-catalyzed vapor–liquid–solid process. The well-aligned Si nanowires are successfully grown on a (111)-oriented Si substrate without any metal catalysts by a thermal treatment using silicon sulfide as a Si source at approximately 1200 °C. The needle-shaped Si nanowires, which have a core–shell structure that consists of a single-crystalline Si core along the direction consistent with the substrate direction and a surface coating of silicon oxide, are grown by a metal-catalyst-free process. In this process, the silicon sulfide in the liquid phase facilitates the nucleation and nanowire growth. In contrast, oxygen-rich nanowires that consist of crystalline Si at the tip and lumpy silicon oxide on the body are observed in a sample grown at 1300 °C, which disturbs the epitaxial growth of Si nanowires.

  14. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Ikeshoji, Tamio; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan)

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  15. EuO and Gd-doped EuO thin films. Epitaxial growth and properties

    Energy Technology Data Exchange (ETDEWEB)

    Sutarto, Ronny

    2009-07-06

    this respect the quality of many of the doped EuO samples used in the past bulk studies. The focus of this thesis is on the preparation and the properties of high-quality single-crystalline EuO and Gd-doped EuO thin films. The so-called Eu-distillation-assisted molecular beam epitaxy (MBE) has been employed to achieve full control of the stoichiometry. The films have been epitaxially grown on yttria-stabilized cubic zirconia (YSZ) (001) substrates. By a systematic variation of the oxygen deposition rates, we have been able to observe sustained oscillations in the intensity of the reflection high-electron energy diffraction (RHEED) pattern during growth. We thus have demonstrated that layer-by-layer growth has been achieved for the first time. We also have confirmed that YSZ indeed supplies oxygen during the initial stages of growth, yet the EuO stoichiometry can still be well maintained. In the case of Gd-doped EuO films, the presence of Gd even helps to stabilize the layer-by-layer growth mode. It is important to achieve this growth mode, since it enables the preparation of films with very smooth and at surfaces. This in turn facilitates the capping of the films with a thin Al overlayer in order to protect the films against degradation under ambient conditions. More important, the smoothness of the lm will enable the preparation of high quality device structures. By using ex-situ soft x-ray absorption spectroscopy (XAS) at the Eu and Gd M{sub 4,5} edges, we have confirmed that the films are completely free from Eu{sup 3+} contaminants, and we were able to determine reliably the actual Gd concentration. This actual Gd concentration could in fact significantly deviate from the nominal Gd/Eu evaporation ratio. From magnetization and susceptibility measurements, we found the Curie temperature to increase smoothly as a function of doping from 69 K up to a maximum of 125 K, all with a saturation moment of 7 {mu}B. A threshold behavior was not observed for Gd concentrations

  16. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  17. Domain structure and magnetic properties of epitaxial SrRuO sub 3 films grown on SrTiO sub 3 (100) substrates by ion beam sputtering

    CERN Document Server

    Oh, S H

    2000-01-01

    The domain structure of epitaxial SrRuO sub 3 thin films grown on SrTiO sub 3 (100) substrates by using ion beam sputtering has been investigated with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The SrRuO sub 3 films grown in the present study revealed a unique cube-on-cube epitaxial relationship, i.e., (100) sub S sub R sub O ll (100) sub S sub T sub O , [010] sub S sub R sub O ll [101] sub S sub T sub O , prevailing with a cubic single-domain structure. The cubic SrRuO sub 3 thin films that were inherently with free from RuO sub 6 octahedron tilting exhibited higher resistivity with suppressed magnetic properties. The Curie temperature of the thin films was suppressed by 60 K from 160 K for the bulk specimen, and the saturation magnetic moment was reduced by a significant amount. The tetragonal distortion of the SrRuO sub 3 thin films due to coherent growth with the substrate seemed to result in a strong magnetic anisotropy.

  18. LaTiO3(110)薄膜分子束外延生长的精确控制和表面截止层的研究%Precise control of LaTiO3 (110) film growth by molecular beam epitaxy and surface termination of the polar film

    Institute of Scientific and Technical Information of China (English)

    李文涛; 梁艳; 王炜华; 杨芳; 郭建东

    2015-01-01

    Transition metal oxides exhibit abundant physical properties due to the electronic interactions between charge, orbit and spin degrees of freedom. Lanthanum titanate, LaTiO3, a typical strongly correlated electron material, shows Mott-type metal-insulator and antiferromagnetic transitions at low temperature. And these interesting behaviors can be tuned by adjusting the occupation of the t2g orbit of Ti3+, or introducing symmetry breaking or lattice strain into the heterointerfaces. Especially on LaTiO3(110) surface, the anisotropic structure as well as the surface polarity allows the flexible control of artificial low-dimensional structure. However, the instability induced by surface polarity hinders the growth of high-quality LaTiO3(110) film. Here we show that by keeping the growing surface reconstructed in the molecular beam epitaxy (MBE) process, the surface polarity can be effectively compensated for, allowing the high-quality layer-by-layer film growth. Moreover, the intensity of reflective high-energy electron diffraction (RHEED) pattern sensitively changes with the surface cation concentration. Therefore the relative deposition rates of La and Ti sources can be monitored and further be precisely calibrated in situ and in real-time. We first prepare the (2 × 16) reconstruction on SrTiO3(110) surface by depositing La and Ti (2 ML for each) metals. Further increasing the Ti concentration on (2 × 16), i. e., the [Ti]/[La] ratio, results in the significant decrease of RHEED “1 ×” intensity and the increase of “2 ×” intensity. And the change of RHEED intensity is quantitatively reversible through reducing the [Ti]/[La] ratio by the same amount. We set the evaporation rate of Ti source to be slightly higher than that of La for the MBE film growth. And the shutter state of Ti source is controlled to be open or close, which is determined by the change of RHEED intensity. Precise cation stoichiometry is achieved in the LaTiO3(110) film. X-ray diffraction

  19. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1-xFex)2O3 multilayer thin films

    Science.gov (United States)

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-04-01

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe2+ and Fe3+ are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What’s more, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3.

  20. Growth of Catalyst-Free Epitaxial InAs Nanowires on Si Wafers Using Metallic Masks.

    Science.gov (United States)

    Soo, M Teng; Zheng, Kun; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Zou, Jin

    2016-07-13

    Development of heteroepitaxy growth of catalyst-free vertical III-V nanowires on Si wafers is highly desirable for future nanoscale Si-based electronic and optoelectronic devices. In this study, a proof-of-concept approach is developed for catalyst-free heteroepitaxy growth of InAs nanowires on Si wafers. Before the growth of InAs nanowires, a Si-compatible metallic film with a thickness of several tens of nanometers was predeposited on a Si wafer and then annealed to form nanosize openings so as to obtain a metallic mask. These nano-openings exposed the surface of the Si wafer, which allowed subsequent nucleation and growth of epitaxial InAs nanowires directly on the surface of the Si wafer. The small size of the nano-openings limits the lateral growth of the nanostructures but promotes their axial growth. Through this approach, catalyst-free InAs nanowires were grown on both Si (111) and (001) wafers successfully at different growth temperatures. In particular, ultralong defect-free InAs nanowires with the wurtzite structure were grown the Si (111) wafers at 550 °C using the Ni mask. This study offers a simple, cost-effective, and scalable method to grow catalyst-free III-V nanowires on Si wafers. The simplicity of the approach opens a new avenue for the growth and integration of catalyst-free high-quality heteroepitaxial III-V nanowires on Si wafers.

  1. Growth of Catalyst-Free Epitaxial InAs Nanowires on Si Wafers Using Metallic Masks.

    Science.gov (United States)

    Soo, M Teng; Zheng, Kun; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Zou, Jin

    2016-07-13

    Development of heteroepitaxy growth of catalyst-free vertical III-V nanowires on Si wafers is highly desirable for future nanoscale Si-based electronic and optoelectronic devices. In this study, a proof-of-concept approach is developed for catalyst-free heteroepitaxy growth of InAs nanowires on Si wafers. Before the growth of InAs nanowires, a Si-compatible metallic film with a thickness of several tens of nanometers was predeposited on a Si wafer and then annealed to form nanosize openings so as to obtain a metallic mask. These nano-openings exposed the surface of the Si wafer, which allowed subsequent nucleation and growth of epitaxial InAs nanowires directly on the surface of the Si wafer. The small size of the nano-openings limits the lateral growth of the nanostructures but promotes their axial growth. Through this approach, catalyst-free InAs nanowires were grown on both Si (111) and (001) wafers successfully at different growth temperatures. In particular, ultralong defect-free InAs nanowires with the wurtzite structure were grown the Si (111) wafers at 550 °C using the Ni mask. This study offers a simple, cost-effective, and scalable method to grow catalyst-free III-V nanowires on Si wafers. The simplicity of the approach opens a new avenue for the growth and integration of catalyst-free high-quality heteroepitaxial III-V nanowires on Si wafers. PMID:27248817

  2. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001 surface: nucleation, morphology, and CMOS compatibility

    Directory of Open Access Journals (Sweden)

    Yuryev Vladimir

    2011-01-01

    Full Text Available Abstract Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001 surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C and high (≳600°C temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001 surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001 quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.

