WorldWideScience

Sample records for beam cooling

  1. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ, M.

    2005-05-16

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  2. Cooling and heating of crystalline ion beams

    CERN Document Server

    Schramm, U; Bussmann, M; Habs, D

    2003-01-01

    The crystallization of ion beams has recently been established in the rf quadrupole storage ring PALLAS (PAul Laser CooLing Acceleration System) for laser-cooled sup 2 sup 4 Mg sup + ion beams at an energy of about 1 eV. Yet, unexpectedly sharp constraints had to be met concerning the confinement strength and the longitudinal laser cooling rate. In this paper, related and up to now unseen heating mechanisms are pinpointed for crystalline beams. The weak but inevitable diffusive transverse heating associated with the laser cooling process itself is investigated, possibly allowing the future measurement of the latent heat of the ion crystal. As a function of the beam velocity, the influence of bending shear on the attainability of larger crystalline structures is presented. Finally, rf heating of crystalline beams of different structure is studied for discontinuous cooling.

  3. Laser-cooled continuous ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S. [and others

    1995-08-01

    A collaboration with a group in Arhus, Denmark, using their storage ring ASTRID, brought about better understanding of ion beams cooled to very low temperatures. The longitudinal Schottky fluctuation noise signals from a cooled beam were studied. The fluctuation signals are distorted by the effects of space charge as was observed in earlier measurements at other facilities. However, the signal also exhibits previously unobserved coherent components. The ions` velocity distribution, measured by a laser fluorescence technique suggests that the coherence is due to suppression of Landau damping. The observed behavior has important implications for the eventual attainment of a crystalline ion beam in a storage ring. A significant issue is the transverse temperature of the beam -- where no direct diagnostics are available and where molecular dynamics simulations raise interesting questions about equilibrium.

  4. Laser-cooled bunched ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S. [and others

    1995-08-01

    In collaboration with the Arhus group, the laser cooling of a beam bunched by an rf electrode was investigated at the ASTRID storage ring. A single laser is used for unidirectional cooling, since the longitudinal velocity of the beam will undergo {open_quotes}synchrotron oscillations{close_quotes} and the ions are trapped in velocity space. As the cooling proceeds the velocity spread of the beam, as well as the bunch length is measured. The bunch length decreases to the point where it is limited only by the Coulomb repulsion between ions. The measured length is slightly (20-30%) smaller than the calculated limit for a cold beam. This may be the accuracy of the measurement, or may indicate that the beam still has a large transverse temperature so that the longitudinal repulsion is less than would be expected from an absolutely cold beam. Simulations suggest that the coupling between transverse and longitudinal degrees of freedom is strong -- but this issue will have to be resolved by further measurements.

  5. Muon Beam Helical Cooling Channel Design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  6. SUCCESSFUL BUNCHED BEAM STOCHASTIC COOLING IN RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BRENNAN, J.M.; BLASKIEWICZ, M.; SEVERINO, F.

    2006-06-23

    We report on a successful test of bunch-beam stochastic cooling in RHIC at 100 GeV. The cooling system is designed for heavy ions but was tested in the recent RHIC run which operated only with polarized protons. To make an analog of the ion beam a special bunch was prepared with very low intensity. This bunch had {approx}1.5 x 10{sup 9} protons, while the other 100 bunches contained {approx}1.2 x 10{sup 11} protons each. With this bunch a cooling time on the order 1 hour was observed through shortening of the bunch length and increase in the peak bunch current, together with a narrowing of the spectral line width of the Scottky power at 4 GHz. The low level signal processing electronics and the isolated-frequency kicker cavities are described.

  7. Laser cooling of a stored ion beam: A first step towards crystalline beams

    Energy Technology Data Exchange (ETDEWEB)

    Hangst, J.S.

    1992-09-01

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid.

  8. STOCHASTIC COOLING OF HIGH-ENERGY BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-06-25

    Stochastic cooling of 100 GeV/nucleon bunched beams has been achieved in the Relativistic Heavy Ion Collider (RHIC). The physics and technology of the longitudinal cooling system are discussed, and plans for a transverse cooling system are outlined.

  9. Helical Muon Beam Cooling Channel Engineering Design

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; /Fermilab; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  10. Helical muon beam cooling channel engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary

  11. Helical muon beam cooling channel engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary project was approved by the DOE

  12. Laser synchrotron radiation and beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Esarey, E.; Sprangle, P.; Ting, A. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    The interaction of intense {approx_gt} 10{sup 18} W/cm{sup 2}, short pulse ({approx_lt} 1 ps) lasers with electron beams and plasmas can lead to the generation of harmonic radiation by several mechanisms. Laser synchrotron radiation may provide a practical method for generating tunable, near monochromatic, well collimated, short pulse x-rays in compact, relatively inexpensive source. The mechanism for the generation of laser synchrotron radiation is nonlinear Thomson scattering. Short wavelengths can be generated via Thomson scattering by two methods, (i) backscattering from relativistic electron beams, in which the radiation frequency is upshifted by the relativistic factor 4{gamma}{sup 2}, and (ii) harmonic scattering, in which a multitude of harmonics are generated with harmonic numbers extending out to the critical harmonic number nc{approx_equal}a{sub 0}{sup 3} {much_gt} 1, where a{sub 0} {approx_equal}10{sup -9}{lambda}I{sup 1/2}, {lambda} is the laser wavelength in {mu}m and I is the laser intensity in W/cm{sup 2}. Laser synchrotron sources are capable of generating short ({approx_lt} ps) x-ray pulses with high peak flux ({approx_gt} 10{sup 21} photons/s) and brightness ({approx_gt}{sup 19} photons/s-mm{sup 2}-mrad{sup 2} 0.1%BW. As the electron beam radiates via Thomson scattering, it can subsequently be cooled, i.e., the beam emittance and energy spread can be reduced. This cooling can occur on rapid ({approximately} ps) time scales. In addition, electron distributions with sufficiently small axial energy spreads can be used to generate coherent XUV radiation via a laser-pumped FEL mechanism.

  13. Microbunched electron cooling for high-energy hadron beams.

    Science.gov (United States)

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  14. Laser cooling of electron beams for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Telnov, V.

    1996-10-01

    A novel method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. With reasonable laser parameters (laser flash energy about 10 J) one can decrease transverse beam emittances by a factor about 10 per one stage. The ultimate transverse emittances are much below that given by other methods. Depolarization of a beam during the cooling is about 5--15% for one stage. This method is especially useful for photon colliders and open new possibilities for e{sup +}e{sup {minus}} colliders and x-ray FEL based on high energy linacs.

  15. Design and cooling of BESIII beryllium beam pipe

    Science.gov (United States)

    Li, Xunfeng; Ji, Quan; Wang, Li; Zheng, Lifang

    2008-01-01

    The beryllium beam pipe was restructured according to the requirements of the upgraded BESIII (Beijing Spectrometer) experiment. SMO-1 (sparking machining oil no. 1) was selected as the coolant for the central beryllium beam pipe. The cooling gap width of the beryllium beam pipe was calculated, the influence of concentrated heat load on the wall temperature of the beryllium beam pipe was studied, and the optimal velocity of the SMO-1 in the gap was determined at the maximum heat load. A cooling system for the beam pipe was developed to control the outer wall temperature of the beam pipe. The cooling system is reported in this paper with regard to the following two aspects: the layouts and the automation. The performance of the cooling system was tested on the beam pipe model with trim size. The test results show that the design of the beryllium beam pipe is reasonable and that the cooling system achieves the BESIII experimental aim. The cooling system has already passed the acceptance test and has been installed in position. It will be put into practice for the BESIII experiment in 2008.

  16. Emittance Reduction between EBIS LINAC and Booster by Electron Beam Cooling; Is Single Pass Cooling Possible?

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch,A.

    2008-04-01

    Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Preliminary calculations indicate that single pass cooling is feasible; momentum spread can be reduced by more than an order of magnitude in less than one meter.

  17. The experimental study of neutralized electron beams for electron cooling

    CERN Document Server

    Bosser, Jacques; MacCaferri, R; Molinari, G; Tranquille, G; Varenne, F; Korotaev, Yu V; Meshkov, I N; Polyakov, V A; Smirnov, A; Syresin, E M

    1996-01-01

    In this report we present the latest experimental results on electron beam neutralization. These experiments have been made at LEAR and on the JINR test bench. The main difficulty in obtaining neutralized beams resides in an instability which is dependent on the electron beam current. A number of methods have been developed in order to overcome this instability and have enabled us to further investigate the possibility of generating intense low energy electron beams for the cooling of Pb ions.

  18. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, Sergei M. [Univ. of Rochester, NY (United States)

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  19. Use of an Electron Beam for Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslave Derbenev

    2007-09-10

    Microwave instability of an electron beam can be used for a multiple increase in the collective response for the perturbation caused by a particle of a co-moving ion beam, i.e. for enhancement of friction force in electron cooling method. The low scale (hundreds GHz and higher frequency range) space charge or FEL type instabilities can be produced (depending on conditions) by introducing an alternating magnetic fields along the electron beam path. Beams’ optics and noise conditioning for obtaining a maximal cooling effect and related limitations will be discussed. The method promises to increase by a few orders of magnitude the cooling rate for heavy particle beams with a large emittance for a wide energy range with respect to either electron and conventional stochastic cooling.

  20. Cooling of Relativistic Electron-Beams

    NARCIS (Netherlands)

    Bazylev, V. A.; Tulupov, A. V.

    1993-01-01

    A method of reducing the energy spread of an electron beam in a free-electron laser is suggested. The electron beam compression is based on a nonlinear mechanism of electron interactions with a ponderomotive wave in the presence of a constant and uniform magnetic field perpendicular to the electron

  1. Parametric-resonance Ionization Cooling of Muon Beams

    CERN Document Server

    Derbenev, Ya S; Afanasev, A; Beard, K B; Johnson, R; Erdelyi, B; Maloney, J A

    2012-01-01

    Cooling of muon beams for the next-generation lepton collider is necessary to achieve its higher luminosity with fewer muons. In this paper we present an idea to combine ionization cooling with parametric resonances that is expected to lead to muon beams with much smaller transverse sizes. We describe a linear magnetic transport channel where a half integer resonance is induced such that the normal elliptical motion of particles in x-x' phase space becomes hyperbolic, with particles moving to smaller x and larger x' at the channel focal points. Thin absorbers placed at the focal points of the channel then cool the angular divergence of the beam by the usual ionization cooling mechanism where each absorber is followed by RF cavities. We present a theory of Parametric-resonance Ionization Cooling (PIC), starting with the basic principles in the context of a simple quadrupole-focused beam line. Then we discuss detuning caused by chromatic, spherical, and non-linear field aberrations and the techniques needed to ...

  2. Intense Atomic and Molecular Beams via Neon Buffer Gas Cooling

    CERN Document Server

    Patterson, David; Doyle, John M

    2008-01-01

    We realize a continuous guided beam of cold deuterated ammonia with a flux of 3e11 ND3 molecules/s and a continuous free-space beam of cold potassium with a flux of 1e16 K atoms/s. A novel feature of the buffer gas source used to produce these beams is cold neon, which, due to intermediate Knudsen number beam dynamics, produces a forward velocity and low-energy tail that is comparable to much colder helium-based sources. We expect this source to be trivially generalizable to a very wide range of atomic and molecular species with significant vapor pressure below 1000 K. This source has properties that make it a good starting point for laser cooling of molecules or atoms, cold collision studies, trapping, or nonlinear optics in buffer-gas-cooled atomic or molecular gases.

  3. Beam cooling using a gas-filled RFQ ion guide

    CERN Document Server

    Henry, S; De Saint-Simon, M; Jacotin, M; Képinski, J F; Lunney, M D

    1999-01-01

    A radiofrequency quadrupole mass filter is being developed for use as a high-transmission beam cooler by operating it in buffer gas at high pressure. Such a device will increase the sensitivity of on-line experiments that make use of weakly produced radioactive ion beams. We present simulations and some preliminary measurements for a device designed to cool the beam for the MISTRAL RF mass spectrometer on- line at ISOLDE. The work is carried out partly within the frame of the European Community research network: EXOTRAPS. (9 refs).

  4. ICOOL: A SIMULATION CODE FOR IONIZATION COOLING OF MUON BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    FERNOW,R.C.

    1999-03-25

    Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user.

  5. BUNCHED BEAM STOCHASTIC COOLING SIMULAITONS AND COMPARISON WITH DATA

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-09-10

    With the experimental success of longitudinal, bunched beam stochastic cooling in RHIC it is natural to ask whether the system works as well as it might and whether upgrades or new systems are warranted. A computer code, very similar to those used for multi-particle coherent instability simulations, has been written and is being used to address these questions.

  6. Wien filter for cooled low-energy radioactive ion beams

    NARCIS (Netherlands)

    Nummela, S; Dendooven, P; Heikkinen, P; Huikari, J; Nieminen, A; Jokinen, A; Rinta-Antila, S; Rubchenya, V.; Aysto, J

    2002-01-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q = +2-->q = +1 charge exchange process in an ion cooler, T

  7. Helical channel design and technology for cooling of muon beams

    CERN Document Server

    Yonehara, K; Johnson, R P

    2012-01-01

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  8. LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.

    2006-06-23

    Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.

  9. The effect of laser beam size in a zig-zag collimator on transverse cooling of a krypton atomic beam

    Indian Academy of Sciences (India)

    Vivek Singh; V B Tiwari; S Singh; S R Mishra; H S Rawat

    2014-07-01

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on transverse cooling of a krypton atomic beam is investigated. The simulation results show that discreteness in the interaction between the cooling laser beam and atomic beam, arising due to finite size and incidence angle of the cooling laser beam, significantly reduces the value of transverse velocity capture range of the collimator. The experimental observations show the trend similar to that obtained from simulations. Our study can be particularly useful where a small zig-zag collimator is required.

  10. Wien filter for cooled low-energy radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nummela, S. E-mail: saara.nummela@phys.jyu.fi; Dendooven, P.; Heikkinen, P.; Huikari, J.; Nieminen, A.; Jokinen, A.; Rinta-Antila, S.; Rubchenya, V.; Aeystoe, J

    2002-04-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q=+2{yields}q=+1 charge exchange process in an ion cooler. The performance of the Wien filter has been tested off-line with a discharge ion source as well as on-line with a radioactive beam. The electron capture process of cooled q=+2 ions has been investigated in a radiofrequency quadrupole ion cooler with varying partial pressures of nitrogen. Also, the superasymmetric fission production yields of 68

  11. High Pressure, High Gradient RF Cavities for Muon Beam Cooling

    CERN Document Server

    Johnson, R P

    2004-01-01

    High intensity, low emittance muon beams are needed for new applications such as muon colliders and neutrino factories based on muon storage rings. Ionization cooling, where muon energy is lost in a low-Z absorber and only the longitudinal component is regenerated using RF cavities, is presently the only known cooling technique that is fast enough to be effective in the short muon lifetime. RF cavities filled with high-pressure hydrogen gas bring two advantages to the ionization technique: the energy absorption and energy regeneration happen simultaneously rather than sequentially, and higher RF gradients and better cavity breakdown behavior are possible than in vacuum due to the Paschen effect. These advantages and some disadvantages and risks will be discussed along with a description of the present and desired RF R&D efforts needed to make accelerators and colliders based on muon beams less futuristic.

  12. Atomic physics experiments with stored cooled heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Datz, S.

    1986-01-01

    The wide ranging interest in the development of heavy ion synchrotrons with electron beam cooling is evident from the number of projects presently under way. Although much of the initial motivation for these rings stemmed from nuclear and particle physics, a considerable amount of atomic physics experimentation is planned. This paper surveys some of the new opportunities in atomic physics which may be made available with storage ring systems. 25 refs., 3 tabs.

  13. Colliding beam physics at Fermilab: interaction regions, beam storage, antiproton cooling, production, and colliding

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.K. (ed.)

    1977-01-01

    The purpose of the colliding beams experment department at Fermilab was to bring about collisions of the stored beams in the energy doubler/saver and main ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the main ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part one is on interaction regions, beam storage, antiproton cooling, production, and colliding. 40 papers from this part are included in the data base. (GHT)

  14. A buffer gas cooled beam of barium monohydride

    Science.gov (United States)

    Iwata, Geoffrey; Tarallo, Marco; Zelevinsky, Tanya

    2016-05-01

    Significant advances in direct laser cooling of diatomic molecules have opened up a wide array of molecular species to precision studies spanning many-body physics, quantum collisions and ultracold dissociation. We present a cryogenic beam source of barium monohydride (BaH), and study laser ablation of solid precursor targets as well as helium buffer gas cooling dynamics. Additionally, we cover progress towards a molecular magneto-optical trap, with spectroscopic studies of relevant cooling transitions in the B2 Σ molecules, including resolution of hyperfine structure and precision measurements of the vibrational Frank-Condon factors. Finally, we examine the feasibility of photo dissociation of trapped BaH molecules to yield optically accessible samples of ultracold hydrogen.

  15. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  16. Cooling of relativistic electron beams in chirped laser pulses

    CERN Document Server

    Yoffe, Samuel R; Kravets, Yevgen; Jaroszynski, Dino A

    2015-01-01

    The next few years will see next-generation high-power laser facilities (such as the Extreme Light Infrastructure) become operational, for which it is important to understand how interaction with intense laser pulses affects the bulk properties of a relativistic electron beam. At such high field intensities, we expect both radiation reaction and quantum effects to play a significant role in the beam dynamics. The resulting reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction depends only on the energy of the laser pulse. Quantum effects suppress this cooling, with the dynamics additionally sensitive to the distribution of energy within the pulse. Since chirps occur in both the production of high-intensity pulses (CPA) and the propagation of pulses in media, the effect of using chirps to modify the pulse shape has been investigated using a semi-classical extension to the Landau--Lifshitz theory. Results indicate that even la...

  17. Semi-classical beam cooling in an intense laser pulse

    CERN Document Server

    Yoffe, Samuel R; Noble, Adam; Jaroszynski, Dino A

    2014-01-01

    We present a novel technique for studying the evolution of a particle distribution using single particle dynamics such that the distribution can be accurately reconstructed using fewer particles than existing approaches. To demonstrate this, the Landau-Lifshiftz description of radiation reaction is adapted into a semi-classical model, for which the Vlasov equation is intractable. Collision between an energetic electron bunch and high-intensity laser pulses are then compared using the two theories. Reduction in beam cooling is observed for the semi-classical case.

  18. Cold electron beams from cryo-cooled, alkali antimonide photocathodes

    CERN Document Server

    Cultrera, Luca; Lee, Hyeri; Liu, Xianghong; Bazarov, Ivan

    2015-01-01

    In this letter we report on the generation of cold electron beams using a Cs3Sb photocathode grown by co-deposition of Sb and Cs. By cooling the photocathode to 90 K we demonstrate a significant reduction in the mean transverse energy validating the long standing speculation that the lattice temperature contribution limits the mean transverse energy or thermal emittance near the photoemission threshold, opening new frontiers in generating ultra-bright beams. At 90 K, we achieve a record low thermal emittance of 0.2 $\\mu$m (rms) per mm of laser spot diameter from an ultrafast (sub-picosecond) photocathode with quantum efficiency greater than $7\\times 10^{-5}$ using a visible laser wavelength of 690 nm.

  19. A cryogenic buffer gas cooled beam of BaH for molecular laser cooling and ultracold fragmentation

    Science.gov (United States)

    Iwata, Geoffrey; Tarallo, Marco G.; Soerensen, Fabian; Zelevinsky, Tanya

    2015-05-01

    Laser cooled and trapped molecules promise many possibilities to explore a variety of fields such as many-body physics, quantum collisions and dissociation, and precision measurement. We report on an experiment for cooling and trapping barium monohydride (BaH) diatomic molecules. We present a cryogenic buffer gas cooling apparatus for producing a 4 K beam of BaH, and describe the laser cooling schemes necessary to load a molecular magneto-optical trap from that beam. Current progress includes identification of the cooling transitions in the BaH B2 Σ molecules and construction of the molecular beam. The large mass ratio of constituent atoms in BaH makes this system attractive for future studies of ultracold fragmentation, potentially resulting in samples of ultracold hydrogen atoms.

  20. Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Haaf, G. ten; Wouters, S. H. W.; Vredenbregt, E. J. D.; Mutsaers, P. H. A. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Geer, S. B. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2014-12-28

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.

  1. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran;

    2013-01-01

    advantage of renewable energy. The results showed that the energy consumption was 3% less in the 2-pipe chilled beam system in comparison with the conventional 4-pipe system when moving cooled and heated water through the building, transferring the energy to where it is needed. Using free cooling (taking...... consumption and hence energy savings in the 2-pipe chilled beam system in comparison with the 4-pipe system. The 2-pipe chilled beam system used high temperature cooling and low temperature heating with a water temperature of 20°C to 23°C, available for free most of the year. The system can thus take......Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings...

  2. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    CERN Document Server

    Bogomilov, M.

    2012-01-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz muon rate, with a neglible pion contamination in the beam.

  3. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bogomilov, M.; Karadzhov, Y.; Kolev, D.; Russinov, I.; Tsenov, R.; Vankova-Kirilova, G.; Wang, L.; Xu, F. Y.; Zheng, S. X.; Bertoni, R.; Bonesini, M.; Ferri, F.; Lucchini, G.; Mazza, R.; Paleari, F.; Strati, F.; Palladino, V.; Cecchet, G.; Bari, A. de; Capponi, M.; Cirillo, A.; Iaciofano, A.; Manfredini, A.; Parisi, M.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Mori, Y.; Kuno, Y.; Sakamoto, H.; Sato, A.; Yano, T.; Yoshida, M.; Ishimoto, S.; Suzuki, S.; Yoshimura, K.; Filthaut, F.; Garoby, R.; Gilardoni, S.; Gruber, P.; Hanke, K.; Haseroth, H.; Janot, P.; Lombardi, A.; Ramberger, S.; Vretenar, M.; Bene, P.; Blondel, A.; Cadoux, F.; Graulich, J. -S; Grichine, V.; Gschwendtner, E.; Masciocchi, F.; Sandstrom, R.; Verguilov, V.; Wisting, H.; Petitjean, C.; Seviour, R.; Alexander, J.; Charnley, G.; Collomb, N.; Griffiths, S.; Martlew, B.; Moss, A.; Mullacrane, I.; Oates, A.; Owens, P.; White, C.; York, S.; Adams, D.; Apsimon, R.; Barclay, P.; Baynham, D. E.; Bradshaw, T. W.; Courthold, M.; Drumm, P.; Edgecock, R.; Hayler, T.; Hills, M.; Ivaniouchenkov, Y.; Jones, A.; Lintern, A.; MacWaters, C.; Nelson, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rochford, J. H.; Rogers, C.; Spensley, W.; Tarrant, J.; Tilley, K.; Watson, S.; Wilson, A.; Forrest, D.; Soler, F. J. P.; Walaron, K.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Beuselinck, R.; Clark, D.; Clark, I.; Colling, D.; Dobbs, A.; Dornan, P.; Fayer, S.; Fish, A.; Hare, R.; Greenwood, S.; Jamdagni, A.; Kasey, V.; Khaleeq, M.; Leaver, J.; Long, K.; McKigney, E.; Matsushita, T.; Pasternak, J.; Sashalmi, T.; Savidge, T.; Takahashi, M.; Blackmore, V.; Carlisle, T.; Cobb, J. H.; Lau, W.; Rayner, M.; Tunnell, C. D.; Witte, H.; Yang, S.; Booth, C. N.; Hodgson, P.; Howlett, L.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.; Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Ellis, M.; Kyberd, P.; Littlefield, M.; Nebrensky, J. J.; Bross, A. D.; Geer, S.; Neuffer, D.; Moretti, A.; Popovic, M.; Cummings, M. A. C.; Roberts, T. J.; DeMello, A.; Green, M. A.; Li, D.; Virostek, S.; Zisman, M. S.; Freemire, B.; Hanlet, P.; Huang, D.; Kafka, G.; Kaplan, D. M.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y. K.; Bravar, U.; Onel, Y.; Cline, D.; Fukui, Y.; Lee, K.; Yang, X.; Rimmer, R. A.; Cremaldi, L. M.; Gregoire, G.; Hart, T. L.; Sanders, D. A.; Summers, D. J.; Coney, L.; Fletcher, R.; Hanson, G. G.; Heidt, C.; Gallardo, J.; Kahn, S.; Kirk, H.; Palmer, R. B.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  4. Enhanced Optical Cooling of Ion Beams for LHC

    CERN Document Server

    Bessonov, E G; Mikhailichenko, A A

    2006-01-01

    The possibility of the enhanced optical cooling (EOC) of Lead ions in LHC is investigated. Non-exponential feature of cooling and requirements to the ring lattice, optical and laser systems are discussed. Comparison with optical stochastic cooling (OSC) is represented.

  5. Optical stochastic cooling method in application to the beams of charged particles

    CERN Document Server

    Gessonov, E G

    2014-01-01

    We discuss the optical stochastic cooling (OSC) method in applications to the beams of charged particles, circulating in accelerators and storage rings. In this publication we concentrated on various OSC schemes in a diluted beam approximation, when the heating of selected particle by its neighboring ones could be neglected. Even so, this approximation allows us to identify important features in the beam cooling. In the forthcoming publication, on the basis of approach developed here, we will include effects of heating in the dynamics of cooling.

  6. Beam Interaction with Thin Materials: Heat Deposition, Cooling Phenomena and Damage Limits

    CERN Document Server

    Sapinski, M

    2012-01-01

    Thin targets, inserted into particle beams can serve various purposes, starting from beam emittance measurements like in wire scanner or scintillating screens up to beam content modifications like in case of stripper foils. The mechanisms of energy deposition in a thin target for various beam types are discussed, together with properties of particles produced in this kind of interaction. The cooldown processes, from heat transfer up to cooling by sublimation, and their efficiencies are presented. Finally, damage conditions are discussed and conclusions about typical damage limits are drawn. The experiments performed with the wire scanners at CERN accelerators and a mathematical model of heating and cooling of a wire are presented.

  7. History of stochastic beam cooling and its application in many different projects

    CERN Document Server

    Caspers, F

    2012-01-01

    This paper gives an overview of the evolution of stochastic beam cooling from the very beginning (in 1968) until the present-day (2011). The early history, the main achievements and the growing number of the worldwide applications are outlined.

  8. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, Michael

    2008-03-17

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C{sup 3+} ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged {sup 24}Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  9. Strategy for alignment of electron beam trajectory in LEReC cooling section

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kayran, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kewisch, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-09-23

    We considered the steps required to align the electron beam trajectory through the LEReC cooling section. We devised a detailed procedure for the beam-based alignment of the cooling section solenoids. We showed that it is critical to have an individual control of each CS solenoid current. Finally, we modeled the alignment procedure and showed that with two BPM fitting the solenoid shift can be measured with 40 um accuracy and the solenoid inclination can be measured with 30 urad accuracy. These accuracies are well within the tolerances of the cooling section solenoid alignment.

  10. Longitudinal and transverse cooling of relativistic electron beams in intense laser pulses

    CERN Document Server

    Yoffe, Samuel R; Noble, Adam; Jaroszynski, Dino A

    2015-01-01

    With the emergence in the next few years of a new breed of high power laser facilities, it is becoming increasingly important to understand how interacting with intense laser pulses affects the bulk properties of a relativistic electron beam. A detailed analysis of the radiative cooling of electrons indicates that, classically, equal contributions to the phase space contraction occur in the transverse and longitudinal directions. In the weakly quantum regime, in addition to an overall reduction in beam cooling, this symmetry is broken, leading to significantly less cooling in the longitudinal than the transverse directions. By introducing an efficient new technique for studying the evolution of a particle distribution, we demonstrate the quantum reduction in beam cooling, and find that it depends on the distribution of energy in the laser pulse, rather than just the total energy as in the classical case.

  11. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; /Fermilab

    2005-07-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section.

  12. A linear radiofrequency quadrupole ion trap for the cooling and bunching of radioactive ion beams

    CERN Document Server

    Kellerbauer, A G; Dilling, J; Henry, S; Herfurth, F; Kluge, H J; Lamour, E; Moore, R B; Scheidenberger, C; Schwarz, S; Sikler, G; Szerypo, J

    2002-01-01

    A linear radiofrequency quadrupole ion guide and beam buncher has been installed at the ISOLTRAP mass spectrometry experiment at the ISOLDE facility at CERN. The apparatus is being used as a beam cooling, accumulation, and bunching system. It operates with a buffer gas that cools the injected ions and converts the quasicontinuous 60- keV beam from the ISOLDE facility to 2.5-keV beam pulses with improved normalized transverse emittance. Recent measurements suggest a capture efficiency of the ion guide of up to 40% and a cooling and bunching efficiency of at least 12% which is expected to still be increased. The improved ISOLTRAP setup has so far been used very successfully in three on-line experiments. (12 refs).

  13. Incoherent vertical ion losses during multiturn stacking cooling beam injection

    Science.gov (United States)

    Syresin, E. M.

    2014-07-01

    The efficiency of the multiturn ion injection with electron cooling depends on two parameters, namely, cooling efficiency and ion lifetime. The lifetime of freshly injected ions is usually shorter than the lifetime of strongly cooled stacked ions. Freshly injected ions are lost in the vertical direction because the vertical acceptance of the synchrotron is usually a few times smaller than the horizontal acceptance. Incoherent vertical losses of freshly injected ions arise from their multiple scattering by residual gas atoms and transverse diffusion caused by stack noise. Reduced ion lifetime limits the multiturn injection efficiency. Analytical estimations and BETACOOL-based numerical evaluations of the vertical ion losses during multiturn injection are presented in comparison with the experimental data obtained at the HIMAC synchrotron and the S-LSR storage ring.

  14. Beam Test of a Dielectric Loaded High Pressure RF Cavity for Use in Muon Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Freemire, Ben [IIT, Chicago; Bowring, Daniel [Fermilab; Kochemirovskiy, Alexey [Chicago U.; Moretti, Alfred [Fermilab; Peterson, David [Fermilab; Tollestrup, Alvin [Fermilab; Torun, Yagmur [IIT, Chicago; Yonehara, Katsuya [Fermilab

    2016-06-01

    Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. A 99.5% alumina ring was inserted in a high pressure RF test cell and subjected to an intense proton beam at the MuCool Test Area at Fermilab. The results of the performance of this dielectric loaded high pressure RF cavity will be presented.

  15. The design of multi-megawatt actively cooled beam dumps for the Neutral-Beam Engineering Test Facility

    Science.gov (United States)

    Paterson, J. A.; Koehler, G.; Wells, R. P.

    1981-10-01

    To test neutral beam sources up to 170 keV, 65 Amps, with 30 second beam on times, actively cooled beam dumps for both the neutral and ionized particles are required. The dumps should be able to dissipate a wide range of power density profiles by utilizing a standard modular panel design which is incorporated into a moveable support structure. The thermal hydraulic design of the panels permit the dissipation of 2 kW/sq cm anywhere on the panel surface. The water requirements of the dumps are optimized by restricting the flow to panel sections where the heat flux falls short of the design value. The mechanical design of the beam-dump structures is described along with tests performed on two different panel designs. The dissipation capabilities of the panels were tested at the critical regions to verify their use in the beam dump assemblies.

  16. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  17. Characterisation of the Muon Beams for the Muon Ionisation Cooling Experiment

    CERN Document Server

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Back, J.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V.J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C.N.; Bowring, D.; Boyd, S.; Bradshaw, T.W.; Bravar, U.; Bross, A.D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, G.; Cobb, J.H.; Colling, D.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L.M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Fayer, S.; Filthaut, F.; Fish, A.; Fitzpatrick, T.; Fletcher, R.; Forrest, D.; Francis, V.; Freemire, B.; Fry, L.; Gallagher, A.; Gamet, R.; Gourlay, S.; Grant, A.; Graulich, J.S.; Griffiths, S.; Hanlet, P.; Hansen, O.M.; Hanson, G.G.; Harrison, P.; Hart, T.L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D.M.; Karadzhov, Y.; Kim, Y.K.; Kolev, D.; Kuno, Y.; Kyberd, P.; Lau, W.; Leaver, J.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Lucchini, G.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J.J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J.C.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Palmer, R.B.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M.A.; Ricciardi, S.; Richards, A.; Roberts, T.J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, R.; Rusinov, I.; Sakamoto, H.; Sanders, D.A.; Santos, E.; Savidge, T.; Smith, P.J.; Snopok, P.; Soler, F.J.P.; Stanley, T.; Summers, D.J.; Takahashi, M.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C.D.; Vankova, G.; Verguilov, V.; Virostek, S.; Vretenar, M.; Walaron, K.; Watson, S.; White, C.; Whyte, C.G.; Wilson, A.; Wisting, H.; Zisman, M.

