WorldWideScience

Sample records for beam element based

  1. Equilibrium-Based Nonhomogeneous Anisotropic Beam Element

    DEFF Research Database (Denmark)

    Krenk, Steen; Couturier, Philippe

    2017-01-01

    The stiffness matrix and the nodal forces associated with distributed loads are obtained for a nonhomogeneous anisotropic elastic beam element by the use of complementary energy. The element flexibility matrix is obtained by integrating the complementary-energy density corresponding to six beam...... equilibrium states, and then inverted and expanded to provide the element-stiffness matrix. Distributed element loads are represented via corresponding internal-force distributions in local equilibrium with the loads. The element formulation does not depend on assumed shape functions and can, in principle......, include any variation of cross-sectional properties and load variation, provided that these are integrated with sufficient accuracy in the process. The ability to represent variable cross-sectional properties, coupling from anisotropic materials, and distributed element loads is illustrated by numerical...

  2. Finite element analysis of rotating beams physics based interpolation

    CERN Document Server

    Ganguli, Ranjan

    2017-01-01

    This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.

  3. Beam transport elements

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    Two of the beam transport elements for the slow ejection system. On the left, a quadrupole 1.2 m long with a 5 cm aperture, capable of producing a gradient of 5000 gauss. On the right, a 1 m bending magnet with a 4 cm gap; its field is 20 000 gauss.

  4. Element for Beam Dynamic Analysis Based on Analytical Deflection Trial Function

    Directory of Open Access Journals (Sweden)

    Qiongqiong Cao

    2015-01-01

    Full Text Available For beam dynamic finite element analysis, according to differential equation of motion of beam with distributed mass, general analytical solution of displacement equation for the beam vibration is obtained. By applying displacement element construction principle, the general solution of displacement equation is conversed to the mode expressed by beam end displacements. And taking the mode as displacement trial function, element stiffness matrix and element mass matrix for beam flexural vibration and axial vibration are established, respectively, by applying principle of minimum potential energy. After accurate integral, explicit form of element matrix is obtained. The comparison results show that the series of relative error between the solution of analytical trial function element and theoretical solution is about 1×10-9 and the accuracy and efficiency are superior to that of interpolation trial function element. The reason is that interpolation trial function cannot accurately simulate the displacement mode of vibrating beam. The accuracy of dynamic stiffness matrix method is almost identical with that of analytical trial function. But the application of dynamic stiffness matrix method in engineering is limited. The beam dynamic element obtained in this paper is analytical and accurate and can be applied in practice.

  5. A Class of Wavelet-Based Rayleigh-Euler Beam Element for Analyzing Rotating Shafts

    Directory of Open Access Journals (Sweden)

    Jiawei Xiang

    2011-01-01

    Full Text Available A class of wavelet-based Rayleigh-Euler rotating beam element using B-spline wavelets on the interval (BSWI is developed to analyze rotor-bearing system. The effects of translational and rotary inertia, torsion moment, axial displacement, cross-coupled stiffness and damping coefficients of bearings, hysteric and viscous internal damping, gyroscopic moments and bending deformation of the system are included in the computational model. In order to get a generalized formulation of wavelet-based element, each boundary node is collocated six degrees of freedom (DOFs: three translations and three rotations; whereas, each inner node has only three translations. Typical numerical examples are presented to show the accuracy and efficiency of the presented method.

  6. A geometrically exact beam element based on the absolute nodal coordinate formulation

    Energy Technology Data Exchange (ETDEWEB)

    Gerstmayr, Johannes [Linz Center of Mechatronics GmbH (Austria)], E-mail: Johannes.gerstmayr@jku.at; Matikainen, Marko K., E-mail: marko.matikainen@lut.fi; Mikkola, Aki M. [Lappeenranta University of Technology, Department of Mechanical Engineering, Institute of Mechatronics and Virtual Engineering (Finland)], E-mail: aki.mikkola@lut.fi

    2008-11-15

    In this study, Reissner's classical nonlinear rod formulation, as implemented by Simo and Vu-Quoc by means of the large rotation vector approach, is implemented into the framework of the absolute nodal coordinate formulation. The implementation is accomplished in the planar case accounting for coupled axial, bending, and shear deformation. By employing the virtual work of elastic forces similarly to Simo and Vu-Quoc in the absolute nodal coordinate formulation, the numerical results of the formulation are identical to those of the large rotation vector formulation. It is noteworthy, however, that the material definition in the absolute nodal coordinate formulation can differ from the material definition used in Reissner's beam formulation. Based on an analytical eigenvalue analysis, it turns out that the high frequencies of cross section deformation modes in the absolute nodal coordinate formulation are only slightly higher than frequencies of common shear modes, which are present in the classical large rotation vector formulation of Simo and Vu-Quoc, as well. Thus, previous claims that the absolute nodal coordinate formulation is inefficient or would lead to ill-conditioned finite element matrices, as compared to classical approaches, could be refuted. In the introduced beam element, locking is prevented by means of reduced integration of certain parts of the elastic forces. Several classical large deformation static and dynamic examples as well as an eigenvalue analysis document the equivalence of classical nonlinear rod theories and the absolute nodal coordinate formulation for the case of appropriate material definitions. The results also agree highly with those computed in commercial finite element codes.

  7. A geometrically exact beam element based on the absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Gerstmayr, Johannes; Matikainen, Marko K.; Mikkola, Aki M.

    2008-01-01

    In this study, Reissner's classical nonlinear rod formulation, as implemented by Simo and Vu-Quoc by means of the large rotation vector approach, is implemented into the framework of the absolute nodal coordinate formulation. The implementation is accomplished in the planar case accounting for coupled axial, bending, and shear deformation. By employing the virtual work of elastic forces similarly to Simo and Vu-Quoc in the absolute nodal coordinate formulation, the numerical results of the formulation are identical to those of the large rotation vector formulation. It is noteworthy, however, that the material definition in the absolute nodal coordinate formulation can differ from the material definition used in Reissner's beam formulation. Based on an analytical eigenvalue analysis, it turns out that the high frequencies of cross section deformation modes in the absolute nodal coordinate formulation are only slightly higher than frequencies of common shear modes, which are present in the classical large rotation vector formulation of Simo and Vu-Quoc, as well. Thus, previous claims that the absolute nodal coordinate formulation is inefficient or would lead to ill-conditioned finite element matrices, as compared to classical approaches, could be refuted. In the introduced beam element, locking is prevented by means of reduced integration of certain parts of the elastic forces. Several classical large deformation static and dynamic examples as well as an eigenvalue analysis document the equivalence of classical nonlinear rod theories and the absolute nodal coordinate formulation for the case of appropriate material definitions. The results also agree highly with those computed in commercial finite element codes

  8. Stiffness degradation-based damage model for RC members and structures using fiber-beam elements

    Science.gov (United States)

    Guo, Zongming; Zhang, Yaoting; Lu, Jiezhi; Fan, Jian

    2016-12-01

    To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating story damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.

  9. Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Majid Gholampour

    Full Text Available Abstract In this research, two stress-based finite element methods including the curvature-based finite element method (CFE and the curvature-derivative-based finite element method (CDFE are developed for dynamics analysis of Euler-Bernoulli beams with different boundary conditions. In CFE, the curvature distribution of the Euler-Bernoulli beams is approximated by its nodal curvatures then the displacement distribution is obtained by its integration. In CDFE, the displacement distribution is approximated in terms of nodal curvature derivatives by integration of the curvature derivative distribution. In the introduced methods, compared with displacement-based finite element method (DFE, not only the required number of degrees of freedom is reduced, but also the continuity of stress at nodal points is satisfied. In this paper, the natural frequencies of beams with different type of boundary conditions are obtained using both CFE and CDFE methods. Furthermore, some numerical examples for the static and dynamic response of some beams are solved and compared with those obtained by DFE method.

  10. Electron beam test of key elements of the laser-based calibration system for the muon g - 2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Anastasi, A., E-mail: antonioanastasi89@gmail.com [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Dipartimento MIFT, Università di Messina, Messina (Italy); Basti, A.; Bedeschi, F.; Bartolini, M. [INFN, Sezione di Pisa (Italy); Cantatore, G. [INFN, Sezione di Trieste e G.C. di Udine (Italy); Università di Trieste, Trieste (Italy); Cauz, D. [INFN, Sezione di Trieste e G.C. di Udine (Italy); Università di Udine, Udine (Italy); Corradi, G. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Dabagov, S. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Lebedev Physical Institute and NRNU MEPhI, Moscow (Russian Federation); Di Sciascio, G. [INFN, Sezione di Roma Tor Vergata, Roma (Italy); Di Stefano, R. [INFN, Sezione di Napoli (Italy); Università di Cassino, Cassino (Italy); Driutti, A. [INFN, Sezione di Trieste e G.C. di Udine (Italy); Università di Udine, Udine (Italy); Escalante, O. [Università di Napoli, Napoli (Italy); Ferrari, C. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Istituto Nazionale di Ottica del C.N.R., UOS Pisa, via Moruzzi 1, 56124, Pisa (Italy); Fienberg, A.T. [University of Washington, Box 351560, Seattle, WA 98195 (United States); Fioretti, A.; Gabbanini, C. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Istituto Nazionale di Ottica del C.N.R., UOS Pisa, via Moruzzi 1, 56124, Pisa (Italy); Gioiosa, A. [INFN, Sezione di Lecce (Italy); Università del Molise, Pesche (Italy); Hampai, D. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Hertzog, D.W. [University of Washington, Box 351560, Seattle, WA 98195 (United States); and others

    2017-01-11

    We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be provided by the laser and the stability of the calibration system components.

  11. Electron beam test of key elements of the laser-based calibration system for the muon g - 2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Anastasi, A.; Basti, A.; Bedeschi, F.; Bartolini, M.; Cantatore, G.; Cauz, D.; Corradi, G.; Dabagov, S.; Di Sciascio, G.; Di Stefano, R.; Driutti, A.; Escalante, O.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Gabbanini, C.; Gioiosa, A.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Karuza, M.; Kaspar, J.; Liedl, A.; Lusiani, A.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Piacentino, G. M.; Raha, N.; Rossi, E.; Santi, L.; Venanzoni, G.

    2017-01-01

    We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be provided by the laser and the stability of the calibration system components.

  12. A distortional semi-discretized thin-walled beam element

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Jönsson, Jeppe

    2013-01-01

    Due to the increased consumption of thin-walled structural elements there has been increasing focus and need for more detailed calculations as well as development of new approaches. In this paper a thin-walled beam element including distortion of the cross section is formulated. The formulation...... is based on a generalized beam theory (GBT), in which the classic Vlasov beam theory for analysis of open and closed thin-walled cross sections is generalized by including distortional displacements. The beam element formulation utilizes a semi-discretization approach in which the cross section...... is discretized into wall elements and the analytical solutions of the related GBT beam equations are used as displacement functions in the axial direction. Thus the beam element contains the semi-analytical solutions. In three related papers the authors have recently presented the semi-discretization approach...

  13. High voltage power supply systems for electron beam and plasma technologies. Its new element base

    International Nuclear Information System (INIS)

    Dermengi, P.G.; Kureghan, A.S.; Pokrovsky, S.V.; Tchvanov, V.A.

    1994-01-01

    Transforming technique and high voltage technique supplementing each other more and more unite in indivisible constructions of modern apparatuses and systems and applicated in modern technologies providing its high efficiency. Specially worked out, ecologically clean, inertial, inflammable perfluororganic liquid is used in elements and electronic apparatuses simultaneously as insulating and cooling media. This liquid is highly fluid, fills tiny cavities in construction elements and in the places of high concentration of losses, where maximum local overheating of active parts or apparatus constructions takes place, it transforms to boiling state with highly intensive taking off of heat energy from cooled surface point. For instance, being cooled by mentioned perfluororganic liquid, copper wire can conduct current to 50 A/mm 2 density, but in ordinary conditions of transformers, reactors and busses, current density can reach only few Amperes. Possibility of considerable increasing of current density, that is reached by means of intensive cooling, provided by worked out liquid, and taking into account its incredibly high insulating features (liquid has electric strength to 50 KV/mm) allows to provide optimum heat regime of active parts of transformers. reactors, condenser, semiconductor devices, resistors, construction elements and electrotechnical apparatus in general. Particularly high effect of decreasing of weight and dimensions characteristics of elements and electrotechnical apparatus in general can be reached under working out of special constructions of each element and apparatus details, adapted to use of mentioned liquid as insulating and cooling media

  14. A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation

    Energy Technology Data Exchange (ETDEWEB)

    Nachbagauer, Karin, E-mail: karin.nachbagauer@jku.at; Pechstein, Astrid S., E-mail: astrid.pechstein@jku.at; Irschik, Hans, E-mail: hans.irschik@jku.at [Johannes Kepler University Linz, Institute of Technical Mechanics (Austria); Gerstmayr, Johannes, E-mail: johannes.gerstmayr@lcm.at [Linz Center of Mechatronics GmbH (Austria)

    2011-10-15

    Many widely used beam finite element formulations are based either on Reissner's classical nonlinear rod theory or the absolute nodal coordinate formulation (ANCF). Advantages of the second method have been pointed out by several authors; among the benefits are the constant mass matrix of ANCF elements, the isoparametric approach and the existence of a consistent displacement field along the whole cross section. Consistency of the displacement field allows simpler, alternative formulations for contact problems or inelastic materials. Despite conceptional differences of the two formulations, the two models are unified in the present paper.In many applications, a nonlinear large deformation beam element with bending, axial and shear deformation properties is needed. In the present paper, linear and quadratic ANCF shear deformable beam finite elements are presented. A new locking-free continuum mechanics based formulation is compared to the classical Simo and Vu-Quoc formulation based on Reissner's virtual work of internal forces. Additionally, the introduced linear and quadratic ANCF elements are compared to a fully parameterized ANCF element from the literature. The performance of the respective elements is evaluated through analysis of conventional static and dynamic example problems. The investigation shows that the obtained linear and quadratic ANCF elements are advantageous compared to the original fully parameterized ANCF element.

  15. Finite element modelling of composite castellated beam

    Directory of Open Access Journals (Sweden)

    Frans Richard

    2017-01-01

    Full Text Available Nowadays, castellated beam becomes popular in building structural as beam members. This is due to several advantages of castellated beam such as increased depth without any additional mass, passing the underfloor service ducts without changing of story elevation. However, the presence of holes can develop various local effects such as local buckling, lateral torsional buckling caused by compression force at the flange section of the steel beam. Many studies have investigated the failure mechanism of castellated beam and one technique which can prevent the beam fall into local failure is the use of reinforced concrete slab as lateral support on castellated beam, so called composite castellated beam. Besides of preventing the local failure of castellated beam, the concrete slab can increase the plasticity moment of the composite castellated beam section which can deliver into increasing the ultimate load of the beam. The aim of this numerical studies of composite castellated beam on certain loading condition (monotonic quasi-static loading. ABAQUS was used for finite element modelling purpose and compared with the experimental test for checking the reliability of the model. The result shows that the ultimate load of the composite castellated beam reached 6.24 times than the ultimate load of the solid I beam and 1.2 times compared the composite beam.

  16. Finite element based investigation of buckling and vibration behaviour of thin walled box beams

    Directory of Open Access Journals (Sweden)

    Ramkumar K.

    2013-12-01

    Full Text Available Thin-walled box type conventional and composite structures are having wide applications for building the structural system which are used in advanced ships, aerospace, civil, construction equipment and etc. Often these structures are subjected to vibration and buckling due to the environmental effect such as mechanical, thermal, electrical, magnetic, and acoustic or a combination of these. Also dampingmaterial and structural stiffness plays an important role for the improvement of vibration, noise control, fatigue and bulking resistance of these structures. So it is important to know the dynamic and buckling characteristics of these structures. Pre-stress in a structure affects the stiffness, which modifies the dynamic and stability characteristics of the structure. So it is also important to know the influence of pre-stress on the vibration and buckling character. In this paper, buckling and dynamic characteristics of the thin-walled box type structures are analyzed using finite element software ANSYS.

  17. Anisotropic damping of Timoshenko beam elements

    DEFF Research Database (Denmark)

    Hansen, M.H.

    2001-01-01

    This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risø for modeling wind turbines. The model has been developed to enable modeling of turbine blades which oftenhave different damping characteristics...... for ¤flapwise¤, ¤edgewise¤ and ¤torsional¤ vibrations. The structural damping forces acting on the beam element are modeled by viscous damping described by an element damping matrix. The composition of this matrix is basedon the element mass and stiffness matrices. It is shown how the coefficients for the mass...

  18. Finite Element Analysis of a Natural Fiber (Maize) Composite Beam

    OpenAIRE

    Bavan, D. Saravana; Kumar, G. C. Mohan

    2013-01-01

    Natural fiber composites are termed as biocomposites or green composites. These fibers are green, biodegradable, and recyclable and have good properties such as low density and low cost when compared to synthetic fibers. The present work is investigated on the finite element analysis of the natural fiber (maize) composite beam, processed by means of hand lay-up method. Composite beam material is composed of stalk-based fiber of maize and unsaturated polyester resin polymer as matrix with meth...

  19. Investigation of the Distribution of Elements in Snail Shell With the use of Synchrotron-Based, Micro-Beam X-ray Fluorescence Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.; Swapna, M; Cesareo, R; Brunetti, A; Akatsuka, T; Yuasa, T; Takeda, T; Tromba, G; Gigante, G

    2009-01-01

    In this study, synchrotron-based micro-beam was utilized for elemental mapping of a small animal shell. A thin X-ray spot of the order of {approx}10 em was focused on the sample. With this spatial resolution and high flux throughput, the X-ray fluorescent intensities for Ca, Mn, Fe, Ni, Zn, Cr and Cu were measured using a liquid-nitrogen-cooled 13-element energy-dispersive HpGe detector. The sample is scanned in a estep-and-repeat' mode for fast elemental mapping and generated elemental maps at 8, 10 and 12 keV. All images are of 10 em resolution and the measurement time was 1 s per point. The accumulation of trace elements was investigated from the soft-tissue in small areas. Analysis of the small areas will be better suited to establish the physiology of metals in specific structures like small animal shell and the distribution of other trace elements.

  20. Geometric nonlinear dynamic analysis of curved beams using curved beam element

    Science.gov (United States)

    Pan, Ke-Qi; Liu, Jin-Yang

    2011-12-01

    Instead of using the previous straight beam element to approximate the curved beam, in this paper, a curvilinear coordinate is employed to describe the deformations, and a new curved beam element is proposed to model the curved beam. Based on exact nonlinear strain-displacement relation, virtual work principle is used to derive dynamic equations for a rotating curved beam, with the effects of axial extensibility, shear deformation and rotary inertia taken into account. The constant matrices are solved numerically utilizing the Gauss quadrature integration method. Newmark and Newton-Raphson iteration methods are adopted to solve the differential equations of the rigid-flexible coupling system. The present results are compared with those obtained by commercial programs to validate the present finite method. In order to further illustrate the convergence and efficiency characteristics of the present modeling and computation formulation, comparison of the results of the present formulation with those of the ADAMS software are made. Furthermore, the present results obtained from linear formulation are compared with those from nonlinear formulation, and the special dynamic characteristics of the curved beam are concluded by comparison with those of the straight beam.

  1. A semi-discretized thin-walled beam element including distortion

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Jönsson, Jeppe

    2013-01-01

    An advanced thin-walled beam element including distortion of the cross section is presented. The formulation is based on a generalization of the classical Vlasov beam theory for analysis of open and closed thin-walled cross sections by including distortional displacements.The beam element...... formulation utilizes a semidiscretization approach in which the cross section is discretized into wall elements and the analytical solutions of the related GBT beam equations are used as displacement functions in the axial direction. Thus the beam element contains the semi-analytical solutions. In a number...... of related publications the authors have recently presented the semi-discretization approach and the analytical solution of the generalized beam equations. An illustrative example showing the validity and the accuracy of the developed distortional semi-discretized thin-walled beam element is given...

  2. Finite Element Analysis of a Natural Fiber (Maize Composite Beam

    Directory of Open Access Journals (Sweden)

    D. Saravana Bavan

    2013-01-01

    Full Text Available Natural fiber composites are termed as biocomposites or green composites. These fibers are green, biodegradable, and recyclable and have good properties such as low density and low cost when compared to synthetic fibers. The present work is investigated on the finite element analysis of the natural fiber (maize composite beam, processed by means of hand lay-up method. Composite beam material is composed of stalk-based fiber of maize and unsaturated polyester resin polymer as matrix with methyl ethyl ketone peroxide (MEKP as a catalyst and Cobalt Octoate as a promoter. The material was modeled and resembled as a structural beam using suitable assumption and analyzed by means of finite element method using ANSYS software for determining the deflection and stress properties. Morphological analysis and X-ray diffraction (XRD analysis for the fiber were examined by means of scanning electron microscope (SEM and X-ray diffractometer. From the results, it has been found that the finite element values are acceptable with proper assumptions, and the prepared natural fiber composite beam material can be used for structural engineering applications.

  3. Limit Analysis of 3D Reinforced Concrete Beam Elements

    DEFF Research Database (Denmark)

    Larsen, Kasper P.; Nielsen, Leif Otto; Poulsen, Peter Noe

    2012-01-01

    A new finite-element framework for lower-bound limit analysis of reinforced concrete beams, subjected to loading in three dimensions, is presented. The method circumvents the need for a direct formulation of a complex section-force-based yield criterion by creating a discrete representation...... Coulomb criterion is applied to the concrete stresses. The modified Coulomb criterion is approximated using second-order cone programming for improved performance over implementations using semidefinite programming. The element is verified by comparing the numerical results with analytical solutions....

  4. Analysis of concrete beams using applied element method

    Science.gov (United States)

    Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen

    2018-03-01

    The Applied Element Method (AEM) is a displacement based method of structural analysis. Some of its features are similar to that of Finite Element Method (FEM). In AEM, the structure is analysed by dividing it into several elements similar to FEM. But, in AEM, elements are connected by springs instead of nodes as in the case of FEM. In this paper, background to AEM is discussed and necessary equations are derived. For illustrating the application of AEM, it has been used to analyse plain concrete beam of fixed support condition. The analysis is limited to the analysis of 2-dimensional structures. It was found that the number of springs has no much influence on the results. AEM could predict deflection and reactions with reasonable degree of accuracy.

  5. Assessment of Structural Behavior of Non-corroded and Corroded RCC Beams Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Anand Parande

    2008-09-01

    Full Text Available A three dimensional finite element model is developed to examine the structural behaviour of corroded reinforced concrete beam and non corroded reinforced concrete beam. Non linear finite element analysis is performed using the ANSYS program. SOLID 65, LINK 8 element represent concrete and discrete reinforcing steel bars, based on each component actual characteristics, non linear material properties are defined for both elements. The effect of corrosion in reinforced concrete is studied by finite element analysis; an approach is developed to model the corrosion product expansion causing concrete cover cracking for this, beam has been modeled using ANSYS and using this data the beam has been casted with M20 concrete after 28 days the beam will be tested for flexural strength. The comparison between ANSYS prediction and field data are made in terms of deflection, stress, strain, bond strength and crack pattern of concrete beam.

  6. Element free Galerkin formulation of composite beam with longitudinal slip

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad [Department of Civil Engineering, Universiti Selangor, Bestari Jaya, Selangor (Malaysia); Badli, Mohd Iqbal; Yassin, Airil Y. Mohd [Faculty of Civil Engineering, Universiti Teknologi Malaysia, Skudai, Johor (Malaysia)

    2015-05-15

    Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after been verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.

  7. Shear beams in finite element modelling : Software implementation and validation

    NARCIS (Netherlands)

    Schreppers, G.J.; Hendriks, M.A.N.; Boer, A.; Ferreira, D.; Kikstra, W.P.

    2015-01-01

    Fiber models for beam and shell elements allow for relatively rapid finite element analysis of concrete structures and structural elements. This project aims at the development of the formulation of such elements and a pilot implementation. The reduction of calculation time and degrees of freedom

  8. Beam Elements on Linear Variable Two-Parameter Elastic Foundation

    Directory of Open Access Journals (Sweden)

    Iancu-Bogdan Teodoru

    2008-01-01

    Full Text Available The traditional way to overcome the shortcomings of the Winkler foundation model is to incorporate spring coupling by assemblages of mechanical elements such as springs, flexural elements (beams in one-dimension, 1-D, plates in 2-D, shear-only layers and deformed, pretensioned membranes. This is the class of two-parameter foundations ? named like this because they have the second parameter which introduces interactions between adjacent springs, in addition to the first parameter from the ordinary Winkler?s model. This class of models includes Wieghardt, Filonenko-Borodich, Hetényi and Pasternak foundations. Mathematically, the equations to describe the reaction of the two-parameter foundations are equilibrium, and the only difference is the definition of the parameters. In order to analyse the bending behavior of a Euler-Bernoulli beam resting on linear variable two-parameter elastic foundation a (displacement Finite Element (FE formulation, based on the cubic displacement function of the governing differential equation, is introduced.

  9. Planar Heating Element Adjusted by Electron Beam Micromachining

    Czech Academy of Sciences Publication Activity Database

    Dupák, Libor; Dupák, Jan

    2009-01-01

    Roč. 44, 5-6 (2009), s. 82-84 ISSN 0861-4717 Institutional research plan: CEZ:AV0Z20650511 Keywords : electron beam machining * heating element Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  10. An Electronically Controlled 8-Element Switched Beam Planar Array

    KAUST Repository

    Sharawi, Mohammad S.

    2015-02-24

    An 8-element planar antenna array with electronically controlled switchable-beam pattern is proposed. The planar antenna array consists of patch elements and operates in the 2.45 GHz ISM band. The array is integrated with a digitally controlled feed network that provides the required phases to generate 8 fixed beams covering most of the upper hemisphere of the array. Unlike typical switchable beam antenna arrays, which operate only in one plane, the proposed design is the first to provide full 3D switchable beams with simple control. Only a 3-bit digital word is required for the generation of the 8 different beams. The integrated array is designed on a 3-layer PCB on a Taconic substrate (RF60A). The total dimensions of the fabricated array are 187.1 × 261.3 × 1.3mm3.

  11. Timoshenko beam element with anisotropic cross-sectional properties

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Hansen, Morten Hartvig

    2016-01-01

    Beam models are used for the aeroelastic time and frequency domain analysis of wind turbines due to their computational efficiency. Many current aeroelastic tools for the analysis of wind turbines rely on Timoshenko beam elements with classical crosssectional properties (EA, EI, etc.). Those cross......-sectional properties do not reflect the various couplings arising from the anisotropic behaviour of the blade material. A twonoded, three-dimensional Timoshenko beam element was therefore extended to allow for anisotropic cross-sectional properties. For an uncoupled beam, the resulting shape functions are identical...... to the original formulation. The new element was implemented into a co-rotational formulation and validated against natural frequencies and several static load cases of previous works....

  12. Beam based alignment at LEP

    CERN Document Server

    Dehning, Bernd; Mugnai, G; Reichel, I; Schmidt, R; Sonnemann, F; Tecker, F A

    2004-01-01

    We describe a beam-based method for finding the relative offset between beam position monitors (BPMs) and the magnetic centres of the adjacent quadrupole magnets. The strength of a given quadrupole is modulated and the induced closed orbit oscillation measured for different beam positions, reaching a minimum when the beam is centred in the quadrupole. The BPM reading at this point is a measure of its offset, which may be determined at LEP with an accuracy of ~40x10-6 m.

  13. Accurate transfer maps for realistic beam-line elements: Straight elements

    Directory of Open Access Journals (Sweden)

    Chad E. Mitchell

    2010-06-01

    Full Text Available The behavior of orbits in charged-particle beam transport systems, including both linear and circular accelerators as well as final focus sections and spectrometers, can depend sensitively on nonlinear fringe-field and high-order-multipole effects in the various beam-line elements. The inclusion of these effects requires a detailed and realistic model of the interior and fringe fields, including their high spatial derivatives. A collection of surface fitting methods has been developed for extracting this information accurately from three-dimensional field data on a grid, as provided by various three-dimensional finite-element field codes. Based on these realistic field models, Lie or other methods may be used to compute accurate design orbits and accurate transfer maps about these orbits. Part I of this work presents a treatment of straight-axis magnetic elements, while part II will treat bending dipoles with large sagitta. An exactly soluble but numerically challenging model field is used to provide a rigorous collection of performance benchmarks.

  14. Synthesis and investigation of superheavy elements - perspectives with radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Muenzenberg, G.

    1997-09-01

    The perspectives for the investigation of heavy and superheavy elements with intense beams of radioactive nuclei available from the new generation of secondary beam facilities in combination with modern experimental developments are the subject of this paper. The nuclear properties of the recently discovered shell nuclei centered at Z=108 and N=164 and predictions on the location of the superheavy region with improved theoretical models will be discussed. (orig.)

  15. Large variation finite element method for beams with stochastic stiffness

    CERN Document Server

    Rollot, O

    2003-01-01

    The behavior of beams with stochastic stiffness subjected to either deterministic or stochastic loading is studied via finite element method. The results are contrasted with exact solution to check the accuracy of the FEM for the case of large variations. It represents a generalization of the previous study in which the stiffness matrix was decomposed as a product of three matrices, two of which are numerical ones and the third matrix involves the uncertain stiffness analytically. To illustrate the proposed method, we evaluate the mean and the auto-correlation functions of the displacement of beams under various boundary conditions. Two statically determinate beams (clamped-free or simply-supported) and two statically indeterminate beams (clamped-simply-supported or clamped are both ends) are investigated in this study. The beams are subjected to a deterministic uniform pressure or a stochastic excitation.

  16. Large variation finite element method for beams with stochastic stiffness

    International Nuclear Information System (INIS)

    Rollot, Olivier; Elishakoff, Isaac

    2003-01-01

    The behavior of beams with stochastic stiffness subjected to either deterministic or stochastic loading is studied via finite element method. The results are contrasted with exact solution to check the accuracy of the FEM for the case of large variations. It represents a generalization of the previous study in which the stiffness matrix was decomposed as a product of three matrices, two of which are numerical ones and the third matrix involves the uncertain stiffness analytically. To illustrate the proposed method, we evaluate the mean and the auto-correlation functions of the displacement of beams under various boundary conditions. Two statically determinate beams (clamped-free or simply-supported) and two statically indeterminate beams (clamped-simply-supported or clamped are both ends) are investigated in this study. The beams are subjected to a deterministic uniform pressure or a stochastic excitation

  17. Theoretical model of a polarization diffractive elements for the light beams conversion holographic formation in PDLCs

    Science.gov (United States)

    Sharangovich, Sergey N.; Semkin, Artem O.

    2017-12-01

    In this work a theoretical model of the holographic formation of the polarization diffractive optical elements for the transformation of Gaussian light beams into Bessel-like ones in polymer-dispersed liquid crystals (PDLC) is developed. The model is based on solving the equations of photo-induced Fredericks transition processes for polarization diffractive elements formation by orthogonally polarized light beams with inhomogeneous amplitude and phase profiles. The results of numerical simulation of the material's dielectric tensor changing due to the structure's formation process are presented for various recording beams' polarization states. Based on the results of numerical simulation, the ability to form the diffractive optical elements for light beams transformation by the polarization holography methods is shown.

  18. Dynamic analysis of an axially moving beam subject to inner pressure using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Hongliang; Qiu, Ming; Liao, Zhenqiang [Nanjing University of Science and Technology, Nanjing (China)

    2017-06-15

    A dynamic model of an axially moving flexible beam subject to an inner pressure is present. The coupling principle between a flexible beam and inner pressure is analyzed first, and the potential energy of the inner pressure due to the beam bending is derived using the principle of virtual work. A 1D hollow beam element contain inner pressure is established. The finite element method and Lagrange’s equation are used to derive the motion equations of the axially moving system. The dynamic responses are analyzed by Newmark-β time integration method. Based on the computed dynamic responses, the effects of inner pressure on beam dynamics are discussed. Some interesting phenomenon is observed.

  19. Beam based systems and controls

    CERN Document Server

    Jacquet, D

    2012-01-01

    This presentation will give a review from the operations team of the performance and issues of the beam based systems, namely RF, ADT, beam instrumentation, controls and injection systems. For each of these systems, statistics on performance and availability will be presented with the main issues encountered in 2012. The possible improvements for operational efficiency and safety will be discussed, with an attempt to answer the question "Are we ready for the new challenges brought by the 25ns beam and increased energy after LSI? ".

  20. Upgrade of the LHC Beam Dumping Protection Elements

    CERN Document Server

    Weterings, W; Balhan, B; Borburgh, J; Goddard, B; Maglioni, C; Versaci, R

    2012-01-01

    The Beam Dumping System for the Large Hadron Collider comprises for each ring a set of horizontally deflecting extraction kicker magnets, vertically deflecting steel septa, dilution kickers and finally, a couple of hundred meters further downstream, an absorber block. A mobile diluter (TCDQ) protects the superconducting quadrupole immediately downstream of the extraction as well as the arc at injection energy and the triplet aperture at top energy from bunches with small impact parameters, in case of a beam dump that is not synchronized with the particle free gap or a spontaneous firing of the extraction kickers. Simulations have shown that an asynchronous dump of a 7 TeV nominal beam into the TCDQ absorber blocks could damage it. This paper describes the proposed changes to this device in order to maintain the protection for the downstream elements while reducing the risk of damaging the TCDQ in case of such a beam loss.

  1. X-ray trace element analysis with positive ion beams

    International Nuclear Information System (INIS)

    Davis, R.H.

    1973-01-01

    A new trace element analysis having the advantage that many elements may be detected in a single measurement, based on positive charged particle induced X-ray florescence and on the production of X-rays by heavy ions, is described. Because of the large cross-sections for the production of discrete X-ray and the low yield of continuum radiation, positive charged particle X-ray florescence is a competitive, fast, analytic tool. In the experiment a beam of positive charged particles from an accelerator was directed toward a target. X-rays induced by the bombardment were detected by a Si(Li) detector the ouput from which was amplified and sorted in a multichannel analyzer. For rapid data handling and analysis, the multichannel analyzer or ADC unit was connected to an on-line computer. A large variety of targets prepared in collaboration with the oceanographers have been studied and spectra obtained for different particles having the same velocity are presented to show that the yield of discrete X-rays increases at least as rapidly as Z 2 . While protons of several MeV appear to be already competitive further advantage may be gained by heavy ions at lower energies since the continuum is reduced while the peak ''signals'' retain strength due to the Z 2 dependence. (S.B.)

  2. Explicit free‐floating beam element

    DEFF Research Database (Denmark)

    Nielsen, Martin Bjerre; Krenk, Steen

    2014-01-01

    of convected base vectors (directors). The local constitutive stiffness is derived from the complementary energy of a set of six independent deformation modes, each corresponding to an equilibrium state of constant internal force or moment. The deformation modes are characterized by generalized strains, formed...

  3. Finite element analysis of FRP-strengthened RC beams

    Directory of Open Access Journals (Sweden)

    Teeraphot Supaviriyakit

    2004-05-01

    Full Text Available This paper presents a non-linear finite element analysis of reinforced concrete beam strengthened with externally bonded FRP plates. The finite element modeling of FRP-strengthened beams is demonstrated. Concrete and reinforcing bars are modeled together as 8-node isoparametric 2D RC element. The FRP plate is modeled as 8-node isoparametric 2D elastic element. The glue is modeled as perfect compatibility by directly connecting the nodes of FRP with those of concrete since there is no failure at the glue layer. The key to the analysis is the correct material models of concrete, steel and FRP. Cracks and steel bars are modeled as smeared over the entire element. Stress-strain properties of cracked concrete consist of tensile stress model normal to crack, compressive stress model parallel to crack and shear stress model tangential to crack. Stressstrain property of reinforcement is assumed to be elastic-hardening to account for the bond between concrete and steel bars. FRP is modeled as elastic-brittle material. From the analysis, it is found that FEM can predict the load-displacement relation, ultimate load and failure mode of the beam correctly. It can also capture the cracking process for both shear-flexural peeling and end peeling modes similar to the experiment.

  4. Beam section stiffness properties usig 3D finite elements

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen; Høgsberg, Jan Becker

    2013-01-01

    The cross-section properties of a beam is characterized by a six by six stiffness matrix, relating the six generalized strains to the conjugate section forces. The problem is formulated as a single-layer finite element model of a slice of the beam, on which the six deformation modes are imposed v...... Lagrange multipliers. The Lagrange multipliers represent the constraining forces, and thus combine to form the cross-section stiffness matrix. The theory is illustrated by a simple isotropic cross-section....

  5. The development of a curved beam element model applied to finite elements method

    International Nuclear Information System (INIS)

    Bento Filho, A.

    1980-01-01

    A procedure for the evaluation of the stiffness matrix for a thick curved beam element is developed, by means of the minimum potential energy principle, applied to finite elements. The displacement field is prescribed through polynomial expansions, and the interpolation model is determined by comparison of results obtained by the use of a sample of different expansions. As a limiting case of the curved beam, three cases of straight beams, with different dimensional ratios are analised, employing the approach proposed. Finally, an interpolation model is proposed and applied to a curved beam with great curvature. Desplacements and internal stresses are determined and the results are compared with those found in the literature. (Author) [pt

  6. A finite element beam propagation method for simulation of liquid crystal devices.

    Science.gov (United States)

    Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal

    2009-06-22

    An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.

  7. Finite Element Models for Electron Beam Freeform Fabrication Process

    Science.gov (United States)

    Chandra, Umesh

    2012-01-01

    Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the

  8. Fiber beam-column element implementation in academic CAD software Matrix 3D

    Directory of Open Access Journals (Sweden)

    Jovanović Đorđe

    2017-01-01

    Full Text Available Theoretical foundations of beam -column finite element implemented (and tested within academic CAD software developed on FTN (Department of civil engineering are presented in this paper. Aforementioned FE is force-based fibre element, divided into a discrete number of monitored sections. Besides of material nonlinearity, finite-element is capable of capturing geometrical nonlinearity. Some of numerical issues needed for performing incremental-iterative solution procedures with those elements are addressed in the paper. Finally, results and comparison with available data are shown.

  9. Composite Beam Cross-Section Analysis by a Single High-Order Element Layer

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen

    2015-01-01

    An analysis procedure of general cross-section properties is presented. The formulation is based on the stress-strain states in the classic six equilibrium modes of a beam by considering a finite thickness slice modelled by a single layer of 3D finite elements. The theory is illustrated by applic...

  10. Trace element fingerprinting of jewellery rubies by external beam PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Calligaro, T. E-mail: calli@culture.nl; Poirot, J.-P.; Querre, G

    1999-04-02

    External beam PIXE analysis allows the non-destructive in situ characterisation of gemstones mounted on jewellery pieces. This technique was used for the determination of the geographical origin of 64 rubies set on a high-valued necklace. The trace element content of these gemstones was measured and compared to that of a set of rubies of known sources. Multivariate statistical processing of the results allowed us to infer the provenance of rubies: one comes from Thailand/Cambodia deposit while the remaining are attributed to Burma. This highlights the complementary capabilities of PIXE and conventional geological observations.

  11. Trace element fingerprinting of jewellery rubies by external beam PIXE

    International Nuclear Information System (INIS)

    Calligaro, T.; Poirot, J.-P.; Querre, G.

    1999-01-01

    External beam PIXE analysis allows the non-destructive in situ characterisation of gemstones mounted on jewellery pieces. This technique was used for the determination of the geographical origin of 64 rubies set on a high-valued necklace. The trace element content of these gemstones was measured and compared to that of a set of rubies of known sources. Multivariate statistical processing of the results allowed us to infer the provenance of rubies: one comes from Thailand/Cambodia deposit while the remaining are attributed to Burma. This highlights the complementary capabilities of PIXE and conventional geological observations

  12. Trace element fingerprinting of jewellery rubies by external beam PIXE

    Science.gov (United States)

    Calligaro, T.; Poirot, J.-P.; Querré, G.

    1999-04-01

    External beam PIXE analysis allows the non-destructive in situ characterisation of gemstones mounted on jewellery pieces. This technique was used for the determination of the geographical origin of 64 rubies set on a high-valued necklace. The trace element content of these gemstones was measured and compared to that of a set of rubies of known sources. Multivariate statistical processing of the results allowed us to infer the provenance of rubies : one comes from Thailand/Cambodia deposit while the remaining are attributed to Burma. This highlights the complementary capabilities of PIXE and conventional gemological observations.

  13. The Use of Sprint Interface Element Delamination Simulation of Sandwich Composite Beam

    Science.gov (United States)

    Xu, Geng; Yan, Renjun

    2017-10-01

    Sandwich composite beams have been more and more used in various industries because of their excellent mechanical properties. However, the mismatched performance between face sheet and foam core always lead to such as cracks and damages in the core or face/core interface during the processes of manufacturing or service. Delamination damage at the adhesive interface is the most dangerous and could be one main source that the mechanical capability of the structure is serous degenerated. In this paper, a simple and natural model to evaluate the stiffness of the spring interface elements, which is based on the physics and the geometry of the adhesive layers, is proposed. In order to validate the model, cantilever beam bending test were conducted for marine sandwich composite I-beam. A good comparison has been found between predictions and experimental results, and results indicate that the spring interface element can provide an efficient model for the delamination simulation of sandwich composite structures.

  14. Finite Element Formulation for Stability and Free Vibration Analysis of Timoshenko Beam

    Directory of Open Access Journals (Sweden)

    Abbas Moallemi-Oreh

    2013-01-01

    Full Text Available A two-node element is suggested for analyzing the stability and free vibration of Timoshenko beam. Cubic displacement polynomial and quadratic rotational fields are selected for this element. Moreover, it is assumed that shear strain of the element has the constant value. Interpolation functions for displacement field and beam rotation are exactly calculated by employing total beam energy and its stationing to shear strain. By exploiting these interpolation functions, beam elements' stiffness matrix is also examined. Furthermore, geometric stiffness matrix and mass matrix of the proposed element are calculated by writing governing equation on stability and beam free vibration. At last, accuracy and efficiency of proposed element are evaluated through numerical tests. These tests show high accuracy of the element in analyzing beam stability and finding its critical load and free vibration analysis.

  15. A Timoshenko Piezoelectric Beam Finite Element with Consistent Performance Irrespective of Geometric and Material Configurations

    Directory of Open Access Journals (Sweden)

    Litesh N. Sulbhewar

    Full Text Available Abstract The conventional Timoshenko piezoelectric beam finite elements based on First-order Shear Deformation Theory (FSDT do not maintain the accuracy and convergence consistently over the applicable range of material and geometric properties. In these elements, the inaccuracy arises due to the induced potential effects in the transverse direction and inefficiency arises due to the use of independently assumed linear polynomial interpolation of the field variables in the longitudinal direction. In this work, a novel FSDT-based piezoelectric beam finite element is proposed which is devoid of these deficiencies. A variational formulation with consistent through-thickness potential is developed. The governing equilibrium equations are used to derive the coupled field relations. These relations are used to develop a polynomial interpolation scheme which properly accommodates the bending-extension, bending-shear and induced potential couplings to produce accurate results in an efficient manner. It is noteworthy that this consistently accurate and efficient beam finite element uses the same nodal variables as of conventional FSDT formulations available in the literature. Comparison of numerical results proves the consistent accuracy and efficiency of the proposed formulation irrespective of geometric and material configurations, unlike the conventional formulations.

  16. Finite Element Investigation on Shear Lag in Composite Concrete-Steel Beams with Web Openings

    Directory of Open Access Journals (Sweden)

    Rafa'a Mahmood Abbas

    2015-03-01

    Full Text Available In this paper, effective slab width for the composite beams is investigated with special emphasis on the effect of web openings. A three dimensional finite element analysis, by using finite element code ANSYS, is employed to investigate shear lag phenomenon and the resulting effective slab width adopted in the classical T-beam approach. According to case studies and comparison with limitations and rules stipulated by different standards and codes of practice it is found that web openings presence and panel proportion are the most critical factors affecting effective slab width, whereas concrete slab thickness and steel beam depth are less significant. The presence of web opening reduces effective slab width by about 21%. Concentrated load produces smaller effective slab width when compared with uniformly distributed and line loads. Generally, standard codes of practice overestimate effective slab width for concentrated load effect, while underestimate effective slab width for uniformly distributed and line load effect. Based on the data available, sets of empirical equations are developed to estimate the effective slab width in the composite beams with web openings to be used in the classical T-beam approach taking into account the key parameters investigated.

  17. Finite element analysis of composite concrete-timber beams

    Directory of Open Access Journals (Sweden)

    N. C. S. FORTI

    Full Text Available AbstractIn the search for sustainable construction, timber construction is gaining in popularity around the world. Sustainably harvested wood stores carbon dioxide, while reforestation absorbs yet more CO2. One technique involves the combination of a concrete slab and a timber beam, where the two materials are assembled by the use of flexible connectors. Composite structures provide reduced costs, environmental benefits, a better acoustic performance, when compared to timber structures, and maintain structural safety. Composite structures combine materials with different mechanical properties. Their mechanical performance depends on the efficiency of the connection, which is designed to transmit shear longitudinal forces between the two materials and to prevent vertical detachment. This study contributes with the implementation of a finite element formulation for stress and displacement determination of composite concrete-timber beams. The deduced stiffness matrix and load vector are presented along to numerical examples. Numerical examples are compared to the analytical equations available in Eurocode 5 and to experimental data found in the literature.

  18. Efficient generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase elements.

    Science.gov (United States)

    Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel; Sánchez-de-la-Llave, David; Arrizón, Victor

    2015-10-01

    We discuss the generation of Hermite-Gauss and Ince-Gauss beams employing phase elements whose transmittances coincide with the phase modulations of such beams. A scaled version of the desired field appears, distorted by marginal optical noise, at the element's Fourier domain. The motivation to perform this study is that, in the context of the proposed approach, the desired beams are generated with the maximum possible efficiency. A disadvantage of the method is the distortion of the desired beams by the influence of several nondesired beam modes generated by the phase elements. We evaluate such distortion employing the root mean square deviation as a figure of merit.

  19. Finite Element Model for Nonlinear Analysis of Reinforced Concrete Beams and Plane Frames

    Directory of Open Access Journals (Sweden)

    R.S.B. STRAMANDINOLI

    Full Text Available Abstract In this work, a two-dimensional finite element (FE model for physical and geometric nonlinear analysis of reinforced concrete beams and plane frames, developed by the authors, is presented. The FE model is based on the Euler-Bernoulli Beam Theory, in which shear deformations are neglected. The bar elements have three nodes with a total of seven degrees of freedom. Three Gauss-points are utilized for the element integration, with the element section discretized into layers at each Gauss point (Fiber Model. It is assumed that concrete and reinforcing bars are perfectly bonded, and each section layer is assumed to be under a uniaxial stress-state. Nonlinear constitutive laws are utilized for both concrete and reinforcing steel layers, and a refined tension-stiffening model, developed by the authors, is included. The Total Lagrangean Formulation is adopted for geometric nonlinear consideration and several methods can be utilized to achieve equilibrium convergence of the nonlinear equations. The developed model is implemented into a computer program named ANEST/CA, which is validated by comparison with some tests on RC beams and plane frames, showing an excellent correlation between numerical and experimental results.

  20. Finite Element Modelling for Static and Free Vibration Response of Functionally Graded Beam

    Directory of Open Access Journals (Sweden)

    Ateeb Ahmad Khan

    Full Text Available Abstract A 1D Finite Element model for static response and free vibration analysis of functionally graded material (FGM beam is presented in this work. The FE model is based on efficient zig-zag theory (ZIGT with two noded beam element having four degrees of freedom at each node. Linear interpolation is used for the axial displacement and cubic hermite interpolation is used for the deflection. Out of a large variety of FGM systems available, Al/SiC and Ni/Al2O3 metal/ceramic FGM system has been chosen. Modified rule of mixture (MROM is used to calculate the young's modulus and rule of mixture (ROM is used to calculate density and poisson's ratio of FGM beam at any point. The MATLAB code based on 1D FE zigzag theory for FGM elastic beams is developed. A 2D FE model for the same elastic FGM beam has been developed using ABAQUS software. An 8-node biquadratic plane stress quadrilateral type element is used for modeling in ABAQUS. Three different end conditions namely simply-supported, cantilever and clamped- clamped are considered. The deflection, normal stress and shear stress has been reported for various models used. Eigen Value problem using subspace iteration method is solved to obtain un-damped natural frequencies and the corresponding mode shapes. The results predicted by the 1D FE model have been compared with the 2D FE results and the results present in open literature. This proves the correctness of the model. Finally, mode shapes have also been plotted for various FGM systems.

  1. Optimal design of a beam stop for Indus-2 using finite element heat ...

    Indian Academy of Sciences (India)

    The radiation source impinges ∼ 1 kW power on the beam stop and the heat transfer capabilities of the beam stop have been evaluated. Temperature distribution in the beam stop has been obtained under various cooling conditions using the finite element analysis calculations with ANSYS software. Design parameters of ...

  2. The SPL-based Neutrino Super Beam

    CERN Document Server

    Baussan, E; Bobeth, C; Bouquerel, E; Caretta, O; Cupial, P; Davenne, T; Densham, C; Dracos, M; Fitton, M; Gaudiot, G; Kozien, M; Lacny, L; Lepers, B; Longhin, A; Loveridge, P; Osswald, F; Poussot, P; Rooney, M; Skoczen, B; Szybinski, B; Ustrzycka, A; Vassilopoulos, N; Wilcox, D; Wroblewski, A; Wurtz, J; Zeter, V; Zito, M

    2012-01-01

    The EUROnu Super Beam work package has studied a neutrino beam based on SPL at CERN and aimed at MEMPHYS, a large water Cherenkov detector, proposed for the Laboratoire Souterrain de Modane (Fr\\'ejus tunnel, France), with a baseline of 130 km. The aim of this proposed experiment is to study the CP violation in the neutrino sector. In the study reported here, we have developed the conceptual design of the neutrino beam, especially the target and the magnetic focusing device. Indeed, this beam present several unprecedented challenges, like the high primary proton beam power (4 MW), the high repetition rate (50 Hz) and the low energy of the protons (4.5 GeV). The design is completed by a study of all the main component of the system, starting from the transport system to guide the beam to the target up to the beam dump.

  3. An efficient coupled polynomial interpolation scheme for shear mode sandwich beam finite element

    Directory of Open Access Journals (Sweden)

    Litesh N. Sulbhewar

    Full Text Available An efficient piezoelectric sandwich beam finite element is presented here. It employs the coupled polynomial field interpolation scheme for field variables which incorporates electromechanical coupling at interpolation level itself; unlike conventional sandwich beam theory (SBT based formulations available in the literature. A variational formulation is used to derive the governing equations, which are used to establish the relationships between field variables. These relations lead to the coupled polynomial field descriptions of variables, unlike conventional SBT formulations which use assumed independent polynomials. The relative axial displacement is expressed only by coupled terms containing contributions from other mechanical and electrical variables, thus eliminating use of the transverse displacement derivative as a degree of freedom. A set of coupled shape function based on these polynomials has shown the improvement in the convergence characteristics of the SBT based formulation. This improvement in the performance is achieved with one nodal degree of freedom lesser than the conventional SBT formulations.