  3. The thickness-dependent dynamic magnetic property of Co2FeAl films grown by molecular beam epitaxy

    Science.gov (United States)

    Qiao, Shuang; Nie, Shuaihua; Zhao, Jianhua; Zhang, Xinhui

    2014-10-01

    Co2FeAl films with different thickness were prepared at different temperature by molecular beam epitaxy. Their dynamic magnetic property was studied by the time-resolved magneto-optical Kerr effect measurements. It is observed that the intrinsic damping factor of Co2FeAl for [100] orientation is not related to the film's thickness and magnetic anisotropy as well as temperature at high-field regime, but increases with structural disorder of Co2FeAl. The dominant contribution from the inhomogeneous magnetic anisotropy is revealed to be responsible for the observed extremely nonlinear and drastic field-dependent damping factors at low-field regime.

  4. Characterization using ion beam analysis of In(Ga)As quantum dots grown by epitaxy on silicon

    International Nuclear Information System (INIS)

    The integration on silicon of direct band gap materials such as some semiconductors from the III-V group is of a rising interest for tomorrow's optoelectronic devices. Although silicon is the raw material for many microelectronic devices, it has a poor light emitting efficiency due to his indirect band gap. Among the III-V family, the In(Ga)As compounds present the advantage of a smaller band gap than silicon, which encourage the confinement of electron-hole pairs. However, the large lattice mismatch between silicon and In(Ga)As is a serious limitation for the epitaxial integration. This PhD work has been focused on the ion beam study of In(Ga)As quantum dots (QDs) grown by epitaxy on silicon and of the QD capping by silicon. Rutherford Backscattering Spectrometry (RBS) has been used to quantify composition of both QDs and cap layer. Exo-diffusion and excess issues of some elements have been pointed out. The epitaxial relation between QDs and substrate have been investigated by ion channelling (RBS-C). Medium Energy Ion Scattering (MEIS) has also been used to obtain high resolution profiles of composition, defects and strain for both the QD plane and the capping layer. Direct space mapping of both crystals has also been achieved by MEIS thanks to the blocking effect. (author)

  5. Structural and Magnetic Phase Transitions in Manganese Arsenide Thin-Films Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Jaeckel, Felix Till

    Phase transitions play an important role in many fields of physics and engineering, and their study in bulk materials has a long tradition. Many of the experimental techniques involve measurements of thermodynamically extensive parameters. With the increasing technological importance of thin-film technology there is a pressing need to find new ways to study phase transitions at smaller length-scales, where the traditional methods are insufficient. In this regard, the phase transitions observed in thin-films of MnAs present interesting challenges. As a ferromagnetic material that can be grown epitaxially on a variety of technologically important substrates, MnAs is an interesting material for spintronics applications. In the bulk, the first order transition from the low temperature ferromagnetic alpha-phase to the beta-phase occurs at 313 K. The magnetic state of the beta-phase has remained controversial. A second order transition to the paramagnetic gamma-phase takes place at 398 K. In thin-films, the anisotropic strain imposed by the substrate leads to the interesting phenomenon of coexistence of alpha- and beta-phases in a regular array of stripes over an extended temperature range. In this dissertation these phase transitions are studied in films grown by molecular beam epitaxy on GaAs (001). The films are confirmed to be of high structural quality and almost purely in the A0 orientation. A diverse set of experimental techniques, germane to thin-film technology, is used to probe the properties of the film: Temperature-dependent X-ray diffraction and atomic-force microscopy (AFM), as well as magnetotransport give insights into the structural properties, while the anomalous Hall effect is used as a probe of magnetization during the phase transition. In addition, reflectance difference spectroscopy (RDS) is used as a sensitive probe of electronic structure. Inductively coupled plasma etching with BCl3 is demonstrated to be effective for patterning MnAs. We show

  6. Epitaxial growth of AlN on single crystal Mo substrates

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koichiro; Inoue, Shigeru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Nakano, Takayuki; Kim, Tae-Won [Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan); Oshima, Masaharu [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Fujioka, Hiroshi [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan)], E-mail: hfujioka@iis.u-tokyo.ac.jp

    2008-06-02

    We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30{sup o} rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30 deg. rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 deg. C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices.

  7. Epitaxial growth of Bi ultra-thin films on GaAs by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, M. [Dpto. Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Abuin, M. [Dpto. Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR(CSIC)-UCM, Madrid 28040 (Spain); Mascaraque, A., E-mail: arantzazu.mascaraque@fis.ucm.es [Dpto. Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR(CSIC)-UCM, Madrid 28040 (Spain); Gonzalez-Barrio, M.A. [Dpto. Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR(CSIC)-UCM, Madrid 28040 (Spain); Perez, L. [Dpto. Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Sistemas Optoelectronicos y Microtecnologia, Universidad Politecnica de Madrid, 28040 Madrid (Spain)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Electrodeposition of Bi films on GaAs substrates with different orientations. Black-Right-Pointing-Pointer Ultra thin films - 50 nm - are continuous and smooth. Black-Right-Pointing-Pointer Bi always grows with (0 1 L) orientations. Black-Right-Pointing-Pointer Epitaxial growth onto As terminated surfaces. Black-Right-Pointing-Pointer Proposed model based on structural and chemical considerations. - Abstract: We report on the growth of thin bismuth films on GaAs substrates with different orientations by means of electrochemical deposition. Atomic force microscopy reveals that the films are continuous and exhibit low roughness when they are grown under the appropriate overpotential. {omega}-2{theta} X-ray diffraction scans only show reflections that can be indexed as (0 1 L), meaning that Bi grows onto GaAs only in combinations of the (0 0 1) and (0 1 0) orientations. The matching between the GaAs substrate and the Bi layer has been studied by asymmetric X-ray scans, finding that Bi grows epitaxially on GaAs(1 1 0) and GaAs(1 1 1)B, both As-terminated surfaces. We explain these results by structural and chemical considerations.

  8. Rotationally Commensurate Growth of MoS2 on Epitaxial Graphene.

    Science.gov (United States)

    Liu, Xiaolong; Balla, Itamar; Bergeron, Hadallia; Campbell, Gavin P; Bedzyk, Michael J; Hersam, Mark C

    2016-01-26

    Atomically thin MoS2/graphene heterostructures are promising candidates for nanoelectronic and optoelectronic technologies. Among different graphene substrates, epitaxial graphene (EG) on SiC provides several potential advantages for such heterostructures, including high electronic quality, tunable substrate coupling, wafer-scale processability, and crystalline ordering that can template commensurate growth. Exploiting these attributes, we demonstrate here the thickness-controlled van der Waals epitaxial growth of MoS2 on EG via chemical vapor deposition, giving rise to transfer-free synthesis of a two-dimensional heterostructure with registry between its constituent materials. The rotational commensurability observed between the MoS2 and EG is driven by the energetically favorable alignment of their respective lattices and results in nearly strain-free MoS2, as evidenced by synchrotron X-ray scattering and atomic-resolution scanning tunneling microscopy (STM). The electronic nature of the MoS2/EG heterostructure is elucidated with STM and scanning tunneling spectroscopy, which reveals bias-dependent apparent thickness, band bending, and a reduced band gap of ∼0.4 eV at the monolayer MoS2 edges. PMID:26565112

  9. Growth and characterisation of Ga(NAsBi) alloy by metal-organic vapour phase epitaxy

    Science.gov (United States)

    Bushell, Z. L.; Ludewig, P.; Knaub, N.; Batool, Z.; Hild, K.; Stolz, W.; Sweeney, S. J.; Volz, K.

    2014-06-01

    This paper summarises results of the epitaxial growth of Ga(NAsBi) by metal-organic vapour phase epitaxy (MOVPE) and the subsequent optical and structural characterisations of the samples. Ga(NAsBi)/GaAs multi-quantum well (MQW) samples are grown at 400 °C and single layers at 450 °C on GaAs (001) substrates. Triethylgallium (TEGa), tertiarybutylarsine (TBAs), trimethylbismuth (TMBi) and unsymmetrical dimethylhydrazine (UDMHy) are used as precursors. Secondary ion mass spectrometry (SIMS) shows that the Bi content is independent of the N content in the alloy. It is found that the N content depends on both UDMHy and TMBi supply during growth. High resolution X-ray diffraction (HR-XRD), scanning transmission electron microscopy (STEM) and atomic force microscopy (AFM) measurements show that samples with good crystalline quality can be realised. For samples containing 1.8% Bi and up to 1.8% N grown at 450 °C, photoreflectance spectroscopy (PR) shows a decrease in the band gap with increasing N content of 141±22 meV/% N.