    2013-01-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  18. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A. [Harwell Oxford, STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Pidcott, C.; Taylor, I. [University of Warwick, Department of Physics, Coventry (United Kingdom); Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Fayer, S.; Fish, A.; Hunt, C.; Leaver, J.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Richards, A.; Santos, E.; Savidge, T.; Takahashi, M. [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Asfandiyarov, R.; Blondel, A.; Graulich, J.S.; Karadzhov, Y.; Verguilov, V.; Wisting, H. [Universite de Geneve, DPNC, Section de Physique, Geneva (Switzerland); De Bari, A.; Cecchet, G. [Sezione INFN Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Pavia (Italy); Bayes, R.; Forrest, D.; Nugent, J.C.; Soler, F.J.P.; Walaron, K. [The University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Bertoni, R.; Bonesini, M.; Lucchini, G. [Sezione INFN Milano Bicocca (Italy); Dipartimento di Fisica G. Occhialini, Milano (Italy); Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D. [University of Oxford, Department of Physics, Oxford (United Kingdom); Blot, S.; Kim, Y.K. [University of Chicago, Enrico Fermi Institute, Chicago, IL (United States); Bogomilov, M.; Kolev, D.; Rusinov, I.; Tsenov, R.; Vankova, G. [St. Kliment Ohridski University of Sofia, Department of Atomic Physics, Sofia (Bulgaria); Booth, C.N.; Hodgson, P.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.P.; Zisman, M.S. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Bravar, U. [University of New Hampshire, Durham, NH (United States); Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R. [Fermilab, Batavia, IL (United States); Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L. [Sezione INFN Roma Tre e Dipartimento di Fisica, Roma (Italy); Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Owens, P.; White, C. [STFC Daresbury Laboratory, Cheshire (United Kingdom); Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C. [University of California, Riverside, CA (United States); Cooke, P.; Gamet, R. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J. [University of Mississippi, Oxford, MS (United States); Dick, A.J.; Ronald, K.; Whyte, C.G. [University of Strathclyde, Department of Physics, Glasgow (United Kingdom); Filthaut, F. [NIKHEF, Amsterdam (Netherlands); Freemire, B.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y. [Illinois Institute of Technology, Chicago, IL (United States); Hansen, O.M.; Ramberger, S.; Vretenar, M. [CERN, Geneva (Switzerland); Ishimoto, S. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Kuno, Y.; Sakamoto, H. [Osaka University, Graduate School of Science, Department of Physics, Toyonaka, Osaka (Japan); Kyberd, P.; Littlefield, M.; Nebrensky, J.J. [Brunel University, Uxbridge (United Kingdom); Onel, Y. [University of Iowa, Department of Physics and Astronomy, Iowa City, IA (United States); Palladino, V. [Universita Federico II, Sezione INFN Napoli (Italy); Dipartimento di Fisica, Napoli (Italy); Palmer, R.B. [Brookhaven National Laboratory, Upton, NY (US); Roberts, T.J. [Muons, Inc., Batavia, IL (US); Collaboration: The MICE Collaboration

    2013-10-15

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2-2.3 {pi} mm-rad horizontally and 0.6-1.0 {pi} mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. (orig.)

  19. A cryogenic beam apparatus for laser cooling and ultracold fragmentation of BaH molecules

    Science.gov (United States)

    Iwata, Geoffrey; Tarallo, Marco G.; Soerensen, Fabian; Zelevinsky, Tanya

    2015-05-01

    Cold and ultracold molecules offer a wide array of possibilities for precision measurement, molecular quantum chemistry, and studies many-body physics. Recently, cold beams of many molecular species have been created via cryogenic buffer gas cooling. Paired with laser cooling, this method can yield a molecular magneto-optical trap (MOT). We report progress toward a barium monohydride (BaH) cold molecular beam and MOT, including identification of cooling transitions in the B2 Σ molecules and construction of the cryogenic beam apparatus. The large mass ratio of the constituent atoms makes this system attractive for studies of ultracold fragmentation via coherent transfer to weakly bound states and subsequent photo- or magneto-dissociation, resulting in ultracold hydrogen.

  20. Evaporative cooling of highly charged ions in EBIT (Electron Beam Ion Trap): An experimental realization

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.B.; Levine, M.A.; Bennett, C.L.; Henderson, J.R.; Knapp, D.A.; Marrs, R.E.

    1988-12-01

    Both the total number and trapping lifetime of near-neon-like gold ions held in an electron beam ion trap have been greatly increased by a process of 'evaporative cooling'. A continuous flow of low-charge-state ions into the trap cools the high-charge-state ions in the trap. Preliminary experimental results using titanium ions as a coolant are presented. 8 refs., 6 figs., 2 tabs.

  1. A simple counter-flow cooling system for a supersonic free-jet beam source assembly.

    Science.gov (United States)

    Barr, M; Fahy, A; Martens, J; Dastoor, P C

    2016-05-01

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  2. Cooling of relativistic electron beams in intense laser pulses: Chirps and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoffe, S.R., E-mail: sam.yoffe@strath.ac.uk; Noble, A., E-mail: adam.noble@strath.ac.uk; Macleod, A.J., E-mail: alexander.macleod@strath.ac.uk; Jaroszynski, D.A., E-mail: d.a.jaroszynski@strath.ac.uk

    2016-09-01

    Next-generation high-power laser facilities (such as the Extreme Light Infrastructure) will provide unprecedented field intensities, and will allow us to probe qualitatively new physical regimes for the first time. One of the important fundamental questions which will be addressed is particle dynamics when radiation reaction and quantum effects play a significant role. Classical theories of radiation reaction predict beam cooling in the interaction of a relativistic electron bunch and a high-intensity laser pulse, with final-state properties only dependent on the laser fluence. The observed quantum suppression of this cooling instead exhibits a dependence on the laser intensity directly. This offers the potential for final-state properties to be modified or even controlled by tailoring the intensity profile of the laser pulse. In addition to beam properties, quantum effects will be manifest in the emitted radiation spectra, which could be manipulated for use as radiation sources. We compare predictions made by classical, quasi-classical and stochastic theories of radiation reaction, and investigate the influence of chirped laser pulses on the observed radiation spectra. - Highlights: • Classical theories of radiation reaction predict electron beam cooling in high fields. • Quantum effects lead to a reduction in electron beam cooling. • Quasi-classical model agrees with predictions from a single-emission stochastic model. • Negative frequency chirp found to increase photon emission, but not maximum energy.

  3. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  4. Modulator simulations for coherent electron cooling using a variable density electron beam

    CERN Document Server

    Bell, George I; Schwartz, Brian T; Bruhwiler, David L; Litvinenko, Vladimir; Wang, Gang; Hao, Yue

    2014-01-01

    Increasing the luminosity of relativistic hadron beams is critical for the advancement of nuclear physics. Coherent electron cooling (CEC) promises to cool such beams significantly faster than alternative methods. We present simulations of 40 GeV/nucleon Au+79 ions through the first (modulator) section of a coherent electron cooler. In the modulator, the electron beam copropagates with the ion beam, which perturbs the electron beam density and velocity via anisotropic Debye shielding. In contrast to previous simulations, where the electron density was constant in time and space, here the electron beam has a finite transverse extent, and undergoes focusing by quadrupoles as it passes through the modulator. The peak density in the modulator increases by a factor of 3, as specified by the beam Twiss parameters. The inherently 3D particle and field dynamics is modeled with the parallel VSim framework using a $\\delta$f PIC algorithm. Physical parameters are taken from the CEC proof-of-principle experiment under de...

  5. Innovative two-pipe active chilled beam system for simultaneous heating and cooling of office buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Afshari, Alireza; Bergsøe, Niels Christian;

    2014-01-01

    energy between zones with one hydronic circuit, operating with a water temperature between 20°C and 23°C. To calculate the energy performance of the system, simulation-based research was developed. The two-pipe system was modelled by using EnergyPlus, a whole building energy simulation program. Hourly......The aim of this paper was to investigate the energy savings potential of an innovative two-pipe system in an active chilled beam application for heating and cooling of office buildings. The characteristic of the system is its ability to provide simultaneous heating and cooling by transferring...... heating, cooling and ventilation loads were calculated by the program and an annual energy consumption evaluation of the system was made. Simulation results showed that the innovative two-pipe active chilled beam system used approximately 5% less energy than a conventional four-pipe system....

  6. Verification of passive cooling techniques in the Super-FRS beam collimators

    Science.gov (United States)

    Douma, C. A.; Gellanki, J.; Najafi, M. A.; Moeini, H.; Kalantar-Nayestanaki, N.; Rigollet, C.; Kuiken, O. J.; Lindemulder, M. F.; Smit, H. A. J.; Timersma, H. J.

    2016-08-01

    The Super FRagment Separator (Super-FRS) at the FAIR facility will be the largest in-flight separator of heavy ions in the world. One of the essential steps in the separation procedure is to stop the unwanted ions with beam collimators. In one of the most common situations, the heavy ions are produced by a fission reaction of a primary 238U-beam (1.5 GeV/u) hitting a 12C target (2.5 g/cm2). In this situation, some of the produced ions are highly charged states of 238U. These ions can reach the collimators with energies of up to 1.3 GeV/u and a power of up to 500 W. Under these conditions, a cooling system is required to prevent damage to the collimators and to the corresponding electronics. Due to the highly radioactive environment, both the collimators and the cooling system must be suitable for robot handling. Therefore, an active cooling system is undesirable because of the increased possibility of malfunctioning and other complications. By using thermal simulations (performed with NX9 of Siemens PLM), the possibility of passive cooling is explored. The validity of these simulations is tested by independent comparison with other simulation programs and by experimental verification. The experimental verification is still under analysis, but preliminary results indicate that the explored passive cooling option provides sufficient temperature reduction.

  7. A cryogenic beam of refractory, chemically reactive molecules with expansion cooling

    CERN Document Server

    Hutzler, Nicholas R; Gurevich, Yulia V; Hess, Paul W; Petrik, Elizabeth; Spaun, Ben; Vutha, Amar C; DeMille, David; Gabrielse, Gerald; Doyle, John M

    2011-01-01

    Cryogenically cooled buffer gas beam sources of the molecule thorium monoxide (ThO) are optimized and characterized. Both helium and neon buffer gas sources are shown to produce ThO beams with high flux, low divergence, low forward velocity, and cold internal temperature for a variety of stagnation densities and nozzle diameters. The beam operates with a buffer gas stagnation density of ~10^15-10^16 cm^-3 (Reynolds number ~1-100), resulting in expansion cooling of the internal temperature of the ThO to as low as 2 K. For the neon (helium) based source, this represents cooling by a factor of about 10 (2) from the initial nozzle temperature of about 20 K (4 K). These sources deliver ~10^11 ThO molecules in a single quantum state within a 1-3 ms long pulse at 10 Hz repetition rate. Under conditions optimized for a future precision spectroscopy application [A C Vutha et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074007], the neon-based beam has the following characteristics: forward velocity of 170 m/s, internal ...

  8. Design of Air-Cooled Beam Dump for Extraction Line of PS Booster

    CERN Document Server

    Perillo-Marcone, A; Venturi, V; Antonakakis, T; Vlachoudis, V; Nowak, E; Mason, G; Battistin, M; Czapski, M; Sgobba, S

    2013-01-01

    A new beam dump has been designed, which withstands the future proton beam extracted from the Proton Syncrotron Booster (PSB) at CERN, consisting of up to 1E14 protons per pulse at 2 GeV after its upgrade in 2018/2019. In order to be able to efficiently release the deposited heat, the new dump will be made out of a single cylindrical block of a copper alloy and cooled by forced ventilation. In order to determine the energy density distribution deposited by the beam in the dump, Monte Carlo simulations were performed using FLUKA, and thermomechanical analyses carried out by importing the energy density into Ansys. In addition, CFD simulations of the airflow were carried out in order to accurately estimate the heat transfer convection coefficient on the surface of the dump. This paper describes the design process and highlights the constraints of integrating a new dump for increased beam power into the existing facility.

  9. The ITER neutral beam test facility: Designs of the general infrastructure, cryosystem and cooling plant

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, J.J. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France)]. E-mail: jean-jacques.cordier@cea.fr; Hemsworth, R. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Chantant, M. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Gravil, B. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Henry, D. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Sabathier, F. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Doceul, L. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Thomas, E. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Houtte, D. van [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Zaccaria, P. [CONSORZIO RFX Association EURATOM-ENEA, Corso Stati Uniti 4, I-35127 Padova (Italy); Antoni, V. [CONSORZIO RFX Association EURATOM-ENEA, Corso Stati Uniti 4, I-35127 Padova (Italy); Bello, S. Dal; Marcuzzi, D. [CONSORZIO RFX Association EURATOM-ENEA, Corso Stati Uniti 4, I-35127 Padova (Italy); Antipenkov, A.; Day, C.; Dremel, M. [FZK, Institut fuer Technische Physik, Karlsruhe 76021 (Germany); Mondino, P.L. [EFDA CSU, Max-Planck-Institut fuer Plasma Physik Boltzmannstr. 2, D-85748 Garching (Germany)

    2005-11-15

    The CEA Association is involved, in close collaboration with ENEA, FZK, IPP and UKAEA European Associations, in the first ITER neutral beam (NB) injector and the ITER neutral beam test facility design (EFDA task ref. TW3-THHN-IITF1). A total power of about 50 MW will have to be removed in steady state on the neutral beam test facility (NBTF). The main purpose of this task is to make progress with the detailed design of the first ITER NB injector and to start the conceptual design of the ITER NBTF. The general infrastructure layout of a generic site for the NBTF includes the test facility itself equipped with a dedicated beamline vessel [P.L. Zaccaria, et al., Maintenance schemes for the ITER neutral beam test facility, this conference] and integration studies of associated auxiliaries such as cooling plant, cryoplant and forepumping system.

  10. Beam Induced Ferrite Heating of the LHC Injection Kickers and Proposals for Improved Cooling

    CERN Document Server

    Barnes, M J; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Mertens, V; Sobiech, Z; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01

    The two LHC injection kicker systems produce an integrated field strength of 1.3 T·m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of each magnet, which consists of a ceramic tube with conductors in the inner wall. The conductors provide a path for the beam image current and screen the ferrite yoke against wakefields. Recent LHC operation, with high intensity beam stable for many hours, resulted in significant heating of both the ferrite yoke and beam impedance reduction ferrites. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the ferrite yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. Thermal measurement data has been analysed, a thermal model developed and emissivity measurements carried out. Various measures to improve the ferrite cooling have...

  11. Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam.

    Science.gov (United States)

    Santamaria, Luigi; Sarno, Valentina Di; Natale, Paolo De; Rosa, Maurizio De; Inguscio, Massimo; Mosca, Simona; Ricciardi, Iolanda; Calonico, Davide; Levi, Filippo; Maddaloni, Pasquale

    2016-06-22

    We demonstrate continuous-wave cavity ring-down spectroscopy of a partially hydrodynamic molecular beam emerging from a buffer-gas-cooling source. Specifically, the (ν1 + ν3) vibrational overtone band of acetylene (C2H2) around 1.5 μm is accessed using a narrow-linewidth diode laser stabilized against a GPS-disciplined rubidium clock via an optical frequency comb synthesizer. As an example, the absolute frequency of the R(1) component is measured with a fractional accuracy of ∼1 × 10(-9). Our approach represents the first step towards the extension of more sophisticated cavity-enhanced interrogation schemes, including saturated absorption cavity ring-down or two-photon excitation, to buffer-gas-cooled molecular beams.

  12. A layered cooling process in whole quenching process for lightweight front axle beam

    Directory of Open Access Journals (Sweden)

    Gao Kai

    2015-01-01

    Full Text Available In order to improve the uniformity of martensite distribution and obtain consistent mechanical performance during the quenching process of front axle beam, a layered cooling process was presented in this paper. The fluid-solid coupled temperature field were investigated by finite element modeling and the prediction of micro-structure and hardness distributions were also carried out. The experimental result verifies the reliability of this model.

  13. Fabrication study on the cooling module of the ITER neutral beam duct liner

    Energy Technology Data Exchange (ETDEWEB)

    Sa, J.W. [National Fusion Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kim, H.S., E-mail: hskim@nfri.re.k [National Fusion Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kim, B.Y.; Kim, B.C.; Ahn, H.J.; Bak, J.S. [National Fusion Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Jung, H.J. [Korean Intellectual Property Office, Seo-gu, Daejeon (Korea, Republic of); Han, M.H.; Hong, C.D.; Lee, J.S.; Kim, Y.K. [Hyundai Heavy Industries Co. Ltd., Dong-gu, Ulsan (Korea, Republic of); Urbani, M. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Geli, F. [UKAEA Culham Division, Oxfordshire OX14 3DB, Abingdon (United Kingdom)

    2010-12-15

    Recently the new concept of the ITER neutral beam (NB) duct liner has been developed to improve thermo-mechanical performance and satisfy the requirements for remote handling and maintenance. The design concept of cooling module located inside neutron shield structure is to use deep-drilled panels instead of the original design concept of the casting-modularized component with tubes. In this study, the manufacturing feasibility has been investigated through the fabrication of small size coupons and full scale mock-up. Firstly, the small size coupons are for developing the electron beam welding processes. Secondly, the full scale mock-up which has 6 holes for cooling passage has been fabricated in order to develop the main fabrication processes such as deep drilling, bending and machining. In addition, the pressure and the leak tests have been carried out to check the required performance for completed cooling panel. Although some improvement is required, but the Electron Beam Welding (EBW) has been successfully achieved and generally the deep drilling and bending process also shown good results in dimensional control.

  14. Bright focused ion beam sources based on laser-cooled atoms

    CERN Document Server

    McClelland, J J; Knuffman, B; Twedt, K A; Schwarzkopf, A; Wilson, T M

    2015-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 uK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Never...

  15. Performance predictions of a focused ion beam based on laser cooling

    CERN Document Server

    Haaf, G ten; van der Geer, S B; Vredenbregt, E J D; Mutsaers, P H A

    2014-01-01

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of amongst others the flux density of the atomic beam, the temperature of this beam and the total current. At low currents (I<10 pA) the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model w...

  16. Beam dynamics simulations in laser electron storage rings and optical stochastic cooling

    Science.gov (United States)

    Duru, Alper

    Laser-electron storage rings are potential compact X-ray sources. Longitudinal dynamics in laser-electron storage rings is studied including the effects of both laser interaction and synchrotron radiation. It is shown that the steady state energy spread can reach as high as a few percent. The main reason is the wide spread in the energy loss by electrons to laser photons. Optical stochastic cooling has been studied numerically. The effects of the finite bandwidth of the amplifier are mixing and signal distortion. Both are included in the simulations and the results are compared to theoretical results. It is shown that the beam can be cooled both in transverse and longitudinal phase phase spaces simultaneously.

  17. Experimental and theoretical JINR studies on the development of stochastic cooling of charged particle beams

    Science.gov (United States)

    Sidorin, A. O.; Trubnikov, G. V.; Shurkhno, N. A.

    2016-03-01

    In 2010, based on the superconducting heavy-ion synchrotron Nuclotron, a new accelerating complex NICA (Nuclotron-based Ion Collider fAcility) started to be constructed at the Laboratory of High Energy Physics of the Joint Institute for Nuclear Research, its key facility being the 1.0 - 4.5 GeV per nucleon heavy ion collider. For the purpose of effectively collecting statistics, an average collider luminosity of 1027 cm -2 s -1 is required. With this collider energy, the cooling of the beam both in the process of storage and during the experiment is mandatory to ensure the required parameters. In this paper, a possible new regime of stochastic cooling is examined.

  18. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marland, S. [Tennessee Univ., Knoxville, TN (United States)

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  19. Beam localization in HIFU temperature measurements using thermocouples, with application to cooling by large blood vessels.

    Science.gov (United States)

    Dasgupta, Subhashish; Banerjee, Rupak K; Hariharan, Prasanna; Myers, Matthew R

    2011-02-01

    Experimental studies of thermal effects in high-intensity focused ultrasound (HIFU) procedures are often performed with the aid of fine wire thermocouples positioned within tissue phantoms. Thermocouple measurements are subject to several types of error which must be accounted for before reliable inferences can be made on the basis of the measurements. Thermocouple artifact due to viscous heating is one source of error. A second is the uncertainty regarding the position of the beam relative to the target location or the thermocouple junction, due to the error in positioning the beam at the junction. This paper presents a method for determining the location of the beam relative to a fixed pair of thermocouples. The localization technique reduces the uncertainty introduced by positioning errors associated with very narrow HIFU beams. The technique is presented in the context of an investigation into the effect of blood flow through large vessels on the efficacy of HIFU procedures targeted near the vessel. Application of the beam localization method allowed conclusions regarding the effects of blood flow to be drawn from previously inconclusive (because of localization uncertainties) data. Comparison of the position-adjusted transient temperature profiles for flow rates of 0 and 400ml/min showed that blood flow can reduce temperature elevations by more than 10%, when the HIFU focus is within a 2mm distance from the vessel wall. At acoustic power levels of 17.3 and 24.8W there is a 20- to 70-fold decrease in thermal dose due to the convective cooling effect of blood flow, implying a shrinkage in lesion size. The beam-localization technique also revealed the level of thermocouple artifact as a function of sonication time, providing investigators with an indication of the quality of thermocouple data for a given exposure time. The maximum artifact was found to be double the measured temperature rise, during initial few seconds of sonication.

  20. Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  1. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-05-07

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

  2. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W., E-mail: luwang@impcas.ac.cn; Qian, C.; Sun, L. T.; Zhang, X. Z.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.; Zhan, W. L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); Fang, X.; Guo, J. W.; Yang, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, B.; Ruan, L. [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Xie, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-02-15

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O{sup 7+}, 620 eμA of Ar{sup 11+}, 430 eμA of Ar{sup 12+}, 430 eμA of Xe{sup 20+}, and so on. The comparison will be discussed in the paper.

  3. Using Off-Resonance Laser Modulation for Beam Energy Spread Cooling in Generation of Short-Wavelength Radiation

    CERN Document Server

    Deng, Haixiao

    2013-01-01

    Various seeding configurations have being proposed for frequency up-conversion of the electron beam density distribution, in which the energy spread, may however hinder the harmonic generation efficiency. In this Letter, a method for cooling the electron beam energy spread by off-resonance seed laser modulation is described, using a transversely dispersed beam and a modulator undulator with proper transverse gradient. With this novel mechanism, it is shown that the frequency up-conversion efficiency can be significantly enhanced. We present theoretical analysis and numerical simulations for seeded soft x-ray free electron laser and storage ring based coherent harmonic generation in extreme ultraviolet spectral region.

  4. Electron cooling

    Science.gov (United States)

    Meshkov, I.; Sidorin, A.

    2004-10-01

    The brief review of the most significant and interesting achievements in electron cooling method, which took place during last two years, is presented. The description of the electron cooling facilities-storage rings and traps being in operation or under development-is given. The applications of the electron cooling method are considered. The following modern fields of the method development are discussed: crystalline beam formation, expansion into middle and high energy electron cooling (the Fermilab Recycler Electron Cooler, the BNL cooler-recuperator, cooling with circulating electron beam, the GSI project), electron cooling in traps, antihydrogen generation, electron cooling of positrons (the LEPTA project).

  5. High Pressure Gas Filled RF Cavity Beam Test at the Fermilab MuCool Test Area

    Energy Technology Data Exchange (ETDEWEB)

    Freemire, Ben [Illinois Inst. of Technology, Chicago, IL (United States)

    2013-05-01

    The high energy physics community is continually looking to push the limits with respect to the energy and luminosity of particle accelerators. In the realm of leptons, only electron colliders have been built to date. Compared to hadrons, electrons lose a large amount of energy when accelerated in a ring through synchrotron radiation. A solution to this problem is to build long, straight accelerators for electrons, which has been done with great success. With a new generation of lepton colliders being conceived, building longer, more powerful accelerators is not the most enticing option. Muons have been proposed as an alternative particle to electrons. Muons lose less energy to synchrotron radiation and a Muon Collider can provide luminosity within a much smaller energy range than a comparable electron collider. This allows a circular collider to be built with higher attainable energy than any present electron collider. As part of the accelerator, but separate from the collider, it would also be possible to allow the muons to decay to study neutrinos. The possibility of a high energy, high luminosity muon collider and an abundant, precise source of neutrinos is an attractive one. The technological challenges of building a muon accelerator are many and diverse. Because the muon is an unstable particle, a muon beam must be cooled and accelerated to the desired energy within a short amount of time. This requirement places strict requisites on the type of acceleration and focusing that can be used. Muons are generated as tertiary beams with a huge phase space, so strong magnetic fields are required to capture and focus them. Radio frequency (RF) cavities are needed to capture, bunch and accelerate the muons. Unfortunately, traditional vacuum RF cavities have been shown to break down in the magnetic fields necessary for capture and focusing.

  6. The ITER neutral beam test facility: designs of the general infrastructure, cryo-system and cooling plant

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, J.J.; Hemsworth, R.; Chantant, M.; Gravil, B.; Henry, D.; Sabathier, F.; Doceul, L.; Thomas, E.; Van Houtte, D. [Association Euratom-CEA Cadarache (DSM/DRFC), 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Zaccaria, P.; Antoni, V.; Dal Bello, S.; Masiello, A.; Marcuzzi, D. [Consorzio RFX Association Euratom-ENEA, Padova (Italy); Antipenkov, A.; Dremel, M.; Day, C. [Institut fur Technische Physik, FZK, Karlsruhe (Germany); Mondino, P.L. [Max-Planck-Institut fuer Plasmaphysik, EFDA CSU, Garching (Germany)

    2004-07-01

    The CEA Association is involved, in close collaboration with ENEA, FZK, IPP and UKEA European Associations, in the first ITER neutral beam injector and the ITER neutral beam test facility design (NBTF). A total power of about 50 MW will have to be removed in steady state on the neutral beam test facility (NBTF). The main purpose of this task is to make progress with the detailed design of the first ITER NB injector and to start the conceptual design of the ITER NBTF. The general infrastructure layout of a generic site for the NBTF, includes the test facility itself equipped of a dedicated beamline vessel and integration studies of associated auxiliaries as cooling plant, cryo-plant and fore-pumping system. The general infrastructure and auxiliaries layout of the NBTF are described. (authors)

  7. Generations of dark hollow beams and their applications in laser cooling of atoms and all optical-type Bose-Einstein condensation

    Institute of Scientific and Technical Information of China (English)

    印建平; 高伟建; 王海峰; 龙全; 王育竹

    2002-01-01

    We report on a new experimental result to generate dark hollow beams by using a geometric optical method.We propose two new methods to produce focused and localized hollow laser beams by using π-phase plates. UsingMonte-Carlo simulations, we have studied the Sisyphus cooling of alkali atoms in pyramidal hollow beam gravito-opticaltraps. We discuss some potential applications of the dark hollow beams in atom optics and the preparation of an alloptically-cooled and optically-trapped atomic Bose-Einstein condensation (BEC).Our research shows that an ultracoldatomic sample with a temperature of ~ 2μK can be obtained in the pyramidal hollow beam dipole trap and an alloptical-type BEC may be realized in a far blue-detuned, hollow beam trap.

  8. Continuous all-optical deceleration and single-photon cooling of molecular beams

    CERN Document Server

    Jayich, A M; Hummon, M T; Porto, J V; Campbell, W C

    2013-01-01

    Ultracold molecular gases are promising as an avenue to rich many-body physics, quantum chemistry, quantum information, and precision measurements. This richness, which flows from the complex internal structure of molecules, makes the creation of ultracold molecular gases using traditional methods (laser plus evaporative cooling) a challenge, in particular due to the spontaneous decay of molecules into dark states. We propose a way to circumvent this key bottleneck using an all-optical method for decelerating molecules using stimulated absorption and emission with a single ultrafast laser. We further describe single-photon cooling of the decelerating molecules that exploits their high dark state pumping rates, turning the principal obstacle to molecular laser cooling into an advantage. Cooling and deceleration may be applied simultaneously and continuously to load molecules into a trap. We discuss implementation details including multi-level numerical simulations of strontium monohydride (SrH). These techniqu...

  9. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    Energy Technology Data Exchange (ETDEWEB)

    Marland, S. (Tennessee Univ., Knoxville, TN (United States))

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  10. Continuous all-optical deceleration and single-photon cooling of molecular beams

    Science.gov (United States)

    Jayich, A. M.; Vutha, A. C.; Hummon, M. T.; Porto, J. V.; Campbell, W. C.

    2014-02-01

    Ultracold molecular gases are promising as an avenue to rich many-body physics, quantum chemistry, quantum information, and precision measurements. This richness, which flows from the complex internal structure of molecules, makes the creation of ultracold molecular gases using traditional methods (laser plus evaporative cooling) a challenge, in particular due to the spontaneous decay of molecules into dark states. We propose a way to circumvent this key bottleneck using an all-optical method for decelerating molecules using stimulated absorption and emission with a single ultrafast laser. We further describe single-photon cooling of the decelerating molecules that exploits their high dark state pumping rates, turning the principal obstacle to molecular laser cooling into an advantage. Cooling and deceleration may be applied simultaneously and continuously to load molecules into a trap. We discuss implementation details including multilevel numerical simulations of strontium monohydride. These techniques are applicable to a large number of molecular species and atoms with the only requirement being an electric dipole transition that can be accessed with an ultrafast laser.

  11. Simulation of Electron Beam Dynamics in the 22 MeV Accelerator for a Coherent Electron Cooling Proof of Principle Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Justin [Stony Brook Univ., NY (United States)

    2013-12-01

    Coherent electron cooling (CeC) offers a potential new method of cooling hadron beams in colliders such as the Relativistic Heavy Ion Collider (RHIC) or the future electron ion collider eRHIC. A 22 MeV linear accelerator is currently being built as part of a proof of principle experiment for CeC at Brookhaven National Laboratory (BNL). In this thesis we present a simulation of electron beam dynamics including space charge in the 22 MeV CeC proof of principle experiment using the program ASTRA (A Space charge TRacking Algorithm).

  12. Continuous All-Optical Deceleration and Single-Photon Cooling of Molecular Beams

    Science.gov (United States)

    2014-02-21

    transform-limited τ = 7 ps Gaussian pulse. The operating point (highlighted with a white diamond in Fig. 1) corresponds to 4 W of average power focused to a...illustrated by Eq. (2). The cooling laser is detuned 9 MHz from the zero velocity class, which corresponds to a forward velocity near 7 m/s. The...Treacy, IEEE J. Quantum Electron. 5, 454 (1969). [41] J. S. Melinger, S. R. Gandhi , A. Hariharan, J. X. Tull, and W. S. Warren, Phys. Rev. Lett. 68, 2000

  13. Measurement of the lifetime of Pb$^{52+}$, Pb$^{53+}$ and Pb$^{54+}$ beams at 4.2 MeV per nucleon subject to electron cooling

    CERN Document Server

    Baird, S A; Carli, Christian; Chanel, M; Lefèvre, P; Ley, R; MacCaferri, R; Maury, S; Meshkov, I N; Möhl, D; Molinari, G; Motsch, F; Mulder, H; Tranquille, G; Varenne, F

    1995-01-01

    By measuring the lifetime of stored beams, the recombination of the ions with cooling electrons was investigated. Rates found are larger than expected for radiative electron capture and significantly higher for Pb53+ than for Pb54+ and Pb52+. These results are important for the design of the lead ion injection system for the Large Hadron Collider and for recombination theories.

  14. Parameter optimization for Doppler laser cooling of a low-energy heavy ion beam at the storage ring S-LSR

    Science.gov (United States)

    Osaki, Kazuya; Okamoto, Hiromi

    2014-05-01

    S-LSR is a compact ion storage ring constructed at Kyoto University several years ago. The ring is equipped with a Doppler laser cooling system aimed at beam crystallization. Bearing in mind hardware limitations in S-LSR, we try to find an optimum set of primary experimental parameters for the production of an ultracold heavy ion beam. Systematic molecular dynamics simulations are carried out for this purpose. It is concluded that the detuning and spot size of the cooling laser should be chosen around -42 MHz and 1.5 mm, respectively, for the most efficient cooling of 40 keV ^{24}Mg^+ beams in S-LSR. Under the optimum conditions, the use of the resonant coupling method followed by radio-frequency field ramping enables us to reach an extremely low beam temperature on the order of 0.1 K in the transverse degrees of freedom. The longitudinal degree of freedom can be cooled to close to the Doppler limit; i.e., to the mK range. We also numerically demonstrate that it is possible to establish a stable, long one-dimensionally ordered state of ions.

  15. Final Technical Report on STTR Project DE-FG02-06ER86282 Development and Demonstration of 6-Dimensional Muon Beam Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Muons, Inc.

    2011-05-24

    The overarching purpose of this project was to prepare a proposal for an experiment to demonstrate 6-dimensional muon beam cooling. The technical objectives were all steps in preparing the proposal, which was successfully presented to the Fermilab Accelerator Advisory Committee in February 2009. All primary goals of this project have been met.

  16. Effect of field cooling process and ion-beam bombardment on the exchange bias of NiCo/(Ni, Co)O bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Lin, K.-W., E-mail: kwlin@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Liu, H.-Y. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Wei, D.-H. [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Li, G.J. [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Pong, P.W.T., E-mail: ppong@eee.hku.hk [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong)

    2014-11-03

    The research on exchange coupled ferromagnetic/antiferromagnetic (FM/AF) bilayers has been the foundation of spintronic applications such as hard disk reading heads and spin torque oscillators. In order to further explore the exchange bias behavior of NiCo/(Ni, Co)O bilayers, effect of field cooling process, magnetic angular dependence, and ion-beam bombardment was investigated. The difference in film composition resulted in remarkable distinction in crystalline structures and domain patterns. The exchange bias field (H{sub ex}) in the bilayer systems exhibited a strong angular dependence. The negative H{sub ex} after a field cooling process indicated that the polarity of H{sub ex} can be defined by aligning the magnetization orientation of the FM NiCo layer with the applied field. Moreover, enhanced exchange bias effect was observed in the NiCo/(Ni, Co)O bilayers that resulted from the surface of the (Ni, Co)O layers bombarded with different Ar{sup +} ion-beam energies using End-Hall voltages from 0 V to 150 V. The interface spin structures as well as the surface domain patterns were altered by the ion-beam bombardment process. These results indicated that the exchange bias field of NiCo/(Ni, Co)O bilayer systems could be tailored by field cooling process, angular dependence of magnetic properties, and post ion-beam bombardment. - Highlights: • Strong angular dependence was observed in the exchange bias of NiCo/(Ni, Co)O bilayers. • The field cooling process resulted in negative exchange bias. • Moderate ion-beam bombardment on (NiCo)O layers enhanced exchange bias at 298 K. • High-energy ion bombardment strengthened the exchange coupling in field cooled bilayer. • The structural deformation was responsible for the change in magnetic properties.