  4. Dynamic analysis of smart composite beams by using the frequency domain spectral element method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Il Wook; Lee, Usik [Inha Univ., Incheon (Korea, Republic of)

    2012-08-15

    To excite or measure the dynamic responses of a laminated composite structure for the active controls of vibrations or noises, wafertype piezoelectric transducers are often bonded on the surface of the composite structure to form a multi layer smart composite structure. Thus, for such smart composite structures, it is very important to develop and use a very reliable mathematical and/or computational model for predicting accurate dynamic characteristics. In this paper, the axial-bending coupled equations of motion and boundary conditions are derived for two layer smart composite beams by using the Hamilton's principle with Lagrange multipliers. The spectral element model is then formulated in the frequency domain by using the variation approach. Through some numerical examples, the extremely high accuracy of the present spectral element model is verified by comparing with the solutions by the conventional finite element model provided in this paper. The effects of the lay up of composite laminates and surface bonded wafer type piezoelectric (PZT) layer on the dynamics and wave characteristics of smart composite beams are investigated. The effective constraint forces at the interface between the base beam and PZT layer are also investigated via Lagrange multipliers.

  5. Beam based measurement of beam position monitor electrode gains

    Directory of Open Access Journals (Sweden)

    D. L. Rubin

    2010-09-01

    Full Text Available Low emittance tuning at the Cornell Electron Storage Ring (CESR test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ∼0.1%.

  6. Performance based analysis of hidden beams in reinforced concrete structures

    Directory of Open Access Journals (Sweden)

    Helou Samir H.

    2014-01-01

    Full Text Available Local and perhaps regional vernacular reinforced concrete building construction leans heavily against designing slabs with imbedded hidden beams for flooring systems in most structures including major edifices. The practice is distinctive in both framed and in shear wall structures. Hidden beams are favoured structural elements due to their many inherent features that characterize them; they save on floor height clearance; they also save on formwork, labour and material cost. Moreover, hidden beams form an acceptable aesthetic appearance that does not hinder efficient interior space partitioning. Such beams have the added advantage of clearing the way for horizontal electromechanical ductwork. However, seismic considerations, in all likelihood, are seldom seriously addressed. The mentioned structural system of shallow beams is adopted in ribbed slabs, waffle slabs and at times with solid slabs. Ribbed slabs and waffle slabs are more prone to hidden beam inclusion due to the added effective height of the concrete section. Due to the presence of a relatively high reinforcement ratio at the joints the sections at such location tend to become less ductile with unreliable contribution to spandrel force resistance. In the following study the structural influence of hidden beams within slabs is investigated. With the primary focus on a performance based analysis of such elements within a structure. This is investigated with due attention to shear wall contribution to the overall behaviour of such structures. Numerical results point in the direction that the function of hidden beams is not as adequate as desired. Therefore it is strongly believed that they are generally superfluous and maybe eliminated altogether. Conversely, shallow beams seem to render the overall seismic capacity of the structure unreliable. Since such an argument is rarely manifested within the linear analysis domain; a pushover analysis exercise is thus mandatory for behaviour

  7. Nonlinear earthquake analysis of reinforced concrete frames with fiber and Bernoulli-Euler beam-column element.

    Science.gov (United States)

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

  8. Nonlinear Earthquake Analysis of Reinforced Concrete Frames with Fiber and Bernoulli-Euler Beam-Column Element

    Directory of Open Access Journals (Sweden)

    Muhammet Karaton

    2014-01-01

    Full Text Available A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

  9. Finite element modelling to assess the effect of surface mounted piezoelectric patch size on vibration response of a hybrid beam

    Science.gov (United States)

    Rahman, N.; Alam, M. N.

    2018-02-01

    Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.

  10. Design of aberration compensation element for the measurement of diffraction efficiency of the beam sampling grating

    Science.gov (United States)

    Sun, Hao

    2012-10-01

    A diffraction optical element (DOE) is designed to compensate the aberration induced by beam sampling grating (BSG), for analyzing the uniformity of diffraction efficiency of BSG quickly and accurately. So it is suitable for a matrix CCD to receive the aberration-free diffraction beam in the defocusing position directly. The DOE with the same size of the BSG is placed closly to the BSG, and the fringes of the DOE can be obtained by computer generated hologram based on holographic interference. Using genetic algorithm, the spatial frequency of the hologram is determined to meet the process constraint of laser directly writing by changing parameters of the measurement path. The fringe distribution of the hologram for laser direct writing can be calculated according to the iterative algorithm.

  11. Externally Prestressed Monolithic and Segmental Concrete Beams under Torsion: a Comparative Finite Element Study

    Energy Technology Data Exchange (ETDEWEB)

    Al-Gorafi, M A; Ali, A A A; Jaafar, M S [Department of Civil Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Othman, I [Department of Civil Engineering, University Of Malaya, 50603 Kuala Lumpur (Malaysia); Anwar, M P, E-mail: gorafimg@gmail.com [Housing Research Centre, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    Externally Prestressed segmental beams are widely used in the construction of bridge structures today. These beams have many attractive advantages for rehabilitation and strengthening of existing structures as well. However, segmental beams experience significant effect under combined stresses at the joint interfaces between segments. This paper presents a finite element study on the effect of torsion on the structural behavior of both external prestressed monolithic and segmental concrete beams. Geometric and material nonlinearities were included in the study. The results show significant difference in the behavior of monolithic and segmental beams under torsion.

  12. Externally Prestressed Monolithic and Segmental Concrete Beams under Torsion: a Comparative Finite Element Study

    Science.gov (United States)

    Al-Gorafi, M. A.; Ali, A. A. A.; Othman, I.; Jaafar, M. S.; Anwar, M. P.

    2011-02-01

    Externally Prestressed segmental beams are widely used in the construction of bridge structures today. These beams have many attractive advantages for rehabilitation and strengthening of existing structures as well. However, segmental beams experience significant effect under combined stresses at the joint interfaces between segments. This paper presents a finite element study on the effect of torsion on the structural behavior of both external prestressed monolithic and segmental concrete beams. Geometric and material nonlinearities were included in the study. The results show significant difference in the behavior of monolithic and segmental beams under torsion.

  13. Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array

    Science.gov (United States)

    Sokolowski, M.; Colegate, T.; Sutinjo, A. T.; Ung, D.; Wayth, R.; Hurley-Walker, N.; Lenc, E.; Pindor, B.; Morgan, J.; Kaplan, D. L.; Bell, M. E.; Callingham, J. R.; Dwarakanath, K. S.; For, Bi-Qing; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wu, C.; Zheng, Q.

    2017-11-01

    The Murchison Widefield Array (MWA), located in Western Australia, is one of the low-frequency precursors of the international Square Kilometre Array (SKA) project. In addition to pursuing its own ambitious science programme, it is also a testbed for wide range of future SKA activities ranging from hardware, software to data analysis. The key science programmes for the MWA and SKA require very high dynamic ranges, which challenges calibration and imaging systems. Correct calibration of the instrument and accurate measurements of source flux densities and polarisations require precise characterisation of the telescope's primary beam. Recent results from the MWA GaLactic Extragalactic All-sky Murchison Widefield Array (GLEAM) survey show that the previously implemented Average Embedded Element (AEE) model still leaves residual polarisations errors of up to 10-20% in Stokes Q. We present a new simulation-based Full Embedded Element (FEE) model which is the most rigorous realisation yet of the MWA's primary beam model. It enables efficient calculation of the MWA beam response in arbitrary directions without necessity of spatial interpolation. In the new model, every dipole in the MWA tile (4 × 4 bow-tie dipoles) is simulated separately, taking into account all mutual coupling, ground screen, and soil effects, and therefore accounts for the different properties of the individual dipoles within a tile. We have applied the FEE beam model to GLEAM observations at 200-231 MHz and used false Stokes parameter leakage as a metric to compare the models. We have determined that the FEE model reduced the magnitude and declination-dependent behaviour of false polarisation in Stokes Q and V while retaining low levels of false polarisation in Stokes U.

  14. An embeddable optical strain gauge based on a buckled beam

    Science.gov (United States)

    Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie

    2017-11-01

    We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.

  15. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas

    2015-01-01

    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  16. Experimental Studies on Finite Element Model Updating for a Heated Beam-Like Structure

    Directory of Open Access Journals (Sweden)

    Kaipeng Sun

    2015-01-01

    Full Text Available An experimental study was made for the identification procedure of time-varying modal parameters and the finite element model updating technique of a beam-like thermal structure in both steady and unsteady high temperature environments. An improved time-varying autoregressive method was proposed first to extract the instantaneous natural frequencies of the structure in the unsteady high temperature environment. Based on the identified modal parameters, then, a finite element model for the structure was updated by using Kriging meta-model and optimization-based finite-element model updating method. The temperature-dependent parameters to be updated were expressed as low-order polynomials of temperature increase, and the finite element model updating problem was solved by updating several coefficients of the polynomials. The experimental results demonstrated the effectiveness of the time-varying modal parameter identification method and showed that the instantaneous natural frequencies of the updated model well tracked the trends of the measured values with high accuracy.

  17. FINITE ELEMENT MODELING OF CAMBER OF PRESTRESSED CONCRETE BEAMS

    Directory of Open Access Journals (Sweden)

    Peter P. Gaigerov

    2017-12-01

    Full Text Available For large-span reinforced concrete beam structures developed by the method of determining the camber due to the prestressing of a steel rope on the concrete. Performed numerical experiments to study the impact of various schemes layout prestressed reinforcement without bonding with concrete on the distribution of the relief efforts along the path of the reinforcement.

  18. Modelling Convergence of Finite Element Analysis of Cantilever Beam

    African Journals Online (AJOL)

    Convergence studies are carried out by investigating the convergence of numerical results as the number of elements is increased. If convergence is not obtained, the engineer using the finite element method has absolutely no indication whether the results are indicative of a meaningful approximation to the correct solution ...

  19. Kinetics of Evaporation of Alloying Elements under Vacuum: Application to Ti alloys in Electron Beam Melting

    Science.gov (United States)

    Choi, Wonjin; Jourdan, Julien; Matveichev, Alexey; Jardy, Alain; Bellot, Jean-Pierre

    2017-09-01

    Vacuum metallurgical processes such as the electron beam melting are highly conducive to volatilization. In titanium processing, it concerns the alloying elements which show a high vapor pressure with respect to titanium matrix, such as Al. Two different experimental approaches using a laboratory electron beam furnace have been developed for the estimation of volatilization rate and activity coefficient of Al in Ti64. The first innovative method is based on the deposition rate of Al on Si wafers located at different angles θ above the liquid bath. We found that a deposition according to a cos2(π/2-θ) law describes well the experimental distribution of the weight of the deposition layer. The second approach relies on the depletion of aluminum in the liquid pool at two separate times of the volatilization process. Both approaches provide values of the Al activity coefficient at T=1, 860 °C in a fairly narrow range [0.044-0.0495], in good agreement with the range reported in the literature. Furthermore numerical simulation of the Al behavior in the liquid pool reveals (in the specific case of electron beam button melting) a weak transport resistance in the surface boundary layer.

  20. Beam-Based Procedures for RF Guns

    CERN Document Server

    Krasilnikov, Mikhail; Grabosch, H J; Hartrott, Michael; Hui Han, Jang; Miltchev, Velizar; Oppelt, Anne; Petrosyan, Bagrat; Staykov, Lazar; Stephan, Frank

    2005-01-01

    A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.

  1. DEVICE FOR MEASURING OF THERMAL LENS PARAMETERS IN LASER ACTIVE ELEMENTS WITH A PROBE BEAM METHOD

    Directory of Open Access Journals (Sweden)

    A. N. Zakharova

    2015-01-01

    Full Text Available We have developed a device for measuring of parameters of thermal lens (TL in laser active elements under longitudinal diode pumping. The measurements are based on the probe beam method. This device allows one to determine sign and optical power of the lens in the principal meridional planes, its sensitivity factor with respect to the absorbed pump power and astigmatism degree, fractional heat loading which make it possible to estimate integral impact of the photoelastic effect to the formation of TL in the laser element. The measurements are performed in a linearly polarized light at the wavelength of 532 nm. Pumping of the laser element is performed at 960 nm that makes it possible to study laser materials doped with Yb3+ and (Er3+, Yb3+ ions. The precision of measurements: for sensitivity factor of TL – 0,1 m-1/W, for astigmatism degree – 0,2 m-1/W, for fractional heat loading – 5 %, for the impact of the photoelastic effect – 0,5 × 10-6 K-1. This device is used for characterization of thermal lens in the laser active element from an yttrium vanadate crystal, Er3+,Yb3+:YVO .

  2. Dynamic Finite Element Analysis of Bending-Torsion Coupled Beams Subjected to Combined Axial Load and End Moment

    Directory of Open Access Journals (Sweden)

    Mir Tahmaseb Kashani

    2015-01-01

    Full Text Available The dynamic analysis of prestressed, bending-torsion coupled beams is revisited. The axially loaded beam is assumed to be slender, isotropic, homogeneous, and linearly elastic, exhibiting coupled flexural-torsional displacement caused by the end moment. Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, the vibration and stability of such beams are explored. Using the closed-form solutions of the uncoupled portions of the governing equations as the basis functions of approximation space, the dynamic, frequency-dependent, interpolation functions are developed, which are then used in conjunction with the weighted residual method to develop the Dynamic Finite Element (DFE of the system. Having implemented the DFE in a MATLAB-based code, the resulting nonlinear eigenvalue problem is then solved to determine the coupled natural frequencies of illustrative beam examples, subjected to various boundary and load conditions. The proposed method is validated against limited available experimental and analytical data, those obtained from an in-house conventional Finite Element Method (FEM code and FEM-based commercial software (ANSYS. In comparison with FEM, the DFE exhibits higher convergence rates and in the absence of end moment it produces exact results. Buckling analysis is also carried out to determine the critical end moment and compressive force for various load combinations.

  3. Fluidic Elements based on Coanda Effect

    Directory of Open Access Journals (Sweden)

    Constantin OLIVOTTO

    2010-12-01

    Full Text Available This paper contains first some definitions and classifications regarding the fluidic elements. Thegeneral current status is presented, nominating the main specific elements based on the Coanda effect developedspecially in Romania. In particularly the development of an original bistable element using industrial compressedair at industrial pressure supply is presented. The function of this element is based on the controlled attachmentof the main jet at a curved wall through the Coanda effect. The methods used for particular calculation andexperiments are nominated. The main application of these elements was to develop a specific execution element:a fluidic step–by-step motor based on the Coanda effect.

  4. Finite Element Simulation of GFRP Reinforced Concrete Beam Externally Strengthened With CFRP Plates

    Directory of Open Access Journals (Sweden)

    Salleh Norhafizah

    2017-01-01

    Full Text Available The construction technology now has become more and more advanced allowing the development of new technologies or material to replace the previous one and also solved some of the troubles confronted by construction experts. The Glass Fibre Reinforced Polymer (GFRP composite is an alternative to replace the current usage of steel as it is rust proof and stronger in terms of stiffness compared to steel. Furthermore, GFRP bars have a high strength-to-weight ratio, making them attractive as reinforcement for concrete structures. However, the tensile behavior of GFRP bars is characterized by a linear elastic stress–strain relationship up to failure and, therefore, concrete elements reinforced with GFRP reinforcement exhibit brittle failure without warning. Design codes encourage over-reinforced GFRP design since it is more progressive and leads to a less catastrophic failure with a higher degree of deformability. Moreover, because of GFRP low modulus of elasticity, GFRP reinforced concrete members exhibit larger deflections and wider cracks width than steel reinforced concrete. This aims of this paper is to developed 2D Finite Element (FE models that can accurately simulate the respond on an improvement in the deflection of GFRP reinforced concrete beam externally strengthened with CFRP plates on the tension part of beam. The prediction of flexural response according to RCCSA software was also discussed. It was observed that the predicted FE results are given similar result with the experimental measured test data. Base on this good agreement, a parametric study was the performed using the validation FE model to investigate the effect of flexural reinforcement ratio and arrangement of the beams strengthened with different regions of CFRP plates.

  5. Development of shear and cross section deformable beam finite elements applied to large deformation and dynamics problems

    OpenAIRE

    Nachbagauer, Karin

    2013-01-01

    International audience; In this paper, beam finite elements based on the absolute nodal coordinate formulation (ANCF) are presented, in which the orientation of the cross section is parameterized by means of slope vectors only. Resulting, no singularities due to an angle parameter occur and the mass matrix is advantageously constant. A continuum mechanics as well as a structural mechanics based formulation for the elastic forces are investigated. Static as well as dynamic examples show accurac...

  6. Unified Formulation Applied to Free Vibrations Finite Element Analysis of Beams with Arbitrary Section

    Directory of Open Access Journals (Sweden)

    E. Carrera

    2011-01-01

    Full Text Available This paper presents hierarchical finite elements on the basis of the Carrera Unified Formulation for free vibrations analysis of beam with arbitrary section geometries. The displacement components are expanded in terms of the section coordinates, (x, y, using a set of 1-D generalized displacement variables. N-order Taylor type expansions are employed. N is a free parameter of the formulation, it is supposed to be as high as 4. Linear (2 nodes, quadratic (3 nodes and cubic (4 nodes approximations along the beam axis, (z, are introduced to develop finite element matrices. These are obtained in terms of a few fundamental nuclei whose form is independent of both N and the number of element nodes. Natural frequencies and vibration modes are computed. Convergence and assessment with available results is first made considering different type of beam elements and expansion orders. Additional analyses consider different beam sections (square, annular and airfoil shaped as well as boundary conditions (simply supported and cantilever beams. It has mainly been concluded that the proposed model is capable of detecting 3-D effects on the vibration modes as well as predicting shell-type vibration modes in case of thin walled beam sections.

  7. Concept for ELENA Extraction and Beam Transfer Elements

    CERN Document Server

    Borburgh, J; Balhan, B; Barna, D; Bartmann, W; Fowler, T; Pricop, V; Sermeus, L; Vanbavinckhove, G

    2013-01-01

    In 2011 the ELENA decelerator was approved as a CERN project. Initially one extraction was foreseen, which should use a kicker and a magnetic septum which can be recuperated from an earlier installation. Since then a second extraction has been approved and a new solution was studied using only electric fields to extract the beam. This will be achieved by fast pulsing a separator, allowing single-bunch but also a full single-turn extraction from ELENA towards the experiments. The extraction and transfer requirements of ELENA are described, followed by the principal differences between the magnetic and electric field concepts. The design of electrostatic focussing and bending devices for the transfer lines will be presented. Finally the field quality which can be achieved with the separator and the concept of its power supply will be discussed.

  8. QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.

    2005-05-16

    Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.

  9. Semiautomatic beam-based LHC collimator alignment

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2012-05-01

    Full Text Available Full beam-based alignment of the LHC collimation system was a time-consuming procedure (up to 28 hours as the collimators were set up manually. A yearly alignment campaign has been sufficient for now, although in the future due to tighter tolerances this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can reduce the beam time for collimator setup and allow for more frequent alignments, therefore reducing the risk of performance degradation. This article describes the design and testing of a semiautomatic algorithm as a first step towards a fully automatic setup procedure. The parameters used to measure the accuracy and performance of the alignment are defined and determined from experimental data. A comparison of these measured parameters at 450 GeV and 3.5 TeV with manual and semiautomatic alignment is provided.

  10. Semiautomatic beam-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Aßmann, Ralph; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Sammut, Nicholas; Wollmann, Daniel

    2012-05-01

    Full beam-based alignment of the LHC collimation system was a time-consuming procedure (up to 28 hours) as the collimators were set up manually. A yearly alignment campaign has been sufficient for now, although in the future due to tighter tolerances this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can reduce the beam time for collimator setup and allow for more frequent alignments, therefore reducing the risk of performance degradation. This article describes the design and testing of a semiautomatic algorithm as a first step towards a fully automatic setup procedure. The parameters used to measure the accuracy and performance of the alignment are defined and determined from experimental data. A comparison of these measured parameters at 450 GeV and 3.5 TeV with manual and semiautomatic alignment is provided.

  11. Semiautomatic beam-based LHC collimator alignment

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Wollmann, Daniel; Sammut, Nicholas; Rossi, Adriana; Redaelli, Stefano

    2012-01-01

    Full beam-based alignment of the LHC collimation system was a time-consuming procedure (up to 28 hours) as the collimators were set up manually. A yearly alignment campaign has been sufficient for now, although in the future due to tighter tolerances this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can reduce the beam time for collimator setup and allow for more frequent alignments, therefore reducing the risk of performance degradation. This article describes the design and testing of a semiautomatic algorithm as a first step towards a fully automatic setup procedure. The parameters used to measure the accuracy and performance of the alignment are defined and determined from experimental data. A comparison of these measured parameters at 450 GeV and 3.5 TeV with manual and semiautomatic alignment is provided.

  12. Nonlinear finite element modeling of concrete deep beams with openings strengthened with externally-bonded composites

    International Nuclear Information System (INIS)

    Hawileh, Rami A.; El-Maaddawy, Tamer A.; Naser, Mohannad Z.

    2012-01-01

    Highlights: ► A 3D nonlinear FE model is developed of RC deep beams with web openings. ► We used cohesion elements to simulate bond. ► The developed FE model is suitable for analysis of such complex structures. -- Abstract: This paper aims to develop 3D nonlinear finite element (FE) models for reinforced concrete (RC) deep beams containing web openings and strengthened in shear with carbon fiber reinforced polymer (CFRP) composite sheets. The web openings interrupted the natural load path either fully or partially. The FE models adopted realistic materials constitutive laws that account for the nonlinear behavior of materials. In the FE models, solid elements for concrete, multi-layer shell elements for CFRP and link elements for steel reinforcement were used to simulate the physical models. Special interface elements were implemented in the FE models to simulate the interfacial bond behavior between the concrete and CFRP composites. A comparison between the FE results and experimental data published in the literature demonstrated the validity of the computational models in capturing the structural response for both unstrengthened and CFRP-strengthened deep beams with openings. The developed FE models can serve as a numerical platform for performance prediction of RC deep beams with openings strengthened in shear with CFRP composites.

  13. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface

    Science.gov (United States)

    Zhang, Qing; Li, Maozhong; Liao, Tingdi; Cui, Xudong

    2018-03-01

    Under the trend of miniaturization and reduction of system complexity, conventional bulky photonic elements are expected to be replaced by new compact and ultrathin dielectric metasurface elements. In this letter, we propose an αTiO2 dielectric metasurface (DM) platform that could be exploited to design high efficiency wave-front control devices at visible wavelength. Combining with fundamental principles and full wave simulations (Lumerical FDTD 3D solver ®), we successfully realize four DM devices, such as anomalous beam deflectors, polarization insensitive metalens, wave plates and polarization beam splitters. All these devices can achieve high transmission efficiencies (larger than 80%). Among them, the anomalous refraction beam deflectors can bend light propagation to any desired directions; the polarization insensitive metalens maintains diffraction limited focus (focal spot as small as 0.67 λ); the quarter-wave and half-wave plates have broadband working wavelengths from 550 to 1000 nm; and the polarization beam splitter can split an arbitrarily polarized incident beam into two orthogonally polarized beams, the TM components is deflected to the right side, and the TE components is deflected to the left side. These devices may find applications in the areas of imaging, polarization control, spectroscopy, and on-chip optoelectronic systems etc., and our studies may richen the design of all-dielectric optical elements at visible wavelength.

  14. Fractal Two-Level Finite Element Method For Free Vibration of Cracked Beams

    Directory of Open Access Journals (Sweden)

    A.Y.T. Leung

    1998-01-01

    Full Text Available The fractal two-level finite element method is extended to the free vibration behavior of cracked beams for various end boundary conditions. A cracked beam is separated into its singular and regular regions. Within the singular region, infinite number of finite elements are virturally generated by fractal geometry to model the singular behavior of the crack tip. The corresponding numerous degrees of freedom are reduced to a small set of generalized displacements by fractal transformation technique. The solution time and computer storage can be remarkably reduced without sacrifying accuracy. The resonant frequencies and mode shapes computed compared well with the results from a commercial program.

  15. System of coefficients for charged-particle beam linear transformation by a magnetic dipole element

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    1979-01-01

    A new technique for consideration of dipole magnet ion-optical effect has been developed to study the problems of commutation and monochromatization of a charged particle beam. In a new form obtained are systematized coefficients of linear transformation (CLT) of the charged particle beam for radial and axial motions in a magnetic dipole element (MDE) including a dipole magnet and two gaps without magnetic field. Given is a method of graphic determination of MDE parameters and main CLT. The new form of coefficients and conditions of the transformations feasibility considerably facilitates the choice and calculation of dipole elements

  16. Finite element modelling of moisture related and visco-elastic deformations in inhomogeneous timber beams

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Dahlblom, Ola

    2013-01-01

    distributions in inhomogeneous glued laminated members (glulam) and in composite beams exposed to combined mechanical action and variable climate conditions are extremely difficult to predict by hand. Several experimental studies of Norway spruce have shown that the longitudinal modulus of elasticity...... and the longitudinal shrinkage coefficient vary considerably from pith to bark. The question is how much these variations affect the stress distribution in wooden structures exposed to variable moisture climate. The paper presents a finite element implementation of a beam element with the aim of studying how wooden...... on the stress distribution within the cross-section of the products that were studied....

  17. High spatial resolution and high brightness ion beam probe for in-situ elemental and isotopic analysis

    Science.gov (United States)

    Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi

    2018-03-01

    A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.

  18. Beam based measurement of beam position monitor electrode gains

    OpenAIRE

    D. L. Rubin; M. Billing; R. Meller; M. Palmer; M. Rendina; N. Rider; D. Sagan; J. Shanks; C. Strohman

    2010-01-01

    Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple ...

  19. Broadband and high-efficiency vortex beam generator based on a hybrid helix array.

    Science.gov (United States)

    Fang, Chaoqun; Wu, Chao; Gong, Zhijie; Zhao, Song; Sun, Anqi; Wei, Zeyong; Li, Hongqiang

    2018-04-01

    The vortex beam which carries the orbital angular momentum has versatile applications, such as high-resolution imaging, optical communications, and particle manipulation. Generating vortex beams with the Pancharatnam-Berry (PB) phase has drawn considerable attention for its unique spin-to-orbital conversion features. Despite the PB phase being frequency independent, an optical element with broadband high-efficiency circular polarization conversion feature is still needed for the broadband high-efficiency vortex beam generation. In this work, a broadband and high-efficiency vortex beam generator based on the PB phase is built with a hybrid helix array. Such devices can generate vortex beams with arbitrary topological charge. Moreover, vortex beams with opposite topological charge can be generated with an opposite handedness incident beam that propagates backward. The measured efficiency of our device is above 65% for a wide frequency range, with the relative bandwidth of 46.5%.

  20. Accelerator development for a radioactive beam facility based on ATLAS

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed

  1. Accelerator development for a radioactive beam facility based on ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  2. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam.

    Science.gov (United States)

    Wang, Aichen; Lu, Renfu; Xie, Lijuan

    2016-01-01

    Spatially resolved spectroscopy provides a means for measuring the optical properties of biological tissues, based on analytical solutions to diffusion approximation for semi-infinite media under the normal illumination of an infinitely small light beam. The method is, however, prone to error in measurement because the actual boundary condition and light beam often deviate from that used in deriving the analytical solutions. It is therefore important to quantify the effect of different boundary conditions and light beams on spatially resolved diffuse reflectance in order to improve the measurement accuracy of the technique. This research was aimed at using finite element method (FEM) to model light propagation in turbid media, subjected to normal illumination by a continuous-wave beam of infinitely small or finite size. Three types of boundary conditions [i.e., partial current (PCBC), extrapolated (EBC), and zero (ZBC)] were evaluated and compared against Monte Carlo (MC) simulations, since MC could provide accurate fluence rate and diffuse reflectance. The effect of beam size was also investigated. Overall results showed that FEM provided results as accurate as those of the analytical method when an appropriate boundary condition was applied. ZBC did not give satisfactory results in most cases. FEM-PCBC yielded a better fluence rate at the boundary than did FEM-EBC, while they were almost identical in predicting diffuse reflectance. Results further showed that FEM coupled with EBC effectively simulated spatially resolved diffuse reflectance under the illumination of a finite size beam. A large beam introduced more error, especially within the region of illumination. Research also confirmed an earlier finding that a light beam of less than 1 mm diameter should be used for estimation of optical parameters. FEM is effective for modeling light propagation in biological tissues and can be used for improving the optical property measurement by the spatially resolved

  3. The Fluka Linebuilder and Element Database: Tools for Building Complex Models of Accelerators Beam Lines

    CERN Document Server

    Mereghetti, A; Cerutti, F; Versaci, R; Vlachoudis, V

    2012-01-01

    Extended FLUKA models of accelerator beam lines can be extremely complex: heavy to manipulate, poorly versatile and prone to mismatched positioning. We developed a framework capable of creating the FLUKA model of an arbitrary portion of a given accelerator, starting from the optics configuration and a few other information provided by the user. The framework includes a builder (LineBuilder), an element database and a series of configuration and analysis scripts. The LineBuilder is a Python program aimed at dynamically assembling complex FLUKA models of accelerator beam lines: positions, magnetic fields and scorings are automatically set up, and geometry details such as apertures of collimators, tilting and misalignment of elements, beam pipes and tunnel geometries can be entered at user’s will. The element database (FEDB) is a collection of detailed FLUKA geometry models of machine elements. This framework has been widely used for recent LHC and SPS beam-machine interaction studies at CERN, and led to a dra...

  4. Element Synthesis Calculations for Stellar Explosions: Robust Uncertainties, Sensitivities, and Radioactive Ion Beam Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Michael Scott [ORNL; Hix, William Raphael [ORNL; Parete-Koon, Suzanne T [ORNL; Dessieux Jr, Luc Lucius [ORNL; Ma, Zhanwen [ORNL; Starrfield, Sumner [Arizona State University; Bardayan, Daniel W [ORNL; Guidry, Mike W [ORNL; Smith, Donald L. [Argonne National Laboratory (ANL); Blackmon, Jeff C [ORNL; Mezzacappa, Anthony [ORNL

    2004-12-01

    We utilize multiple-zone, post-processing element synthesis calculations to determine the impact of recent ORNL radioactive ion beam measurements on predictions of novae and X-ray burst simulations. We also assess the correlations between all relevant reaction rates and all synthesized isotopes, and translate nuclear reaction rate uncertainties into abundance prediction uncertainties, via a unique Monte Carlo technique.

  5. Element synthesis calculations for stellar explosions: robust uncertainties, sensitivities, and radioactive ion beam measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Michael S. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hix, W. Raphael [Dept. of Physics and Astronomy, Univ. of Tennessee, Knoxville, TN (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Parete-Koon, Suzanne [Dept. of Physics and Astronomy, Univ. of Tennessee, Knoxville, TN (United States); Dessieux, Luc [Dept. of Physics and Astronomy, Univ. of Tennessee, Knoxville, TN (United States); Ma, Zhanwen [Dept. of Physics and Astronomy, Univ. of Tennessee, Knoxville, TN (United States); Starrfield, Sumner [Department of Physics and Astronomy, Arizona State Univ., Tempe, AZ (United States); Bardayan, Daniel W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Guidry, Michael W. [Dept. of Physics and Astronomy, Univ. of Tennessee, Knoxville, TN (United States); Smith, Donald L. [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL (United States); Blackmon, Jeffery C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mezzacappa, Anthony [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2004-12-27

    We utilize multiple-zone, post-processing element synthesis calculations to determine the impact of recent ORNL radioactive ion beam measurements on predictions of novae and X-ray burst simulations. We also assess the correlations between all relevant reaction rates and all synthesized isotopes, and translate nuclear reaction rate uncertainties into abundance prediction uncertainties, via a unique Monte Carlo technique.

  6. Analysis of moderately thin-walled beam cross-sections by cubic isoparametric elements

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Krenk, Steen

    2014-01-01

    In technical beam theory the six equilibrium states associated with homogeneous tension, bending, shear and torsion are treated as individual load cases. This enables the formulation of weak form equations governing the warping from shear and torsion. These weak form equations are solved...... numerically by introducing a cubic-linear two-dimensional isoparametric element. The cubic interpolation of this element accurately represents quadratic shear stress variations along cross-section walls, and thus moderately thin-walled cross-sections are effectively discretized by these elements. The ability...

  7. Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper

    DEFF Research Database (Denmark)

    Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin

    2011-01-01

    -cost binary-phase optics fabricated using photolithography and chemical etching techniques can replace the SLM in static and high power beam shaping applications. The design parameters for the binary-phase elements of the module are chosen according to the results of our previously conducted analysis......We report the first experimental demonstration of Gaussian beam-shaping based on the Generalized Phase Contrast (GPC) approach. We show that, when using a dynamic spatial light modulator (SLM), this approach can rapidly generate arbitrarily shaped beams. Moreover, we demonstrate that low...... and numerical demonstrations [Opt. Express 15, 11971 (2007)]. Beams with a variety of cross-sections such as circular, rectangular and square, with near flat-top intensity distributions are demonstrated. GPC-based beam shaping is inherently speckle-free and the shaped beams maintain a flat output phase. The non...

  8. Experimental and statistical models of impact determination of the electron beam parameters on surface layers properties of optical elements in precision instruments building

    Directory of Open Access Journals (Sweden)

    I.V. Yatsenko

    2016-05-01

    external heat flows in 1.3...1.5 times higher than before treatment. Conclusions: As results of the research the experimental and statistical models to determine the impact of parameters of the electron beam on the basic properties of the surface layers of the optical elements and their resistance to thermal action have been developed. This makes it possible (with a relative error of 5 ... 9% automatically in real time to form a managed database with improved properties that impact on the technical and operational characteristics of optical components and devices based on them.

  9. Magnetic study of extraction elements of compact cyclotron beam with AGOR superconducting coils

    International Nuclear Information System (INIS)

    Gustafsson, S.

    1991-12-01

    The extraction system of the superconducting cyclotrons is normally making a large use of electric extractors followed by magnetostatic elements. The electric field limit initially hoped for (14 MV/m) has been shown to be too optimistic. A more realistic value is around 10 MV/m in the concerned geometries. The first element of the AGOR extraction system is an electrostatic channel where the maximum electric field is limited to 10.5 MV/m. The smaller separation between the internal beam and the extracted beam at the entrance of the first magnetic element is compensated by the replacement of the usual magnetostatic channels with high power electromagnetic channels placed in the reduced space close to the internal beam and where the horizontal position can be adjusted according to the kind of ion accelerated and its energy. The fringing field very close to the channels is controlled with the help of correction coils reducing the perturbations of the internal beam trajectories to an acceptable level

  10. Implementation of EPICS based Control System for Radioisotope Beam line

    International Nuclear Information System (INIS)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2015-01-01

    Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac

  11. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    Science.gov (United States)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  12. Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars

    Science.gov (United States)

    Smring, Santa binti; Salleh, Norhafizah; Hamid, NoorAzlina Abdul; Majid, Masni A.

    2017-11-01

    Concrete is a heterogeneous composite material made up of cement, sand, coarse aggregate and water mixed in a desired proportion to obtain the required strength. Plain concrete does not with stand tension as compared to compression. In order to compensate this drawback steel reinforcement are provided in concrete. Now a day, for improving the properties of concrete and also to take up tension combination of steel and glass fibre-reinforced polymer (GFRP) bars promises favourable strength, serviceability, and durability. To verify its promise and support design concrete structures with hybrid type of reinforcement, this study have investigated the load-deflection behaviour of concrete beams reinforced with hybrid GFRP and steel bars by using ATENA software. Fourteen beams, including six control beams reinforced with only steel or only GFRP bars, were analysed. The ratio and the ordinate of GFRP to steel were the main parameters investigated. The behaviour of these beams was investigated via the load-deflection characteristics, cracking behaviour and mode of failure. Hybrid GFRP-Steel reinforced concrete beam showed the improvement in both ultimate capacity and deflection concomitant to the steel reinforced concrete beam. On the other hand, finite element (FE) modelling which is ATENA were validated with previous experiment and promising the good result to be used for further analyses and development in the field of present study.

  13. A methodology for analysis of defective pipeline by introducing stress concentration factor into beam-pipe finite element formulation

    Directory of Open Access Journals (Sweden)

    Hsu Yang Shang

    2016-06-01

    Full Text Available This work proposes a methodology for defective pipe elastoplastic analysis using the Euler Bernoulli beam-pipe element formulation. The virtual work equation is modified to incorporate the stress concentration factor in beam-pipe element formulation. The stress concentration factor is evaluated a priori by a 2D or 3D finite element model according to the defect profile. In this work, a semicircular defect and a rectangular defect are considered. The stress concentration factor is inserted into the beam-pipe element elastoplastic formulation, and several applications are presented to show the applicability of the proposed method.

  14. Negative ion based neutral beams for plasma heating

    International Nuclear Information System (INIS)

    Prelec, K.

    1978-01-01

    Neutral beam systems based on negative ions have been considered because of a high expected power efficiency. Methods for the production, acceleration and neutralization of negative ions will be reviewed and possibilities for an application in neutral beam lines explored

  15. Numerical Analysis of Ultrasonic Beam Profile Due to the Change of the Number of Piezoelectric Elements for Phased Array Transducer

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun

    1999-01-01

    A phased array is a multi-element piezoelectric device whose elements are individually excited by electric pulses at programmed delay time. One of the advantages of using phased array in nondestructive evaluation (NDE) application over conventional ultrasonic transducers is their great maneuverability of ultrasonic beam. There are some parameters such as the number and the size of the piezoelectric elements and the inter-element spacing of the elements to design phased array transducer. In this study, the characteristic of ultrasonic beam for phased array transducer due to the variation of the number of elements has been simulated for ultrasonic SH-wave on the basis of Huygen's principle. Ultrasonic beam directivity and focusing due to the change of time delay of each element were discussed due to the change of the number of piezoelectric elements. It was found that ultrasonic beam was much more spreaded and hence its sound pressure was decreased as steering angle of ultrasonic beam was increased. In addition, the ability of ultrasonic bean focusing decreased gradually with the increase of focal length at the same piezoelectric elements. However, the ability of beam focusing was improved as the number of consisting elements was increased

  16. Discrete mechanics Based on Finite Element Methods

    OpenAIRE

    Chen, Jing-bo; Guo, Han-Ying; Wu, Ke

    2002-01-01

    Discrete Mechanics based on finite element methods is presented in this paper. We also explore the relationship between this discrete mechanics and Veselov discrete mechanics. High order discretizations are constructed in terms of high order interpolations.

  17. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m{sup 3} or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 {mu}g/cm{sup 2} of material which corresponds to about 10{mu}g/m{sup 3} of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5{mu}m. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs.

  18. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    International Nuclear Information System (INIS)

    Cohen, D.

    1996-01-01

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m 3 or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 μg/cm 2 of material which corresponds to about 10μg/m 3 of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5μm. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs

  19. The beam-beam limit in asymmetric colliders: Optimization of the B-factory parameter base

    International Nuclear Information System (INIS)

    Tennyson, J.L.

    1990-01-01

    This paper presents a general theory of the beam-beam limit in symmetric and asymmetric lepton ring colliders. It shows how the beam-beam limit in these accelerators affects the maximum attainable luminosity and presents a specific algorithm for parameter base optimization. It is shown that the special problems inherent in asymmetric colliders derive not from the asymmetry, but from the fact that the two beams must be in different rings. Computer simulation experiments are used to demonstrate the various phenomena discussed in the theory

  20. Dynamic Analysis of a Timoshenko Beam Subjected to an Accelerating Mass Using Spectral Element Method

    Directory of Open Access Journals (Sweden)

    Guangsong Chen

    2014-01-01

    Full Text Available This paper presents formulations for a Timoshenko beam subjected to an accelerating mass using spectral element method in time domain (TSEM. Vertical displacement and bending rotation of the beam were interpolated by Lagrange polynomials supported on the Gauss-Lobatto-Legendre (GLL points. By using GLL integration rule, the mass matrix was diagonal and the dynamic responses can be obtained efficiently and accurately. The results were compared with those obtained in the literature to verify the correctness. The variation of the vibration frequencies of the Timoshenko and moving mass system was researched. The effects of inertial force, centrifugal force, Coriolis force, and tangential force on a Timoshenko beam subjected to an accelerating mass were investigated.

  1. Conceptual Design of the LHC Beam Dumping Protection Elements TCDS and TCDQ

    CERN Document Server

    Goddard, B; Sans-Merce, M; Weterings, W

    2004-01-01

    The Beam Dumping System for the Large Hadron Collider, presently under construction at CERN, consists, per ring, of a set of horizontally deflecting extraction kicker magnets, vertically deflecting steel septa, dilution kickers and finally, a couple of hundred metres further downstream, an absorber block. A fixed diluter (TCDS) will protect the septa in the event of a beam dump that is not synchronised with the particle free gap or a spontaneous firing of the extraction kickers which will cause the beam to sweep over the septum. Another, mobile, diluter block (TCDQ) will protect the superconducting quadrupole immediate downstream of the extraction as well as the arc at injection energy and the triplet aperture at top energy from bunches with small impact parameters. This paper describes the conceptual design of the protection elements.

  2. A test beam upgrade based on the BEPC-LINAC

    International Nuclear Information System (INIS)

    Li Jiacai; Wu Yuanming; Cui Xiangzong; Zhang Liangsheng; Zhou Baoqing; Liu Zhengquan; Zhang Shaoping; Sun Changchun; Zhang Zhuxiang; Zhang Caidi; Zheng Linsheng; Liu Shixing; Shen Ji; Yin Zejie; Zhang Yongming; Chen Ziyu

    2004-01-01

    A total of three beam lines, E1, E2 and E3 have based on the LINAC of BEPC. The E1 beam is to be used for intense slow-positron facility. The E2 is a primary positron or electron beam with an energy of 1.3-1.5 GeV. The E3 is a secondary electron or pion test beam with a momentum can be adjustable continuously. The position accuracy of a detected particle is 0.2-0.4 mm with an event rate of 3 - 4 Hz. This beam has been successfully used for some detectors beam test. (author)

  3. Static Analysis of Steel Fiber Concrete Beam With Heterosis Finite Elements

    Directory of Open Access Journals (Sweden)

    James H. Haido

    2014-08-01

    Full Text Available Steel fiber is considered as the most commonly used constructional fibers in concrete structures. The formulation of new nonlinearities to predict the static performance of steel fiber concrete composite structures is considered essential. Present study is devoted to investigate the efficiency of utilizing heterosis finite elements analysis in static analysis of steel fibrous beams. New and simple material nonlinearities are proposed and used in the formulation of these elements. A computer program coded in FORTRAN was developed to perform current finite element static analysis with considering four cases of elements stiffness matrix determination. The results are compared with the experimental data available in literature in terms of central deflections, strains, and failure form, good agreement was found. Suitable outcomes have been observed in present static analysis with using of tangential stiffness matrix and stiffness matrix in second iteration of the load increment.

  4. Elemental analysis of ancient Chinese bronze artifacts with external-beam PIXE

    International Nuclear Information System (INIS)

    Lin, E.K.; Yu, Y.C.; Wang, C.W.; Shen, C.T.; Huang, Y.M.; Wu, S.C.; Hsieh, C.H.

    1992-01-01

    External-beam PIXE has been applied for the determination of the elemental composition of ancient Chinese bronze artifacts. Characteristic x-ray spectra from the samples bombarded with protons of 3 MeV have been measured with a HPGe detector. At each sample three spots were irradiated per run. Results of measurements on three fragments of bronze drinking vessels and helmet of Chinese ancient Chou and Shang dynasties (17th-8th century B.C.) are presented. To check the analytical method, we have also made measurements on the elemental composition of some modern coins. The results are discussed. (author)

  5. Williams Element with Generalized Degrees of Freedom for Fracture Analysis of Multiple-Cracked Beam

    Science.gov (United States)

    Xu, Hua; Wei, Quyang; Yang, Lufeng

    2017-10-01

    In this paper, the method of finite element with generalized degrees of freedom (FEDOFs) is used to calculate the stress intensity factor (SIF) of multiple cracked beam and analysed the effect of minor cracks on the main crack SIF in different cases. Williams element is insensitive to the size of singular region. So that calculation efficiency is highly improved. Examples analysis validates that the SIF near the crack tip can be obtained directly though FEDOFs. And the result is well consistent with ANSYS solution and has a satisfied accuracy.

  6. Application of diamond based beam loss monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); CERN, Geneva (Switzerland); Baer, Tobias [CERN, Geneva (Switzerland); Hamburg Univ. (Germany); Castro Carballo, Elena Maria [DESY, Zeuthen (Germany); Lohmann, Wolfgang [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); Schmidt, Ruediger [CERN, Geneva (Switzerland)

    2013-07-01

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionization chambers and diamond sensors. Ionization chambers trigger a beam dump if beam losses exceed a certain threshold. They have a time resolution of 40um (half LHC turn) which is not sufficient to resolve bunch-by-bunch beam losses. Diamond sensors have a nanosecond time resolution and can therefore detect bunch-by-bunch beam losses. This time resolution allows an analysis of various types of beam losses and an understanding of the mechanisms. For the first time beam loss intensities were measured bunch-by-bunch caused by different origins of losses. Beam loss measurements using diamond sensors will be presented. The results are compared to simulations and good qualitative agreement was found. The potential of diamond sensors for LHC and experiment applications are discussed.

  7. ISOL based radioactive nuclear beam facilities

    International Nuclear Information System (INIS)

    Nomura, T.

    1991-07-01

    High-intensity and high-quality unstable nuclear beams can be realized by coupling an isotope separator on-line and a proper post accelerator in various primary beams. Some technical features and problems in the production of such beams are discussed. A brief description is given on 'Exotic Nuclei Arena' in Japanese Hadron Project. (author)

  8. Gaussian beam shooting algorithm based on iterative frame decomposition

    OpenAIRE

    Ghannoum, Ihssan; Letrou, Christine; Beauquet, Gilles

    2010-01-01

    International audience; Adaptive beam re-shooting is proposed as a solution to overcome essential limitations of the Gaussian Beam Shooting technique. The proposed algorithm is based on iterative frame decompositions of beam fields in situations where usual paraxial formulas fail to give accurate enough results, such as interactions with finite obstacle edges. Collimated beam fields are successively re-expanded on narrow and wide window frames, allowing for re-shooting and further propagation...

  9. Parallel Finite Element Particle-In-Cell Code for Simulations of Space-charge Dominated Beam-Cavity Interactions

    International Nuclear Information System (INIS)

    Candel, A.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.

    2007-01-01

    Over the past years, SLAC's Advanced Computations Department (ACD) has developed the parallel finite element (FE) particle-in-cell code Pic3P (Pic2P) for simulations of beam-cavity interactions dominated by space-charge effects. As opposed to standard space-charge dominated beam transport codes, which are based on the electrostatic approximation, Pic3P (Pic2P) includes space-charge, retardation and boundary effects as it self-consistently solves the complete set of Maxwell-Lorentz equations using higher-order FE methods on conformal meshes. Use of efficient, large-scale parallel processing allows for the modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of the next-generation of accelerator facilities. Applications to the Linac Coherent Light Source (LCLS) RF gun are presented

  10. THE STRENGTH OF REINFORCED CONCRETE BEAM ELEMENTS UNDER CYCLIC ALTERNATING LOADING AND LOW CYCLE LOAD OF CONSTANT SIGN

    Directory of Open Access Journals (Sweden)

    Semina Yuliya Anatol'evna

    2015-09-01

    Full Text Available The behavior of reinforced concrete elements under some types of cyclic loads is described in the paper. The main aim of the investigations is research of the stress-strain state and strength of the inclined sections of reinforced concrete beam elements in conditions of systemic impact of constructive factors and the factor of external influence. To spotlight the problem of cyclic loadings three series of tests were conducted by the author. Firstly, the analysis of the tests showed that especially cyclic alternating loading reduces the bearing capacity of reinforced concrete beams and their crack resistance by 20 % due to the fatigue of concrete and reinforcement. Thus the change of load sign creates serious changes of stress-strain state of reinforced concrete beam elements. Low cycle loads of constant sign effect the behavior of the constructions not so adversely. Secondly, based on the experimental data mathematical models of elements’ strength were obtained. These models allow evaluating the impact of each factor on the output parameter not only separately, but also in interaction with each other. Furthermore, the material spotlighted by the author describes stress-strain state of the investigated elements, cracking mechanism, changes of deflection values, the influence of mode cyclic loading during the tests. Since the data on the subject are useful and important to building practice, the ultimate aim of the tests will be working out for improvement of nonlinear calculation models of span reinforced concrete constructions taking into account the impact of these loads, and also there will be the development of engineering calculation techniques of their strength, crack resistance and deformability.

  11. Three-dimensionally modulated anisotropic structure for diffractive optical elements created by one-step three-beam polarization holographic photoalignment

    International Nuclear Information System (INIS)

    Kawai, Kotaro; Sakamoto, Moritsugu; Noda, Kohei; Sasaki, Tomoyuki; Ono, Hiroshi; Kawatsuki, Nobuhiro

    2016-01-01

    A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams. These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.

  12. Multi-model finite element scheme for static and free vibration analyses of composite laminated beams

    Directory of Open Access Journals (Sweden)

    U.N. Band

    Full Text Available Abstract A transition element is developed for the local global analysis of laminated composite beams. It bridges one part of the domain modelled with a higher order theory and other with a 2D mixed layerwise theory (LWT used at critical zone of the domain. The use of developed transition element makes the analysis for interlaminar stresses possible with significant accuracy. The mixed 2D model incorporates the transverse normal and shear stresses as nodal degrees of freedom (DOF which inherently ensures continuity of these stresses. Non critical zones are modelled with higher order equivalent single layer (ESL theory leading to the global mesh with multiple models applied simultaneously. Use of higher order ESL in non critical zones reduces the total number of elements required to map the domain. A substantial reduction in DOF as compared to a complete 2D mixed model is obvious. This computationally economical multiple modelling scheme using the transition element is applied to static and free vibration analyses of laminated composite beams. Results obtained are in good agreement with benchmarks available in literature.

  13. [External beam radiotherapy cone beam-computed tomography-based dose calculation].