  10. Epitaxial growth of Fe/Ag single crystal superlattices and their magnetic properties

    Institute of Scientific and Technical Information of China (English)

    Yu Gu; Fei Zeng; Fang Lv; Yuli Cu; Pei-yong Yang; Feng Pan

    2009-01-01

    Single crystal Fe/Ag(001) superlattices with various periodicities were fabricated using ultrahigh vacuum evaporation de-position.It was found that single crystal bcc Fe layers and single crystal fcc Ag layers can epitaxially grow on a single crystal Ag buffer layer alternately,which was deposited on NaCl single crystal chips by ion beam assisted deposition.The magnetic measure-ments of the superlattices reveal an oscillation coupling between ferromagnetism and antiferromagnetism as a function of the Ag layer thickness.The oscillation period,which is 1 nm (5 Ag layers),is in good agreement with the calculated values when the Ag thickness is greater than 1.5 nm.While the thickness of the Ag spacer layer decreases to 1 nm,the oscillation coupling varies from calculations,which can be attributed to the intermixing of the interlayers according to the annealing results.

  11. Modeling and simulation of silicon epitaxial growth in Siemens CVD reactor

    Science.gov (United States)

    Ni, Haoyin; Lu, Shijie; Chen, Caixia

    2014-10-01

    Siemens CVD reactor is an important chemical device for the production of polysilicon. The chemical and physical phenomenon involved in the reactor is very complex. Understanding the multispecies thermal fluid transport and its interaction with the gas/surface reactions is crucial for an optimal design and operation of the reactor. In the present paper, a mathematical model was constructed to describe the fluid dynamics, the heat and mass transfer and the reaction kinetics of the epitaxial growth process in industrial CVD reactors. A modified reaction kinetics model was used to represent the gas phase and surface reactions. The kinetics model was validated using the published experimental data obtained in a temperature range similar to the industrial CVD processes of silicon productions. The epitaxial growth of silicon in a Siemens reactor was simulated using commercial Computational Fluid Dynamics (CFD) software ANSYS FLUENT. The distributions of gas velocity, temperature and species concentrations in the reactor were predicted numerically. Based on the numerical simulation results, a sensitivity analysis was carried out to determine the key factors influencing the growth rate in industrial CVD reactors. Under the conditions of fixed heating power applied to three different rod diameters of 50 mm, 80 mm and 100 mm, the simulated results show, when the rods' diameter is 50 mm, the surface temperature is high and the gas temperature is low, the growth rate of silicon is determined by the transport of gas species. When the rods' diameter increases to 80 mm, the averaged surface temperature decreases to 1361 K, the surface reaction rate and transport of gas species control the growth rate of Si together. When the rods' diameter is 100 mm, the surface temperature decreases further, the rates of surface reactions become the control factor of deposition rate of Si.

  12. Summary of in situ epitaxial nucleation and growth measurements. [for semiconducting single crystal PbSe films

    Science.gov (United States)

    Poppa, H.; Moorhead, R. D.; Heinemann, K.

    1974-01-01

    In situ nucleation and growth measurements of Ag and Au on single-crystal PbSe thin films were made using a transmission electron microscope. Properties studied were polymorphism, crystalline perfection, and the stoichiometric composition of the initial and the autoepitaxially thickened PbSe substrates. The quantitative nucleation and cluster growth measurements were limited to low-saturation conditions. The epitaxial orientations are discussed, and evidence is presented as to the stage of deposition at which the epitaxial order for Ag is introduced. Strong substrate/overgrowth interaction manifested itself by alloying and interdiffusion.

  13. Investigation of CuGaSe2/CuInSe2 double heterojunction interfaces grown by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Sathiabama Thiru

    2015-02-01

    Full Text Available In-situ reflection high-energy electron diffraction (RHEED observation and X-ray diffraction measurements were performed on heterojunction interfaces of CuGaSe2/CnInSe2/CuGaSe2 grown on GaAs (001 using migration-enhanced epitaxy. The streaky RHEED pattern and persistent RHEED intensity oscillations caused by the alternate deposition of migration-enhanced epitaxy sequence are observed and the growths of smooth surfaces are confirmed. RHEED observation results also confirmed constituent material interdiffusion at the heterointerface. Cross-sectional transmission electron microscopy showed a flat and abrupt heterointerface when the substrate temperature is as low as 400 °C. These have been confirmed even by X-ray diffraction and photoluminescence measurements.

  14. Organometallic vapor-phase epitaxy theory and practice

    CERN Document Server

    Stringfellow, Gerald B

    1989-01-01

    Here is one of the first single-author treatments of organometallic vapor-phase epitaxy (OMVPE)--a leading technique for the fabrication of semiconductor materials and devices. Also included are metal-organic molecular-beam epitaxy (MOMBE) and chemical-beam epitaxy (CBE) ultra-high-vacuum deposition techniques using organometallic source molecules. Of interest to researchers, students, and people in the semiconductor industry, this book provides a basic foundation for understanding the technique and the application of OMVPE for the growth of both III-V and II-VI semiconductor materials and the

  15. Formation and properties of epitaxial CdSe, ZnSe quantum dots. Conventional molecular beam epitaxy and related techniques

    International Nuclear Information System (INIS)

    This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. it is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. While CdSe heteroepitaxy occurs in the multilayer-mode at TG=300 C, a reentrant recovery of the layer-by-layer mode is reported in this thesis, for growth at TGD=230 C). The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. (orig.)

  16. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lotsari, A.; Kehagias, Th.; Katsikini, M.; Arvanitidis, J.; Ves, S.; Komninou, Ph.; Dimitrakopulos, G. P., E-mail: gdim@auth.gr [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Tsiakatouras, G.; Tsagaraki, K.; Georgakilas, A. [Department of Physics, Microelectronics Research Group, University of Crete, P.O. Box 2208, GR 71003, Greece and IESL, FORTH, P.O. Box 1385, GR71110 Heraklion (Greece); Christofilos, D. [Physics Division, School of Technology, Aristotle University of Thessaloniki, GR54124 Thessaloniki (Greece)

    2014-06-07

    Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults, and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.

  17. Growth of bismuth telluride thin film on Pt by electrochemical atomic layer epitaxy

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen; YANG Jun-you; GAO Xian-hui; HOU Jie; ZHANG Tong-jun; CUI Kun

    2005-01-01

    An automated thin-layer flow cell electrodeposition system was developed for growing Bi2 Te3 thin film by ECALE. The dependence of the Bi and Te deposition potentials on Pt electrode was studied. In the first attempt,this reductive Te underpotential deposition (UPD)/reductive Bi UPD cycle was performed to 100 layers. A better linearity of the stripping charge with the number of cycles has been shown and confirmed a layer-by-layer growth mode, which is consistent with an epitaxial growth. The 4: 3 stoichiometric ratio of Bi to Te suggests that the incomplete charge transfer in HTeO2+ reduction excludes the possibility of Bi2 Te3 formation. X-ray photoelectron spectroscopy (XPS) analysis also reveals that the incomplete charge transfer in HTeO2+ occurs in Te direct deposition. The effective way of depositing Bi2 Te3 on Pt consists in oxidative Te UPD and reductive Bi UPD. The thin film deposited by this procedure was characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). A polycrystalline characteristic was confirmed by XRD. The 2 : 3 stoichiometric ratio was confirmed by XPS. The SEM image indicates that the deposit looks like a series of buttons about 0.3 - 0.4 μm in diameter, which is corresponding with calculated thickness of the epitaxial film. This suggests that the particle growth appears to be linear with the number of cycles, as it is consistent with a layer by layer growth mode.

  18. Epitaxial growth and electrochemical transfer of graphene on Ir(111)/α-Al2O3(0001) substrates

    Science.gov (United States)

    Koh, Shinji; Saito, Yuta; Kodama, Hideyuki; Sawabe, Atsuhito

    2016-07-01

    Low-pressure chemical vapor deposition growth of graphene on Iridium (Ir) layers epitaxially deposited on α-Al2O3 (0001) substrates was investigated. The X-ray diffraction, Raman and reflection high energy electron diffraction characterizations revealed that graphene films were epitaxially grown on Ir(111) layers, and the in-plane epitaxial relationship between graphene, Ir(111), and α-Al2O3(0001) was graphene ⟨ 1 1 ¯ 00 ⟩//Ir⟨ 11 2 ¯ ⟩//α-Al2O3⟨ 11 2 ¯ 0 ⟩. The graphene on Ir(111) was electrochemically transferred onto SiO2/Si substrates. We also demonstrated the reuse of the Ir(111)/α-Al2O3(0001) substrates in multiple growth and transfer cycles.