  17. A full-scale experimental set-up for assessing the energy performance of radiant wall and active chilled beam for cooling buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    in decreasing the cooling need of the radiant wall compared to the active chilled beam. It has also been observed that the type and repartition of heat load have an influence on the cooling demand. Regarding the comfort level, both terminals met the general requirements, except at high solar heat gains......Full-scale experiments under both steady-state and dynamic conditions have been performed to compare the energy performance of a radiant wall and an active chilled beam. From these experiments, it has been observed that the radiant wall is a more secure and efficient way of removing heat from...... the test room than the active chilled beam. The energy saving, which can be estimated to around 10%, is due to increased ventilation losses. The asymmetry between air and radiant temperature, the air temperature gradient and the possible short-circuit between inlet and outlet play an equally important role...

  18. Measurement of transmission efficiency for 400 MeV proton beam through collimator at Fermilab MuCool Test Area using Chromox-6 scintillation screen.

    Science.gov (United States)

    Jana, M R; Chung, M; Freemire, B; Hanlet, P; Leonova, M; Moretti, A; Palmer, M; Schwarz, T; Tollestrup, A; Torun, Y; Yonehara, K

    2013-06-01

    The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and∕or Neutrino Factory. As part of this research program, feasibility studies of various types of RF cavities in a high magnetic field environment are in progress. As a unique approach, we have tested a RF cavity filled with a high pressure hydrogen gas with a 400 MeV proton beam in an external magnetic field (B = 3 T). Quantitative information about the number of protons passing through this cavity is an essential requirement of the beam test. The MTA is a flammable gas (hydrogen) hazard zone. Due to safety reasons, no active (energized) beam diagnostic instrument can be used. Moreover, when the magnetic field is on, current transformers (toroids) used for beam intensity measurements do not work due to the saturation of the ferrite material of the transformer. Based on these requirements, we have developed a passive beam diagnostic instrumentation using a combination of a Chromox-6 scintillation screen and CCD camera. This paper describes details of the beam profile and position obtained from the CCD image with B = 0 T and B = 3 T, and for high and low intensity proton beams. A comparison is made with beam size obtained from multi-wires detector. Beam transmission efficiency through a collimator with a 4 mm diameter hole is measured by the toroids and CCD image of the scintillation screen. Results show that the transmission efficiency estimated from the CCD image is consistent with the toroid measurement, which enables us to monitor the beam transmission efficiency even in a high magnetic field environment.

  19. Laser system for cooling of relativistic C{sup 3+}-ion beams in storage rings; Lasersystem zur Kuehlung relativistischer C{sup 3+}-Ionenstrahlen in Speicherringen

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Tobias

    2015-02-15

    Cold ion beams are essential for many precision experiments at storage rings. While spectroscopic experiments gain from the high energy resolution, collision experiments benefit from the increased luminosity. Furthermore, sympathetic cooling of exotic species is conceivable with the aid of cold ion beams. Besides the long established electron cooling, alternative cooling methods are gaining in importance, especially for high energy particles. In the past, experiments to cool ions with lasers were performed. Because of the matching wavelength and output power, frequency doubled Argon-ion lasers at 257 nm were used during these experiments. Due to the strongly limited scanning potential of these systems, it was not possible to cool the full inertia spread of the ion beams. A new laser system was developed in this thesis because of the lack of commercial alternatives. After the characterization of the system, it was tested during a beamtime at the Experimentierspeicherring (ESR) at the Gesellschaft fuer Schwerionenforschung (GSI). The completely solid state based system delivers up to 180 mW of output power at 257 nm and is modehop free tunable up to 16 GHz in 10 ms at this wavelength. By using efficient diode lasers, the new system consumes considerably less power than comparable Argon-ion lasers. The fundamental wavelength of 1028 nm is amplified up to 16 W with an Yb-doped fiber amplifier. Subsequently, the target wavelength of 257 nm is realized in two consecutive build-up cavities. Another diode laser, stabilized to a wavelength meter, serves as a frequency reference. This new laser system first came to operation during beamtime in August 2012, when relativistic C{sup 3+} ions with β=0.47 were cooled successfully. For the first time it was possible to access the whole inertia spread of a bunched ion beam without electron precooling. In contrast to prior experiments, only the laser frequency was scanned and not the bunching frequency of the ion beam. The results

  20. Effect of cooling rate on the microstructure of electron beam welded joints of two-phase TiAl-based alloy

    Institute of Scientific and Technical Information of China (English)

    Chen Guoqing; Zhang Binggang; He Jingshan; Feng Jicai

    2007-01-01

    The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti-43Al-9V-0.3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, the partial γ+α2 two-phase lamellar structure and granular γm phase. And the lanthanon Y existed as YAl2 phase and served as grain refined. The impact of different cooling rates on joint microstructure, fracture characteristic and tensile strength were investigated. The high cooling rate restrained the structural transformation and resulted in the ordering structure. The fracture of the joint was brittle cleavage fracture because the ordering structure went against restraining the crack propagation. With the decrease of cooling rate, the transformation amounts of lamellar structure increased, and the fracture presented the layered and cross-layered characteristic.

  1. Concept of a Staged FEL Enabled by Fast Synchrotron Radiation Cooling of Laser-Plasma Accelerated Beam by Solenoidal Magnetic Fields in Plasma Bubble

    CERN Document Server

    Seryi, Andrei; Andreev, Alexander; Konoplev, Ivan

    2016-01-01

    A novel method for generating GigaGauss solenoidal field in laser-plasma bubble, using screw-shaped laser pulses, has been recently presented in arXiv:1604.01259 [physics.plasm-ph]. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper we present an outline of how a staged plasma-acceleration FEL could look like and discuss further studies needed to investigate the feasibility of the concept in detail.

  2. High energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Parkhomchuk, V. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  3. Electron beam dynamics and self-cooling up to PeV level due to betatron radiation in plasma-based accelerators

    Science.gov (United States)

    Deng, Aihua; Nakajima, Kazuhisa; Liu, Jiansheng; Shen, Baifei; Zhang, Xiaomei; Yu, Yahong; Li, Wentao; Li, Ruxin; Xu, Zhizhan

    2012-08-01

    In plasma-based accelerators, electrons are accelerated by ultrahigh gradient of 1-100GV/m and undergo the focusing force with the same order as the accelerating force. Heated electrons are injected in a plasma wake and exhibit the betatron oscillation that generates synchrotron radiation. Intense betatron radiation from laser-plasma accelerators is attractive x-ray/gamma-ray sources, while it produces radiation loss and significant effects on energy spread and transverse emittance via the radiation reaction force. In this article, electron beam dynamics on transverse emittance and energy spread with considering radiation reaction effects are studied numerically. It is found that the emittance growth and the energy spread damping initially dominate and balance with radiative damping due to the betatron radiation. Afterward the emittance turns to decrease at a constant rate and leads to the equilibrium at a nanometer radian level with growth due to Coulomb scattering at PeV-level energies. A constant radiation loss rate RT=2/3 is found without regard to the electron beam and plasma conditions. Self-cooling of electron beams due to betatron radiation may guarantee TeV-range linear colliders and give hints on astrophysical ultrahigh-energy phenomena.

  4. Ultracold ordered electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  5. Photoinduced intramolecular charge-transfer reactions in 4-amino-3-methyl benzoic acid methyl ester: A fluorescence study in condensedphase and jet-cooled molecular beams

    Indian Academy of Sciences (India)

    Amrita Chakraborty; Samiran Kar; D N Nath; Nikhil Guchhait

    2007-03-01

    Photoinduced intramolecular charge-transfer reactions in 4-amino-3-methyl benzoic acid methyl ester (AMBME) have been investigated spectroscopically. AMBME, with its weak charge donor primary amino group, shows dual emission in polar solvents. Absorption and emission measurements in the condensed phase support the premise that the short wavelength emission band corresponds to local emission and the long wavelength emission band to the charge transfer emission. Laser-induced fluorescence excitation spectra show the presence of two low-energy conformers in jet-cooled molecular beams. Theoretical calculations using density functional theory help to determine structure, vibrational modes, potential energy surface, transition energy and oscillator strength for correlating experimental findings with theoretical results.

  6. Ultracold Ordered Electron Beam

    Science.gov (United States)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  7. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  8. Neon helium mixtures as a refrigerant for the FCC beam screen cooling: comparison of cycle design options

    Science.gov (United States)

    Kloeppel, S.; Quack, H.; Haberstroh, C.; Holdener, F.

    2015-12-01

    In the course of the studies for the next generation particle accelerators, in this case the Future Circular Collider for hadron-hadron interaction (FCC-hh), different aspects are being investigated. One of these is the heat load on the beam screen, which results mainly from the synchrotron radiation. In case of the FCC-hh, a heat load of 6 MW is expected. The heat has to be absorbed at 40 to 60 K due to vacuum restrictions. In this range, refrigeration is possible with both helium and neon. Our investigations are focused on a mixed refrigerant of these two components, which combines the advantages of both. Especially promising is the possible substitution of the oil flooded screw compressors by more efficient turbo compressors. This paper investigates different flow schemes and mixture compositions with respect to complexity and efficiency. Furthermore, thermodynamic aspects, e.g. whether to use cold or warm secondary cycle compressors are discussed. Additionally, parameters of the main compressor are established.

  9. Stochastic cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  10. Electron cooling experiments in CSR

    Institute of Scientific and Technical Information of China (English)

    PARKHOMCHUK; Vasily; REVA; Vladimir

    2011-01-01

    The six species heavy ion beam was accumulated with the help of electron cooling in the main ring of Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR). The ion beam accumulation dependence on the parameters of cooler was investigated experimentally. The 400 MeV/u 12C6+ and 200 MeV/u 129Xe54+ were stored and cooled in the experimental ring CSRe, and the cooling force was measured in different conditions.

  11. Electron Cooling Experiments in CSR

    CERN Document Server

    Xiaodong, Yang

    2011-01-01

    The six species heavy ion beam was accumulated with the help of electron cooling in the main ring of Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou(HIRFL-CSR), the ion beam accumulation dependence on the parameters of cooler was investigated experimentally. The 400MeV/u 12C6+ and 200MeV/u 129Xe54+ was stored and cooled in the experimental ring CSRe, the cooling force was measured in different condition.

  12. 浅谈大 H 型钢冷床步进梁磁尺网络优化%Optimization of H Type Steel Cooling Bed Walking Beam Magnetic-scale Network

    Institute of Scientific and Technical Information of China (English)

    焦志敏

    2016-01-01

    针对大型H型钢轧线冷床步进梁区域原设计网络结构不合理、通讯故障排查时间和备件更换时间较长、出现故障后经常造成长时间停机的问题,通过优化步进梁磁尺的网络,降低了冷床区域的通讯故障率。%The network structure of the walking beam area in a heavy H beam line in Laigang is irrational .The time of troubleshooting is longer ,which impacts the production rhythm seriously .This paper mainly introduces how to point at the problem in the walking beam area ,and reduce the communication failure rate of cooling bed area through the optimization of walking beam magnetic-scale network .

  13. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  14. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  15. Optical stochastic cooling in Tevatron

    CERN Document Server

    Lebedev, V

    2012-01-01

    Intrabeam scattering is the major mechanism resulting in a growth of beam emittances and fast luminosity degradation in the Tevatron. As a result in the case of optimal collider operation only about 40% of antiprotons are used to the store end and the rest are discarded. Beam cooling is the only effective remedy to increase the particle burn rate and, consequently, the luminosity. Unfortunately neither electron nor stochastic cooling can be effective at the Tevatron energy and bunch density. Thus the optical stochastic cooling (OSC) is the only promising technology capable to cool the Tevatron beam. Possible ways of such cooling implementation in the Tevatron and advances in the OSC cooling theory are discussed in this paper. The technique looks promising and potentially can double the average Tevatron luminosity without increasing its peak value and the antiproton production.

  16. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  17. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  18. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1978-01-01

    ICE was built in 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring. Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project, to be launched in 1978. Already early in 1978, stochastic cooling proved a resounding success, such that the antiproton (p-pbar)project was entirely based on it. Tests of electron cooling followed later: protons of 46 MeV kinetic energy were cooled with an electron beam of 26 kV and 1.3 A. The cage seen prominently in the foreground houses the HV equipment, adjacent to the "cooler" installed in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7908242.

  19. Status of the Fermilab electron cooling project

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev, S. E-mail: nsergei@fnal.gov; Burov, A.; Carlson, K.; Dudnikov, V.; Kramper, B.; Kroc, T.; Leibfritz, J.; McGee, M.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Warner, A.; Seletsky, S.; Tupikov, V

    2004-10-11

    A prototype of a 4.3-MeV electron cooling system has been assembled at Fermilab as part of the on-going R and D program in high-energy electron cooling. This electron cooler prototype will not demonstrate the actual cooling but it would allow to determine if the electron beam properties are suitable for antiproton beam cooling. An electron beam is accelerated by a 5-MV Pelletron (Van de Graaff type) accelerator and transported to a prototype cooling section. The cooling would take place in a 20-m long solenoid flanked on both sides by supply and return beam-lines--a total of 60 m of transport channel. This paper describes the status of the electron cooling R and D program.

  20. Knife-edge technique for laser cooling

    Institute of Scientific and Technical Information of China (English)

    WANG Zhanshan; MA Shanshan; MA Yan; ZHAO Min; LIU Hengbiao

    2007-01-01

    The transfer characteristics of an atomic beam and the effect of laser were investigated in this paper. In the application of knife-edge technique, the temperature of atoms through laser cooling was measured. Results indicate that,after atoms are emitted from an atomic oven, the longer the atoms move, the worse the distribution of the atomic beam shows, regardless the laser cooling is taken or not. Laser cooling can reduce the transverse velocity of the atomic beam to several orders of magnitude and also increase the uniformity of an atomic beam. Knife-edge technique can measure the temperature of an atomic beam through laser cooling. The measurement accuracy depends on the pixel size of the charge coupled device (CCD), which is used for the fluorescent imaging of the atomic beam. The results are very important for the future experiments of laser cooling.

  1. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  2. Stacking with Stochastic Cooling

    CERN Document Server

    Caspers, Friedhelm

    2004-01-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles seen by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly protected from the Schottky noise of the stack. Vice versa the stack has to be efficiently shielded against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105, the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters)....

  3. Rectlinear cooling scheme for bright muon sources

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    A fast cooling technique is described that simultaneously reduces all six phase-space dimensions of a charged particle beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in absorbers and replenishing the momentum loss only in the longitudinal direction rf cavities. In this work we review its main features and describe the main results.

  4. RIA Fragmentation Line Beam Dumps

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W

    2003-08-08

    The Rare Isotope Accelerator project involves generating heavy-element ion beams for use in a fragmentation target line to produce beams for physics research. The main beam, after passing through the fragmentation target, may be dumped into a beam dump located in the vacuum cavity of the first dipole magnet. For a dump beam power of 100 kW, cooling is required to avoid excessive high temperatures. The proposed dump design involves rotating cylinders to spread out the energy deposition and turbulent subcooled water flow through internal water cooling passages to obtain high, nonboiling, cooling rates.

  5. Stochastic cooling of a high energy collider

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.; Brennan, J.M.; Lee, R.C.; Mernick, K.

    2011-09-04

    Gold beams in RHIC revolve more than a billion times over the course of a data acquisition session or store. During operations with these heavy ions the event rates in the detectors decay as the beams diffuse. A primary cause for this beam diffusion is small angle Coloumb scattering of the particles within the bunches. This intra-beam scattering (IBS) is particularly problematic at high energy because the negative mass effect removes the possibility of even approximate thermal equilibrium. Stochastic cooling can combat IBS. A theory of bunched beam cooling was developed in the early eighties and stochastic cooling systems for the SPS and the Tevatron were explored. Cooling for heavy ions in RHIC was also considered.

  6. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  7. Capture, Electron-Cooling and Compression of Antiprotons in a Large Penning-Trap for Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

    CERN Multimedia

    2002-01-01

    % PS200 \\\\ \\\\The availability of ultra-low energy antiprotons is a crucial ingredient for the execution of the gravity measurements PS200. We have developed a method to provide such low energy antiprotons based on a large Penning trap (the PS200 catching trap). This system can accept a fast-extracted pulse from LEAR, reduce the energy of the antiprotons in the pulse from 5.9~MeV to several tens of kilovolts using a degrading foil, and then capture the antiprotons in a large Penning trap. These antiprotons are cooled by electrons previously admitted to the trap and are collected in a small region at the center of the trap. We have demonstrated our capability to capture up to 1~million antiprotons from LEAR in a single shot, electron cool these antiprotons, and transfer up to 95\\% of them into the inner, harmonic region. A storage time in excess of 1 hour was observed. These results have been obtained with the cryogenic trap vacuum coupled to a room temperature vacuum at about l0$ ^- ^{1} ^0 $ Torr, which is an...

  8. New Approaches to Final Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab

    2014-11-10

    A high-energy muon collider scenario require a “final cooling” system that reduces transverse emittances by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of the alternative approach. A more explicit understanding of solenoidal cooling beam dynamics is introduced.

  9. Mass measurement of halo nuclides and beam cooling with the mass spectrometer Mistral; Mesure de masse de noyaux a halo et refroidissement de faisceaux avec l'experience MISTRAL

    Energy Technology Data Exchange (ETDEWEB)

    Bachelet, C

    2004-12-01

    Halo nuclides are a spectacular drip-line phenomenon and their description pushes nuclear theories to their limits. The most critical input parameter is the nuclear binding energy; a quantity that requires excellent measurement precision, since the two-neutron separation energy is small at the drip-line by definition. Moreover halo nuclides are typically very short-lived. Thus, a high accuracy instrument using a quick method of measurement is necessary. MISTRAL is such an instrument; it is a radiofrequency transmission mass spectrometer located at ISOLDE/CERN. In July 2003 we measured the mass of the Li{sup 11}, a two-neutron halo nuclide. Our measurement improves the precision by a factor 6, with an error of 5 keV. Moreover the measurement gives a two-neutron separation energy 20% higher than the previous value. This measurement has an impact on the radius of the nucleus, and on the state of the two valence neutrons. At the same time, a measurement of the Be{sup 11} was performed with an uncertainty of 4 keV, in excellent agreement with previous measurements. In order to measure the mass of the two-neutron halo nuclide Be{sup 14}, an ion beam cooling system is presently under development which will increase the sensitivity of the spectrometer. The second part of this work presents the development of this beam cooler using a gas-filled Paul trap. (author)

  10. The MICE Demonstration of Muon Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, Jean-Baptiste [Imperial Coll., London; Hunt, Christopher [Imperial Coll., London; Palladino, Vittorio [INFN, Naples; Pasternak, Jaroslaw [Imperial Coll., London

    2016-06-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions up to several TeV at the Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate muon ionization cooling, the technique proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam traverses a material (the absorber) loosing energy, which is replaced using RF cavities. The combined effect is to reduce the transverse emittance of the beam (transverse cooling). The configuration of MICE required to deliver the demonstration of ionization cooling is being prepared in parallel to the execution of a programme designed to measure the cooling properties of liquid-hydrogen and lithium hydride. The design of the cooling-demonstration experiment will be presented together with a summary of the performance of each of its components and the cooling performance of the experiment.

  11. The MICE Demonstration of Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, J.; Blackmore, V.; Hunt, C.; Lagrange, J-B.; Long, K.; Collomb, N.; Snopok, P.

    2015-05-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.

  12. MEIC Electron Cooling Simulation Using Betacool

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He [JLAB; Zhang, Yuhong [JLAB

    2013-12-01

    Electron cooling of ion beams is the most critical R&D issue in Jefferson Lab's MEIC design. In the ion collider ring, a bunched electron beam driven by an energy-recovery SRF linac assisted by a circulate ring will be employed to cool protons or ions with energies up to 100 GeV/u, a parameter regime that electron cooling has never been applied. It is essential to understand how efficient the electron cooling is, particularly in the high energy range, to confirm the feasibility of the design. Electron cooling is also important in LEIC design although the ion energy is 25 GeV/u, lower than MEIC. In this paper, we will present first results of the simulation studies of electron cooling processes in the collider ring of both MEIC and LEIC using BETACOOL code.

  13. Cooled particle accelerator target

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  14. Danish Cool

    DEFF Research Database (Denmark)

    Toft, Anne Elisabeth

    2016-01-01

    Danish Cool. Keld Helmer-Petersen, Photography and the Photobook Handout exhibition text in English and Chinese by Anne Elisabeth Toft, Curator The exhibition Danish Cool. Keld Helmer-Petersen, Photography and the Photobook presents the ground-breaking work of late Danish photographer Keld Helmer......-Petersen (1920-2013). It offers an exclusive insight into his artistic experiments with the media of photography and photobooks. Focusing on his last work - the photobook Black Light from 2014 - the exhibition is built around Helmer-Petersen’s photographic book publications, the original versions of which...

  15. Transverse cooling in the muon collider

    Energy Technology Data Exchange (ETDEWEB)

    Fernow, R.C.; Gallardo, J.C.; Kirk, H.G.; Palmer, R.B.

    1998-07-01

    Ionization cooling is the preferred method for reducing the emittance of muon beams in a muon collider. The method described here uses passive liquid hydrogen absorbers and rf acceleration in an alternating lattice of solenoids. The authors consider the basic principles of ionization cooling, indicating the reasons for selecting various parameters. Tracking simulations are used to make detailed examinations of effects on the beam, such as transmission losses, transverse cooling, bunch lengthening, and introduction of energy spread. The system reduces the overall 6-dimensional emittance to 44% of its initial value.

  16. Epicyclic helical channels for parametric resonance ionization cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johson, Rolland Paul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Muons, Inc., Batavia, IL (United States)

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  17. Magnets for Muon 6D Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  18. Cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Todd R; Vyas, Brijesh; Kota, Krishna; Simon, Elina

    2017-01-31

    An apparatus and a method are provided. Use is made of a wick structure configured to receive a liquid and generate vapor in when such wick structure is heated by heat transferred from heat sources to be cooled off. A vapor channel is provided configured to receive the vapor generated and direct said vapor away from the wick structure. In some embodiments, heat conductors are used to transfer the heat from the heat sources to the liquid in the wick structure.

  19. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  20. ATLAS - Liquid Cooling Systems

    CERN Multimedia

    Bonneau, P.

    1998-01-01

    Photo 1 - Cooling Unit - Side View Photo 2 - Cooling Unit - Detail Manifolds Photo 3 - Cooling Unit - Rear View Photo 4 - Cooling Unit - Detail Pump, Heater and Exchanger Photo 5 - Cooling Unit - Detail Pump and Fridge Photo 6 - Cooling Unit - Front View

  1. Commissioning of electron cooling in CSRm

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Dong; LI Jie; MAO Li-Jun; LI Guo-Hong; ZHAN Wen-Long; XIA Jia-Wen; ZHAO Hong-Wei; XIAO Guo-Qing; YUAN You-Jin; SONG Ming-Tao; LIU Yong; YANG Jian-Cheng; GAO Da-Qing; ZHOU Zhong-Zu; HE Yuan; ZHANG Wei; ZHANG Jian-Hua; MAO Rui-Shi; ZHAO Tie-Cheng; Parkhomchuk Vasily

    2009-01-01

    A new generation electron cooler has started operation in the heavy ion synchrotron CSRm which is used to increase the intensity of heavy ions.Transverse cooling of the ion beam after horizontal multi-turn injection allows beam accumulation at the injection energy.After optimization of the accumulation process an intensity increase in a synchrotron pulse by more than one order of magnitude has been achieved.In given accumulation time interval of 10 seconds,108 particles have been accumulated and accelerated to the final energy.The momentum spread after accumulation and acceleration in the 10-4 range has been demonstrated in six species of ion beams.Primary measurements of accumulation process varying with electron energy,electron beam current,electron beam profile,expansion factor and injection interval have been performed.The lifetimes of ion beams in the presence of electron beams were roughly measured with the help of DCCT signal.

  2. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  3. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted turned by 180-degrees and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  4. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  5. Electron Cooling Performance at IMP Facility

    CERN Document Server

    Xiaodong, Yang

    2011-01-01

    The ion beam of 58Ni19+ with the energy of 6.39MeV/u was accumulated in the main ring of HIRFL-CSR with the help of electron cooling. The related angle between ion and electron beams in the horizontal and vertical planes was intentionally created by the steering coils in the cooling section after maximized the accumulated ion beam in the ring. The radial electron intensity distribution was changed by the ratio of potentials of grid electrode and anode of the electron gun, the different electron beam profiles were formed from solid to hollow in the experiments. In these conditions, the maximum accumulated ion beam intensity in the 10 seconds was measured, the lifetime of ion beam was measured, simultaneously the momentum spread of the ion beam varying with particle number was measured during the ion beam decay, furthermore, and the power coefficient was derived from these data. In additional, the momentum spread in the case of constant particle number was plotted with the angle and electron beam profile. The o...

  6. Progress of the stochastic cooling system of the Collector Ring

    CERN Document Server

    Dimopoulou, C; Bohm, R; Dolinskyy, O; Franzke, B; Hettrich, R; Maier, W; Menges, R; Nolden, F; Peschke, C; Petri, P; Steck, M; Thorndahl, L

    2013-01-01

    An overview of the recent achievements and ongoing developments for the stochastic cooling system of the Collector Ring is given. In focus are the hardware developments as well as the progress in predicting the system performance. The system operates in the frequency band 1-2 GHz, it has to provide fast 3D cooling of antiproton, rare isotope and stable heavy ion beams. The main challenges are (i) the cooling of antiprotons by means of cryogenic movable pick-up electrodes and (ii) the fast two-stage cooling (pre-cooling by the Palmer method, followed by the notch filter method) of the hot rare isotope beams (RIBs). Recently, a novel code for simulating the cooling process in the time domain has been developed at CERN. First results for the momentum cooling for heavy ions in the CR will be shown in comparison with results obtained in the frequency domain with the Fokker-Planck approach.

  7. Three-dimensional cooling of muons

    CERN Document Server

    Vsevolozhskaya, T A

    2000-01-01

    The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.

  8. Thermal environment in simulated offices with convective and radiant cooling systems under cooling (summer) mode of operation

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin;

    2016-01-01

    The thermal environment in a double office room and in a six-person meeting room obtained with chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition-mounted local radiant cooling panels with mixing...... ventilation (MVRC) under summer (cooling) condition was compared. MVRC system was measured only for the office room case. CB provided convective cooling while the remaining three systems (CBR, CCMV and MVRC) provided combined radiant and convective cooling. Solar radiation, office equipment, lighting...

  9. Stochastic cooling equipment at the ISR

    CERN Multimedia

    1983-01-01

    The photo shows (centre) an experimental set-up for stochastic cooling of vertical betatron oscillations, used at the ISR in the years before the ICE ring was built. Cooling times of about 30 min were obtained in the low intensity range (~0.3 A). To be noted the four 50 Ohm brass input/output connections with cooling fins, and the baking-out sheet around the cylinder. On the left one sees a clearing electrode box allowing the electrode current to be measured, and the pressure seen by the beam to be evaluated.

  10. Pion contamination in the MICE muon beam

    Science.gov (United States)

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Brashaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drews, M.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Greis, J. R.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Winter, M.; Yang, X.; Young, A.; Zisman, M.

    2016-03-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  11. Pion contamination in the MICE muon beam

    CERN Document Server

    Bogomilov, M.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Japan, Ibaraki; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Blondel, A.; Drielsma, F.; Karadzhov, Y.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.R.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Drews, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Winter, M.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1\\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi < 1.4\\%$ at 90\\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  12. STATUS OF THE RESEARCH AND DEVELOPMENT TOWARDS ELECTRON COOLING OF RHIC

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.; OZAKI, T.; YOSHIDA, T.; NANKAWA, T.; KOZAI, N.; SAKAMOTO, F.; SUZUKI, Y.

    2007-06-25

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed calculations were made of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. The electron beam accelerator will be a superconducting Energy Recovery Linac (ERL). An intensive experimental R&D program engages the various elements of the accelerator, as described by 24 contributions to the 2007 PAC.

  13. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  14. Dynamical backaction cooling with free electrons.

    Science.gov (United States)

    Niguès, A; Siria, A; Verlot, P

    2015-09-18

    The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms.

  15. Progress on Superconducting Magnets for the MICE Cooling Channel

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A; Virostek, Steve P.; Li, Derun; Zisman, Michael S.; Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Xu, FengYu; Liu, X. K.; Zheng, S. X.; Bradshaw, Thomas; Baynham, Elwyn; Cobb, John; Lau, Wing; Lau, Peter; Yang, Stephanie Q.

    2009-09-09

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in he United States, China, and the United Kingdom respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that re used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  16. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  17. Plasma-beam traps and radiofrequency quadrupole beam coolers.

    Science.gov (United States)

    Maggiore, M; Cavenago, M; Comunian, M; Chirulotto, F; Galatà, A; De Lazzari, M; Porcellato, A M; Roncolato, C; Stark, S; Caruso, A; Longhitano, A; Cavaliere, F; Maero, G; Paroli, B; Pozzoli, R; Romé, M

    2014-02-01

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  18. Cool Down Analysis of a Cryocooler Based Quadrupole Magnet Cryostat

    Science.gov (United States)

    Choudhury, A.; Kar, S.; Chacko, J.; Kumar, M.; Babu, S.; Sahu, S.; Kumar, R.; Antony, J.; Datta, T. S.

    A superconducting quadrupole doublet magnet with cold superferric iron cover for the Hybrid Recoil Mass Analyzer (HYRA) beam line has been commissioned. The total cold mass of the helium vessel with iron yoke and pole is 2 ton. A set of two Sumitomo cryocoolers take care of various heat loads to the cryostat. The first successful cool down of the cryostat has been completed recently, magnets have been powered and magnetic field profiling has been done inside theroom temperature beam tube. This paper will highlight the cryostat details along with the cool down and operational test results obtained from the first cool down.

  19. Proposal for Laser Cooling of Complex Polyatomic Molecules.

    Science.gov (United States)

    Kozyryev, Ivan; Baum, Louis; Matsuda, Kyle; Doyle, John M

    2016-11-18

    An experimentally feasible strategy for direct laser cooling of polyatomic molecules with six or more atoms is presented. Our approach relies on the attachment of a metal atom to a complex molecule, where it acts as an active photon cycling site. We describe a laser cooling scheme for alkaline earth monoalkoxide free radicals taking advantage of the phase space compression of a cryogenic buffer-gas beam. Possible applications are presented including laser cooling of chiral molecules and slowing of molecular beams using coherent photon processes.

  20. Tapered Six-Dimensional Cooling Channel for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.; Fernow, R.C.

    2011-03-28

    A high-luminosity muon collider requires a reduction of the six-dimensional emittance of the captured muon beam by a factor of {approx} 10{sup 6}. Most of this cooling takes place in a dispersive channel that simultaneously reduces all six phase space dimensions. We describe a tapered 6D cooling channel that should meet the requirements of a muon collider. The parameters of the channel are given and preliminary simulations are shown of the expected performance. A complete scheme for cooling a muon beam sufficiently for use in a muon collider has been previously described. This scheme uses separate 6D ionization cooling channels for the two signs of the particle charge. In each, a channel first reduces the emittance of a train of muon bunches until they can be injected into a bunch-merging system. The single muon bunches, one of each sign, are then sent through a second tapered 6D cooling channel where the transverse emittance is reduced as much as possible and the longitudinal emittance is cooled to a value below that needed for the collider. The beam can then be recombined and sent through a final cooling channel using high-field solenoids that cools the transverse emittance to the required values for the collider while allowing the longitudinal emittance to grow. This paper mainly describes the design of the 6D cooling channel before bunch merging. Cooling efficiency is conveniently measured using a parameter Q, which is defined as the rate of change of 6D emittance divided by the rate of change of the number of muons in the beam. In a given lattice Q starts off small due to losses from initial matching, then rises to a large value (Q {approx} 15 is typical for the channels discussed here), and finally falls as the emittance of the beam approaches its equilibrium value. The idea for the 6D cooling channel described here originated with the RFOFO cooling ring. This design evolved into a helical channel referred to as a 'Guggenheim' in order to avoid

  1. Toward laser cooling of negative lanthanum

    Science.gov (United States)

    Jordan, Elena; Cerchiari, Giovanni; Erlewein, Stefan; Kellerbauer, Alban; UNIC Team

    2016-05-01

    Anion laser cooling holds the potential to allow the production of ultracold ensembles of any negatively charged species by sympathetic cooling. It is a promising technique for cooling of antiprotons to a few mK and could clear the way for precision measurements on cold antihydrogen. Laser cooling of negative ions has never been achieved, since most species have no bound-bound electric dipole transitions. Negative lanthanum (La-) is one of the few anions with multiple electric dipole transitions. The bound-bound transition from the 3F2e ground state to the 3D1o excited state in La- has been proposed theoretically as a candidate for laser cooling. The potential laser cooling transition was identified using laser photodetachment spectroscopy and its excitation energy was measured. We have studied the aforementioned transition in a beam of La anions by high-resolution laser photodetachment spectroscopy. Seven of the nine expected hyperfine structure transitions have been resolved and the transition cross sections have been estimated from experimental observations. It was found that presently La- is the most promising candidate among the atomic anions. We plan to demonstrate the first direct laser cooling of negative ions in a linear radio frequency trap. We gratefully acknowledge support from the European Research Council (ERC).