    Science.gov (United States)

    Barateau, A; Céleste, M; Lafond, C; Henry, O; Couespel, S; Simon, A; Acosta, O; de Crevoisier, R; Périchon, N

    2018-02-01

    In external beam radiotherapy, the dose planning is currently based on computed tomography (CT) images. A relation between Hounsfield numbers and electron densities (or mass densities) is necessary for dose calculation taking heterogeneities into account. In image-guided radiotherapy process, the cone beam CT is classically used for tissue visualization and registration. Cone beam CT for dose calculation is also attractive in dose reporting/monitoring perspectives and particularly in a context of dose-guided adaptive radiotherapy. The accuracy of cone beam CT-based dose calculation is limited by image characteristics such as quality, Hounsfield numbers consistency and restrictive sizes of volume acquisition. The analysis of the literature identifies three kinds of strategies for cone beam CT-based dose calculation: establishment of Hounsfield numbers versus densities curves, density override to regions of interest, and deformable registration between CT and cone beam CT images. Literature results show that discrepancies between the reference CT-based dose calculation and the cone beam CT-based dose calculation are often lower than 3%, regardless of the method. However, they can also reach 10% with unsuitable method. Even if the accuracy of the cone beam CT-based dose calculation is independent of the method, some strategies are promising but need improvements in the automating process for a routine implementation. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  14. Torsion sensing based on patterned piezoelectric beams

    Science.gov (United States)

    Cha, Youngsu; You, Hangil

    2018-03-01

    In this study, we investigated the sensing characteristics of piezoelectric beams under torsional loads. We used partially patterned piezoelectric beams to sense torsion. In particular, the piezoelectric patches are located symmetrically with respect to the line of the shear center of the beam. The patterned piezoelectric beam is modeled as a slender beam, and its electrical responses are obtained by piezoelectric electromechanical equations. To validate the modeling framework, experiments are performed using a setup that forces pure torsional deformation. Three different geometric configurations of the patterned piezoelectric layer are used for the experiments. The frequency and amplitude of the forced torsional load are systematically varied in order to study the behavior of the piezoelectric sensor. Experimental results demonstrate that two voltage outputs of the piezoelectric beam are approximately out of phase with identical amplitude. Moreover, the length of the piezoelectric layers has a significant influence on the sensing properties. Our theoretical predictions using the model support the experimental findings.

  15. A surrogate-based metaheuristic global search method for beam angle selection in radiation treatment planning.

    Science.gov (United States)

    Zhang, H H; Gao, S; Chen, W; Shi, L; D'Souza, W D; Meyer, R R

    2013-03-21

    An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equallyspaced beams (eplans), we have developed a global search metaheuristic process based on the nested partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are of superior quality.

  16. A surrogate-based metaheuristic global search method for beam angle selection in radiation treatment planning

    International Nuclear Information System (INIS)

    Zhang, H H; D’Souza, W D; Gao, S; Shi, L; Chen, W; Meyer, R R

    2013-01-01

    An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equally-spaced beams (eplans), we have developed a global search metaheuristic process based on the nested partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are of superior quality. (paper)

  17. Fractional Order Element Based Impedance Matching

    KAUST Repository

    Radwan, Ahmed Gomaa

    2014-06-24

    Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha.|.noteq.1). A load impedance is located on the traditional Smith chart and projected onto the fractional order Smith chart. A fractional order matching element is determined by transitioning along a matching circle of the fractional order Smith chart based at least in part upon characteristic line impedance. In another embodiment, a system includes a fractional order impedance matching application executed in a computing device. The fractional order impedance matching application includes logic that obtains a first set of Smith chart coordinates at a first order, determines a second set of Smith chart coordinates at a second order, and determines a fractional order matching element from the second set of Smith chart coordinates.

  18. An efficient coupled polynomial interpolation scheme to eliminate material-locking in the Euler-Bernoulli piezoelectric beam finite element

    Directory of Open Access Journals (Sweden)

    Litesh N. Sulbhewar

    Full Text Available The convergence characteristic of the conventional two-noded Euler-Bernoulli piezoelectric beam finite element depends on the configuration of the beam cross-section. The element shows slower convergence for the asymmetric material distribution in the beam cross-section due to 'material-locking' caused by extension-bending coupling. Hence, the use of conventional Euler-Bernoulli beam finite element to analyze piezoelectric beams which are generally made of the host layer with asymmetrically surface bonded piezoelectric layers/patches, leads to increased computational effort to yield converged results. Here, an efficient coupled polynomial interpolation scheme is proposed to improve the convergence of the Euler-Bernoulli piezoelectric beam finite elements, by eliminating ill-effects of material-locking. The equilibrium equations, derived using a variational formulation, are used to establish relationships between field variables. These relations are used to find a coupled quadratic polynomial for axial displacement, having contributions from an assumed cubic polynomial for transverse displacement and assumed linear polynomials for layerwise electric potentials. A set of coupled shape functions derived using these polynomials efficiently handles extension-bending and electromechanical couplings at the field interpolation level itself in a variationally consistent manner, without increasing the number of nodal degrees of freedom. The comparison of results obtained from numerical simulation of test problems shows that the convergence characteristic of the proposed element is insensitive to the material configuration of the beam cross-section.

  19. Determination of elemental concentrations at trace levels in alumina by charged particle activation analysis using proton beam from VEC accelerator

    International Nuclear Information System (INIS)

    Datta, J.; Dasgupta, S.; Chowdhury, D.P.; Verma, R.

    2015-01-01

    The elemental impurities have been determined in high purity alumina material used in nuclear reactors at ppb (μg kg -1 ) to ppm (mg kg -1 ) levels by CPAA using proton beam from VEC machine. Proton beam has the advantage of high cross section for (p, n) reaction to produce suitable nuclide for activation analysis by instrumental approach. The cross sections of higher reaction channels like (p, 2n), (p, pn) are found to be less than 1 mb below 13 MeV proton by theoretical calculation using ALICE 91 computer code. Therefore, 13 MeV proton beam was used to irradiate the alumina samples along with standards, Lake (IAEA-SL -1 ) and Marine (PACS-2) sediments, both in pellet and powder forms. The irradiation was carried out with 50 nA to 1μA beam current for 10 min to 10 h depending on types of samples and standards. The beam current was measured by Faraday cup and also checked by putting Ti monitoring foil before the target. Ni is determined by (p, pn) reaction using 18 MeV proton as there is no suitable product from (p, n) reaction. The counting measurements of irradiated samples were performed with a high resolution γ-spectrometer using HPGe detector (relative efficiency - 40%, resolution - 2.0 keV at 1332 keV) coupled to a PC based 8 k MCA. The validation of the CPAA results has been carried out by INAA with the same alumina samples, carried out in Dhruva reactor with neutron flux 10 14 cm 2 s -1 using standards IAEA-SL-1 and PACS-2

  20. APPLICATION OF FINITE ELEMENT METHOD TAKING INTO ACCOUNT PHYSICAL AND GEOMETRIC NONLINEARITY FOR THE CALCULATION OF PRESTRESSED REINFORCED CONCRETE BEAMS

    Directory of Open Access Journals (Sweden)

    Vladimir P. Agapov

    2017-01-01

    Full Text Available Abstract. Objectives Modern building codes prescribe the calculation of building structures taking into account the nonlinearity of deformation. To achieve this goal, the task is to develop a methodology for calculating prestressed reinforced concrete beams, taking into account physical and geometric nonlinearity. Methods The methodology is based on nonlinear calculation algorithms implemented and tested in the computation complex PRINS (a program for calculating engineering constructions for other types of construction. As a tool for solving this problem, the finite element method is used. Non-linear calculation of constructions is carried out by the PRINS computational complex using the stepwise iterative method. In this case, an equation is constructed and solved at the loading step, using modified Lagrangian coordinates. Results The basic formulas necessary for both the formation and the solution of a system of nonlinear algebraic equations by the stepwise iteration method are given, taking into account the loading, unloading and possible additional loading. A method for simulating prestressing is described by setting the temperature action on the reinforcement and stressing steel rod. Different approaches to accounting for physical and geometric nonlinearity of reinforced concrete beam rods are considered. A calculation example of a flat beam is given, in which the behaviour of the beam is analysed at various stages of its loading up to destruction. Conclusion A program is developed for the calculation of flat and spatially reinforced concrete beams taking into account the nonlinearity of deformation. The program is adapted to the computational complex PRINS and as part of this complex is available to a wide range of engineering, scientific and technical specialists. 

  1. Finite element analysis of composite beam-to-column connection with cold-formed steel section

    Science.gov (United States)

    Firdaus, Muhammad; Saggaff, Anis; Tahir, Mahmood Md

    2017-11-01

    Cold-formed steel (CFS) sections are well known due to its lightweight and high structural performance which is very popular for building construction. Conventionally, they are used as purlins and side rails in the building envelopes of the industrial buildings. Recent research development on cold-formed steel has shown that the usage is expanded to the use in composite construction. This paper presents the modelling of the proposed composite connection of beam-to-column connection where cold-formed steel of lipped steel section is positioned back-to-back to perform as beam. Reinforcement bars is used to perform the composite action anchoring to the column and part of it is embedded into a slab. The results of the finite element and numerical analysis has showed good agreement. The results show that the proposed composite connection contributes to significant increase to the moment capacity.

  2. PATH: a lumped-element beam-transport simulation program with space charge

    International Nuclear Information System (INIS)

    Farrell, J.A.

    1983-01-01

    PATH is a group of computer programs for simulating charged-particle beam-transport systems. It was developed for evaluating the effects of some aberrations without a time-consuming integration of trajectories through the system. The beam-transport portion of PATH is derived from the well-known program, DECAY TURTLE. PATH contains all features available in DECAY TURTLE (including the input format) plus additional features such as a more flexible random-ray generator, longitudinal phase space, some additional beamline elements, and space-charge routines. One of the programs also provides a simulation of an Alvarez linear accelerator. The programs, originally written for a CDC 7600 computer system, also are available on a VAX-VMS system. All of the programs are interactive with input prompting for ease of use

  3. Accounting for straight parts effects on elbow's flexibilities in a beam type finite element program

    International Nuclear Information System (INIS)

    Millard, A.

    1983-01-01

    An extension of Von Karman's theory is applied to the calculations of the flexibility factor of a pipe bend terminated by a straight part or a flange. This analysis is restricted to the linear elastic deformation behaviour under in plane bending. Analytical solutions are given for the propagation of ovalization in the elbow and in the straight part. Considering the response of the piping structures, we note that the ovalization of the piping systems are reduced significantly when the straight parts or flanges effects are included. This results are presented in terms of global as well local flexibility factors. They have been compared to numerical results obtained by shell type finite elements method. A complete piping system is analyzed, for economical reasons, with a beam type approach. Also, we show how it is possible to take into account an elbow's flexibilities the straight parts effects by means of flexibilities factors introduced in a beam type elements. We have implemented this method in the computer program TEDEL. In some specific geometrical features, we compare solutions using shell type elements and our formulation. (orig.)

  4. Accounting for straight parts effects on elbow's flexibilities in a beam type finite element program

    International Nuclear Information System (INIS)

    Millard, A.; Vaghi, H.; Ricard, A.

    1983-08-01

    An extension of Von Karman's theory is applied to the calculations of the flexibility factor of a pipe bend terminated by a straight part or a flange. This analysis is restricted to the linear elastic deformation behaviour under in plane bending. Analytical solutions are given for the propagation of ovalization in the elbow and in the straight part. Considering the response of the piping structures, we note that the ovalization of the piping systems are reduced significantly when the straight parts or flanges effects are included. The results are presented in terms of global as well local flexibility factors. They have been compared to numerical results obtained by shell type finite element method. A complete piping system is analyzed, for economical reasons, with a beam type approach. Also, we show how it is possible to take into account on elbow's flexibilities the straight parts effects by means of flexibilities factors introduced in a beam type element. We have implemented this method in the computer program TEDEL. In some specific geometrical features, we compare solutions using shell type elements and our formulation

  5. Restoration of Natural Frequency of Cracked Cantilever Beam Using CNT Composite Patch: A Finite Element Study

    Directory of Open Access Journals (Sweden)

    Mahmoud Nadim Nahas

    2013-01-01

    Full Text Available Cyclic loadings cause fatigue to the elements of machines leading to crack initiation and propagation. This phenomenon decreases the age of the elements. In particular, cracks decrease the stiffness of the parts and lower the parts natural frequency, leading to failure under normal working conditions. This paper introduces a new application to carbon nanotube (CNT composites in the repairing process of a cracked specimen to restore the natural frequency of the specimen. Commonly, patches are made of high strength and high stiffness materials. This paper shows that even low stiffness materials, such as epoxy reinforced with CNT, can contribute to the repair of a cracked specimen. A 2D finite element (FE simulation is used to study the effects of bonding CNT composite patches over the crack location to repair cracked metal specimens. The effects of the patch thickness, length, and CNTs weight concentration ratio are investigated. Results showed an increase in the natural frequency of 31% compared to the cracked specimen at a crack depth of 70% of the beam depth and at a distance of 20% of the total beam length from the support.

  6. Interactive Analysis of General Beam Configurations using Finite Element Methods and JavaScript

    Science.gov (United States)

    Hernandez, Christopher

    Advancements in computer technology have contributed to the widespread practice of modelling and solving engineering problems through the use of specialized software. The wide use of engineering software comes with the disadvantage to the user of costs from the required purchase of software licenses. The creation of accurate, trusted, and freely available applications capable of conducting meaningful analysis of engineering problems is a way to mitigate to the costs associated with every-day engineering computations. Writing applications in the JavaScript programming language allows the applications to run within any computer browser, without the need to install specialized software, since all internet browsers are equipped with virtual machines (VM) that allow the browsers to execute JavaScript code. The objective of this work is the development of an application that performs the analysis of a completely general beam through use of the finite element method. The app is written in JavaScript and embedded in a web page so it can be downloaded and executed by a user with an internet connection. This application allows the user to analyze any uniform or non-uniform beam, with any combination of applied forces, moments, distributed loads, and boundary conditions. Outputs for this application include lists the beam deformations and slopes, as well as lateral and slope deformation graphs, bending stress distributions, and shear and a moment diagrams. To validate the methodology of the GBeam finite element app, its results are verified using the results from obtained from two other established finite element solvers for fifteen separate test cases.

  7. Concept Modelling of Vehicle Joints and Beam-Like Structures through Dynamic FE-Based Methods

    Directory of Open Access Journals (Sweden)

    G. De Gaetano

    2014-01-01

    Full Text Available This paper presents dynamic methodologies able to obtain concept models of automotive beams and joints, which compare favourably with the existing literature methods, in terms of accuracy, easiness of implementation, and computational loads. For the concept beams, the proposed method is based on a dynamic finite element (FE approach, which estimates the stiffness characteristics of equivalent 1D beam elements using the natural frequencies, computed by a modal analysis of the detailed 3D FE model of the structure. Concept beams are then connected to each other by a concept joint, which is obtained through a dynamic reduction technique that makes use of its vibration normal modes. The joint reduction is improved through the application of a new interface beam-to-joint element, able to interpolate accurately the nodal displacements of the outer contour of the section, to obtain displacements and rotations of the central connection node. The proposed approach is validated through an application case that is typical in vehicle body engineering: the analysis of a structure formed by three spot-welded thin-walled beams, connected by a joint.

  8. Pancharatnam-Berry phase optical elements fabricated by 3D printing for shaping terahertz beams

    Science.gov (United States)

    Hernandez-Serrano, Arturo I.; Castro-Camus, Enrique; Lopez-Mago, Dorilian

    2017-08-01

    The design, fabrication and characterization of space-variant Pancharatnam-Berry phase optical elements is presented for the terahertz regime (THz). These PBOEs are made out of polystyrene and were fabricated by commercially available three-dimensional printers, providing a simple and inexpensive solution for the generation of THz vector beams. The polarization structure was characterized by using a THz time-domain imaging system. These devices can find applications in future THz technologies and provide new tools for the study of polarization morphologies

  9. Resistive wall impedance of the LHC beam screen without slots calculated by boundary element method

    CERN Document Server

    Tsutsui, H

    2002-01-01

    In order to calculate the resistive wall impedance of the LHC beam screen without slots, the Boundary Element Method (BEM) is used. The result at 1 GHz is Re(ZL/L) = 6.689×10−3 Ω/m, Re(Zx/L) = 1.251 Ω/m2, Re(Zy/L) = 1.776 Ω/m2, andRe(2Z0,2 cos/kL) = −0.525 Ω/m2, assuming σ = 5.8 × 109 /Ωm.

  10. On the Possibility of Using Nonlinear Elements for Landau Damping in High-Intensity Beams

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y. [Fermilab; Gianfelice-Wendt, E. [Fermilab; Lebedev, V. [Fermilab; Valishev, A. [Fermilab

    2016-09-30

    Direct space-charge force shifts incoherent tunes downwards from the coherent ones breaking the Landau mechanism of coherent oscillations damping at high beam intensity. To restore it nonlinear elements can be employed which move back tunes of large amplitude particles. In the present report we consider the possibility of creating a “nonlinear integrable optics” insertion in the Fermilab Recycler to host either octupoles or hollow electron lens for this purpose. For comparison we also consider the classic scheme with distributed octupole families. It is shown that for the Proton Improvement Plan II (PIP II) parameters the required nonlinear tune shift can be created without destroying the dynamic aperture.

  11. Effect of elemental composition of ion beam on the phase formation and surface strengthening of structural materials

    International Nuclear Information System (INIS)

    Avdienko, K.I.; Avdienko, A.A.; Kovalenko, I.A.

    2001-01-01

    The investigation results are reported on the influence of ion beam element composition on phase formation, wear resistance and microhardness of surface layers of titanium alloys VT-4 and VT-16 as well as stainless steel 12Kh18N10T implanted with nitrogen, oxygen and boron. It is stated that ion implantation into structural materials results in surface hardening and is directly dependent on element composition of implanted ion beam. The presence of oxygen in boron or nitrogen ion beams prevents the formation of boride and nitride phases thus decreasing a hardening effect [ru

  12. Production of atomic negative ion beams of the Group IA elements

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1988-01-01

    A method has been developed which enables the direct sputter generation of atomic negative ion beams of all members of the Group IA elements (Li, Na, K, Rb, and Cs). The method consists of the use of sputter samples formed by pressing mixtures of the carbonates of the Group IA elements and 10% (atomic) Cu, Ag, or other metal powder. The following intensities are typical of those observed from carbonate samples subjected to /approximately/3 KeV cesium ion bombardment: Li - : ≥0.5 μA; Na - : ≥0.5 μA; K - : ≥0.5 μA; Rb - : ≥0.5 μA; Cs - : ≥0.2 μA. 7 refs., 2 figs., 1 tab

  13. Analysis of pipe mitred bends using beam models - by finite element method

    International Nuclear Information System (INIS)

    Salles, A.C.S.L. de.

    1984-01-01

    The formulation of a recently proposed displacement based straight pipe element for the analysis of pipe mitred bends is summarized in this work. The element kinematics includes axial, bending, torsional and ovalisation displacements, all varying cubically along the axis of the element. Interaction effects between angle adjoined straight pipe section are modeled including the appropriate additional strain terms in the stiffness matrix formulation and by using a penalty procedure to enforce continuity of pipe skin flexural rotations at the common helical edge. The element model capabilities are ilustrated in some sample analysis and the results are compared with other available experimental, analytical or more complex numerical models. (Author) [pt

  14. Fuzzy-logic-based active vibration control of beams using piezoelectric patches

    Science.gov (United States)

    Sharma, Manu; Singh, S. P.; Sachdeva, B. L.

    2003-10-01

    The present work presents a fuzzy logic based controller with a compact rule base, for active vibration control of beams. The controller was implemented experimentally on a test beam and the results were found satisfactory. The test system consists of a cantilevered beam with two piezoelectric patches mounted near its root in collocated fashion. This piezo-beam system was modelled using Finite Element Method. To derive the equations of motion, Hamilton's principle was used. Electro-mechanical interaction of the piezoelectric patch with the beam was modelled using linear constitutive equations for piezoceramics, which relate strain and electric displacement to stress and electric field. The fuzzy logic controller is based on modal velocity of the beam. The basis for generating the fuzzy logic rule base of this controller is obtained from negative velocity feedback control. Modal velocity of the beam acts as an input to the fuzzy controller and actuation force is the output from the inference engine. Linear decay of vibratory amplitude is observed in case of fuzzy logic controller as opposed to logarithmic decay in case of negative velocity feedback control Present controller has just three rules. This is an important achievement because bulky fuzzy logic controllers for active vibration control require fast processors for real time implementation (Kwak and Sciulli and Mayhan and Washington).

  15. About solution of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method and discrete-continual finite element method. part 1: formulation of the problem and general principles of approximation

    Directory of Open Access Journals (Sweden)

    Lyakhovich Leonid

    2017-01-01

    Full Text Available This paper is devoted to formulation and general principles of approximation of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method (FEM discrete-continual finite element method (DCFEM. The field of application of DCFEM comprises structures with regular physical and geometrical parameters in some dimension (“basic” dimension. DCFEM presupposes finite element approximation for non-basic dimension while in the basic dimension problem remains continual. DCFEM is based on analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients.

  16. Applications of power beaming from space-based nuclear power stations. [Laser beaming to airplanes; microwave beaming to ground

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.

  17. A non-reflecting boundary for use in a finite element beam model of a railway track

    Science.gov (United States)

    Yang, Jiannan; Thompson, David J.

    2015-02-01

    Some beam-like structures such as a railway track are effectively infinite in nature. Analytical solutions exist for simple structures but numerical methods like the finite element (FE) method are often employed to study more complicated problems. However, when the FE method is used for structures of infinite extent it is essential to introduce artificial boundaries to limit the area of computation. Here, a non-reflecting boundary is developed using a damped tapered tip for application in a finite element model representing an infinite supported beam. The FE model of the tapered tip is validated against an analytical model based on Bessel functions. The reflection characteristics of the FE tapered tip are quantified using a wave/FE superposition method. It is shown that the damped tapered tip is much more effective than its constant counterpart and achieves reduction of the model size. The damped tapered tip is applied to a simple FE railway track model and good agreement is found when its point mobility is compared with an analytical infinite track model.

  18. Excimer laser beam profile recording based on electrochemical etched polycarbonate

    International Nuclear Information System (INIS)

    Parvin, P.; Jaleh, B.; Zangeneh, H.R.; Zamanipour, Z.; Davoud-Abadi, Gh.R.

    2008-01-01

    There is no polymeric detector used to register the beam profile of UV lasers. Here, a method is proposed for the measurement of intensive UV beam pattern of the excimer lasers based on the photoablated polycarbonate detector after coherent UV exposure and the subsequent electrochemical etching. UV laser induced defects in the form of self-microstructuring on polycarbonate are developed to replicate the spatial intensity distribution as a beam profiler

  19. A new method of measurement of trace elements by using particle beams

    International Nuclear Information System (INIS)

    Matsumoto, Shinji

    1982-01-01

    A new method of measurement of light elements by using the particle beam from an accelerator was developed. This paper reports on the results of analyses of N-15 and O-18. The tandem accelerator of University of Tokyo was used to accelerate proton beam. The energy of protons was determined from the excitation curves of elastic scattering by N-15, O-18 and O-16. The scattering by O-16 was background count. Therefore, The measurement was made at the energy of small background and large true counting. Biological samples were examined. The linearity of counts with the concentration of N-15 and O-18 was confirmed. The cells which contain glycine (O-18, 71.8 percent) and methionine (N-15, 95 percent) were analyzed. The peaks of N-15 and O-18 were well separated from teh peaks by N-14 and O-16. The natural amounts of N-15 in adenine and O-18 in glucose were also measured. The resonance reaction method of measurement by using particle beam was developed. (Kato, T.)

  20. Finite Element Models for Electron Beam Freeform Fabrication Process, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II proposal offers to develop a comprehensive computer simulation methodology based on the finite element method for...

  1. Finite element model updating of concrete structures based on imprecise probability

    Science.gov (United States)

    Biswal, S.; Ramaswamy, A.

    2017-09-01

    Imprecise probability based methods are developed in this study for the parameter estimation, in finite element model updating for concrete structures, when the measurements are imprecisely defined. Bayesian analysis using Metropolis Hastings algorithm for parameter estimation is generalized to incorporate the imprecision present in the prior distribution, in the likelihood function, and in the measured responses. Three different cases are considered (i) imprecision is present in the prior distribution and in the measurements only, (ii) imprecision is present in the parameters of the finite element model and in the measurement only, and (iii) imprecision is present in the prior distribution, in the parameters of the finite element model, and in the measurements. Procedures are also developed for integrating the imprecision in the parameters of the finite element model, in the finite element software Abaqus. The proposed methods are then verified against reinforced concrete beams and prestressed concrete beams tested in our laboratory as part of this study.

  2. Parametric Design and Mechanical Analysis of Beams based on SINOVATION

    Science.gov (United States)

    Xu, Z. G.; Shen, W. D.; Yang, D. Y.; Liu, W. M.

    2017-07-01

    In engineering practice, engineer needs to carry out complicated calculation when the loads on the beam are complex. The processes of analysis and calculation take a lot of time and the results are unreliable. So VS2005 and ADK are used to develop a software for beams design based on the 3D CAD software SINOVATION with C ++ programming language. The software can realize the mechanical analysis and parameterized design of various types of beams and output the report of design in HTML format. Efficiency and reliability of design of beams are improved.

  3. Microelectromechanical resonator based digital logic elements

    KAUST Repository

    Hafiz, Md Abdullah Al

    2016-10-20

    Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. However, its full realization has been hindered by the difficulty in realizing complex combinational logics, in which the logic function is constructed by cascading multiple smaller logic blocks. In this work we report an alternative approach for implementation of digital logic core elements, multiplexer and demultiplexer, which can be used to realize combinational logic circuits by suitable concatenation. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.

  4. A piezoelectric vibration harvester based on clamped-guided beams

    NARCIS (Netherlands)

    Wang, Z.; Matova, S.; Elfrink, R.; Jambunathan, M.; Nooijer, C. de; Schaijk, R. van; Vullers, R.J.M.

    2012-01-01

    The paper addresses the design, modeling, fabrication and experimental results of a piezoelectric energy harvester based on clamped-guided beams. The design is featured by shorter mass displacement and higher reliability than cantilever beams. Two separate sets of capacitors allow exploiting both

  5. Automatic learning-based beam angle selection for thoracic IMRT.

    Science.gov (United States)

    Amit, Guy; Purdie, Thomas G; Levinshtein, Alex; Hope, Andrew J; Lindsay, Patricia; Marshall, Andrea; Jaffray, David A; Pekar, Vladimir

    2015-04-01

    The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose-volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner's clinical experience. The purpose of this work is to propose and study a computationally efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume coverage and organ at risk

  6. Phylogeny based discovery of regulatory elements

    Directory of Open Access Journals (Sweden)

    Cohen Barak A

    2006-05-01

    Full Text Available Abstract Background Algorithms that locate evolutionarily conserved sequences have become powerful tools for finding functional DNA elements, including transcription factor binding sites; however, most methods do not take advantage of an explicit model for the constrained evolution of functional DNA sequences. Results We developed a probabilistic framework that combines an HKY85 model, which assigns probabilities to different base substitutions between species, and weight matrix models of transcription factor binding sites, which describe the probabilities of observing particular nucleotides at specific positions in the binding site. The method incorporates the phylogenies of the species under consideration and takes into account the position specific variation of transcription factor binding sites. Using our framework we assessed the suitability of alignments of genomic sequences from commonly used species as substrates for comparative genomic approaches to regulatory motif finding. We then applied this technique to Saccharomyces cerevisiae and related species by examining all possible six base pair DNA sequences (hexamers and identifying sequences that are conserved in a significant number of promoters. By combining similar conserved hexamers we reconstructed known cis-regulatory motifs and made predictions of previously unidentified motifs. We tested one prediction experimentally, finding it to be a regulatory element involved in the transcriptional response to glucose. Conclusion The experimental validation of a regulatory element prediction missed by other large-scale motif finding studies demonstrates that our approach is a useful addition to the current suite of tools for finding regulatory motifs.

  7. Beam Based RF Voltage Measurements and Longitudinal Beam Tomography at the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab; Bhat, S. [Fermilab

    2017-10-19

    Increasing proton beam power on neutrino production targets is one of the major goals of the Fermilab long term accelerator programs. In this effort, the Fermilab 8 GeV Booster synchrotron plays a critical role for at least the next two decades. Therefore, understanding the Booster in great detail is important as we continue to improve its performance. For example, it is important to know accurately the available RF power in the Booster by carrying out beam-based measurements in order to specify the needed upgrades to the Booster RF system. Since the Booster magnetic field is changing continuously measuring/calibrating the RF voltage is not a trivial task. Here, we present a beam based method for the RF voltage measurements. Data analysis is carried out using computer programs developed in Python and MATLAB. The method presented here is applicable to any RCS which do not have flat-bottom and flat-top in the acceleration magnetic ramps. We have also carried out longitudinal beam tomography at injection and extraction energies with the data used for RF voltage measurements. Beam based RF voltage measurements and beam tomography were never done before for the Fermilab Booster. The results from these investigations will be very useful in future intensity upgrades.

  8. A finite element modeling of a multifunctional hybrid composite beam with viscoelastic materials

    Science.gov (United States)

    Wang, Ya; Inman, Daniel J.

    2013-04-01

    The multifunctional hybrid composite structure studied here consists of a ceramic outer layer capable of withstanding high temperatures, a functionally graded ceramic layer combining shape memory alloy (SMA) properties of NiTi together with Ti2AlC (called Graded Ceramic/Metal Composite, or GCMeC), and a high temperature sensor patch, followed by a polymer matrix composite laced with vascular cooling channels all held together with various epoxies. Due to the recoverable nature of SMA and adhesive properties of Ti2AlC, the damping behavior of the GCMeC is largely viscoelastic. This paper presents a finite element formulation for this multifunctional hybrid structure with embedded viscoelastic material. In order to implement the viscoelastic model into the finite element formulation, a second order three parameter Golla-Hughes-McTavish (GHM) method is used to describe the viscoelastic behavior. Considering the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. The curve-fitting aspects of both GHM and ADF show good agreement with experimental data obtained from dynamic mechanics analysis. The performance of the finite element of the layered multifunctional beam is verified through experimental model analysis.

  9. An Electron Beam Profile Instrument Based on FBGs

    Directory of Open Access Journals (Sweden)

    Dan Sporea

    2014-08-01

    Full Text Available Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application.

  10. Beam based feedback for the Linac coherent light source

    International Nuclear Information System (INIS)

    Fairley, D.; Kim, K.; Luchini, K; Natampalli, P.; Piccoli, L.; Rogind, D.; Straumann, T.

    2012-01-01

    Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6*6 longitudinal feedback loop, and a loop to maintain the electron bunch charge have been commissioned on the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 120 Hz. This paper will discuss the design, configuration and commissioning of the beam-based Fast Feedback System for LCLS. Topics include algorithms for 120 Hz feedback, multi-cast network performance, actuator and sensor performance for single-pulse control and sensor read back, and feedback configuration and run-time control. (authors)

  11. An investigation of the beam-column and the finite-element formulations for analyzing geometrically nonlinear thermal response of plane frames

    Science.gov (United States)

    Silwal, Baikuntha

    The objective of this study is to investigate the accuracy and computational efficiency of two commonly used formulations for performing the geometrically nonlinear thermal analysis of plane framed structures. The formulations considered are the followings: the Beam-Column formulation and the updated Lagrangian version of the finite element formulation that has been adopted in the commercially well-known software SAP2000. These two formulations are used to generate extensive numerical data for three plane frame configurations, which are then compared to evaluate the performance of the two formulations. The Beam-Column method is based on an Eulerian formulation that incorporates the effects of large joint displacements. In addition, local member force-deformation relationships are based on the Beam-Column approach that includes the axial strain, flexural bowing, and thermal strain. The other formulation, the SAP2000, is based on the updated Lagrangian finite element formulation. The results for nonlinear thermal responses were generated for three plane structures by these formulations. Then, the data were compared for accuracy of deflection responses and for computational efficiency of the Newton-Raphson iteration cycles required for the thermal analysis. The results of this study indicate that the Beam-Column method is quite efficient and powerful for the thermal analysis of plane frames since the method is based on the exact solution of the differential equations. In comparison to the SAP2000 software, the Beam-Column method requires fewer iteration cycles and fewer elements per natural member, even when the structures are subjected to significant curvature effects and to restrained support conditions. The accuracy of the SAP2000 generally depends on the number of steps and/or the number of elements per natural member (especially four or more elements per member may be needed when structure member encounters a significant curvature effect). Succinctly, the Beam

  12. Performance and perspectives of the diamond based Beam Condition Monitor for beam loss monitoring at CMS

    CERN Document Server

    AUTHOR|(CDS)2080862

    2015-01-01

    At CMS, a beam loss monitoring system is operated to protect the silicon detectors from high particle rates, arising from intense beam loss events. As detectors, poly-crystalline CVD diamond sensors are placed around the beam pipe at several locations inside CMS. In case of extremely high detector currents, the LHC beams are automatically extracted from the LHC rings.Diamond is the detector material of choice due to its radiation hardness. Predictions of the detector lifetime were made based on FLUKA monte-carlo simulations and irradiation test results from the RD42 collaboration, which attested no significant radiation damage over several years.During the LHC operational Run1 (2010 â?? 2013), the detector efficiencies were monitored. A signal decrease of about 50 times stronger than expectations was observed in the in-situ radiation environment. Electric field deformations due to charge carriers, trapped in radiation induced lattice defects, are responsible for this signal decrease. This so-called polarizat...

  13. Beam-based alignment of CLIC drive beam decelerator using girders movers

    CERN Document Server

    Sterbini, G

    2011-01-01

    The CLIC drive beams will provide the rf power to accelerate the colliding beams: in order to reach the design performance, an efficient transport of the drive beam has to be ensured in spite of its challenging energy spread and large current intensity. As shown in previous studies, the specifications can be met by coupling a convenient optics design with the state-of-the-art of pre-alignment and beambased alignment techniques. In this paper we consider a novel beam-based alignment scheme that does not require quadrupole movers or dipole correctors but uses the motors already foreseen for the pre-alignment system. This implies potential savings in terms of complexity and cost at the expense of the alignment flexibility: the performance, limitations and sensitivity to pre-alignment tolerances of this method are discussed.

  14. Simulation Studies of Beam-Beam Effects of a Ring-Ring Electron-Ion Collider Based on CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Yuhong Zhang,Ji Qiang

    2009-05-01

    The collective beam-beam effect can potentially cause a rapid growth of beam sizes and reduce the luminosity of a collider to an unacceptably low level. The ELIC, a proposed ultra high luminosity electron-ion collider based on CEBAF, employs high repetition rate crab crossing colliding beams with very small bunch transverse sizes and very short bunch lengths, and collides them at up to 4 interaction points with strong final focusing. All of these features can make the beam-beam effect challenging. In this paper, we present simulation studies of the beam-beam effect in ELIC using a self-consistent strong-strong beam-beam simulation code developed at Lawrence Berkeley National Laboratory. This simulation study is used for validating the ELIC design and for searching for an optimal parameter set.

  15. Biomechanical characterization dismount from balance beam on the basis of the analysis of key elements of sports equipment

    Directory of Open Access Journals (Sweden)

    V.A. Potop

    2013-12-01

    Full Text Available Purpose. Biomechanical analysis of sports performance technology with balance beam dismount. Material, methods. The study involved six young gymnasts aged 12 - 14 years old - the reserve team of Romania. Results. Identified nodal elements of sports equipment dismount from balance beam type flip off rondat and rondat - coup ago somersaults with twists caved at 360°, 540°, 720° and 900°. In the preparatory phase of the motor action performed dismount isolated and studied central element of sports equipment - starting posture of the body in the phase of the main motor action - animation body posture in the final phase of motor actions - the final posture of the body - Sustainable landing. Conclusions. The method of video - computer research dismount from balance beam type flip off rondat and rondat - coup ago, in conjunction with the method of postural orientation movements allow you to perform a detailed biomechanical analysis of the key elements of sports equipment, to develop advanced training programs.

  16. First prompt in-beam γ-ray spectroscopy of a superheavy element: the 256Rf

    International Nuclear Information System (INIS)

    Rubert, J; Dorvaux, O; Gall, B J P; Asfari, Z; Piot, J; Greenlees, P T; Grahn, T; Herzan, A; Jakobsson, U; Jones, P; Julin, R; Juutinen, S; Andersson, L L; Cox, D M; Herzberg, R-D; Asai, M; Dechery, F; Hauschild, K; Henning, G; Heßberger, F P

    2013-01-01

    Using state-of-the-art γ-ray spectroscopic techniques, the first rotational band of a superheavy element, extending up to a spin of 20 h, was discovered in the nucleus 256 Rf. To perform such an experiment at the limits of the present instrumentation, several developments were needed. The most important of these developments was of an intense isotopically enriched 50 Ti beam using the MIVOC method. The experimental set-up and subsequent analysis allowed the 256 Rf ground-state band to be revealed. The rotational properties of the band are discussed and compared with neighboring transfermium nuclei through the study of their moments of inertia. These data suggest that there is no evidence of a significant deformed shell gap at Z = 104.

  17. Beam shaping for multicolour light-emitting diodes with diffractive optical elements

    KAUST Repository

    Yu, Chao

    2016-10-06

    An improved particle swarm optimization method is proposed for the design of ultra-thin diffractive optical elements (DOEs) enabling multicolour beam shaping functionality. We employ pre-optimized initial structures and adaptive weight strategy in the algorithm to achieve better and identical shaping performance for multiple colours. Accordingly, a DOE for shaping light from green and blue LEDs has been designed and fabricated. Both experiment and numerical simulations have been conducted and the results agree well with each other. 15.66% average root mean square error (RMSE) and 0.22% RMSE difference are achieved. In addition, the parameters closely related to the performance of the optimization are analysed, which can provide insights for future application designs.

  18. Finite elements numerical codes as primary tool to improve beam optics in NIO1

    Science.gov (United States)

    Baltador, C.; Cavenago, M.; Veltri, P.; Serianni, G.

    2017-08-01

    The RF negative ion source NIO1, built at Consorzio RFX in Padua (Italy), is aimed to investigate general issues on ion source physics in view of the full-size ITER injector MITICA as well as DEMO relevant solutions, like energy recovery and alternative neutralization systems, crucial for neutral beam injectors in future fusion experiments. NIO1 has been designed to produce 9 H-beamlets (in a 3x3 pattern) of 15mA each and 60keV, using a three electrodes system downstream the plasma source. At the moment the source is at its early operational stage and only operation at low power and low beam energy is possible. In particular, NIO1 presents a too strong set of SmCo co-extraction electron suppression magnets (CESM) in the extraction grid (EG) that will be replaced by a weaker set of Ferrite magnets. A completely new set of magnets will be also designed and mounted on the new EG that will be installed next year, replacing the present one. In this paper, the finite element code OPERA 3D is used to investigate the effects of the three sets of magnets on beamlet optics. A comparison of numerical results with measurements will be provided where possible.

  19. Reactor - and accelerator-based filtered beams

    International Nuclear Information System (INIS)

    Mill, A.J.; Harvey, J.R.

    1980-01-01

    The neutrons produced in high flux nuclear reactors and in accelerator, induced fission and spallation reactions, represent the most intense sources of neutrons available for research. However, the neutrons from these sources are not monoenergetic, covering the broad range extending from 10 -3 eV up to 10 7 eV or so. In order to make quantitative measurements of the effects of neutrons and their dependence on neutron energy it is desirable to have mono-energetic neutron sources. The paper describes briefly methods of obtaining mono-energetic neutrons and different methods of filtration. This is followed by more detailed discussion of neutron window filters and a summary of the filtered beam facilities using this technique. The review concludes with a discussion of the main applications of filtered beams and their present and future importance

  20. Reliability-Based Optimization of Structural Elements

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    In this paper structural elements from an optimization point of view are considered, i.e. only the geometry of a structural element is optimized. Reliability modelling of the structural element is discussed both from an element point of view and from a system point of view. The optimization...

  1. Impedance computations and beam-based measurements: A problem of discrepancy

    Science.gov (United States)

    Smaluk, Victor

    2018-04-01

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictions based on the computed impedance budgets show a significant discrepancy. Three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.

  2. Image reconstruction of cyclotron beam based on Hopfield network

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Tetsuya; Murakami, Thoru; Tanizaki, Naoaki (Sumitomo Heavy Industries, Tanashi, Tokyo (Japan). Systems Engineering Lab.)

    1991-12-01

    This paper describes a beam image reconstruction method based on Hopfield neural networks. The images of beam emitted from cyclotrons are measured as three projection patterns by 3-wire beam sensors. The reconstruction of beam image is necessary because the measured projection patterns are not easy to understand for inexperienced operators. First, the energy function is defined using the measured projection patterns as constraints. Then surface tension terms, which make the surface area minimal, are added to it in order to generate smooth images. The weights of links of the Hopfield network are determined by the coefficients of the energy function. Through the convergence of the network, beam images which satisfy the projection patterns and look natural for human sense can be reconstructed. (author).

  3. Recent progress in tailoring trap-based positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Natisin, M. R.; Hurst, N. C.; Danielson, J. R.; Surko, C. M. [Physics Department, University of California, San Diego La Jolla CA 92093-0319 (United States)

    2013-03-19

    Recent progress is described to implement two approaches to specially tailor trap-based positron beams. Experiments and simulations are presented to understand the limits on the energy spread and pulse duration of positron beams extracted from a Penning-Malmberg (PM) trap after the particles have been buffer-gas cooled (or heated) in the range of temperatures 1000 {>=} T {>=} 300 K. These simulations are also used to predict beam performance for cryogenically cooled positrons. Experiments and simulations are also presented to understand the properties of beams formed when plasmas are tailored in a PM trap in a 5 tesla magnetic field, then non-adiabatically extracted from the field using a specially designed high-permeability grid to create a new class of electrostatically guided beams.

  4. The study of laser beam riding guided system based on 980nm diode laser

    Science.gov (United States)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  5. Polynomials of Gaussians and vortex-Gaussian beams as complete, transversely confined bases.

    Science.gov (United States)

    Gutiérrez-Cuevas, Rodrigo; Alonso, Miguel A

    2017-06-01

    A novel type of discrete basis for paraxial beams is proposed, consisting of monomial vortices times polynomials of Gaussians in the radial variable. These bases have the distinctive property that the effective size of their elements is roughly independent of element order, meaning that the optimal scaling for expanding a localized field does not depend significantly on truncation order. This behavior contrasts with that of bases composed of polynomials times Gaussians, such as Hermite-Gauss and Laguerre-Gauss modes, where the scaling changes roughly as the inverse square root of the truncation order.

  6. Beam-based Feedback for the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Fairley, D.; Allison, S.; Chevtsov, S.; Chu, P.; Decker, F.J.; Emma, P.; Frisch, J.; Himel, T.; Kim, K.; Krejcik, P.; Loos, H.; Lahey, T.; Natampalli, P.; Peng, S.; Rogind, D.; Shoaee, H.; Straumann, T.; Williams, E.; White, G.; Wu, J.; Zelazney, M.; /SLAC

    2010-02-11

    Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6 x 6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.

  7. Knowledge rule base for the beam optics program TRACE 3-D

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Van Staagen, P.K.; Hill, B.W.

    1993-01-01

    An expert system type of knowledge rule base has been developed for the input parameters used by the particle beam transport program TRACE 3-D. The goal has been to provide the program's user with adequate on-screen information to allow him to initially set up a problem with minimal open-quotes off-lineclose quotes calculations. The focus of this work has been in developing rules for the parameters which define the beam line transport elements. Ten global parameters, the particle mass and charge, beam energy, etc., are used to provide open-quotes expertclose quotes estimates of lower and upper limits for each of the transport element parameters. For example, the limits for the field strength of the quadrupole element are based on a water-cooled, iron-core electromagnet with dimensions derived from practical engineering constraints, and the upper limit for the effective length is scaled with the particle momenta so that initially parallel trajectories do not cross the axis inside the magnet. Limits for the quadrupole doublet and triplet parameters incorporate these rules and additional rules based on stable FODO lattices and bidirectional focusing requirements. The structure of the rule base is outlined and examples for the quadrupole singlet, doublet and triplet are described. The rule base has been implemented within the Shell for Particle Accelerator Related Codes (SPARC) graphical user interface (GUI)

  8. First experiences of beam presence detection based on dedicated beam position monitors

    International Nuclear Information System (INIS)

    Jalal, A.; Gabourin, S.; Gasior, M.; Todd, B.

    2012-01-01

    High intensity particle beam injection into the LHC is only permitted when a low intensity pilot beam is already circulating in the LHC. This requirement addresses some of the risks associated with high intensity injection, and is enforced by a so-called Beam Presence Flag (BPF) system which is part of the interlock chain between the LHC and its injector complex. For the 2010 LHC run, the detection of the presence of this pilot beam was implemented using the LHC Fast Beam Current Transformer (FBCT) system. However, the primary function of the FBCTs, that is reliable measurement of beam currents, did not allow the BPF system to satisfy all quality requirements of the LHC Machine Protection System (MPS). Safety requirements associated with high intensity injections triggered the development of a dedicated system, based on Beam Position Monitors (BPM). This system was meant to work first in parallel with the FBCT BPF system and eventually replace it. At the end of 2010 and in 2011, this new BPF implementation based on BPMs was designed, built, tested and deployed. This paper reviews both the FBCT and BPM implementation of the BPF system, outlining the changes during the transition period. The paper briefly describes the testing methods, focuses on the results obtained from the tests performed during the end of 2010 LHC run and shows the changes made for the BPM BPF system deployment in LHC in 2011. Whilst the system has been proved to work with a threshold of 6*10 8 charges, it has been implemented with a threshold of 2*10 9 charges to protect the LHC. (authors)

  9. Proton-beam writing channel based on an electrostatic accelerator

    Science.gov (United States)

    Lapin, A. S.; Rebrov, V. A.; Kolin'ko, S. V.; Salivon, V. F.; Ponomarev, A. G.

    2016-09-01

    We have described the structure of the proton-beam writing channel as a continuation of a nuclear scanning microprobe channel. The problem of the accuracy of positioning a probe by constructing a new high-frequency electrostatic scanning system has been solved. Special attention has been paid to designing the probe-forming system and its various configurations have been considered. The probe-forming system that best corresponds to the conditions of the lithographic process has been found based on solving the problem of optimizing proton beam formation. A system for controlling beam scanning using multifunctional module of integrated programmable logic systems has been developed.

  10. GEM-based beam profile monitors for the antiproton decelerator

    CERN Document Server

    Duarte Pinto, S.; Ropelewski, L.; Spanggaard, J.; Tranquille, G.

    2012-01-01

    The new beam profile measurement for the Antiproton Decelerator (AD) at CERN is based on a single Gas Electron Multiplier (GEM) with a 2D readout structure. This detector is very light, ~0.4% X0, as required by the low energy of the antiprotons, 5.3 MeV. This overcomes the problems previously encountered with multi-wire proportional chambers (MWPC) for the same purpose, where beam interactions with the detector severely affect the obtained profiles. A prototype was installed and successfully tested in late 2010, with another five detectors now installed in the ASACUSA and AEGIS beam lines. We will provide a detailed description of the detector and discuss the results obtained. The success of these detectors in the AD makes GEM-based detectors likely candidates for upgrade of the beam profile monitors in all experimental areas at CERN. The various types of MWPC currently in use are aging and becoming increasingly difficult to maintain.

  11. Quadrupole Beam-Based Alignment in the RHIC Interaction Regions

    Energy Technology Data Exchange (ETDEWEB)

    T. Satogata, J. Ziegler

    2011-03-01

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements.

  12. Characterization of carbon, nitrogen, oxygen and refractory metals in binary and ternary silicon-based films using ion beam methods; Caracterisation des elements: carbone, azote, oxygene et metal refractaire dans des depots binaires et ternaires a base de silicium par methodes d'analyse utilisant les faisceaux d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Somatri-Bouamrane, R. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire]|[Universite Claude Bernard, 69 - Lyon (France)

    1996-12-19

    Ion beam methods (non Rutherford backscattering, nuclear reactions) have been carried out in order to characterize silicon-based films. The cross sections for the reactions {sup 12}C({alpha},{alpha}), {sup 14}N({alpha},{alpha}), {sup 16}O({alpha},{alpha}), {sup 28}Si({alpha},{alpha}) and {sup 14}N({alpha},p) have been measured within 2 and 7 MeV. CVD beta SiC films could be analyzed and the interface between silicon carbide and the (100) silicon substrate was studied. The epitaxial growth of the beta SiC film could be modelled by comparing the results obtained with ion beam analysis, infrared spectroscopy and electron microscopy. Moreover, the stoichiometry of low pressure CVD Me-Si-N (Me=Re, W, Ti, Ta) ternary systems was studied. The evolution of the nitrogen content in W-Si-N systems allowed to study their stability with respect to the annealing conditions. (N.T.)

  13. Finite Element Modelling of Infinite Euler Beams on Kelvin Foundations Exposed to Moving Loads in Convected Co-ordinates

    DEFF Research Database (Denmark)

    Andersen, Lars; Nielsen, Søren R.K.; Kirkegaard, Poul Henning

    2001-01-01

    The paper deals with the finite element method (FEM) solution of the problem with loads moving uniformly along an infinite Euler beam supported by a linear elastic Kelvin foundation with linear viscous damping. Initially, the problem is formulatedin a moving co-ordinate system following the load...

  14. Active Vibration damping of Smart composite beams based on system identification technique

    Science.gov (United States)

    Bendine, Kouider; Satla, Zouaoui; Boukhoulda, Farouk Benallel; Nouari, Mohammed

    2018-03-01

    In the present paper, the active vibration control of a composite beam using piezoelectric actuator is investigated. The space state equation is determined using system identification technique based on the structure input output response provided by ANSYS APDL finite element package. The Linear Quadratic (LQG) control law is designed and integrated into ANSYS APDL to perform closed loop simulations. Numerical examples for different types of excitation loads are presented to test the efficiency and the accuracy of the proposed model.

  15. Investigation based on nano-electromechanical system double Si3N4 resonant beam pressure sensor.

    Science.gov (United States)

    Yang, Chuan; Guo, Can; Yuan, Xiaowei

    2011-12-01

    This paper presents a type of NEMS (Nano-Electromechanical System) double Si3N4 resonant beams pressure sensor. The mathematical models are established in allusion to the Si3N4 resonant beams and pressure sensitive diaphragm. The distribution state of stress has been analyzed theoretically based on the mathematical model of pressure sensitive diaphragm; from the analysis result, the position of the Si3N4 resonant beams above the pressure sensitive diaphragm was optimized and then the dominance observed after the double resonant beams are adopted is illustrated. From the analysis result, the position of the Si3N4 resonant beams above the pressure sensitive diaphragm is optimized, illustrating advantages in the adoption of double resonant beams. The capability of the optimized sensor was generally analyzed using the ANSYS software of finite element analysis. The range of measured pressure is 0-400 Kpa, the coefficient of linearity correlation is 0.99346, and the sensitivity of the sensor is 498.24 Hz/Kpa, higher than the traditional sensors. Finally the processing techniques of the sensor chip have been designed with sample being successfully processed.