  19. Shape-controlled synthesis of diamond crystalby epitaxial growth under high pressureand high temperature conditions

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-Bing; Jia Xiao-Peng; Zhang Zhuang-Fei; Huang Hai-Liang; Zhou Zhen-Xiang; Ma Hong-An

    2011-01-01

    In this paper,the diamond epitaxial growth mechanism has been studied in detail by employing several types of diamond as a seed in a catalyst-graphite system under high pressure and high temperature (HPHT) conditions.We find that the diamond nucleation,growth rate,crystal orientation,and morphology are significantly influenced by the original seeds.The smooth surfaces of seeds are beneficial for the fabrication of high-quality diamond.Our results reveal that the diamond morphology is mainly determined by the original shape of seeds in the early growth stage,but it has an adjustment process during the growth and leads to well symmetry.Additionally,we have also established the growth model for the twinned diamond grown on several seeds,and proposed the possible growth processes by tracking the particular shapes of seeds before and after treatment under HPHT conditions.These results suggest that the shape-controlled synthesis of diamond with well morphology can be realized by employing certain suitable diamond seeds.This work is expected to play an important role in the preparation of trustworthy diamond-based electronic and photonic devices.

  20. Analysis of faceted growth hillocks in MOCVD grown epitaxial HgCdTe on GaAs with a nuclear microprobe

    International Nuclear Information System (INIS)

    This paper reports that Hg(1-z)Cdx epitaxial layers on GaAs substrates grown by Metal Organic Chemical Vapour Deposition (MOCVD) display growth defects resembling pyramidal faceted hillocks which appear to originate from defects originally present on the substrate. For left-angle 100 right-angle oriented GaAs substrates and normal growth conditions, these growth defects have an areal density of 1--1000 mm-2. The size of the hillocks depends on the layer thickness and they have the potential to degrade performance of optoelectronic devices fabricated in the epitaxial layers. Nuclear microprobe analysis, performed with a 2 MeV He+ beam focused to less than 5 μm in diameter, has allowed the hillocks to be imaged with the technique of Channeling Contrast Microscopy (CCM). Channeling spectra, obtained by Rutherford Backscattering Spectrometry (RBS) of the hillocks themselves, showed that the χmin was 13%. This was similar to the χmin of the high quality single crystal surrounding material. The CCM images also revealed extensive regions of poor channeling, with shapes that suggested that the region originally arose from scratches in the substrate. These poor channeling regions were not readily observable by other techniques

  1. Formation and properties of epitaxial CdSe, ZnSe quantum dots. Conventional molecular beam epitaxy and related techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Suddhasatta

    2008-01-16

    This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. it is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. While CdSe heteroepitaxy occurs in the multilayer-mode at T{sub G}=300 C, a reentrant recovery of the layer-by-layer mode is reported in this thesis, for growth at T{sub G}<{proportional_to}240 C. In the second variant technique, formation of large and distinct islands is demonstrated by deposition of amorphous selenium (a-Se) onto a 2D CdSe epilayer at room temperature and its subsequent desorption at a higher temperature (T{sub D}=230 C). The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. (orig.)

  2. Angle-resolved X-ray photoelectron spectroscopy of topmost surface for LaNiO 3 thin film grown on SrTiO 3 substrate by laser molecular beam epitaxy

    Science.gov (United States)

    Chen, P.; Xu, S. Y.; Lin, J.; Ong, C. K.; Cui, D. F.

    1999-01-01

    The LaNiO 3 thin film was grown on SrTiO 3 (001) substrate by computer-controlled laser molecular beam epitaxy (laser MBE). In situ monitoring of the growing film surface was performed with a reflection high energy electron diffraction (RHEED). Angle-resolved X-ray photoelectron spectroscopy (ARXPS) indicated that the terminating plane of the LaNiO 3 film was the LaO atomic plane, and the SrTiO 3 (001) surfaces of as-supplied substrate as well as HF-pretreated substrate were predominantly terminated with TiO atomic plane. The structural conversion of the topmost atomic layer from NiO to LaO occurred during the LaNiO 3 epitaxial growth process.

  3. Encapsulated solid phase epitaxy of a Ge quantum well embedded in an epitaxial rare earth oxide.

    Science.gov (United States)

    Laha, Apurba; Bugiel, E; Jestremski, M; Ranjith, R; Fissel, A; Osten, H J

    2009-11-25

    An efficient method based on molecular beam epitaxy has been developed to integrate an epitaxial Ge quantum well buried into a single crystalline rare earth oxide. The monolithic heterostructure comprised of Gd2O3-Ge-Gd2O3 grown on an Si substrate exhibits excellent crystalline quality with atomically sharp interfaces. This heterostructure with unique structural quality could be used for novel nanoelectronic applications in quantum-effect devices such as nanoscale transistors with a high mobility channel, resonant tunneling diode/transistors, etc. A phenomenological model has been proposed to explain the epitaxial growth process of the Ge layer under oxide encapsulation using a solid source molecular beam epitaxy technique. PMID:19875877

  4. The structural transition from epitaxial Fe/Pt multilayers to an ordered FePt film using low energy ion beam sputtering deposition with no buffer layer

    International Nuclear Information System (INIS)

    An epitaxial L10 FePt thin film grown from an [Fe(10 Å)/Pt(10 Å)]15 multilayer with the orientation of (001) was prepared by an ion beam sputtering deposition method without buffer layer. From the measurement data of X-ray diffraction and X-ray reflectivity, the multilayer structure was totally disappeared and a uniform FePt alloy thin film was formed at temperatures higher than 600 °C. For the as-deposited thin film grown at 100 °C, the multilayer already possesses an epitaxial structure. The epitaxial relation is FePt(001)[100]//MgO(001)[100] and this epitaxial relation persists after sequential high temperature annealing. An epitaxial L10 ordered FePt(001) film with order parameter of 0.95 was obtained when the annealing temperature reached 650 °C. The ordered FePt(001) thin film has a perpendicular magnetic anisotropy with a squareness of 0.95 ± 0.03 on the magnetic hysteresis loop. This experiment demonstrates that the low energy ion beam sputtering deposition will preserve the epitaxial relation with no buffer layer between multilayer and substrate. - Highlights: • The Fe/Pt films using ion sputtering deposition with no buffer layer is epitaxial. • Multilayer structure was totally disappeared at temperatures higher than 600 °C. • Order parameter reach 0.95 after annealing at 650 °C. • Interfacial epitaxial FePt alloy already formed at 100 °C

  5. Growth and characterization of ultrathin epitaxial MnO film on Ag(001)

    Science.gov (United States)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-07-01

    We present here a comprehensive growth procedure to obtain a well-ordered MnO(001) ultrathin film on Ag(001) substrate. Depending upon the oxygen partial pressure during the growth, different phases of manganese oxide have been detected by Low Energy Electron Diffraction (LEED) and X-ray Photoelectron Spectroscopic (XPS) studies. A modified growth scheme has been adopted to get well-ordered and stoichiometric MnO(001) ultrathin film. The detailed growth mechanism of epitaxial MnO film on Ag(001) has been studied step by step, using LEED and XPS techniques. Observation of sharp (1 × 1) LEED pattern with a low inelastic background, corresponds to a long-range atomic order with low defect densities indicating the high structural quality of the film. The Mn 2p and Mn 3s core-level spectra confirm the oxidation state as well as the stoichiometry of the grown MnO films. Apart from the growth optimization, the evolution of strain relaxation of the MnO(001) film with film thickness has been explored.

  6. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template

    Science.gov (United States)

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-01-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi2Se3 epitaxial heterostructures by using two-dimensional (2D) Bi2Se3 nanoplates as soft templates. The dangling bond–free surface of 2D Bi2Se3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi2Se3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi2Se3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi2Se3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi2Se3 nanoplates. We further show that the resulted PbSe/Bi2Se3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi2Se3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions.

  7. Growth of epitaxial micrometer-sized Cu- and Cu-Ni pyramides on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Sarah; Ernst, Benedikt; Nowak, Regina; Seyffarth, Susanne; Krebs, Hans-Ulrich [Institut fuer Materialphysik, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany)

    2010-07-01

    Thin Cu and Cu-Ni films were prepared on Si(111) substrates using pulsed laser deposition (PLD) in ultra high vacuum. At elevated substrate temperatures above 200 C, either during deposition or afterwards, epitaxial growth of three dimensional pyramides with edge lengths of about five micrometers and heights up to 500 nm is observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). In the case of pure Cu, the base area of these islands is a triangle. With increasing Ni-content, shape changes occur, which can be explained by a reduction of surface diffusion. The influence of the SiO{sub 2} layer thickness and the formation of a Cu-Si interlayer was studied by ellipsometry. The transformation of the Cu and Cu-Ni films into the pyramids during heating were studied by resistance and X-ray measurements.

  8. Homo-epitaxial growth of CdTe by sublimation under low pressure

    Science.gov (United States)

    Yoshioka, Yasushi; Yoda, Hiroki; Kasuga, Masanobu

    1991-12-01

    A new method to obtain a twin-free single crystal of CdTe on a CdTe substrate by sublimation is described. When CdTe(111)A substrates were employed for the homo-epitaxial growth of CdTe, twin crystals were frequently obtained. The substrate of CdTe(211)A and (211)B, however, gave no twins resulting in single crystals of high quality. The difference may come from the existence of many steps, sufficient to suppress two-dimensional nucleation and to promote step flow mechanism. To obtain twin-free films, therefore, a fairly large tilt angle of the substrate from a singular plane and a fairly low supersaturation are essential.