  2. Development of the electron cooling simulation program for JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Chen, Jie [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Huang, He [Old Dominion Univ., Norfolk, VA (United States); Luo, Li-Shi [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    In the JLab Electron Ion Collider (JLEIC) project the traditional electron cooling technique is used to reduce the ion beam emittance at the booster ring, and to compensate the intrabeam scattering effect and maintain the ion beam emittance during collision at the collider ring. A new electron cooling process simulation program has been developed to fulfill the requirements of the JLEIC electron cooler design. The new program allows the users to calculate the electron cooling rate and simulate the cooling process with either DC or bunched electron beam to cool either coasting or bunched ion beam. It has been benchmarked with BETACOOL in aspect of accuracy and efficiency. In typical electron cooling process of JLEIC, the two programs agree very well and we have seen a significant improvement of computational speed using the new one. Being adaptive to the modern multicore hardware makes it possible to further enhance the efficiency for computationally intensive problems. The new program is being actively used in the electron cooling study and cooler design for JLEIC. We will present our models and some simulation results in this paper.

  3. Keeping Your Cool

    Science.gov (United States)

    ... is another way to keep your body cool! Pack peaches, oranges, watermelon, and grapes in your cooler ... tell ya! To keep your feet cool and blister-free, try wearing shoes that allow your feet ...

  4. Liquid-Cooled Garment

    Science.gov (United States)

    1977-01-01

    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  5. Data center cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  6. Ionization Cooling using Parametric Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  7. Cavity Control and Cooling of Nanoparticles in High Vacuum

    Science.gov (United States)

    Millen, James

    2016-05-01

    Levitated systems are a fascinating addition to the world of optically-controlled mechanical resonators. It is predicted that nanoparticles can be cooled to their c.o.m. ground state via the interaction with an optical cavity. By freeing the oscillator from clamping forces dissipation and decoherence is greatly reduced, leading to the potential to produce long-lived, macroscopically spread, mechanical quantum states, allowing tests of collapse models and any mass limit of quantum physics. Reaching the low pressures required to cavity-cool to the ground state has proved challenging. Our approach is to cavity cool a beam of nanoparticles in high vacuum. We can cool the c.o.m. motion of nanospheres, and control the rotation of nanorods, with the potential to produce cold, aligned nanostructures. Looking forward, we will utilize novel microcavities to enhance optomechanical cooling, preparing particles in a coherent beam ideally suited to ultra-high mass interferometry at 107 a.m.u.

  8. Cavity Cooling of Nanoparticles: Towards Matter-Wave experiments

    Science.gov (United States)

    Millen, James; Kuhn, Stefan; Arndt, Markus

    2016-05-01

    Levitated systems are a fascinating addition to the world of optically-controlled mechanical resonators. It is predicted that nanoparticles can be cooled to their c.o.m. ground state via the interaction with an optical cavity. By freeing the oscillator from clamping forces dissipation and decoherence is greatly reduced, leading to the potential to produce long-lived, macroscopically spread, mechanical quantum states, allowing tests of collapse models and any mass limit of quantum physics. Reaching the low pressures required to cavity-cool to the ground state has proved challenging. Our approach is to cavity cool a beam of nanoparticles in high vacuum. We can cool the c.o.m. motion of nanospheres a few hundred nanometers in size. Looking forward, we will utilize novel microcavities to enhance optomechanical cooling, preparing particles in a coherent beam ideally suited to ultra-high mass interferometry at 107 a.m.u.

  9. Atomic physics experiments with cooled stored ions

    Science.gov (United States)

    Schuch, Reinhold

    2004-10-01

    This presentation contains examples of recent atomic physics experiments with stored and cooled ion beams from the CRYRING facility in Stockholm. One of these experiments uses the high luminosity of a cooled MeV proton beam in a He COLTRIMS apparatus (COLd supersonic He gas-jet Target for Recoil Ion Momentum Spectroscopy) for measuring correlation effects in transfer ionization. Another class of experiments exploits the cold electron beam available in the CRYRING electron cooler and cooled heavy-ion beams for recombination experiments. A section concerns the still rather open question of the puzzling recombination enhancement over the radiative recombination theory. Dielectronic resonances at meV-eV energy are measured with a resolution in the order of 10-3-10-2 eV with highly charged ions stored at several hundreds of MeV kinetic energy in the ring. These resonances provide a serious challenge to theories for describing correlation, relativistic, QED effects, and isotope shifts in highly ionized ions. Applications of recombination rates with complex highly charged ions for fusion and astrophysical plasmas are shown.

  10. Atomic physics experiments with cooled stored ions

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, Reinhold E-mail: schuch@physto.se

    2004-10-11

    This presentation contains examples of recent atomic physics experiments with stored and cooled ion beams from the CRYRING facility in Stockholm. One of these experiments uses the high luminosity of a cooled MeV proton beam in a He COLTRIMS apparatus (COLd supersonic He gas-jet Target for Recoil Ion Momentum Spectroscopy) for measuring correlation effects in transfer ionization. Another class of experiments exploits the cold electron beam available in the CRYRING electron cooler and cooled heavy-ion beams for recombination experiments. A section concerns the still rather open question of the puzzling recombination enhancement over the radiative recombination theory. Dielectronic resonances at meV-eV energy are measured with a resolution in the order of 10{sup -3}-10{sup -2} eV with highly charged ions stored at several hundreds of MeV kinetic energy in the ring. These resonances provide a serious challenge to theories for describing correlation, relativistic, QED effects, and isotope shifts in highly ionized ions. Applications of recombination rates with complex highly charged ions for fusion and astrophysical plasmas are shown.

  11. Grazing incidence beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  12. Status of the R&D Towards Electron Cooling of RHIC

    Energy Technology Data Exchange (ETDEWEB)

    A. Favale; D. Holmes; J.J. Sredniawski; Hans Bluem; M.D. Cole; J. Rathke; T. Schultheiss; A.M.M. Todd; V.V. Parkhomchuk; V.B. Reva; J. Alduino; D.S. Barton; Dana Richard Beavis; I. Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; Andrew Burrill; Rama Calaga; P. Cameron; X. Chang; K.A. Drees; A.V. Fedotov; W. Fischer; G. Ganetis; D.M. Gassner; J.G. Grimes; Hartmut Hahn; L.R. Hammons; A. Hershcovitch; H.C. Hseuh; D. Kayran; J. Kewisch; R.F. Lambiase; D.L. Lederle; Vladimir Litvinenko; C. Longo; W.W. MacKay; G.J. Mahler; G.T. McIntyre; W. Meng; B. Oerter; C. Pai; George Parzen; D. Pate; D. Phillips; S.R. Plate; Eduard Pozdeyev; Triveni Rao; J. Reich; Thomas Roser; A.G. Ruggiero; T. Russo; C. Schultheiss; Z. Segalov; J. Smedley; K. Smith; T. Tallerico; S. Tepikian; R. Than; R.J. Todd; Dejan Trbojevic; J.E. Tuozzolo; P. Wanderer; G. WANG; D. Weiss; Q. Wu; Kin Yip; A. Zaltsman; A. Burov; S. Nagaitsev; L.R. Prost; A.O. Sidorin; A.V. Smirnov; Yaroslav Derbenev; Peter Kneisel; John Mammosser; H. Phillips; Joseph Preble; Charles Reece; Robert Rimmer; Jeffrey Saunders; Mircea Stirbet; Haipeng Wang; A.V. Aleksandrov; D.L. Douglas; Y.W. Kang; D.T. Abell; G.I. Bell; David L. Bruhwiler; R. Busby; John R. Cary; D.A. Dimitrov; P. Messmer; Vahid Houston Ranjbar; D.S. Smithe; A.V. Sobol; P. Stoltz

    2007-08-01

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R&D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components.

  13. Conceptual design of proton beam window

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Kaminaga, Masanori; Terada, Atsuhiko; Ishikura, Syuichi; Kinoshita, Hidetaka; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In a MW-scale neutron scattering facility coupled with a high-intensity proton accelerator, a proton beam window is installed as the boundary between a high vacuum region of the proton beam transport line and a helium environment around the target assembly working as a neutron source. The window is cooled by water so as to remove high volumetric heat generated by the proton beam. A concept of the flat-type proton beam window consisting of two plates of 3 mm thick was proposed, which was found to be feasible under the proton beam power of 5 MW through thermal-hydraulic and structural strength analyses. (authors)

  14. Efficient cooling and trapping of strontium atoms.

    Science.gov (United States)

    Courtillot, I; Quessada, A; Kovacich, R P; Zondy, J J; Landragin, A; Clairon, A; Lemonde, P

    2003-03-15

    We report the capture of cold strontium atoms in a magneto-optical trap (MOT) at a rate of 4 x 10(10) atoms/s. The MOT is loaded from an atomic beam decelerated by a Zeeman slower operating with a focused laser beam. The 461-nm laser, used for both cooling and trapping, was generated by sum-frequency mixing in a KTP crystal with diode lasers at 813 nm and a Nd:YAG laser at 1064 nm. As much as 115 mW of blue light was obtained.

  15. Achromatic Cooling Channel with Li Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2002-04-29

    A linear cooling channel with Li lenses, solenoids, and 201 MHz RF cavities is considered. A special lattice design is used to minimize chromatic aberrations by suppression of several betatron resonances. Transverse emittance of muon beam decreases from 2 mm to 0.5 mm at the channel of about 110 m length. Longitudinal heating is modest, therefore transmission of the channel is rather high: 96% without decay and 90% with decay. Minimal beam emittance achievable by similar channel estimated as about 0.25 mm at surface field of Li lenses 10 T.

  16. Collimator for the SPS extracted beam

    CERN Multimedia

    1976-01-01

    This is a water cooled copper collimator (TCSA) which has exactly the shape of the cross section of the downstream magnetic beam splitter. Parts of the blown up primary proton beam pass above/below and left through this collimator. A small part of the protons is absorbed in the thin copper wedges. In this way the downstream magnetic splitter of the same cross section receives already a beam where its magnetic wedges are no longer hit by protons. The upstream, water cooled collimator, more resistant to protons, has cast a 'shadow' onto the downstream magnetic splitter, less resistant to protons. Gualtero Del Torre stands on the left.

  17. Cooling by Thermodynamic Induction

    Science.gov (United States)

    Patitsas, S. N.

    2016-11-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  18. Cooling by Thermodynamic Induction

    Science.gov (United States)

    Patitsas, S. N.

    2017-03-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  19. Electron cooling device without bending magnets

    Science.gov (United States)

    Sharapa, A. N.; Shemyakin, A. V.

    1993-11-01

    The scheme of an axisymmetric electron cooling device without bending magnets is proposed. Solutions for the most important elements, i.e., a gun and a recuperator, are considered. The main characteristics of the recuperator of the Faraday cup type having a reflector and a gun with a ring emitter are explored. In the gun, the beam is formed, the diameter of which is 40 mm and the dimension of a disturbance region is several millimeters.

  20. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  1. The ATLAS IBL CO2 cooling system

    Science.gov (United States)

    Verlaat, B.; Ostrega, M.; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-02-01

    The ATLAS Pixel detector has been equipped with an extra pixel layer in the space obtained by a smaller radius beam pipe. This new pixel layer called the Insertable B-Layer (IBL) was installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the expected high radiation dose received at an integrated luminosity of 550 fb1. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  2. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  3. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  4. Power electronics cooling apparatus

    Science.gov (United States)

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  5. Storage-ring Electron Cooler for Relativistic Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Johnson, Rolland P. [Muons Inc., Batavia, IL (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.

  6. Cryogenic performance of a cryocooler-cooled superconducting undulator

    Energy Technology Data Exchange (ETDEWEB)

    Fuerst, J. D.; Doose, C.; Hasse, Q.; Ivanyushenkov, Y.; Kasa, M.; Shiroyanagi, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2014-01-29

    A cryocooler-cooled superconducting undulator has been installed and operated with beam at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The device consists of a dual-core 42-pole magnet structure that is cooled to 4.2 K with a system of four cryocoolers operating in a zero-boil-off configuration. This effort represents the culmination of a development program to establish concept feasibility and evaluate cryostat design and cryocooler-based refrigeration. Cryostat performance is described including cool-down/warm-up, steady-state operation, cooling margin, and the impact of beam during operation in the APS storage ring. Plans for future devices with longer magnets, which will incorporate lessons learned from the development program, are also discussed.

  7. Elastocaloric cooling: Stretch to actively cool

    Science.gov (United States)

    Ossmer, Hinnerk; Kohl, Manfred

    2016-10-01

    The elastocaloric effect can be exploited in solid-state cooling technologies as an alternative to conventional vapour compression. Now, an elastocaloric device based on the concept of active regeneration achieves a temperature lift of 15.3 K and efficiencies competitive with other caloric-based approaches.

  8. Liquid Cooled Garments

    Science.gov (United States)

    1979-01-01

    Astronauts working on the surface of the moon had to wear liquid-cooled garments under their space suits as protection from lunar temperatures which sometimes reach 250 degrees Fahrenheit. In community service projects conducted by NASA's Ames Research Center, the technology developed for astronaut needs has been adapted to portable cooling systems which will permit two youngsters to lead more normal lives.

  9. Passive evaporative cooling

    NARCIS (Netherlands)

    Tzoulis, A.

    2011-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Smart & Bioclimatic Design. Passive techniques for cooling are a great way to cope with the energy problem of the present day. This manual introduces passive cooling by evaporation. These methods have been used for many years in traditi

  10. Data center cooling method

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  11. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.-S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still remain

  12. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  13. Hydronic rooftop cooling systems

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian Eric; Berman, Mark J.

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  14. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1979-01-01

    ICE was built in 1977, using the modified bending magnets of the g-2 muon storage ring (see 7405430). Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project. Stochastic cooling proved a resounding success early in 1978 and the antiproton project could go ahead, now entirely based on stochastic cooling. Electron cooling was experimented with in 1979. The 26 kV equipment is housed in the cage to the left of the picture, adjacent to the "e-cooler" located in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7809081.

  15. Direct laser cooling of the BH molecule

    Science.gov (United States)

    Holland, Darren; Truppe, Stefan; Hendricks, Richard; Sauer, Ben; Tarbutt, Michael

    2015-03-01

    Ultracold polar molecules are of interest for a variety of applications, including tests of fundamental physics, ultracold chemistry, and simulation of many-body quantum systems. The laser cooling techniques that have been so successful in producing ultracold atoms are difficult to apply to molecules. Recently however, laser cooling has been applied successfully to a few molecular species, and a magneto-optical trap of SrF molecules has now been demonstrated. We have investigated the BH molecule as a candidate for laser cooling. We have produced a molecular beam of BH and have measured the branching ratios for the excited electronic state, A1 Π (v' = 0) , to decay to the various vibrational states of the ground electronic state, X1 Σ . We verify that the branching ratio for the spin-forbidden transition to an intermediate triplet state is inconsequentially small. We measure the frequency of the lowest rotational transition of the X state, and the hyperfine structure in the relevant levels of both the X and A states, and determine the nuclear electric quadrupole and magnetic dipole coupling constants. Our results show that a relatively simple laser cooling scheme can be used to cool, slow and trap BH molecules.

  16. Broadband lasercooling of relativistic ion beams at ESR

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, Michael; Seltmann, Michael; Siebold, Matthias; Schramm, Ulrich [HZDR (Germany); Wen, Weiqiang; Zhang, Dacheng; Ma, Xinwen [IMPCAS, Lanzhou (China); Winters, Danyal; Clark, Colin; Kozhuharov, Christophor; Steck, Markus; Dimopoulou, Christina; Nolden, Fritz; Stoehlker, Thomas [GSI (Germany); Beck, Tobias; Rein, Benjamin; Walther, Thomas; Tichelmann, Sascha; Birkl, Gerhard [TU Darmstadt (Germany); Sanchez-Alarcon, Rodolfo; Ullmann, Johannes; Lochmann, Matthias; Noertershaeuser, Wilfried [GSI (Germany); Univ. Mainz (Germany)

    2013-07-01

    We present new results on laser cooling of relativistic C{sup 3+} ion beams at the Experimental Storage Ring at GSI. For the first time we could show laser cooling of bunched relativistic ion beams using fast scanning of the frequency of the cooling laser over a range larger than the momentum acceptance of the bucket. Unlike previously employed cooling schemes where the bucket frequency was scanned relatively to a fixed laser frequency, scanning of the laser frequency can be readily applied to future high energy storage rings such as HESR or SIS100 at FAIR.

  17. Production of annular flat-topped vortex beams

    Institute of Scientific and Technical Information of China (English)

    Jiannong Chen; Yongjiang Yu; Feifei Wang

    2011-01-01

    @@ A model of an annular flat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.%A model of an annular fiat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.

  18. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI, I.

    2005-09-18

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R&D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC.

  19. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  20. Measuring the coolness of interactive products: the COOL questionnaire

    DEFF Research Database (Denmark)

    Bruun, Anders; Raptis, Dimitrios; Kjeldskov, Jesper;

    2016-01-01

    is the COOL questionnaire. We based the creation of the questionnaire on literature suggesting that perceived coolness is decomposed to outer cool (the style of a product) and inner cool (the personality characteristics assigned to it). In this paper, we focused on inner cool, and we identified 11 inner cool......, rebelliousness and usability. These factors and their underlying 16 question items comprise the COOL questionnaire. The whole process of creating the questionnaire is presented in detail in this paper and we conclude by discussing our work against related work on coolness and HCI....

  1. TSR: A storage and cooling ring for HIE-ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Blaum, K. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Davinson, T. [School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Flanagan, K.; Freeman, S.J. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Grieser, M. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Lazarus, I.H. [S.T.F.C. Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Litvinov, Yu.A. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Lotay, G. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Page, R.D. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Raabe, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven (Belgium); Siesling, E.; Wenander, F. [CERN, 1211 Geneva 23 (Switzerland); Woods, P.J. [School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2016-06-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  2. Cool WISPs for stellar cooling excesses

    CERN Document Server

    Giannotti, Maurizio; Redondo, Javier; Ringwald, Andreas

    2015-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a preference for a mild non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP represents the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO.

  3. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences; Irastorza, Igor [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [DESY Hamburg (Germany). Theory Group

    2015-12-15

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a preference for a mild non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP represents the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO.

  4. Water-cooled electronics

    CERN Document Server

    Dumont, G; Righini, B

    2000-01-01

    LHC experiments demand on cooling of electronic instrumentation will be extremely high. A large number of racks will be located in underground caverns and counting rooms, where cooling by conventional climatisation would be prohibitively expensive. A series of tests on the direct water cooling of VMEbus units and of their standard power supplies is reported. A maximum dissipation of 60 W for each module and more than 1000 W delivered by the power supply to the crate have been reached. These values comply with the VMEbus specifications. (3 refs).

  5. Totally Active Scintillator Tracker-Calorimeter for the Muon Ionization Cooling Experiment

    CERN Document Server

    AUTHOR|(CDS)2078013; Blondel, Alain

    2014-09-31

    The recent discoveries in particle physics, the Higgs Boson and neutrino oscillations, voiced the need for new machines that can provide higher intensities, energy and precision. To study the neutrino oscillations in great details and to access new physics, a Neutrino Factory stands as an ultimate tool that offers a high intensity, well understood neutrino beam. On the other hand, a Muon Collider is indispensable for better understanding of a Higgs physics. Both machines share similar ingredients and one of them, that is essential to achieve high luminosity of the beams, is beam cooling. And the only feasible method to achieve cooling of a muons beam is based on ionization. An R&D project was established to verify a possibility of such a cooling, Muon Ionization Cooling Experiment (MICE). Its purpose is to build a cooling cell capable of cooling a muon beam by 10% and measure the effect (the cooling effect is attributed to a reduction of beam emittance) with an absolute precision of 0.1%. This is achieve...

  6. A Moment Equation Approach to a Muon Collider Cooling Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Celata, C.M.; Sessler, A.M.; Lee, P.B.; Shadwick, B.A.; Wurtele, J.S.

    1998-06-01

    Equations are derived which describe the evolution of the second order moments of the beam distribution function in the ionization cooling section of a muon collider. Ionization energy loss, multiple scattering, and magnetic fields have been included, but forces are linearized. A computer code using the equations agrees well with tracking calculations. The code is extremely fast, and can be used for preliminary design, where such issues as beam halo, which must be explored using a tracking code, are not the focus.

  7. Storage-ring Electron Cooler for Relativistic Ion Beams

    CERN Document Server

    Lin, F; Douglas, D; Guo, J; Johnson, R P; Krafft, G; Morozov, V S; Zhang, Y

    2016-01-01

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the...

  8. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  9. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  10. Waveguide cooling system

    Science.gov (United States)

    Chen, B. C. J.; Hartop, R. W.

    1981-04-01

    An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel.

  11. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  12. LHC cooling gains ground

    CERN Multimedia

    Huillet-Miraton Catherine

    The nominal cryogenic conditions of 1.9 K have been achieved in sectors 5-6 and 7-8. This means that a quarter of the machine has reached the nominal conditions for LHC operation, having attained a temperature of below 2 K (-271°C), which is colder than interstellar space! Elsewhere, the cryogenic system in Sector 8-1 has been filled with liquid helium and cooled to 2K and will soon be available for magnet testing. Sectors 6-7 and 2-3 are being cooled down and cool-down operations have started in Sector 3-4. Finally, preparations are in hand for the cool-down of Sector 1-2 in May and of Sector 4-5, which is currently being consolidated. The LHC should be completely cold for the summer. For more information: http://lhc.web.cern.ch/lhc/Cooldown_status.htm.

  13. Ion microscopy based on laser-cooled cesium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Viteau, M.; Reveillard, M.; Kime, L.; Rasser, B.; Sudraud, P. [Orsay Physics, TESCAN Orsay, 95 Avenue des Monts Auréliens – ZA Saint-Charles – 13710 Fuveau (France); Bruneau, Y.; Khalili, G.; Pillet, P.; Comparat, D. [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Bât. 505, 91405 Orsay (France); Guerri, I. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Fioretti, A., E-mail: andrea.fioretti@ino.it [Istituto Nazionale di Ottica, INO-CNR, U.O.S. ”Adriano Gozzini”, via Moruzzi 1, 56124 Pisa (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, CNISM, Sezione di Pisa, 56127 Pisa (Italy); Ciampini, D.; Allegrini, M.; Fuso, F. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Istituto Nazionale di Ottica, INO-CNR, U.O.S. ”Adriano Gozzini”, via Moruzzi 1, 56124 Pisa (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, CNISM, Sezione di Pisa, 56127 Pisa (Italy)

    2016-05-15

    We demonstrate a prototype of a Focused Ion Beam machine based on the ionization of a laser-cooled cesium beam and adapted for imaging and modifying different surfaces in the few-tens nanometer range. Efficient atomic ionization is obtained by laser promoting ground-state atoms into a target excited Rydberg state, then field-ionizing them in an electric field gradient. The method allows obtaining ion currents up to 130 pA. Comparison with the standard direct photo-ionization of the atomic beam shows, in our conditions, a 40-times larger ion yield. Preliminary imaging results at ion energies in the 1–5 keV range are obtained with a resolution around 40 nm, in the present version of the prototype. Our ion beam is expected to be extremely monochromatic, with an energy spread of the order of the eV, offering great prospects for lithography, imaging and surface analysis. - Highlights: • We realize a Focused Ion Beam with an ionic source based on laser cooled cesium atoms. • Ionization involves excitation of the laser cooled atoms to Rydberg states. • We use the cesium FIB system to image different materials. • We use the cesium FIB to produce permanent modifications on surfaces. • In the present configuration, the focused probe size of the cesium FIB prototype is about 300 nm for beam energies in the 2–5 keV range.

  14. Anomalous law of cooling

    OpenAIRE

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Oliveira, Fernando A.; Rubí, J. Miguel

    2014-01-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergo a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature ma...

  15. Cooling tower waste reduction

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

    1998-05-01

    At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

  16. Cooling with Superfluid Helium

    CERN Document Server

    Lebrun, P

    2014-01-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics

  17. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...... is considered as extruded profiles are inadequate for compact designs. An optimal pin fin shape and configuration is sought also taking manufacturing costs into consideration. Standard methods for geometrical modeling and thermal analysis are applied....

  18. Alternative Room Cooling System

    Directory of Open Access Journals (Sweden)

    Md. Fazle Rabbi

    2015-06-01

    Full Text Available The rapidly growing population results in an increasing demand for much more residential and commercial buildings, which leads to vertical growth of the buildings and needs proper ventilation of those buildings. Natural air ventilation system is not sufficient for conventional building structures. Hence fans and air-conditioners are must to meet the requirement of proper ventilation as well as space conditioning. Globally building sector consumes largest energy in heating, cooling, ventilation and space conditioning. This load can be minimized by the application of solar chimney and modification in building structure for heating, cooling, ventilation and space conditioning. Passive solar cooling is a subject of interest to provide cooling by using the sun, a powerful energy source. This is done for ensuring human comfort in hot climates. ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers defines Comfort as ‘that state of mind which expresses satisfaction with the thermal environment.’ The present paper describes the development of a solar passive cooling system, which can provide thermal cooling throughout the summer season in hot and humid climates. The constructed passive system works on natural convection mode of air. Such system reduces the inside temperature of up to 5°C from the atmospheric temperature. Temperature can further be reduced by the judicious use of night ventilation.

  19. Phase space density as a measure of cooling performance for the international muon ionization cooling experiment

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    The International Muon Ionization Cooling Experiment (MICE) is an experiment to demonstrate ionization cooling of a muon beam in a beamline that shares characteristics with one that might be used for a muon collider or neutrino factory. I describe a way to quantify cooling performance by examining the phase space density of muons, and determining how much that density increases. This contrasts with the more common methods that rely on the covariance matrix and compute emittances from that. I discuss why a direct measure of phase space density might be preferable to a covariance matrix method. I apply this technique to an early proposal for the MICE final step beamline. I discuss how matching impacts the measured performance.

  20. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  1. Measuring the coolness of interactive products: the COOL questionnaire

    DEFF Research Database (Denmark)

    Bruun, Anders; Raptis, Dimitrios; Kjeldskov, Jesper

    2016-01-01

    characteristics. These were used to create an initial pool of question items and 2236 participants were asked to assess 16 mobile devices. By performing exploratory and confirmatory factor analyses, we identified three factors that can measure the perceived inner coolness of interactive products: desirability...... is the COOL questionnaire. We based the creation of the questionnaire on literature suggesting that perceived coolness is decomposed to outer cool (the style of a product) and inner cool (the personality characteristics assigned to it). In this paper, we focused on inner cool, and we identified 11 inner cool...

  2. Beam Performance and Luminosity Limitations in the High-Energy Storage Ring (HESR)

    CERN Document Server

    Lehrach, A; Hinterberger, F; Maier, R; Prasuhn, D

    2006-01-01

    The High-Energy Storage Ring (HESR) of the future International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an antiproton synchrotron and storage ring in the momentum range from 1.5 to 15 GeV/c. An important feature of this new facility is the combination of phase space cooled beams with dense internal targets (e.g. pellet targets), resulting in demanding beam parameter of two operation modes: high luminosity mode with peak luminosities up to 2*10^32 cm-2 s-1, and high resolution mode with a momentum spread down to 10^-5, respectively. To reach these beam parameters very powerful phase space cooling is needed, utilizing high-energy electron cooling and high-bandwidth stochastic cooling. The effect of beam-target scattering and intra-beam interaction is investigated in order to study beam equilibria and beam losses for the two different operation modes.

  3. Beam performance and luminosity limitations in the high-energy storage ring (HESR)

    Science.gov (United States)

    Lehrach, A.; Boine-Frankenheim, O.; Hinterberger, F.; Maier, R.; Prasuhn, D.

    2006-06-01

    The high-energy storage ring (HESR) of the future International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an antiproton synchrotron storage ring in the momentum range 1.5-15 GeV/ c. An important feature of this new facility is the combination of phase space cooled beams and dense internal targets (e.g. pellet targets), which results in demanding beam parameter requirements for two operation modes: high luminosity mode with peak luminosities to 2×10 32 cm -2 s -1, and high-resolution mode with a momentum spread down to 10 -5. To reach these beam parameters one needs a very powerful phase space cooling, utilizing high-energy electron cooling and high-bandwidth stochastic cooling. The effects of beam-target scattering and intra-beam interaction are investigated in order to study beam equilibria and beam losses for the two different operation modes.

  4. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  5. LS1 Report: Summer cool down

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    As the final LS1 activities are carried out in the machine, teams have been cooling down the accelerator sector by sector in preparation for beams.   The third sector of the LHC to be cooled down - sector 1-2 - has seen the process begin this week. During the cool-down phase, survey teams are measuring and smoothing (or realigning) the magnets at cold. By the end of August, five sectors of the machine will be in the process of cooling down, with one (sector 6-7) at cold. The LHC Access Safety System (LASS) is now being commissioned, and will be validated during the DSO tests at the beginning of October. As teams consolidate the modifications made to LASS during the shutdown, many points were closed for testing purposes. The CSCM (copper stabiliser continuity measurement) tests have been completed in the first sector (6-7) and no defect has been found. These results will be presented to the LHC Machine Committee next week. CSCM tests will start in the second sector in mid-August. Following many...

  6. Optimum strategy for energy degraders and ionization cooling

    CERN Document Server

    Farley, F J M

    2004-01-01

    Methodology for calculating the profile and emittance of a particle beam as it is slowed down in matter, including the effects of multiple scattering, axial magnetic field and lithium lens. Strategies are determined for minimum final emittance. For ionization cooling, boron carbide is superior to liquid hydrogen while a beryllium lens has merit.

  7. The definition of cool

    Energy Technology Data Exchange (ETDEWEB)

    Nichiporuk, A.

    2005-05-01

    A new air cooling system at Agnico-Eagle's LaRonde mine, located in the Abitibi Region of Quebec is described. The new system serves a mine operating at 7,250 plus feet level. The system is installed at the surface; it utilizes ammonia to cool water, which cools the air. The system consists of four compressors which lower the temperature of the ammonia to minus 2 degrees C. Water, which at this temperature is 14 degrees, and ammonia pass through a plate heat exchanger simultaneously, however, without coming into contact with each other. The heat transfer that occurs causes the water's temperature to drop to 2 degrees C. The total volume of water cooled is 220 litres per second. The system is capable of reducing 636,000 cfm of air from 30 degrees C to 6 degrees C, to which 214,000 cfm of non-cooled air is added. This mixture, which is maintained at approximately 8 degrees C throughout the summer season, is sent underground to the deepest parts of the mine. The system runs from June to September, depending on the weather. In the evenings, when the temperature dips to around four to five degrees C, the water is shut down and side doors are opened to prevent the water from freezing.

  8. Design and expected performance of the MICE demonstration of ionization cooling arXiv

    CERN Document Server

    Bogomilov, M.; Vankova-Kirilova, G.; Song, Y.; Tang, J.; Li, Z.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Orestano, D.; Tortora, L.; Kuno, Y.; Ishimoto, S.; Filthaut, F.; Jokovic, D.; Maletic, D.; Savic, M.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Blondel, A.; Drielsma, F.; Karadzhov, Y.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Tucker, M.; Warburton, P.; White, C.; Adams, D.; Anderson, R.J.; Barclay, P.; Bayliss, V.; Boehm, J.; Bradshaw, T.W.; Courthold, M.; Dumbell, K.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Wilson, A.; Watson, S.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Gamet, R.; Barber, G.; Blackmore, V.J.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Kurup, A.; Lagrange, J.B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Uchida, M.A.; Cobb, J.H.; Lau, W.; Booth, C.N.; Hodgson, P.; Langlands, J.; Overton, E.; Robinson, M.; Smith, P.J.; Wilbur, S.; Dick, A.J.; Ronald, K.; Whyte, C.G.; Young, A.R.; Boyd, S.; Franchini, P.; Greis, J.R.; Pidcott, C.; Taylor, I.; Gardener, R.B.S.; Kyberd, P.; Nebrensky, J.J.; Palmer, M.; Witte, H.; Bross, A.D.; Bowring, D.; Liu, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Freemire, B.; Hanlet, P.; Kaplan, D.M.; Mohayai, T.A.; Rajaram, D.; Snopok, P.; Suezaki, V.; Torun, Y.; Onel, Y.; Cremaldi, L.M.; Sanders, D.A.; Summers, D.J.; Hanson, G.G.; Heidt, C.

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling p...

  9. Aspects of Household Cooling Technology

    OpenAIRE

    Mrzyglod, Matthias; Holzer, Stefan

    2014-01-01

    Actually available household cooling appliances in the highest efficiency class may consume less then 10W average electrical power. To achieve such power consumptions special challenges for the cooling system had to overcome. The related cooling system design has to consider several effects, which arise from the corresponding low cooling capacity demand, start/stop cycles and additional power consumptions by control accessories. The lecture provides symptomatic aspects of cooling technology, ...