  16. Interlaminar Stresses by Refined Beam Theories and the Sinc Method Based on Interpolation of Highest Derivative

    Science.gov (United States)

    Slemp, Wesley C. H.; Kapania, Rakesh K.; Tessler, Alexander

    2010-01-01

    Computation of interlaminar stresses from the higher-order shear and normal deformable beam theory and the refined zigzag theory was performed using the Sinc method based on Interpolation of Highest Derivative. The Sinc method based on Interpolation of Highest Derivative was proposed as an efficient method for determining through-the-thickness variations of interlaminar stresses from one- and two-dimensional analysis by integration of the equilibrium equations of three-dimensional elasticity. However, the use of traditional equivalent single layer theories often results in inaccuracies near the boundaries and when the lamina have extremely large differences in material properties. Interlaminar stresses in symmetric cross-ply laminated beams were obtained by solving the higher-order shear and normal deformable beam theory and the refined zigzag theory with the Sinc method based on Interpolation of Highest Derivative. Interlaminar stresses and bending stresses from the present approach were compared with a detailed finite element solution obtained by ABAQUS/Standard. The results illustrate the ease with which the Sinc method based on Interpolation of Highest Derivative can be used to obtain the through-the-thickness distributions of interlaminar stresses from the beam theories. Moreover, the results indicate that the refined zigzag theory is a substantial improvement over the Timoshenko beam theory due to the piecewise continuous displacement field which more accurately represents interlaminar discontinuities in the strain field. The higher-order shear and normal deformable beam theory more accurately captures the interlaminar stresses at the ends of the beam because it allows transverse normal strain. However, the continuous nature of the displacement field requires a large number of monomial terms before the interlaminar stresses are computed as accurately as the refined zigzag theory.

  17. Non-material finite element modelling of large vibrations of axially moving strings and beams

    Science.gov (United States)

    Vetyukov, Yury

    2018-02-01

    We present a new mathematical model for the dynamics of a beam or a string, which moves in a given axial direction across a particular domain. Large in-plane vibrations are coupled with the gross axial motion, and a Lagrangian (material) form of the equations of structural mechanics becomes inefficient. The proposed mixed Eulerian-Lagrangian description features mechanical fields as functions of a spatial coordinate in the axial direction. The material travels across a finite element mesh, and the boundary conditions are applied in fixed nodes. Beginning with the variational equation of virtual work in its material form, we analytically derive the Lagrange's equations of motion of the second kind for the considered case of a discretized non-material control domain and for geometrically exact kinematics. The dynamic analysis is straightforward as soon as the strain and the kinetic energies of the control domain are available. In numerical simulations we demonstrate the rapid mesh convergence of the model, the effect of the bending stiffness and the dynamic instability when the axial velocity gets high. We also show correspondence to the results of fully Lagrangian benchmark solutions.

  18. Comparison between Experimental and 3D Finite Element Analysis of Reinforced and Partially Pre-Stressed Concrete Solid Beams Subjected to Combined Load of Bending, Torsion and Shear

    Directory of Open Access Journals (Sweden)

    A. S. Alnuaimi

    2008-12-01

    Full Text Available This paper presents a non-linear analysis of three reinforced and two partially prestressed concrete solid beams based on a 20 node isoparametric element using an in-house 3D finite element program. Anon linear elastic isotropic model, proposed by Kotsovos, was used to model concrete behaviour, while steel was modelled as an embedded element exhibiting elastic-perfectly plastic response. Allowance was made for shear retention and for tension stiffening in concrete after cracking. Only in a fixed direction, smeared cracking modelling was adopted. The beams dimensions were 300x300 mm cross section, 3800 mm length and were subjected to combined bending, torsion and shear. Experimental results were compared with the non-linear predictions. The comparison was judged by load displacement relationship, steel strain, angle of twist, failure load, crack pattern and mode of failure. Good agreement was observed between the predicted ultimate load and the experimentally measured loads. It was concluded that the present program can confidently be used to predict the behaviour and failure load of reinforced and partially prestressed concrete solid beams subjected to a combined load of bending, torsion and shear.

  19. Application of alpha spectrometry to the discovery of new elements by heavy-ion-beam bombardment

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1983-05-01

    Starting with polonium in 1898, α-spectrometry has played a decisive role in the discovery of new, heavy elements. For even-even nuclei, α-spectra have proved simple to interpret and exhibit systematic trends that allow extrapolation to unknown isotopes. The early discovery of the natural α-decay series led to the very powerful method of genetically linking the decay of new elements to the well-established α-emission of daughter and granddaughter nuclei. This technique has been used for all recent discoveries of new elements including Z = 109. Up to mendelevium (Z = 101), thin samples suitable for α-spectrometry were prepared by chemical methods. With the advent of heavy-ion accelerators new sample preparation methods emerged. These were based on the large momentum transfer associated with heavy-ion reactions, which produced energetic target recoils that, when ejected from the target, could be thermalized in He gas. Subsequent electrical deposition or a He-jet technique yielded samples that were not only thin enough for α-spectroscopy, but also for α- and #betta#-recoil experiments. Many variations of these methods have been developed and are discussed. For the synthesis of element 106 an aerosol-based recoil transport technique was devised. In the most recent experiments, α-spectrometry has been coupled with the magnetic analysis of the recoils. The time from production to analysis of an isotope has thereby been reduced to 10 - 6 s; while it was 10 - 1 to 10 0 s for He-jets and 10 1 to 10 3 s for rapid chemical separations. Experiments are now in progress to synthesize super heavy elements (SHE) and to analyze them with these latest techniques. Again, α-spectrometry will play a major role since the expected signature for the decay of a SHE is a sequence of α-decays followed by spontaneous fission

  20. Application of diamond based beam loss monitors at LHC

    International Nuclear Information System (INIS)

    Hempel, Maria

    2013-04-01

    collimators. Ionization chambers have a time resolution of 40 s that is a half LHC turn and in case of a large beam loss, they request a beam dump. Another type of beam loss monitors are diamond sensors because of a time resolution of about one nanosecond and high radiation hardness. One diamond detector system is located in the cleaning region of the LHC and is able to detect various types of beam losses. Another diamond detector system (BCM1F) is installed inside the CMS detector to protect the CMS from adverse beam conditions. BCM1F monitors also the luminosity during collisions and delivers important beam parameters. Additional condition monitors, based on the BCM1F system, are located next to CMS, near to LHCb and ALICE to measure large beam losses in the LHC ring. The process of a beam loss due to dust particles is explained, and additional simulations were done to understand these process in more detail. The result of the simulation are also given. Beam loss data recorded by the diamond sensors in the cleaning region and the BCM1F diamonds are presented.

  1. Application of diamond based beam loss monitors at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria

    2013-04-15

    the LHC, especially near each quadrupole and next to collimators. Ionization chambers have a time resolution of 40 s that is a half LHC turn and in case of a large beam loss, they request a beam dump. Another type of beam loss monitors are diamond sensors because of a time resolution of about one nanosecond and high radiation hardness. One diamond detector system is located in the cleaning region of the LHC and is able to detect various types of beam losses. Another diamond detector system (BCM1F) is installed inside the CMS detector to protect the CMS from adverse beam conditions. BCM1F monitors also the luminosity during collisions and delivers important beam parameters. Additional condition monitors, based on the BCM1F system, are located next to CMS, near to LHCb and ALICE to measure large beam losses in the LHC ring. The process of a beam loss due to dust particles is explained, and additional simulations were done to understand these process in more detail. The result of the simulation are also given. Beam loss data recorded by the diamond sensors in the cleaning region and the BCM1F diamonds are presented.

  2. MODELLING THE DELAMINATION FAILURE ALONG THE CFRP-CFST BEAM INTERACTION SURFACE USING DIFFERENT FINITE ELEMENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    AHMED W. AL-ZAND

    2017-01-01

    Full Text Available Nonlinear finite element (FE models are prepared to investigate the behaviour of concrete-filled steel tube (CFST beams strengthened by carbon fibre reinforced polymer (CFRP sheets. The beams are strengthened from the bottom side only by varied sheet lengths (full and partial beam lengths and then subjected to ultimate flexural loads. Three surface interaction techniques are used to implement the bonding behaviour between the steel tube and the CFRP sheet, namely, full tie interaction (TI, cohesive element (CE and cohesive behaviour (CB techniques using ABAQUS software. Results of the comparison between the FE analysis and existing experimental study confirm that the FE models with the TI technique could be applicable for beams strengthened by CFRP sheets with a full wrapping length; the technique could not accurately implement the CFRP delamination failure, which occurred for beams with a partial wrapping length. Meanwhile, the FE models with the CE and CB techniques are applicable in the implementation of both CFRP failures (rapture and delamination for both full and partial wrapping lengths, respectively. Where, the ultimate loads' ratios achieved by the FE models using TI, CE and CB techniques about 1.122, 1.047 and 1.045, respectively, comparing to the results of existing experimental tests.

  3. Design of a neutrino source based on beta beams

    Directory of Open Access Journals (Sweden)

    E. Wildner

    2014-07-01

    Full Text Available “Beta beams” produce collimated pure electron (antineutrino beams by accelerating beta active ions to high energies and having them decay in a racetrack shaped storage ring of 7 km circumference, the decay ring. EUROnu beta beams are based on CERN infrastructures and existing machines. Using existing machines may be an advantage for the cost evaluation, but will also constrain the physics performance. The isotope pair of choice for the beta beam is ^{6}He and ^{18}Ne. However, before the EUROnu studies one of the required isotopes, ^{18}Ne, could not be produced in rates that satisfy the needs for physics of the beta beam. Therefore, studies of alternative beta emitters, ^{8}Li and ^{8}B, with properties interesting for a beta beam have been proposed and have been studied within EUROnu. These alternative isotopes could be produced by using a small storage ring, in which the beam traverses a target, creating the ^{8}Li and ^{8}B isotopes. This production ring, the injection linac and the target system have been evaluated. Measurements of the cross section of the reactions to produce the beta beam isotopes show interesting results. A device to collect the produced isotopes from the target has been developed and tested. However, the yields of ^{8}Li and ^{8}B, using the production ring for production of ^{8}Li and ^{8}B, is not yet, according to simulations, giving the rates of isotopes that would be needed. Therefore, a new method of producing the ^{18}Ne isotope has been developed and tested giving good production rates. A 60 GHz ECRIS prototype, the first in the world, was developed and tested for ion production with contributions from EUROnu. The decay ring lattices for the ^{8}Li and ^{8}B have been developed and the lattice for ^{6}He and ^{18}Ne has been optimized to ensure the high intensity ion beam stability.

  4. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  5. Experimental demonstration of dielectric structure based two beam acceleration

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-01-01

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented

  6. Direct Trace Element Analysis of Liquid Blood Samples by In-Air Ion Beam Analytical Techniques (PIXE-PIGE).

    Science.gov (United States)

    Huszank, Robert; Csedreki, László; Török, Zsófia

    2017-02-07

    There are various liquid materials whose elemental composition is of interest in various fields of science and technology. In many cases, sample preparation or the extraction can be complicated, or it would destroy the original environment before the analysis (for example, in the case of biological samples). However, multielement direct analysis of liquid samples can be realized by an external PIXE-PIGE measurement system. Particle-induced X-ray and gamma-ray emission spectroscopy (PIXE, PIGE) techniques were applied in external (in-air) microbeam configuration for the trace and main element determination of liquid samples. The direct analysis of standard solutions of several metal salts and human blood samples (whole blood, blood serum, blood plasma, and formed elements) was realized. From the blood samples, Na, P, S, Cl, K, Ca, Fe, Cu, Zn, and Br elemental concentrations were determined. The focused and scanned ion beam creates an opportunity to analyze very small volume samples (∼10 μL). As the sample matrix consists of light elements, the analysis is possible at ppm level. Using this external beam setup, it was found that it is possible to determine elemental composition of small-volume liquid samples routinely, while the liquid samples do not require any preparation processes, and thus, they can be analyzed directly. In the case of lower concentrations, the method is also suitable for the analysis (down to even ∼1 ppm level) but with less accuracy and longer measurement times.

  7. High energy beam line based on bent crystal

    International Nuclear Information System (INIS)

    Biryukov, V.M.; Chesnokov, Yu.A.; Greth, V.N.; Ivanov, A.A.; Kotov, V.I.; Selesnev, V.S.; Tarakanov, M.V.; Terekhov, V.I.; Tsarik, S.V.

    1995-01-01

    A peculiarities of the beam bent with crystals is the independence of the crystal deflector strength Θ=L D /R c ∼0.5 rad of the particle energy (L D is the dechanneling length, R c is the critical radius). The possibility of abrupt bending with crystal of a beam fraction at a large angle allows one to make over a short base a non-traditional beam line to carry out physical experiments. At IHEP, a 150 mrad bent crystal was used to create a test area, to work in parallel with other set-ups consuming practically no power. A 100 mm long Si crystal, placed in the halo of the intense extracted 70 GeV/c beam, extracts along the ∼20 m base 10 6 protons/sec beyond the 2-meter iron-concrete shield. The beam high quality (low emittance and high stability) allows one to carry out the program of the studies of channeling and testing the microstrip detectors. 2 refs.; 2 figs

  8. Application of ion beams for polymeric carbon based biomaterials

    Science.gov (United States)

    Evelyn, A. L.

    2001-07-01

    Ion beams have been shown to be quite suitable for the modification and analysis of carbon based biomaterials. Glassy polymeric carbon (GPC), made from cured phenolic resins, has a high chemical inertness that makes it useful as a biomaterial in medicine for drug delivery systems and for the manufacture of heart valves and other prosthetic devices. Low and high-energy ion beams have been used, with both partially and fully cured phenolic resins, to enhance biological cell/tissue growth on, and to increase tissue adhesion to GPC surfaces. Samples bombarded with energetic ion beams in the keV to MeV range exhibited increased surface roughness, measured using optical microscopy and atomic force microscopy. Ion beams were also used to perform nuclear reaction analyses of GPC encapsulated drugs for use in internal drug delivery systems. The results from the high energy bombardment were more dramatic and are shown in this paper. The interaction of energetic ions has demonstrated the useful application of ion beams to enhance the properties of carbon-based biomaterials.

  9. Plasma based Ar+ beam assisted poly(dimethylsiloxane) surface modification

    International Nuclear Information System (INIS)

    Vladkova, T.G.; Keranov, I.L.; Dineff, P.D.; Youroukov, S.Y.; Avramova, I.A.; Krasteva, N.; Altankov, G.P.

    2005-01-01

    Plasma based Ar + beam performed in RF (13.56 MHz) low-pressure (200 mTorr) glow discharge (at 100 W, 1200 W and 2500 W) with a serial capacitance was employed for surface modification of poly(dimethylsiloxane) (PDMS) aimed at improvement of its interactions with living cells. The presence of a serial capacitance ensures arise of an ion-flow inside the plasma volume directed toward the treated sample and the vary of the discharge power ensures varied density of the ion-flow. XPS analysis was performed to study the changes in the surface chemical composition of the modified samples and the corresponding changes in the surface energy were monitored by contact angle measurements. We found that plasma based Ar + beam transforms the initially hydrophobic PDMS surface into a hydrophilic one mainly due to a raising of the polar component of the surface tension, this effect being most probably due to an enrichment of the modified surface layer with permanent dipoles of a [SiO x ]-based network and elimination of the original methyl groups. The initial adhesion of human fibroblast cells was studied on the described above plasma based Ar + beam modified and acrylic acid (AA) grafted or not fibronectin (FN) pre-coated or bare surfaces. The cell response seems to be related with the peculiar structure and wettability of the modified PDMS surface layer after plasma based Ar + beam treatment followed or not by AA grafting

  10. Simulation of therapeutic electron beam tracking through a non-uniform magnetic field using finite element method.

    Science.gov (United States)

    Tahmasebibirgani, Mohammad Javad; Maskani, Reza; Behrooz, Mohammad Ali; Zabihzadeh, Mansour; Shahbazian, Hojatollah; Fatahiasl, Jafar; Chegeni, Nahid

    2017-04-01

    In radiotherapy, megaelectron volt (MeV) electrons are employed for treatment of superficial cancers. Magnetic fields can be used for deflection and deformation of the electron flow. A magnetic field is composed of non-uniform permanent magnets. The primary electrons are not mono-energetic and completely parallel. Calculation of electron beam deflection requires using complex mathematical methods. In this study, a device was made to apply a magnetic field to an electron beam and the path of electrons was simulated in the magnetic field using finite element method. A mini-applicator equipped with two neodymium permanent magnets was designed that enables tuning the distance between magnets. This device was placed in a standard applicator of Varian 2100 CD linear accelerator. The mini-applicator was simulated in CST Studio finite element software. Deflection angle and displacement of the electron beam was calculated after passing through the magnetic field. By determining a 2 to 5cm distance between two poles, various intensities of transverse magnetic field was created. The accelerator head was turned so that the deflected electrons became vertical to the water surface. To measure the displacement of the electron beam, EBT2 GafChromic films were employed. After being exposed, the films were scanned using HP G3010 reflection scanner and their optical density was extracted using programming in MATLAB environment. Displacement of the electron beam was compared with results of simulation after applying the magnetic field. Simulation results of the magnetic field showed good agreement with measured values. Maximum deflection angle for a 12 MeV beam was 32.9° and minimum deflection for 15 MeV was 12.1°. Measurement with the film showed precision of simulation in predicting the amount of displacement in the electron beam. A magnetic mini-applicator was made and simulated using finite element method. Deflection angle and displacement of electron beam were calculated. With

  11. National negative-ion-based neutral-beam development plan

    International Nuclear Information System (INIS)

    Cooper, W.S.; Pyle, R.V.

    1983-08-01

    The plan covers facilities required, program milestones, and decision points. It includes identification of applications, experiments, theoretical research areas, development of specific technologies and reactor development and demonstration facilities required to bring about the successful application of negative-ion-based neutral beams. Particular emphasis is placed on those activities leading to use on existing plasma confinement experiments or their upgrades

  12. Update on MEMS-based scanned beam imager

    Science.gov (United States)

    James, Richard; Gibson, Greg; Metting, Frank; Davis, Wyatt; Drabe, Christian

    2007-01-01

    In 2004, Microvision presented "Scanned Beam Medical Imager" as an introduction to our MEMS-based, full color scanned beam imaging system. This presentation will provide an update of the technological advancements since this initial work from 2004. This recent work includes the development of functional prototypes that are much smaller than previous prototypes using a design architecture that is easily scalable. Performance has been significantly improved by increasing the optical field of views and video refresh rate. Real-time image processing capabilities have been developed to enhance the image quality and functionality over a wide range of operating conditions. Actual images of various objects will be presented.

  13. Network secure communications based on beam halo-chaos

    International Nuclear Information System (INIS)

    Liu Qiang; Fang Jinqing; Li Yong

    2010-01-01

    Based on beam halo-chaos synchronization in the beam transport network (line)with small-world effect, using three synchronization methods:the driver-response synchronization, small-world topology coupling synchronization and multi-local small-world topology coupling synchronization, three kinds of secure communication projects were designed respectively, and were studied numerically by the Simulink tool of the Matlab software. Numerical experimental results demonstrate that encryption and decryption of the original signal are realized successfully. It provides effective theoretical foundation and reference for the next engineering design and network experiment. (authors)

  14. Electron Beam Diagnostic Based on a Short Seeded FEL

    CERN Document Server

    Graves, W; Kaertner, Franz X; Zwart, T

    2005-01-01

    The optical properties of an FEL amplifier are sensitively dependent on the electron beam current profile, energy spread, and transverse emittance. In this paper we consider using a short FEL amplifier operating on a low harmonic of a visible-IR input seed as a mildly destructive electron beam diagnostic able to measure these properties for sub-ps time slices. The optical methods are described as well as a planned implementation of the device for the FERMI@Elettra XUV FEL under construction at Sincrotrone Trieste, including its fiber-based seed laser closely coupled with the facility timing system, undulator parameters, and requirements on the electron and FEL pulses. This diagnostic is conveniently integrated with a "laser heater" designed to increase the very low electron beam energy spread produced by a photoinjector in order to avoid space charge and coherent synchrotron radiation instabilities.

  15. Sound beam manipulation based on temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Feng [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Quan, Li; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  16. Sound beam manipulation based on temperature gradients

    International Nuclear Information System (INIS)

    Qian, Feng; Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2015-01-01

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking

  17. Acoustic displacement triangle based on the individual element test

    Directory of Open Access Journals (Sweden)

    S. Correa

    Full Text Available A three node -displacement based- acoustic element is developed. In order to avoid spurious rotational modes, a higher order stiffness is introduced. This higher order stiffness is developed from an incompatible strain field which computes element volume changes under nodal rotational displacements fields. The higher order strain resulting from the incompatible strain field satisfies the Individual Element Test (IET requirements without affecting convergence. The higher order stiffness is modulated, element by element, with a factor. As a result, the displacement based formulation presented on this paper is capable of placing the spurious rotational modes above the range of the physical compressional modes that can be accurately calculated by the mesh.

  18. Non-destructive elemental analysis of a carbonaceous chondrite with direct current Muon beam at MuSIC.

    Science.gov (United States)

    Terada, K; Sato, A; Ninomiya, K; Kawashima, Y; Shimomura, K; Yoshida, G; Kawai, Y; Osawa, T; Tachibana, S

    2017-11-13

    Electron- or X-ray-induced characteristic X-ray analysis has been widely used to determine chemical compositions of materials in vast research fields. In recent years, analysis of characteristic X-rays from muonic atoms, in which a muon is captured, has attracted attention because both a muon beam and a muon-induced characteristic X-ray have high transmission abilities. Here we report the first non-destructive elemental analysis of a carbonaceous chondrite using one of the world-leading intense direct current muon beam source (MuSIC; MUon Science Innovative Channel). We successfully detected characteristic muonic X-rays of Mg, Si, Fe, O, S and C from Jbilet Winselwan CM chondrite, of which carbon content is about 2 wt%, and the obtained elemental abundance pattern was consistent with that of CM chondrites. Because of its high sensitivity to carbon, non-destructive elemental analysis with a muon beam can be a novel powerful tool to characterize future retuned samples from carbonaceous asteroids.

  19. On diversity performance of two-element coupling element based antenna structure for mobile terminal

    DEFF Research Database (Denmark)

    Al-Hadi, Azremi Abdullah; Toivanen, Juha; Laitinen, Tommi

    2010-01-01

    fading. The main challenge of antenna diversity in practical application is the integration of multiple antennas on a small ground plane. Two-element antenna structure based on coupling element antenna concept for diversity application has been studied in previous work and it has shown to be feasible...

  20. Development of a nuclear data base for relativistic ion beams

    International Nuclear Information System (INIS)

    Townsend, L.W.; Wong, M.; Schimmerling, W.; Wilson, J.W.

    1987-01-01

    The primary limitation on the development of heavy ion beam transport methods is the lack of an accurate nuclear data base. Because of the large number of ion/target combinations, the complexity of the reaction products, and the broad range of energies required, it is unlikely that the data base will ever be compiled from experiments alone. For the last 15 years, relativistic heavy-ion accelerators have been available, but the experimental data base remains inadequate. However, theoretical models of heavy-ion reactions are being derived to provide cross section data for beam transport problems. A concurrent experimental program to provide sufficient experimental data to validate the model is also in progress. Model development and experimental results for model validation are discussed. The need for additional nuclear fragmentation data is identified

  1. Optimal design of a beam stop for Indus-2 using finite element heat ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The radiation source impinges ∼ 1 kW power on the beam stop and the heat transfer capabilities of ... ring and will give out, from its bending magnets, a continuous spectrum of hard X-rays with critical photon ... safer side, in our calculations we have assumed 1.25 kW of power impinging on the beam stop. The size of the ...

  2. The effect of additional equilibrium stress functions on the three-node hybrid-mixed curved beam element

    International Nuclear Information System (INIS)

    Kim, Jin Gon; Park, Yong Kuk

    2008-01-01

    To develop an effective hybrid-mixed element, it is extremely critical as to how to assume the stress field. This research article demonstrates the effect of additional equilibrium stress functions to enhance the numerical performance of the locking-free three-node hybrid-mixed curved beam element, proposed in Saleeb and Chang's previous work. It is exceedingly complicated or even infeasible to determine the stress functions to satisfy fully both the equilibrium conditions and suppression of kinematic deformation modes in the three-node hybrid-mixed formulation. Accordingly, the additional stress functions to satisfy partially or fully equilibrium conditions are incorporated in this study. Several numerical examples for static and dynamic problems confirm that the newly proposed element with these additional stress functions is highly effective regardless of the slenderness ratio and curvature of arches in static and dynamic analyses

  3. Damage identification in beams by a response surface based technique

    Directory of Open Access Journals (Sweden)

    Teidj S.

    2014-01-01

    Full Text Available In this work, identification of damage in uniform homogeneous metallic beams was considered through the propagation of non dispersive elastic torsional waves. The proposed damage detection procedure consisted of the following sequence. Giving a localized torque excitation, having the form of a short half-sine pulse, the first step was calculating the transient solution of the resulting torsional wave. This torque could be generated in practice by means of asymmetric laser irradiation of the beam surface. Then, a localized defect assumed to be characterized by an abrupt reduction of beam section area with a given height and extent was placed at a known location of the beam. Next, the response in terms of transverse section rotation rate was obtained for a point situated afterwards the defect, where the sensor was positioned. This last could utilize in practice the concept of laser vibrometry. A parametric study has been conducted after that by using a full factorial design of experiments table and numerical simulations based on a finite difference characteristic scheme. This has enabled the derivation of a response surface model that was shown to represent adequately the response of the system in terms of the following factors: defect extent and severity. The final step was performing the inverse problem solution in order to identify the defect characteristics by using measurement.

  4. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  5. Beam-based Feedback Simulations for the NLC Linac

    International Nuclear Information System (INIS)

    Hendrickson, Linda

    2000-01-01

    Extensive beam-based feedback systems are planned as an integral part of the Next Linear Collider (NLC) control system. Wakefield effects are a significant influence on the feedback design, imposing both architectural and algorithmic constraints. Studies are in progress to assure the optimal selection of devices and to refine and confirm the algorithms for the system design. The authors show the results of initial simulations, along with evaluations of system response for various conditions of ground motion and other operational disturbances

  6. Analyses of a cantilever-beam based instrument for evaluating the development of polymerization stresses.

    Science.gov (United States)

    Chiang, Martin Y M; Giuseppetti, Anthony A M; Qian, Jing; Dunkers, Joy P; Antonucci, Joseph M; Schumacher, Gary E; Gibson, Sheng-Lin

    2011-09-01

    This investigation was to generate (1) guidelines for designing a tensometer that satisfies the necessary accuracy and sensitivity requirements for measuring polymerization stress (PS), and (2) a formula for calculating PS. Polymerization stress remains one of the most critical properties of polymeric dental materials, yet methods that can accurately quantify PS have been limited in part due to the complexity of polymerization, and in part due to the instrumentation itself. In this study, we performed analytical and finite element analyses on a cantilever-beam based tensometer that is used to evaluate shrinkage stresses during the polymerization of dental restorative composites. The PS generated by a commercial dental composite determined using our new tensometer agrees with the predicted trend when the beam length and/or specimen height is varied. This work demonstrates the importance of beam dimension and component relative rigidity to the accuracy of PS evaluation. An analytical solution is also derived for the vertical beam deflection, which can be used for any combination of bending and shearing to properly calculate the PS. In addition, an easy-to-conduct calibration procedure is provided that is desirable for periodic tensometer recalibration. Published by Elsevier Ltd.

  7. A node-based smoothed point interpolation method for dynamic analysis of rotating flexible beams

    Science.gov (United States)

    Du, C. F.; Zhang, D. G.; Li, L.; Liu, G. R.

    2017-10-01

    We proposed a mesh-free method, the called node-based smoothed point interpolation method (NS-PIM), for dynamic analysis of rotating beams. A gradient smoothing technique is used, and the requirements on the consistence of the displacement functions are further weakened. In static problems, the beams with three types of boundary conditions are analyzed, and the results are compared with the exact solution, which shows the effectiveness of this method and can provide an upper bound solution for the deflection. This means that the NS-PIM makes the system soften. The NS-PIM is then further extended for solving a rigid-flexible coupled system dynamics problem, considering a rotating flexible cantilever beam. In this case, the rotating flexible cantilever beam considers not only the transverse deformations, but also the longitudinal deformations. The rigid-flexible coupled dynamic equations of the system are derived via employing Lagrange's equations of the second type. Simulation results of the NS-PIM are compared with those obtained using finite element method (FEM) and assumed mode method. It is found that compared with FEM, the NS-PIM has anti-ill solving ability under the same calculation conditions.

  8. Dynamic analysis of centrifugal machines rotors supported on ball bearings by combined application of 3D and beam finite element models

    Science.gov (United States)

    Pavlenko, I. V.; Simonovskiy, V. I.; Demianenko, M. M.

    2017-08-01

    This research paper is aimed to investigating rotor dynamics of multistage centrifugal machines with ball bearings by using the computer programs “Critical frequencies of the rotor” and “Forced oscillations of the rotor,” which are implemented the mathematical model based on the use of beam finite elements. Free and forces oscillations of the rotor for the multistage centrifugal oil pump NPS 200-700 are observed by taking into account the analytical dependence of bearing stiffness on rotor speed, which is previously defined on the basis of results’ approximation for the numerical simulation in ANSYS by applying 3D finite elements. The calculations found that characteristic and constrained oscillations of rotor and corresponded to them forms of vibrations, as well as the form of constrained oscillation on the actual frequency for acceptable residual unbalance are determined.

  9. Statistically sound evaluation of trace element depth profiles by ion beam analysis

    International Nuclear Information System (INIS)

    Schmid, K.; Toussaint, U. von

    2012-01-01

    This paper presents the underlying physics and statistical models that are used in the newly developed program NRADC for fully automated deconvolution of trace level impurity depth profiles from ion beam data. The program applies Bayesian statistics to find the most probable depth profile given ion beam data measured at different energies and angles for a single sample. Limiting the analysis to % level amounts of material allows one to linearize the forward calculation of ion beam data which greatly improves the computation speed. This allows for the first time to apply the maximum likelihood approach to both the fitting of the experimental data and the determination of confidence intervals of the depth profiles for real world applications. The different steps during the automated deconvolution will be exemplified by applying the program to artificial and real experimental data.

  10. Fabrication of Porous Silicon Based Humidity Sensing Elements on Paper

    OpenAIRE

    Jalkanen, Tero; Määttänen, Anni; Mäkilä, Ermei; Tuura, Jaani; Kaasalainen, Martti; Lehto, Vesa-Pekka; Ihalainen, Petri; Peltonen, Jouko; Salonen, Jarno

    2015-01-01

    A roll-to-roll compatible fabrication process of porous silicon (pSi) based sensing elements for a real-time humidity monitoring is described. The sensing elements, consisting of printed interdigitated silver electrodes and a spray-coated pSi layer, were fabricated on a coated paper substrate by a two-step process. Capacitive and resistive responses of the sensing elements were examined under different concentrations of humidity. More than a three orders of magnitude reproducible decrease in ...

  11. A beam monitor based on MPGD detectors for hadron therapy

    Science.gov (United States)

    Altieri, P. R.; Di Benedetto, D.; Galetta, G.; Intonti, R. A.; Mercadante, A.; Nuzzo, S.; Verwilligen, P.

    2018-02-01

    Remarkable scientific and technological progress during the last years has led to the construction of accelerator based facilities dedicated to hadron therapy. This kind of technology requires precise and continuous control of position, intensity and shape of the ions or protons used to irradiate cancers. Patient safety, accelerator operation and dose delivery should be optimized by a real time monitoring of beam intensity and profile during the treatment, by using non-destructive, high spatial resolution detectors. In the framework of AMIDERHA (AMIDERHA - Enhanced Radiotherapy with HAdron) project funded by the Ministero dell'Istruzione, dell'Università e della Ricerca (Italian Ministry of Education and Research) the authors are studying and developing an innovative beam monitor based on Micro Pattern Gaseous Detectors (MPDGs) characterized by a high spatial resolution and rate capability. The Monte Carlo simulation of the beam monitor prototype was carried out to optimize the geometrical set up and to predict the behavior of the detector. A first prototype has been constructed and successfully tested using 55Fe, 90Sr and also an X-ray tube. Preliminary results on both simulations and tests will be presented.

  12. Development of Microcontroller-Based Ball and Beam Trainer Kit

    Directory of Open Access Journals (Sweden)

    Gunawan Dewantoro

    2015-03-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE A ball and beam trainer kit based on microcontroller was developed for teaching control system course for the sophomore students. This specially-purposed kit consists of a ball located on a beam with a fixed axle at one of its end. At the other end, a servomotor was employed to control the position of the ball by adjusting the rotation angle of the servomotor. Seven predetermined positions were set to 10, 20, 30, 40, 50, 60, and 70 cm relative to the fixed axle of the beam. The Proportional-Integral-Derivative (PID scheme was then used to compensate the error. This kit is equipped with a user interface to configure controller coefficients, select the set points, plot the actual ball position, and display parameter values. The user interface program runs on PC or notebook connected to microcontroller via serial communications. A questionnaire-based assessment about the use of this kit was conducted by 17 students taking the course, giving a rating value of 94.12%.

  13. An energy-based beam hardening model in tomography

    Energy Technology Data Exchange (ETDEWEB)

    Casteele, E van de; Dyck, D van; Sijbers, J; Raman, E [Vision Lab, Physics Departement, University of Antwerp (RUCA) (Belgium)

    2002-12-07

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography ({mu}CT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages.

  14. Resolution and systematic limitations in beam based alignment

    Energy Technology Data Exchange (ETDEWEB)

    Tenenbaum, P.G.

    2000-03-15

    Beam based alignment of quadrupoles by variation of quadrupole strength is a widely-used technique in accelerators today. The authors describe the dominant systematic limitation of this technique, which arises from the change in the center position of the quadrupole as the strength is varied, and derive expressions for the resulting error. In addition, the authors derive an expression for the statistical resolution of such techniques in a periodic transport line, given knowledge of the line's transport matrices, the resolution of the beam position monitor system, and the details of the strength variation procedure. These results are applied to the Next Linear Collider main linear accelerator, an 11 kilometer accelerator containing 750 quadrupoles and 5,000 accelerator structures. The authors find that in principle a statistical resolution of 1 micron is easily achievable but the systematic error due to variation of the magnetic centers could be several times larger.

  15. High current nonlinear transmission line based electron beam driver

    Directory of Open Access Journals (Sweden)

    B. W. Hoff

    2017-10-01

    Full Text Available A gigawatt-class nonlinear transmission line based electron beam driver is experimentally demonstrated. Four experimental series, each with a different Marx bank charge voltage (15, 20, 25, and 30 kV, were completed. Within each experimental series, shots at peak frequencies ranging from 950 MHz to 1.45 GHz were performed. Peak amplitude modulations of the NLTL output voltage signal were found to range between 18% and 35% for the lowest frequency shots and between 5% and 20% for the highest frequency shots (higher modulation at higher Marx charge voltage. Peak amplitude modulations of the electron beam current were found to range between 10% and 20% for the lowest frequency shots and between 2% and 7% for the highest frequency shots (higher modulation at higher Marx charge voltage.

  16. Testing of a nuclear-reactor-based positron beam

    International Nuclear Information System (INIS)

    Van Veen, A.; Labohm, F.; Schut, H.; De Roode, J.; Heijenga, T.; Mijnarends, P.E.

    1997-01-01

    This paper describes the testing of a positron beam which is primarily based on copper activation near the core of a nuclear reactor and extraction of the positrons through a beam guide tube. An out-of-core test with a 22 Na source and an in-core test with the reactor at reduced power have been performed. Both tests indicated a high reflectivity of moderated positrons at the tungsten surfaces of the moderation discs which enhanced the expected yield. Secondary electrons generated in the source materials during the in-core test caused electrical field distortions in the electrode system of the system by charging of the insulators. At 100 kW reactor power during one hour, positrons were observed with an intensity of 4.4x10 4 e + s -1 of which 90% was due to positrons created by pair formation and 10% by copper activation

  17. An energy-based beam hardening model in tomography

    International Nuclear Information System (INIS)

    Casteele, E van de; Dyck, D van; Sijbers, J; Raman, E

    2002-01-01

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography (μCT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages

  18. High current nonlinear transmission line based electron beam driver

    Science.gov (United States)

    Hoff, B. W.; French, D. M.; Simon, D. S.; Lepell, P. D.; Montoya, T.; Heidger, S. L.

    2017-10-01

    A gigawatt-class nonlinear transmission line based electron beam driver is experimentally demonstrated. Four experimental series, each with a different Marx bank charge voltage (15, 20, 25, and 30 kV), were completed. Within each experimental series, shots at peak frequencies ranging from 950 MHz to 1.45 GHz were performed. Peak amplitude modulations of the NLTL output voltage signal were found to range between 18% and 35% for the lowest frequency shots and between 5% and 20% for the highest frequency shots (higher modulation at higher Marx charge voltage). Peak amplitude modulations of the electron beam current were found to range between 10% and 20% for the lowest frequency shots and between 2% and 7% for the highest frequency shots (higher modulation at higher Marx charge voltage).

  19. Study of Z > 18 elements concentration in tree rings from surroundings forests of the Mexico Valley using external beam PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Calva-Vazquez, G. [Laboratorio de Contaminacion Atmosferica, FES Zaragoza, UNAM, Calzada I. Zaragoza esq., Av. Guelatao s/n, 09230 Mexico, DF (Mexico); Razo-Angel, G. [Laboratorio de Contaminacion Atmosferica, FES Zaragoza, UNAM, Calzada I. Zaragoza esq., Av. Guelatao s/n, 09230 Mexico, DF (Mexico); Rodriguez-Fernandez, L. [Instituto de Fisica, UNAM, Apartado Postal 20-364, 01000 Mexico, DF (Mexico); Ruvalcaba-Sil, J.L. [Instituto de Fisica, UNAM, Apartado Postal 20-364, 01000 Mexico, DF (Mexico)]. E-mail: sil@fisica.unam.mx

    2006-08-15

    The concentration of elements with Z > 18 is measured in tree rings from forests at the surroundings of the Mexico Valley: El Chico National Park (ECP) and Desierto de los Leones National Park (DLP). The analysis was done by simultaneous PIXE-RBS using an external proton beam on tree rings of Pine and Sacred fir (species Pinus montezumae and Abies religiosa, respectively). This study provides information about the elemental concentration in trees of those parks during the years from 1965 to 2003. Typical elements such as K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb were detected using PIXE technique while the wood matrix composition (mainly C and O) was determined by RBS. In general, elemental contents present large variations but concentrations oscillate around the mean value during this period of time. Nevertheless, the measurements showed some trends for Fe and Zn in the tree-rings elemental composition that may be correlated to recent volcanic activities in the region. The low Mn contents indicate soil acidification in DLP from 1968 and the forest decline in ECP during the last 15 years.

  20. Non-Linear Finite Element Analyses of Existing Reinforced Concrete Bridge Beams

    NARCIS (Netherlands)

    Belletti, B.; Damoni, C.; Hendriks, M.A.N.

    2013-01-01

    Three years ago, the Dutch Ministry of Infrastructure and the Environment initiated a project to re-evaluate the carrying capacity of existing bridges and viaducts (e.g. reinforced and pre-stressed concrete beams and slabs). Due to the increase of traffic and the reallocation of emergency lanes to

  1. Coupling sections, emittance growth, and drift compensation in the use of bent solenoids as beam transport elements

    Directory of Open Access Journals (Sweden)

    J. Norem

    1999-05-01

    Full Text Available Bent solenoids can transmit charged particle beams while providing momentum dispersion. While less familiar than quadrupole and dipole systems, bent solenoids can produce superficially simple transport lines and large acceptance spectrometers for use at low energies. Design issues such as drift compensation and coupling sections between straight and bent solenoids are identified, and aberrations such as shears produced by perpendicular error fields are discussed. Examples are considered which provide the basis for the design of emittance exchange elements for the cooling system of a muon collider.

  2. Development of a New Fast Shower Maximum Detector Based on Microchannel Plates Photomultipliers (MCP-PMT) as an Active Element

    Energy Technology Data Exchange (ETDEWEB)

    Ronzhin, A. [Fermilab; Los, S. [Fermilab; Ramberg, E. [Fermilab; Spiropulu, M. [Caltech; Apresyan, A. [Caltech; Xie, S. [Caltech; Kim, H. [Chicago U.; Zatserklyaniy, A. [UC, Santa Cruz

    2014-09-21

    One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photodetectors based on microchannel plates (MCPs) as the secondary emitter. We performed the measurements at the Fermilab Test Beam Facility with 120GeV proton beam and 12GeV and 32GeV secondary beams. The goal of the measurement with 120GeV protons was to determine time resolution for minimum ionizing particles (MIPs). The SM time resolution we obtained for this new type of detector is at the level of 20-30ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP. This work can be considered as the first step in building a new type of calorimeter based on this principle.

  3. Elements of section of the high-current linear induction accelerator of charge-compensating ion beams with the raised power characteristics

    International Nuclear Information System (INIS)

    Gurin, A.G.; Kornilov, E.A.; Lozhkin, R.S.

    2010-01-01

    The method of account of basic elements of section of the high-current linear induction accelerator of charge-compensating ion beams, optimized with the purpose of reception of the greatest efficiency, rate of acceleration and average capacity of a beam is submitted. The opportunity of creation section on average capacity of a beam 100 kW at efficiency of induction system at a level 0,7, current of a beam in a pulse 20 kA, rate of acceleration 2 MeV/m, duration of an accelerating pulse 125 ns, frequency of shots 13,3 Hz, meaning of an accelerating voltage 3 MV, is shown.

  4. Finite Element Based Formulation of Lattice Boltzmann Equation

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Roh, Kyung Wan; Kwon, Young W.; Kwon, Young W.

    2008-01-01

    The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Recently, the technique was also applied to fluid-structure interaction problems. Most of those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. There have been different kinds of approaches to address the problems. The most common technique was using the finite volume formulation of the lattice Boltzmann equation. Another approach was a point-wise interpolation technique for irregular grids. Other techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the isoparametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, there are variety of choices of finite elements such as triangular or quadrilateral shapes in 2-D, or tetrahedral, triangular prism, or general six-sided solids in 3-D. As a result, the present study presents a new finite element formulation for the lattice Boltzmann equation using the general weighted residual technique. Among the weighted residual formulations, the collocation method, Galerkin method or method of moments are used to develop the finite element based LBM

  5. The using of protons beam for the studying of the homogeneity, elemental and isotopic content of diamond films formed by CVD method

    International Nuclear Information System (INIS)

    Levenets, V.V.; Shchur, A.O.; Strel'nitskij, V.E.; Dudnik, S.A.

    2011-01-01

    The nuclear-physical methods of analysis using the proton beams - PIXE and PIGE –were applied to the studying the features of the diamond films formed by the CVD method on the silicon backing. The reactions of radioactive capture of proton on isotopes 12 C .and 13 C with resonances in cross-sections at 457 and 550 keV were used for determination of the thickness, homogeneity and isotopic content of the diamond films. The proton induced characteristic X-ray of atoms and momentum γ-ray from nuclear reactions were applied to study the impurities content of matter of films. It was shown that the developed technique provides to obtain the diamond layers by thickness up to some microns with high homogeneity on the depth. The ratio of isotopic content 12 C / 13 C was calculated using the measured intensity of γ-ray with energy 2365 keV from reaction 12 C(p, γ) 13 N and 8061 keV from 13 C(p,γ) 14 N. It was shown that the carbon isotopic content was changed from sample to sample. The applied methods of analysis, based on the using of the protons beams from electrostatic accelerators with variation of energy and current of beam, allow to make the non-destructive, local, express analysis of elemental, and in some favourable cases – isotopic content of the surface, and so of layers of thicknesses from tenth up some micron. (authors)

  6. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    Science.gov (United States)

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  7. Enhanced piezoelectric wind energy harvesting based on a buckled beam

    Science.gov (United States)

    Zhang, Jiantao; Zhang, Jia; Shu, Chang; Fang, Zhou

    2017-05-01

    In order to improve the wind energy conversion efficiency, this study entails a concept utilizing the buckling behavior of a buckled beam to induce large amplitude oscillations in a PVDF beam harvester. Specifically, when the buckled beam subjected to the buckling load is in an unstable condition, the wind load can trigger the drastic vibration of the PVDF beam harvester. Experimental results demonstrate that the output performances of the proposed harvester are improved dramatically compared with a traditional cantilever beam harvester.

  8. X-ray diffraction and imaging with a coherent beam: application to X-ray optical elements and to crystals exhibiting phase inhomogeneities

    International Nuclear Information System (INIS)

    Masiello, F.

    2011-05-01

    The exceptional properties of synchrotron light sources have been exploited in very different disciplines, from archaeology to chemistry, from material science to biology, from medicine to physics. Among these properties it is important to mention the high brilliance, continuum spectrum, high degree of polarization, time structure, small source size and divergence of the beam, the last resulting in a high transversal coherence of the produced radiation. This high transversal coherence of the synchrotron sources has permitted the development of new techniques, e.g. phase contrast imaging, X-ray photon correlation spectroscopy and coherent X-ray diffraction imaging (CXDI). This thesis work will consist essentially of three parts. In the first part it will be presented the work done as a member of the X-ray Optics Group of ESRF in the characterization of high quality diamond crystals foreseen as X-ray optical elements. The characterization has been done using different complementary X-ray techniques, such as high resolution diffraction, topography, grazing incidence diffraction, reflectivity and measurements of the coherence preservation using the Talbot effect. In the second part, I will show the result obtained in the study of the temperature behaviours of the domain in periodically poled ferroelectrics crystals. This type of measurements, based on Bragg-Fresnel diffraction, are possible only thanks to the high degree of coherence of the beam. In the third part, I will present the results obtained in the characterization of diamonds foreseen for applications other than X-ray optical elements. (author)

  9. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    Science.gov (United States)

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  10. Optimal design of a beam stop for Indus-2 using finite element heat ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    e-mail: anil@cat.ernet.in. MS received 31 July 2000; revised 11 April 2001. Abstract. This paper describes the design of an in-vacuum, water-cooled beam stop (X-ray shutter) for the materials science (X-ray diffraction) beamline proposed to be built on the wavelength shifter in the Indus-2 (2.5 GeV) synchrotron radiation.

  11. Theory of fractional order elements based impedance matching networks

    KAUST Repository

    Radwan, Ahmed G.

    2011-03-01

    Fractional order circuit elements (inductors and capacitors) based impedance matching networks are introduced for the first time. In comparison to the conventional integer based L-type matching networks, fractional matching networks are much simpler and versatile. Any complex load can be matched utilizing a single series fractional element, which generally requires two elements for matching in the conventional approach. It is shown that all the Smith chart circles (resistance and reactance) are actually pairs of completely identical circles. They appear to be single for the conventional integer order case, where the identical circles completely overlap each other. The concept is supported by design equations and impedance matching examples. © 2010 IEEE.

  12. Finite Element Models for Electron Beam Freeform Fabrication Process, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research proposal offers to develop the most accurate, comprehensive and efficient finite element models to date for simulation of the...

  13. Beam shaping diffuser based fiber injection for increasing stability of industrial robotic laser applications

    Science.gov (United States)

    Lizotte, Todd E.; Dickey, Fred M.

    2013-09-01

    This paper documents the investigation of a diffuser based fiber injection system and its successful implementation and experimental testing in a robotic industrial process. This is a new concept based on the idea that a diffuser that has the angular radiation pattern matching the NA of the fiber can be used to approximate the field pattern at the face of a mode filled fiber. The research considered two approaches to this problem. The two related approaches to the problem were developed conceptually and analytically for two predominant wavelengths of interest, 1030 nm and 532 nm. The first is an implementation that would consist of illuminating the diffuser with a uniform spot having the same shape as the fiber core and imaging the illuminated spot onto the fiber face. The other approach is the use of a far-field (Fourier transform) diffractive element with a transform lens. This paper will provide an overview of the analytics and testing of the later concept (Fourier transform) and the experimental implementation of the design to a laser fiber coupling system to launch a 532 nm pulsed laser beam into a square core fiber optical beam delivery system. Further detail will be shared with the experimental performance of the design when integrated within a multi-axis robotic arm, which has six degrees of freedom. These results will include how the fiber injection system improved laser beam stability during process operations, in comparison to traditional simple lens injection methods.

  14. Trace element content and magnetic properties of commercial HOPG samples studied by ion beam microscopy and SQUID magnetometry

    Directory of Open Access Journals (Sweden)

    D. Spemann

    2014-10-01

    Full Text Available In this study, the impurity concentration and magnetic response of nine highly oriented pyrolytic graphite (HOPG samples with different grades and from different providers were determined using ion beam microscopy and SQUID magnetometry. Apart from sideface contaminations in the as-received state, bulk contamination of the samples in most cases consists of disk-shaped micron-sized particles made of Ti and V with an additional Fe contamination around the grain perimeter. The saturation magnetization typically increases with Fe concentration, however, there is no simple correlation between Fe content and magnetic moment. The saturation magnetization of one, respectively six, out of nine samples clearly exceeds the maximum contribution from pure Fe or Fe3C. For most samples the temperature dependence of the remanence decreases linearly with T – a dependence found previously for defect-induced magnetism (DIM in HOPG. We conclude that apart from magnetic impurities, additional contribution to the ferromagnetic magnetization exists in pristine HOPG in agreement with previous studies. A comparative study between the results of ion beam microscopy and the commonly used EDX analysis shows clearly that EDX is not a reliable method for quantitative trace elemental analysis in graphite, clarifying weaknesses and discrepancies in the element concentrations given in the recent literature.

  15. Cone-beam and fan-beam image reconstruction algorithms based on spherical and circular harmonics

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Gullberg, Grant T

    2004-01-01

    A cone-beam image reconstruction algorithm using spherical harmonic expansions is proposed. The reconstruction algorithm is in the form of a summation of inner products of two discrete arrays of spherical harmonic expansion coefficients at each cone-beam point of acquisition. This form is different from the common filtered backprojection algorithm and the direct Fourier reconstruction algorithm. There is no re-sampling of the data, and spherical harmonic expansions are used instead of Fourier expansions. As a special case, a new fan-beam image reconstruction algorithm is also derived in terms of a circular harmonic expansion. Computer simulation results for both cone-beam and fan-beam algorithms are presented for circular planar orbit acquisitions. The algorithms give accurate reconstructions; however, the implementation of the cone-beam reconstruction algorithm is computationally intensive. A relatively efficient algorithm is proposed for reconstructing the central slice of the image when a circular scanning orbit is used

  16. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2015-04-01

    Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.

  17. 3D dictionary learning based iterative cone beam CT reconstruction

    Directory of Open Access Journals (Sweden)

    Ti Bai

    2014-03-01

    Full Text Available Purpose: This work is to develop a 3D dictionary learning based cone beam CT (CBCT reconstruction algorithm on graphic processing units (GPU to improve the quality of sparse-view CBCT reconstruction with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms of 3 × 3 × 3 was trained from a large number of blocks extracted from a high quality volume image. On the basis, we utilized cholesky decomposition based orthogonal matching pursuit algorithm to find the sparse representation of each block. To accelerate the time-consuming sparse coding in the 3D case, we implemented the sparse coding in a parallel fashion by taking advantage of the tremendous computational power of GPU. Conjugate gradient least square algorithm was adopted to minimize the data fidelity term. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with tight frame (TF by performing reconstructions on a subset data of 121 projections. Results: Compared to TF based CBCT reconstruction that shows good overall performance, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, remove more streaking artifacts and also induce less blocky artifacts. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppress the noise, and hence to achieve high quality reconstruction under the case of sparse view. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application.-------------------------------Cite this article as: Bai T, Yan H, Shi F, Jia X, Lou Y, Xu Q, Jiang S, Mou X. 3D dictionary learning based iterative cone beam CT reconstruction. Int J Cancer Ther Oncol 2014; 2(2:020240. DOI: 10

  18. A laser beam quality definition based on induced temperature rise.

    Science.gov (United States)

    Miller, Harold C

    2012-12-17

    Laser beam quality metrics like M(2) can be used to describe the spot sizes and propagation behavior of a wide variety of non-ideal laser beams. However, for beams that have been diffracted by limiting apertures in the near-field, or those with unusual near-field profiles, the conventional metrics can lead to an inconsistent or incomplete description of far-field performance. This paper motivates an alternative laser beam quality definition that can be used with any beam. The approach uses a consideration of the intrinsic ability of a laser beam profile to heat a material. Comparisons are made with conventional beam quality metrics. An analysis on an asymmetric Gaussian beam is used to establish a connection with the invariant beam propagation ratio.