  9. Strain relaxation in GaN/AlxGa1-xN superlattices grown by plasma-assisted molecular-beam epitaxy

    International Nuclear Information System (INIS)

    We have investigated the misfit relaxation process in GaN/AlxGa1-xN (x = 0.1, 0.3, 0.44) superlattices (SL) deposited by plasma-assisted molecular beam epitaxy. The SLs under consideration were designed to achieve intersubband absorption in the mid-infrared spectral range. We have considered the case of growth on GaN (tensile stress) and on AlGaN (compressive stress) buffer layers, both deposited on GaN-on-sapphire templates. Using GaN buffer layers, the SL remains almost pseudomorphic for x = 0.1, 0.3, with edge-type threading dislocation densities below 9 x 108 cm-2 to 2 x 109 cm-2. Increasing the Al mole fraction to 0.44, we observe an enhancement of misfit relaxation resulting in dislocation densities above 1010 cm-2. In the case of growth on AlGaN, strain relaxation is systematically stronger, with the corresponding increase in the dislocation density. In addition to the average relaxation trend of the SL, in situ measurements indicate a periodic fluctuation of the in-plane lattice parameter, which is explained by the different elastic response of the GaN and AlGaN surfaces to the Ga excess at the growth front. The results are compared with GaN/AlN SLs designed for near-infrared intersubband absorption.

  10. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Treu, J., E-mail: Julian.Treu@wsi.tum.de, E-mail: Gregor.Koblmueller@wsi.tum.de; Speckbacher, M.; Saller, K.; Morkötter, S.; Xu, X.; Riedl, H.; Abstreiter, G.; Finley, J. J.; Koblmüller, G., E-mail: Julian.Treu@wsi.tum.de, E-mail: Gregor.Koblmueller@wsi.tum.de [Walter Schottky Institut, Physik Department, Center of Nanotechnology and Nanomaterials, Technische Universität München, Am Coulombwall 4, Garching 85748 (Germany); Döblinger, M. [Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich 81377 (Germany)

    2016-02-01

    We delineate the optimized growth parameter space for high-uniformity catalyst-free InGaAs nanowire (NW) arrays on Si over nearly the entire alloy compositional range using selective area molecular beam epitaxy. Under the required high group-V fluxes and V/III ratios, the respective growth windows shift to higher growth temperatures as the Ga-content x(Ga) is tuned from In-rich to Ga-rich InGaAs NWs. Using correlated x-ray diffraction, transmission electron microscopy, and micro-photoluminescence spectroscopy, we identify structural defects to govern luminescence linewidths in In-rich (x(Ga) < 0.4) and Ga-rich (x(Ga) > 0.6) NWs, whereas limitations at intermediate Ga-content (0.4 < x(Ga) < 0.6) are mainly due to compositional inhomogeneities. Most remarkably, the catalyst-free InGaAs NWs exhibit a characteristic transition in crystal structure from wurtzite to zincblende (ZB) dominated phase near x(Ga) ∼ 0.4 that is further reflected in a cross-over from blue-shifted to red-shifted photoluminescence emission relative to the band edge emission of the bulk ZB InGaAs phase.

  11. Methods to reduce the loading effect in selective and non-selective epitaxial growth of sigec layers

    International Nuclear Information System (INIS)

    Various methods to reduce both global and local loading effect during non-selective and selective epitaxial growth of Si1-x-yGexCy (0.09≤x≤0.28 and 0≤y≤0.01) layers have been proposed. Evaluation of the proposed solutions for issues such as defect generation and the possibility for integration in device structures have been performed. The key point in these methods is based on reduction of surface diffusion of the adsorbed species on the oxide. In non-selective epitaxy, this was achieved by introducing a thin silicon polycrystalline seed layer on the oxide prior to Si1-x-yGexCy deposition. The thickness of this seed layer had a crucial role on both the global and local loading effect, and also on the epitaxial quality. Higher carbon content (y≥0.006) in Si1-x-yGexCy layers had no noticeable influence on the loading effect, however, the defect density was clearly increased in these layers. In selective epitaxy case, introducing square polycrystalline Si stripes around the oxide openings acting as diffusion barriers have reduced the loading effect effectively. Meanwhile, using Si nitride stripes showed no visible effect on Si1-x-yGexCy layer profile. Further decrease in loading effect can be performed by increasing the HCl partial pressure during epitaxy. Chemical-mechanical polishing (CMP) was performed to remove the polycrystalline stripe on the oxide

  12. Growth temperature-dependent metal-insulator transition of vanadium dioxide epitaxial films on perovskite strontium titanate (111) single crystals

    Science.gov (United States)

    Wang, Liangxin; Yang, Yuanjun; Zhao, Jiangtao; Hong, Bin; Hu, Kai; Peng, Jinlan; Zhang, Haibin; Wen, Xiaolei; Luo, Zhenlin; Li, Xiaoguang; Gao, Chen

    2016-04-01

    Vanadium dioxide (VO2) epitaxial films were grown on perovskite single-crystal strontium titanate (SrTiO3) substrates by reactive radio-frequency magnetron sputtering. The growth temperature-dependent metal-insulator transition (MIT) behavior of the VO2 epitaxial films was then investigated. We found that the order of magnitude of resistance change across the MIT increased from 102 to 104 with increasing growth temperature. In contrast, the temperature of the MIT does not strongly depend on the growth temperature and is fairly stable at about 345 K. On one hand, the increasing magnitude of the MIT is attributed to the better crystallinity and thus larger grain size in the (010)-VO2/(111)-SrTiO3 epitaxial films at elevated temperature. On the other hand, the strain states do not change in the VO2 films deposited at various temperatures, resulting in stable V-V chains and V-O bonds in the VO2 epitaxial films. The accompanied orbital occupancy near the Fermi level is also constant and thus the MIT temperatures of VO2 films deposited at various temperatures are nearly the same. This work demonstrates that high-quality VO2 can be grown on perovskite substrates, showing potential for integration into oxide heterostructures and superlattices.

  13. Structural and ferroelectric properties of BaTiO 3/YBa 2Cu 3O 7 heterostructures prepared by laser molecular beam epitaxy

    Science.gov (United States)

    Wang, H. S.; Liu, Y. W.; Ma, K.; Peng, Z. Q.; Cui, D. F.; Lu, H. B.; Zhou, Y. L.; Chen, Z. H.; Li, L.; Yang, G. Z.

    1997-08-01

    Heteroepitaxial BaTiO 3(BTO)/YBa 2Cu 3O 7(YBCO) thin films were grown on (100) SrTiO 3(STO) substrates by ozone assistant laser molecular beam epitaxy (L sbnd MBE). The results show that by using this technique, high quality ferroelectric/superconductor heterostructures with high crystalline quality and desirable device performance can be obtained.

  14. Epitaxy of semiconductor-superconductor nanowires

    DEFF Research Database (Denmark)

    Krogstrup, P.; Ziino, N.L.B.; Chang, W.;

    2015-01-01

    of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires......Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface...... plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design...

  15. Structural properties of GaN grown on AlGaN/AlN stress mitigating layers on 100-mm Si (111) by ammonia molecular beam epitaxy

    International Nuclear Information System (INIS)

    The structural properties of GaN grown on AlGaN/AlN stress mitigating layers on 100-mm diameter Si (111) substrate by ammonia molecular beam epitaxy have been reported. High resolution X-ray diffraction, micro-Raman spectroscopy, transmission electron microscopy and secondary ion mass spectroscopy have been used to study the influence of AlN thickness and AlGaN growth temperature on the quality of GaN. GaN grown on thicker AlN showed reduced dislocation density and lesser tensile strain. Three-dimensional growth regime was observed for GaN grown at lower AlGaN growth temperature while higher AlGaN growth temperature resulted in two-dimensional growth mode. The dislocation bending and looping at the AlGaN/AlN interface was found to have significant influence on the dislocation density and strain in the GaN layer. The evolution and interaction of threading dislocations play a major role in determining the quality and the strain states of GaN. - Highlights: ► Structural properties of GaN grown on AlGaN/AlN stress mitigating layers ► Effect of AlN thickness and AlGaN growth temperature on the quality of GaN ► Thicker AlN shows reduced dislocation density and lesser tensile strain. ► Dislocations at the AlGaN/AlN interface influences the residual strain in GaN. ► Si diffusion through pipe diffusion mechanism

  16. Structural properties of GaN grown on AlGaN/AlN stress mitigating layers on 100-mm Si (111) by ammonia molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, M., E-mail: manv0002@e.ntu.edu.sg [NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 (Singapore); Dharmarasu, N. [Temasek Laboratories, Nanyang Technological University, 637553 (Singapore); Radhakrishnan, K. [NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 (Singapore); Temasek Laboratories, Nanyang Technological University, 637553 (Singapore); Ravikiran, L. [NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 (Singapore)