  10. On the possibilities of electron cooling for HERA

    CERN Document Server

    Gentner, M; Derbenev, Yaroslav S; Husmann, D; Steier, C

    1999-01-01

    It is under discussion to operate HERA with heavy ions instead of protons. Because of the heavily increased intrabeam scattering of heavy ions compared to protons, the achievable luminosity is much smaller than desired by the experiments. A way to increase luminosity could be electron cooling of the heavy ion beam. Because of the high electron energy of 180 MeV necessary for cooling heavy ions in HERA the conventional approach using electrostatic DC sources is not possible. Instead an electron storage ring could be used. For this ring there are special requirements like small damping times, emittances and energy spread. The feasibility of such an electron storage ring has been studied, and the results with a possible solution are presented in this paper. Electron cooling of the HERA proton beam is also discussed briefly.

  11. Doppler cooling a microsphere

    CERN Document Server

    Barker, P F

    2010-01-01

    Doppler cooling the center-of-mass motion of an optically levitated microsphere via the velocity dependent scattering force from narrow whispering gallery mode (WGM) resonances is described. Light that is red detuned from the WGM resonance can be used to damp the center-of-mass motion in a process analogous to the Doppler cooling of atoms. Leakage of photons out of the microsphere when the incident field is near resonant with the narrow WGM resonance acts to damp the motion of the sphere. The scattering force is not limited by saturation, but can be controlled by the incident power. Cooling times on the order of seconds are calculated for a 20 micron diameter silica microsphere trapped within optical tweezers, with a Doppler temperature limit in the microKelvin regime.

  12. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  13. Natural radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.

    1979-01-01

    Natural radiative cooling at night was measured based on the surface-radiation spectrum after the heat balance of the surface exposed to the sun had been reradiated. A concept equivalent to the sky temperature and a concept useful for obtaining the net heat flux are discussed. The highest possible equilibrium temperature of the selective surface can be lowered; however, how to apply this practically is not yet known. A simple radiator, completely enclosed by a transparent screen, can produce a significant and inexpensive cooling effect. The results of experiments carried out in an area such as Padua, Italy, where the climate is not suitable for cooling purposes can still be predicted theoretically. The possibility of using the collector for heat collection during the day and as a radiator at night is indicated.

  14. Clean cooling; Saubere Kuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-07-01

    The round hybrid cooling towers which Balcke-Duerr GmbH is currently building for the 550-MW-IGCC-power-station of a refinery project on Sardinia have to meet particularly stringent requirements as seawater is used for cooling. The advantages are: Avoidance of visible plume with minimal energy consumption, optimal plume exit velocity and discharge, greatest possible stability of the plume column, avoidance of interference and recirculation, high operating reliability of the cooling tower. (orig.) [Deutsch] Derzeit werden die Kuehltuerme fuer ein 550-MW-IGCC-Kraftwerk einer Raffinierie auf Sardinien errichtet. Die Anforderungen an die Technik sind hoch, denn gekuehlt wird mit Seewasser. Zum Einsatz kommen Hybridrundkuehltuerme der Balcke-Duerr GmbH, Ratingen. Damit setzt das Unternehmen diesen Typ erstmals ausserhalb von Deutschland ein. (orig.)

  15. Benefits of cryogenic cooling on the operation of a pulsed CO2 laser

    Indian Academy of Sciences (India)

    Utpal Nundy

    2014-01-01

    The paper presents results of a theoretical model of a pulsed electron beam controlled CO2 laser (EBCL) to investigate the effect of cooling on the laser gas mixture. It is shown that cryogenic cooling can significantly improve the performance of the laser. The efficiency of an EBCL improved from 20% to 25.3% by cooling it to 200 K. The improvement is mainly due to the decrease of thermal population of the CO2 (0 1 0) vibration level.

  16. Research on Cooling Effectiveness in Stepped Slot Film Cooling Vane

    Institute of Scientific and Technical Information of China (English)

    LI Yulong; WU Hong; ZHOU Feng; RONG Chengjun

    2016-01-01

    As one of the most important developments in air cooling technology for hot parts of the aero-engine,film cooling technology has been widely used.Film cooling hole structure exists mainly in areas that have high temperature,uneven cooling effectiveness issues when in actual use.The first stage turbine vanes of the aero-engine consume the largest portion of cooling air,thereby the research on reducing the amount of cooling air has the greatest potential.A new stepped slot film cooling vane with a high cooling effectiveness and a high cooling uniformity was researched initially.Through numerical methods,the affecting factors of the cooling effectiveness of a vane with the stepped slot film cooling structure were researched.This paper focuses on the cooling effectiveness and the pressure loss in different blowing ratio conditions,then the most reasonable and scientific structure parameter can be obtained by analyzing the results.The results show that 1.0 mm is the optimum slot width and 10.0 is the most reasonable blowing ratio.Under this condition,the vane achieved the best cooling result and the highest cooling effectiveness,and also retained a low pressure loss.

  17. Gas cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-06-01

    Although most of the development work on fast breeder reactors has been devoted to the use of liquid metal cooling, interest has been expressed for a number of years in alternative breeder concepts using other coolants. One of a number of concepts in which interest has been retained is the Gas-Cooled Fast Reactor (GCFR). As presently envisioned, it would operate on the uranium-plutonium mixed oxide fuel cycle, similar to that used in the Liquid Metal Fast Breeder Reactor (LMFBR), and would use helium gas as the coolant.

  18. Rapid cooled lens cell

    Science.gov (United States)

    Stubbs, David M.; Hsu, Ike C.

    1991-12-01

    This paper describes the optomechanical design, thermal analysis, fabrication, and test evaluation processes followed in developing a rapid cooled, infrared lens cell. Thermal analysis was the key engineering discipline exercised in the design phase. The effect of thermal stress on the lens, induced by rapid cooling of the lens cell, was investigated. Features of this lens cell that minimized the thermal stress will be discussed in a dedicated section. The results of thermal analysis on the selected lens cell design and the selection of the flow channel design in the heat exchanger will be discussed. Throughout the paper engineering drawings, illustrations, analytical results, and photographs of actual hardware are presented.

  19. Anomalous law of cooling

    Science.gov (United States)

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  20. Superconductor rotor cooling system

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  1. Quantum thermodynamic cooling cycle

    CERN Document Server

    Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

    2001-01-01

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  2. A Cool Emperor Penguin

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    哇,这只帝企鹅的胸前居然有个心形!It’s cool!(乐天:没错,它的胸前少了这幺撮毛,应该会感觉挺凉快的)cool在这里可不是“凉快”的意思,而是“酷.帅气”的意思。我们《英语大王》的英文名字就叫English Cool Kids哦!(乐天拿出一副墨镜戴上:

  3. Anomalous law of cooling.

    Science.gov (United States)

    Lapas, Luciano C; Ferreira, Rogelma M S; Rubí, J Miguel; Oliveira, Fernando A

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  4. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  5. The ELENA Beam Diagnostics Systems

    CERN Document Server

    Tranquille, G

    2013-01-01

    The Extra Low ENergy Antiproton ring (ELENA) to be built at CERN is aimed at substantially increasing the number of antiprotons to the low energy antiproton physics community. It will be a small machine which will decelerate low intensity beams (<4x107) from 5.3 MeV to 100 keV and will be equipped with an electron cooler to avoid beam losses during the deceleration and to significantly reduce beam phase space at extraction. To measure the beam parameters from the extraction point of the Antiproton Decelerator (AD), through the ELENA ring and all the way to the experiments, many systems will be needed to ensure that the desired beam characteristics are obtained. Particular attention needs to be paid to the performance of the electron cooler which depends on reliable instrumentation in order to efficiently cool the antiprotons. This contribution will present the different monitors that have been proposed to measure the various beam parameters as well as some of the developments going on to further improve th...

  6. Cooling of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Grigorian H.

    2010-10-01

    Full Text Available We introduce the theoretical basis for modeling the cooling evolution of compact stars starting from Boltzmann equations in curved space-time. We open a discussion on observational verification of different neutron star models by consistent statistics. Particular interest has the question of existence of quark matter deep inside of compact object, which has to have a specific influence on the cooling history of the star. Besides of consideration of several constraints and features of cooling evolution, which are susceptible of being critical for internal structure of hot compact stars we have introduced a method of extraction of the mass distribution of the neutron stars from temperature and age data. The resulting mass distribution has been compared with the one suggested by supernove simulations. This method can be considered as an additional checking tool for the consistency of theoretical modeling of neutron stars. We conclude that the cooling data allowed existence of neutron stars with quark cores even with one-flavor quark matter.

  7. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  8. On analog simulation of ionization cooling of muons

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ming

    2001-06-18

    Analog simulation, proposed here as an alternative approach for the study of ionization cooling of muons, is a scaled cooling experiment, using protons instead of muons as simulation particles. It is intended to be an effective and flexible, quick and inexpensive experiment for the understanding and validation of unprecedentedly complicated cooling physics, for the demonstration and optimization of various elaborated techniques for beam manipulation in 6D phase space. It can be done and perhaps should be done before the costly and time-consuming development of extremely challenging, muon-specific cooling technology. In a nutshell, the idea here is to build a toy machine in a playground of ideas, before staking the Imperial Guard of Napoleon into the bloody battlefield of Waterloo.

  9. Cryogen spray cooling during laser tissue welding.

    Science.gov (United States)

    Fried, N M; Walsh, J T

    2000-03-01

    Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing.

  10. Ion beam cooler-buncher at the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, A.; Hakala, J.; Huikari, J.; Kolhinen, V.S.; Rinta-Antila, S.; Szerypo, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland); Billowes, J.; Campbell, P.; Moore, I.D.; Moore, R. [Schuster Lab., Univ. of Manchester (United Kingdom); Forest, D.H.; Thayer, H.L.; Tungate, G. [School of Physics and Astronomy, Univ. of Birmingham, Edgbaston (United Kingdom); Jokinen, A.; Aeystoe, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland)]|[CERN, Geneva (Switzerland)

    2003-07-01

    An ion beam cooler-buncher for manipulating low-energy radioactive ion beams at the IGISOL facility is described. The cooler-buncher serves as a source of cooled ion bunches for collinear laser spectroscopy and it will be used for preparation of ion bunches for injection into a Penning trap system. (orig.)

  11. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  12. Sorption cooling: a valid extension to passive cooling

    NARCIS (Netherlands)

    Doornink, D.J.; Burger, J.F.; Brake, ter H.J.M.

    2008-01-01

    Passive cooling has shown to be a very dependable cryogenic cooling method for space missions. Several missions employ passive radiators to cool down their delicate sensor systems for many years, without consuming power, without exporting vibrations or producing electromagnetic interference. So for

  13. Numerical study on mirror of high power laser with heatpipe cooling

    Science.gov (United States)

    Chen, Jiayuan, II; Zhu, Haihong; Cheng, Zuhai

    2008-12-01

    Mirror surface of high power laser would be deformed by the pressure of the coolant in a liquid cooling mirror system. In order to eliminate the impact of pressure and vibration of cooling water to the stability of the output beam, a cooling mirror with heatpipe is designed. With the same structure and conditions, solid mirror, water cooling mirror and heat pipe cooling mirror are simulated by ANSYS program. The time-varying thermal deformations of the group mirrors after 60s under the net heat absorption of 12W/cm2 are obtained. The maximal peak and valley difference value of mirror surface deformation of solid mirror along Z-axis, water cooling mirror and heat pipe cooling mirror after 60s is 1.33μm, 0.845 μm and 0.1094 μm respectively.

  14. Comments on Ionization Cooling Channel Characteristics

    OpenAIRE

    Neuffer, David

    2013-01-01

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  15. ALP hints from cooling anomalies

    CERN Document Server

    Giannotti, Maurizio

    2015-01-01

    We review the current status of the anomalies in stellar cooling and argue that, among the new physics candidates, an axion-like particle would represent the best option to account for the hinted additional cooling.

  16. Cooling force on ions in a magnetized electron plasma

    CERN Document Server

    Nersisyan, H B

    2011-01-01

    Electron cooling is a well-established method to improve the phase space quality of ion beams in storage rings. In the common rest frame of the ion and the electron beam the ion is subjected to a drag force and it experiences a loss or a gain of energy which eventually reduces the energy spread of the ion beam. A calculation of this process is complicated as the electron velocity distribution is anisotropic and the cooling process takes place in a magnetic field which guides the electrons. In this paper the cooling force is calculated in a model of binary collisions (BC) between ions and magnetized electrons, in which the Coulomb interaction is treated up to second order as a perturbation to the helical motion of the electrons. The calculations are done with the help of an improved BC theory which is uniformly valid for any strength of the magnetic field and where the second-order two-body forces are treated in the interaction in Fourier space without specifying the interaction potential. The cooling force is...

  17. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...... or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which characterize...

  18. Water Cooled Mirror Design

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pulliam, Elias Noel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  19. Self pumping magnetic cooling

    Science.gov (United States)

    Chaudhary, V.; Wang, Z.; Ray, A.; Sridhar, I.; Ramanujan, R. V.

    2017-01-01

    Efficient thermal management and heat recovery devices are of high technological significance for innovative energy conservation solutions. We describe a study of a self-pumping magnetic cooling device, which does not require external energy input, employing Mn-Zn ferrite nanoparticles suspended in water. The device performance depends strongly on magnetic field strength, nanoparticle content in the fluid and heat load temperature. Cooling (ΔT) by ~20 °C and ~28 °C was achieved by the application of 0.3 T magnetic field when the initial temperature of the heat load was 64 °C and 87 °C, respectively. These experiments results were in good agreement with simulations performed with COMSOL Multiphysics. Our system is a self-regulating device; as the heat load increases, the magnetization of the ferrofluid decreases; leading to an increase in the fluid velocity and consequently, faster heat transfer from the heat source to the heat sink.

  20. Cooled Ion Frequency Standard.

    Science.gov (United States)

    2014-09-26

    when the cooling laser is turned off, the ions are heated by: (1) background gas collisions and (2) a plasma heating process which may be " resonant ...causes heating in our Penning traps. One way resonant particle transport is mediated is by misalignm.nt between the trap’s magnetic and electric axis...using computer solutions. The trap of Fig. 1 is noteworthy because although the inner surfaces of the trap are machined with simple conical cuts, the

  1. Low mass integrated cooling

    CERN Document Server

    Mapelli, Alessandro

    2014-01-01

    Low mass on - detec tor cooling systems are being developed and stud ied by the Detector Technology group (PH - DT) in the CERN Physics Department in close collaboration with LHC and non - LHC experiments . Two approaches are currently being investigated. The first approach, for barrel configurations, consists in integrating the cooli ng apparatus in light mechanical structures support ing the detectors. In this case , the thermal management can be achieved either with light cooling pipes and thin plates or with a network of microchannels embedded in thin strips of silicon or polyimide . Both configuratio ns are being investigated in the context of the 2018 upgrade program of the ALICE Inner Tracking System (ITS). Moreover, it is also possible to use a s ilicon microchannel cooling device itself as structural support for the detectors and electronics. Such a configur ation has been adopted by the NA62 collaboration for the ir GigaTracKer (GTK) as well as by the LHCb collaboration for the 2018 major upgrade of...

  2. Simulation of Desiccant Cooling

    Directory of Open Access Journals (Sweden)

    Kamaruddin A.

    2017-06-01

    Full Text Available Desiccant cooling system has been an attractive topic for study lately, due to its environmentally friendly nature. It also consume less electricity and capable to be operated without refrigerant. A simulation study was conducted using 1.5 m long ducting equipped with one desiccant wheel, one sensible heat exchanger wheel, one evaporative cooling chamber and two blowers and one electric heater. The simulation study used 8.16 m/s primary air, the drying coefficient from desiccant wheel, k1=2.1 (1/s, mass transfer coefficient in evaporative cooling, k2=1.2 kg vapor/s, heat transfer coefficient in desiccant wheel, h1=4.5 W/m2 oC, and heat transfer coefficient in sensible heat exchanger wheel h2= 4.5 W/m2 oC. The simulation results show that the final temperature before entering into the air conditioning room was 25 oC and RH of 65 %, were in accordance with the Indonesian comfort index.

  3. Helium Loop Cooling Channel Hydraulic Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, Robert Vaughn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-02

    New methods for generating ⁹⁹Mo are being explored in an effort to eliminate proliferation issues and provide a domestic supply of ⁹⁹mTc for medical imaging. Electron accelerating technology is used by sending an electron beam through a series of ¹⁰⁰Mo targets. During this process a large amount of heat is created, which directly affects the operating temperature set for the system. In order to maintain the required temperature range, helium gas is used to serve as a cooling agent that flows through narrow channels between the target disks. Currently we are tailoring the cooling channel entrance and exits to decrease the pressure drop through the targets. Currently all hardware has be procured and manufactured to conduct flow measurements and visualization via solid particle seeder. Pressure drop will be studied as a function of mass flow and diffuser angle. The results from these experiments will help in determining target cooling geometry and validate CFD code results.

  4. Sisyphus Laser Cooling of a Polyatomic Molecule

    CERN Document Server

    Kozyryev, Ivan; Matsuda, Kyle; Augenbraun, Benjamin L; Anderegg, Loic; Sedlack, Alexander P; Doyle, John M

    2016-01-01

    We perform magnetically-assisted Sisyphus laser cooling of the triatomic free radical strontium monohydroxide (SrOH). This is achieved with principal optical cycling in the rotationally closed $P\\left(N"=1\\right)$ branch of either the $\\tilde{X}^{2}\\Sigma^{+}\\left(000\\right)\\leftrightarrow\\tilde{A}^{2}\\Pi_{1/2}\\left(000\\right)$ or the $\\tilde{X}^{2}\\Sigma^{+}\\left(000\\right)\\leftrightarrow\\tilde{B}^{2}\\Sigma^{+}\\left(000\\right)$ vibronic transitions. Molecules lost into the excited vibrational states during the cooling process are repumped back through the $\\tilde{B}\\left(000\\right)$ state for both the $\\left(100\\right)$ level of the Sr-O stretching mode and the $\\left(02^{0}0\\right)$ level of the bending mode. The transverse temperature of a SrOH molecular beam is reduced in one dimension by two orders of magnitude to $\\sim700\\ {\\rm \\mu K}$. This approach opens a path towards creating a variety of ultracold polyatomic molecules, including much larger ones, by means of direct laser cooling.

  5. Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yonehara, Katsuya [Fermilab; Abrams, Robert [MUONS Inc., Batavia; Dinkel, Holly [U. Missouri, Columbia; Freemire, Ben [IIT, Chicago; Johnson, Rolland [MUONS Inc., Batavia; Kazakevich, Grigory [MUONS Inc., Batavia; Tollestrup, Alvin [Fermilab; Zwaska, Robert [Fermilab

    2016-06-01

    MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at the MuCool Test Area at Fermilab.

  6. Ultraefficient Cooling of Resonators: Beating Sideband Cooling with Quantum Control

    Science.gov (United States)

    Wang, Xiaoting; Vinjanampathy, Sai; Strauch, Frederick; Jacobs, Kurt

    2012-02-01

    There is presently a great deal of interest in cooling high-frequency micro- and nano-mechanical oscillators to their ground states. The present state of the art in cooling mechanical resonators is a version of sideband cooling, which was originally developed in the context of cooling trapped ions. Here we present a method based on quantum control that uses the same configuration as sideband cooling--coupling the resonator to be cooled to a second microwave (or optical) auxiliary resonator--but will cool significantly colder. This is achieved by applying optimal control and varying the strength of the coupling between the two resonators over a time on the order of the period of the mechanical resonator. As part of our analysis, we also obtain a method for fast, high-fidelity quantum information transfer between resonators.

  7. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  8. Temperature fields across the BES III beam pipe

    Science.gov (United States)

    Zheng, Lifang; Wang, Li; Ji, Quan; Li, Xunfeng; Liu, Jianping

    2014-03-01

    During the operations of the new generation Beijing Electron and Positron Collider (BEPC II) and the Beijing Spectrometer (BES III), the inner surface of the beam pipe is subjected to high radiation heat loads. Continuous high temperatures or large temperature fluctuations can cause the main drift chamber (MDC) to detect particles abnormally. Hence, a beam pipe with a cooling system was designed, and temperature fields across the beam pipe and the MDC inner cylinder were studied experimentally and by finite-element simulations. When the inlet temperatures of the cooling oil and cooling water for the central and extended beam pipes were set to 291.4 K and 291.6 K, respectively, results showed that the inner surface temperature of the MDC inner cylinder can be controlled within the range of 292.8-293.9 K for various powers of radiation heat. This range satisfies the operating requirements of 293±2 K.

  9. Slot-type kicker for the AA stochastic cooling

    CERN Multimedia

    Photographic Service

    1979-01-01

    A "slotted transmission line" structure was used for both pickups and the kicker of one of the stochastic cooling systems of the Antiproton Accumulator (AA). They served for the cooling of the high-density stack, in momentum and in both transverse planes. In the beginning in a single band, 1-2 GHz, later in 3 bands, 1-2, 2-4 and 4-8 GHz. The kicker of the first generation, shown here, was located where the dispersion was zero and the beam size small, and thus had a quadratic cross-section. The pickups were rectangular and wider in the horizontal plane. See also 7906193

  10. Ion microscopy based on laser-cooled cesium atoms.

    Science.gov (United States)

    Viteau, M; Reveillard, M; Kime, L; Rasser, B; Sudraud, P; Bruneau, Y; Khalili, G; Pillet, P; Comparat, D; Guerri, I; Fioretti, A; Ciampini, D; Allegrini, M; Fuso, F

    2016-05-01

    We demonstrate a prototype of a Focused Ion Beam machine based on the ionization of a laser-cooled cesium beam and adapted for imaging and modifying different surfaces in the few-tens nanometer range. Efficient atomic ionization is obtained by laser promoting ground-state atoms into a target excited Rydberg state, then field-ionizing them in an electric field gradient. The method allows obtaining ion currents up to 130pA. Comparison with the standard direct photo-ionization of the atomic beam shows, in our conditions, a 40-times larger ion yield. Preliminary imaging results at ion energies in the 1-5keV range are obtained with a resolution around 40nm, in the present version of the prototype. Our ion beam is expected to be extremely monochromatic, with an energy spread of the order of the eV, offering great prospects for lithography, imaging and surface analysis.

  11. Bunching and cooling of radioactive ions with REXTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, P. E-mail: k.schmidt@gsi.de; Ames, F.; Bollen, G.; Forstner, O.; Huber, G.; Oinonen, M.; Zimmer, J

    2002-04-22

    The post-accelerator REX-ISOLDE at ISOLDE/CERN will deliver radioactive ion beams with energies up to 2.2 MeV/u. For this purpose, a Penning trap and an electron-beam ion source are combined with a linear accelerator. REXTRAP - a large gas-filled Penning trap - has started its commissioning phase. First tests have shown that REXTRAP is able to accumulate, cool and bunch stable ISOLDE ion beams covering a large mass range. Fulfilling the REX-ISOLDE demands, it can handle beam intensities from a few hundred up to 1x10{sup 6} ions per pulse at repetition rates up to 50 Hz.0.

  12. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  13. Toward a cold electron beam in the Fermilab's Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Vitali S. Tupikov et al.

    2004-05-12

    Fermilab is developing a high-energy electron cooling system to cool 8.9-GeV/c antiprotons in the Recycler ring [1]. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through 20-m long cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 0.1 mrad, the cooling section will be immersed into a solenoidal field of 50-150G. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of beam quality measurements in the cooler prototype.

  14. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A; Beckman, W A

    1976-01-16

    We have adequate theory and engineering capability to design, install, and use equipment for solar space and water heating. Energy can be delivered at costs that are competitive now with such high-cost energy sources as much fuel-generated, electrical resistance heating. The technology of heating is being improved through collector developments, improved materials, and studies of new ways to carry out the heating processes. Solar cooling is still in the experimental stage. Relatively few experiments have yielded information on solar operation of absorption coolers, on use of night sky radiation in locations with clear skies, on the combination of a solar-operated Rankine engine and a compression cooler, and on open cycle, humidification-dehumidification systems. Many more possibilities for exploration exist. Solar cooling may benefit from collector developments that permit energy delivery at higher temperatures and thus solar operation of additional kinds of cycles. Improved solar cooling capability can open up new applications of solar energy, particularly for larger buildings, and can result in markets for retrofitting existing buildings. Solar energy for buildings can, in the next decade, make a significant contribution to the national energy economy and to the pocketbooks of many individual users. very large-aggregate enterprises in manufacture, sale, and installation of solar energy equipment can result, which can involve a spectrum of large and small businesses. In our view, the technology is here or will soon be at hand; thus the basic decisions as to whether the United States uses this resource will be political in nature.

  15. Laser Cooling of Solids

    Science.gov (United States)

    2009-01-01

    observed in a range of glasses and crystals doped with Yb3+ (ZBLANP [19–22], ZBLAN [23,24], CNBZn [9,25] BIG [25, 26], KGd(WO4)2 [9], KY(WO4)2 [9], YAG [27...Yb3+-doped fluorozirconate glass ZBLAN , Phys. Rev. B 75, 144302 (2007). [40] C. W. Hoyt, Laser Cooling in Thulium-doped Solids, Ph. D. Thesis...date, optical refrigeration research has been confined to glasses and crystals doped with rare- earth elements and direct-band semiconductors such as

  16. High resolution resonant recombination measurements using evaporative cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Beilmann, C; Lopez-Urrutia, J R Crespo; Mokler, P H; Ullrich, J, E-mail: christian.beilmann@mpi-hd.mpg.d [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2010-09-15

    We report on a method significantly improving the energy resolution of dielectronic recombination (DR) measurements in electron beam ion traps (EBITs). The line width of DR resonances can be reduced to values distinctly smaller than the corresponding space charge width of the uncompensated electron beam. The experimental technique based on forced evaporative cooling is presented together with test measurements demonstrating its high efficiency. The principle for resolution improvement is elucidated and the limiting factors are discussed. This method opens access to high resolution DR measurements at high ion-electron collision energies required for innermost shell DR in highly charged ions (HCI).

  17. Adaptive compensation of a direct liquid-cooled solid-state MOPA system

    Science.gov (United States)

    Dong, Lizhi; Chen, Shanqiu; Chen, Xiaojun; Liu, Wenjin; Hu, Ke; Lai, Boheng; Yang, Ping; Wang, Shuai; He, Xing; Xu, Bing; Liu, Le; Liu, Yang; Wang, Zhe; Wang, Gang

    2016-09-01

    Direct liquid-cooling is a promising way of power scaling and heat management for solid-state lasers. A side-pumped direct liquid-cooled solid-state pulsed zigzag MOPA system is established based on this advanced concept. However, its beam quality is degraded by the thermal distortions in the non-zigzag direction and the flowing coolant. We develop an adaptive optics system to improve its beam quality, which primarily includes a low-order aberration compensator and a 59-actuator deformable mirror. The beam is first corrected by the low-order aberration compensator to remove large defocus and astigmatism, and its size is reshaped simultaneously to fulfill the demands of applications. Then the beam is further corrected by the deformable mirror. With collaborative operation of the low-order aberration compensator and the deformable mirror, we have achieved average beam quality of β=2.8.

  18. Cooling Performance of an Impingement Cooling Device Combined with Pins

    Institute of Scientific and Technical Information of China (English)

    Dongliang QUAN; Songling LIU; Jianghai LI; Gaowen LIU

    2005-01-01

    Experimental study and one dimensional model analysis were conducted to investigate cooling performance of an integrated impingement and pin fin cooling device. A typical configuration specimen was made and tested in a large scale low speed closed-looped wind tunnel. Detailed two-dimensional contour maps of the temperature and cooling effectiveness were obtained for different pressure ratios and therefore different coolant flow-rates through the tested specimen. The experimental results showed that very high cooling effectiveness can be achieved by this cooling device with relatively small amount of coolant flow. Based on the theory of transpiration cooling in porous material, a one dimensional heat transfer model was established to analyze the effect of various parameters on cooling effectiveness. It was found from this model that the variation of heat transfer on the gas side, including heat transfer coefficient and film cooling effectiveness, of the specimen created much more effect on its cooling effectiveness than that of the coolant side. The predictions of the one-dimensional mode were compared and agreed well with the experimental data.

  19. PYRAMIDAL-HOLLOW-BEAM DIPOLE TRAP FOR ALKALI ATOMS

    Institute of Scientific and Technical Information of China (English)

    YIN JIAN-PING; GAO WEI-JIAN; WANG YU-ZHU; ZHU YI-FU; WANG YI-QIU

    2000-01-01

    We propose a dark gravito-optical dipole trap, for alkali atoms, consisting of a blue-detuned, pyramidal-hollow laser beam propagating upward and the gravity field. When cold atoms from a magneto-optical trap are loaded into the pyramidal-hollow beam and bounce inside the pyramidal-hollow beam, they experience efficient Sisyphus cooling and geometric cooling induced by the pyramidal-hollow beam and the weak repumping beam propagating downward. Our study shows that an ultracold and dense atomic sample with an equilibrium 3D momentum of ~ 3hk and an atomic density above the point of Bose-Einstein condensation may be obtained in this pure optical trap.

  20. CW fountain of laser-cooled Yb atoms

    CERN Document Server

    Rathod, K D; Natarajan, Vasant

    2013-01-01

    We demonstrate launching of laser-cooled Yb atoms in a continuous atomic fountain. The continuous fountain has significant advantages over the more common pulsed fountain, which was also demonstrated by us recently. The fountain is formed in the following steps---(i) Atoms from a thermal beam are first Zeeman slowed to a small final velocity, (ii) the slowed atoms are captured in a two-dimensional magneto-optic trap (2D-MOT), and (iii) atoms are launched {\\em continuously} in the vertical direction using two sets of moving-molasses beams, inclined at $\\pm 15^\\circ$ to the vertical. The cooling transition used is the strongly-allowed ${^1S}_0 \\rightarrow {^1P}_1$ transition at 399 nm. We capture about $7 \\times 10^6$ atoms in the 2D-MOT, and then launch them with a vertical velocity of 13 m/s at a longitudinal temperature of 125(6) mK.

  1. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  2. Cooling of ultrarelativistic β and μ particles by laser channels

    Science.gov (United States)

    Dik, A. V.; Dabagov, S. B.; Frolov, E. N.

    2016-07-01

    The descriprion of ultrarelativistic classical particles’ movement in interference laser field formed by multichannel ’’sandwich” structures taking into account the radiative energy losses is present. The muon channeling case is described in detail. The critical angle for muon bound motion in the potential well of laser field is defined. The feasibility of beam cooling for charged particles due to radiation losses is shown.

  3. Progress on Analytical Modeling of Coherent Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.; Blaskiewicz, M.; Litvinenko, V.; Webb, S.

    2010-05-23

    We report recent progresses on analytical studies of Coherent Electron Cooling. The phase space electron beam distribution obtained from the 1D FEL amplifier is applied to an infinite electron plasma model and the electron density evolution inside the kicker is derived. We also investigate the velocity modulation in the modulator and obtain a closed form solution for the current density evolution for infinite homogeneous electron plasma.

  4. To Be Cool or Uncool?

    Institute of Scientific and Technical Information of China (English)

    袁会珍

    2007-01-01

    The western world has always been divided into two types of people-the cool and the uncool. It is a division that __1__ in school. The cool kids are good at __2__. They are __3__ with the opposite sex. They are good-looking and people want to __4__ their style. They can do their homework but they don't make a big effort. That would __5__ be cool.

  5. Workshop 4 Converter cooling & recuperation

    Science.gov (United States)

    Iles, Peter; Hindman, Don

    1995-01-01

    Cooling the PV converter increases the overall TPV system efficiency, and more than offsets the losses incurred in providing cooling systems. Convective air flow methods may be sufficient, and several standard water cooling systems, including thermo-syphon radiators, capillary pumps or microchannel plates, are available. Recuperation is used to increase system efficiency, rather than to increase the emitter temperature. Recuperators operating at comparable high temperatures, such as in high temperature turbines have worked effectively.

  6. Radiative cooling for thermophotovoltaic systems

    Science.gov (United States)

    Zhou, Zhiguang; Sun, Xingshu; Bermel, Peter

    2016-09-01

    Radiative cooling has recently garnered a great deal of attention for its potential as an alternative method for photovoltaic thermal management. Here, we will consider the limits of radiative cooling for thermal management of electronics broadly, as well as a specific application to thermal power generation. We show that radiative cooling power can increase rapidly with temperature, and is particularly beneficial in systems lacking standard convective cooling. This finding indicates that systems previously operating at elevated temperatures (e.g., 80°C) can be passively cooled close to ambient under appropriate conditions with a reasonable cooling area. To examine these general principles for a previously unexplored application, we consider the problem of thermophotovoltaic (TPV) conversion of heat to electricity via thermal radiation illuminating a photovoltaic diode. Since TPV systems generally operate in vacuum, convective cooling is sharply limited, but radiative cooling can be implemented with proper choice of materials and structures. In this work, realistic simulations of system performance are performed using the rigorous coupled wave analysis (RCWA) techniques to capture thermal emitter radiation, PV diode absorption, and radiative cooling. We subsequently optimize the structural geometry within realistic design constraints to find the best configurations to minimize operating temperature. It is found that low-iron soda-lime glass can potentially cool the PV diode by a substantial amount, even to below ambient temperatures. The cooling effect can be further improved by adding 2D-periodic photonic crystal structures. We find that the improvement of efficiency can be as much as an 18% relative increase, relative to the non-radiatively cooled baseline, as well as a potentially significant improvement in PV diode lifetime.

  7. Stochastic cooling technology at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, R.J. E-mail: pasquin@fnal.gov

    2004-10-11

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  8. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  9. Physical installation of Pelletron and electron cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Hurh, P.