  19. Elasto-plasticity of frame structure elements modeling and simulation of rods and beams

    CERN Document Server

    Öchsner, Andreas

    2014-01-01

    The finite element method is a powerful tool even for non-linear materials’ modeling. But commercial solutions are limited and many novel materials do not follow standard constitutive equations on a macroscopic scale. Thus, is it required that new constitutive equations are implemented into the finite element code. However, it is not sufficient to simply implement only the equations but also an appropriate integration algorithm for the constitutive equation must be provided. This book is restricted to one-dimensional plasticity in order to reduce and facilitate the mathematical formalism and theory and to concentrate on the basic ideas of elasto-plastic finite element procedures. A comprehensive set of completely solved problems is designed for the thorough understand of the presented theory. After working with this new book and reviewing the provided solved and supplementary problems, it should be much easier to study and understand the advanced theory and the respective text books.

  20. Relationship between corrosion and element severity score for reinforced concrete beams

    OpenAIRE

    O'Flaherty, Fin; Browne, Elena; Mangat, Pal; Lambert, Paul

    2015-01-01

    Guidance for highway bridge and structure maintenance management in the UK is provided by the code of practice (CoP) 'Management of Highway Structures'. With regards to inspection of reinforced concrete beams in accordance with the code, the professional judgement of the bridge engineer is required to assess the extent and severity of deterioration with help from a library of different defects. The Extent of the defects is rated A – E whilst the Severity is scored 1 – 5, giving an Extent and ...

  1. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    Energy Technology Data Exchange (ETDEWEB)

    Carey, D.C.

    1999-12-09

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE.

  2. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    International Nuclear Information System (INIS)

    Carey, D.C.

    1999-01-01

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE

  3. Microheaters based on ultrasonic actuation of piezoceramic elements

    Science.gov (United States)

    Visvanathan, Karthik; Gianchandani, Yogesh B.

    2011-08-01

    This paper describes the use of micromachined lead zirconate titanate (PZT) piezoceramic elements for heat generation by ultrasonic energy dissipated within the elements and surrounding media. Simulations based on three-dimensional finite-element models suggest that circular disk-shaped elements provide superior steady-state temperature rise for a given cross-sectional area, volume of the PZT element and drive voltage. Experimental validation is performed using PZT-5A heaters of 3.2 mm diameter and 0.191 mm thickness. Single-element heaters and dual-element stacks are evaluated. Although the steady-state temperature generated by these heaters reaches the maximum value at the frequency of maximum electromechanical conductance, the heating effectiveness is maximized at the frequency of maximum electromechanical impedance. Stacked PZT heaters provide 3.5 times the temperature rise and 3 times greater heating effectiveness than single elements. Furthermore, the heaters attain the maximum heating effectiveness when bonded to highly damping and non-conducting substrates. A maximum temperature of 120 °C is achieved at 160 mW input power. Experiments are performed using porcine tissue samples to show the feasibility of using PZT heaters in tissue cauterization. A PZT heater probe brands a porcine tissue in 2-3 s with 10 VRMS drive voltage. The interface temperature is ≈150 °C.

  4. Microheaters based on ultrasonic actuation of piezoceramic elements

    International Nuclear Information System (INIS)

    Visvanathan, Karthik; Gianchandani, Yogesh B

    2011-01-01

    This paper describes the use of micromachined lead zirconate titanate (PZT) piezoceramic elements for heat generation by ultrasonic energy dissipated within the elements and surrounding media. Simulations based on three-dimensional finite-element models suggest that circular disk-shaped elements provide superior steady-state temperature rise for a given cross-sectional area, volume of the PZT element and drive voltage. Experimental validation is performed using PZT-5A heaters of 3.2 mm diameter and 0.191 mm thickness. Single-element heaters and dual-element stacks are evaluated. Although the steady-state temperature generated by these heaters reaches the maximum value at the frequency of maximum electromechanical conductance, the heating effectiveness is maximized at the frequency of maximum electromechanical impedance. Stacked PZT heaters provide 3.5 times the temperature rise and 3 times greater heating effectiveness than single elements. Furthermore, the heaters attain the maximum heating effectiveness when bonded to highly damping and non-conducting substrates. A maximum temperature of 120 °C is achieved at 160 mW input power. Experiments are performed using porcine tissue samples to show the feasibility of using PZT heaters in tissue cauterization. A PZT heater probe brands a porcine tissue in 2–3 s with 10 V RMS drive voltage. The interface temperature is ≈150 °C

  5. Beam-Based Alignment of Magnetic Field in the Fermilab Electron Cooler Cooling Section

    International Nuclear Information System (INIS)

    Seletskiy, S. M.; Tupikov, V.

    2006-01-01

    The Fermilab Electron Cooling Project requires low effective anglular spread of electrons in the cooling section. One of the main components of the effective electron angles is an angle of electron beam centroid with respect to antiproton beam. This angle is caused by the poor quality of magnetic field in the 20 m long cooling section solenoid and by the mismatch of the beam centroid to the entrance of the cooling section. This paper focuses on the beam-based procedure of the alignment of the cooling section field and beam centroid matching. The discussed procedure allows to suppress the beam centroid angles below the critical value of 0.1 mrad

  6. Structural Topology Optimization Based on the Smoothed Finite Element Method

    Directory of Open Access Journals (Sweden)

    Vahid Shobeiri

    Full Text Available Abstract In this paper, the smoothed finite element method, incorporated with the level set method, is employed to carry out the topology optimization of continuum structures. The structural compliance is minimized subject to a constraint on the weight of material used. The cell-based smoothed finite element method is employed to improve the accuracy and stability of the standard finite element method. Several numerical examples are presented to prove the validity and utility of the proposed method. The obtained results are compared with those obtained by several standard finite element-based examples in order to access the applicability and effectiveness of the proposed method. The common numerical instabilities of the structural topology optimization problems such as checkerboard pattern and mesh dependency are studied in the examples.

  7. Load Identification for a Cantilever Beam Based on Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Xuegang Song

    2017-07-01

    Full Text Available Load identification plays an important role in structural health monitoring, which aims at preventing structural failures. In order to identify load for linear systems and nonlinear systems, this paper presents methods to identify load for a cantilever beam based on dynamic strain measurement by Fiber Bragg Grating (FBG sensors. For linear systems, the proposed inverse method consists of Kalman filter with no load terms and a linear estimator. For nonlinear systems, the proposed inverse method consists of cubature Kalman filter (CKF with no load terms and a nonlinear estimator. In the process of load identification, the state equations of the beam structures are constructed by using the finite element method (FEM. Kalman filter or CKF is used to suppress noise. The residual innovation sequences, gain matrix, and innovation covariance generated by Kalman filter or CKF are used to identify a load. To prove the effectiveness of the proposed method, numerical simulations and experiments of the beam structures are employed and the results show that the method has an excellent performance.

  8. Nonlinear finite element analysis of reinforced and prestressed concrete shells with edge beams

    International Nuclear Information System (INIS)

    Srinivasa Rao, P.; Duraiswamy, S.

    1994-01-01

    The structural design of reinforced and prestressed concrete shells demands the application of nonlinear finite element analysis (NFEM) procedures to ensure safety and serviceability. In this paper the details of a comprehensive NFEM program developed are presented. The application of the program is highlighted by solving two numerical problems and comparing the results with experimental results. (author). 20 refs., 15 figs

  9. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Soevik, Aaste; Skogmo, Hege K. (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)), E-mail: aste.sovik@nvh.no; Roedal, Jan (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)); Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik (Dept. of Medical Physics, The Norwegian Radium Hospital, Oslo Univ. Hospital, Oslo (Norway))

    2010-10-15

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  10. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    International Nuclear Information System (INIS)

    Soevik, Aaste; Skogmo, Hege K.; Roedal, Jan; Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2010-01-01

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  11. Opto-microwave, Butler matrixes based front-end for a multi-beam large direct radiating array antenna

    Science.gov (United States)

    Piqueras, M. A.; Mengual, T.; Navasquillo, O.; Sotom, M.; Caille, G.

    2017-11-01

    Network (OBFN) based on integrated photonics, with fibre-optics remote antenna feeding capabilities, that addresses the requirements of SoA DRA antennas in space communications, able to feed potentially hundreds of antenna elements with hundred of simultaneous, orthogonal beams. The core of this OBFN is a Photonic Integrated Circuit (PIC) implementing a passive Butler matrix similar to the structure well known by the RF community, but overcoming the issues of scalability, size, compactness and manufacturability associated to the fact of addressing hundred of elements. This fully-integrated beam-former solution also overcomes the opto-mechanical issues and environmental sensitivity of other free-space based OBFNs.

  12. Dual circularly polarized broadside beam antenna based on metasurfaces

    Science.gov (United States)

    Tellechea, A.; Caminita, F.; Martini, E.; Ederra, I.; Teniente, J.; Iriarte, J. C.; Gonzalo, R.; Maci, S.

    2018-02-01

    Design details of a Ku band metasurface (MTS) antenna with dual circularly polarized (CP) broadside radiation is shown in this work. By means of the surface impedance tensor modulation, synchronized propagation of two transversal magnetic (TM) and transverse electric (TE) surface waves (SWs) is ensured in the structure, which contribute to the radiation in broadside direction by the generation of a CP leaky wave. The structure is implemented by elliptical subwavelength metallic elements with a cross-shaped aperture in the center, printed on top of a thin substrate with high permittivity (AD1000 with a thickness of λ0/17). For the experimental validation, the MTS prototype has been excited employing an orthomode transducer composed by a metallic stepped septum inside an air-filled waveguide. Two orthogonal TE11 modes excited with ±90° phase shift in the feed couple with the TM and TE SWs supported by the MTS and generate RHCP or LHCP broadside beam. Experimental results are compared with the simulation predictions. Finally, conclusions are drawn.

  13. Beam closed orbit feedback based on PID control

    International Nuclear Information System (INIS)

    Xuan Ke; Wang Lin; Liu Gongfa; Li Weimin; Li Chuan; Wang Jigang; Bao Xun; Xu Hongliang

    2013-01-01

    The algorithm in the feedback system has important influence on the performance of the beam orbit. Good feedback algorithm can greatly improve the beam orbit stability. In this paper, the theory of beam closed orbit correction, the principle of PID control and the beam closed orbit feedback correction using PID control were introduced. The simulation results were given. Compared with least-square method, the PID feedback algorithm makes the steady-state error smaller and more accurate, and enhances the beam orbit stability. (authors)

  14. Micromirror-based manipulation of synchrotron x-ray beams

    Science.gov (United States)

    Walko, D. A.; Chen, Pice; Jung, I. W.; Lopez, D.; Schwartz, C. P.; Shenoy, G. K.; Wang, Jin

    2017-08-01

    Synchrotron beamlines typically use macroscopic, quasi-static optics to manipulate x-ray beams. We present the use of dynamic microelectromechanical systems-based optics (MEMS) to temporally modulate synchrotron x-ray beams. We demonstrate this concept using single-crystal torsional MEMS micromirrors oscillating at frequencies of 75 kHz. Such a MEMS micromirror, with lateral dimensions of a few hundred micrometers, can interact with x rays by operating in grazing-incidence reflection geometry; x rays are deflected only when an x-ray pulse is incident on the rotating micromirror under appropriate conditions, i.e., at an angle less than the critical angle for reflectivity. The time window for such deflections depends on the frequency and amplitude of the MEMS rotation. We demonstrate that reflection geometry can produce a time window of a few microseconds. We further demonstrate that MEMS optics can isolate x rays from a selected synchrotron bunch or group of bunches. With ray-trace simulations we explain the currently achievable time windows and suggest a path toward improvements.

  15. Beam Diagnostics for Laser Undulator Based on Compton Backward Scattering

    CERN Document Server

    Kuroda, R

    2005-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on Compton backward scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser (10ps FWHM) and about 5 MeV high quality electron beam (10ps FWHM) generated from rf gun system. The range of X-ray energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein's coefficient in this range, a dehydration of the specimens is not necessary. To generate the soft X-ray pulse stably, the electron beam diagnostics have been developed such as the emittance measurement using double slit scan technique, the bunch length measurement using two frequency analysis technique. In this confere...

  16. Quadrupole beam-based alignment in the RHIC interaction regions

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, J.; Satogata, T.

    2011-03-28

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  17. VIBA-LAB2: a virtual ion beam analysis laboratory software package incorporating elemental map simulations

    International Nuclear Information System (INIS)

    Zhou, S.J.; Orlic, I.; Sanchez, J.L.; Watt, F.

    1999-01-01

    The software package VIBA-lab1, which incorporates PIXE and RBS energy spectra simulation has now been extended to include the simulation of elemental maps from 3D structures. VIBA-lab1 allows the user to define a wide variety of experimental parameters, e.g. energy and species of incident ions, excitation and detection geometry, etc. When the relevant experimental parameters as well as target composition are defined, the program can then simulate the corresponding PIXE and RBS spectra. VIBA-LAB2 has been written with applications in nuclear microscopy in mind. A set of drag-and-drop tools has been incorporated to allow the user to define a three-dimensional sample object of mixed elemental composition. PIXE energy spectra simulations are then carried out on pixel-by-pixel basis and the corresponding intensity distributions or elemental maps can be computed. Several simulated intensity distributions for some 3D objects are demonstrated, and simulations obtained from a simple IC are compared with experimental results

  18. Laser beam shaping design based on micromirror array

    Science.gov (United States)

    Fang, Han; Su, Bida; Liu, Jiaguo; Fan, Xiaoli; Jing, Wang

    2017-10-01

    In the practical application of the laser, it is necessary to use the laser beam shaping technology to shape the output beam of laser device to the uniform light intensity distribution. The shaping divergent optical system of compound eye integrator way is composed of beam expanding mirror group and lens array. Its working principle is to expand the output laser to a certain size of caliber, and then divide the beam with lens array into multiple sub beam, where the lens unit of lens array can control the divergence angle of sub beam through the design of focal length, with mutual superposition of the sub beam in far field, to make up for the nonuniformity of beam, so that the radiant exitance on the radiated surface may become uniform. In this paper, we use a reflective microlens array to realize the laser beam shaping. By through of the practical optical path model established, the ray tracing is carried out and the simulation results for single-mode Gaussian beam with noise circumstance is provided. The analysis results show that the laser beam shaping under different inputs can be effectively realized by use of microlens array. All the energy is within the signal window, with a high energy efficiency of more than 90%; The measured surface has a better uniformity, and the uniformity is better than 99.5% at 150m.

  19. Spontaneous core–shell elemental distribution in In-rich InxGa1−xN nanowires grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gómez-Gómez, M; Garro, N; Cantarero, A; Mengistu, H T; García-Cristóbal, A; Murcia-Mascarós, S; Segura-Ruiz, J; Martinez-Criado, G; Denker, C; Malindretos, J; Rizzi, A

    2014-01-01

    The elemental distribution of self-organized In-rich In x Ga 1−x N nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core–shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality non-polar heterostructures. (paper)

  20. Spontaneous core-shell elemental distribution in In-rich InxGa1-xN nanowires grown by molecular beam epitaxy

    Science.gov (United States)

    Gómez-Gómez, M.; Garro, N.; Segura-Ruiz, J.; Martinez-Criado, G.; Cantarero, A.; Mengistu, H. T.; García-Cristóbal, A.; Murcia-Mascarós, S.; Denker, C.; Malindretos, J.; Rizzi, A.

    2014-02-01

    The elemental distribution of self-organized In-rich InxGa1-xN nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core-shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality non-polar heterostructures.

  1. Spontaneous core–shell elemental distribution in In-rich In(x)Ga1-xN nanowires grown by molecular beam epitaxy.

    Science.gov (United States)

    Gómez-Gómez, M; Garro, N; Segura-Ruiz, J; Martinez-Criado, G; Cantarero, A; Mengistu, H T; García-Cristóbal, A; Murcia-Mascarós, S; Denker, C; Malindretos, J; Rizzi, A

    2014-02-21

    The elemental distribution of self-organized In-rich In(x)Ga1-xN nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core–shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality nonpolar heterostructures.

  2. Spin density matrix elements in exclusive ρ 0 electroproduction on 1H and 2H targets at 27.5 GeV beam energy

    Science.gov (United States)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Andrus, A.; Aschenauer, E. C.; Augustyniak, W.; Avakian, R.; Avetissian, A.; Avetissian, E.; Belostotski, S.; Bianchi, N.; Blok, H. P.; Böttcher, H.; Bonomo, C.; Borissov, A.; Brüll, A.; Bryzgalov, V.; Capiluppi, M.; Capitani, G. P.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Deconinck, W.; de Leo, R.; Demey, M.; de Nardo, L.; de Sanctis, E.; Diefenthaler, M.; di Nezza, P.; Dreschler, J.; Düren, M.; Ehrenfried, M.; Elalaoui-Moulay, A.; Elbakian, G.; Ellinghaus, F.; Elschenbroich, U.; Fabbri, R.; Fantoni, A.; Felawka, L.; Frullani, S.; Funel, A.; Gabbert, D.; Gapienko, G.; Gapienko, V.; Garibaldi, F.; Gavrilov, G.; Gharibyan, V.; Giordano, F.; Gliske, S.; Grebeniouk, O.; Gregor, I. M.; Guler, H.; Hadjidakis, C.; Hartig, M.; Hasch, D.; Hasegawa, T.; Hesselink, W. H. A.; Hill, G.; Hillenbrand, A.; Hoek, M.; Holler, Y.; Hommez, B.; Hristova, I.; Iarygin, G.; Imazu, Y.; Ivanilov, A.; Izotov, A.; Jackson, H. E.; Jgoun, A.; Kaiser, R.; Keri, T.; Kinney, E.; Kisselev, A.; Kobayashi, T.; Kopytin, M.; Korotkov, V.; Kozlov, V.; Kravchenko, P.; Krivokhijine, V. G.; Lagamba, L.; Lamb, R.; Lapikás, L.; Lehmann, I.; Lenisa, P.; Liebing, P.; Linden-Levy, L. A.; Lorenzon, W.; Lu, S.; Lu, X.-R.; Ma, B.-Q.; Maiheu, B.; Makins, N. C. R.; Manaenkov, S. I.; Mao, Y.; Marianski, B.; Marukyan, H.; Mexner, V.; Miller, C. A.; Miyachi, Y.; Muccifora, V.; Murray, M.; Mussgiller, A.; Nagaitsev, A.; Nappi, E.; Naryshkin, Y.; Nass, A.; Negodaev, M.; Nowak, W.-D.; Osborne, A.; Pappalardo, L. L.; Perez-Benito, R.; Pickert, N.; Raithel, M.; Reggiani, D.; Reimer, P. E.; Reischl, A.; Reolon, A. R.; Riedl, C.; Rith, K.; Rock, S. E.; Rosner, G.; Rostomyan, A.; Rubacek, L.; Rubin, J.; Ryckbosch, D.; Salomatin, Y.; Sanjiev, I.; Schäfer, A.; Schnell, G.; Schüler, K. P.; Seitz, B.; Shearer, C.; Shibata, T.-A.; Shutov, V.; Stancari, M.; Statera, M.; Steffens, J. E.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Streit, J.; Tait, P.; Taroian, S.; Tchuiko, B.; Terkulov, A.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; van der Nat, P. B.; van der Steenhoven, G.; van Haarlem, Y.; van Hulse, C.; Varanda, M.; Veretennikov, D.; Vikhrov, V.; Vilardi, I.; Vogel, C.; Wang, S.; Yaschenko, S.; Ye, H.; Ye, Y.; Ye, Z.; Yen, S.; Yu, W.; Zeiler, D.; Zihlmann, B.; Zupranski, P.

    2009-08-01

    Spin Density Matrix Elements (SDMEs) describing the angular distribution of exclusive ρ 0 electroproduction and decay are determined in the HERMES experiment with 27.6 GeV beam energy and unpolarized hydrogen and deuterium targets. Eight (fifteen) SDMEs that are related (unrelated) to the longitudinal polarization of the beam are extracted in the kinematic region 1exchange amplitudes; these amplitudes are naturally generated with a quark-exchange mechanism.

  3. A computational study of nodal-based tetrahedral element behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Gullerud, Arne S.

    2010-09-01

    This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.

  4. Electron beam based transversal profile measurements of intense ion beams; Elektronenstrahl-Diagnostik zur Bestimmung vom transversalen Profil intensiver Ionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    El Moussati, Said

    2014-11-03

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  5. Radioactive nuclear beam facilities based on projectile fragmentation

    International Nuclear Information System (INIS)

    Sherrill, B.M.

    1992-01-01

    The production of radioactive beams using direct separation techniques is discussed. The reaction mechanisms which can be used to produce radioactive beams with these techniques can be broadly divided into three groups, projectile fragmentation, nucleon transfer, and Coulomb disassociation. Radioactive nuclei produced in these ways have large forward momenta with relatively sharp angular distributions peaked near zero degrees which are suitable for collection with magnetic devices. Secondary beam intensities of up to a few percent of the primary beam intensity are possible, although depending on the production mechanism the beam emittance may be poor. Further beam purification can be achieved using atomic processes with profiled energy degraders. The features of the production reaction mechanism, separation techniques, and a review of world wide efforts are presented. The advantages and disadvantages of the method are presented, with discussion of techniques to overcome some of the disadvantages. (Author)

  6. Analysis method of beam pointing stability based on optical transmission matrix

    Science.gov (United States)

    Wang, Chuanchuan; Huang, PingXian; Li, Xiaotong; Cen, Zhaofen

    2016-10-01

    Quite a lot of factors will make effects on beam pointing stability of an optical system, Among them, the element tolerance is one of the most important and common factors. In some large laser systems, it will make final micro beams spot on the image plane deviate obviously. So it is essential for us to achieve effective and accurate analysis theoretically on element tolerance. In order to make the analysis of beam pointing stability convenient and theoretical, we consider transmission of a single chief ray rather than beams approximately to stand for the whole spot deviation. According to optical matrix, we also simplify this complex process of light transmission to multiplication of many matrices. So that we can set up element tolerance model, namely having mathematical expression to illustrate spot deviation in an optical system with element tolerance. In this way, we can realize quantitative analysis of beam pointing stability theoretically. In second half of the paper, we design an experiment to get the spot deviation in a multipass optical system caused by element tolerance, then we adjust the tolerance step by step and compare the results with the datum got from tolerance model, finally prove the correction of tolerance model successfully.

  7. Finite Element Analysis of Static and Dynamic Pull-In Instability of a Fixed-Fixed Micro Beam Considering Damping Effects

    Directory of Open Access Journals (Sweden)

    Ghader Rezazadeh

    2009-04-01

    Full Text Available In this paper the static and dynamic pull-in phenomenon of a fixed-fixed micro beam, considering the effects of residual stress, axial stress, damping coefficient, and Fringing field effects have statically and dynamically been analyzed. The nonlinear electromechanical coupled integro- differential equation governing the problem has been derived using variational principle and solved using a computer code based on Finite element method. The problem has been solved for various values of damping coefficients, residual and axial stresses, and various initial gaps between the micro beam and the substrate. The results showed that by increase in damping coefficient the dynamic pull-in voltage is also increased but this increase is continued up to a definite value of damping coefficient more than which, the dynamic pull-in voltage is constant and equal to the static one. The pull-in time is also determined for various damping coefficients and has been shown that with increasing the damping coefficient the pull-in time is increased.

  8. A Corotational Finite Element Method Combined with Floating Frame Method for Large Steady-State Deformation and Free Vibration Analysis of a Rotating-Inclined Beam

    Directory of Open Access Journals (Sweden)

    Ming Hsu Tsai

    2011-01-01

    Full Text Available A corotational finite element method combined with floating frame method and a numerical procedure is proposed to investigate large steady-state deformation and infinitesimal-free vibrationaround the steady-state deformation of a rotating-inclined Euler beam at constant angular velocity. The element nodal forces are derived using the consistent second-order linearization of the nonlinear beam theory, the d'Alembert principle, and the virtual work principle in a current inertia element coordinates, which is coincident with a rotating element coordinate system constructed at the current configuration of the beam element. The governing equations for linear vibration are obtained by the first-order Taylor series expansion of the equation of motion at the position of steady-state deformation. Numerical examples are studied to demonstrate the accuracy and efficiency of the proposed method and to investigate the steady-state deformation and natural frequency of the rotating beam with different inclined angle, angular velocities, radius of the hub, and slenderness ratios.

  9. An Optimization-Based Approach to Injector Element Design

    Science.gov (United States)

    Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar; Turner, Jim (Technical Monitor)

    2000-01-01

    An injector optimization methodology, method i, is used to investigate optimal design points for gaseous oxygen/gaseous hydrogen (GO2/GH2) injector elements. A swirl coaxial element and an unlike impinging element (a fuel-oxidizer-fuel triplet) are used to facilitate the study. The elements are optimized in terms of design variables such as fuel pressure drop, APf, oxidizer pressure drop, deltaP(sub f), combustor length, L(sub comb), and full cone swirl angle, theta, (for the swirl element) or impingement half-angle, alpha, (for the impinging element) at a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w), injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for both element types. Method i is then used to generate response surfaces for each dependent variable for both types of elements. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing the five dependent variables in terms of the input variables. Three examples illustrating the utility and flexibility of method i are discussed in detail for each element type. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the element design is illustrated. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface that includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues

  10. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    Science.gov (United States)

    Abu Anas, Emran Mohammad; Kim, Jae Gon; Lee, Soo Yeol; Kamrul Hasan, Md

    2011-10-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  11. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    International Nuclear Information System (INIS)

    Anas, Emran Mohammad Abu; Hasan, Md Kamrul; Kim, Jae Gon; Lee, Soo Yeol

    2011-01-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  12. Key Elements of a Successful School-Based Management Strategy.

    Science.gov (United States)

    Briggs, Kerri L.; Wohlstetter, Priscilla

    2003-01-01

    Syntheses of research findings from major studies of school-based management (SBM) generate eight elements of schooling associated with successful SBM: An active vision, meaningful decision-making authority, distribution of power, development and use of knowledge and skills, collecting and communicating information, rewards for progress, shared…

  13. Differential correction system of laser beam directional dithering based on symmetrical beamsplitter

    Science.gov (United States)

    Hongwei, Yang; Wei, Tao; Xiaoqia, Yin; Hui, Zhao

    2018-02-01

    This paper proposes a differential correction system with a differential optical path and a symmetrical beamsplitter for correcting the directional dithering of the laser beams. This system can split a collimated laser beam into two laser beams with equal and opposite movements. Thus, the positional averages of the two split laser beams remain constant irrespective of the dithering angle. The symmetrical beamsplitter designed based on transfer matrix principle is to balance the optical paths and irradiances of the two laser beams. Experimental results show that the directional dithering is reduced to less than one-pixel value. Finally, two examples show that this system can be widely used in one-dimensional measurement.

  14. Reliability-Based Shape Optimization using Stochastic Finite Element Methods

    DEFF Research Database (Denmark)

    Enevoldsen, Ib; Sørensen, John Dalsgaard; Sigurdsson, G.

    1991-01-01

    stochastic fields (e.g. loads and material parameters such as Young's modulus and the Poisson ratio). In this case stochastic finite element techniques combined with FORM analysis can be used to obtain measures of the reliability of the structural systems, see Der Kiureghian & Ke (6) and Liu & Der Kiureghian...... (7). In this paper a reliability-based shape optimization problem is formulated with the total expected cost as objective function and some requirements for the reliability measures (element or systems reliability measures) as constraints, see section 2. As design variables sizing variables...

  15. Convergence of a residual based artificial viscosity finite element method

    KAUST Repository

    Nazarov, Murtazo

    2013-02-01

    We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.

  16. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  17. Flexural Test of Fly Ash based Geopolimer Concrete Beams

    Directory of Open Access Journals (Sweden)

    Nindyawati

    2017-01-01

    Full Text Available Fly ash is a by-product from the coal industry, which is widely available in Indonesia. Fly ash contains quite high silicate and alumina. Silica and alumina reacts with alkaline solution to produce alumina silicate gel which binds the aggregate to produce geopolymer concrete. Geopolymer concrete is introduced as an environmental concrete with high compressive strength. The use of geopolymer concrete beams is a solution to reduce the effects of greenhouse gases. This research uses experimental designs. The data are obtained from the testing of 4 pieces of reinforced geopolymer concrete beams and reinforced ordinary concrete beams with a / d of 1.11 and 2.24. The results are obtained from the maximum load that can be accepted by the beam. The results of this study are: (1 Geopolymer concrete cylinder has 26.78% higher compressive strength than ordinary concrete cylinders (2 Ordinary concrete beams can withstand 34.8% load higher compared to the geopolymer concrete beam (3 Reinforced ordinary concrete beams experience bending shear collapse while reinforced geopolymer concrete beam experience pure bending collapse.

  18. Polystyrene as a zwitter resist in electron beam lithography based ...

    Indian Academy of Sciences (India)

    The resist action of polystyrene (w, 2,600,000) towards electroless deposition of gold on Si(100) surface following cross-linking by exposing to a 10 kV electron beam, has been investigated employing a scanning electron microscope equipped with electron beam lithography tool. With a low dose of electrons (21 C/cm2), ...

  19. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion ...

  20. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    Abstract. Mass analyzed highly charged ion beams of energy ranging from a few keV to a few. MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply ...

  1. Finite element analysis on the structural behaviour of square CFST beams

    Science.gov (United States)

    Javed, M. F.; Ramli, N. H.; Kashif-ur-Rehman, S.; Khan, N. B.

    2017-06-01

    This paper presents the finite element (FE) analysis and modelling of square concrete-filled steel tube (CFST) members subjected to a flexural load. A parametric study is conducted using the verified FE model to study the effect of the depth-to-thickness (D/t) ratio (18.75, 25, and 30), the compressive strength of infilled concrete (60, 80, and 100 MPa), and the yield strength of the steel tube (410, 500, and 600 MPa) on the flexural behaviour of the square CFST members. Decreasing the D/t ratio (from 30 to 18.75) can significantly increase the ultimate capacity of the square CFST members (up to 25%) while having a marginal effect on the initial stiffness of the CFST members. The ultimate bending capacity of the CFST members increases by up to 55% when the yield strength of the outer steel tube increases from 410 MPa to 600 MPa. However, the flexural capacity increases by only 12% when the compressive strength of the infilled concrete increases from 60 MPa to 100 MPa, hence showing a marginal effect. Results of the parametric studies are used to assess the current design models, and Han’s model predicts the most accurate flexural capacity.

  2. Two-color beam generation based on wakefield excitation

    Directory of Open Access Journals (Sweden)

    S. Bettoni

    2016-05-01

    Full Text Available Several beam manipulation methods have been studied and experimentally tested to generate two-color photon beams in free electron laser facilities to accommodate the user requests. We propose to use the interaction of the beam with an oscillating longitudinal wakefield source to obtain a suitable electron beam structure. The bunch generates two subpulses with different energies and delayed in time passing through a magnetic chicane after its longitudinal phase space has been modulated by the wakefield source. According to this approach the power of the emitted radiation is not degraded compared to the monochromatic beam, and the setup in the machine is quite simple because the bunch is manipulated only in the high energy section, where it is more rigid. We present the design applied to SwissFEL. We identified the parameters and the corresponding range of tunability of the time and energy separation among the two subbunches.

  3. Fabrication of Porous Silicon Based Humidity Sensing Elements on Paper

    Directory of Open Access Journals (Sweden)

    Tero Jalkanen

    2015-01-01

    Full Text Available A roll-to-roll compatible fabrication process of porous silicon (pSi based sensing elements for a real-time humidity monitoring is described. The sensing elements, consisting of printed interdigitated silver electrodes and a spray-coated pSi layer, were fabricated on a coated paper substrate by a two-step process. Capacitive and resistive responses of the sensing elements were examined under different concentrations of humidity. More than a three orders of magnitude reproducible decrease in resistance was measured when the relative humidity (RH was increased from 0% to 90%. A relatively fast recovery without the need of any refreshing methods was observed with a change in RH. Humidity background signal and hysteresis arising from the paper substrate were dependent on the thickness of sensing pSi layer. Hysteresis in most optimal sensing element setup (a thick pSi layer was still noticeable but not detrimental for the sensing. In addition to electrical characterization of sensing elements, thermal degradation and moisture adsorption properties of the paper substrate were examined in connection to the fabrication process of the silver electrodes and the moisture sensitivity of the paper. The results pave the way towards the development of low-cost humidity sensors which could be utilized, for example, in smart packaging applications or in smart cities to monitor the environment.

  4. Finite Element Analysis of Bend Test of Sandwich Structures Using Strain Energy Based Homogenization Method

    Directory of Open Access Journals (Sweden)

    Hassan Ijaz

    2017-01-01

    Full Text Available The purpose of this article is to present a simplified methodology for analysis of sandwich structures using the homogenization method. This methodology is based upon the strain energy criterion. Normally, sandwich structures are composed of hexagonal core and face sheets and a complete and complex hexagonal core is modeled for finite element (FE structural analysis. In the present work, the hexagonal core is replaced by a simple equivalent volume for FE analysis. The properties of an equivalent volume were calculated by taking a single representative cell for the entire core structure and the analysis was performed to determine the effective elastic orthotropic modulus of the equivalent volume. Since each elemental cell of the hexagonal core repeats itself within the in-plane direction, periodic boundary conditions were applied to the single cell to obtain the more realistic values of effective modulus. A sandwich beam was then modeled using determined effective properties. 3D FE analysis of Three- and Four-Point Bend Tests (3PBT and 4PBT for sandwich structures having an equivalent polypropylene honeycomb core and Glass Fiber Reinforced Plastic (GFRP composite face sheets are performed in the present study. The authenticity of the proposed methodology has been verified by comparing the simulation results with the experimental bend test results on hexagonal core sandwich beams.

  5. Development of a Laser-based Emittance Monitor for Negative Hydrogen Beams

    CERN Document Server

    AUTHOR|(CDS)2078368; Schmauss, Bernhard; Gibson, Stephen; Boorman, Gary; Bosco, Alessio

    High energy particle accelerators are designed to collide charged particle beams and thus study the collision products. Maximising the collision rate, to generate sufficient statistics for precise measurements of rare processes, is one of the key parameters for optimising the overall collider performance. The CERN Large Hadron Collider (LHC) Injectors Upgrade (LIU) includes the construction of LINAC4, a completely new machine working as a first linear acceleration stage for the LHC beam. By accelerating a negative hydrogen beam (H-) instead of protons, it aims to double the beam brightness via a more efficient transfer to the first circular accelerator and subsequently boost the LHC collision rate. To achieve this, a precise knowledge of the transverse beam characteristics in terms of beam emittance is essential. This thesis work covers the development of a laser-based monitor meant to measure non-destructively the LINAC4 beam transverse profile and emittance. This included the implementation of dif...

  6. A laser-based beam profile monitor for the SLC/SLD interaction region

    International Nuclear Information System (INIS)

    Alley, R.; Arnett, D.; Bong, E.; Colocho, W.; Frisch, J.; Horton-Smith, S.; Inman, W.; Jobe, K.; Kotseroglou, T.; McCormick, D.; Nelson, J.; Scheeff, M.; Wagner, S.; Ross, M.C.

    1996-01-01

    Beam size estimates made using beam-beam deflections are used for optimization of the Stanford linear collider (SLC) electron-positron beam sizes. Typical beam sizes and intensities expected for 1996 operations are 2.1 x 0.6 μm (x, y) at 4.0.10 10 particles per pulse. Conventional profile monitors, such as scanning wires, fail at charge densities well below this. The laser-based profile monitor uses a finely-focused 350-nm wavelength tripled YLF laser pulse that traverses the particle beam path about 29 cm away from the e + /e - IP. Compton scattered photons and degraded e + /e - are detected as the beam is steered across the laser pulse. The laser pulse has a transverse size of 380 nm and a Rayleigh range of about 5 μm. (orig.)

  7. Development and Optimisation of the SPS and LHC beam diagnostics based on Synchrotron Radiation monitors

    CERN Document Server

    AUTHOR|(CDS)2081364; Roncarolo, Federico

    Measuring the beam transverse emittance is fundamental in every accelerator, in particular for colliders, where its precise determination is essential to maximize the luminosity and thus the performance of the colliding beams.
 Synchrotron Radiation (SR) is a versatile tool for non-destructive beam diagnostics, since its characteristics are closely related to those of the source beam. At CERN, being the only available diagnostics at high beam intensity and energy, SR monitors are exploited as the proton beam size monitor of the two higher energy machines, the Super Proton Synchrotron (SPS) and the Large Hadron Collider (LHC). The thesis work documented in this report focused on the design, development, characterization and optimization of these beam size monitors. Such studies were based on a comprehensive set of theoretical calculations, numerical simulations and experiments. A powerful simulation tool has been developed combining conventional softwares for SR simulation and optics design, thus allowing t...

  8. A damage mechanics based general purpose interface/contact element

    Science.gov (United States)

    Yan, Chengyong

    Most of the microelectronics packaging structures consist of layered substrates connected with bonding materials, such as solder or epoxy. Predicting the thermomechanical behavior of these multilayered structures is a challenging task in electronic packaging engineering. In a layered structure the most complex part is always the interfaces between the strates. Simulating the thermo-mechanical behavior of such interfaces, is the main theme of this dissertation. The most commonly used solder material, Pb-Sn alloy, has a very low melting temperature 180sp°C, so that the material demonstrates a highly viscous behavior. And, creep usually dominates the failure mechanism. Hence, the theory of viscoplasticity is adapted to describe the constitutive behavior. In a multilayered assembly each layer has a different coefficient of thermal expansion. Under thermal cycling, due to heat dissipated from circuits, interfaces and interconnects experience low cycle fatigue. Presently, the state-of-the art damage mechanics model used for fatigue life predictions is based on Kachanov (1986) continuum damage model. This model uses plastic strain as a damage criterion. Since plastic strain is a stress path dependent value, the criterion does not yield unique damage values for the same state of stress. In this dissertation a new damage evolution equation based on the second law of thermodynamic is proposed. The new criterion is based on the entropy of the system and it yields unique damage values for all stress paths to the final state of stress. In the electronics industry, there is a strong desire to develop fatigue free interconnections. The proposed interface/contact element can also simulate the behavior of the fatigue free Z-direction thin film interconnections as well as traditional layered interconnects. The proposed interface element can simulate behavior of a bonded interface or unbonded sliding interface, also called contact element. The proposed element was verified against

  9. Design development of heat transfer elements for characterization of neutral beam with power density of 65 MW/M2 in INTF

    International Nuclear Information System (INIS)

    Venkata Nagaraju, M.; Bandyopadhyay, Mainak; Rotti, Chandramouli; Pillai, Suraj; Singh, Mahendrajit; Joshi, Jaydeep; Chakraborty, Arun K.

    2017-01-01

    INTF Second Calorimeter is a thermal target system going to be installed in Indian Test Facility (INTF), being constructed at ITER-India laboratory in IPR. It will be placed inside the vacuum vessel on the extreme end which is at 20.6m from the exit of -ve ion beam source located on opposite end. The paper describes the design of this calorimeter including Beam power estimations, panel configuration and its optimization, HTE orientation with respect to beam axis, profiling of HTE, hydraulic calculations, thermo-mechanical and thermos-hydraulic assessments of severely loaded Heat Transfer Element in ANSYS for both normal and off-normal conditions of 5mrad beam. The design has been further validated for structural code SDC-IC, which is essentially for ITER in-vessel components

  10. Coupled Bending-Bending-Torsion Vibration of a Rotating Pre-Twisted Beam with Aerofoil Cross-Section and Flexible Root by Finite Element Method

    Directory of Open Access Journals (Sweden)

    Bulent Yardimoglu

    2004-01-01

    Full Text Available The purpose of this paper is to extend a previously published beam model of a turbine blade including the centrifugal force field and root flexibility effects on a finite element model and to demonstrate the performance, accuracy and efficiency of the extended model for computing the natural frequencies. Therefore, only the modifications due to rotation and elastic root are presented in great detail. Considering the shear center effect on the transverse displacements, the geometric stiffness matrix due to the centrifugal force is developed from the geometric strain energy expression based on the large deflections and the increase of torsional stiffness because of the axial stress. In this work, the root flexibility of the blade is idealized by a continuum model unlike the discrete model approach of a combination of translational and rotational elastic springs, as used by other researchers. The cross-section properties of the fir-tree root of the blade considered as an example are expressed by assigning proper order polynomial functions similar to cross-sectional properties of a tapered blade. The correctness of the present extended finite element model is confirmed by the experimental and calculated results available in the literature. Comparisons of the present model results with those in the literature indicate excellent agreement.

  11. A beam intensity profile monitor based on secondary electron emission

    International Nuclear Information System (INIS)

    Berdoz, A.R.; Birchall, J.; Campbell, J.R.; Davis, C.A.; Davison, N.E.; Mosscrop, D.R.; Page, S.A.; Ramsay, W.D.; Sekulovich, A.M.; Van Oers, W.T.H.; MIschke, R.E.

    1991-03-01

    Two dual function intensity profile monitors have been designed for a measurement of parity violation in antiproton-proton scattering at about 230 MeV using longitudinally polarized protons. Each device contains a set of split secondary electron emission (SEM) foils to determine the median of the beam current distribution (in x and y). The split foils, coupled through servoamplifiers and operational amplifiers to upstream air core steering magnets, have demonstrated the ability to hold the beam position stable to within ± 3 μm after one hour of data taking with a 100 nA, 15 mm FWHM Gaussian beam. (Author) 16 refs., 10 figs., tab

  12. Reconstruction of laser beam wavefronts based on mode analysis

    CSIR Research Space (South Africa)

    Schulze, C

    2013-07-01

    Full Text Available . Experimental Setup To measure the influence of defined Zernike aberra- tions on a laser beam, we used an experimental setup as outlined in Fig. 3. The beam of a helium–neon laser (10 mW power, 633 nm wavelength) was expanded and collimated [ f �L 1 � � 15 mm, f.... Insets depict the shapes of the corresponding aberrations. Fig. 3. Schematic of the experimental setup to modally decom- pose differently aberrated Gaussian beams. He–Ne, helium–neon laser; L 1–5 , lenses; M, mirror; SLM 1;2, spatial light modulator...

  13. A parity checker circuit based on microelectromechanical resonator logic elements

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-01-11

    Micro/nano-electromechanical resonator based logic computation has attracted significant attention in recent years due to its dynamic mode of operation, ultra-low power consumption, and potential for reprogrammable and reversible computing. Here we demonstrate a 4-bit parity checker circuit by utilizing recently developed logic gates based on MEMS resonators. Toward this, resonance frequencies of shallow arch shaped micro resonators are electrothermally tuned by the logic inputs to constitute the required logic gates for the proposed parity checker circuit. This study demonstrates that by utilizing MEMS resonator based logic elements, complex digital circuits can be realized.

  14. A method of mounting multiple otoliths for beam-based microchemical analyses

    Science.gov (United States)

    Donohoe, C.J.; Zimmerman, C.E.

    2010-01-01

    Beam-based analytical methods are widely used to measure the concentrations of elements and isotopes in otoliths. These methods usually require that otoliths be individually mounted and prepared to properly expose the desired growth region to the analytical beam. Most analytical instruments, such as LA-ICPMS and ion and electron microprobes, have sample holders that will accept only one to six slides or mounts at a time. We describe a method of mounting otoliths that allows for easy transfer of many otoliths to a single mount after they have been prepared. Such an approach increases the number of otoliths that can be analyzed in a single session by reducing the need open the sample chamber to exchange slides-a particularly time consuming step on instruments that operate under vacuum. For ion and electron microprobes, the method also greatly reduces the number of slides that must be coated with an electrical conductor prior to analysis. In this method, a narrow strip of cover glass is first glued at one end to a standard microscope slide. The otolith is then mounted in thermoplastic resin on the opposite, free end of the strip. The otolith can then be ground and flipped, if needed, by reheating the mounting medium. After otolith preparation is complete, the cover glass is cut with a scribe to free the otolith and up to 20 small otoliths can be arranged on a single petrographic slide. ?? 2010 The Author(s).

  15. A fast beam hardening correction method incorporated in a filtered back-projection based MAP algorithm

    Science.gov (United States)

    Luo, Shouhua; Wu, Huazhen; Sun, Yi; Li, Jing; Li, Guang; Gu, Ning

    2017-03-01

    The beam hardening effect can induce strong artifacts in CT images, which result in severely deteriorated image quality with incorrect intensities (CT numbers). This paper develops an effective and efficient beam hardening correction algorithm incorporated in a filtered back-projection based maximum a posteriori (BHC-FMAP). In the proposed algorithm, the beam hardening effect is modeled and incorporated into the forward-projection of the MAP to suppress beam hardening induced artifacts, and the image update process is performed by Feldkamp-Davis-Kress method based back-projection to speed up the convergence. The proposed BHC-FMAP approach does not require information about the beam spectrum or the material properties, or any additional segmentation operation. The proposed method was qualitatively and quantitatively evaluated using both phantom and animal projection data. The experimental results demonstrate that the BHC-FMAP method can efficiently provide a good correction of beam hardening induced artefacts.

  16. Physical mechanism of beam splitting based on reflective embedded double-layer grating

    Science.gov (United States)

    Wang, Bo; Li, Hongtao; Shu, Wenhao; Li, Wenhua; Chen, Li; Lei, Liang; Zhou, Jinyun

    2016-12-01

    It is not easy to achieve high performance for conventional beam splitters, such as high efficiency, good uniformity, polarization-independence, and wide bandwidth. A reflective embedded double-layer grating is described for beam splitting. With optimized grating profiles, the novel beam splitter can diffract both TE and TM polarizations into two orders with high performance. For the easy production, the fabrication tolerance is investigated and given. Most importantly, efficiencies more than 45% can be split into two orders within the wide bandwidth of 1412-1647 nm for TE polarization. The beam splitter based on multilayer coatings is sensitive to the incident angle and wavelength. And the bandwidth needs to be improved for the beam splitter based on simple grating. The design is of benefit for the performance improvement of the beam splitter by new grating configuration compared with the conventional simple grating.

  17. Free and Forced Vibrations of an Axially-Loaded Timoshenko Multi-Span Beam Carrying a Number of Various Concentrated Elements

    Directory of Open Access Journals (Sweden)

    Yusuf Yesilce

    2012-01-01

    Full Text Available In the existing reports regarding free and forced vibrations of the beams, most of them studied a uniform beam carrying various concentrated elements using Bernoulli-Euler Beam Theory (BET but without axial force. The purpose of this paper is to utilize the numerical assembly technique to determine the exact frequency-response amplitudes of the axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements (including point masses, rotary inertias, linear springs and rotational springs and subjected to a harmonic concentrated force and the exact natural frequencies and mode shapes of the beam for the free vibration analysis. The model allows analyzing the influence of the shear and axial force and harmonic concentrated force effects and intermediate concentrated elements on the dynamic behavior of the beams by using Timoshenko Beam Theory (TBT. At first, the coefficient matrices for the intermediate concentrated elements, an intermediate pinned support, applied harmonic force, left-end support and right-end support of Timoshenko beam are derived. After the derivation of the coefficient matrices, the numerical assembly technique is used to establish the overall coefficient matrix for the whole vibrating system. Finally, solving the equations associated with the last overall coefficient matrix one determines the exact dynamic response amplitudes of the forced vibrating system corresponding to each specified exciting frequency of the harmonic force. Equating the determinant of the overall coefficient matrix to zero one determines the natural frequencies of the free vibrating system (the case of zero harmonic force and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. The calculated vibration amplitudes of the forced vibrating systems and the natural frequencies of the free vibrating systems are given in tables for different values of

  18. Study of biomaterials by ion-beam based methods

    International Nuclear Information System (INIS)

    Racolta, Petru; Craciun, Liviu; Cincu, Emanuela; Voiculescu, Dana; Muresan, Ofelia; Serban, Alin; Filip, Andrei Ilie; Bunea, Danil; Antoniac, Vasile; Tudor, Tiberiu Laurian; Visan, Teodor; Visan, Sanda; Ibris, Neluta

    2002-01-01

    The extension lifetime of prosthetic devices, dental materials and orthodontic devices is one main goal of the international medical supply community. In the frame of an interdisciplinary national project, IFIN-HH has started experimentation on some alternative procedures to study the wear/corrosion phenomena of biological materials by using ion-beam based techniques. Since joint prostheses are mechanical bearings there are concerns over friction and wear just as there are with any bearing. These concerns date back to the early introduction of total hip prostheses and were shown to be justified by the early failures due to wear. Subsequently, changes in materials and designs reduced the incidence of wear failure to a low level at which failures due to other mechanisms became dominant. Interest turned to preventing femoral component fracture, reducing the rates of infection, and reducing the rates of loosening. Attention to wear as a mechanism of failure has recently increased. The failure rate for joint replacement at the hip or knee has been progressively reduced. The biologic effects of wear debris have been recognized; wearing out of the prosthesis is no longer a prerequisite for an adverse outcome. There is an active search for new materials with increased wear resistance. In the case of metallic component from hip, knee prostheses and dental alloys, we present the optimum nuclear reactions according with the main parameters of our U-120 Cyclotron (p, d, E max = 13 MeV and α particle, E max = 26 MeV). In the case of polymers, one of an articulating couple of the prosthetic devices, direct activation causes severe changes in its surface morphology and its structure (formation of defects and free radicals). We have developed an indirect activation mode using the principle of recoil ion implantation, applied to 56 Co radioactive ions generated by proton particle beams on a Fe target (thickness ∼ 10 mm). A thin target of elementary composition A is bombarded by

  19. Simulation based optimized beam velocity in additive manufacturing

    Science.gov (United States)

    Vignat, Frédéric; Béraud, Nicolas; Villeneuve, François

    2017-08-01

    Manufacturing good parts with additive technologies rely on melt pool dimension and temperature and are controlled by manufacturing strategies often decided on machine side. Strategies are built on beam path and variable energy input. Beam path are often a mix of contour and hatching strategies filling the contours at each slice. Energy input depend on beam intensity and speed and is determined from simple thermal models to control melt pool dimensions and temperature and ensure porosity free material. These models take into account variation in thermal environment such as overhanging surfaces or back and forth hatching path. However not all the situations are correctly handled and precision is limited. This paper proposes new method to determine energy input from full built chamber 3D thermal simulation. Using the results of the simulation, energy is modified to keep melt pool temperature in a predetermined range. The paper present first an experimental method to determine the optimal range of temperature. In a second part the method to optimize the beam speed from the simulation results is presented. Finally, the optimized beam path is tested in the EBM machine and built part are compared with part built with ordinary beam path.