    2012-10-01

    The structural properties of GaN grown on AlGaN/AlN stress mitigating layers on 100-mm diameter Si (111) substrate by ammonia molecular beam epitaxy have been reported. High resolution X-ray diffraction, micro-Raman spectroscopy, transmission electron microscopy and secondary ion mass spectroscopy have been used to study the influence of AlN thickness and AlGaN growth temperature on the quality of GaN. GaN grown on thicker AlN showed reduced dislocation density and lesser tensile strain. Three-dimensional growth regime was observed for GaN grown at lower AlGaN growth temperature while higher AlGaN growth temperature resulted in two-dimensional growth mode. The dislocation bending and looping at the AlGaN/AlN interface was found to have significant influence on the dislocation density and strain in the GaN layer. The evolution and interaction of threading dislocations play a major role in determining the quality and the strain states of GaN. - Highlights: Black-Right-Pointing-Pointer Structural properties of GaN grown on AlGaN/AlN stress mitigating layers Black-Right-Pointing-Pointer Effect of AlN thickness and AlGaN growth temperature on the quality of GaN Black-Right-Pointing-Pointer Thicker AlN shows reduced dislocation density and lesser tensile strain. Black-Right-Pointing-Pointer Dislocations at the AlGaN/AlN interface influences the residual strain in GaN. Black-Right-Pointing-Pointer Si diffusion through pipe diffusion mechanism.

  17. Kinetics versus thermodynamics of the metal incorporation in molecular beam epitaxy of (InxGa1−x2O3

    Directory of Open Access Journals (Sweden)

    Patrick Vogt

    2016-08-01

    Full Text Available We present a detailed study of the reaction kinetics and thermodynamics of the plasma-assisted oxide molecular beam epitaxy of the ternary compound (InxGa1−x2O3 for 0 ≤ x ≤ 1. We measured the growth rate of the alloy in situ by laser reflectrometry as a function of growth temperature TG for different metal-to-oxygen flux ratios rMe, and nominal In concentrations xnom in the metal flux. We determined ex situ the In and Ga concentrations in the grown film by energy dispersive X-ray spectroscopy. The measured In concentration x shows a strong dependence on the growth parameters TG, rMe, and xnom whereas growth on different co-loaded substrates shows that in the macroscopic regime of ∼μm3 x does neither depend on the detailed layer crystallinity nor on crystal orientation. The data unveil that, in presence of In, Ga incorporation is kinetically limited by Ga2O desorption the same way as during Ga2O 3 growth. In contrast, In incorporation during ternary growth is thermodynamically suppressed by the presence of Ga due to stronger Ga–O bonds. Our experiments revealed that Ga adatoms decompose/etch the In–O bonds whereas In adatoms do not decompose/etch the Ga–O bonds. This result is supported by our thermochemical calculations. In addition we found that a low TG and/or excessively low rMe kinetically enables In incorporation into (InxGa1−x2O3. This study may help growing high-quality ternary compounds (InxGa1−x2O3 allowing band gap engineering over the range of 2.7–4.7 eV.

  18. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2013-11-18

    We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO{sub 3} film grown on (La{sub 0.3}Sr{sub 0.7})(Al{sub 0.65}Ta{sub 0.35})O{sub 3} (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ∼12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness.

  19. Influence of complex impact of the picosecond electron beam and volume discharge in atmospheric-pressure air on the electronic properties of MCT epitaxial films surface

    Science.gov (United States)

    Grigoryev, Denis V.; Novikov, Vadim A.; Bezrodnyy, Dmitriy A.; Tarasenko, Viktor F.; Shulepov, Michail A.; Dvoretskii, Sergei A.

    2015-12-01

    In the present report we studied the distribution of surface potential of the HgCdTe epitaxial films grown by molecular beam epitaxy after the impact of picosecond electron beam and volume discharge in atmospheric-pressure air. The surface potential distribution was studied by the Kelvin Force Probe Microscopy. The experimental data obtained for the variation of the contact potential difference (ΔCPD) between the V-defect and the main matrix of the epitaxial film. The investigation of the origin epitaxial films show that variation of the spatial distribution of surface potential in the V-defect region can be related to the variation of the material composition. The experimental data obtained for the irradiated samples show that the mean value of ΔCPD for the original surface differs from the one for the irradiated surface for 55 eV. At the same time the mean value of ΔCPD changes its sign indicating that the original surface of the epitaxial HgCdTe film predominantly contains the grains with increased cadmium content while after the irradiation the grains possess an increased content of mercury. Therefore, during the irradiation process a decrease of the mercury content in the near-surface region of the semiconductor takes place resulting in the alteration of the electrophysical properties in the films near-surface region.

  20. Controlling the growth of epitaxial graphene on metalized diamond (111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Cooil, S. P., E-mail: simon.cooil@ntnu.no [Department of Physics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom); Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim (Norway); Wells, J. W. [Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim (Norway); Hu, D.; Evans, D. A. [Department of Physics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom); Niu, Y. R.; Zakharov, A. A. [MAX IV Laboratory, Lund University, 221 00 Lund (Sweden); Bianchi, M. [Department of Physics and Astronomy and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus DK-8000 (Denmark)

    2015-11-02

    The 2-dimensional transformation of the diamond (111) surface to graphene has been demonstrated using ultrathin Fe films that catalytically reduce the reaction temperature needed for the conversion of sp{sup 3} to sp{sup 2} carbon. An epitaxial system is formed, which involves the re-crystallization of carbon at the Fe/vacuum interface and that enables the controlled growth of monolayer and multilayer graphene films. In order to study the initial stages of single and multilayer graphene growth, real time monitoring of the system was preformed within a photoemission and low energy electron microscope. It was found that the initial graphene growth occurred at temperatures as low as 500 °C, whilst increasing the temperature to 560 °C was required to produce multi-layer graphene of high structural quality. Angle resolved photoelectron spectroscopy was used to study the electronic properties of the grown material, where a graphene-like energy momentum dispersion was observed. The Dirac point for the first layer is located at 2.5 eV below the Fermi level, indicating an n-type doping of the graphene due to substrate interactions, while that of the second graphene layer lies close to the Fermi level.

  1. Amorphous inclusions during Ge and GeSn epitaxial growth via chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium); Shimura, Y. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Kumar, A. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Vincent, B.; Moussa, A.; Vanhaeren, D.; Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, W. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Caymax, M.; Loo, R. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, M. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium)

    2015-09-01

    In this work, we discuss the characteristics of particular island-type features with an amorphous core that are developed during the low temperature epitaxial growth of Ge and GeSn layers by means of chemical vapor deposition with Ge{sub 2}H{sub 6}. Although further investigations are needed to unambiguously identify the origin of these features, we suggest that they are originated by the formation of clusters of H and/or contaminants atoms during growth. These would initially cause the formation of pits with crystalline rough facets over them, resulting in ring-shaped islands. Then, when an excess surface energy is overcome, an amorphous phase would nucleate inside the pits and fill them. Reducing the pressure and/or increasing the growth temperature can be effective ways to prevent the formation of these features, likely due to a reduction of the surface passivation from H and/or contaminant atoms. - Highlights: • Island features with amorphous cores develop during low T Ge(Sn) CVD with Ge{sub 2}H{sub 6.} • These features are thoroughly characterized in order to understand their origin. • A model is proposed to describe the possible evolution of these features. • Lower pressures and/or higher temperatures avoid the formation of these features.

  2. Epitaxial growth and properties of YBaCuO thin films

    International Nuclear Information System (INIS)

    The growth quality of YBaCuO thin films deposited by sputtering on different substrates (Al2O3, MgO, SrTiO3, Zr(Y)O2) has been studied by X-ray diffraction and channeling experiments as a function of the deposition temperature. Besides the substrate orientation, the substrate temperature is the parameter determining whether films grow in c-, a-, (110) or mixed directions. Epitaxial growth correlates with high critical current values in the films of up to 5.5x106 A/cm2 at 77 K. Ultrathin films with thicknesses down to 2 nm were grown revealing three-dimensional superconducting behaviour. Films on (100) SrTiO3 of 9 nm thickness and below are partially strained indicating commensurate growth. From the analysis of the surface disorder 1 displaced Ba atom per Ba2Y row was obtained indicating that the disordered layer thickness is about 0.6 nm. Tunnel junctions fabricated on these films reveal gap-like structures near ±16 mV and ±30 mV. (orig.)