    1997-09-01

    Bremsstrahlung of 5 MeV electrons at a loss current of 50 microamp in the acceleration region is estimated to produce X-ray intensities of 7 Rad/sec. Radiation losses due to a misteer or sudden obstruction will of course be much higher still (estimated at 87,500 Rad/hr for a 0.5 mA beam current). It is estimated that 1.8 meters of concrete will be necessary to adequately shield the surrounding building areas at any possible Pelletron installation site. To satisfy our present electron cooling development plan, two Pelletron installations are required, the first at our development lab in the Lab B/NEF Enclosure area and the second at the operational Main Injector service building, MI-30, in the main Injector ring. The same actual Pelletron and electron beam-line components will be used at both locations. The Lab B installation will allow experimentation with actual high energy electron beam to develop the optics necessary for the cooling straight while Main Injector/Recycler commissioning is taking place. The MI-30 installation is obviously the permanent home for the Pelletron when electron cooling becomes operational. Construction plans for both installations will be discussed here.

  10. A Possible Hybrid Cooling Channel for a Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S; Gallardo, Juan C.

    2010-05-17

    A Neutrino Factory requires an intense and well-cooled (in transverse phase space) muon beam. We discuss a hybrid approach for a linear 4D cooling channel consisting of high-pressure gas-filled RF cavities--potentially allowing high gradients without breakdown--and discrete LiH absorbers to provide the necessary energy loss that results in the required muon beam cooling. We report simulations of the channel performance and its comparison with the vacuum case; we also briefly discuss technical and safety issues associated with cavities filled with high-pressure hydrogen gas. Even with additional windows that might be needed for safety reasons, the channel performance is comparable to that of the original, all-vacuum Feasibility Study 2a channel on which our design is based. If tests demonstrate that the gas-filled RF cavities can operate effectively with an intense beam of ionizing particles passing through them, our approach would be an attractive way of avoiding possible breakdown problems with a vacuum RF channel.

  11. Fluid cooled electrical assembly

    Science.gov (United States)

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  12. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  13. Optimal design of a beam stop for Indus-2 using finite element heat transfer studies

    Indian Academy of Sciences (India)

    A K Sinha; K J S Sawhney; R V Nandedkar

    2001-12-01

    This paper describes the design of an in-vacuum, water-cooled beam stop (X-ray shutter) for the materials science (X-ray diffraction) beamline proposed to be built on the wavelength shifter in the Indus-2 (2.5 GeV) synchrotron radiation source. The radiation source impinges ∼ 1 kW power on the beam stop and the heat transfer capabilities of the beam stop have been evaluated. Temperature distribution in the beam stop has been obtained under various cooling conditions using the finite element analysis calculations with ANSYS software. Design parameters of the beam stop have been optimised. It is also shown that radiation cooling alone is not sufficient for taking away the heat load. Water-cooling of the beam stop is essential.

  14. Compensating tune spread induced by space charge in bunched beams

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Wang, G.

    2015-05-03

    The effects of space charge play a significant role in modern-day accelerators, frequently constraining the beam parameters attainable in an accelerator or in an accelerator chain. They also can limit the luminosity of hadron colliders operating either at low energies or with sub-TeV high-brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. Using an appropriate electron beam would compensate both the tune shift and the tune spread in the hadron beam in a coasting beam. But these methods cannot compensate space charge tune spread in a bunched hadron beam. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with mismatched longitudinal velocity to compensate the space charge induced tune-shift and tune spread.

  15. Air cooled absorption chillers for solar cooling applications

    Science.gov (United States)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    The chemical composition of a 'best' absorption refrigerant system is identified, and those properties of the system necessary to design hot water operated, air cooled chilling equipment are determined. Air cooled chillers from single family residential sizes into the commercial rooftop size range are designed and operated.

  16. The GRAVITY integrated optics beam combination

    Science.gov (United States)

    Jocou, L.; Perraut, K.; Nolot, A.; Berger, J. P.; Moulin, T.; Labeye, P.; Lacour, S.; Perrin, G.; Lebouquin, J. B.; Bartko, H.; Thiel, M.; Eisenhauer, F.

    2010-07-01

    Gravity is a 2nd generation interferometric instrument for VLTI. It will combine 4 telescopes in dual feed in the K band to study general relativity effects around the Galactic Center black hole. The concept of Gravity is based on two equivalent beam combiner instruments: the scientific one fed by the science target (Sgr A*) and the fringe tracker fed by a bright reference star (See Gillessen et al.1). Both beam combination instruments are based on silica on silicon integrated optics (IO) component glued to fluoride glass fiber array. The beam combiners are implemented in a cryogenic vessel cooled at 200°K and back-illuminated by a high power laser used for metrology (Bartko et al.2). This paper is dedicated to the description of the development of the integrated beam combiner assembly.

  17. Beam screens for the LHC beam pipes

    CERN Multimedia

    Patrice Loïez

    1997-01-01

    Cross-section of LHC prototype beam pipes showing the beam screens. Slits in the screens allow residual gas molecules to be pumped out and become frozen to the walls of the ultra-cold beam pipe. Beam screens like these have been designed to line the beam pipes, absorbing radiation before it can hit the magnets and warm them up, an effect that would greatly reduce the magnetic field and cause serious damage.

  18. Polarizing a stored proton beam by spin flip?

    CERN Document Server

    Oellers, D; Barsov, S; Bechstedt, U; Benati, P; Bertelli, S; Chiladze, D; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Dietrich, J; Dolfus, N; Dymov, S; Engels, R; Erven, W; Garishvili, A; Gebel, R; Goslawski, P; Grigoryev, K; Hadamek, H; Kacharava, A; Khoukaz, A; Kulikov, A; Langenberg, G; Lehrach, A; Lenisa, P; Lomidze, N; Lorentz, B; Macharashvili, G; Maier, R; Martin, S; Merzliakov, S; Meshkov, I N; Meyer, H O; Mielke, M; Mikirtychiants, M; Mikirtychiants, S; Nass, A; Nekipelov, M; Nikolaev, N N; Nioradze, M; d'Orsaneo, G; Papenbrock, M; Prasuhn, D; Rathmann, F; Sarkadi, J; Schleichert, R; Smirnov, A; Seyfarth, H; Sowinski, J; Spoelgen, D; Stancari, G; Stancari, M; Statera, M; Steffens, E; Stein, H J; Stockhorst, H; Straatmann, H; Ströher, H; Tabidze, M; Tagliente, G; Engblom, P Thoerngren; Trusov, S; Vasilyev, A; Weidemann, Chr; Welsch, D; Wieder, P; Wüstner, P; Zupranski, P

    2009-01-01

    We discuss polarizing a proton beam in a storage ring, either by selective removal or by spin flip of the stored ions. Prompted by recent, conflicting calculations, we have carried out a measurement of the spin flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam. This invalidates a recent proposal to use co-moving polarized positrons to polarize a stored antiproton beam.

  19. Model of Carbon Wire Heating in Accelerator Beam

    CERN Document Server

    Sapinski, M

    2008-01-01

    A heat flow equation with beam-induced heating and various cooling processes for a carbon wire passing through a particle beam is solved. Due to equation nonlinearity a numerical approach based on discretization of the wire movement is used. Heating of the wire due to the beam-induced electromagnetic field is taken into account. An estimation of the wire sublimation rate is made. The model is tested on SPS, LEP and Tevatron Main Injector data. Results are discussed and conclusions about limits of Wire Scanner operation on LHC beams are drawn.

  20. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  1. Newton's Law of Cooling Revisited

    Science.gov (United States)

    Vollmer, M.

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…

  2. Dew Point Evaporative Comfort Cooling

    Science.gov (United States)

    2012-11-01

    220 Figure 140. Water-cooled chilled water plant with primary/secondary...enough to buffer the space by carrying away solar loads in unoccupied volumes, such as ceiling plenums. For rooftop installations, where ceiling...and are significant for the three-month period and generally exceed 68%. Larger chilled water plants with water-cooled condensers can operate with

  3. Be Cool, Man! / Jevgeni Levik

    Index Scriptorium Estoniae

    Levik, Jevgeni

    2005-01-01

    Järg 1995. aasta kriminaalkomöödiale "Tooge jupats" ("Get Shorty") : mängufilm "Be Cool, Chili Palmer on tagasi!" ("Be Cool") : režissöör F. Gary Gray, peaosades J. Travolta ja U. Thurman : USA 2005. Lisatud J. Travolta ja U. Thurmani lühiintervjuud

  4. Dialogues in the COOL Project

    NARCIS (Netherlands)

    Stalpers, S.I.P.; Kroeze, C.

    2013-01-01

    The Climate Options for the Long-term (COOL) Project is a participatory integrated assessment (PIA) comprising extensive dialogues at three levels: national, European and global. The objective of the COOL Project was to ‘develop strategic notions on how to achieve drastic reductions of greenhouse ga

  5. Target development for a radioactive ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Vanhorenbeeck, J. (Universite Libre de Bruxelles (Belgium). Inst. d' Astronomie et d' Astrophysique); Baeten, F.; Dom, C. (Institut National des Radioelements, Fleurus (Belgium)); Darquennes, D.; Delbar, T.; Jongen, Y.; Lacroix, M.; Lipnik, P.; Loiselet, M.; Ryckewaert, G.; Wa Kitwanga, S.; Vervier, J.; Zaremba, S. (Louvain Univ., Louvain-la-Neuve (Belgium). Centre de Physique Nucleaire; Louvain Univ., Louvain-la-Neuve (Belgium). Lab. de Cyclotron); Huyse, M.; Reusen, G.; Duppen, P. van (Leuven Univ. (Belgium). Inst. voor Kern- en Stralingsfysika)

    1989-10-01

    A proton bombarded target coupled to an ion source is a key-equipment to produce a cyclotron accelerated Radioactive Ion Beam (RIB). This note concerns the target development for a {sup 13}N ion beam which will be the first one out of a more general project at Louvain-la-Neuve (Report RIB-1988-01). A 30-MeV proton beam of up to 300-{mu}A intensity from the CYCLONE 30 bombards a graphite target to produce the {sup 13}N isotope via the {sup 13}C(p, n){sup 13}N reaction. Two major problems have to be solved: The extraction and transport of {sup 13}N and the beam-heat dissipation. These aspects are somewhat correlated to the temperature dependence of the {sup 13}N release and to the heat conductivity of graphite. A disk shaped target can be cooled through its side-face or through its back-face, and in fact both designs are explored. The extraction yield of the first one varies with the beam intensity up to a maximum value of 46% at 170 {mu}A. For the second one, which is presently under development, the target temperature can be adjusted by a cooled finger of variable length. (orig.).

  6. First circulating beam in the AA

    CERN Multimedia

    1980-01-01

    On 3 July 1980, two years after project authorization, beam circulated for the first time in the AA. It was a 3.56 GeV/c proton test beam. We see an expecting crowd, minutes before the happy event. The persons are too numerous to name them all, but the 3 most prominent ones are at the centre (left to right): Roy Billinge (Joint AA Project Leader, with his hand on the control box), Eifionydd Jones (white shirt), Simon van der Meer (spiritus rector and Joint AA Project Leader). The first antiprotons were injected, made to circulate and cooled soon after, on 14 July 1980.

  7. A novel electronic cooling concept

    Science.gov (United States)

    Ponnappan, R.; Beam, J. E.

    Advanced electrical power conditioning systems for the More Electric Aircraft Initiative involve high currents and high voltages with the attendant waste heat generation and cooling problems. The use of solid state switching devices such as MCTs for these systems will result in power dissipation of several hundred Watts per square centimeter. Conventional forced air or low velocity single phase fluid cooling is inadequate to handle the waste heat dissipation of these high power devices. More advanced and innovative methods of cooling which can use fluids available in the aircraft and also easy to package are sought. A new approach called 'venturi flow cooling concept' is described. It is shown that localized cooling up to 200 W/sq cm is possible at the venturi throat region where the MCTs can be mounted. PAO coolant with Pr = 56 at 40 C can be conveniently used in aircraft.

  8. Photoionization studies with molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.Y.

    1976-09-01

    A molecular beam photoionization apparatus which combines the advantages of both the molecular beam method with photoionization mass spectrometry has been designed and constructed for carrying out some unique photoionization experiments. Rotational cooling during the supersonic expansion has resulted in high resolution photoionization efficiency curves for NO, ICl, C/sub 2/H/sub 2/ and CH/sub 3/I. The analysis of these spectra has yielded ionization potentials for these molecules to an accuracy of +- 3 MeV. Detailed autoionization structures were also resolved. This allows the investigation of the selection rules for autoionization, and the identification of the Rydberg series which converge to the excited states of the molecular ions. The degree of relaxation for thermally populated excited states has been examined using NO and ICl as examples. As a result of adiabatic cooling, a small percentage of dimers is also formed during the expansion. The photoionization efficiency curves for (NO)/sub 2/, ArICl, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ have been obtained near the thresholds. Using the known dissociation energies of the (NO)/sub 2/, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ van der Waals molecules, the corresponding dissociation energies for NO-NO/sup +/, Ar/sub 2//sup +/, Kr/sub 2//sup +/, and Xe/sub 2//sup +/ have been determined. The ionization mechanisms for this class of molecules are examined and discussed.

  9. Cooling off with physics

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Chris [Unilever R and D (United Kingdom)

    2003-08-01

    You might think of ice cream as a delicious treat to be enjoyed on a sunny summer's day. However, to the ice-cream scientists who recently gathered in Thessaloniki in Greece for the 2nd International Ice Cream Symposium, it is a complex composite material. Ice cream consists of three dispersed phases: ice crystals, which have a mean size of 50 microns, air bubbles with a diameter of about 70 microns, and fat droplets with a size of 1 micron. These phases are held together by what is called the matrix - not a sci-fi film, but a viscous solution of sugars, milk proteins and polysaccharides. The microstructure, and hence the texture that you experience when you eat ice cream, is created in a freezing process that has remained fundamentally unchanged since the first ice-cream maker was patented in the 1840s. The ingredients - water, milk protein, fat, sugar, emulsifiers, stabilizers, flavours and a lot of air - are mixed together before being pasteurized and homogenized. They are then pumped into a cylinder that is cooled from the outside with a refrigerant. As the mixture touches the cylinder wall it freezes and forms ice crystals, which are quickly scraped off by a rotating blade. The blade is attached to a beater that disperses the ice crystals into the mixture. At the same time, air is injected and broken down into small bubbles by the shear that the beater generates. As the mixture passes along the cylinder, the number of ice crystals increases and its temperature drops. As a result, the viscosity of the mixture increases, so that more energy input is needed to rotate the beater. This energy is dissipated as heat, and when the ice cream reaches about -6 deg. C the energy input through the beater equals the energy removed as heat by the refrigerant. The process therefore becomes self-limiting and it is not possible to cool the ice cream any further. However, at -6 deg. C the microstructure is unstable. The ice cream therefore has to be removed from the freezer

  10. Molecular-beam scattering

    Science.gov (United States)

    Vernon, M. F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HC1 (FEMALE) NAC1 + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2(2)P/sub 3/2/) and Na(3(2)P/sub 3/2) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  11. Molecular-beam scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  12. Process for cooling a solar cell and a combined photovoltaic and photothermic solar device

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, J.

    1982-07-13

    A solar cell cooling process is disclosed. The device implementing this process comprises a transparent assembly disposed in front of a photovoltaic cell. The transparent assembly, through which flows the cooling fluid leaving a radiator integral with the cell, absorbs the wavelengths greater than 1.1 micron. Thus, heating of the cell is limited and the fluid leaving the radiator is heated by the beam striking the cell.

  13. Simulating the Cooling Flow of Cool-Core Clusters

    CERN Document Server

    Li, Yuan

    2011-01-01

    We carry out high-resolution adaptive mesh refinement simulations of a cool core cluster, resolving the flow from Mpc scales down to pc scales. We do not (yet) include any AGN heating, focusing instead on cooling in order to understand how gas gets to the supermassive black hole (SMBH) at the center of the cluster. We find that, as the gas cools, the cluster develops a very flat temperature profile, undergoing a cooling catastrophe only in the central 10-100 pc of the cluster. Outside of this region, the flow is smooth, with no local cooling instabilities, and naturally produces very little low-temperature gas (below a few keV), in agreement with observations. The gas cooling in the center of the cluster rapidly forms a thin accretion disk. The amount of cold gas produced at the very center grows rapidly until a reasonable estimate of the resulting AGN heating rate (assuming even a moderate accretion efficiency) would overwhelm cooling. We argue that this naturally produces a thermostat which links the coolin...

  14. A He-gas Cooled, Stationary Granular Target

    CERN Document Server

    Pugnat, P

    2003-01-01

    In the CERN approach to the design of a neutrino factory, the repetition frequency of the proton beam is high enough to consider stationary solid targets as a viable solution for multi-MW beams. The target consists of high density tantalum spheres of 2 mm diameter which can efficiently be cooled by passing a high mass flow He-gas stream through the voids between the Ta-granules. Very small thermal shocks and stresses will arise in this fine grained structure due to the relatively long burst of 3.3 ms from the SPL-proton linac. In a quadruple target system where each target receives only one quarter of the total beam power of 4 MW, conservative temperature levels and adequate lifetimes of the target are estimated in its very high radiation environment. A conceptual design of the integration of the target into the magnetic horn-pion-collector is presented.

  15. Central cooling: absorptive chillers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-08-01

    This technology evaluation covers commercially available single-effect, lithium-bromide absorption chillers ranging in nominal cooling capacities of 3 to 1,660 tons and double-effect lithium-bromide chillers from 385 to 1,060 tons. The nominal COP measured at operating conditions of 12 psig input steam for the single-effect machine, 85/sup 0/ entering condenser water, and 44/sup 0/F exiting chilled-water, ranges from 0.6 to 0.65. The nominal COP for the double-effect machine varies from 1.0 to 1.15 with 144 psig entering steam. Data are provided to estimate absorption-chiller performance at off-nominal operating conditions. The part-load performance curves along with cost estimating functions help the system design engineer select absorption equipment for a particular application based on life-cycle costs. Several suggestions are offered which may be useful for interfacing an absorption chiller with the remaining Integrated Community Energy System. The ammonia-water absorption chillers are not considered to be readily available technology for ICES application; therefore, performance and cost data on them are not included in this evaluation.

  16. Convective cooling of photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, E.; Gibbons, C. [Energy Engineering Group, Mechanical Engineering Department, Cork Institute of Technology, Bishopstown, Cork (Ireland)

    2004-07-01

    Most solar cells presently on the market are based on silicon wafers, the so-called first generation technology. As this technology has matured costs have become increasingly dominated by material costs. In the last ten years, continuous work has brought the efficiency of standard cells to the 25% region. A switch to second generation or thin film technology cells now seems imminent. Thin film technology eliminates the silicon wafer and offer the prospect of reducing material and manufacturing costs, but they exhibit lower efficiencies of around 10% for a commercial device. Third generation or tandem cells are currently at a 'proof of concept' research level, with a theoretical conversion rate of 86.8% being asserted Whatever the material construction and manufacturing method of cells, the thermal effect of overheating will prevail in the semiconductor and it is accepted that a lowered temperature will bring about an increase in conversion efficiency. The aim of this project is to improve the efficiency of PV electrical output, by convectively cooling the cells through perforations in them. As the cells heat up they lose efficiency. As the panel heats up a loss in efficiency of 0.5% per C increase in temperature has been recorded. (orig.)

  17. Performance of Air-cooled Engine Cylinders Using Blower Cooling

    Science.gov (United States)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1936-01-01

    An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.

  18. Method and apparatus for efficient photodetachment and purification of negative ion beams

    Science.gov (United States)

    Beene, James R.; Liu, Yuan; Havener, Charles C.

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  19. Wedge Absorbers for Final Cooling for a High-Energy High-Luminosity Lepton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Mohayai, Tanaz [IIT, Chicago (main); Snopok, Pavel [IIT, Chicago; Summers, Don [Mississippi U.

    2016-06-01

    A high-energy high-luminosity muon collider scenario requires a "final cooling" system that reduces transverse emittance to ~25 microns (normalized) while allowing longitudinal emittance increase. Ionization cooling using high-field solenoids (or Li Lens) can reduce transverse emittances to ~100 microns in readily achievable configurations, confirmed by simulation. Passing these muon beams at ~100 MeV/c through cm-sized diamond wedges can reduce transverse emittances to ~25 microns, while increasing longitudinal emittance by a factor of ~5. Implementation will require optical matching of the exiting beam into downstream acceleration systems.

  20. Novel Applications of Buffer-gas Cooling to Cold Atoms, Diatomic Molecules, and Large Molecules

    Science.gov (United States)

    Drayna, Garrett Korda

    Cold gases of atoms and molecules provide a system for the exploration of a diverse set of physical phenomena. For example, cold gasses of magnetically and electrically polar atoms and molecules are ideal systems for quantum simulation and quantum computation experiments, and cold gasses of large polar molecules allow for novel spectroscopic techniques. Buffer-gas cooling is a robust and widely applicable method for cooling atoms and molecules to temperatures of approximately 1 Kelvin. In this thesis, I present novel applications of buffer-gas cooling to obtaining gases of trapped, ultracold atoms and diatomic molecules, as well as the study of the cooling of large organic molecules. In the first experiment of this thesis, a buffer-gas beam source of atoms is used to directly load a magneto-optical trap. Due to the versatility of the buffer-gas beam source, we obtain trapped, sub-milliKelvin gases of four different lanthanide species using the same experimental apparatus. In the second experiment of this thesis, a buffer-gas beam is used as the initial stage of an experiment to directly laser cool and magneto-optically trap the diatomic molecule CaF. In the third experiment of this thesis, buffer-gas cooling is used to study the cooling of the conformational state of large organic molecules. We directly observe conformational relaxation of gas-phase 1,2-propanediol due to cold collisions with helium gas. Lastly, I present preliminary results on a variety of novel applications of buffer-gas cooling, such as mixture analysis, separation of chiral mixtures, the measurement of parity-violation in chiral molecules, and the cooling and spectroscopy of highly unstable reaction intermediates.

  1. Angular-momentum-dominated electron beams and flat-beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e [Univ. of Chicago, IL (United States)

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  2. Cooling arrangement for a tapered turbine blade

    Science.gov (United States)

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  3. CLIC inner detectors cooling simulations

    CERN Document Server

    Duarte Ramos, F.; Villarejo Bermudez, M.

    2014-01-01

    The strict requirements in terms of material budget for the inner region of the CLIC detector concepts require the use of a dry gas for the cooling of the respective sen- sors. This, in conjunction with the compactness of the inner volumes, poses several challenges for the design of a cooling system that is able to fulfil the required detec- tor specifications. This note introduces a detector cooling strategy using dry air as a coolant and shows the results of computational fluid dynamics simulations used to validate the proposed strategy.

  4. Cooling towers principles and practice

    CERN Document Server

    Hill, G B; Osborn, Peter D

    1990-01-01

    Cooling Towers: Principles and Practice, Third Edition, aims to provide the reader with a better understanding of the theory and practice, so that installations are correctly designed and operated. As with all branches of engineering, new technology calls for a level of technical knowledge which becomes progressively higher; this new edition seeks to ensure that the principles and practice of cooling towers are set against a background of up-to-date technology. The book is organized into three sections. Section A on cooling tower practice covers topics such as the design and operation of c

  5. Beam accumulation with the SIS electron cooler

    CERN Document Server

    Steck, Markus; Blasche, K; Franczak, B J; Franzke, B; Winkler, T; Parkhomchuk, V V

    2000-01-01

    An electron cooling system has started operation in the heavy ion synchrotron SIS which is used to increase the intensity for highly charged ions. Fast transverse cooling of the hot ion beam after horizontal multiturn injection allows beam accumulation at the injection energy. After optimization of the accumulation process an intensity increase in a synchrotron pulse by more than one order of magnitude has been achieved. For highly charged ions the maximum number of particles has been increased from 1x10 sup 8 to 1x10 sup 9. For lighter ions intensity limitations have been encountered which are caused by the high phase space density of the cooled ion beam. Momentum spreads in the 10 sup - sup 4 range and emittances well below 10 pi mm mrad have been demonstrated. Recombination losses both in the residual gas and with the free cooler electrons determine the maximum intensity for highly charged ions. Systematic measurements of the recombination rates have been performed providing data for an optimum choice of t...

  6. Zeeman-Sisyphus Deceleration of Molecular Beams

    Science.gov (United States)

    Fitch, Noah; Tarbutt, Mike

    2016-05-01

    Ultracold molecules are useful for testing fundamental physics and studying strongly-interacting quantum systems. One production method is via direct laser cooling in a magneto-optical trap (MOT). In this endeavor, one major challenge is to produce molecules below the MOT capture velocity. Established molecular beam deceleration techniques are poorly suited because they decelerate only a small fraction of a typical molecular pulse. Direct laser cooling is a natural choice, but is also problematic due to transverse heating and the associated molecule loss. I will present a new technique that we are developing, which we call Zeeman-Sisyphus deceleration and which shows great promise for preparing molecular beams for MOT loading. This technique decelerates molecules using a linear array of permanent magnets, along with lasers that periodically optically pump molecules between weak and strong-field seeking quantum states. Being time-independent, this method is well-suited for temporally extended molecular beams. Simultaneous deceleration and transverse guiding makes this approach attractive as an alternative to direct laser cooling. I will present our development of the Zeeman-Sisyphus decelerator and its application to a molecular MOT of CaF and an ultracold fountain of YbF.

  7. HIGH-ENERGY ELECTRON COOLING BASED ON REALISTIC SIX-DIMENSIONAL DISTRIBUTION OF ELECTRONS

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.; BEN-ZVI, I.; ET AL.

    2007-06-25

    The high-energy electron cooling system for RHIC-II is unique compared to standard coolers. It requires bunched electron beam. Electron bunches are produced by an Energy Recovery Linac (ERL), and cooling is planned without longitudinal magnetic field. To address unique features of the RHIC cooler, a generalized treatment of cooling force was introduced in BETACOOE code which allows us to calculate friction force for an arbitrary distribution of electrons. Simulations for RHIC cooler based on electron distribution from ERL are presented.

  8. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  9. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.

  10. STRUCTURE DESIGN OF THE BEIJING SPECTROMETER Ⅲ BEAM PIPE

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lifang; JI Quan; WANG Li; LI Xunfeng; XU Shaowang; DONG Sujun; ZHAO Libin; LIU Jianping

    2008-01-01

    The Beijing spectrometer Ⅲ (BESⅢ) beam pipe is in the center of the BESⅢ, which is the detector of the upgrade project of Beijing electron and positron collider (BEPCⅡ). Electrons and positrons collide in the BESⅢ beam pipe. According to the demands of the BEPCⅡ, a key program of Chinese Academy of Sciences, the BESⅢ beam pipe is designed based on the finite elements analysis. The BESⅢ beam pipe is installed in the inner cylinder of the BESⅢ drift chamber. As a vacuum tube, the BESⅢ beam pipe is designed as 1 000 mm in length, 63 mm in inner diameter and 114 mm in outer diameter, respectively. The BESⅢ beam pipe consists of a central beryllium pipe cooled by EDM-1, the oil No.1 for electric discharge machining, and two extended copper pipes cooled by deionized water (DW). The three parts are jointed by vacuum welding. Factors taken into account in the design are as follows. ① The wall thickness of the central beryllium pipe should be designed as small as possible to reduce the multi-scattering and improve the particle momentum resolution. And the wall thickness of the extended copper pipe should be designed as large as possible to protect the detectors from the backgrounds. ② The BESⅢ beam pipe must be sufficiently cooled to avoid the damage and prevents its influence to the BESⅢ drift chamber (DC) operation. The inner surface temperature of the DC inner cylinder must be maintained at 293±2 K. ③ The magnetic permeability of the materials used in the BESⅢ beam pipe must be less than 1.05 H/m to avoid large magnetic field distortions. ④ The static pressure of the vacuum chamber of the BESⅢ beam pipe must be less than 800 (Pa. The simulating results show that the designed structure of the BESⅢ beam pipe satisfies the requirements mentioned above. The structure design scheme is evaluated and adopted by the headquarters of BEPCⅡ.

  11. Performance predictions for a laser intensified thermal beam for use in high resolution Focused Ion Beam instruments

    CERN Document Server

    Wouters, S H W; Notermans, R P M J W; Debernardi, N; Mutsaers, P H A; Luiten, O J; Vredenbregt, E J D

    2014-01-01

    Photo-ionization of a laser-cooled and compressed atomic beam from a high-flux thermal source can be used to create a high-brightness ion beam for use in Focus Ion Beam (FIB) instruments. Here we show using calculations and Doppler cooling simulations that an atomic rubidium beam with a brightness of $2.1 \\times 10^7 A/(m^2\\,sr\\,eV)$ at a current of 1 nA can be created using a compact 5 cm long 2D magneto-optical compressor which is more than an order of magnitude better than the current state of the art Liquid Metal Ion Source.

  12. BEAM STOP DESIGN METHODOLOGY AND DESCRIPTION OF A NEW SNS BEAM STOP

    Energy Technology Data Exchange (ETDEWEB)

    Polsky, Yarom [ORNL; Plum, Michael A [ORNL; Geoghegan, Patrick J [ORNL; Jacobs, Lorelei L [ORNL; Lu, Wei [ORNL; McTeer, Stephen Mark [ORNL

    2010-01-01

    The design of accelerator components such as magnets, accelerator cavities and beam instruments tends to be a fairly standardized and collective effort within the particle accelerator community with well established performance, reliability and, in some cases, even budgetary criteria. Beam stop design, by contrast, has been comparatively subjective historically with much more general goals. This lack of rigor has lead to a variety of facility implementations with limited standardization and minimal consensus on approach to development within the particle accelerator community. At the Spallation Neutron Source (SNS), for example, there are four high power beam stops in use, three of which have significantly different design solutions. This paper describes the design of a new off-momentum beam stop for the SNS. The technical description of the system will be complemented by a discussion of design methodology. This paper presented an overview of the new SNS HEBT off-momentum beam stop and outlined a methodology for beam stop system design. The new beam stop consists of aluminium and steel blocks cooled by a closed-loop forced-air system and is expected to be commissioned this summer. The design methodology outlined in the paper represents a basic description of the process, data, analyses and critical decisions involved in the development of a beam stop system.

  13. Effect of beam oscillation on fatigue life of Ti-6Al-4V electron beam weldments

    Energy Technology Data Exchange (ETDEWEB)

    Babu, N. Kishore [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai (India); Raman, S. Ganesh Sundara [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai (India)], E-mail: ganesh@iitm.ac.in; Murthy, C. V. Srinivasa [Defence Research and Development Laboratory, Hyderabad (India); Reddy, G. Madhusudhan [Defence Metallurgical Research Laboratory, Hyderabad (India)

    2007-12-15

    The present study deals with the effect of beam oscillation technique using elliptical waveform on fatigue life of Ti-6Al-4V electron beam weldments. Autogenous full penetration bead-on-plate electron beam welds were made with and without beam oscillation. Some welds were subjected to post-weld heat treatment (PWHT) at two different temperatures (700 and 900 deg. C). Room temperature hardness, tensile properties and fatigue life of the weldments in the as-welded and PWHT conditions were studied and correlated with the microstructure. The beam oscillated weldments exhibited lower strength (hardness) compared to those made without beam oscillation. This was attributed to wider diffusional {alpha} plates in the beam oscillated welds due to lower cooling rates. The beam oscillated weldments exhibited inferior fatigue lives compared with unoscillated weldments owing to the presence of wider {alpha} platelets in the former. As the width of {alpha} platelets in the weldments subjected to PWHT at 700 deg. C was smaller than that in the weldments subjected to PWHT at 900 deg. C, they exhibited longer fatigue lives.

  14. Active and passive beam application design guide for global application

    CERN Document Server

    Rimmer, Julian

    2015-01-01

    The Active and Passive Beam Application Design Guide is the result of collaboration by worldwide experts to give system designers a current, authoritative guide on successfully applying active and passive beam technology. Active and Passive Beam Application Design Guide provide energy-efficient methods of cooling, heating, and ventilating indoor areas, especially spaces that require individual zone control and where internal moisture loads are moderate. The systems are simple to operate, with low maintenance requirements. This book is an essential resource for consulting engineers, architects, owners, and contractors who are involved in the design, operation, and installation of these systems. Building on REHVA’s Chilled Beam Application Guidebook, this new guide provides up-to-date tools and advice for designing, commissioning, and operating chilled-beam systems to achieve a determined indoor climate, and includes examples of active and passive beam calculations and selections. Dual units (SI and I-P) are...

  15. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  16. Compressor bleed cooling fluid feed system

    Science.gov (United States)

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  17. Cooled Ceramic Turbine Vane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — N&R Engineering will investigate the feasibility of cooled ceramics, such as ceramic matrix composite (CMC) turbine blade concepts that can decrease specific...

  18. Cooling Technology for Electronic Computers

    Science.gov (United States)

    Nakayama, Wataru

    The rapid growth of data processing speed in computers has been sustained by the advances in cooling technology. This article first presents a review of the published data of heat loads in recent Japanese large-scale computers. The survey indicates that, since around 1980, the high-level integration of microelectronic circuits has brought about almost four fold increase in the power dissipation from logic chips. The integration also has invited the evolutions of multichip modules and new schemes of electronic interconnections. Forced convection air-cooling and liquid cooling coupled with thermal connectors are discussed with reference to the designs employed in actual computers. More advanced cooling schemes are also discussed. Finally, the importance of thermal environmental control of computer rooms is emphasized.