  20. Negative-ion-based neutral beams for fusion

    International Nuclear Information System (INIS)

    Cooper, W.S.; Anderson, O.A.; Chan, C.F.

    1987-10-01

    To maximize the usefulness of an engineering test reactor (e.g., ITER, TIBER), it is highly desirable that it operate under steady-state conditions. The most attractive option for maintaining the circulating current needed in the center of the plasma is the injection of powerful beams of neutral deuterium atoms. The beam simultaneously heats the plasma. At the energies required, in excess of 500 keV, such beams can be made by accelerating D - ions and then removing the electron. Sources are being developed that generate the D - ions in the volume of a specially constructed plasma discharge, without the addition of cesium. These sources must operate with minimum gas flow, to avoid stripping the D - beam, and with minimum electron output. We are designing at LBL highly efficient electrostatic accelerators that combine electric strong-focusing with dc acceleration and offer the possibility of varying the beam energy at constant current while minimizing breakdown. Some form of rf acceleration may also be required. To minimize irradiation of the ion sources and accelerators, the D - beam can be transported through a maze in the neutron shielding. The D - ions can be converted to neutrals in a gas or plasma target, but advances in laser and mirror technology may make possible very efficient photodetachment systems by the time an ETR becomes operational. 9 refs., 4 figs

  1. Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement

    OpenAIRE

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-01

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS)...

  2. Development of a computerized tomographic system based on the FAN-BEAM technique

    International Nuclear Information System (INIS)

    Junqueira, M.M.; Santos, C.A.C.; Borges, J.C.

    1986-01-01

    The Nuclear Instrumentation Laboratory, at COPPE/UFRJ, concentrates its researches in the development of computerized tomographic systems, looking for applications in industrial and medical non destructive analysing techniques. In this work we have projected and constructed a tomographic prototype, based on the FAN-BEAM technique for irradiating the object under analysis. An algorithm previously developed to analyse parallel beams, was modified and adapted to the FAN-BEAM geometry. (Author) [pt

  3. SPES: A new cyclotron-based facility for research and applications with high-intensity beams

    Science.gov (United States)

    Maggiore, M.; Campo, D.; Antonini, P.; Lombardi, A.; Manzolaro, M.; Andrighetto, A.; Monetti, A.; Scarpa, D.; Esposito, J.; Silvestrin, L.

    2017-06-01

    In 2016, Laboratori Nazionali di Legnaro (Italy) started the commissioning of a new accelerator facility based on a high-power cyclotron able to deliver proton beams up to 70 MeV of energy and 700 μA current. Such a machine is the core of the Selective Production of Exotic Species (SPES) project whose main goal is to provide exotics beam for nuclear and astrophysics research and to deliver high-intensity proton beams for medical applications and neutrons generator.

  4. Simulation of Low Velocity Impact Induced Inter- and Intra-Laminar Damage of Composite Beams Based on XFEM

    Science.gov (United States)

    Sun, Wei; Guan, Zhidong; Li, Zengshan

    2017-12-01

    In this paper, the Inter-Fiber Fracture (IFF) criterion of Puck failure theory based on the eXtended Finite Element Method (XFEM) was implemented in ABAQUS code to predict the intra-laminar crack initiation of unidirectional (UD) composite laminate. The transverse crack path in the matrix can be simulated accurately by the presented method. After the crack initiation, the propagation of the crack is simulated by Cohesive Zoom Model (CZM), in which the displacement discontinuities and stress concentration caused by matrix crack is introduced into the finite element (FE) model. Combined with the usage of the enriched element interface, which can be used to simulate the inter-laminar delamination crack, the Low Velocity Impact (LVI) induced damage of UD composite laminate beam with a typical stacking of composite laminates [05/903]S is studied. A complete crack initiation and propagation process was simulated and the numerical results obtained by the XFEM are consistent with the experimental results.

  5. Radiation grafted polymeric sorbents using 10 MeV electron beam - for recovery of valuable elements from seawater

    International Nuclear Information System (INIS)

    Prasad, T.L.; Goswami, D.; Tewari, P.K.

    2013-01-01

    India with a vast coastline of around 7500 km has a large stake in exploiting the valuable elements locked in seawater. This requires selective recovery of the target metal ions from multicomponent ionic system and the separation process must be able to operate in-situ without altering chemical compositions of seawater. Radiation grafted sorbent have opened up the avenue for achieving tailor made surfaces and thereby selectivity for different heavy metal ions of interest. Surface modifications for incorporation of required functional groups on the polymer back bone have been carried out using Electron Beam (EB) irradiation. Metal Chelate Embedded Polymers (MCEP) are specially synthesized for uranium extraction from seawater using radiation grafting techniques using higher GSM (Grammer per Square Meter) polypropylene substrate materials. The grafting levels observed and their physical and mechanical characteristics are presented in this paper. In-field trials have been carried out by submerging the irradiated and oximated tokens for different durations of up to 16 days at Trombay estuary. Normal tidal movement is used for contacting the submerged tokens with water body

  6. Mining key elements for severe convection prediction based on CNN

    Science.gov (United States)

    Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng

    2017-04-01

    Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with

  7. Research sources of ionizing radiation based on transplutonium elements

    Science.gov (United States)

    Radchenko, V. M.; Ryabinin, M. A.

    2010-03-01

    Scientific and technical demand stimulates an extension of the practical implementation field of TPE, requirements to their ecological safety calling for the development of such materials which could be most resistant to the environment and most suitable for the production of a wide range of sources different in their application and design. Such materials can involve pure metals of transplutonium elements and their alloys with metals of platinum group as well as their chemically stable compounds (such as silicides, carbides etc.) At SSC RIAR production processes of sources of different type and application have been implemented. Examples of the most recent developments of the sources are presented below. Presented is the analysis of the current state of issues related to designing, production and application of radionuclide research sources based on transplutonium elements. Examples of the development of the most up-to-date sources of alpha-, gamma- and neutron radiation and also fission ones are considered.

  8. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Changyong Cao

    2015-01-01

    Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.

  9. An ion beam facility based on a 3 MV tandetron accelerator in Sichuan University, China

    Science.gov (United States)

    Han, Jifeng; An, Zhu; Zheng, Gaoqun; Bai, Fan; Li, Zhihui; Wang, Peng; Liao, Xiaodong; Liu, Mantian; Chen, Shunli; Song, Mingjiang; Zhang, Jun

    2018-03-01

    A new ion beam facility based on a 3 MV tandetron accelerator system has been installed in Sichuan University, China. The facility was developed by High Voltage Engineering Europa and consists of three high-energy beam lines including the ion beam analysis, ion implantation and nuclear physics experiment end stations, respectively. The terminal voltage stability of the accelerator is better than ±30 V, and the brightness of the proton beam is approximately 5.06 A/rad2/m2/eV. The system demonstrates a great application potential in fields such as nuclear, material and environmental studies.

  10. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    International Nuclear Information System (INIS)

    Tafalla, D.; Tabares, F.L.; Ortiz, P.; Herrero, V.J.; Tanarro, I.

    1998-01-01

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  11. Multi-beam synchronous measurement based on PSD phase detection using frequency-domain multiplexing

    Science.gov (United States)

    Duan, Ying; Qin, Lan; Xue, Lian; Xi, Feng; Mao, Jiubing

    2013-10-01

    According to the principle of centroid measurement, position-sensitive detectors (PSD) are commonly used for micro displacement detection. However, single-beam detection method cannot satisfy such tasks as multi-dimension position measurement, three dimension vision reconstruction, and robot precision positioning, which require synchronous measurement of multiple light beams. Consequently, we designed PSD phase detection method using frequency-domain multiplexing for synchronous detection of multiple modulated light beams. Compared to previous PSD amplitude detection method, the phase detection method using FDM has advantages of simplified measuring system, low cost, high capability of resistance to light interference as well as improved resolution. The feasibility of multi-beam synchronous measurement based on PSD phase detection using FDM was validated by multi-beam measuring experiments. The maximum non-linearity error of the multi-beam synchronous measurement is 6.62%.

  12. Application of Diamond Based Beam Loss Monitors at LHC

    CERN Document Server

    AUTHOR|(CDS)2080642; Lohmann, W; Rüdiger, S

    2013-05-14

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus (ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due...

  13. Characterisation of metakaolin-based geopolymers using beam-based and conventional PALS

    Energy Technology Data Exchange (ETDEWEB)

    Guagliardo, P; Sergeant, A D; Howie, A; Wilkie, P; Williams, J; Samarin, S [Centre for Antimatter-Matter Studies, School of Physics, University of Western Australia, Crawley, WA, 6009 (Australia); Roberts, J; Weed, R; Went, M; Sullivan, J; Buckman, S [Centre for Antimatter-Matter Studies, Research School of Physical Sciences, Australian National University, Canberra, ACT, 2600 (Australia); Vance, E R, E-mail: guaglp01@student.uwa.edu.au [Institute for Materials Engineering, ANSTO, Menai, NSW, 2234 (Australia)

    2011-01-01

    The nano-porosity of metakaolin-based geopolymers and the effect of heat-treatment on porosity have been studied with conventional and beam-based positron annihilation lifetime spectroscopy (PALS). Conventional PALS found significant nano-porosity in the geopolymers, as indicated by the presence in the PALS spectrum of two long lifetime components, {tau}{sub 3} = 1.58 ns and {tau}{sub 4} = 47 ns, associated with pore diameters of approximately 0.5 and 3 nm respectively. The lifetime of the shorter component was found to decrease monotonically with successive heat treatments of 300{sup o}C and 600{sup o}C. Beam-based PALS, conducted at 5 keV, also indicated two long lifetime components, {tau}{sub 3} = 4.84 ns and {tau}{sub 4} = 54.6 ns. These are significantly longer than those observed by conventional PALS and the monotonic decrease of {tau}{sub 3} with successive heat treatments was not observed. As the beam-based PALS probed only the near-surface region, with an average implantation depth of about 350 nm, these results suggest that the near-surface structure may vary significantly from that of the bulk. This could be an inherent property of the samples or an artefact caused by surface effects or sample outgassing.

  14. The design of the electronic system on neutron beam monitor based on GEM

    International Nuclear Information System (INIS)

    Zuo Min; Zhuang Bao'an; Zhao Yubin; Chen Shaojia; Wang Na; Zhang Hongyu; Zhao Jingwei

    2012-01-01

    The Neutron Beam Monitor - a GEM based system used to monitor the neutron beams in real time - is introduced. The electronic parts are described in details, including the principles of the circuit, the system structure, the design of the Daughterboard and the logic and algorithm of the FPGA on the Monitor board. The test results are also given out in the final. (authors)

  15. SLC beam line error analysis using a model-based expert system

    International Nuclear Information System (INIS)

    Lee, M.; Kleban, S.

    1988-02-01

    Commissioning particle beam line is usually a very time-consuming and labor-intensive task for accelerator physicists. To aid in commissioning, we developed a model-based expert system that identifies error-free regions, as well as localizing beam line errors. This paper will give examples of the use of our system for the SLC commissioning. 8 refs., 5 figs

  16. Molecular beam detector on the MX7304 mass spectrometer base

    International Nuclear Information System (INIS)

    Akimov, V.M.; Rusin, L.Yu.; Tsyganov, F.A.

    1991-01-01

    A modified monitor for the MKh-7304 mass spectrometer installed in one of differentially evacuated chambers of the time-of-flight spectrometer. The limit vacuum under operational conditions is 10 -8 torr. The results of testing the molecular beams when recording time-of-flight spectra of Ar, Xe, N 2 are given. It is revealed that the vacuum system time conctant decrease as compared with the system with standard monitor gives an opportunity to register reliability the time-of-flight spectra of molecular beams

  17. Photovoltaic-Concentrator Based Power Beaming For Space Elevator Application

    International Nuclear Information System (INIS)

    Becker, Daniel E.; Chiang, Richard; Keys, Catherine C.; Lyjak, Andrew W.; Starch, Michael D.; Nees, John A.

    2010-01-01

    The MClimber team, at the Student Space Systems Fabrication Laboratory of the University of Michigan, has developed a prototype robotic climber for competition in the NASA sponsored Power Beaming Challenge. This paper describes the development of the system that utilizes a simple telescope to deliver an 8 kW beam to a photovoltaic panel in order to power a one kilometer climb. Its unique approach utilizes a precision GPS signal to track the panel. Fundamental systems of the project were implemented using a design strategy focusing on robustness and modularity. Development of this design and its results are presented.

  18. Dose calculation based on Cone Beam CT images

    DEFF Research Database (Denmark)

    Slot Thing, Rune

    Cone beam CT (CBCT) imaging is frequently used in modern radiotherapy to ensure the proper positioning of the patient prior to each treatment fraction. With the increasing use of CBCT imaging for image guidance, interest has grown in exploring the potential use of these 3– or 4–D medical images...... image lag, scatter within the CBCT detector assembly, x-ray beam hardening from the patient, and truncation of the CBCT field of view were implemented for clinical CBCT imaging of lung cancer patients. Through the artefact corrections, Hounsfield Units in the CBCT images were recovered and shown...

  19. Adding Social Elements to Game-Based Learning

    Directory of Open Access Journals (Sweden)

    Chien-Hung Lai

    2014-05-01

    Full Text Available Game-based learning is to present the instruction by games in learning, with the main purpose of triggering learners’ motives instead of instructing the courses. Thus, increasing learning motive by game-based learning becomes a common instructional strategy to enhance learning achievement. However, it is not easy to design interesting games combined with courses. In 2011, Echeverria proposed a design to combine characteristics of games with elements of courses by matching the virtual scenarios in games with proper courses. However, in the past game-based learning, students were gathered in regular places for several times of game-based learning. Students’ learning was limited by time and space. Therefore, for students’ game-based learning at any time and in any places, based on theories of design elements of online community game Aki Järvinen, this study treats Facebook as the platform of games. The development by online community game is easier, faster and cheaper than traditional video games. In 2006, Facebook allowed API program of the third party. Therefore, by Facebook, this study provides the platform for students to learn in social lives to explore students’ activities in online community games. Questionnaire survey is conducted to find out if the design of non-single user game is attractive for students to participate in game-based learning. In order to make sure that the questionnaires can be the criteria to investigate students’ intention to play games, by statistical program of social science; this study validates reliability and validity of items of questionnaire to effectively control the effect of online community games on students’ learning intention.

  20. A Generalized Polynomial Chaos-Based Approach to Analyze the Impacts of Process Deviations on MEMS Beams.

    Science.gov (United States)

    Gao, Lili; Zhou, Zai-Fa; Huang, Qing-An

    2017-11-08

    A microstructure beam is one of the fundamental elements in MEMS devices like cantilever sensors, RF/optical switches, varactors, resonators, etc. It is still difficult to precisely predict the performance of MEMS beams with the current available simulators due to the inevitable process deviations. Feasible numerical methods are required and can be used to improve the yield and profits of the MEMS devices. In this work, process deviations are considered to be stochastic variables, and a newly-developed numerical method, i.e., generalized polynomial chaos (GPC), is applied for the simulation of the MEMS beam. The doubly-clamped polybeam has been utilized to verify the accuracy of GPC, compared with our Monte Carlo (MC) approaches. Performance predictions have been made on the residual stress by achieving its distributions in GaAs Monolithic Microwave Integrated Circuit (MMIC)-based MEMS beams. The results show that errors are within 1% for the results of GPC approximations compared with the MC simulations. Appropriate choices of the 4-order GPC expansions with orthogonal terms have also succeeded in reducing the MC simulation labor. The mean value of the residual stress, concluded from experimental tests, shares an error about 1.1% with that of the 4-order GPC method. It takes a probability around 54.3% for the 4-order GPC approximation to attain the mean test value of the residual stress. The corresponding yield occupies over 90 percent around the mean within the twofold standard deviations.

  1. A Generalized Polynomial Chaos-Based Approach to Analyze the Impacts of Process Deviations on MEMS Beams

    Directory of Open Access Journals (Sweden)

    Lili Gao

    2017-11-01

    Full Text Available A microstructure beam is one of the fundamental elements in MEMS devices like cantilever sensors, RF/optical switches, varactors, resonators, etc. It is still difficult to precisely predict the performance of MEMS beams with the current available simulators due to the inevitable process deviations. Feasible numerical methods are required and can be used to improve the yield and profits of the MEMS devices. In this work, process deviations are considered to be stochastic variables, and a newly-developed numerical method, i.e., generalized polynomial chaos (GPC, is applied for the simulation of the MEMS beam. The doubly-clamped polybeam has been utilized to verify the accuracy of GPC, compared with our Monte Carlo (MC approaches. Performance predictions have been made on the residual stress by achieving its distributions in GaAs Monolithic Microwave Integrated Circuit (MMIC-based MEMS beams. The results show that errors are within 1% for the results of GPC approximations compared with the MC simulations. Appropriate choices of the 4-order GPC expansions with orthogonal terms have also succeeded in reducing the MC simulation labor. The mean value of the residual stress, concluded from experimental tests, shares an error about 1.1% with that of the 4-order GPC method. It takes a probability around 54.3% for the 4-order GPC approximation to attain the mean test value of the residual stress. The corresponding yield occupies over 90 percent around the mean within the twofold standard deviations.

  2. Beta Beams: an accelerator based facility to explore Neutrino oscillation physics

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Payet, J; Chance, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, VL; Gramegna, F; Marchi, T; Collazuol, G; De Rosa, G; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A

    2011-01-01

    The discovery that the neutrino changes flavor as it travels through space has implications for the Standard Model of particle physics (SM)[1]. To know the contribution of neutrinos to the SM, needs precise measurements of the parameters governing the neutrino oscillations. This will require a high intensity beam-based neutrino oscillation facility. The EURONu Design Study will review three currently accepted methods of realizing this facility (the so-called Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make a decision on the layout and construction of the future European neutrino oscillation facility. ”Beta Beams” produce collimated pure electron neutrino and antineutrino beams by accelerating beta active ions to high energies and letting them decay in a race-track shaped storage ring. EURONu Beta Beams are based on CERNs infrastructure and the fact that some of the already ...

  3. Development of a highly transparent fluorescent optical sensor for transverse positioning of multiple elements with respect to a reference laser beam [for ATLAS experiment

    CERN Document Server

    Barrière, J C; Bourdinaud, M; Cloué, O; Molinie, F; Schune, P

    1999-01-01

    A new type of highly transparent (95%) two dimensional position sensor has been developed which allows the accurate positioning (below 10 mu m r.m.s.) of successive elements to which each sensor is attached, transversely to a laser beam used as a reference straight line. The present useful area of the sensor is about 15*15 mm/sup 2/, and can be further increased. (3 refs).

  4. A Lagrange multiplier based divide and conquer finite element algorithm

    Science.gov (United States)

    Farhat, C.

    1991-01-01

    A novel domain decomposition method based on a hybrid variational principle is presented. Prior to any computation, a given finite element mesh is torn into a set of totally disconnected submeshes. First, an incomplete solution is computed in each subdomain. Next, the compatibility of the displacement field at the interface nodes is enforced via discrete, polynomial and/or piecewise polynomial Lagrange multipliers. In the static case, each floating subdomain induces a local singularity that is resolved very efficiently. The interface problem associated with this domain decomposition method is, in general, indefinite and of variable size. A dedicated conjugate projected gradient algorithm is developed for solving the latter problem when it is not feasible to explicitly assemble the interface operator. When implemented on local memory multiprocessors, the proposed methodology requires less interprocessor communication than the classical method of substructuring. It is also suitable for parallel/vector computers with shared memory and compares favorably with factorization based parallel direct methods.

  5. VARIATIONALLY-BASED EFFECTIVE DYNAMIC THICKNESS FOR LAMINATED GLASS BEAMS

    Directory of Open Access Journals (Sweden)

    Jaroslav Schmidt

    2017-11-01

    Full Text Available Laminated glass, consisting of glass layers connected with transparent foils, has found its applications in civil, automotive, or marine engineering. Due to a high contrast in layer properties, mechanical response of laminated glass structures cannot be predicted using classical laminate theories. On the other hand, engineering applications demand easy-to-use formulas of acceptable accuracy. This contribution addresses such simplified models for free vibrations of laminated glass beams, with the goal to determine their natural frequencies and modal damping properties. Our strategy is to approximate the complex behavior of a laminated structure with that of an equivalent monolithic beam. Its effective thickness is determined by the variational method proposed by Galuppi and Royer-Carfagni for static problems, which we extended for modal analysis. We show that this new approach overcomes inaccuracies of the currently used dynamic effective thickness model by López-Aenlle and Pelayo.

  6. Pelletron-based MeV-range electron beam recirculation

    CERN Document Server

    Crawford, A C; Sharapa, A N; Shemyakin, A

    1999-01-01

    In this paper we describe the successful recirculation of a DC electron beam at energies 1-1.5 MeV and currents up to 0.7 A with typical relative losses of 5-20x10 sup - sup 6. Currents of 200 mA were maintained for periods of up to five hours without a single breakdown. We found that the aperture-limiting diaphragm in the gun anode significantly increased the stability of the recirculation. We also found that the stability depended strongly on vacuum pressure in the beamline. The performance of the collector with transverse magnetic fields was found to be adequate for beam currents up to 0.6 A, which is in agreement with our low-energy bench test results. (author)

  7. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    Science.gov (United States)

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. © 2013 Elsevier Ltd. All rights reserved.

  8. Combined elemental analysis of ancient glass beads by means of ion beam, portable XRF, and EPMA techniques.

    Science.gov (United States)

    Sokaras, D; Karydas, A G; Oikonomou, A; Zacharias, N; Beltsios, K; Kantarelou, V

    2009-12-01

    Ion beam analysis (IBA)- and X-ray fluorescence (XRF)-based techniques have been well adopted in cultural-heritage-related analytical studies covering a wide range of diagnostic role, i.e., from screening purposes up to full quantitative characterization. In this work, a systematic research was carried out towards the identification and evaluation of the advantages and the limitations of laboratory-based (IBA, electron probe microanalyzer) and portable (milli-XRF and micro-XRF) techniques. The study focused on the analysis of an Archaic glass bead collection recently excavated from the city of Thebes (mainland, Greece), in order to suggest an optimized and synergistic analytical methodology for similar studies and to assess the reliability of the quantification procedure of analyses conducted in particular by portable XRF spectrometers. All the employed analytical techniques and methodologies proved efficient to provide in a consistent way characterization of the glass bead composition, with analytical range and sensitivity depending on the particular technique. The obtained compositional data suggest a solid basis for the understanding of the main technological features related to the raw major and minor materials utilized for the manufacture of the Thebian ancient glass bead collection.

  9. A Low-cost Beam Profiler Based On Cerium-doped Silica Fibers

    Science.gov (United States)

    Potkins, David Edward; Braccini, Saverio; Nesteruk, Konrad Pawel; Carzaniga, Tommaso Stefano; Vedda, Anna; Chiodini, Norberto; Timmermans, Jacob; Melanson, Stephane; Dehnel, Morgan Patrick

    A beam profiler called the Universal Beam Monitor (UniBEaM) has been developed by D-Pace Inc. (Canada) and the Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern (Switzerland). The device is based on passing 100 to 600 micron cerium-doped optical fibers through a particle beam. Visible scintillation light from the sensor fibers is transmitted over distances of tens of meters to the light sensors with minimal signal loss and no susceptibility to electromagnetic fields. The probe has an insertion length of only 70 mm. The software plots the beam intensity distribution in the horizontal and vertical planes, and calculates the beam location and integrated profile area, which correlates well with total beam current. UniBEaM has a large dynamic range, operating with beam currents of ∼pA to mA, and a large range of particle kinetic energies of ∼keV to GeV, depending on the absorbed power density. Test data are presented for H- beams at 25keV for 500 μA, and H+ beams at 18MeV for 50pA to 10 μA. Maximum absorbed power density of the optical fiber before thermal damage is discussed in relation to dE/dx energy deposition as a function of particle type and kinetic energy. UniBEaM is well suited for a wide variety of beamlines including discovery science applications, radio-pharmaceutical production, hadron therapy, industrial ion beam applications including ion implantation, industrial electron beams, and ion source testing.

  10. A Plasma Based Beam Combiner for Very High Fluence and Energy

    Science.gov (United States)

    Kirkwood, Robert

    2017-10-01

    Recent work at NIF has demonstrated a plasma-based optic that combines the energy and fluence of many laser beams into a single bright beam, thus creating a new technique for designing future high energy density physics experiments. The technique uses the Cross Beam Energy Transfer (CBET) process and shows for the first time that a plasma can combine beams to produce a single beam that emerges with energy and fluence beyond that of any of those input for delivery to a range of experimental targets. In an initial demonstration multiple beams of the National Ignition Facility (NIF) laser have been combined in a plasma to produce a directed pulse of light with 4 +1 kJ of energy in its 1 ns duration which is 3.6 times the energy and 3.2 times the fluence of any of the incident beams during that period and is NIFs brightest 1ns duration beam of UV light. These enhancements are due to the non-linear interaction of the beams with a self-generated plasma diffractive optic which is far more damage resistant than existing solid state optics, and is inherently capable of producing much higher single beam fluence and radiance than solid state refractive or reflective optics can. The initial results are presently being used to further validate models of CBET which predict a larger number of non-resonant pump beams will scale up outputs still further. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Development of an Efficient Steel Beam Section for Modular Construction Based on Six-Sigma

    Directory of Open Access Journals (Sweden)

    Tae-Hyu Ha

    2016-01-01

    Full Text Available This study presents a systematic approach for the development of an efficient steel beam section for modular construction based on Six-Sigma. Although the Six-Sigma is frequently implemented in manufacturing and other service industries, it is a relatively new concept in the area of building design and construction. As a first step in this approach, market studies and surveys are conducted to obtain the opinions of potential customers. Then the opinions of customers are converted into quality characteristics for the steel beam using the quality function deployment methodology. A steel hollow flanged channel is chosen as the main modular beam shape, and the design concept is derived and developed by applying the Pugh matrix methodology. A pilot test was performed to validate the effectiveness of the developed beam section. The results indicated that the developed channel beam section showed excellent performance and retained high accuracy in fabrication, thus resulting in a significant reduction of steel consumption.

  12. Trace elements based classification on clinkers. Application to Spanish clinkers

    Directory of Open Access Journals (Sweden)

    Tamás, F. D.

    2001-12-01

    Full Text Available The qualitative identification to determine the origin (i.e. manufacturing factory of Spanish clinkers is described. The classification of clinkers produced in different factories can be based on their trace element content. Approximately fifteen clinker sorts are analysed, collected from 11 Spanish cement factories to determine their Mg, Sr, Ba, Mn, Ti, Zr, Zn and V content. An expert system formulated by a binary decision tree is designed based on the collected data. The performance of the obtained classifier was measured by ten-fold cross validation. The results show that the proposed method is useful to identify an easy-to-use expert system that is able to determine the origin of the clinker based on its trace element content.

    En el presente trabajo se describe el procedimiento de identificación cualitativa de clínkeres españoles con el objeto de determinar su origen (fábrica. Esa clasificación de los clínkeres se basa en el contenido de sus elementos traza. Se analizaron 15 clínkeres diferentes procedentes de 11 fábricas de cemento españolas, determinándose los contenidos en Mg, Sr, Ba, Mn, Ti, Zr, Zn y V. Se ha diseñado un sistema experto mediante un árbol de decisión binario basado en los datos recogidos. La clasificación obtenida fue examinada mediante la validación cruzada de 10 valores. Los resultados obtenidos muestran que el modelo propuesto es válido para identificar, de manera fácil, un sistema experto capaz de determinar el origen de un clínker basándose en el contenido de sus elementos traza.

  13. Highly accurate symplectic element based on two variational principles

    Science.gov (United States)

    Qing, Guanghui; Tian, Jia

    2018-02-01

    For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process is simple and straightforward. In this paper, based on the seminal idea of the generalized mixed methods, a simple, stable, and highly accurate 8-node noncompatible symplectic element (NCSE8) was developed by the combination of the modified Hellinger-Reissner mixed variational principle and the minimum energy principle. To ensure the accuracy of in-plane stress results, a simultaneous equation approach was also suggested. Numerical experimentation shows that the accuracy of stress results of NCSE8 are nearly the same as that of displacement methods, and they are in good agreement with the exact solutions when the mesh is relatively fine. NCSE8 has advantages of the clearing concept, easy calculation by a finite element computer program, higher accuracy and wide applicability for various linear elasticity compressible and nearly incompressible material problems. It is possible that NCSE8 becomes even more advantageous for the fracture problems due to its better accuracy of stresses.

  14. Highly accurate symplectic element based on two variational principles

    Science.gov (United States)

    Qing, Guanghui; Tian, Jia

    2017-11-01

    For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process is simple and straightforward. In this paper, based on the seminal idea of the generalized mixed methods, a simple, stable, and highly accurate 8-node noncompatible symplectic element (NCSE8) was developed by the combination of the modified Hellinger-Reissner mixed variational principle and the minimum energy principle. To ensure the accuracy of in-plane stress results, a simultaneous equation approach was also suggested. Numerical experimentation shows that the accuracy of stress results of NCSE8 are nearly the same as that of displacement methods, and they are in good agreement with the exact solutions when the mesh is relatively fine. NCSE8 has advantages of the clearing concept, easy calculation by a finite element computer program, higher accuracy and wide applicability for various linear elasticity compressible and nearly incompressible material problems. It is possible that NCSE8 becomes even more advantageous for the fracture problems due to its better accuracy of stresses.

  15. Finite Element Based Design and Optimization for Piezoelectric Accelerometers

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.; Yao, Q.

    1998-01-01

    A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...

  16. Synchrotron-based X-ray fluorescence, imaging and elemental ...

    Indian Academy of Sciences (India)

    In biolog- ical applications the maps may give a direct and clear observation of element occurrences in different regions of the sample. Elemental maps depicting the local concentration of a certain element have great potential in biomedical research, because of its low detection limit and its high spatial resolution.

  17. Electric field calculations in brain stimulation based on finite elements

    DEFF Research Database (Denmark)

    Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel

    2013-01-01

    The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation...... high-quality head models from magnetic resonance images and their usage in subsequent field calculations based on the FEM. The pipeline starts by extracting the borders between skin, skull, cerebrospinal fluid, gray and white matter. The quality of the resulting surfaces is subsequently improved...... the successful usage of the pipeline in six subjects, including field calculations for transcranial magnetic stimulation and transcranial direct current stimulation. The quality of the head volume meshes is validated both in terms of capturing the underlying anatomy and of the well-shapedness of the mesh...

  18. Development of a beam test telescope based on the Alibava readout system

    International Nuclear Information System (INIS)

    Marco-Hernandez, R

    2011-01-01

    A telescope for a beam test have been developed as a result of a collaboration among the University of Liverpool, Centro Nacional de Microelectronica (CNM) of Barcelona and Instituto de Fisica Corpuscular (IFIC) of Valencia. This system is intended to carry out both analogue charge collection and spatial resolution measurements with different types of microstrip or pixel silicon detectors in a beam test environment. The telescope has four XY measurement as well as trigger planes (XYT board) and it can accommodate up to twelve devices under test (DUT board). The DUT board uses two Beetle ASICs for the readout of chilled silicon detectors. The board could operate in a self-triggering mode. The board features a temperature sensor and it can be mounted on a rotary stage. A peltier element is used for cooling the DUT. Each XYT board measures the track space points using two silicon strip detectors connected to two Beetle ASICs. It can also trigger on the particle tracks in the beam test. The board includes a CPLD which allows for the synchronization of the trigger signal to a common clock frequency, delaying and implementing coincidence with other XYT boards. An Alibava mother board is used to read out and to control each XYT/DUT board from a common trigger signal and a common clock signal. The Alibava board has a TDC on board to have a time stamp of each trigger. The data collected by each Alibava board is sent to a master card by means of a local data/address bus following a custom digital protocol. The master board distributes the trigger, clock and reset signals. It also merges the data streams from up to sixteen Alibava boards. The board has also a test channel for testing in a standard mode a XYT or DUT board. This board is implemented with a Xilinx development board and a custom patch board. The master board is connected with the DAQ software via 100M Ethernet. Track based alignment software has also been developed for the data obtained with the DAQ software.

  19. Simulation-based Investigations of Electrostatic Beam Energy Analysers

    CERN Document Server

    Pahl, Hannes

    2015-01-01

    An energy analyser is needed to measure the beam energy profile behind the REX-EBIS at ISOLDE. The device should be able to operate with an accuracy of 1 V at voltages up to 30 kV. In order to find a working concept for an electrostatic energy analyser different designs were evaluated with simulations. A spherical device and its design issues are presented. The potential deformation effects of grids at high voltages and their influence on the energy resolution were investigated. First tests were made with a grid-free ring electrode device and show promising results.

  20. Nonlinear lattice structures based on families of complex nondiffracting beams

    International Nuclear Information System (INIS)

    Rose, Patrick; Boguslawski, Martin; Denz, Cornelia

    2012-01-01

    We present a new concept for the generation of optical lattice waves. For all four families of nondiffracting beams, we are able to realize corresponding nondiffracting intensity patterns in a single setup. The potential of our approach is shown by demonstrating the optical induction of complex photonic discrete, Bessel, Mathieu and Weber lattices in a nonlinear photorefractive medium. However, our technique itself is very general and can be transferred to optical lattices in other fields such as atom optics or cold gases in order to add such complex optical potentials as a new concept to these areas as well. (paper)

  1. Metasurfaces-based holography and beam shaping: engineering the phase profile of light

    Directory of Open Access Journals (Sweden)

    Scheuer Jacob

    2016-08-01

    Full Text Available The ability to engineer and shape the phase profile of optical beams is in the heart of any optical element. Be it a simple lens or a sophisticated holographic element, the functionality of such components is dictated by their spatial phase response. In contrast to conventional optical components which rely on thickness variation to induce a phase profile, metasurfaces facilitate the realization of arbitrary phase distributions using large arrays with sub-wavelength and ultrathin (tens of nanometers features. Such components can be easily realized using a single lithographic step and is highly suited for patterning a variety of substrates, including nonplanar and soft surfaces. In this article, we review the recent developments, potential, and opportunities of metasurfaces applications. We focus primarily on flat optical devices, holography, and beam-shaping applications as these are the key ingredients needed for the development of a new generation of optical devices which could find widespread applications in photonics.

  2. Two New Quadrilateral Elements Based on Strain States

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaiee-Pajand

    2015-06-01

    Full Text Available In this paper, two new quadrilateral elements are formulated to solve plane problems. Low sensitivity to geometric distortion, no parasitic shear error, rotational invariance, and satisfying the Felippa pure bending test are characteristics of these suggested elements. One proposed element is formulated by establishing equilibrium equations for the second-order strain field. The other suggested element is obtained by establishing equilibrium equations only for the linear part of the strain field. The number of the strain states decreases when the conditions among strain states are satisfied. Several numerical tests are used to demonstrate the performance of the proposed elements. Famous elements, which were suggested by other researchers, are used as a means of comparison. It is shown that these novel elements pass the strong patch tests, even for extremely poor meshes, and one of them has an excellent accuracy and fast convergence in other complicated problems.

  3. Strengthening of reinforced concrete beams with basalt-based FRP sheets: An analytical assessment

    International Nuclear Information System (INIS)

    Nerilli, Francesca; Vairo, Giuseppe

    2016-01-01

    In this paper the effectiveness of the flexural strengthening of RC beams through basalt fiber-reinforced sheets is investigated. The non-linear flexural response of RC beams strengthened with FRP composites applied at the traction side is described via an analytical formulation. Validation results and some comparative analyses confirm soundness and consistency of the proposed approach, and highlight the good mechanical performances (in terms of strength and ductility enhancement of the beam) produced by basalt-based reinforcements in comparison with traditional glass or carbon FRPs.

  4. Strengthening of reinforced concrete beams with basalt-based FRP sheets: An analytical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nerilli, Francesca [Unicusano - Università degli Studi Niccolò Cusano Telematica Roma, 00166 Rome (Italy); Vairo, Giuseppe [Università degli Studi di Roma “Tor Vergata”- (DICII), 00133 Rome (Italy)

    2016-06-08

    In this paper the effectiveness of the flexural strengthening of RC beams through basalt fiber-reinforced sheets is investigated. The non-linear flexural response of RC beams strengthened with FRP composites applied at the traction side is described via an analytical formulation. Validation results and some comparative analyses confirm soundness and consistency of the proposed approach, and highlight the good mechanical performances (in terms of strength and ductility enhancement of the beam) produced by basalt-based reinforcements in comparison with traditional glass or carbon FRPs.

  5. Modulation Transfer Function of a Gaussian Beam Based on the Generalized Modified Atmospheric Spectrum

    Directory of Open Access Journals (Sweden)

    Chao Gao

    2016-01-01

    Full Text Available This paper investigates the modulation transfer function of a Gaussian beam propagating through a horizontal path in weak-fluctuation non-Kolmogorov turbulence. Mathematical expressions are obtained based on the generalized modified atmospheric spectrum, which includes the spectral power law value of non-Kolmogorov turbulence, the finite inner and outer scales of turbulence, and other optical parameters of the Gaussian beam. The numerical results indicate that the atmospheric turbulence would produce less negative effects on the wireless optical communication system with an increase in the inner scale of turbulence. Additionally, the increased outer scale of turbulence makes a Gaussian beam influenced more seriously by the atmospheric turbulence.

  6. T-junction waveguide-based combining high power microwave beams

    International Nuclear Information System (INIS)

    Zhang Qiang; Yuan Chengwei; Liu Lie

    2011-01-01

    Waveguide-based combining microwave beams is an attractive technique for enhancing the output capacities of narrow-band high power microwave devices. A specific T-junction combiner is designed for combining the X/X band microwave beams, and the detailed combining method and experimental results are presented. In the experiments, two microwave sources which can generate gigawatt level microwaves are driven by a single accelerator simultaneously, and their operation frequencies are 9.41 and 9.60 GHz, respectively. The two microwave beams with durations of about 35 ns have been successfully combined, and no breakdown phenomenon occurs.

  7. An Image-Based Finite Element Approach for Simulating Viscoelastic Response of Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Wenke Huang

    2016-01-01

    Full Text Available This paper presents an image-based micromechanical modeling approach to predict the viscoelastic behavior of asphalt mixture. An improved image analysis technique based on the OTSU thresholding operation was employed to reduce the beam hardening effect in X-ray CT images. We developed a voxel-based 3D digital reconstruction model of asphalt mixture with the CT images after being processed. In this 3D model, the aggregate phase and air void were considered as elastic materials while the asphalt mastic phase was considered as linear viscoelastic material. The viscoelastic constitutive model of asphalt mastic was implemented in a finite element code using the ABAQUS user material subroutine (UMAT. An experimental procedure for determining the parameters of the viscoelastic constitutive model at a given temperature was proposed. To examine the capability of the model and the accuracy of the parameter, comparisons between the numerical predictions and the observed laboratory results of bending and compression tests were conducted. Finally, the verified digital sample of asphalt mixture was used to predict the asphalt mixture viscoelastic behavior under dynamic loading and creep-recovery loading. Simulation results showed that the presented image-based digital sample may be appropriate for predicting the mechanical behavior of asphalt mixture when all the mechanical properties for different phases became available.

  8. Scanning laser beam displays based on a 2D MEMS

    Science.gov (United States)

    Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason

    2010-05-01

    The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.

  9. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    Science.gov (United States)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-03-01

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9-9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  10. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Gulliford, Colwyn, E-mail: cg248@cornell.edu; Bartnik, Adam, E-mail: acb20@cornell.edu; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca [CLASSE, Cornell University, 161 Synchrotron Drive Ithaca, New York 14853-8001 (United States)

    2015-03-02

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  11. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method.

    Science.gov (United States)

    Deng, Yongbo; Korvink, Jan G

    2016-05-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.

  12. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method

    Science.gov (United States)

    Korvink, Jan G.

    2016-01-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766

  13. Deflection monitoring for a box girder based on a modified conjugate beam method

    Science.gov (United States)

    Chen, Shi-Zhi; Wu, Gang; Xing, Tuo

    2017-08-01

    After several years of operation, a box girder bridge would commonly experience excessive deflection, which endangers the bridge’s life span as well as the safety of vehicles travelling on it. In order to avoid potential risks, it is essential to constantly monitor the defection of box girders. However, currently, the direct deflection monitoring methods are limited by the complicated environments beneath the bridges, such as rivers or other traffic lanes, which severely impede the layouts of the sensors. The other indirect deflection monitoring methods mostly do not thoroughly consider the inherent shear lag effect and shear deformation in the box girder, resulting in a rather large error. Under these circumstances, a deflection monitoring method suiting box girders is proposed in this article, based on the conjugate beam method and distributed long-gauge fibre Bragg grating (FBG) sensor. A lab experiment was conducted to verify the reliability and feasibility of this method under practical application. Further, the serviceability under different span-depth ratios and web thicknesses was examined through a finite element model.

  14. MEMS Capacitive Micro Thermometer Based on Tip Deflection of Bimetallic Cantilever Beam

    Directory of Open Access Journals (Sweden)

    Shahriar Kouravand

    2006-08-01

    Full Text Available Thermometry is an interested field in physics and metrology. A capacitive micro thermometer based on the tip deflection of bimetallic cantilever beam was designed and described in this paper. The governing thermo mechanical equations were derived and solved analytically. The temperature rising was expressed with respect to capacitance change of a comb drive. The results of beam deflection were compared well with the existing results.

  15. Six-beam homodyne laser Doppler vibrometry based on silicon photonics technology.

    Science.gov (United States)

    Li, Yanlu; Zhu, Jinghao; Duperron, Matthieu; O'Brien, Peter; Schüler, Ralf; Aasmul, Soren; de Melis, Mirko; Kersemans, Mathias; Baets, Roel

    2018-02-05

    This paper describes an integrated six-beam homodyne laser Doppler vibrometry (LDV) system based on a silicon-on-insulator (SOI) full platform technology, with on-chip photo-diodes and phase modulators. Electronics and optics are also implemented around the integrated photonic circuit (PIC) to enable a simultaneous six-beam measurement. Measurement of a propagating guided elastic wave in an aluminum plate (speed ≈ 909 m/s @ 61.5 kHz) is demonstrated.

  16. Finite element analysis of osteoporosis models based on synchrotron radiation

    Science.gov (United States)

    Xu, W.; Xu, J.; Zhao, J.; Sun, J.

    2016-04-01

    With growing pressure of social aging, China has to face the increasing population of osteoporosis patients as well as the whole world. Recently synchrotron radiation has become an essential tool for biomedical exploration with advantage of high resolution and high stability. In order to study characteristic changes in different stages of primary osteoporosis, this research focused on the different periods of osteoporosis of rats based on synchrotron radiation. Both bone histomorphometry analysis and finite element analysis were then carried on according to the reconstructed three dimensional models. Finally, the changes of bone tissue in different periods were compared quantitatively. Histomorphometry analysis showed that the structure of the trabecular in osteoporosis degraded as the bone volume decreased. For femurs, the bone volume fraction (Bone volume/ Total volume, BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μ m to 97.09μ m) and the reduction of the number of trabecular (from 7.99 mm-1 to 5.97mm-1). Simulation of various mechanical tests with finite element analysis (FEA) indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness of femurs decreased from 1770.96 Fμ m-1 to 697.41 Fμ m-1, the bending and torsion stiffness were from 1390.80 Fμ m-1 to 566.11 Fμ m-1 and from 2957.28N.m/o to 691.31 N.m/o respectively, indicated the decrease of bone strength, and it matched the histomorphometry analysis. This study suggested that FEA and synchrotron radiation were excellent methods for analysing bone strength conbined with histomorphometry analysis.

  17. Theoretical and numerical studies on the transport of transverse beam quality in plasma-based accelerators

    International Nuclear Information System (INIS)

    Mehrling, Timon Johannes

    2014-11-01

    This work examines effects, which impact the transverse quality of electron-beams in plasma-based accelerators, by means of theoretical and numerical methods. Plasma-based acceleration is a promising candidate for future particle accelerator technologies. In plasma-based acceleration, highly intense laser beams or high-current relativistic particle beams are focused into a plasma to excite plasma-waves with extreme transverse and longitudinal electric fields. The amplitude of these fields exceed with 10-100 GV/m the ones in today's radio-frequency accelerators by several orders of magnitude, hence, in principle allowing for accordingly shorter and cheaper accelerators based on plasma. Despite the tremendous progress in the recent decade, beams from plasma accelerators are not yet achieving the quality as demanded for pivotal applications of relativistic electron-beams, e.g. free-electron lasers (FELs).Studies within this work examine how the quality can be optimized in the production of the beams and preserved during the acceleration and transport to the interaction region. Such studies cannot be approached purely analytical but necessitate numerical methods, such as the Particle-In-Cell (PIC) method, which can model kinetic, electrodynamic and relativistic plasma phenomena. However, this method is computationally too expensive for parameter-scans in three-dimensional geometries. Hence, a quasi-static PIC code was developed in connection with this work, which is significantly more effective than the full PIC method for a class of problems in plasma-based acceleration.The evolution of the emittance of beams which are injected into plasma modules was studied in this work by means of theoretical and the above numerical methods. It was shown that the beam parameters need to be matched accurately into the focusing plasma-channel in order to allow for beam-quality preservation. This suggested that new extraction and injection-techniques are required in staged plasma

  18. Construction of the Faraday Cup based on fluorescent screen as an electron beam sensor

    International Nuclear Information System (INIS)

    Sutadi; Rany Saptaaji; Suhartono; Sukaryono

    2016-01-01

    The Faraday Cup based on fluorescent screen as an electron beam profile sensor at electron accelerator has been conducted. In the principle, the electron beam which obtained from the electron source and accelerated in the accelerator tube will obtain the light which can be observed visually when it interact with fluorescent material (phosphorescent). This Faraday Cup for electron beam sensor was made from the modified TV tube. The main component of this Faraday Cup construction includes: 17 inch TV tube, SS reducer flange and the vacuum adhesive. There are two kind of test has been conducted, that is the vacuum level test and the electron beam sensor test. The vacuum level test was conducted by measuring the final vacuum level that can be reach, while the electron beam sensor test was conducted by monitoring of the electron beam profile that was trapped by Faraday Cup visually. The test result shows that TV tube can be modified as the Faraday Cup to sensor electron beam in the electron accelerator. (author)

  19. Nanowire FET Based Neural Element for Robotic Tactile Sensing Skin

    Directory of Open Access Journals (Sweden)

    William Taube Navaraj

    2017-09-01

    Full Text Available This paper presents novel Neural Nanowire Field Effect Transistors (υ-NWFETs based hardware-implementable neural network (HNN approach for tactile data processing in electronic skin (e-skin. The viability of Si nanowires (NWs as the active material for υ-NWFETs in HNN is explored through modeling and demonstrated by fabricating the first device. Using υ-NWFETs to realize HNNs is an interesting approach as by printing NWs on large area flexible substrates it will be possible to develop a bendable tactile skin with distributed neural elements (for local data processing, as in biological skin in the backplane. The modeling and simulation of υ-NWFET based devices show that the overlapping areas between individual gates and the floating gate determines the initial synaptic weights of the neural network - thus validating the working of υ-NWFETs as the building block for HNN. The simulation has been further extended to υ-NWFET based circuits and neuronal computation system and this has been validated by interfacing it with a transparent tactile skin prototype (comprising of 6 × 6 ITO based capacitive tactile sensors array integrated on the palm of a 3D printed robotic hand. In this regard, a tactile data coding system is presented to detect touch gesture and the direction of touch. Following these simulation studies, a four-gated υ-NWFET is fabricated with Pt/Ti metal stack for gates, source and drain, Ni floating gate, and Al2O3 high-k dielectric layer. The current-voltage characteristics of fabricated υ-NWFET devices confirm the dependence of turn-off voltages on the (synaptic weight of each gate. The presented υ-NWFET approach is promising for a neuro-robotic tactile sensory system with distributed computing as well as numerous futuristic applications such as prosthetics, and electroceuticals.

  20. Nanowire FET Based Neural Element for Robotic Tactile Sensing Skin.

    Science.gov (United States)

    Taube Navaraj, William; García Núñez, Carlos; Shakthivel, Dhayalan; Vinciguerra, Vincenzo; Labeau, Fabrice; Gregory, Duncan H; Dahiya, Ravinder

    2017-01-01

    This paper presents novel Neural Nanowire Field Effect Transistors (υ-NWFETs) based hardware-implementable neural network (HNN) approach for tactile data processing in electronic skin (e-skin). The viability of Si nanowires (NWs) as the active material for υ-NWFETs in HNN is explored through modeling and demonstrated by fabricating the first device. Using υ-NWFETs to realize HNNs is an interesting approach as by printing NWs on large area flexible substrates it will be possible to develop a bendable tactile skin with distributed neural elements (for local data processing, as in biological skin) in the backplane. The modeling and simulation of υ-NWFET based devices show that the overlapping areas between individual gates and the floating gate determines the initial synaptic weights of the neural network - thus validating the working of υ-NWFETs as the building block for HNN. The simulation has been further extended to υ-NWFET based circuits and neuronal computation system and this has been validated by interfacing it with a transparent tactile skin prototype (comprising of 6 × 6 ITO based capacitive tactile sensors array) integrated on the palm of a 3D printed robotic hand. In this regard, a tactile data coding system is presented to detect touch gesture and the direction of touch. Following these simulation studies, a four-gated υ-NWFET is fabricated with Pt/Ti metal stack for gates, source and drain, Ni floating gate, and Al 2 O 3 high-k dielectric layer. The current-voltage characteristics of fabricated υ-NWFET devices confirm the dependence of turn-off voltages on the (synaptic) weight of each gate. The presented υ-NWFET approach is promising for a neuro-robotic tactile sensory system with distributed computing as well as numerous futuristic applications such as prosthetics, and electroceuticals.