  3. Controlling the growth of epitaxial graphene on metalized diamond (111) surface

    International Nuclear Information System (INIS)

    The 2-dimensional transformation of the diamond (111) surface to graphene has been demonstrated using ultrathin Fe films that catalytically reduce the reaction temperature needed for the conversion of sp3 to sp2 carbon. An epitaxial system is formed, which involves the re-crystallization of carbon at the Fe/vacuum interface and that enables the controlled growth of monolayer and multilayer graphene films. In order to study the initial stages of single and multilayer graphene growth, real time monitoring of the system was preformed within a photoemission and low energy electron microscope. It was found that the initial graphene growth occurred at temperatures as low as 500 °C, whilst increasing the temperature to 560 °C was required to produce multi-layer graphene of high structural quality. Angle resolved photoelectron spectroscopy was used to study the electronic properties of the grown material, where a graphene-like energy momentum dispersion was observed. The Dirac point for the first layer is located at 2.5 eV below the Fermi level, indicating an n-type doping of the graphene due to substrate interactions, while that of the second graphene layer lies close to the Fermi level

  4. High quality InAlN single layers lattice-matched to GaN grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    We report on properties of high quality ∼60 nm thick InAlN layers nearly in-plane lattice-matched to GaN, grown on c-plane GaN-on-sapphire templates by plasma-assisted molecular beam epitaxy. Excellent crystalline quality and low surface roughness are confirmed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy. High annular dark field observations reveal a periodic in-plane indium content variation (8 nm period), whereas optical measurements evidence certain residual absorption below the band-gap. The indium fluctuation is estimated to be ± 1.2% around the nominal 17% indium content via plasmon energy oscillations assessed by electron energy loss spectroscopy with sub-nanometric spatial resolution.

  5. Characteristics of AlN/GaN nanowire Bragg mirror grown on (001) silicon by molecular beam epitaxy

    KAUST Repository

    Heo, Junseok

    2013-10-01

    GaN nanowires containing AlN/GaN distributed Bragg reflector (DBR) heterostructures have been grown on (001) silicon substrate by molecular beam epitaxy. A peak reflectance of 70% with normal incidence at 560 nm is derived from angle resolved reflectance measurements on the as-grown nanowire DBR array. The measured peak reflectance wavelength is significantly blue-shifted from the ideal calculated value. The discrepancy is explained by investigating the reflectance of the nanoscale DBRs with a finite difference time domain technique. Ensemble nanowire microcavities with In0.3Ga 0.7N nanowires clad by AlN/GaN DBRs have also been characterized. Room temperature emission from the microcavity exhibits considerable linewidth narrowing compared to that measured for unclad In0.3Ga0.7N nanowires. The resonant emission is characterized by a peak wavelength and linewidth of 575 nm and 39 nm, respectively. © 2013 AIP Publishing LLC.

  6. Contactless electroreflectance studies of surface potential barrier for N- and Ga-face epilayers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kudrawiec, R.; Janicki, L.; Gladysiewicz, M.; Misiewicz, J. [Institute of Physics, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Cywinski, G.; Boćkowski, M.; Muzioł, G. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw (Poland); Chèze, C. [TopGaN Sp. z o.o., Sokołowska 29/37, 01-142 Warsaw (Poland); Sawicka, M.; Skierbiszewski, C. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw (Poland); TopGaN Sp. z o.o., Sokołowska 29/37, 01-142 Warsaw (Poland)

    2013-07-29

    Two series of N- and Ga-face GaN Van Hoof structures were grown by plasma-assisted molecular beam epitaxy to study the surface potential barrier by contactless electroreflectance (CER). A clear CER resonance followed by strong Franz-Keldysh oscillation of period varying with the thickness of undoped GaN layer was observed for these structures. This period was much shorter for N-polar structures that means smaller surface potential barrier in these structures than in Ga-polar structures. From the analysis of built-in electric field it was determined that the Fermi-level is located 0.27 ± 0.05 and 0.60 ± 0.05 eV below the conduction band for N- and Ga-face GaN surface, respectively.

  7. Correlation of nanochemistry and electrical properties in HfO2 films grown by metalorganic molecular-beam epitaxy

    Science.gov (United States)

    Moon, Tae-Hyoung; Ham, Moon-Ho; Myoung, Jae-Min

    2005-03-01

    We present the annealing effects on nanochemistry and electrical properties in HfO2 dielectrics grown by metalorganic molecular-beam epitaxy. After the postannealing treatment of HfO2 films in the temperature range of 600-800°C, the thicknesses and chemical states of the films were examined by high-resolution transmission electron microscopy and angle-resolved x-ray photoelectron spectroscopy. By comparing the line shapes of core-level spectra for the samples with different annealing temperatures, the concentrations of SiO and Hf-silicate with high dielectric constant are found to be highest for HfO2 film annealed at 700°C. This result supports that the accumulation capacitance of the sample annealed at 700°C is not deteriorated in spite of a steep increase in interfacial layer thickness compared with that of the sample annealed at 600°C.

  8. Room temperature Ultraviolet B emission from InAlGaN films synthesized by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W., E-mail: wei.kong@duke.edu; Jiao, W. Y.; Kim, T. H.; Brown, A. S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Roberts, A. T. [Charles Bowden Laboratory, Army Aviation and Missile RD& E Center, Redstone Arsenal, Alabama 35898 (United States); Fournelle, J. [Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706 (United States); Losurdo, M. [CNR-NANOTEC, Istituto di Nanotecnologia, via Orabona, 4-70126 Bari (Italy); Everitt, H. O. [Charles Bowden Laboratory, Army Aviation and Missile RD& E Center, Redstone Arsenal, Alabama 35898 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2015-09-28

    Thin films of the wide bandgap quaternary semiconductor In{sub x}Al{sub y}Ga{sub (1−x−y)}N with low In (x = 0.01–0.05) and high Al composition (y = 0.40–0.49) were synthesized on GaN templates by plasma-assisted molecular beam epitaxy. High-resolution X-ray diffraction was used to correlate the strain accommodation of the films to composition. Room temperature ultraviolet B (280 nm–320 nm) photoluminescence intensity increased with increasing In composition, while the Stokes shift remained relatively constant. The data suggest a competition between radiative and non-radiative recombination occurs for carriers, respectively, localized at centers produced by In incorporation and at dislocations produced by strain relaxation.

  9. Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films

    Science.gov (United States)

    Lutsev, L. V.; Korovin, A. M.; Bursian, V. E.; Gastev, S. V.; Fedorov, V. V.; Suturin, S. M.; Sokolov, N. S.

    2016-05-01

    Synthesis of nanosized yttrium iron garnet (Y3Fe5O12, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10-5. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is as low as 1.2%.

  10. Antimony incorporation in InAs quantum dots grown on GaAs substrate by molecular beam epitaxy

    Science.gov (United States)

    Rihani, J.; Sallet, V.; Christophe, H. J.; Oueslati, M.; Chtourou, R.

    2008-01-01

    We have grown InAs(Sb) quantum dots (QDs) on GaAs (0 0 1) substrates by molecular beam epitaxy (MBE) using two different antimony exposures ( ΦSb). Atomic force microscopy (AFM) and photoluminescence (PL) spectroscopy were carried out to investigate the dot size evolution as function of the incorporated antimony content in InAs/GaAs QDs material. Anomalous asymmetric-band feature was observed in room temperature photoluminescence (RTPL) spectra of the investigated QD samples grown at relatively high temperature (490 °C). From the temperature-dependent PL measurements, it was found that the asymmetric-band feature is associated with the ground-states transitions from QDs with bimodal size distribution. The analysis of the pump power dependent PL spectra allows us to suggest a type II band lineup for the InAsSb/GaAs QDs materials system.

  11. Absorption and emission of (In,Ga)N/GaN quantum wells grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Siozade, L.; Disseix, P.; Vasson, A.; Leymarie, J. [CNRS, Aubiere (France). LASMEA; Damilano, B.; Grandjean, N.; Massies, J. [CNRS, Valbonne (France). CRHEA

    2001-01-01

    Thermally detected optical absorption (TDOA) and photoluminescence experiments are carried out on In{sub 0.16}Ga{sub 0.84}N/GaN multi-quantum wells (MQWs) grown by molecular beam epitaxy on (0001) sapphire substrates. A model proposed to adjust the TDOA line shape, allows to deduce the band-edge energies, the absorption coefficients and the broadening parameters of the (In,Ga)N MQWs for different thicknesses. The Fabry-Perot oscillations, which structure the TDOA spectra, are considered in this modelling to accurately account for the experimental data. The emission, which covers the whole visible spectrum at room temperature, is achieved by varying the thickness from 1.5 to 5 nm. A very large Stokes shift between the emission and absorption energies is deduced at low temperature, for the (In,Ga)N MQWs. (orig.)

  12. Optical characterization of Hg1-xCdxTe/CdTe/GaAs multilayers grown by molecular beam epitaxy

    Science.gov (United States)

    Liu, Weijun; Liu, Pulin; Shi, Guo L.; Zhu, Jing-Bing; He, Li; Xie, Qin X.; Yuan, Shixin

    1991-11-01

    The IR transmission spectra for HgCdTe/CdTe/GaAs multilayers grown by molecular-beam epitaxy were measured in the wavenumber region of 600 cm-1 - 4000 cm-1 at 300 K and 77 K. The transmission spectra were calculated taking the thickness d1 of MCT layer and the thickness d2 of CdTe layer as fitting parameters in the energy range from 600 cm-1 to 300 cm-1 below the energy gap Eg assuming the existence of abrupt interfaces between the neighboring layers. The values of d1 and d2 obtained by fitting the IR transmission spectra are in good agreement with that by transmission electron microscopy (TEM) measurement. The accurate absorption coefficient spectra were obtained and discussed in the energy region equivalent to 0.9 Eg to 4000 cm-1 taking into account the interference effects.