  19. Surface-induced evaporative cooling

    Institute of Scientific and Technical Information of China (English)

    Ke Min; Yan Bo; Cheng Feng; Wang Yu-Zhu

    2009-01-01

    The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to the surface. Rapid decrease of the temperature and number of the atoms is found when the atom-surface distance is < 100 μm. A gain of about a factor of five on the phase-space density is obtained. It is found that the efficiency of the surface-induced evaporative cooling depends on the atom-surface distance and the shape of the evaporative trap. When the atoms are moved very close to the surface, severe heating is observed, which dominates when the holding time is > 8 ms. It is important that the surface-induced evaporative cooling offers novel possibilities for the realization of a continuous condensation, where a spatially varying evaporative cooling is required.

  20. DETERMINATION OF RADIATOR COOLING SURFACE

    Directory of Open Access Journals (Sweden)

    A. I. Yakubovich

    2009-01-01

    Full Text Available The paper proposes a methodology for calculation of a radiator cooling surface with due account of heat transfer non-uniformity on depth of its core. Calculation of radiator cooling surfaces of «Belarus-1221» and «Belarus-3022» tractors has been carried out in the paper. The paper also advances standard size series of radiators for powerful «Belarus» tractor type.

  1. Turbine Blade Cooling System Optimization

    OpenAIRE

    GIRARDEAU, Julian; PAILHES, Jérôme; SEBASTIAN, Patrick; PARDO, Frédéric; Nadeau, Jean-Pierre

    2013-01-01

    The authors wish to thank turbine designers from TURBOMECA SAFRAN Group.; International audience; Designing high performance cooling systems suitable for preserving the service lifetime of nozzle guide vanes of turboshaft engines leads to significant aerodynamic losses. These losses jeopardize the performance of the whole engine. In the same time, a low efficiency cooling system may affect the costs of maintenance repair and overhaul of the engine as component life decreases. Consequently, de...

  2. Cooling Shelf For Electronic Equipment

    Science.gov (United States)

    Tanzer, Herbert J.

    1989-01-01

    Heat-pipe action cools and maintains electronics at nearly constant temperature. System designed to control temperatures of spacecraft shelves or baseplates by combining honeycomb sandwich panel with reservoir of noncondensable gas and processing resulting device as variable-conductance heat pipe. Device provides flat surface for mounting heat-dissipating electronics that is effectively cooled and maintained at nearly constant temperature. Potentially useful in freeze drying, refrigeration, and air conditioning.

  3. Quantum limit of photothermal cooling

    CERN Document Server

    De Liberato, Simone; Nori, Franco

    2010-01-01

    We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. This allows us to tackle the cooling problem down to the noise dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

  4. Energy Efficient Electronics Cooling Project

    Energy Technology Data Exchange (ETDEWEB)

    Steve O' Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  5. Optimizing X-ray mirror thermal performance using matched profile cooling.

    Science.gov (United States)

    Zhang, Lin; Cocco, Daniele; Kelez, Nicholas; Morton, Daniel S; Srinivasan, Venkat; Stefan, Peter M

    2015-09-01

    To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick-Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle is presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ∼11 below the requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.

  6. Final Report for 'ParSEC-Parallel Simulation of Electron Cooling"

    Energy Technology Data Exchange (ETDEWEB)

    David L Bruhwiler

    2005-09-16

    The Department of Energy has plans, during the next two or three years, to design an electron cooling section for the collider ring at RHIC (Relativistic Heavy Ion Collider) [1]. Located at Brookhaven National Laboratory (BNL), RHIC is the premier nuclear physics facility. The new cooling section would be part of a proposed luminosity upgrade [2] for RHIC. This electron cooling section will be different from previous electron cooling facilities in three fundamental ways. First, the electron energy will be 50 MeV, as opposed to 100's of keV (or 4 MeV for the electron cooling system now operating at Fermilab [3]). Second, both the electron beam and the ion beam will be bunched, rather than being essentially continuous. Third, the cooling will take place in a collider rather than in a storage ring. Analytical work, in combination with the use and further development of the semi-analytical codes BETACOOL [4,5] and SimCool [6,7] are being pursued at BNL [8] and at other laboratories around the world. However, there is a growing consensus in the field that high-fidelity 3-D particle simulations are required to fully understand the critical cooling physics issues in this new regime. Simulations of the friction coefficient, using the VORPAL code [9], for single gold ions passing once through the interaction region, have been compared with theoretical calculations [10,11], and the results have been presented in conference proceedings papers [8,12,13,14] and presentations [15,16,17]. Charged particles are advanced using a fourth-order Hermite predictor corrector algorithm [18]. The fields in the beam frame are obtained from direct calculation of Coulomb's law, which is more efficient than multipole-type algorithms for less than {approx} 10{sup 6} particles. Because the interaction time is so short, it is necessary to suppress the diffusive aspect of the ion dynamics through the careful use of positrons in the simulations, and to run 100's of simulations with

  7. Microtextured Surfaces for Turbine Blade Impingement Cooling

    Science.gov (United States)

    Fryer, Jack

    2014-01-01

    Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can exceed the blade and disk material limits by 600 F or more, necessitating both internal and film cooling schemes in addition to the use of thermal barrier coatings. Internal convective cooling is inadequate in many blade locations, and both internal and film cooling approaches can lead to significant performance penalties in the engine. Micro Cooling Concepts, Inc., has developed a turbine blade cooling concept that provides enhanced internal impingement cooling effectiveness via the use of microstructured impingement surfaces. These surfaces significantly increase the cooling capability of the impinging flow, as compared to a conventional untextured surface. This approach can be combined with microchannel cooling and external film cooling to tailor the cooling capability per the external heating profile. The cooling system then can be optimized to minimize impact on engine performance.

  8. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  9. Floor cooling and air-cooling, the effects on thermal comfort or different cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Sijpheer, N.C.; Bakker, E.J.; Ligthart, F.A.T.M.; Opstelten, I.J. [ECN Energie in de Gebouwde Omgeving en Netten, Petten (Netherlands)

    2007-09-15

    One of the research areas of the Energy research Centre of the Netherlands (ECN) concerns the built environment. Several facilities to conduct research activities are at ECN's disposal. One of these facilities, are five research dwellings located on the premises of ECN. Measured data from these facilities together with weather data and computer models are used to evaluate innovative energy concepts and components in energy systems. Experiments with different cooling systems in ECN's research dwellings are executed to evaluate their effective influence on both energy use and thermal comfort. Influence of inhabitants' behaviour is taken into account in these experiments. The thermal comfort is indicated by the Predicted Mean Vote (PMV) as defined by P.O. Fanger. For this paper, the results of measurements with a floor cooling and air cooling system are assessed. Effects on the PMV measured during experiments with the two different cooling systems will be presented.

  10. Beam Tools for Geant4 (User's Guide)

    CERN Document Server

    Daniel, E

    2002-01-01

    Geant4 is a tool kit developed by a collaboration of physicists and computer professionals in the high energy physics field for simulation of the passage of particles through matter. The motivation for the development of the Beam Tools is to extend the Geant4 applications to accelerator physics. The Beam Tools are a set of C++ classes designed to facilitate the simulation of accelerator elements: r.f. cavities, magnets, absorbers, etc. These elements are constructed from Geant4 solid volumes like boxes, tubes, trapezoids, or spheres. There are many computer programs for beam physics simulations, but Geant4 is ideal to model a beam through a material or to integrate a beam line with a complex detector. There are many such examples in the current international High Energy Physics programs. For instance, an essential part of the R and D associated with the Neutrino Source/Muon Collider accelerator is the ionization cooling channel, which is a section of the system aimed to reduce the size of the muon beam in pha...

  11. Potential of stochastic cooling of heavy ions in the LHC

    CERN Document Server

    Schaumann, M; Blaskiewicz, M

    2013-01-01

    The dynamics of the high intensity lead beams in the LHC are strongly influenced by intra-beam scattering (IBS), leading to significant emittance growth and particle losses at all energies. Particle losses during collisions are dominated by nuclear electromagnetic processes and the debunching effect arising from the influence of IBS, resulting in a non-exponential intensity decay during the fill and short luminosity lifetimes. In the LHC heavy ion runs, 3 experiments will be taking data and the average fill duration will be rather short as a consequence of the high burn-off rate. The achievements with stochastic cooling at RHIC suggest that such a system at LHC could substantially reduce the emittance growth and the debunching component during injection and collisions. The luminosity lifetime and fill length could be improved to optimize the use of the limited run time of 4 weeks per year. This paper discusses the first results of a feasibility study to use stochastic cooling on the lead ion beams in the LHC....

  12. High perveance electron gun for the electron cooling system

    CERN Document Server

    Korotaev, Yu V; Petrov, A; Sidorin, A; Smirnov, A; Syresin, E M; Titkova, I

    2000-01-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 mu A/V sup 3 sup / sup 2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual).

  13. ISR beam scrapers

    CERN Multimedia

    1972-01-01

    Beam scrapers seen in the direction of the beam. The two horizontal scraper foils are near the centre of the beam pipe andthe two scrapers for protection of the vacuum chamber are further outside. In the lower part of the beam pipe is the vertical halo scraping blade.

  14. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  15. Physics with Cold Molecules Using Buffer Gas Cooling: Precision Measurement, Collisions, and Laser Cooling

    Science.gov (United States)

    Hutzler, Nicholas R.; Doyle, John M.

    2014-06-01

    Cryogenic buffer gas cooled beams and cells can be used to study many species, from atoms and polar molecules to biomolecules. We report on recent applications of this technique to improve the limit on the electron electric dipole moment [1], load polar molecules into a magnetic trap through optical pumping [2], perform chirally sensitive microwave spectroscopy on polyatomic molecules [3], progress towards magneto-optical trapping of polar molecules [4], and studies of atom-molecule sticking [5]. [1] The ACME Collaboration: J. Baron et al., Science 343, p. 269 (2014) [2] B. Hemmerling et al., arXiv:1310.2669, to appear in Phys. Rev. Lett. [3] D. Patterson, M. Schnell, & J. M. Doyle, Nature 497, p. 475 (2013) [4] H. Lu et al., arXiv:1310.3239, to appear in New. J. Phys. [5] J. Piskorski et al., under preparation

  16. A new Newton's law of cooling?

    Science.gov (United States)

    Kleiber, M

    1972-12-22

    Several physiologists confuse Fourier's law of animal heat flow with Newton's law of cooling. A critique of this error in 1932 remained ineffective. In 1969 Molnar tested Newton's cooling law. In 1971 Strunk found Newtonian cooling unrealistic for animals. Unfortunately, he called the Fourier formulation of animal heat flow, requiring post-Newtonian observations, a "contemporary Newtonian law of cooling."

  17. 14 CFR 25.1043 - Cooling tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling tests. 25.1043 Section 25.1043... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Cooling § 25.1043 Cooling tests. (a) General. Compliance... during the cooling tests must be the minimum grade approved for the engines, and the mixture...

  18. 14 CFR 27.1043 - Cooling tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling tests. 27.1043 Section 27.1043... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Cooling § 27.1043 Cooling tests. (a) General. For the tests... during the cooling tests must be of the minimum grade approved for the engines, and the mixture...

  19. 14 CFR 29.1043 - Cooling tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling tests. 29.1043 Section 29.1043... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Cooling § 29.1043 Cooling tests. (a) General. For the... (a)(1) of this section may exceed established limits. (3) The fuel used during the cooling tests...

  20. 14 CFR 29.908 - Cooling fans.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans...

  1. 14 CFR 23.1043 - Cooling tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling tests. 23.1043 Section 23.1043... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Cooling § 23.1043 Cooling... established limits. (3) The fuel used during the cooling tests must be of the minimum grade approved for...

  2. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  3. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  4. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  5. Cooling atomic ions with visible and infra-red light

    CERN Document Server

    Lindenfelser, F; Negnevitsky, V; Ragg, S; Home, J P

    2016-01-01

    We demonstrate the ability to load, cool and detect singly-charged calcium ions in a surface electrode trap using only visible and infrared lasers for the trapped-ion control. As opposed to the standard methods of cooling using dipole-allowed transitions, we combine power broadening of a quadrupole transition at 729 nm with quenching of the upper level using a dipole allowed transition at 854 nm. By observing the resulting 393 nm fluorescence we are able to perform background-free detection of the ion. We show that this system can be used to smoothly transition between the Doppler cooling and sideband cooling regimes, and verify theoretical predictions throughout this range. We achieve scattering rates which reliably allow recooling after collision events and allow ions to be loaded from a thermal atomic beam. This work is compatible with recent advances in optical waveguides, and thus opens a path in current technologies for large-scale quantum information processing. In situations where dielectric materials...

  6. Migration of radionuclides in a gas cooled solid state spallation target

    DEFF Research Database (Denmark)

    Jørgensen, Thomas; Severin, Gregory; Jensen, Mikael

    2015-01-01

    The current design of the ESS (European Spallation Source) program proposes a rotating solid tungsten target cooled by helium gas and a pulsed beam of protons. For safety reasons any design has to address whether or not the induced radionuclidic isotopes in the target migrate. In this paper we ha...

  7. Cooling Efficiency of Laminar Cooling System for Plate Mill

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dian-hua; WANG Bing-xing; ZHOU Na; YU Ming; WANG Jun

    2008-01-01

    Heat transfer was researched from a perspective of the industry application.On the basis of the first law of thermodynamics,the cooling efficiency was deduced from the change of enthalpy inside hot plate.The relationship between the cooling efficiency and its influencing parameters was regressed from plenty of data collected from the worksite and discussed in detail.The temperature profiles resulting from the online model and the model modified by regressed formulas were presented and compared.The results indicated that the control accuracy of the modified model was increased obviously.

  8. Diagnostics of the ITER neutral beam test facility.

    Science.gov (United States)

    Pasqualotto, R; Serianni, G; Sonato, P; Agostini, M; Brombin, M; Croci, G; Dalla Palma, M; De Muri, M; Gazza, E; Gorini, G; Pomaro, N; Rizzolo, A; Spolaore, M; Zaniol, B

    2012-02-01

    The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H(-)∕D(-) production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.

  9. Axion Cooling of Neutron Stars

    CERN Document Server

    Sedrakian, Armen

    2015-01-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting X-ray sources puts constraints on the properties of axions, and by extension of any light pseudo-scalar dark matter particles, whose existence has been postulated to solve the strong-CP problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by $S$- and $P$-wave nucleonic condensates in a benchmark code for cooling simulations as well as provide fit formulae for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring non-accreted iron and accreted light element envelopes, and a range of nucleon-axion coupling. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the tempe...

  10. Oxygen Absorption in Cooling Flows.

    Science.gov (United States)

    Buote

    2000-04-01

    The inhomogeneous cooling flow scenario predicts the existence of large quantities of gas in massive elliptical galaxies, groups, and clusters that have cooled and dropped out of the flow. Using spatially resolved, deprojected X-ray spectra from the ROSAT PSPC, we have detected strong absorption over energies approximately 0.4-0.8 keV intrinsic to the central approximately 1&arcmin; of the galaxy NGC 1399, the group NGC 5044, and the cluster A1795. These systems have among the largest nearby cooling flows in their respective classes and low Galactic columns. Since no excess absorption is indicated for energies below approximately 0.4 keV, the most reasonable model for the absorber is warm, collisionally ionized gas with T=105-106 K in which ionized states of oxygen provide most of the absorption. Attributing the absorption only to ionized gas reconciles the large columns of cold H and He inferred from Einstein and ASCA with the lack of such columns inferred from ROSAT and also is consistent with the negligible atomic and molecular H inferred from H i and CO observations of cooling flows. The prediction of warm ionized gas as the product of mass dropout in these and other cooling flows can be verified by Chandra and X-Ray Multimirror Mission.

  11. Personal cooling apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    Siman-Tov, Moshe (Knoxville, TN); Crabtree, Jerry Allen (Knoxville, TN)

    2001-01-01

    A portable lightweight cooling apparatus for cooling a human body is disclosed, having a channeled sheet which absorbs sweat and/or evaporative liquid, a layer of highly conductive fibers adjacent the channeled sheet; and, an air-moving device for moving air through the channeled sheet, wherein the layer of fibers redistributes heat uniformly across the object being cooled, while the air moving within the channeled sheet evaporates sweat and/or other evaporative liquid, absorbs evaporated moisture and the uniformly distributed heat generated by the human body, and discharges them into the environment. Also disclosed is a method for removing heat generated by the human body, comprising the steps of providing a garment to be placed in thermal communication with the body; placing a layer of highly conductive fibers within the garment adjacent the body for uniformly distributing the heat generated by the body; attaching an air-moving device in communication with the garment for forcing air into the garment; removably positioning an exchangeable heat sink in communication with the air-moving device for cooling the air prior to the air entering the garment; and, equipping the garment with a channeled sheet in communication with the air-moving device so that air can be directed into the channeled sheet and adjacent the layer of fibers to expell heat and moisture from the body by the air being directed out of the channeled sheet and into the environment. The cooling system may be configured to operate in both sealed and unsealed garments.

  12. BaH molecular spectroscopy with relevance to laser cooling

    Science.gov (United States)

    Tarallo, M. G.; Iwata, G. Z.; Zelevinsky, T.

    2016-03-01

    We describe a simple experimental apparatus for laser ablation of barium monohydride (BaH) molecules and the study of their rovibrational spectra relevant to direct laser cooling. BaH is a promising candidate for laser cooling and ultracold fragmentation, both of which are precursors to novel experiments in many-body physics and precision measurement. We present a detailed analysis of the properties of ablation plumes that can improve the understanding of surface ablation and deposition technologies. A range of absorption spectroscopy and collisional thermalization regimes has been studied. We directly measured the Franck-Condon factor of the B 2Σ+(v'=0 ) ←X 2Σ+(v''=1 ) cycling transition. Prospects for production of a high luminosity cryogenic BaH beam are outlined.

  13. BaH molecular spectroscopy with relevance to laser cooling

    CERN Document Server

    Tarallo, M G; Zelevinsky, T

    2015-01-01

    We describe a simple experimental apparatus for laser ablation of barium monohydride (BaH) molecules and the study of their rovibrational spectra that are relevant to direct laser cooling. We present a detailed analysis of the properties of ablation plumes that can improve the understanding of surface ablation and deposition technologies. A range of absorption spectroscopy and collisional thermalization regimes has been studied. We directly measured the Franck-Condon factor of the $\\mathrm{B}^2\\Sigma^+(v'=0)\\leftarrow\\mathrm{X}^2\\Sigma^+(v"=1)$ transition. Prospects for production of a high luminosity cryogenic BaH beam are outlined. This molecule is a promising candidate for laser cooling and ultracold fragmentation, both of which are precursors to novel experiments in many-body physics and precision measurement.

  14. Cold atom dynamics in crossed laser beam waveguides

    CERN Document Server

    Torrontegui, E; Ruschhaupt, A; Guéry-Odelin, D; Muga, J G

    2010-01-01

    We study the dynamics of neutral cold atoms in an $L$-shaped crossed-beam optical waveguide formed by two perpendicular red-detuned lasers of different intensities and a blue-detuned laser at the corner. Complemented with a vibrational cooling process this setting works as a one-way device or "atom diode".

  15. MEIC Proton Beam Formation with a Low Energy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  16. REX-ISOLDE post-accelerated radioactive BEAMS at CERN-ISOLDE

    CERN Document Server

    Nilsson, T; Forstner, O; Ravn, H L; Oinonen, M; Simon, H; Cederkäll, J; Weissman, L; Habs, D; Ames, F; Kester, O; Sieber, T; Bongers, H; Emhofer, S; Reiter, P; Thirolf, P G; Bollen, G; Schmidt, P; Huber, G; Liljeby, L; Rensfelt, K G; Skeppstedt, Ö; Wenander, F; Jonson, B; Nyman, G H; Von Hahn, R; Podlech, H; Repnow, R; Gund, C; Schwalm, D; Schempp, A; Kühnel, K U; Welsch, C P; Ratzinger, U; Walter, G; Huck, A; Kruglov, K; Huyse, M; Van den Bergh, P; Van Duppen, P; Shotter, A C; Ostrowski, A N; Davinson, T; Woods, P J; Moukha, I; Richter, A; Schrieder, G

    2001-01-01

    The ISOLDE RIB-facility at CERN has today been producing a vast range of radioactive beams since more than 30 years. The low-energy beams of ISOLDE will be complemented by a post-accelerator, REX-ISOLDE, currently being assembled. In order to convert the pseudo-DC, singly-charged beam from the ISOLDE mass separators into a cooled and bunched beam at higher charge states a novel scheme of trapping, cooling and charge-state breeding has been devised, using a linear Penning trap and an Electron Beam Ion Source (EBIS). This allows for subsequent acceleration by a short, cost-effective LINAC consisting of an RFQ, an IH-structure and three seven-gap resonators, reaching 0.8 - 2.2 MeV/u. The installation of REX-ISOLDE is well underway and the first post-accelerated radioactive beams are expected to be obtained during late 2000.

  17. Cryogenic performance of a conduction-cooling splittable quadrupole magnet for ILC cryomodules

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, N.; Yamamoto, A. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Andreev, N.; Kashikhin, V. S.; Tartaglia, M. A. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Kerby, J. [Argonne National Laboratory, Argonne, 9700 S. Cass Avenue, IL 60439 (United States); Takahashi, M.; Tosaka, T. [Toshiba Corporation Power Systems Company, 2-4 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa 230-0045 (Japan)

    2014-01-29

    A conduction-cooled splittable superconducting quadrupole magnet was designed and fabricated at Fermilab for use in cryomodules of the International Linear Collider (ILC) type, in which the magnet was to be assembled around the beam tube to avoid contaminating the ultraclean superconducting radio frequency cavity volume. This quadrupole was first tested in a liquid helium bath environment at Fermilab, where its quench and magnetic properties were characterized. Because the device is to be cooled by conduction when installed in cryomodules, a separate test with a conduction-cooled configuration was planned at KEK and Fermilab. The magnet was converted to a conduction-cooled configuration by adding conduction-cooling passages made of high-purity aluminum. Efforts to convert and refabricate the magnet into a cryostat equipped with a double-stage pulse-tube-type cryocooler began in 2011, and a thermal performance test, including a magnet excitation test of up to 30 A, was conducted at KEK. In this test, the magnet with the conduction-cooled configuration was successfully cooled to 4 K within 190 h, with an acceptable heat load of less than 1 W at 4 K. It was also confirmed that the conduction-cooled splittable superconducting quadrupole magnet was practical for use in ILC-type cryomodules.

  18. Cryogenic performance of a conduction-cooling splittable quadrupole magnet for ILC cryomodules

    Science.gov (United States)

    Kimura, N.; Andreev, N.; Kashikhin, V. S.; Kerby, J.; Takahashi, M.; Tartaglia, M. A.; Tosaka, T.; Yamamoto, A.

    2014-01-01

    A conduction-cooled splittable superconducting quadrupole magnet was designed and fabricated at Fermilab for use in cryomodules of the International Linear Collider (ILC) type, in which the magnet was to be assembled around the beam tube to avoid contaminating the ultraclean superconducting radio frequency cavity volume. This quadrupole was first tested in a liquid helium bath environment at Fermilab, where its quench and magnetic properties were characterized. Because the device is to be cooled by conduction when installed in cryomodules, a separate test with a conduction-cooled configuration was planned at KEK and Fermilab. The magnet was converted to a conduction-cooled configuration by adding conduction-cooling passages made of high-purity aluminum. Efforts to convert and refabricate the magnet into a cryostat equipped with a double-stage pulse-tube-type cryocooler began in 2011, and a thermal performance test, including a magnet excitation test of up to 30 A, was conducted at KEK. In this test, the magnet with the conduction-cooled configuration was successfully cooled to 4 K within 190 h, with an acceptable heat load of less than 1 W at 4 K. It was also confirmed that the conduction-cooled splittable superconducting quadrupole magnet was practical for use in ILC-type cryomodules.

  19. Operational Experience of Cooling Water Systems for Accelerator Components at PLS

    CERN Document Server

    Kim, Kyungryul; Kim, Young-Chan; Lee, Bongho; Sik Han, Hong; Soo Ko In; Wha Chung, Chin

    2005-01-01

    The cooling water system has been utilized for absorbing heat generated by a multitude of electromagnetic power delivering networks at PLS. The separate cooling water distribution systems for the storage ring, beam transport line and linear accelerator have been operated with a different operating temperature of supplying water. All water used for heat removal from the accelerator components are deionised and filtered to provide with over 2 MO-cm specific resistance. The operating pressures and flows of input water are also controlled with flow balancing scheme at a specified range. The operating temperature of components in the accelerator is sustained as tight as below ±0.1 deg C to minimize the influence of temperature fluctuation on the beam energy and stability. Although the PLS cooling systems were initially installed with a high degree of flexibility to allow for easy maintenance, a number of system improvements have been employed to enhance operational reliability and to incorporate the newly...

  20. Alternative Muon Cooling Options based on Particle-Matter-Interaction for a Neutrino Factory

    CERN Document Server

    Stratakis, D; Alekou, A; Pasternak, J

    2013-01-01

    An ionization cooling channel is a tightly spaced lattice containing absorbers for reducing the momentum of the muon beam, rf cavities for restoring the momentum and strong solenoids for focusing the beam. Such a lattice is an essential feature of most designs for Neutrino Factories and Muon Colliders. Here, we explore three different approaches for designing ionization cooling channels based on periodic solenoidal focusing. Key parameters such as the engineering constraints arising from the length and separation between the solenoidal coils are systematically examined. In addition, we propose novel approaches for reducing the peak magnetic field inside the rf cavities, for example, by using bucked coils for focusing. Our lattice designs are numerically examined against two independent codes: The ICOOL and G4BL code. The performance of our proposed cooling channels is examined by implementing those to the front-end of a Neutrino Factory.

  1. Steady state thermal-hydraulic analyses of the MITICA cooling circuits

    Science.gov (United States)

    Zaupa, M.; Sartori, E.; Dalla Palma, M.; Fellin, F.; Marcuzzi, D.; Pavei, M.; Rizzolo, A.

    2016-02-01

    Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m2), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.

  2. Steady state thermal-hydraulic analyses of the MITICA cooling circuits

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Sartori, E.; Dalla Palma, M.; Fellin, F.; Marcuzzi, D.; Pavei, M.; Rizzolo, A. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-02-15

    Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m{sup 2}), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.

  3. Cool Stars and Space Weather

    CERN Document Server

    Vidotto, A A; Cameron, A C; Morin, J; Villadsen, J; Saar, S; Alvarado, J; Cohen, O; Holzwarth, V; Poppenhaeger, K; Reville, V

    2014-01-01

    Stellar flares, winds and coronal mass ejections form the space weather. They are signatures of the magnetic activity of cool stars and, since activity varies with age, mass and rotation, the space weather that extra-solar planets experience can be very different from the one encountered by the solar system planets. How do stellar activity and magnetism influence the space weather of exoplanets orbiting main-sequence stars? How do the environments surrounding exoplanets differ from those around the planets in our own solar system? How can the detailed knowledge acquired by the solar system community be applied in exoplanetary systems? How does space weather affect habitability? These were questions that were addressed in the splinter session "Cool stars and Space Weather", that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In this paper, we present a summary of the contributions made to this session.

  4. Beam Test of a High Pressure Cavity for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Jansson, A.; Moretti, A.; Tollestrup, A.; Yonehara, K.; /Fermilab; Kurup, A.; /Imperial Coll., London

    2010-05-01

    To demonstrate the feasibility of a high pressure RF cavity for use in the cooling channel of a muon collider, an experimental setup that utilizes 400-MeV Fermilab linac proton beam has been developed. In this paper, we describe the beam diagnostics and the collimator system for the experiment, and report the initial results of the beam commissioning. The transient response of the cavity to the beam is measured by the electric and magnetic pickup probes, and the beam-gas interaction is monitored by the optical diagnostic system composed of a spectrometer and two PMTs.

  5. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    Science.gov (United States)

    Rathod, K. D.; Singh, P. K.; Natarajan, Vasant

    2014-09-01

    We demonstrate generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman Slower. They are then subjected to a pair of molasses beams inclined at $45^\\circ$ with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate selective deflection of the bosonic isotope $^{174}$Yb, and the fermionic isotope $^{171}$Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  6. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    Indian Academy of Sciences (India)

    K D Rathod; P K Singh; Vasant Natarajan

    2014-09-01

    We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45° with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope 174Yb and the fermionic isotope 171Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  7. The effect of pre-cooling intensity on cooling efficiency and exercise performance

    NARCIS (Netherlands)

    Bogerd, N.; Perret, C.; Bogerd, C.P.; Rossi, R.M.; Daanen, H.A.M.

    2010-01-01

    Although pre-cooling is known to enhance exercise performance, the optimal cooling intensity is unknown. We hypothesized that mild cooling opposed to strong cooling circumvents skin vasoconstriction and thermogenesis, and thus improves cooling efficiency reflected in improved time to exhaustion. Eig

  8. Numerical simulation of crystalline ion beams in storage ring

    Science.gov (United States)

    Meshkov, I.; Möhl, D.; Katayama, T.; Sidorin, A.; Smirnov, A.; Syresin, E.; Trubnikov, G.; Tsutsui, H.

    2004-10-01

    The use of crystalline ion beams can increase luminosity in the collider and in experiments with targets for investigation of rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M (Proceedings of the Fourth All Union Conference on Charged Particle Accelerators, Vol. 2, Nauka, Moscow, 1975 (in Russian); Part. Accel. 7 (1976) 197; At. Energy 40 (1976) 49; Preprint CERN/PS/AA 79-41, Geneva, 1979) (Novosibirsk), ESR (Phys. Rev. Lett. 77 (1996) 3803) and SIS (Proceedings of EPAC'2000, 2000) (Darmstadt), CRYRING (Proceedings of PAC'2001, 2001) (Stockholm) and PALLAS (Proceedings of the Conference on Applications of Accelerators in Research and Industry, AIP Conference Proceedings, p. 576, in preparation) (München). New criteria of the beam orderliness are derived and verified with a new program code. Molecular dynamics technique is inserted in BETACOOL program (Proceedings of Beam Cooling and Related Topics, Bad Honnef, Germany, 2001) and used for numerical simulation of crystalline beams. The sudden reduction of momentum spread in the ESR experiment is described with this code. The simulation shows a good agreement with the experimental results. The code has then been used to calculate characteristics of the ordered state of ion beams for the MUSES Ion Ring (IR) (MUSES Conceptual Design Report, RIKEN, Japan, 2001) in collider mode. A new strategy of the cooling process is proposed which permits to increase significantly the linear density of the ordered ion beam and thereby the luminosity of electron-ion colliding experiments.

  9. The Heidelberg CSR: Stored Ion Beams in a Cryogenic Environment

    Science.gov (United States)

    Wolf, A.; von Hahn, R.; Grieser, M.; Orlov, D. A.; Fadil, H.; Welsch, C. P.; Andrianarijaona, V.; Diehl, A.; Schröter, C. D.; Crespo López-Urrutia, J. R.; Rappaport, M.; Urbain, X.; Weber, T.; Mallinger, V.; Haberstroh, Ch.; Quack, H.; Schwalm, D.; Ullrich, J.; Zajfman, D.

    2006-03-01

    A cryogenic electrostatic ion storage ring CSR is under development at the Max-Planck Institute for Nuclear Physics in Heidelberg, Germany. Cooling of the ultrahigh vacuum chamber is envisaged to lead to extremely low pressures as demonstrated by cryogenic ion traps. The ring will apply electron cooling with electron beams of a few eV up to 200 eV. Through long storage times of 1000 s as well as through the low wall temperature, internal cooling of infrared-active molecular ions to their rotational ground state will be possible and their collisions with merged collinear beams of electrons and neutral atoms can be detected with high energy resolution. In addition storage of slow highly charged ions is foreseen. Using a fixed in-ring gas target and a reaction microscope, collisions of the stored ions at a spead of the order of the atomic unit can be kinematically reconstructed. The layout and the cryogenic concept are introduced.

  10. Coolant choice for the central beryllium pipe of the BESIII beam pipe

    Science.gov (United States)

    Zheng, Li-Fang; Wang, Li; Wu, Ping; Ji, Quan; Li, Xun-Feng; Liu, Jian-Ping

    2010-07-01

    In order to take away much more heat on the BESIII beam pipe to guarantee the normal particle detection, EDM-1 (oil No.1 for electric discharge machining), with good thermal and flow properties was selected as the candidate coolant for the central beryllium pipe of the BESIII beam pipe. Its cooling character was studied and dynamic corrosion experiment was undertaken to examine its corrosion on beryllium. The experiment results show that EDM-1 would corrode the beryllium 19.9 μm in the depth in 10 years, which is weak and can be neglected. Finite element simulation and experiment research were taken to check the cooling capacity of EDM-1. The results show that EDM-1 can meet the cooling requirement of the central beryllium pipe. Now EDM-1 is being used to cool the central beryllium pipe of the BESIII beam pipe.

  11. Electron lenses and cooling for the Fermilab Integrable Optics Test Accelerator

    CERN Document Server

    Stancari, G; Lebedev, V; Nagaitsev, S; Prebys, E; Valishev, A

    2015-01-01

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whet...