  1. Development and optimization of the LHC and the SPS beam diagnostics based on synchrotron radiation monitoring

    International Nuclear Information System (INIS)

    Trad, Georges

    2015-01-01

    Measuring the beam transverse emittance is fundamental in every accelerator, in particular for colliders, where its precise determination is essential to maximize the luminosity and thus the performance of the colliding beams. Synchrotron Radiation (SR) is a versatile tool for non-destructive beam diagnostics, since its characteristics are closely related to those of the source beam. At CERN, being the only available diagnostics at high beam intensity and energy, SR monitors are exploited as the proton beam size monitor of the two higher energy machines, the Super Proton Synchrotron (SPS) and the Large Hadron Collider (LHC). The thesis work documented in this report focused on the design, development, characterization and optimization of these beam size monitors. Such studies were based on a comprehensive set of theoretical calculations, numerical simulations and experiments. A powerful simulation tool has been developed combining conventional softwares for SR simulation and optics design, thus allowing the description of an SR monitor from its source up to the detector. The simulations were confirmed by direct observations, and a detailed performance studies of the operational SR imaging monitor in the LHC, where different techniques for experimentally validating the system were applied, such as cross-calibrations with the wire scanners at low intensity (that are considered as a reference) and direct comparison with beam sizes de-convoluted from the LHC luminosity measurements. In 2015, the beam sizes to be measured with the further increase of the LHC beam energy to 7 TeV will decrease down to ∼190 μm. In these conditions, the SR imaging technique was found at its limits of applicability since the error on the beam size determination is proportional to the ratio of the system resolution and the measured beam size. Therefore, various solutions were probed to improve the system's performance such as the choice of one light polarization, the reduction of

  2. The Case for Muon-based Neutrino Beams

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Patrick [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Bross, Alan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Palmer, Mark [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2014-11-03

    For the foreseeable future, high energy physics accelerator capabilities in the US will be deployed to study the physics of the neutrino sector. In this context, it is useful to explore the sensitivities and limiting systematic effects of the planned neutrino oscillation program, so that we can evaluate the issues that must be addressed in order to ensure the success of these efforts. It is only in this way that we will ultimately be able to elucidate the fundamental physics processes involved. We conclude that success can only be guaranteed by, at some point in the future, being able to deploy muon accelerator capabilities. Such capabilities provide the only route to precision neutrino beams with which to study and mitigate, at the sub-percent level, the limiting systematic issues of future oscillation measurements. Thus this analysis argues strongly for maintaining a viable accelerator research program towards future muon accelerator capabilities.

  3. A hybrid-stress element based on Hamilton principle

    Science.gov (United States)

    Cen, Song; Zhang, Tao; Li, Chen-Feng; Fu, Xiang-Rong; Long, Yu-Qiu

    2010-08-01

    A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3 β here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3 β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.

  4. Verification of a pencil beam based treatment planning system: output factors for open photon beams shaped with MLC or blocks

    International Nuclear Information System (INIS)

    Hansson, H.

    1999-01-01

    The accuracy of monitor unit calculations from a pencil beam based, three-dimensional treatment planning system (3D TPS) has been evaluated for open irregularly shaped photon fields. The dose per monitor unit was measured in water and in air for x-ray beam qualities from 6 to 15 MV. The fields were shaped either with a multileaf collimator (MLC) or with customized alloy blocks. Calculations from the 3D TPS were compared with measurements. The agreement between calculated and measured dose per monitor unit depended on field size and the amount of blocking and was within 3% for the MLC-shaped fields. The deviation could be traced to limitations in head scatter modelling for the MLC. For fields shaped with alloy blocks, the dose per monitor unit was calculated to be within 1.6% of measured values for all fields studied. The measured and calculated relative phantom scatter for fields with the same equivalent field size were identical for MLC and alloy shaped fields. These results indicate that the accuracy in the TPS calculations for open irregular fields, shaped with MLC or blocks, is satisfactory for clinical situations. (author)

  5. Stress and Deformation Analysis in Base Isolation Elements Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Claudiu Iavornic

    2011-01-01

    Full Text Available In Modern tools as Finite Element Method can be used to study the behavior of elastomeric isolation systems. The simulation results obtained in this way provide a large series of data about the behavior of elastomeric isolation bearings under different types of loads and help in taking right decisions regarding geometrical optimizations needed for improve such kind of devices.

  6. Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models.

    Science.gov (United States)

    Chen, G; Wu, F Y; Liu, Z C; Yang, K; Cui, F

    2015-08-01

    Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Analytical and experimental studies on detection of longitudinal, L and inverted T cracks in isotropic and bi-material beams based on changes in natural frequencies

    Science.gov (United States)

    Ravi, J. T.; Nidhan, S.; Muthu, N.; Maiti, S. K.

    2018-02-01

    An analytical method for determination of dimensions of longitudinal crack in monolithic beams, based on frequency measurements, has been extended to model L and inverted T cracks. Such cracks including longitudinal crack arise in beams made of layered isotropic or composite materials. A new formulation for modelling cracks in bi-material beams is presented. Longitudinal crack segment sizes, for L and inverted T cracks, varying from 2.7% to 13.6% of length of Euler-Bernoulli beams are considered. Both forward and inverse problems have been examined. In the forward problems, the analytical results are compared with finite element (FE) solutions. In the inverse problems, the accuracy of prediction of crack dimensions is verified using FE results as input for virtual testing. The analytical results show good agreement with the actual crack dimensions. Further, experimental studies have been done to verify the accuracy of the analytical method for prediction of dimensions of three types of crack in isotropic and bi-material beams. The results show that the proposed formulation is reliable and can be employed for crack detection in slender beam like structures in practice.

  8. Surface corrosion analysis of machine elements using thin layer activation technique with the proton beam from national medical cyclotron

    International Nuclear Information System (INIS)

    Mukherjee, B.

    1996-01-01

    The surface of metallic objects becomes activated when irradiated with a narrow energetic charged particle (eg. proton) beam. The depth of the activated region and the yield of the induced radioactivity depend on the charged particle energy and beam intensity respectively. The surface radioactivity of the irradiated object is depleted when the activated surface undergo wear or corrosion processes. Therefore, the quantitative assay of the remaining surface radioactivity could be used as a very effective method for monitoring wear or corrosion processes. This poster highlights some interesting results of the Thin Layer Activation (TLA) study currently undertaken at the Health Physics laboratory of the National Medical Cyclotron

  9. A parallel finite element procedure for contact-impact problems using edge-based smooth triangular element and GPU

    Science.gov (United States)

    Cai, Yong; Cui, Xiangyang; Li, Guangyao; Liu, Wenyang

    2018-04-01

    The edge-smooth finite element method (ES-FEM) can improve the computational accuracy of triangular shell elements and the mesh partition efficiency of complex models. In this paper, an approach is developed to perform explicit finite element simulations of contact-impact problems with a graphical processing unit (GPU) using a special edge-smooth triangular shell element based on ES-FEM. Of critical importance for this problem is achieving finer-grained parallelism to enable efficient data loading and to minimize communication between the device and host. Four kinds of parallel strategies are then developed to efficiently solve these ES-FEM based shell element formulas, and various optimization methods are adopted to ensure aligned memory access. Special focus is dedicated to developing an approach for the parallel construction of edge systems. A parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty function calculation method are embedded in this parallel explicit algorithm. Finally, the program flow is well designed, and a GPU-based simulation system is developed, using Nvidia's CUDA. Several numerical examples are presented to illustrate the high quality of the results obtained with the proposed methods. In addition, the GPU-based parallel computation is shown to significantly reduce the computing time.

  10. Applications of power beaming from space-based nuclear power stations

    International Nuclear Information System (INIS)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000 0 K and a liquid drop radiator to reject heat at temperatures of approx. 500 0 K. Higher RBR coolant temperatures (up to approx. 3000 0 K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel

  11. Correction of Magnetic Optics and Beam Trajectory Using LOCO Based Algorithm with Expanded Experimental Data Sets

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A.; Edstrom, D.; Emanov, F. A.; Koop, I. A.; Perevedentsev, E. A.; Rogovsky, Yu. A.; Shwartz, D. B.; Valishev, A.

    2017-03-28

    Precise beam based measurement and correction of magnetic optics is essential for the successful operation of accelerators. The LOCO algorithm is a proven and reliable tool, which in some situations can be improved by using a broader class of experimental data. The standard data sets for LOCO include the closed orbit responses to dipole corrector variation, dispersion, and betatron tunes. This paper discusses the benefits from augmenting the data with four additional classes of experimental data: the beam shape measured with beam profile monitors; responses of closed orbit bumps to focusing field variations; betatron tune responses to focusing field variations; BPM-to-BPM betatron phase advances and beta functions in BPMs from turn-by-turn coordinates of kicked beam. All of the described features were implemented in the Sixdsimulation software that was used to correct the optics of the VEPP-2000 collider, the VEPP-5 injector booster ring, and the FAST linac.

  12. A Monte Carlo-based treatment-planning tool for ion beam therapy

    CERN Document Server

    Böhlen, T T; Dosanjh, M; Ferrari, A; Haberer, T; Parodi, K; Patera, V; Mairan, A

    2013-01-01

    Ion beam therapy, as an emerging radiation therapy modality, requires continuous efforts to develop and improve tools for patient treatment planning (TP) and research applications. Dose and fluence computation algorithms using the Monte Carlo (MC) technique have served for decades as reference tools for accurate dose computations for radiotherapy. In this work, a novel MC-based treatment-planning (MCTP) tool for ion beam therapy using the pencil beam scanning technique is presented. It allows single-field and simultaneous multiple-fields optimization for realistic patient treatment conditions and for dosimetric quality assurance for irradiation conditions at state-of-the-art ion beam therapy facilities. It employs iterative procedures that allow for the optimization of absorbed dose and relative biological effectiveness (RBE)-weighted dose using radiobiological input tables generated by external RBE models. Using a re-implementation of the local effect model (LEM), theMCTP tool is able to perform TP studies u...

  13. Design concept for a CAMAC based beam tuner for the pelletron accelerator

    International Nuclear Information System (INIS)

    Gore, J.A.; Kulkarni, S.; Tambwekar, V.V.; Bhagwat, P.V.

    2003-01-01

    The 14 UD Pelletron accelerator has been in operation since 1989. It is a tandem accelerator, where negative ions are injected at maximum -300 kV and after the stripper in the terminal, positive ions achieve a maximum energy of 14(q+ I) MeV. The beam is transported from the ion source up to the target area with the help of various beam optic devices like quadrupoles and steerers. In this process the magnetic field of the focusing and steering magnets is adjusted with the help of voltage or current power supplies. At present the beam tuning process is operator driven. This paper describes a design concept of a CAMAC based beam tuner card that is implemented using an FPGA and which is under development at the Pelletron accelerator facility

  14. Development of a negative ion-based neutral beam injector in Novosibirsk.

    Science.gov (United States)

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  15. Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation

    KAUST Repository

    Pan, Bing

    2015-02-12

    Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.

  16. Differential Quadrature Method Based Study of Vibrational Behaviour of Inclined Edge Cracked Beams

    Directory of Open Access Journals (Sweden)

    Srivastava Shivani

    2017-01-01

    Full Text Available The study of vibration behaviour of cracked system is an important area of research. In the present work we present a mathematical model to study the effect of inclination, location and size of the crack on the vibrational behavior of beam with different boundary conditions. The model is based on the assumption that the equivalent flexible rigidity of the cracked beam can be written in terms of the flexible rigidity of the uncracked beam, based on the energy approach as proposed by earlier researchers. In the present work the Differential Quadrature Method (DQM is used to solve equation of motion derived by using Euler’s beam theory. The primary interest of the paper is to study the effect of inclined crack on natural frequency. We have also studied the beam vibration with and without vertical edge crack as a special case to validate the model. The DQM results for the natural frequencies of cracked beams agree well with other literature values and ANSYS solutions.

  17. Beam shaping to improve holography techniques based on spatial light modulators

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2013-03-01

    Modern holographic techniques based on Spatial Light Modulators get serious benefits from providing uniform intensity distribution of a laser beam: more predictable and reliable operation, higher efficiency of laser energy usage, more simple mathematical description of diffraction transformations, etc. Conversion of Gaussian intensity distribution of TEM00 lasers to flattop one is successfully realized with refractive field mapping beam shapers like piShaper, which operational principle presumes transformation with high flatness of output wavefront, conserving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with several laser sources with different wavelengths simultaneously. Applying of these beam shapers brings serious benefits to the Spatial Light Modulator based techniques like Computer Generated Holography, Dot-Matrix mastering of security holograms, holographic data storage. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.

  18. Nonlinear behavior of capacitive micro-beams based on strain gradient theory

    International Nuclear Information System (INIS)

    Fathalilou, Mohammad; Sadeghi, Morteza; Rezazadeh, Ghader

    2014-01-01

    This paper studies the size dependent behavior of materials in MEMS structures. This behavior becomes noticeable for a structure when the characteristic size such as thickness or diameter is close to its internal length-scale parameter and is insignificant for the high ratio of the characteristic size to the length-scale parameter, which is the case of the silicon base micro-beams. However, in some types of micro-beams like gold or nickel bases, the size dependent effect cannot be overlooked. In such cases, ignoring this behavior in modeling will lead to incorrect results. Some previous researchers have applied classic beam theory on their models and imposed a considerable hypothetical value of residual stress to match their theoretical results with the experimental ones. The equilibrium positions or fixed points of the gold and nickel micro-beams are obtained and shown that for a given DC voltage, there is a considerable difference between the obtained fixed points using classic beam theory, modified couple stress theory, and modified strain gradient theory. In addition, it is shown that the calculated static and dynamic pull-in voltages using higher order theories are much closer to the experimental results and are higher several times than those obtained by classic beam theory.

  19. A unified analysis of FBP-based algorithms in helical cone-beam and circular cone- and fan-beam scans

    International Nuclear Information System (INIS)

    Pan Xiaochuan; Xia Dan; Zou Yu; Yu Lifeng

    2004-01-01

    A circular scanning trajectory is and will likely remain a popular choice of trajectory in computed tomography (CT) imaging because it is easy to implement and control. Filtered-backprojection (FBP)-based algorithms have been developed previously for approximate and exact reconstruction of the entire image or a region of interest within the image in circular cone-beam and fan-beam cases. Recently, we have developed a 3D FBP-based algorithm for image reconstruction on PI-line segments in a helical cone-beam scan. In this work, we demonstrated that the 3D FBP-based algorithm indeed provided a rather general formulation for image reconstruction from divergent projections (such as cone-beam and fan-beam projections). On the basis of this formulation we derived new approximate or exact algorithms for image reconstruction in circular cone-beam or fan-beam scans, which can be interpreted as special cases of the helical scan. Existing algorithms corresponding to the derived algorithms were identified. We also performed a preliminary numerical study to verify our theoretical results in each of the cases. The results in the work can readily be generalized to other non-circular trajectories

  20. Partition of unity-based discontinuous elements for interface phenomena : computational issues

    NARCIS (Netherlands)

    Simone, A

    The performance of partition of unity-based discontinuous elements was studied by means of a numerical Study. In particular, it was shown that conventional interface elements and partition of unity-based discontinuous elements share the same structure of the stiffness matrix governing interface

  1. SU-E-T-610: Phosphor-Based Fiber Optic Probes for Proton Beam Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Soldner, A; Liu, H; Kassaee, A; Zhu, T; Finlay, J [Univ Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To investigate feasibility of using fiber optics probes with rare-earth-based phosphor tips for proton beam radiation dosimetry. We designed and fabricated a fiber probe with submillimeter resolution (<0.5 mm3) based on TbF3 phosphors and evaluated its performance for measurement of proton beam including profiles and range. Methods: The fiber optic probe with TbF3 phosphor tip, embedded in tissue-mimicking phantoms was irradiated with double scattering proton beam with energy of 180 MeV. Luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectra of the fiber tip. In order to measure the spatial beam profile and percentage depth dose, we used singular value decomposition method to spectrally separate the phosphors ionoluminescence signal from the background Cerenkov radiation signal. Results: The spectra of the TbF3 fiber probe showed characteristic ionoluminescence emission peaks at 489, 542, 586, and 620 nm. By using singular value decomposition we found the contribution of the ionoluminescence signal to measure the percentage depth dose in phantoms and compared that with measurements performed with ion chamber. We observed quenching effect at the spread out Bragg peak region, manifested as under-responding of the signal, due to the high LET of the beam. However, the beam profiles were not dramatically affected by the quenching effect. Conclusion: We have evaluated the performance of a fiber optic probe with submillimeter resolution for proton beam dosimetry. We demonstrated feasibility of spectral separation of the Cerenkov radiation from the collected signal. Such fiber probes can be used for measurements of proton beams profile and range. The experimental apparatus and spectroscopy method developed in this work provide a robust platform for characterization of proton-irradiated nanophosphor particles for ultralow fluence photodynamic therapy or molecular imaging applications.

  2. Operational amplifier based stretcher for stripline beam position monitors

    International Nuclear Information System (INIS)

    Sellyey, W.C.; Kruse, R.W.

    1991-01-01

    The stretcher amp was designed to accommodate existing instrumentation at the Boeing Free-Electron Laser (FEL) facility. The beam format for this system consists of two macropulses per second. Each macropulse contains several hundred micropulses separated by 462ns. Thus, 462ns is the upper limit to which the pulse can be stretched. The corresponding filter bandwidth would be about 3 Mhz. In the stripline data acquisition system, one of six striplines is switched to a single transient digitizer channel. Tektronix TSS46 microwave relay switches are used. The output of the TSS46 goes into stretcher amps described here. The resulting signals are digitized by Analytek 2004S or 2008S transient digitizers. The transient digitizer timing is such that it samples the negative peak of the stripline signal from each micropulse. Its analogue bandwidth is 300 Mhz. For good temperature stability and linearity, the stretcher bandwidth should be much less than 300MHz, for example 30Mhz. This defines a lower limit to the pulse width. 30Mhz was chosen for the filter bandwidth. Making the bandwidth smaller would have required more gain in the output amplifier. This would have resulted in too much noise at the output. Additionally, temperature drift and nonlinearity would also increase

  3. Quasistatic field simulations based on finite elements and spectral methods applied to superconducting magnets

    International Nuclear Information System (INIS)

    Koch, Stephan

    2009-01-01

    This thesis is concerned with the numerical simulation of electromagnetic fields in the quasi-static approximation which is applicable in many practical cases. Main emphasis is put on higher-order finite element methods. Quasi-static applications can be found, e.g., in accelerator physics in terms of the design of magnets required for beam guidance, in power engineering as well as in high-voltage engineering. Especially during the first design and optimization phase of respective devices, numerical models offer a cheap alternative to the often costly assembly of prototypes. However, large differences in the magnitude of the material parameters and the geometric dimensions as well as in the time-scales of the electromagnetic phenomena involved lead to an unacceptably long simulation time or to an inadequately large memory requirement. Under certain circumstances, the simulation itself and, in turn, the desired design improvement becomes even impossible. In the context of this thesis, two strategies aiming at the extension of the range of application for numerical simulations based on the finite element method are pursued. The first strategy consists in parallelizing existing methods such that the computation can be distributed over several computers or cores of a processor. As a consequence, it becomes feasible to simulate a larger range of devices featuring more degrees of freedom in the numerical model than before. This is illustrated for the calculation of the electromagnetic fields, in particular of the eddy-current losses, inside a superconducting dipole magnet developed at the GSI Helmholtzzentrum fuer Schwerionenforschung as a part of the FAIR project. As the second strategy to improve the efficiency of numerical simulations, a hybrid discretization scheme exploiting certain geometrical symmetries is established. Using this method, a significant reduction of the numerical effort in terms of required degrees of freedom for a given accuracy is achieved. The

  4. Structure and magnetism in novel group IV element-based magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Frank [Univ. of North Carolina, Chapel Hill, NC (United States)

    2013-08-14

    The project is to investigate structure, magnetism and spin dependent states of novel group IV element-based magnetic thin films and heterostructures as a function of composition and epitaxial constraints. The materials systems of interest are Si-compatible epitaxial films and heterostructures of Si/Ge-based magnetic ternary alloys grown by non-equilibrium molecular beam epitaxy (MBE) techniques, specifically doped magnetic semiconductors (DMS) and half-metallic Heusler alloys. Systematic structural, chemical, magnetic, and electrical measurements are carried out, using x-ray microbeam techniques, magnetotunneling spectroscopy and microscopy, and magnetotransport. The work is aimed at elucidating the nature and interplay between structure, chemical order, magnetism, and spin-dependent states in these novel materials, at developing materials and techniques to realize and control fully spin polarized states, and at exploring fundamental processes that stabilize the epitaxial magnetic nanostructures and control the electronic and magnetic states in these complex materials. Combinatorial approach provides the means for the systematic studies, and the complex nature of the work necessitates this approach.

  5. Multimedia Based on Scientific Approach for Periodic System of Element

    Science.gov (United States)

    Sari, S.; Aryana, D. M.; Subarkah, C. Z.; Ramdhani, M. A.

    2018-01-01

    This study aims to describe the application of interactive multimedia on the concept of the periodic system of elements. The study was conducted by using the one-shot case study design. The subjects in this study were 35 high school students of class XI IPA. Results showed that the stages of observing, questioning, data collecting (experimenting), and communicating are all considered very good. This shows that multimedia can assist students in explaining the development of the periodic system of elements, ranging from Triade doberrainer, Newland Octarchic Law, Mendeleyev, and the modern periodic, as well as atomic radius, ionization energy, and electronegativity of an element in the periodic system.

  6. Implementation of Accelerated Beam-Specific Matched-Filter-Based Optical Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, A S; Rice, K L; Taha, T M

    2009-01-29

    Accurate automated alignment of laser beams in the National Ignition Facility (NIF) is essential for achieving extreme temperature and pressure required for inertial confinement fusion. The alignment achieved by the integrated control systems relies on algorithms processing video images to determine the position of the laser beam images in real-time. Alignment images that exhibit wide variations in beam quality require a matched-filter algorithm for position detection. One challenge in designing a matched-filter based algorithm is to construct a filter template that is resilient to variations in imaging conditions while guaranteeing accurate position determination. A second challenge is to process the image as fast as possible. This paper describes the development of a new analytical template that captures key recurring features present in the beam image to accurately estimate the beam position under good image quality conditions. Depending on the features present in a particular beam, the analytical template allows us to create a highly tailored template containing only those selected features. The second objective is achieved by exploiting the parallelism inherent in the algorithm to accelerate processing using parallel hardware that provides significant performance improvement over conventional processors. In particular, a Xilinx Virtex II Pro FPGA hardware implementation processing 32 templates provided a speed increase of about 253 times over an optimized software implementation running on a 2.0 GHz AMD Opteron core.

  7. Piezoelectric-based smart sensing system for I-beam structural health monitoring

    Science.gov (United States)

    Zhang, Chen; Zhang, Haifeng; Yu, Tzuyang; Wang, Xingwei

    2016-04-01

    In recent decades, the I-beam has become one of the most important engineering structural components being applied in areas such as mechanical, civil, and constructional engineering. To ensure safety and proper maintenance, an effective and accurate structural health monitoring method/system for I-beams is urgently needed. This paper proposes a smart sensing system for I-beam crack detection that is based on the energy diffusivity (attenuation) between two individual piezoelectric transducers (PZTs). Sensor (one of the PZTs) responses are analyzed and applied to characterize the health status of the I-beam. Lab experiments are carried out for effective evaluation of this approach in structural health monitoring. The characteristics of crack distribution are studied by calculating and analyzing the energy diffusivity variation of the sensor responses to artificially cuttings to the I-beam. Moreover, instead of utilizing an actuator and a sensor, the system employs a couple of PZTs sensors, which offer the potential for in-field, in situ sensing with the sensor arrays. This smart sensing system can be applied in railway, metro, and iron-steel structures for I-beam health monitoring applications.

  8. Quantitative image quality evaluation for kV cone-beam CT-based IGRT

    International Nuclear Information System (INIS)

    Lim, S Y; Zin, Hafiz M

    2017-01-01

    The objective of this study is to quantitatively evaluate the image quality of a kV cone-beam CT-based IGRT system (Elekta, XVI) using two commercial CT image quality phantoms, Catphan-600 and CIRS-062QA. Both phantoms consist of similar image quality test modules (uniformity, CT linearity and spatial resolution) but each phantom has different diameter and test pattern design. Each test module was imaged separately using an optimised cone-beam CT imaging parameter. The quality metrics of the reconstructed images were analysed using algorithms developed with MatLab. The image uniformity and the spatial resolution measured with Catphan were of 4% and 40% greater respectively, compared to those measured with CIRS phantom. The differences were due to the beam scattering and hardening originated from the CIRS phantom holder. The contrast-to-noise ratio (CNR) values measured with CIRS phantom were at least 2% higher than that of Catphan. The diameter of CIRS phantom is smaller and resulted in lower beam attenuation. The quantitative image quality assessment algorithms developed for both phantoms provided a phantom-specific set of reference values for a cone-beam CT imaging system as recommended by AAPM TG-142. Further investigation will be performed to resolve beam hardening issue arising from the CIRS phantom holder. (paper)

  9. Quantifying Elements of a Lunar Economy Based on Resource Needs

    Science.gov (United States)

    Greenblatt, J. B.

    2017-10-01

    We model a simplified lunar economy from human life support, Earth materials consumption, and energy and propulsion requirement estimates, constrained by lunar elemental abundances; estimate likely imports/exports and "gross interplanetary product."

  10. Dosimetric study of RapidArc plans with flattened beam (FB and flattening filter-free (FFF beam for localized prostate cancer based on physical indices

    Directory of Open Access Journals (Sweden)

    Birendra Kumar Rout

    2014-12-01

    Full Text Available Purpose: To identify the continual diversity between flattening photon beam (FB and Flattening Filter Free (FFF photon beams for localized prostate cancer; and to determine potential benefits and drawbacks of using unflattened beam for this type of treatment.Methods: Eight prostate cases including seminal vesicles selected for this study. The primary planning target volume (PTVP and boost planning target volume (PTVB were contoured. The total prescription dose was 78 Gy (56 Gy to PTVP and an additional 22 Gy to PTVB. For all cases, treatment plans using 6MV with FB and FFF beams with identical dose-volume constraints, arc angles and number of arcs were developed. The dose volume histograms for both techniques were compared for primary target volume and critical structures.Results: A low Sigma index (FFF: 1.65 + 0.361; FB: 1.725 + 0.39 indicating improved dose homogeneity in FFF beam. Conformity index (FFF: 0.994 + 0.01; FB: 0.993 + 0.01 is comparable for both techniques. Minimal difference of Organ at risk mean dose was observed. Normal tissue integral dose in FB plan resulted 1.5% lower than FFF plan. All the plans displayed significant increase (1.18 times for PTVP and 1.11 for PTBB in the average number of necessary MU with FFF beam.Conclusion: Diversity between FB and FFF beam plans were found. FFF beam accelerator has been utilized to develop clinically acceptable Rapid Arc treatment plans for prostate cancer with 6 MV.---------------------------------Cite this article as: Rout BK, Muralidhar KR, Ali M, Shekar MC, Kumar A. Dosimetric study of RapidArc plans with flattened beam (FB and flattening filter-free (FFF beam for localized prostate cancer based on physical indices. Int J Cancer Ther Oncol 2014; 2(4:02046.  DOI: 10.14319/ijcto.0204.6

  11. A task-based evaluation of PEM detector element size.

    Science.gov (United States)

    Raylman, Raymond R; Smith, Mark F

    2006-01-01

    Positron Emission Mammography (PEM) is a planar imaging method that utilizes arrays of discrete detector elements for the detection of radiotracer-avid breast cancer. In this investigation we have systematically studied, through computer simulations, the effect of detector element size (width and length) on breast lesion detection and localization tasks. The contrast-to-noise ratios of the spheres simulating breast lesions were calculated as a function of detector element dimension to gauge detectability. System resolution (fwhm) across the field-of-view was used as the metric for the localization task. For both tasks, individual detector elements of lyso with cross sectional dimensions of 2x2 mm (96x72 element arrays, step 2.1mm) and 3x3mm (65x49 element arrays, step 3.1 mm), and lengths of 10,15 and 20 mm were simulated. The results revealed that narrower pixel dimensions reduced the partial volume effect, while the thicker pixels increased pixel sensitivity, thus reducing noise per pixel and increasing the contrast-to-noise ratio.

  12. Beam Structure Damage Identification Based on BP Neural Network and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Bo Yan

    2014-01-01

    Full Text Available It is not easy to find marine cracks of structures by directly manual testing. When the cracks of important components are extended under extreme offshore environment, the whole structure would lose efficacy, endanger the staff’s safety, and course a significant economic loss and marine environment pollution. Thus, early discovery of structure cracks is very important. In this paper, a beam structure damage identification model based on intelligent algorithm is firstly proposed to identify partial cracks in supported beams on ocean platform. In order to obtain the replacement mode and strain mode of the beams, the paper takes simple supported beam with single crack and double cracks as an example. The results show that the difference curves of strain mode change drastically only on the injured part and different degrees of injury would result in different mutation degrees of difference curve more or less. While the model based on support vector machine (SVM and BP neural network can identify cracks of supported beam intelligently, the methods can discern injured degrees of sound condition, single crack, and double cracks. Furthermore, the two methods are compared. The results show that the two methods presented in the paper have a preferable identification precision and adaptation. And damage identification based on support vector machine (SVM has smaller error results.

  13. A Labview based FPGA data acquisition with integrated stage and beam transport control

    International Nuclear Information System (INIS)

    Laird, J.S.; Szymanski, R.; Ryan, C.G.; Gonzalez-Alvarez, I.

    2013-01-01

    We report on a new FPGA based data acquisition system developed for the CSIRO Nuclear Microprobe (NMP) which is tightly integrated with both target positioning and beam transport. The data acquisition system called MicrodaQ is based on National Instruments Labview FPGA and numerous instrumentation modules spread over several PC’s. Beam transport uses a feedback control loop to optimise current on target for long unmanned experiments. These upgrades are discussed in detail and an example of the systems use for μ-Particle Induced X-ray Emission (PIXE) analysis on a Doriri apatite is briefly described

  14. A Labview based FPGA data acquisition with integrated stage and beam transport control

    Science.gov (United States)

    Laird, J. S.; Szymanski, R.; Ryan, C. G.; Gonzalez-Alvarez, I.

    2013-07-01

    We report on a new FPGA based data acquisition system developed for the CSIRO Nuclear Microprobe (NMP) which is tightly integrated with both target positioning and beam transport. The data acquisition system called MicrodaQ is based on National Instruments Labview FPGA and numerous instrumentation modules spread over several PC's. Beam transport uses a feedback control loop to optimise current on target for long unmanned experiments. These upgrades are discussed in detail and an example of the systems use for μ-Particle Induced X-ray Emission (PIXE) analysis on a Doriri apatite is briefly described.

  15. A Physical Description of the Response of Coupled Beams

    DEFF Research Database (Denmark)

    Hugin, Claus Thomas

    1997-01-01

    An analytical method is presented for computing the vibrational response and the net transmitted power of bending wave fields in system consisting of coupled finite beams. The method is based on a wave approach that utilises the reflection and transmission coefficients of the different beam joint...... are valid for frequencies above which the influence of the reflected near fields for each of the beam elements is negligible. The method is demonstrated on different configurations of beams coupled in extension of each other....

  16. Powerful accelerators for bremsstrahlung and electron beams generation on the basis of inductive energy-storage elements

    International Nuclear Information System (INIS)

    Diyankov, V.S.; Kovalev, V.P.; Kormilitsin, A.I.; Lavrentev, B.N.

    1996-01-01

    The report summarizes RFNC-VNIITF activities from 1963 till 1995, devoted to the development of pulsed electron accelerators on the basis of inductive energy storage with electroexplosive wires. These accelerators are called IGUR. The activities resulted in the development of a series of generators of powerful radiation being cheap and easy in manufacturing and servicing. The accelerators achieved the following maximum parameters: diode voltage up to 6 MV, diode current up to 80 kA, current of the extracted electron beam 30 kA, density of the extracted electron beam energy 500 J/cm 2 , bremsstrahlung dose 250000 Rads, and bremsstrahlung dose rate 10 13 Rads/sec. (author). 3 tabs., 5 figs., 7 refs

  17. Data correlation based noise level estimation for cone beam projection data.

    Science.gov (United States)

    Bai, Ti; Yan, Hao; Ouyang, Luo; Staub, David; Wang, Jing; Jia, Xun; Jiang, Steve B; Mou, Xuanqin

    2017-01-01

    In regularized iterative reconstruction algorithms, the selection of regularization parameter depends on the noise level of cone beam projection data. Our aim is to propose an algorithm to estimate the noise level of cone beam projection data. We first derived the data correlation of cone beam projection data in the Fourier domain, based on which, the signal and the noise were decoupled. Then the noise was extracted and averaged for estimation. An adaptive regularization parameter selection strategy was introduced based on the estimated noise level. Simulation and real data studies were conducted for performance validation. There exists an approximately zero-energy double-wedge area in the 3D Fourier domain of cone beam projection data. As for the noise level estimation results, the averaged relative errors of the proposed algorithm in the analytical/MC/spotlight-mode simulation experiments were 0.8%, 0.14% and 0.24%, respectively, and outperformed the homogeneous area based as well as the transformation based algorithms. Real studies indicated that the estimated noise levels were inversely proportional to the exposure levels, i.e., the slopes in the log-log plot were -1.0197 and -1.049 with respect to the short-scan and half-fan modes. The introduced regularization parameter selection strategy could deliver promising reconstructed image qualities. Based on the data correlation of cone beam projection data in Fourier domain, the proposed algorithm could estimate the noise level of cone beam projection data accurately and robustly. The estimated noise level could be used to adaptively select the regularization parameter.

  18. High frequency dynamics of an isotropic Timoshenko periodic beam by the use of the Time-domain Spectral Finite Element Method

    Science.gov (United States)

    Żak, A.; Krawczuk, M.; Palacz, M.; Doliński, Ł.; Waszkowiak, W.

    2017-11-01

    In this work results of numerical simulations and experimental measurements related to the high frequency dynamics of an aluminium Timoshenko periodic beam are presented. It was assumed by the authors that the source of beam structural periodicity comes from periodical alterations to its geometry due to the presence of appropriately arranged drill-holes. As a consequence of these alterations dynamic characteristics of the beam are changed revealing a set of frequency band gaps. The presence of the frequency band gaps can help in the design process of effective sound filters or sound barriers that can selectively attenuate propagating wave signals of certain frequency contents. In order to achieve this a combination of three numerical techniques were employed by the authors. They comprise the application of the Time-domain Spectral Finite Element Method in the case of analysis of finite and semi-infinite computational domains, damage modelling in the case of analysis of drill-hole influence, as well as the Bloch reduction in the case of analysis of periodic computational domains. As an experimental technique the Scanning Laser Doppler Vibrometry was chosen. A combined application of all these numerical and experimental techniques appears as new for this purpose and not reported in the literature available.

  19. Simultaneous multiple element detection by particle beam/hollow cathode-optical emission spectroscopy as a tool for metallomic studies: determinations of metal binding with apo-transferrin.

    Science.gov (United States)

    Quarles, C Derrick; Brumaghim, Julia L; Marcus, R Kenneth

    2010-02-01

    Particle beam/hollow cathode-optical emission spectroscopy (PB/HC-OES) is presented as a tool for the determination of metal ion loading in transferrin (Tf). The elemental specificity of optical emission spectroscopy provides a means of assessing metal ion concentrations as well as the relative amounts of metal per unit protein concentration (up to 2 moles of Fe per mole of protein). The PB/HC-OES method allows for the simultaneous detection of metal content (Fe (I) 371.99, Ni (I) 341.41 nm, Zn (I) 213.86 nm, and Ag (I) 338.28 nm in this case), as well as elemental carbon and sulfur (C (I) 156.14 nm and S (I) 180.73 nm) that are reflective of the protein composition and concentration. Quantification for the metal species is based on calibration functions derived from aqueous solutions, with limits of detection for the entire suite being less than 1.0 μM. Determinations in this manner eliminate much of the ambiguity inherent in UV-VIS absorbance determinations of Tf metal binding. Validation of this method is obtained by analyzing loading response of Fe(3+) into Tf using the PB/HC-OES method and comparing the results with those of the standard UV-VIS absorbance method. Maximum Fe(3+) loading of Tf (based on the number of available binding sites) was determined to be 71.2 ± 4.7% by the PB/HC-OES method and 67.5 ± 2.5% for the UV-VIS absorbance method. Element emission ratios between the dopant metals and the carbon and sulfur protein constituents allow for concentration independent determinations of metal binding into Tf. Loading percentages were determined for Ni(2+), Zn(2+), and Ag(+) into Tf with maximum loading values of 19.5 ± 0.4%, 41.0 ± 4.4%, and 141.2 ± 4.3%, respectively. While of no apparent biological significance, Ag(+) presents an interesting case as a surrogate for Pt(2+), whose binding with Tf has shown to be quite different from the other metals. A different mode from the others is indeed observed, and is consistent with conjecture on the Pt(2

  20. Stress Analysis of Osteoporotic Lumbar Vertebra Using Finite Element Model with Microscaled Beam-Shell Trabecular-Cortical Structure

    OpenAIRE

    Kim, Yoon Hyuk; Wu, Mengying; Kim, Kyungsoo

    2013-01-01

    Osteoporosis is a disease in which low bone mass and microarchitectural deterioration of bone tissue lead to enhanced bone fragility and susceptibility to fracture. Due to the complex anatomy of the vertebral body, the difficulties associated with obtaining bones for in vitro experiments, and the limitations on the control of the experimental parameters, finite element models have been developed to analyze the biomechanical properties of the vertebral body. We developed finite element models ...

  1. On-column refractive-index detection based on retroreflected beam interference for capillary electrophoresis.

    Science.gov (United States)

    Deng, Y; Li, B

    1998-02-20

    A novel refractive-index detection scheme used for capillary electrophoresis detection, based on the interference of two retroreflected beams from the outer surface of a capillary tube illuminated by a focused laser beam, is described. A theoretical description and experimental measurement of the intensity profile of the interference fringe pattern in the detection plane are presented. The factors that limit the sensitivity of the proposed refractive-index detection scheme are discussed and compared with the transmitted beam interference and backscatter-based refractive-index detection configurations. The proposed refractive-index detector was used successfully for detection of capillary electrophoresis separations of saccharose, maltose, and lactose with a capillary tube of 50-mum inner diameter and a simple experimental setup.

  2. Development of educational software for beam loading analysis using pen-based user interfaces

    Directory of Open Access Journals (Sweden)

    Yong S. Suh

    2014-01-01

    Full Text Available Most engineering software tools use typical menu-based user interfaces, and they may not be suitable for learning tools because the solution processes are hidden and students can only see the results. An educational tool for simple beam analyses is developed using a pen-based user interface with a computer so students can write and sketch by hand. The geometry of beam sections is sketched, and a shape matching technique is used to recognize the sketch. Various beam loads are added by sketching gestures or writing singularity functions. Students sketch the distributions of the loadings by sketching the graphs, and they are automatically checked and the system provides aids in grading the graphs. Students receive interactive graphical feedback for better learning experiences while they are working on solving the problems.

  3. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal

    International Nuclear Information System (INIS)

    Chen Xi-Yao; Lin Gui-Min; Li Jun-Jun; Xu Xiao-Fu; Jiang Jun-Zhen; Qiang Ze-Xuan; Qiu Yi-Shen; Li Hui

    2012-01-01

    A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits. (fundamental areas of phenomenology(including applications))

  4. Implementation of a C-1 triangular element based on the P-version of the finite element method

    Science.gov (United States)

    Wang, D. W.; Katz, I. N.; Szabo, B. A.

    1982-01-01

    The implementation of a computer code CONE (for C(1) continuity) based on the p-version of the finite element method is described. A hierarchic family of triangular finite elements of degree p 5 is used. This family enforces C(1)-continuity across interelement boundaries, and the code is applicable to fourth order partial differential equations in two independent variables, in particular to the biharmonic equation. Applications to several benchmark problems in plate bending are presented. Sample results are examined and compared with theoretical predictions. In particular the analysis of the bending of a rhombic plate shows a significant improvement over othr published results.

  5. From DNA Bases to Ultracold Atoms: Probing Ensembles Using Supersonic Beams

    Science.gov (United States)

    Smith, Valoris Reid

    This thesis discusses two ensembles, the study of which was dependent upon the controllable production of cold gas-phase samples using supersonic beams. The experiments on DNA bases and base clusters were carried out in Germany at the Max Born Institute. The experiments anticipating the construction of a molecular beam slower were carried out in the United States at the University of Texas at Austin. Femtosecond pump-probe techniques were employed to study the dynamics and electronic character of DNA bases, pairs and clusters in the gas phase. Experimentsnon DNA base monomers confirmed the dominance of a particular relaxation pathway, the npi* state. Competition between this state and another proposed relaxation pathway was demonstrated through observations of the DNA base pairs and base-water clusters, settling a recent controversy. Further, it was determined that the excited state dynamics in base pairs is due to intramolecular processes rather than intermolecular processes. Finally, results from base-water clusters confirm that microsolvation permits comparison with biologically relevant liquid phase experiments and with ab initio calculations, bridging a long-standing gap. A purely mechanical technique that does not rely upon quantum or electronic properties to produce very cold, very slow atoms and molecules would be more generally applicable than current approaches. The approach described here uses supersonic beam methods to produce a very cold beam of particles and a rotating paddle-wheel, or rotor, to slow the cold beam. Initial experiments testing the possibility of elastic scattering from a single crystal surface were conducted and the implications of these experiments are discussed.

  6. Stochastic collocation-based finite element of structural nonlinear dynamics with application in composite structures

    Directory of Open Access Journals (Sweden)

    Sepahvand K.

    2016-01-01

    Full Text Available Stochastic analysis of structures having nonlinearity by means of sampling methods leads to expensive cost in term of computational time. In contrast, non-sampling methods based on the spectral representation of uncertainty are very efficient with comparable accurate results. In this pa- per, the application of spectral methods to nonlinear dynamics of structures with random parameters is investigated. The impact of the parameter randomness on structural responses has been consid- ered. To this end, uncertain parameters and the structure responses are represented using the gPC expansions with unknown deterministic coefficients and random orthogonal polynomial basis. The deterministic finite element model of the structure is used as black-box and it is executed on a set of random collocation points. As the sample structure responses are estimated, a nonlinear optimization process is employed to calculate the unknown coefficients. The method has this main advantage that can be used for complicated nonlinear structural dynamic problems for which the deterministic FEM model has been already developed. Furthermore, it is very time efficient in comparison with sampling methods, as MC simulations. The application of the method is applied to the nonlinear transient analysis of composite beam structures including uncertain quadratic random damping. The results show that the proposed method can capture the large range of uncertainty in input parameters as well as in structural dynamic responses while it is too time-efficient.

  7. Determination of the metal distribution in tooth fillings in real teeth based on element sensitive X-ray tomography

    International Nuclear Information System (INIS)

    Masschaele, B.; Mondelaers, W.; Cauwels, P.; Jolie, J.; Baechler, S.; Materna, T.

    2000-01-01

    Since a couple of centuries people are using metal tooth-fillings in order to protect their teeth. In the beginning of the 19th century the amalgam or silver fillings were introduced for to first time. Nowadays, dentists mostly use amalgam. These fillings are a mixture of silver, tin and mercury. The mercury which is abundant, about 50%, is dangerous for any living organism. Mercury has a particular affinity for the brain tissue but is also accumulated in the liver, kidneys, lungs, gastrointestinal track and jawbone. Mercury Basely crosses the placenta and is gathered in the heart, pituitary gland and liver of the fetus. It is been proven that the mercury vaporises and enter enters the body via the lungs. Since a couple of years we apply the element sensitive X-ray tomography technique on heavy elements like uranium or lead. By scanning teeth using photons having two different energies, one just below and one just above the K-edge of the element under investigation, the tomography becomes element sensitive. The experiment has been done at the ESRF, beam line ID15A, with a very intense tunable monochromatic high energy X-ray beam. We made tomographies of different teeth with 20 μm image resolution. The slices were 20 μm apart. The results after reconstruction are three dimensional mercury maps which can tell us something about the possibility of mercury diffusion into the roots of the tooth. From there the mercury could enter the blood stream and end up in the organs. (author)

  8. Performance Analysis of a Threshold-Based Parallel Multiple Beam Selection Scheme for WDM FSO Systems

    KAUST Repository

    Nam, Sung Sik

    2018-04-09

    In this paper, we statistically analyze the performance of a threshold-based parallel multiple beam selection scheme for a free-space optical (FSO) based system with wavelength division multiplexing (WDM) in cases where a pointing error has occurred under independent identically distributed Gamma-Gamma fading conditions. To simplify the mathematical analysis, we additionally consider Gamma turbulence conditions, which are a good approximation of Gamma-Gamma distribution. Specifically, we statistically analyze the characteristics in operation under conventional detection schemes (i.e., heterodyne detection (HD) and intensity modulation/direct detection (IM/DD) techniques) for both adaptive modulation (AM) case in addition to non-AM case (i.e., coherent/non-coherent binary modulation). Then, based on the statistically derived results, we evaluate the outage probability of a selected beam, the average spectral efficiency (ASE), the average number of selected beams (ANSB) and the average bit error rate (BER). Selected results show that we can obtain higher spectral efficiency and simultaneously reduce the potential for increasing the complexity of implementation caused by applying the selection-based beam selection scheme without considerable performance loss. Especially for the AM case, the ASE can be increased further compared to the non- AM cases. Our derived results based on the Gamma distribution as an approximation of the Gamma-Gamma distribution can be used as approximated performance measure bounds, especially, they may lead to lower bounds on the approximated considered performance measures.

  9. Comparison of performance of partial prestressed beam-column subassemblages made of reactive powder concrete and normal concrete materials using finite element models

    Science.gov (United States)

    Nurjannah, S. A.; Budiono, B.; Imran, I.; Sugiri, S.

    2016-04-01

    Research on concrete material continues in several countries and had produced a concrete type of Ultra High Performance Concrete (UHPC) which has a better compressive strength, tensile strength, flexural strength, modulus of elasticity, and durability than normal concrete (NC) namely Reactive Powder Concrete (RPC). Researches on structures using RPC material showed that the RPC structures had a better performance than the NC structures in resisting gravity and lateral cyclic loads. In this study, an experiment was conducted to apply combination of constant axial and lateral cyclic loads to a prototype of RPC interior partial prestressed beam-column subassemblage (prototype of BCS-RPC) with a value of Partial Prestressed Ratio (PPR) of 31.72% on the beam. The test results were compared with finite element model of beam-column subassemblage made of RPC by PPR of 31.72% (BCS-RPC-31.72). Furthermore, there was BCS-RPC modeling with PPR of 21.39% (BCS-RPC-21.39) and beam-column subassemblages made of NC materials modeling with a value of PPR at 21.09% (BCS-NC-21.09) and 32.02% (BCS-NC-32.02). The purpose of this study was to determine the performance of the BCS-RPC models compared to the performance of the BCS-NC models with PPR values below and above 25%, which is the maximum limit of permitted PPR. The results showed that all models of BCS-RPC had a better performance than all models of BCS-NC and the BCS-RPC model with PPR above 25% still behaved ductile and was able to dissipate energy well.

  10. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1995-01-01

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...... to optimization variables can be performed. A computer implementation is described and an illustrative example is given....

  11. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...

  12. Inverse boundary element calculations based on structural modes

    DEFF Research Database (Denmark)

    Juhl, Peter Møller

    2007-01-01

    The inverse problem of calculating the flexural velocity of a radiating structure of a general shape from measurements in the field is often solved by combining a Boundary Element Method with the Singular Value Decomposition and a regularization technique. In their standard form these methods sol...

  13. Piezoelectric Accelerometers Modification Based on the Finite Element Method

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    The paper describes the modification of piezoelectric accelerometers using a Finite Element (FE) method. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between the measurement and FE simulation results...

  14. Reliability-Based Shape Optimization using Stochastic Finite Element Methods

    DEFF Research Database (Denmark)

    Enevoldsen, Ib; Sørensen, John Dalsgaard; Sigurdsson, G.

    1991-01-01

    stochastic fields (e.g. loads and material parameters such as Young's modulus and the Poisson ratio). In this case stochastic finite element techniques combined with FORM analysis can be used to obtain measures of the reliability of the structural systems, see Der Kiureghian & Ke (6) and Liu & Der Kiureghian...

  15. Active and passive damping based on piezoelectric elements -controllability issues-

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; van Amerongen, J.; Jonker, Jan B.; Jonker, J.B.

    2001-01-01

    Piezoelectric elements are widely used for damping micro-vibrations in mechanical structures. Active damping can be realised robustly by means of collocated actuator-sensor-pairs, controlled so as to extract vibration energy. Excellent damping performance is possible as long as sufficient

  16. A Cherenkov-based Beam Loss Scintillator system for beam, background and online luminosity monitoring at the LHCb experiment at CERN

    CERN Document Server

    Alessio, F; Jacobsson, R

    2013-01-01

    The installation of a scintillator-based system in the LHCb cavern was initially proposed in order to observe injection problems around the LHCb interaction region. Thanks to the fact that LHCb had already developed a custom-made electronics board (BPIM) for the LHCb beam pickups and global LHCb timing monitoring, a complete, inexpensive but flexible and robust system was quickly developed and installed few cm from the beam pipe just in front of the LHCb VELO detector in time for the very first beams injected in the LHC. The current and final system – commonly referred to as Beam Loss Scintillator (BLS) system - ultimately played a central role in the fast beam, background and online luminosity monitoring at LHCb. In this paper, the features of the detector – based on quartz radiator and Cherenkov light - are described, including the functionalities that the system acquired during the proton-proton physics programmes in 2009- 2013 thanks to its flexibility, reliability and sensitivity to beam hal...

  17. 48 CFR 2937.602 - Elements of performance-based contracting.

    Science.gov (United States)

    2010-10-01

    ...) 2937.602 Elements of performance-based contracting. (a) Performance-based contracting is defined in FAR... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Elements of performance-based contracting. 2937.602 Section 2937.602 Federal Acquisition Regulations System DEPARTMENT OF LABOR...

  18. Leveraging Technology in Campus Change Initiatives: A Practice Brief Based on BEAMS Project Outcomes

    Science.gov (United States)

    Chough, Alex

    2008-01-01

    During 2003-07, the Building Engagement and Attainment for Minority Students (BEAMS) project fostered data-based campus change initiatives at more than 100 four-year Historically Black, Hispanic-Serving, and Tribal colleges and universities to increase student engagement and learning. This brief provides an overview of technology-driven strategies…

  19. Registration-based Reconstruction of Four-dimensional Cone Beam Computed Tomography

    DEFF Research Database (Denmark)

    Christoffersen, Christian; Hansen, David Christoffer; Poulsen, Per Rugaard

    2013-01-01

    We present a new method for reconstruction of four-dimensional (4D) cone beam computed tomography from an undersampled set of X-ray projections. The novelty of the proposed method lies in utilizing optical flow based registration to facilitate that each temporal phase is reconstructed from the full...

  20. Design of a beam shaping assembly for an accelerator-based BNCT system

    International Nuclear Information System (INIS)

    Stichelbaut, F.; Forton, E.; Jongen, Y.

    2006-01-01

    A complete BNCT system based on a high-intensity proton accelerator is developed by the IBA company. The neutron beam is produced via the 7 Li(p,n) 7 Be reaction using a solid lithium target. The neutron energy spectrum is tailored with a beam shaping assembly surrounding the target. This device is the object of an extensive R and D project and is fully designed with the Monte Carlo simulation code MCNPX. The emphasis is put on the treatment quality, notably the radiation dose at the skin level, and the achievable neutron flux. (author)

  1. Ion beam-based studies for tribological phenomena

    Science.gov (United States)

    Racolta, P. M.; Popa-Simil, L.; Alexandreanu, B.