  13. CdSe/CdTe type-II superlattices grown on GaSb (001) substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    CdSe/CdTe superlattices are grown on GaSb substrates using molecular beam epitaxy. X-ray diffraction measurements and cross-sectional transmission electron microscopy images indicate high crystalline quality. Photoluminescence (PL) measurements show the effective bandgap varies with the superlattice layer thicknesses and confirm the CdSe/CdTe heterostructure has a type-II band edge alignment. The valence band offset between unstrained CdTe and CdSe is determined as 0.63 ± 0.06 eV by fitting the measured PL peak positions using the envelope function approximation and the Kronig-Penney model. These results suggest that CdSe/CdTe superlattices are promising candidates for multi-junction solar cells and other optoelectronic devices based on GaSb substrates.

  14. Monolithically integrated InGaAs/InP MSM-FET photoreceiver prepared by chemical beam epitaxy

    International Nuclear Information System (INIS)

    The authors demonstrate the first monolithic integration of a metal-semiconductor-metal (MSM) InGaAs photodetector with an FET and resistors into a high-impedance front-end photoreceiver circuit. The sample was grown in a single step by chemical beam epitaxy, and standard processing steps for making FET's were used to fabricate the receiver circuit. Semi-insulating Fe-doped InP layers were used as the insulating gate of the FET, the barrier enhancement layer in the MSM photodetector, and the electrical isolation layer between the photodetector and the electronic circuit. A bit error rate of less than 10-9 at 200 Mbits/s has been achieved with this preliminary circuit for an optical power of - 17 dBm

  15. Formation of GaN quantum dots by molecular beam epitaxy using NH{sub 3} as nitrogen source

    Energy Technology Data Exchange (ETDEWEB)

    Damilano, B., E-mail: bd@crhea.cnrs.fr; Brault, J.; Massies, J. [CRHEA-CNRS, Centre de Recherche sur l' Hétéro-Epitaxie et ses Applications, Centre National de la Recherche Scientifique, Rue B. Grégory, Valbonne 06560 (France)

    2015-07-14

    Self-assembled GaN quantum dots (QDs) in Al{sub x}Ga{sub 1−x}N (0.3 ≤ x ≤ 1) were grown on c-plane sapphire and Si (111) substrates by molecular beam epitaxy using ammonia as nitrogen source. The QD formation temperature was varied from 650 °C to 800 °C. Surprisingly, the density and size of QDs formed in this temperature range are very similar. This has been explained by considering together experimental results obtained from reflection high-energy electron diffraction, atomic force microscopy, and photoluminescence to discuss the interplay between thermodynamics and kinetics in the QD formation mechanisms. Finally, possible ways to better control the QD optical properties are proposed.

  16. A high quantum efficiency in situ doped mid-wavelength infrared p-on-n homojunction superlattice detector grown by photoassisted molecular-beam epitaxy

    Science.gov (United States)

    Harris, K. A.; Myers, T. H.; Yanka, R. W.; Mohnkern, L. M.; Otsuka, N.

    1991-10-01

    HgTe/CdTe superlattices in infrared (IR) detector structures have been theoretically shown to allow for better control over cutoff wavelength, minimize diffusion currents, and greatly reduce band-to-band tunneling currents as compared with the corresponding HgCdTe alloy. However, the few HgTe/CdTe superlattice detectors that have been fabricated exhibit little or no quantum efficiency. In this paper, we report the first high quantum efficiency mid-wavelength infrared (MWIR) detectors based on HgTe/CdTe superlattices. This result is significant because it represents the first experimental verification that IR detectors with useful characteristics can in fact be fabricated from HgTe/CdTe superlattices. The MWIR detectors were fabricated from an in situ doped p-on-n MWIR homojunction superlattice epilayer grown by photoassisted molecular-beam epitaxy (PAMBE). This growth technique produces low defect growth of superlattice material, as is described in this paper. Our development of an extrinsic doping technology using indium and arsenic as the n-type and p-type dopants, respectively, led to the successful doping of the superlattice and is also discussed.

  17. Visible photoluminescence and room temperature ferromagnetism in high In-content InGaN:Yb nanorods grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dasari, K.; Palai, R., E-mail: r.palai@upr.edu [Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Wang, J.; Jadwisienczak, W. M. [School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio 45701-2979 (United States); Guinel, M. J.-F. [Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00936 (United States); Huhtinen, H. [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, Turku FI-20014 (Finland); Mundle, R.; Pradhan, A. K. [Department of Engineering, Norfolk State University, 700 Park Avenue, Norfolk, Virginia 23504 (United States)

    2015-09-28

    We report the growth of high indium content InGaN:Yb nanorods grown on c-plane sapphire (0001) substrates using plasma assisted molecular beam epitaxy. The in situ reflection high energy electron diffraction patterns recorded during and after the growth revealed crystalline nature of the nanorods. The nanorods were examined using electron microscopy and atomic force microscopy. The photoluminescence studies of the nanorods showed the visible emissions. The In composition was calculated from x-ray diffraction, x-ray photoelectron spectroscopy, and the photoluminescence spectroscopy. The In-concentration was obtained from photoluminescence using modified Vegard's law and found to be around 37% for InGaN and 38% for Yb (5 ± 1%)-doped InGaN with a bowing parameter b = 1.01 eV. The Yb-doped InGaN showed significant enhancement in photoluminescence properties compared to the undoped InGaN. The Yb-doped InGaN nanorods demonstrated the shifting of the photoluminescence band at room temperature, reducing luminescence amplitude temperature dependent fluctuation, and significant narrowing of excitonic emission band as compared to the undoped InGaN. The magnetic properties measured by superconducting quantum interference devices reveals room temperature ferromagnetism, which can be explained by the double exchange mechanism and magnetostriction.

  18. Annealing of defect density and excess currents in Si-based tunnel diodes grown by low-temperature molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Deep-level transient spectroscopy (DLTS) measurements were performed in order to investigate the effects of post-growth heat treatment on deep level defects in Si layers grown by low-temperature molecular-beam epitaxy (LT-MBE) at 320 deg. C. In the LT-MBE as-grown samples, two dominant divacancy-related complex defects, of which the possible origins are suggested as P-V (E center)+V-V (0/-) and V-V (-2/-) and others, were observed in P-doped n layers. When the as-grown samples were annealed at 700, 800, and 900 deg. C for 60 s by rapid thermal annealing, the total density of defects were decreased without generating other defects and most defects were annihilated at 900 deg. C. This study also compared the DLTS trends with performance of Si-based resonant interband tunnel diodes (RITDs) in terms of peak current density, valley current density, and peak-to-valley current ratio, which are closely related to the deep-level defects. The active regions of the RITDs were grown at the same substrate growth temperature and annealed at similar temperatures used in this DLTS study

  19. Atmospheric and low pressure metalorganic vapor phase epitaxial growth of vertical quantum wells and quantum well wires on submicron gratings

    Science.gov (United States)

    Vermeire, G.; Moerman, I.; Yu, Z. Q.; Vermaerke, F.; van Daele, P.; Demeester, P.

    1994-02-01

    Nonplanar metalorganic vapor phase epitaxial growth on submicron gratings has been studied. Growth conditions have been determined to preserve the grating structure and also to enhance the formation of crescent shaped quantum well wire-like GaAs layers. These growth parameters have been used to grow the layer structure of a quantum well wire (QWW) laser, only needing one growth run. Although there is not yet clear evidence for two-dimensional quantum confinement, this technique offers some interesting perspectives for the realization of QWW lasers.

  20. Influence of substrates on epitaxial growth of B-site-ordered perovskite La2NiMnO6 thin films

    Science.gov (United States)

    Sakurai, Y.; Ohkubo, I.; Matsumoto, Y.; Koinuma, H.; Oshima, M.

    2011-09-01

    Epitaxial La2NiMnO6 films were grown on (100)-oriented SrTiO3 and (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 (LSAT) substrates under various growth conditions by pulsed laser deposition. Ferromagnetism and transport properties of B-site-ordered perovskite are greatly influenced by growth conditions. Optimum growth conditions of epitaxial La2NiMnO6 films, which exhibit the ferromagnetism similar to bulk properties, are different for SrTiO3 and LSAT substrates probably due to the difference in surface migration. Since the initial stage of epitaxial growth might vary with the type of substrates, the ordering of Ni and Mn ions is different. Therefore, the ferromagnetism of La2NiMnO6 depends on the epitaxial growth conditions and type of substrates.