    1996-06-01

    Custom-designed experiments based on the Thin Layer Activation technique (TLA) were completed, providing information on the wear level of some engine components with additional data on transfer and adhesion of material between metallic friction couples using the RBS method. RBS experimental results concerning material transfer for a steel-brass friction couple are presented and discussed in the paper. Also, the types and concentrations of the wear products in used lubricant oils were determined by in-air PIXE. A sequential lubricant filtering-based procedure for determining the dimension distribution of the resulting radioactive wear particles by low level γ-spectrometry is presented. Experimental XRF spectra showing the non-homogeneous distribution of the retained waste particles on the filtering paper are shown.

  2. Laser induced breakdown spectroscopy based on single beam splitting and geometric configuration for effective signal enhancement.

    Science.gov (United States)

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-05

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS.

  3. Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement

    Science.gov (United States)

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-01

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS. PMID:25557721

  4. Research of beam hardening correction method for CL system based on SART algorithm

    International Nuclear Information System (INIS)

    Cao Daquan; Wang Yaxiao; Que Jiemin; Sun Cuili; Wei Cunfeng; Wei Long

    2014-01-01

    Computed laminography (CL) is a non-destructive testing technique for large objects, especially for planar objects. Beam hardening artifacts were wildly observed in the CL system and significantly reduce the image quality. This study proposed a novel simultaneous algebraic reconstruction technique (SART) based beam hardening correction (BHC) method for the CL system, namely the SART-BHC algorithm in short. The SART-BHC algorithm took the polychromatic attenuation process in account to formulate the iterative reconstruction update. A novel projection matrix calculation method which was different from the conventional cone-beam or fan-beam geometry was also studied for the CL system. The proposed method was evaluated with simulation data and experimental data, which was generated using the Monte Carlo simulation toolkit Geant4 and a bench-top CL system, respectively. All projection data were reconstructed with SART-BHC algorithm and the standard filtered back projection (FBP) algorithm. The reconstructed images show that beam hardening artifacts are greatly reduced with the SART-BHC algorithm compared to the FBP algorithm. The SART-BHC algorithm doesn't need any prior know-ledge about the object or the X-ray spectrum and it can also mitigate the interlayer aliasing. (authors)

  5. Beam-based model of broad-band impedance of the Diamond Light Source

    Science.gov (United States)

    Smaluk, Victor; Martin, Ian; Fielder, Richard; Bartolini, Riccardo

    2015-06-01

    In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS) to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  6. Beam-based model of broad-band impedance of the Diamond Light Source

    Directory of Open Access Journals (Sweden)

    Victor Smaluk

    2015-06-01

    Full Text Available In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  7. Study of low energy neutron beam formation based on GEANT4 simulations

    Science.gov (United States)

    Avagyan, R.; Avetisyan, R.; Ivanyan, V.; Kerobyan, I.

    2017-07-01

    The possibility of obtaining thermal/epithermal energy neutron beams using external protons from cyclotron C18/18 is studied based on GEANT4 simulations. This study will be the basis of the Beam Shaped Assembly (BSA) development for future Boron Neutron Capture Therapy (BNCT). Proton induced reactions on 9Be target are considered as a neutron source, and dependence of neutron yield on target thickness is investigated. The problem of reducing the ratio of gamma to neutron yields by inserting a lead sheet after the beryllium target is studied as well. By GEANT4 modeling the optimal thicknesses of 9Be target and lead absorber are determined and the design characteristics of beam shaping assembly, including the materials and thicknesses of reflector and moderator are considered.

  8. Large Aperture Scanning Lidar Based on Holographic Optical Elements

    Science.gov (United States)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Andrus, Ionio; Guerra, David V.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Lidar remote sensing instruments can make a significant contribution to satisfying many of the required measurements of atmospheric and surface parameters for future spaceborne platforms, including topographic altimeters, atmospheric profiles of, wind, humidity, temperature, trace molecules, aerosols, and clouds. It is highly desirable to have wide measurement swaths for rapid coverage rather than just the narrow ribbon of data that is obtained with a nadir only observation. For most applications global coverage is required, and for wind measurements scanning or pointing is required in order to retrieve the full 3-D wind vector from multiple line-of-sight Doppler measurements. Conventional lidar receivers make up a substantial portion of the instrument's size and weight. Wide angle scanning typically requires a large scanning mirror in front of the receiver telescope, or pointing the entire telescope and aft optics assembly, Either of these methods entails the use of large bearings, motors, gearing and their associated electronics. Spaceborne instruments also need reaction wheels to counter the torque applied to the spacecraft by these motions. NASA has developed simplified conical scanning telescopes using Holographic Optical Elements (HOEs) to reduce the size, mass, angular momentum, and cost of scanning lidar systems. NASA has developed two operating lidar systems based on 40 cm diameter HOEs. The first such system, named Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS) was a joint development between NASA Goddard Space Flight Center (GSFC) and the University of Maryland College Park. PHASERS is based on a reflection HOE for use at the doubled Nd:YAG laser wavelength of 532 nm and has recently undergone a number of design changes in a collaborative effort between GSFC and Saint Anselm College in New Hampshire. The next step was to develop IR transmission HOEs for use with the Nd:YAG fundamental in the Holographic Airborne

  9. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  10. Study of virtual displays based on raster optical elements

    Science.gov (United States)

    Ryu, Jaeyeol; Putilin, A. N.

    2018-01-01

    The paper is devoted to the study of the ultimate resolution of virtual displays with raster systems. Raster systems in such displays are used for an essential reduction of their longitudinal overall dimensions. Three schemes are considered: in the first one each element of the raster system forms an image of one pixel only, in the second one each element of the raster system forms a small part of a virtual image, the third scheme is analogous to the first one, but is implemented in the form of a contact lens. For each scheme, we analyse the overall dimensions of the optical system and the characteristics of the virtual image, i.e., the ultimate resolution and the nonuniformity of its illumination.

  11. Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling

    International Nuclear Information System (INIS)

    Fukuda, Yoshiyuki; Schrod, Nikolas; Schaffer, Miroslava; Feng, Li Rebekah; Baumeister, Wolfgang; Lucic, Vladan

    2014-01-01

    Correlative microscopy allows imaging of the same feature over multiple length scales, combining light microscopy with high resolution information provided by electron microscopy. We demonstrate two procedures for coordinate transformation based correlative microscopy of vitrified biological samples applicable to different imaging modes. The first procedure aims at navigating cryo-electron tomography to cellular regions identified by fluorescent labels. The second procedure, allowing navigation of focused ion beam milling to fluorescently labeled molecules, is based on the introduction of an intermediate scanning electron microscopy imaging step to overcome the large difference between cryo-light microscopy and focused ion beam imaging modes. These methods make it possible to image fluorescently labeled macromolecular complexes in their natural environments by cryo-electron tomography, while minimizing exposure to the electron beam during the search for features of interest. - Highlights: • Correlative light microscopy and focused ion beam milling of vitrified samples. • Coordinate transformation based cryo-correlative method. • Improved correlative light microscopy and cryo-electron tomography

  12. Finite element based inversion for time-harmonic electromagnetic problems

    Science.gov (United States)

    Schwarzbach, Christoph; Haber, Eldad

    2013-05-01

    In this paper we address the inverse problem and present some recent advances in numerical methods to recover the subsurface electrical conductivity from time-harmonic electromagnetic data. We rigorously formulate and discretize both the forward and the inverse problem in the finite element framework. To solve the forward problem, we derive a finite element discretization of the first-order system of Maxwell's equations in terms of the electric field and the magnetic induction. We show that our approach is equivalent to the standard discretization of the vector Helmholtz equation in terms of the electric field and that the discretization of magnetic induction of the same approximation order is hidden in the standard discretization. We implement the forward solver on unstructured tetrahedral meshes using edge elements. Unstructured meshes are not only capable of representing complex geometry. They can also reduce the overall problem size and, thus, the size of the system of linear equations arising from the forward problem such that direct methods for its solution using a sparse matrix factorization become feasible. The inverse problem is formulated as a regularized output least squares problem. We consider two regularization functions. First, we derive a smoothness regularizer using a primal-dual mixed finite element formulation which generalizes the standard Laplacian operator for a piecewise constant conductivity model on unstructured meshes. Secondly, we derive a total variation regularizer for the same class of models. For the choice of the regularization parameter we revisit the so-called dynamic regularization and compare it to a standard regularization scheme with fixed regularization parameter. The optimization problem is solved by the Gauss-Newton method which can be efficiently implemented using sparse matrix-vector operations and exploiting the sparse matrix factorization of the forward problem system matrix. A synthetic data example from marine

  13. Elements affecting wound healing time: An evidence based analysis.

    Science.gov (United States)

    Khalil, Hanan; Cullen, Marianne; Chambers, Helen; Carroll, Matthew; Walker, Judi

    2015-01-01

    The purpose of this study was to identify the predominant client factors and comorbidities that affected the time taken for wounds to heal. A prospective study design used the Mobile Wound Care (MWC) database to capture and collate detailed medical histories, comorbidities, healing times and consumable costs for clients with wounds in Gippsland, Victoria. There were 3,726 wounds documented from 2,350 clients, so an average of 1.6 wounds per client. Half (49.6%) of all clients were females, indicating that there were no gender differences in terms of wound prevalence. The clients were primarily older people, with an average age of 64.3 years (ranging between 0.7 and 102.9 years). The majority of the wounds (56%) were acute and described as surgical, crush and trauma. The MWC database categorized the elements that influenced wound healing into 3 groups--factors affecting healing (FAH), comorbidities, and medications known to affect wound healing. While there were a multitude of significant associations, multiple linear regression identified the following key elements: age over 65 years, obesity, nonadherence to treatment plan, peripheral vascular disease, specific wounds associated with pressure/friction/shear, confirmed infection, and cerebrovascular accident (stroke). Wound healing is a complex process that requires a thorough understanding of influencing elements to improve healing times.© 2015 by the Wound Healing Society. © 2015 by the Wound Healing Society.

  14. Broadband non-polarizing beam splitter based on guided mode resonance effect

    International Nuclear Information System (INIS)

    Ma Jian-Yong; Xu Cheng; Qiang Ying-Huai; Zhu Ya-Bo

    2011-01-01

    A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ∼50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4 μm∼1.7 μm and 1% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. On-chip free beam optics on a polymer-based photonic integration platform.

    Science.gov (United States)

    Happach, M; de Felipe, D; Conradi, H; Friedhoff, V N; Schwartz, E; Kleinert, M; Brinker, W; Zawadzki, C; Keil, N; Hofmann, W; Schell, M

    2017-10-30

    This paper presents on-chip free beam optics on polymer-based photonic components. Due to the circumstance that waveguide-based optics allows no direct beam access we use Gradient index (GRIN) lenses assembled into the chip to collimate the beam from the waveguides. This enables low loss power transmission over a length of 1432 µm. Even though the beam propagates through air it is possible to create a resonator with a wavelength shift of 0.002 nm/°C, hence the allowed deviations from the ITU-T grid (100 GHz) are met for ± 20 °C. In order to guarantee reliable laser stability, it is necessary to implement optical isolators at the output of the laser. This requires the insertion of bulk material into the chip and is realized by a 1050 µm thick coated glass. Due to the large gap of the free-space section, it is possible to combine different resonators together. This demonstrates the feasibility of an integrated wavelength-meter.

  16. Locomotion based on nonlinear magneto-elastic elements

    International Nuclear Information System (INIS)

    Zimmermann, K; Zeidis, I; Boehm, V; Popp, J; Naletova, V; Turkov, V

    2009-01-01

    In this paper we discuss an approximately steady motion of two equal mass points, connected by a non linear magneto-elastic element. It is supposed that the system moves along a straight line in the presence of internal excitation and non symmetric Coulomb dry frictional force acting from the surface upon each mass point opposite to the direction of motion. Thereby, the magnitude of this force is also dependent on the direction of motion. Excitation is carried out due to action internal harmonic forces. Such forces arise for a spring made of a magnetizable elastic material by the influence of an external magnetic field.

  17. [Finite Element Analysis of Intravascular Stent Based on ANSYS Software].

    Science.gov (United States)

    Shi, Gengqiang; Song, Xiaobing

    2015-10-01

    This paper adopted UG8.0 to bulid the stent and blood vessel models. The models were then imported into the finite element analysis software ANSYS. The simulation results of ANSYS software showed that after endothelial stent implantation, the velocity of the blood was slow and the fluctuation of velocity was small, which meant the flow was relatively stable. When blood flowed through the endothelial stent, the pressure gradually became smaller, and the range of the pressure was not wide. The endothelial shear stress basically unchanged. In general, it can be concluded that the endothelial stents have little impact on the flow of blood and can fully realize its function.

  18. Field programmable gate array based data digitisation with commercial elements

    Energy Technology Data Exchange (ETDEWEB)

    Ugur, Cahit; Koenig, Wolfgang; Traxler, Michael [GSI Helmholtz Centre for Heavy Ion Research (Germany); Michel, Jan [Goethe Univ. Frankfurt am Main (Germany); Korcyl, Grzegorz; Palka, Marek [Jagiellonian University (Poland)

    2013-07-01

    One of the most important aspects of particle identification experiments is the digitisation of time, amplitude and charge data from detectors. These conversions are done mostly with Application Specific ICs (ASICs). However, the recent developments in Field Programmable Gate Array (FPGA) technology allow us to use commercial electronic components for the required Front-End Electronics (FEE) and do the digitisation in the FPGA. It is possible to do Time-of-Flight (ToF), Time-over-Threshold (ToT), amplitude and charge measurements with converters implemented in FPGA. We call this principle COME and KISS: Use COMplex COMmercial Elements and Keep It Small and Simple.

  19. Field programmable gate array based data digitisation with commercial elements

    Science.gov (United States)

    Ugur, C.; Koening, W.; Michel, J.; Palka, M.; Traxler, M.

    2013-01-01

    One of the most important aspects of particle identification experiments is the digitisation of time, amplitude and charge data from detectors. These conversions are mostly undertaken with Application Specific Integrated Circuits (ASICs). However, recent developments in Field Programmable Gate Array (FPGA) technology allow us to use commercial electronic components for the required Front-End Electronics (FEE) and to do the digitisation in the FPGA. It is possible to do Time-of-Flight (ToF), Time-over-Threshold (ToT), amplitude and charge measurements with converters implemented in FPGA. We call this principle come & kiss: use COmplex ComMErcial Elements & Keep It Small and Simple.

  20. Kr-86 Ion-Beam Irradiation of Hydrated DNA: Free Radical and Unaltered Base Yields

    Science.gov (United States)

    Becker, David; Adhikary, Amitava; Tetteh, Smedley T.; Bull, Arthur W.; Sevilla, Michael D.

    2012-01-01

    This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields. PMID:23106211

  1. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion.

    Science.gov (United States)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Herfarth, Klaus; Debus, Jürgen; Parodi, Katia

    2016-02-01

    Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolved (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the clinical potential.

  2. Applications of the BEam Cross section Analysis Software (BECAS)

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Bitsche, Robert; Fedorov, Vladimir

    2013-01-01

    A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used for the gener......A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used...... for the generation of beam finite element models which correctly account for effects stemming from material anisotropy and inhomogeneity in cross sections of arbitrary geometry. These type of modelling approach allows for an accurate yet computationally inexpensive representation of a general class of three...

  3. A rule-based computer control system for PBX-M neutral beams

    International Nuclear Information System (INIS)

    Frank, K.T.; Kozub, T.A.; Kugel, H.W.

    1987-01-01

    The Princeton Beta Experiment (PBX) neutral beams have been routinely operated under automatic computer control. A major upgrade of the computer configuration was undertaken to coincide with the PBX machine modification. The primary tasks included in the computer control system are data acquisition, waveform reduction, automatic control and data storage. The portion of the system which will remain intact is the rule-based approach to automatic control. Increased computational and storage capability will allow the expansion of the knowledge base previously used. The hardware configuration supported by the PBX Neutral Beam (XNB) software includes a dedicated Microvax with five CAMAC crates and four process controllers. The control algorithms are rule-based and goal-driven. The automatic control system raises ion source electrical parameters to selected energy goals and maintains these levels until new goals are requested or faults are detected

  4. Elemental researches on the critical issue of laser fusion reactor KOYO-F. Formation of aerosols, protection of beam port and flow stability

    International Nuclear Information System (INIS)

    Norimatsu, T.; Oshige, T.; Mima, K.; Shimada, Y.; Furukawa, H.; Kunugi, T.; Nakajima, H.; Kajimura, Y.

    2008-10-01

    Critical issues on laser fusion reactor with a liquid wall are discussed. Formation of aerosols after laser shot was studied experimentally and theoretically. Our simulation results for formation of aerosols agreed with experimental results obtained with electric discharge through a thin lead membrane. Formation of micro particles is discussed basing on experimental results obtained by backside irradiation of a lead membrane. Protection of beam ports of the laser fusion reactor with a liquid first wall is described. A magnetic field generated with a pulse current successfully shielded the tip of beam ports from alpha particles. A continuous protective liquid LiPb flow controlled with cascade scheme was formed as the protective first wall of KOYO-F. (author)

  5. Crystal plasticity finite element simulation of NiTi shape memory alloy based on representative volume element

    Science.gov (United States)

    Hu, Li; Jiang, Shuyong; Zhang, Yanqiu; Sun, Dong

    2017-11-01

    Crystal plasticity finite element method based on a representative volume element model, which includes the effect of grain shape and size, is combined with electron backscattered diffraction experiment in order to investigate plastic deformation of NiTi shape memory alloy during uniaxial compression at 400 °C. Simulation results indicate that the constructed representation of the polycrystal microstructure is able to effectively simulate macroscopically global stress-strain response and microscopically inhomogeneous microstructure evolution in the case of various loading directions. According to slip activity and Schmid factor in {110}, {010} and {110} slip modes, slip modes are found to play a dominant role in plastic deformation, while slip mode is found to be a secondary slip mode. In addition, the simulation results are supported well by the experimental ones. With the progression of plastic deformation, the (001) [0\\bar 10] texture component gradually disappears, while the γ-fiber () texture is increasingly enhanced.

  6. Static-kinematic duality in beams, plates, shells and its central role in the finite element method

    Directory of Open Access Journals (Sweden)

    Carpinteri Alberto

    2017-01-01

    Full Text Available Static and kinematic matrix operator equations are revisited for one-, two-, and three-dimensional deformable bodies. In particular, the elastic problem is formulated in the details in the case of arches, cylinders, circular plates, thin domes, and, through an induction process, shells of revolution. It is emphasized how the static and kinematic matrix operators are one the adjoint of the other, and then demonstrated through the definition of stiffness matrix and the application of virtual work principle. From the matrix operator formulation it clearly emerges the identity of the usual Finite Element Method definition of elastic stiffness matrix and the classical definition of Ritz-Galerkin matrix.

  7. Static-kinematic duality in beams, plates, shells and its central role in the finite element method

    Science.gov (United States)

    Carpinteri, Alberto

    2017-01-01

    Static and kinematic matrix operator equations are revisited for one-, two-, and three-dimensional deformable bodies. In particular, the elastic problem is formulated in the details in the case of arches, cylinders, circular plates, thin domes, and, through an induction process, shells of revolution. It is emphasized how the static and kinematic matrix operators are one the adjoint of the other, and then demonstrated through the definition of stiffness matrix and the application of virtual work principle. From the matrix operator formulation it clearly emerges the identity of the usual Finite Element Method definition of elastic stiffness matrix and the classical definition of Ritz-Galerkin matrix.

  8. Calibration of Eringen's small length scale coefficient for initially stressed vibrating nonlocal Euler beams based on microstructured beam model

    International Nuclear Information System (INIS)

    Wang, C M; Zhang, Z; Challamel, N; Duan, W H

    2013-01-01

    In this paper, we calibrate Eringen's small length scale coefficient e 0 for an initially stressed vibrating nonlocal Euler beam via a microstructured beam modelled by some repetitive cells comprising finite rigid segments and elastic rotational springs. By adopting the pseudo-differential operator and Padé's approximation, an analytical solution for the vibration frequency in terms of initial stress may be developed for the microstructured beam model. When comparing this analytical solution with the established exact vibration solution from the nonlocal beam theory, one finds that the calibrated Eringen's small length scale coefficient e 0 is given by e 0 = √(1/6)-(1/12)(σ 0 /σ-breve m ) where σ 0 is the initial stress and σ-breve m is the mth mode buckling stress of the corresponding local Euler beam. It is shown that e 0 varies with respect to the initial axial stress, from 1/√(12)∼0.289 at the buckling compressive stress to 1/√6∼0.408 when the axial stress is zero and it monotonically increases with increasing initial tensile stress. The small length scale coefficient e 0 , however, does not depend on the vibration/buckling mode considered. (paper)

  9. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry

    Science.gov (United States)

    Wang, G.; Wu, K.; Hu, H.; Li, G.; Wang, L. J.

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  10. Inverse boundary element calculations based on structural modes

    DEFF Research Database (Denmark)

    Juhl, Peter Møller

    2007-01-01

    The inverse problem of calculating the flexural velocity of a radiating structure of a general shape from measurements in the field is often solved by combining a Boundary Element Method with the Singular Value Decomposition and a regularization technique. In their standard form these methods solve...... for the unknown normal velocities of the structure at the relatively large number of nodes in the numerical model. Efficiently the regularization technique smoothes the solution spatially, since a fast spatial variation is associated with high index singular values, which is filtered out or damped...... in the regularization. Hence, the effective number of degrees of freedom in the model is often much lower than the number of nodes in the model. The present paper deals with an alternative formulation possible for the subset of radiation problems in which a (structural) modal expansion is known for the structure...

  11. Flexible ferroelectric element based on van der Waals heteroepitaxy.

    Science.gov (United States)

    Jiang, Jie; Bitla, Yugandhar; Huang, Chun-Wei; Do, Thi Hien; Liu, Heng-Jui; Hsieh, Ying-Hui; Ma, Chun-Hao; Jang, Chi-Yuan; Lai, Yu-Hong; Chiu, Po-Wen; Wu, Wen-Wei; Chen, Yi-Chun; Zhou, Yi-Chun; Chu, Ying-Hao

    2017-06-01

    We present a promising technology for nonvolatile flexible electronic devices: A direct fabrication of epitaxial lead zirconium titanate (PZT) on flexible mica substrate via van der Waals epitaxy. These single-crystalline flexible ferroelectric PZT films not only retain their performance, reliability, and thermal stability comparable to those on rigid counterparts in tests of nonvolatile memory elements but also exhibit remarkable mechanical properties with robust operation in bent states (bending radii down to 2.5 mm) and cycling tests (1000 times). This study marks the technological advancement toward realizing much-awaited flexible yet single-crystalline nonvolatile electronic devices for the design and development of flexible, lightweight, and next-generation smart devices with potential applications in electronics, robotics, automotive, health care, industrial, and military systems.

  12. Field-based research on elemental mercury spills

    International Nuclear Information System (INIS)

    Harju, J.A.; Kuehnel, V.; Charlton, D.S.; Evans, J.M.

    1995-01-01

    Natural gas industry sites have been contaminated by elemental mercury (Hg) from gas flowmeter manometers. Flowmeters (metering stations) are located throughout the natural gas distribution system at wellheads, gas processing plants, along gas transmission lines, at underground gas storage facilities, and points of end use. Field site instrumentation has occurred at six field research sites located in natural gas production areas of the United States. These sites, in Louisiana, Pennsylvania, and New Mexico, are representative of diverse climatic, geologic, and hydrologic conditions. In situ hydraulic conductivity measurements on these sites represent a range of 10 -4 to an estimated 10 -10 m/s. Mean annual precipitation ranges from near desert to subtropical. Geologic materials found on the six sites include stratified alluvial clays, weathered bedrock, and coarse sands and gravels. Each site has had documented spills of elemental Hg and has been instrumented with stainless steel monitoring wells, each of which has a sampling pump. These monitoring points were sampled quarterly in an effort to discover information on the transport and fate of Hg in the shallow subsurface, under a range of climatic, geologic, and hydrologic conditions. Both field-filtered and unfiltered groundwater samples were collected as part of the sampling effort to determine the potential role of colloid-borne Hg transport in shallow groundwater systems. Data from sampling efforts at the New Mexico and Pennsylvania sites suggest there has been no adverse impact to shallow groundwater near the research sites. A monitoring program continues at the two Louisiana sites. 5 refs., 4 tabs

  13. Stress Analysis of Osteoporotic Lumbar Vertebra Using Finite Element Model with Microscaled Beam-Shell Trabecular-Cortical Structure

    Directory of Open Access Journals (Sweden)

    Yoon Hyuk Kim

    2013-01-01

    Full Text Available Osteoporosis is a disease in which low bone mass and microarchitectural deterioration of bone tissue lead to enhanced bone fragility and susceptibility to fracture. Due to the complex anatomy of the vertebral body, the difficulties associated with obtaining bones for in vitro experiments, and the limitations on the control of the experimental parameters, finite element models have been developed to analyze the biomechanical properties of the vertebral body. We developed finite element models of the L2 vertebra, which consisted of the endplates, the trabecular lattice, and the cortical shell, for three age-related grades (young, middle, and old of osteoporosis. The compressive strength and stiffness results revealed that we had developed a valid model that was consistent with the results of previous experimental and computational studies. The von-Mises stress, which was assumed to predict the risk of a burst fracture, was also determined for the three age groups. The results showed that the von-Mises stress was substantially higher under relatively high levels of compressive loading, which suggests that patients with osteoporosis should be cautious of fracture risk even during daily activities.

  14. Automated beam placement for breast radiotherapy using a support vector machine based algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xuan; Kong, Dewen; Jozsef, Gabor; Chang, Jenghwa; Wong, Edward K.; Formenti, Silvia C.; Wang Yao [Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, New York 11201 (United States); Department of Radiation Oncology, School of Medicine, Langone Medical Center, New York University, New York, New York 10016 (United States); Department of Computer Science and Engineering, Polytechnic Institute of New York University, Brooklyn, New York 11201 (United States); Department of Radiation Oncology, School of Medicine, Langone Medical Center, New York University, New York, New York 10016 (United States); Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, New York 11201 (United States)

    2012-05-15

    Purpose: To develop an automated beam placement technique for whole breast radiotherapy using tangential beams. We seek to find optimal parameters for tangential beams to cover the whole ipsilateral breast (WB) and minimize the dose to the organs at risk (OARs). Methods: A support vector machine (SVM) based method is proposed to determine the optimal posterior plane of the tangential beams. Relative significances of including/avoiding the volumes of interests are incorporated into the cost function of the SVM. After finding the optimal 3-D plane that separates the whole breast (WB) and the included clinical target volumes (CTVs) from the OARs, the gantry angle, collimator angle, and posterior jaw size of the tangential beams are derived from the separating plane equation. Dosimetric measures of the treatment plans determined by the automated method are compared with those obtained by applying manual beam placement by the physicians. The method can be further extended to use multileaf collimator (MLC) blocking by optimizing posterior MLC positions. Results: The plans for 36 patients (23 prone- and 13 supine-treated) with left breast cancer were analyzed. Our algorithm reduced the volume of the heart that receives >500 cGy dose (V5) from 2.7 to 1.7 cm{sup 3} (p = 0.058) on average and the volume of the ipsilateral lung that receives >1000 cGy dose (V10) from 55.2 to 40.7 cm{sup 3} (p = 0.0013). The dose coverage as measured by volume receiving >95% of the prescription dose (V95%) of the WB without a 5 mm superficial layer decreases by only 0.74% (p = 0.0002) and the V95% for the tumor bed with 1.5 cm margin remains unchanged. Conclusions: This study has demonstrated the feasibility of using a SVM-based algorithm to determine optimal beam placement without a physician's intervention. The proposed method reduced the dose to OARs, especially for supine treated patients, without any relevant degradation of dose homogeneity and coverage in general.

  15. Evaluation of a GEM and CAT-based detector for radiation therapy beam monitoring

    International Nuclear Information System (INIS)

    Brahme, A.; Danielsson, M.; Iacobaeus, C.; Ostling, J.; Peskov, V.; Wallmark, M.

    2000-01-01

    We are developing a radiation therapy beam monitor for the Karolinska Institute. This monitor will consist of two consecutive detectors confined in one gas chamber: a 'keV-photon detector', which will allow diagnostic quality visualization of the patient, and a 'MeV-photon detector', that will measure the absolute intensity of the therapy beam and its position with respect to the patient. Both detectors are based on highly radiation resistant gas and solid photon to electron converters, combined with GEMs and a CAT as amplification structures. We have performed systematic studies of the high-rate characteristics of the GEM and the CAT, as well as tested the electron transfer through these electron multipliers and various types of converters. The tests show that the GEM and the CAT satisfy all requirements for the beam monitoring system. As a result of these studies we successfully developed and tested a full section of the beam monitor equipped with a MeV-photon converter placed between the GEM and the CAT

  16. Fabrication of phonon-based metamaterial structures using focused ion beam patterning

    Science.gov (United States)

    Bassim, Nabil D.; Giles, Alexander J.; Ocola, Leonidas E.; Caldwell, Joshua D.

    2018-02-01

    The focused ion beam (FIB) is a powerful tool for rapid prototyping and machining of functional nanodevices. It is employed regularly to fabricate test metamaterial structures but, to date, has been unsuccessful in fabricating metamaterial structures with features at the nanoscale that rely on surface phonons as opposed to surface plasmons because of the crystalline damage that occurs with the collision cascade associated with ion sputtering. In this study, we employ a simple technique of protecting the crystalline substrate in single-crystal 4H-SiC to design surface phonon polariton-based optical resonance structures. By coating the material surface with a thin film of chromium, we have placed a material of high sputter resistance on the surface, which essentially absorbs the energy in the beam tails. When the beam ultimately punches through the Cr film, the hard walls in the film have the effect of channeling the beam to create smooth sidewalls. This demonstration opens the possibility of further rapid-prototyping of metamaterials using FIB.

  17. Beam-hardening correction in CT based on basis image and TV model

    International Nuclear Information System (INIS)

    Li Qingliang; Yan Bin; Li Lei; Sun Hongsheng; Zhang Feng

    2012-01-01

    In X-ray computed tomography, the beam hardening leads to artifacts and reduces the image quality. It analyzes how beam hardening influences on original projection. According, it puts forward a kind of new beam-hardening correction method based on the basis images and TV model. Firstly, according to physical characteristics of the beam hardening an preliminary correction model with adjustable parameters is set up. Secondly, using different parameters, original projections are operated by the correction model. Thirdly, the projections are reconstructed to obtain a series of basis images. Finally, the linear combination of basis images is the final reconstruction image. Here, with total variation for the final reconstruction image as the cost function, the linear combination coefficients for the basis images are determined according to iterative method. To verify the effectiveness of the proposed method, the experiments are carried out on real phantom and industrial part. The results show that the algorithm significantly inhibits cup and strip artifacts in CT image. (authors)

  18. Development of plant-based resist materials in electron beam lithography

    Science.gov (United States)

    Takei, Satoshi; Oshima, Akihiro; Yanamori, Naomi; Sekiguchi, Atsushi; Kozawa, Takahiro; Tagawa, Seiichi

    2011-04-01

    Electron beam lithography has great potential for future production of nano-imprint templates, light-emitting diodes, solar cell devices, actuators, biosensors, and micro electro mechanical systems (MEMS) where continued success ultimately requires improvements in current processing technologies. Electron beam lithography is promising for advancing multiple electronic applications due to several advantages such as high resolution, deep depth of focus, flexibility in material design, and assumable cost. This study presents progress in the development of a new plant-based resist material (TPU-EBR1) to achieve high exposure sensitivity and lower film thickness shrinkage by electron beam irradiation. Highly efficient crosslinking properties and high quality patterning line images were provided by specific process conditions of 30 keV electron beam lithography. Lower film thickness shrinkage of the newly developed TPU-EBR than that of the referenced acrylate type resist material is one of key to achieve EB patterning. The validity of our approach using the developed TPU-EBR was confirmed experimentally. In addition, this new approach was demonstrated to apply glucose and dextrin derivatives as the eco-friendlier compounds to the resist materials in micro and nano-patterning processes for environmentally-compatible electronic device fabrications.

  19. Ring resonator-based single-chip 1x8 optical beam forming network in LPCVD waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim; Koonen, A.M.J.; Leijtens, X.J.M.; van den Boom, H.P.A.; Verdurmen, E.J.M.; Molina Vázquez, J.

    2006-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in beam forming networks (BFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art 1×8 OBFN chip has been

  20. Single-chip ring resonator-based 1 x 8 optical beam forming network in CMOS-compatible waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim

    2007-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in optical beam forming networks (OBFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art ring resonator-

  1. Damage detection in multi-span beams based on the analysis of frequency changes

    International Nuclear Information System (INIS)

    Gillich, G R; Ntakpe, J L; Praisach, Z I; Mimis, M C; Abdel Wahab, M

    2017-01-01

    Crack identification in multi-span beams is performed to determine whether the structure is healthy or not. Among all crack identification methods, these based on measured natural frequency changes present the advantage of simplicity and easy to use in practical engineering. To accurately identify the cracks characteristics for multi-span beam structure, a mathematical model is established, which can predict frequency changes for any boundary conditions, the intermediate supports being hinges. This relation is based on the modal strain energy concept. Since frequency changes are relative small, to obtain natural frequencies with high resolution, a signal processing algorithm based on superposing of numerous spectra is also proposed, which overcomes the disadvantage of Fast Fourier Transform in the aspect of frequency resolution. Based on above-mentioned mathematical model and signal processing algorithm, the method of identifying cracks on multi-span beams is presented. To verify the accuracy of this identification method, experimental examples are conducted on a two-span structure. The results demonstrate that the method proposed in this paper can accurately identify the crack position and depth. (paper)

  2. Near-diffraction-limited segmented broad area diode laser based on off-axis spectral beam combining

    DEFF Research Database (Denmark)

    Jensen, O.B.; Thestrup Nielsen, Birgitte; Andersen, Peter E.

    2006-01-01

    The beam quality of a 500-mu m-wide broad area diode laser with five active segments has been improved beyond the beam quality of the individual segments. The principle of this new laser system is based on off-axis feedback in combination with spectral beam combining. By using a double......-feedback scheme we are able to improve the beam quality of the laser by a factor of 23 from M-2 = 55 for the free-running diode laser to M-2 = 2.4 for the laser with feedback at a drive current of 2.2 A. The improved M-2 value is a factor of 3.4 below M-2 = 8.2 for a single free-running segment. This is the first...... time that the beam quality of a segmented broad area diode laser has been improved beyond the beam quality of the individual segments....

  3. THE AGS-BASED SUPER NEUTRINO BEAM FACILITY CONCEPTUAL DESIGN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    WENG,W.T.; DIWAN,M.; RAPARIA,D.

    2004-10-08

    After more than 40 years of operation, the AGS is still at the heart of the Brookhaven hadron accelerator complex. This system of accelerators presently comprises a 200 MeV linac for the pre-acceleration of high intensity and polarized protons, two Tandem Van der Graaffs for the pre-acceleration of heavy ion beams, a versatile Booster that allows for efficient injection of all three types of beams into the AGS and, most recently, the two RHIC collider rings that produce high luminosity heavy ion and polarized proton collisions. For several years now, the AGS has held the world intensity record with more than 7 x 10{sup 13} protons accelerated in a single pulse. The requirements for the proton beam for the super neutrino beam are summarized and a schematic of the upgraded AGS is shown. Since the present number of protons per fill is already close to the required number, the upgrade is based on increasing the repetition rate and reducing beam losses (to avoid excessive shielding requirements and to maintain activation of the machine components at workable level). It is also important to preserve all the present capabilities of the AGS, in particular its role as injector to RHIC. The AGS Booster was built not only to allow the injection of any species of heavy ion into the AGS but to allow a fourfold increase of the AGS intensity. It is one-quarter the circumference of the AGS with the same aperture. However, the accumulation of four Booster loads in the AGS takes about 0.6 s, and is therefore not well suited for high average beam power operation. To minimize the injection time to about 1 ms, a 1.2 GeV linac will be used instead. This linac consists of the existing warm linac of 200 MeV and a new superconducting linac of 1.0 GeV. The multi-turn H{sup -} injection from a source of 30 mA and 720 {micro}s pulse width is sufficient to accumulate 9 x 10{sup 13} particle per pulse in the AGS[10]. The minimum ramp time of the AGS to full energy is presently 0.5 s; this must

  4. Beam-Based Error Identification and Correction Methods for Particle Accelerators

    CERN Document Server

    AUTHOR|(SzGeCERN)692826; Tomas, Rogelio; Nilsson, Thomas

    2014-06-10

    Modern particle accelerators have tight tolerances on the acceptable deviation from their desired machine parameters. The control of the parameters is of crucial importance for safe machine operation and performance. This thesis focuses on beam-based methods and algorithms to identify and correct errors in particle accelerators. The optics measurements and corrections of the Large Hadron Collider (LHC), which resulted in an unprecedented low β-beat for a hadron collider is described. The transverse coupling is another parameter which is of importance to control. Improvement in the reconstruction of the coupling from turn-by-turn data has resulted in a significant decrease of the measurement uncertainty. An automatic coupling correction method, which is based on the injected beam oscillations, has been successfully used in normal operation of the LHC. Furthermore, a new method to measure and correct chromatic coupling that was applied to the LHC, is described. It resulted in a decrease of the chromatic coupli...

  5. Intense heavy ion beam-induced temperature effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, K.; Tomut, M.; Simon, P.; Hubert, C.; Romanenko, A.; Lommel, B.; Trautmann, C.

    2015-01-01

    At the future FAIR facility, reliably working solid carbon stripper foils are desired for providing intermediate charge states to SIS18. With the expected high beam intensities, the foils experience enhanced degradation and limited lifetime due to severe radiation damage, stress waves, and thermal effects. This work presents systematic measurements of the temperature of different carbon-based stripper foils (amorphous, diamond-like, and carbon-nanotube based) exposed to 4.8 MeV/u U, Bi, and Au beams of different pulse intensities. Thermal and spectroscopic analyses were performed by means of infrared thermography and Fourier transform infrared spectroscopy. The resulting temperature depends on the foil thickness and strongly increases with increasing pulse intensity and repetition rate. (author)

  6. Simultaneous optimization of beam orientations, wedge filters and field weights for inverse planning with anatomy-based MLC fields

    International Nuclear Information System (INIS)

    Beaulieu, Frederic; Beaulieu, Luc; Tremblay, Daniel; Roy, Rene

    2004-01-01

    As an alternative between manual planning and beamlet-based IMRT, we have developed an optimization system for inverse planning with anatomy-based MLC fields. In this system, named Ballista, the orientation (table and gantry), the wedge filter and the field weights are simultaneously optimized for every beam. An interesting feature is that the system is coupled to Pinnacle3 by means of the PinnComm interface, and uses its convolution dose calculation engine. A fully automatic MLC segmentation algorithm is also included. The plan evaluation is based on a quasi-random sampling and on a quadratic objective function with penalty-like constraints. For efficiency, optimal wedge angles and wedge orientations are determined using the concept of the super-omni wedge. A bound-constrained quasi-Newton algorithm performs field weight optimization, while a fast simulated annealing algorithm selects the optimal beam orientations. Moreover, in order to generate directly deliverable plans, the following practical considerations have been incorporated in the system: collision between the gantry and the table as well as avoidance of the radio-opaque elements of a table top. We illustrate the performance of the new system on two patients. In a rhabdomyosarcoma case, the system generated plans improving both the target coverage and the sparing of the parotide, as compared to a manually designed plan. In the second case presented, the system successfully produced an adequate plan for the treatment of the prostate while avoiding both hip prostheses. For the many cases where full IMRT may not be necessary, the system efficiently generates satisfactory plans meeting the clinical objectives, while keeping the treatment verification much simpler

  7. Partition of unity-based discontinuous finite elements: GFEM, PUFEM, XFEM

    OpenAIRE

    Simone, Angelo

    2007-01-01

    International audience; In this paper we review some basic notions of partition of unity-based discontinuous finite elements showing their relation to the Generalized Finite Element Method. A minimal one-dimensional example illustrates some of the issues related to the computer implementation of the method and highlights the relative simplicity of the approach. The ability of the approach in describing displacement discontinuities independently of the finite element mesh is shown in a classic...

  8. Generation of powerful electron beams in a dense gas with a dielectric-barrier-discharge-based cathode

    International Nuclear Information System (INIS)

    Mitko, S.V.; Udalov, Y.B.; Peters, P.J.M.; Ochkin, V.N.; Boller, K.-J.

    2003-01-01

    An electron beam source based on a dielectric barrier discharge and a perforated anode working in a dense gas is described. Electron beams with current densities up to 60 A/cm 2 and pulse durations of 150 ns were generated. Stable operation of the device at a repetition frequency of 200 Hz has been demonstrated

  9. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Science.gov (United States)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-11-01

    Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  10. A new approach for beam hardening correction based on the local spectrum distributions

    Energy Technology Data Exchange (ETDEWEB)

    Rasoulpour, Naser; Kamali-Asl, Alireza, E-mail: a_kamali@sbu.ac.ir; Hemmati, Hamidreza

    2015-09-11

    Energy dependence of material absorption and polychromatic nature of x-ray beams in the Computed Tomography (CT) causes a phenomenon which called “beam hardening”. The purpose of this study is to provide a novel approach for Beam Hardening (BH) correction. This approach is based on the linear attenuation coefficients of Local Spectrum Distributions (LSDs) in the various depths of a phantom. The proposed method includes two steps. Firstly, the hardened spectra in various depths of the phantom (or LSDs) are estimated based on the Expectation Maximization (EM) algorithm for arbitrary thickness interval of known materials in the phantom. The performance of LSD estimation technique is evaluated by applying random Gaussian noise to transmission data. Then, the linear attenuation coefficients with regarding to the mean energy of LSDs are obtained. Secondly, a correction function based on the calculated attenuation coefficients is derived in order to correct polychromatic raw data. Since a correction function has been used for the conversion of the polychromatic data to the monochromatic data, the effect of BH in proposed reconstruction must be reduced in comparison with polychromatic reconstruction. The proposed approach has been assessed in the phantoms which involve less than two materials, but the correction function has been extended for using in the constructed phantoms with more than two materials. The relative mean energy difference in the LSDs estimations based on the noise-free transmission data was less than 1.5%. Also, it shows an acceptable value when a random Gaussian noise is applied to the transmission data. The amount of cupping artifact in the proposed reconstruction method has been effectively reduced and proposed reconstruction profile is uniform more than polychromatic reconstruction profile. - Highlights: • A novel Beam Hardening (BH) correction approach was described. • A new concept named Local Spectrum Distributions (LSDs) was used to BH

  11. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    Science.gov (United States)

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Shear design and assessment of reinforced and prestressed concrete beams based on a mechanical model

    OpenAIRE

    Marí Bernat, Antonio Ricardo; Bairán García, Jesús Miguel; Cladera Bohigas, Antoni; Oller Ibars, Eva

    2016-01-01

    Safe and economical design and assessment of reinforced (RC) and prestressed concrete (PC) beams requires the availability of accurate but simple formulations which adequately capture the structural response. In this paper, a mechanical model for the prediction of the shear-flexural strength of PC and RC members with rectangular, I, or T sections, with and without shear reinforcement, is presented. The model is based on the principles of concrete mechanics and on assumptions supported by the ...

  13. A new approach for beam hardening correction based on the local spectrum distributions

    International Nuclear Information System (INIS)

    Rasoulpour, Naser; Kamali-Asl, Alireza; Hemmati, Hamidreza

    2015-01-01

    Energy dependence of material absorption and polychromatic nature of x-ray beams in the Computed Tomography (CT) causes a phenomenon which called “beam hardening”. The purpose of this study is to provide a novel approach for Beam Hardening (BH) correction. This approach is based on the linear attenuation coefficients of Local Spectrum Distributions (LSDs) in the various depths of a phantom. The proposed method includes two steps. Firstly, the hardened spectra in various depths of the phantom (or LSDs) are estimated based on the Expectation Maximization (EM) algorithm for arbitrary thickness interval of known materials in the phantom. The performance of LSD estimation technique is evaluated by applying random Gaussian noise to transmission data. Then, the linear attenuation coefficients with regarding to the mean energy of LSDs are obtained. Secondly, a correction function based on the calculated attenuation coefficients is derived in order to correct polychromatic raw data. Since a correction function has been used for the conversion of the polychromatic data to the monochromatic data, the effect of BH in proposed reconstruction must be reduced in comparison with polychromatic reconstruction. The proposed approach has been assessed in the phantoms which involve less than two materials, but the correction function has been extended for using in the constructed phantoms with more than two materials. The relative mean energy difference in the LSDs estimations based on the noise-free transmission data was less than 1.5%. Also, it shows an acceptable value when a random Gaussian noise is applied to the transmission data. The amount of cupping artifact in the proposed reconstruction method has been effectively reduced and proposed reconstruction profile is uniform more than polychromatic reconstruction profile. - Highlights: • A novel Beam Hardening (BH) correction approach was described. • A new concept named Local Spectrum Distributions (LSDs) was used to BH

  14. Ductility and Ultimate Capacity of Prestressed Steel Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Chengquan Wang

    2017-01-01

    Full Text Available Nonlinear numerical analysis of the structural behaviour of prestressed steel reinforced concrete (PSRC beams was carried out by using finite element analysis software ABAQUS. By comparing the load-deformation curves, the rationality and reliability of the finite element model have been confirmed; moreover, the changes of the beam stiffness and stress in the forcing process and the ultimate bearing capacity of the beam were analyzed. Based on the model, the effect of prestressed force, and H-steel to the stiffness, the ultimate bearing capacity and ductility of beam were also analyzed.

  15. Finite element based model of parchment coffee drying

    Directory of Open Access Journals (Sweden)

    Preeda Prakotmak

    2015-03-01

    Full Text Available Heat and mass transfer in the parchment coffee during convective drying represents a complicated phenomena since it is important to consider not only the transport phenomena during drying but also the various changes of the drying materials. In order to describe drying of biomaterials adequately, a suitable mathematical model is needed. The aim of the present study was to develop a 3-D finite element model to simulate the transport of heat and mass within parchment coffee during the thin layer drying. Thin layer drying experiments of coffee bean and parchment coffee were conducted in the temperature range of 40-60o C, the relative humidity ranged from 14 to 28% and drying air velocity of 1.4 m/s. The moisture diffusivities in different coffee’s components (parchment and coffee bean were determined by minimizing the RMSE between the predicted and the experimental data of moisture contents. The simulated results showed that the moisture diffusivities of coffee bean were three orders of magnitude higher than those of the parchment. Moisture diffusivities of coffee components were found to significantly increase (P<0.05 with the increase in drying air temperature and were expressed by Arrhenius-type equations. Moreover, the model was also used to predict the moisture gradient in coffee bean during drying. The model simulates the moisture contents in different components of parchment coffee well and it provides a better understanding of the transport processes in the different components of the parchment coffee

  16. Thermal neutron beam modification studies using an isotope based neutron radiography facility

    International Nuclear Information System (INIS)

    Baheti, G.L.; Khatri, P.K.; Meghwal, L.R.; Meena, V.L.

    1996-01-01

    Neutron radiography has established itself as one of the advanced NDT technique. Isotope based facilities are being developed to make the technique available for inplant use. Quality of neutron radiograph obtained is a function of beam parameters like flux, Cd ratio and neutron to gamma ratio, scattered neutrons etc. These parameters can be modified using design features of the facility. Effect of modifications in these parameters on final image quality has been studied and were found to be useful in meeting the widely varying radiographic requirements, particularly through an isotope based facility. These modifications can also overcome some of the inherent limitations of isotope based neutron radiography facilities. (author)

  17. Atmospheric Signatures and Effects of Space-based Relativistic Electron Beam Injection

    Science.gov (United States)

    Marshall, R. A.; Sanchez, E. R.; Kero, A.; Turunen, E. S.; Marsh, D. R.

    2017-12-01

    Future relativistic electron beam injection experiments have the potential to provide groundbreaking insights into the physics of wave-particle interactions and beam-neutral interactions, relevant to space physics and to fundamental plasma physics. However, these experiments are only useful if their signatures can be detected. In this work, we use a physics-based forward modeling framework to investigate the observable signatures of a relativistic beam interacting with the upper atmosphere. The modeling framework is based around the Electron Precipitation Monte Carlo (EPMC) model, used to simulate electron precipitation in the upper atmosphere. That model is coupled to physics-based models of i) optical emission production; ii) bremsstrahlung photon production and propagation; iii) D-region ion chemistry; and iv) VLF wave propagation in the Earth-ionosphere waveguide. Using these modeling tools, we predict the optical, X-ray, chemical, radar, and VLF signatures of a realistic beam injection, based on recent space-based accelerator designs. In particular, we inject a beam pulse of 10 mA for a duration of 500 μs at an energy of 1 MeV, providing a total pulse energy of 5 J. We further investigate variations in these parameters, in particular the total energy and the electron energy. Our modeling shows that for this 5 J pulse injection at 1 MeV electron energy, the optical signal is easily detectable from the ground in common emission bands, but the X-ray signal is likely too weak to be seen from either balloons or LEO orbiting spacecraft. We further predict the optical signal-to-noise ratio that would be expected in different optical systems. Chemical signatures such as changes to NOx and HOx concentrations are too short-lived to be detectable; however our modeling provides a valuable estimate of the total chemical response. Electron density perturbations should be easily measurable from ground-based high-power radars and via VLF subionospheric remote sensing

  18. Beam diagnostics

    CERN Document Server

    Raich, U

    2008-01-01

    Most beam measurements are based on the electro-magnetic interaction of fields induced by the beam with their environment. Beam current transformers as well as beam position monitors are based on this principle. The signals induced in the sensors must be amplified and shaped before they are converted into numerical values. These values are further treated numerically in order to extract meaningful machine parameter measurements. The lecture introduces the architecture of an instrument and shows where in the treatment chain digital signal analysis can be introduced. Then the use of digital signal processing is presented using tune measurements, orbit and trajectory measurements as well as beam loss detection and longitudinal phase space tomography as examples. The hardware as well as the treatment algorithms and their implementation on Digital Signal Processors (DSPs) or in Field Programmable Gate Arrays (FPGAs) are presented.

  19. Bridging Creativity and Group by Elements of Problem-Based Learning (PBL)

    DEFF Research Database (Denmark)

    Zhou, Chunfang

    2015-01-01

    As the recent studies have discussed Problem-Based Learning (PBL) as popular model of fostering creativity, this paper aims to provide a theoretical framework bridging creativity and student group context by elements of PBL. According to the literature review, the elements at least include group ...

  20. Bending Moment Calculations for Piles Based on the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-xin Jie

    2013-01-01

    Full Text Available Using the finite element analysis program ABAQUS, a series of calculations on a cantilever beam, pile, and sheet pile wall were made to investigate the bending moment computational methods. The analyses demonstrated that the shear locking is not significant for the passive pile embedded in soil. Therefore, higher-order elements are not always necessary in the computation. The number of grids across the pile section is important for bending moment calculated with stress and less significant for that calculated with displacement. Although computing bending moment with displacement requires fewer grid numbers across the pile section, it sometimes results in variation of the results. For displacement calculation, a pile row can be suitably represented by an equivalent sheet pile wall, whereas the resulting bending moments may be different. Calculated results of bending moment may differ greatly with different grid partitions and computational methods. Therefore, a comparison of results is necessary when performing the analysis.