  12. Beam-Profile Instrumentation for a Beam-Halo Measurement Overall Description, Operation, and Beam Data

    CERN Document Server

    Gilpatrick, J D; Day, L; Kerstiens, D; Stettler, M; Valdiviez, R

    2001-01-01

    The halo experiment presently being conducted at the Low Energy Demonstration Accelerator (LEDA) at Los Alamos National Laboratory (LANL) has specific instruments that acquire horizontally and vertically projected particle-density beam distributions out to greater than 105:1 dynamic range. We measure the core of the distributions using traditional wire scanners, and the tails of the distribution using water-cooled graphite scraping devices. The wire scanner and halo scrapers are mounted on the same moving frame whose location is controlled with stepper motors. A sequence within the Experimental Physics and Industrial Control System (EPICS) software communicates with a National Instrument LabVIEW virtual instrument to control the movement and location of the scanner/scraper assembly. Secondary electrons from the wire scanner 33 μm carbon wire and protons impinging on the scraper are both detected with a lossy-integrator electronic circuit. Algorithms implemented within EPICS and in Research Systems Interactiv...

  13. Aspects of Cooling at the TRI$\\mu$P Facility

    CERN Document Server

    Willmann, L; Dammalapati, U; De, S; Dendooven, P; Dermois, O; Jungmann, Klaus; Mol, A; Onderwater, Gerco; Rogachevskiy, A; Sohani, M; Traykov, E; Wilschut, H W

    2006-01-01

    The Tri$\\mu$P facility at KVI is dedicated to provide short lived radioactive isotopes at low kinetic energies to users. It comprised different cooling schemes for a variety of energy ranges, from GeV down to the neV scale. The isotopes are produced using beam of the AGOR cyclotron at KVI. They are separated from the primary beam by a magnetic separator. A crucial part of such a facility is the ability to stop and extract isotopes into a low energy beamline which guides them to the experiment. In particular we are investigating stopping in matter and buffer gases. After the extraction the isotopes can be stored in neutral atoms or ion traps for experiments. Our research includes precision studies of nuclear $\\beta$-decay through $\\beta$-$\

  14. Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond

    Science.gov (United States)

    Kepesidis, K. V.; Lemonde, M.-A.; Norambuena, A.; Maze, J. R.; Rabl, P.

    2016-12-01

    We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.

  15. Investigation of Planar Pick-up and Kicker Electrodes for Stochastic Cooling

    CERN Document Server

    Balk, M; Weiland, T; Nolden, F; Caspers, Friedhelm

    2002-01-01

    The success of stochastic cooling crucially depends on the interaction between the beam and high frequency devices for detection (pick-up electrodes) and deflection (kicker electrodes). This contribution shows the theoretical investigation of a planar electrode to be used for stochastic cooling of secondary particles with a beta of 0.83. The coupling to the beam is realised by a slot line. Transition networks are added to extract the signal. The detailed investigation is performed via a numerical electromagnetic field analysis. The longitudinal kick of the deflectors is calculated as a function of the beam position and scaled to the applied voltage. According to the Panofsky-Wenzel theorem the transverse kick is obtained simultaneously. The electromagnetic properties of the discussed electrode are compared to existing ones as currently in use in the ESR storage ring (GSI, Darmstadt).

  16. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  17. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  18. Molecular beam brightening by shock-wave suppression

    CERN Document Server

    Segev, Yair; Akerman, Nitzan; Shagam, Yuval; Luski, Alon; Karpov, Michael; Narevicius, Julia; Narevicius, Edvardas

    2016-01-01

    Supersonic beams are a prevalent source of cold molecules utilized in the study of chemical reactions, atom interferometry, gas-surface interactions, precision spectroscopy, molecular cooling and more. The triumph of this method emanates from the high densities produced in relation to other methods, however beam density remains fundamentally limited by interference with shock waves reflected from collimating surfaces. Here we show experimentally that this shock interaction can be reduced or even eliminated by cryo-cooling the interacting surface. An increase in beam density of nearly an order of magnitude was measured at the lowest surface temperature, with no further fundamental limitation reached. Visualization of the shock waves by plasma discharge and reproduction with direct simulation Monte Carlo calculations both indicate that the suppression of the shock structure is partially caused by lowering the momentum flux of reflected particles, and significantly enhanced by the adsorption of particles to the ...

  19. Production of the heat exchanger tubes, which will cool down the LHC magnets, and of the cold bore tubes, in which the proton beams will circulate, is due to be completed around the end of 2004. These essential components of the LHC magnets are receiving their finishing touches at CERN : cold bore tubes

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Insulation of the cold bore tubes in which the LHC beams will circulate takes place in Building 927. In the background, Bruno Meunier checks the wrapping machine while, in the foreground, Olivier Vasseur removes the polyester wrapping that covers the tube's insulating layers.

  20. A comparative study on showerhead cooling performance

    Energy Technology Data Exchange (ETDEWEB)

    Falcoz, C.; Ott, P. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratoire de Thermique Appliquee et de Turbomachines (LTT), 1015 Lausanne (Switzerland); Weigand, B. [Institut fuer Thermodynamik der Luft- und Raumfahrt (ITLR), Stuttgart University, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    2006-04-15

    In modern gas turbines, the turbine airfoil leading edge is currently protected from the hot gas by specific film cooling schemes, so called showerhead cooling. The present paper shows a numerical study of different showerhead cooling geometries. The 3D finite element program ABAQUS as well as a 2D finite element program have been employed to predict the showerhead cooling performance. In the numerical calculations, the different cooling effects and their contribution to the total showerhead cooling performance have been investigated separately. From the numerical calculations a simple method has been derived which enables the prediction of the performance of a 3D showerhead cooling scheme by simple 2D computations. Experimental investigations on showerhead cooling have been presented in a companion paper [C. Falcoz, B. Weigand, P. Ott, Experimental investigations on showerhead cooling on a blunt body. Int. J. Heat Mass Transfer, in press. r publication]. (author)

  1. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    CERN Document Server

    Chanu, Sapam Ranjita; Natarajan, Vasant

    2016-01-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  2. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  3. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  4. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    . To prevent wet discomfort, the T-shirt was made of a polyester material having a water-repellent silicon coating on the inner surface. The chest, front upper arms, and nape of the neck were adopted as the cooling areas of the human body. We conducted human subject experiments in an office with air...

  5. Solar-powered cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  6. Passive Cooling of Body Armor

    Science.gov (United States)

    Holtz, Ronald; Matic, Peter; Mott, David

    2013-03-01

    Warfighter performance can be adversely affected by heat load and weight of equipment. Current tactical vest designs are good insulators and lack ventilation, thus do not provide effective management of metabolic heat generated. NRL has undertaken a systematic study of tactical vest thermal management, leading to physics-based strategies that provide improved cooling without undesirable consequences such as added weight, added electrical power requirements, or compromised protection. The approach is based on evaporative cooling of sweat produced by the wearer of the vest, in an air flow provided by ambient wind or ambulatory motion of the wearer. Using an approach including thermodynamic analysis, computational fluid dynamics modeling, air flow measurements of model ventilated vest architectures, and studies of the influence of fabric aerodynamic drag characteristics, materials and geometry were identified that optimize passive cooling of tactical vests. Specific architectural features of the vest design allow for optimal ventilation patterns, and selection of fabrics for vest construction optimize evaporation rates while reducing air flow resistance. Cooling rates consistent with the theoretical and modeling predictions were verified experimentally for 3D mockups.

  7. Garment Would Provide Variable Cooling

    Science.gov (United States)

    Buckley, Theresa M.

    1991-01-01

    Conceptual protective garment includes tubes containing pumped cooling slurry. Overall coefficient for transfer of heat from wearer to slurry depends on tube-to-skin, through-the-wall-of-the-tube, and tube-to-slurry coefficients. Concept applicable to suits worn when cleaning up spilled chemicals or fighting fires.

  8. System for cooling a cabinet

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a cooling system comprising an active magnetic regenerator having a cold side and a hot side, a hot side heat exchanger connected to the hot side of the magnetic regenerator, one or more cold side heat exchangers, and a cold store reservoir comprising a volume...

  9. Cool Runnings For String 2

    CERN Multimedia

    2001-01-01

    String 2 is a series of superconducting magnets that are prototypes of those which will be installed in the LHC. It was cooled down to 1.9 Kelvin on September 14th. On Thursday last week, the dipoles of String 2 were successfully taken to nominal current, 11850 A.

  10. A cool present for LEIR

    CERN Multimedia

    2005-01-01

    LEIR (Low Energy Ion Ring), which will supply lead ions to the LHC experiments, has taken delivery of one of its key components, its electron cooling system. From left to right, Gérard Tranquille, Virginia Prieto and Roland Sautier, in charge of the electron cooling system for LEIR at CERN, and Christian Lacroix, in charge of installation for the LEIR machine. On 16 December, the day before CERN's annual closure, the LEIR teams received a rather impressive Christmas present. The "parcel" from Russia, measuring 7 metres in length and 4 metres in height, weighed no less than 20 tonnes! The component will, in fact, be one of the key elements of the future LEIR, namely its electron cooling system. LEIR is one of the links in the injector chain that will supply lead ions to the LHC experiments, in particular ALICE (see Bulletin No. 28/2004 of 5 July 2004), within the framework of the I-LHC Project. The electron cooling system is designed to reduce and standardise transverse ion velocity. This focuses the bea...

  11. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  12. An Experimental Investigation on Transpiration Cooling Part II: Comparison of Cooling Methods and Media

    OpenAIRE

    Wang J; Messner J.; Stetter H.

    2004-01-01

    This article attempts to provide a cooling performance comparison of various mass transfer cooling methods and different cooling media through two experiments. In the first experiment, pressurized air was used as a cooling medium and two different circular tubes were used as specimens. One is made of impermeable solid material with four rows of discrete holes to simulate film cooling, and the other consists of sintered porous material to create a porous transpiration cooling effect. The...

  13. External beam IBA set-up with large-area thin Si3N4 window

    Science.gov (United States)

    Palonen, V.; Mizohata, K.; Nissinen, T.; Räisänen, J.

    2016-08-01

    A compact external beam setup has been constructed for Particle Induced X-ray Emission (PIXE) and Nuclear Reaction (NRA) analyses. The key issue in the design has been to obtain a wide beam spot size with maximized beam current utilizing a thin Si3N4 exit window. The employed specific exit window support enables use of foils with thickness of 100 nm for a beam spot size of 4 mm in diameter. The durable thin foil and the large beam spot size will be especially important for the complementary external beam NRA measurements. The path between the exit foil and sample is filled with flowing helium to minimize radiation hazard as well as energy loss and straggling, and to cool the samples. For sample-independent beam current monitoring and irradiation fluence measurement, indirect charge integration, based on secondary electron current measurement from a beam profilometer, is utilized.

  14. Muon Tracking Studies in a Skew Parametric Resonance Ionization Cooling Channel

    Energy Technology Data Exchange (ETDEWEB)

    Sy, Amy [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Afanaciev, Andre [George Washington Univ., Washington, DC (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Johnson, Rolland [Muons, Inc., Batavia, IL (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    Skew Parametric-resonance Ionization Cooling (SPIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. A first practical implementation of the magnetic field components required in the SPIC channel is modeled in MADX. Dynamic features of the coupled correlated optics with and without induced parametric resonance are presented and discussed.

  15. Effect of transverse electron velocities on the longitudinal cooling force in the Fermilab electron cooler

    CERN Document Server

    Khilkevich, Andrei; Shemyakin, Alexander V

    2012-01-01

    In Fermilab's electron cooler, a 0.1A, 4.3MeV DC electron beam propagates through the 20 m cooling section, which is immersed in a weak longitudinal magnetic field. A proper adjustment of 200 dipole coils, installed in the cooling section for correction of the magnetic field imperfections, can create a helix-like trajectory with the wavelength of 1-10 m. The longitudinal cooling force is measured in the presence of such helixes at different wavelengths and amplitudes. The results are compared with a model calculating the cooling force as a sum of collisions with small impact parameters, where the helical nature of the coherent angle is ignored, and far collisions, where the effect of the coherent motion is neglected. A qualitative agreement is found.

  16. Experimental study of high-temperature superconductor shield for electron cooling system

    Science.gov (United States)

    Smirnov, A.; Dorofeev, G.; Drobin, V.; Kulikov, E.; Malinovski, H.

    2016-12-01

    The NICA project includes a system of electron cooling for charged particle beams for total ion energy of 4.5 GeV/n. To achieve the required cooling time, the magnetic field homogeneity in the cooling section should be at least 10-5 for a solenoid length in the cooling system of about 6 m. The cost of such solenoid, however, is very high due to the complexity of high-precision winding. The application of the superconducting shield could help to resolve this problem. In this study we present the results of an experimental investigation of the prototype of the shield manufactured from high-temperature superconductor (HTS) tapes. The measurements were performed at different quasistationary operating conditions. The requirements for the HTS shield and solenoid parameters are formulated.

  17. Proposal of cooling plant, for SPIDER and MITICA experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fellin, F., E-mail: francesco.fellin@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Marcuzzi, D.; Zaccaria, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Agarici, G. [Fusion for Energy, ITER Department, Heating and CD, Josep Pla, 2 Torres Diagonal Litoral B3 E- 08019, Barcelona (Spain)

    2011-10-15

    This paper presents a proposal of Cooling Plant for two new Neutral Beam experiments called MITICA and SPIDER to be realized in Padova (Italy). A large amount of Power (up to 70 MW) has to be removed from in-vessel components and auxiliary systems belonging to these two experiments. Different experimental scenarios (pulse duration ranging from few seconds up to 3600 s), requirements for operating temperature, coolant quality and voltage holding are taken into account in this conceptual design proposal. To reduce the radiological risks due to possible presence of activated corrosion products (ACP) in some water cooled components suitable design choices have been analysed. This work was carried out by considering carefully a lot of different aspects like operability, standardization of components, maintenance and repair, optimization of the installed power and the overall costs of the plant. Experiment components with similar requirements are grouped in the same primary circuits where fine temperature regulation, water quality monitoring and calorimetric measurements are the main characteristics. Each primary circuit (PC) is connected to secondary circuits which allow thermal dissipation and, in some cases, also component preheating. Secondary circuits are connected to two large basins the water of which is cooled down by active cooling rejection system such as cooling towers and air coolers. In this way the requirement for impulsive heat dissipation is fulfilled by the water basins allowing to install a less powerful active rejection system and so reducing the total costs. A large effort was done to guarantee good plant integration with the Experiment Main Hall (in which MITICA and SPIDER are located) and other technical supplies, buildings and areas. Other special requirements for stand-alone systems like Draining and Drying System, Pressure Test System and Chemical Control System are also part of this work.

  18. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  19. Multi-pass cooling for turbine airfoils

    Science.gov (United States)

    Liang, George

    2011-06-28

    An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.

  20. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  1. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  2. An Electron Beam Profile Instrument Based on FBGs

    Directory of Open Access Journals (Sweden)

    Dan Sporea

    2014-08-01

    Full Text Available Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application.

  3. Empirical model for controlling beam-beam effects in ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    Parzen, G

    1980-01-01

    The beam-beam interaction may limit the beam intensity in ISABELLE. Although considerable progress has been made in understanding the beam-beam interaction, there appears to be no reliable method at present for computing the effects of the beam-beam interaction. The steps taken at ISABELLE to limit beam-beam effects are based largely on the experience accumulated at the ISR. At the ISR, the beam-beam effects do not appear to be large, and the beam intensity at the ISR does not appear to be limited by beam-beam effects. The beam-beam effects may be much stronger in ISABELLE because of factors like higher intensity and stronger non-linearities.

  4. Beam Dynamics for ARIA

    CERN Document Server

    Ekdahl, Carl

    2015-01-01

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  5. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  6. Electron Beam Ion Sources

    OpenAIRE

    Zschornacka, G.; Schmidt, M.; Thorn, A.

    2014-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviole...

  7. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  8. Solar-driven high temperature radiant cooling

    Institute of Scientific and Technical Information of China (English)

    SONG ZhaoPei; WANG RuZhu; ZHAI XiaoQiang

    2009-01-01

    Solar energy is widely used as one of the most important renewable energy. In addition to the growing applications of solar PV and solar water heater, solar cooling is also considered very valuable and the related researches are developing fast because of the synchronism between solar irradiance and building cooling load. Current studies mainly focus on the high temperature solar collector technique and heat-driven cooling technique, while little concern has been paid to the transport process of cooling power. In this paper, the high temperature radiant cooling is studied as an alternative way for transporting cooling power, and the performance of the combination of radiant ceiling and solar cooling is also studied. From simulation and theoretical analysis results, high temperature radiant cooling terminal shows better cooling power transportation ability against conventional air-conditioning terminal, and its thermal comfort is improved. Experiment results indicate that radiant cooling can enhance the chiller's COP (Coefficient of Performance) by 17% and cooling power regeneration by 50%.According to analysis in this paper, high temperature radiant cooling is proved to be suitable for solar cooling system, and out work can serve as a reference for later system design and promotion.

  9. Beam injection into RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  10. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  11. Thermal behaviour analysis on ITER component cooling water system loop 2B

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin, E-mail: guobin@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Fu, Peng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Dell’Orco, Giovanni; Liliana, Teodoros; Tao, Jun [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Yang, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-11-15

    Highlights: • Thermal hydraulic analysis model has been developed to perform thermal analysis on the component cooling water system loop 2B. • The cooling water temperature profile at client inlet and outlet during one cycle of the most demanding plasma operation scenario was obtained. • Operation behaviour of the main heat exchanger for CCWS-2B has been depicted. - Abstract: ITER cooling water system is composed by several cooling loops, the primary heat transfer loops that form the Tokamak Cooling Water System (TCWS), the secondary heat transfer loops that form the Component Cooling Water System (CCWS) and the Chilled Water System (CHWS) and a tertiary heat transfer loop which is the Heat Rejection System (HRS). The CCWS is further divided into CCWS-1, CCWS-2A, CCWS-2B, CCWS-2C, CCWS-2D depending on the water chemistry needs of clients and wetted area material. The component cooling water system loop 2B (CCWS-2B) has the function to remove heat load from coil power supply component, Neutral Beam Injectors (NBIs) system component and diagnostic system which are located in different buildings. As the total number of the client connections for the loop is a few hundreds, simplified thermal hydraulic analysis model has been developed to perform thermal analysis on the component cooling water system loop 2B. The curve of the cooling water temperature at client inlet and outlet during one cycle of the most demanding plasma operation scenario was obtained and the cooling water flow rate can meet the thermal removal requirement of client was also confirmed from this analysis. In addition, operation behaviour of the main heat exchanger for CCWS-2B in this thermal analysis was depicted for main heat exchanger selection purposes. This study has been carried out with the AFT Fathom code.

  12. Cooling power of transverse thermoelectrics for cryogenic cooling

    Science.gov (United States)

    Tang, Yang; Ma, Ming; Grayson, M.

    2016-05-01

    Transverse Peltier coolers have been experimentally and theoretically studied since 1960s due to their capability of achieving cooling in a single-leg geometry. Recently proposed pxn-type transverse thermoelectrics reveal the possibility of intrinsic or undoped transverse coolers that can, in principle, function at cryogenic temperatures, which has drawn more attention to the performance of such transverse coolers. However, unlike longitudinal thermoelectrics, the equations for transverse thermoelectrics cannot be solved analytically. In this study, we therefore calculate the thermoelectric transport in transverse coolers numerically, and introduce a normalized notation, which reduces the independent parameters in the governing equations to a normalized electric field E* and a hot-side transverse figure of merit zTh, only. A numerical study of the maximum cooling temperature difference and cooling power reveals the superior performance of transverse thermoelectric coolers compared to longitudinal coolers with the same figure of merit, providing another motivation in the search for new transverse thermoelectric materials with large figure of merit.

  13. Sympathetic cooling of molecules with laser-cooled atoms

    Science.gov (United States)

    Hudson, Eric

    2014-05-01

    Cooling molecules through collisions with laser-cooled atoms is an attractive route to ultracold, ground state molecules. The technique is simple, applicable to a wide class of molecules, and does not require molecule specific laser systems. Particularly suited to this technique are charged molecules, which can be trapped indefinitely, even at room temperature, and undergo strong, short-ranged collisions with ultracold atoms. In this talk, I will focus on recent efforts to use the combination of a magneto-optical trap (MOT) and an ion trap, dubbed the MOTion trap, to produce cold, ground state diatomic charged molecules. The low-energy internal structure of these diatomic molecules, e.g. the electric dipole moment and vibrational, rotational, and Ω-doublet levels, presents a host of opportunities for advances in quantum simulation, precision measurement, cold chemistry, and quantum information. Excitingly, recent proof-of-principle experiments have demonstrated that the MOTion trap is extremely efficient at cooling the vibrational motion of molecular ions. Supported by the ARO and NSF.

  14. Halo formation from mismatched beam-beam interactions

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2003-05-23

    In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.

  15. High temperature cooling system and method

    Science.gov (United States)

    Loewen, Eric P.

    2006-12-12

    A method for cooling a heat source, a method for preventing chemical interaction between a vessel and a cooling composition therein, and a cooling system. The method for cooling employs a containment vessel with an oxidizable interior wall. The interior wall is oxidized to form an oxide barrier layer thereon, the cooling composition is monitored for excess oxidizing agent, and a reducing agent is provided to eliminate excess oxidation. The method for preventing chemical interaction between a vessel and a cooling composition involves introducing a sufficient quantity of a reactant which is reactive with the vessel in order to produce a barrier layer therein that is non-reactive with the cooling composition. The cooling system includes a containment vessel with oxidizing agent and reducing agent delivery conveyances and a monitor of oxidation and reduction states so that proper maintenance of a vessel wall oxidation layer occurs.

  16. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  17. Lattice Regenerative Cooling Methods (LRCM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate a novel cooling concept called Lattice Regenerative Cooling Methods (LRCM) for future high thrust in-space propulsion...

  18. Theoretical analysis of the performance of different cooling strategies with the concept of cool exergy

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air for the v......The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air......-water, etc.) and indoor terminal units, only with a minimized demand. The water-based floor cooling system performed better than the air-based cooling system; when an air-to-water heat pump was used as the cooling source, the required exergy input was 28% smaller for the floor cooling system. The auxiliary...... exergy input of air-based systems was significantly larger than the water-based systems. The use of available cool exergy in the crawl-space resulted in 54% and 29% smaller exergy input to the power plant for the air-based and water-based cooling systems, respectively. For floor cooling, the exergy input...

  19. Laser cooling, slowing and trapping of a diatomic molecule

    Science.gov (United States)

    Barry, John

    2015-05-01

    Roughly three decades ago, laser cooling and trapping succeeded in producing ultracold ions and atoms, sparking a revolution in atomic physics and subsequently becoming workhorse techniques within the field. These techniques require a ``cycling transition,'' where the particle of interest is repeatedly driven by a photon into an excited electronic state and quickly decays back to the initial ground state, allowing the process to repeat. Because photon absorption transfers momentum to the particle, application of force is possible. Adjusting the geometry and frequency of the applied photons allows creation of a damping (cooling) force. Further addition of a quadrupole magnetic field allows for a restoring (trapping) force. Prior to this thesis, straightforward extension of these methods to molecules was considered a practical impossibility; electronic decays in molecules tend to populate multiple rotational and vibrational states, preventing creation of a cycling transition. While a variety of ultracold molecular species is desirable to satisfy a range of applications, the only other production method is limited to species where the constituent atoms are themselves amenable to laser cooling. For other species, a different technique is required. Here we outline the methods and experiments in which laser cooling and trapping were first applied to molecules. By careful molecule choice, by using a cooling transition that exploits selection rules, and by counteracting dark states with a magnetic field, we create a cycling transition for the diatomic molecule strontium monofluoride (SrF). We show the power of this technique by demonstrating Doppler and sub-Doppler cooling in 1-D, radiation pressure slowing and stopping of a molecular beam, and finally a 3-D magneto-optical trap (MOT). Our MOT produces the coldest trapped sample of directly-cooled molecules to date, with a temperature of T ~ 2.5 mK. This method is viable for several classes of diatomic molecules with a

  20. Cooling of highly charged ions in a Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, L

    2000-03-31

    Highly charged ions are extracted from an electron beam ion trap and guided to Retrap, a cryogenic Penning trap, where they are merged with laser cooled Be{sup +} ions. The Be{sup +} ions act as a coolant for the hot highly charged ions and their temperature is dropped by about 8 orders of magnitude in a few seconds. Such cold highly charged ions form a strongly coupled nonneutral plasma exhibiting, under such conditions, the aggregation of clusters and crystals. Given the right mixture, these plasmas can be studied as analogues of high density plasmas like white dwarf interiors, and potentially can lead to the development of cold highly charged ion beams for applications in nanotechnology. Due to the virtually non existent Doppler broadening, spectroscopy on highly charged ions can be performed to an unprecedented precision. The density and the temperature of the Be{sup +} plasma were measured and highly charged ions were sympathetically cooled to similar temperatures. Molecular dynamics simulations confirmed the shape, temperature and density of the highly charged ions. Ordered structures were observed in the simulations.

  1. Model of Flux Trapping in Cooling Down Process

    CERN Document Server

    Kubo, Takayuki

    2015-01-01

    The flux trapping that occurs in the process of cooling down of the superconducting cavity is studied. The critical fields $B_{c2}$ and $B_{c1}$ depend on a position when a material temperature is not uniform. In a region with $T\\simeq T_c$, $B_{c2}$ and $B_{c1}$ are strongly suppressed and can be smaller than the ambient magnetic field, $B_a$. A region with $B_{c2}\\le B_a$ is normal conducting, that with $B_{c1}\\le B_a B_a$ is in the Meissner state. As a material is cooled down, these three domains including the vortex state domain sweep and pass through the material. In this process, vortices contained in the vortex state domain are trapped by pinning centers distributing in the material. A number of trapped fluxes can be evaluated by using the analogy with the beam-target collision event, where beams and a target correspond to pinning centers and the vortex state domain, respectively. We find a number of trapped fluxes and thus the residual resistance are proportional to the ambient magnetic field and the...

  2. Information technology equipment cooling method

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  3. Cooling Augmentation with Microchanneled Structures

    Institute of Scientific and Technical Information of China (English)

    X.F.Peng; B.X.Wang

    1993-01-01

    Experiments were conducted to investigate the heat transfer characteristics and cooling performance of subcooled liquid,water,flowing through rectangular cross-section microchanneled structures machined on a stainless steel plate.Heat transfer or flow mode stransition was observed when the heating rate or wall temperature was increased.This transition was found to be suggestively induced by the variation in liquid thermophysical properties due to the significant rise of liquid temperature in the microstructures.The influence of such parameters as liquid velocity,subcooling,property variation,and microchannel geometric configuration on the heat transfer behavior,cooling performance and the heat transfer and liquid flow mode transition were also investigated.The experiments indicated that both single-phase forced convection and flow boiling characteristics were quite different from those in normal-sized tubes and the heat transfer was obviously intensified.

  4. Cooling system for electronic components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  5. Cooling system for electronic components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  6. THE INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1977-01-01

    ICE was built during 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring (see 7405430). ICE was a proton and antiproton storage ring, built to verify the validity of stochastic and electron cooling for the antiproton project to be launched in 1978. More on the ICE experimental programme with 7802099. See also 7809081, 7908242.

  7. Renewables for Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This timely report examines the technologies, current markets and relative costs for heat and cold production using biomass, geothermal and solar-assisted systems. It evaluates a range of national case studies and relevant policies. Should the successful and more cost-effective policies be implemented by other countries, then the relatively untapped economic potential of renewable energy heating and cooling systems could be better realised, resulting in potential doubling of the present market within the next few years.

  8. Ozone Treatment For Cooling Towers

    Science.gov (United States)

    Blackwelder, Rick; Baldwin, Leroy V.; Feeney, Ellen S.

    1990-01-01

    Report presents results of study of cooling tower in which water treated with ozone instead of usual chemical agents. Bacteria and scale reduced without pollution and at low cost. Operating and maintenance costs with treatment about 30 percent of those of treatment by other chemicals. Corrosion rates no greater than with other chemicals. Advantage of ozone, even though poisonous, quickly detected by smell in very low concentrations.

  9. 46 CFR 182.420 - Engine cooling.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and...

  10. 46 CFR 119.420 - Engine cooling.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine...

  11. 40 CFR 89.327 - Charge cooling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Charge cooling. 89.327 Section 89.327....327 Charge cooling. For engines with an air-to-air intercooler (or any other low temperature charge air cooling device) between the turbocharger compressor and the intake manifold, follow SAE...

  12. 24 CFR 3280.714 - Appliances, cooling.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Appliances, cooling. 3280.714... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Heating, Cooling and Fuel Burning Systems § 3280.714 Appliances, cooling. (a) Every air conditioning unit or a combination air...

  13. Cooling of suspended nanostructures with tunnel junctions

    OpenAIRE

    Koppinen, P. J.; Maasilta, I. J.

    2009-01-01

    We have investigated electronic cooling of suspended nanowires with SINIS tunnel junction coolers. The suspended samples consist of a free standing nanowire suspended by four narrow ($\\sim$ 200 nm) bridges. We have compared two different cooler designs for cooling the suspended nanowire. We demonstrate that cooling of the nanowire is possible with a proper SINIS cooler design.

  14. Additive Manufacturing of Ti-6Al-4V Using a Pulsed Laser Beam

    Science.gov (United States)

    Nassar, Abdalla R.; Reutzel, Edward W.

    2015-06-01

    Microstructural development in directed-energy additive manufacturing of metal components is a complex process that produces parts with materials whose microstructure and properties are influenced by multiple heating and cooling cycles. Much work has been undertaken to correlate microstructural development with processing conditions, such as laser power and processing speed. Here, the microstructure and indentation hardness of a Ti-6Al-4V component processed with a pulsing laser beam and a continuous wave (CW) laser beam are investigated. It is found that the pulsed-beam build showed no statistically significant variation in lath width or indentation hardness with build height while the build deposited with the CW beam showed a statistically significant decrease in hardness and an increase in lath width near the middle of the build. The reduction in variability with beam pulsing is attributed to rapid cooling rates within the melt pool, a greater degree of melt pool stirring, and reduced aging during part build-up.

  15. Non-Gaussian beam dynamics in low energy antiproton storage rings

    Science.gov (United States)

    Resta-López, J.; Hunt, J. R.; Welsch, C. P.

    2016-10-01

    In low energy antiproton facilities, where electron cooling is fundamental, the cooling forces together with heating phenomena causing emittance blow-up, such as Intra Beam Scattering (IBS), result in highly non-Gaussian beam distributions. In these cases, a precise simulation of IBS effects is essential to realistically evaluate the long term beam evolution, taking into account the non-Gaussian characteristics of the beam. Here, we analyse the beam dynamics in the Extra Low ENergy Antiproton ring (ELENA), which is a new small synchrotron currently being constructed at CERN to decelerate antiprotons to energies as low as 100 keV. Simulations are performed using the code BETACOOL, comparing different models of IBS.

  16. Disk Instabilities and Cooling Fronts

    CERN Document Server

    Vishniac, E T

    1998-01-01

    Accretion disk outbursts, and their subsequent decline, offer a unique opportunity to constrain the physics of angular momentum transport in hot accretion disks. Recent work has centered on the claim by Cannizzo et al. that the exponential decay of luminosity following an outburst in black hole accretion disk systems is only consistent with a particular form for the dimensionless viscosity, $\\alpha=35(c_s/r\\Omega)^{3/2}$. This result can be understood in terms of a simple model of the evolution of cooling fronts in accretion disks. In particular, the cooling front speed during decline is $\\sim cooling front, and the exact value of $n$ depends on the hot state opacity, (although generally $n\\approx 1/2$). Setting this speed proportional to $r$ constrains the functional form of $\\alpha$ in the hot phase of the disk, which sets it apart from previous arguments based on the relative durations of outburst and quiescence. However, it remains uncertain how well we know the exponent $n$. In addition, more work is nee...

  17. High Performance Torso Cooling Garment

    Science.gov (United States)

    Conger, Bruce; Makinen, Janice

    2016-01-01

    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  18. ELECTRON COOLING SIMULATION FOR ARBITRARY DISTRIBUTION OF ELECTRONS

    Energy Technology Data Exchange (ETDEWEB)

    SIDORIN,A.; SMIRNOV, A.; FEDOTOV, A.; BEN-ZVI, I.; KAYRAN, D.

    2007-09-10

    Typically, several approximations are being used in simulation of electron cooling process, for example, density distribution of electrons is calculated using an analytical expression and distribution in the velocity space is assumed to be Maxwellian in all degrees of freedom. However, in many applications, accurate description of the cooling process based on realistic distribution of electrons is very useful. This is especially true for a high-energy electron cooling system which requires bunched electron beam produced by an Energy Recovery Linac (Em). Such systems are proposed, for instance, for RHIC and electron - ion collider. To address unique features of the RHIC-I1 cooler, new algorithms were introduced in BETACOOL code which allow us to take into account local properties of electron distribution as well as calculate friction force for an arbitrary velocity distribution. Here, we describe these new numerical models. Results based on these numerical models are compared with typical approximations using electron distribution produced by simulations of electron bunch through ERL of RHIC-II cooler.

  19. Cooling of ions and antiprotons with magnetized electrons

    CERN Document Server

    Mollers, B; Walter, M; Zwicknagel, G; Carli, Christian; Nersisyan, H

    2004-01-01

    Electron cooling is a well-established method to improve the phase space quality of ion beams in storage rings. More recently antiprotons have been cooled in traps, first by electrons and then by positrons in order to produce antihydrogen atoms as simplest form of antimatter for CPT-tests. During these cooling processes the light particles are guided by strong external magnetic fields which imposes a challenge to the theoretical description. Within the binary collision model we treat the Coulomb interaction as second-order perturbation to the helix motion of the light particles and also by numerical simulations. In the complementary dielectric theory we calculate the polarization of the light particles by solving the nonlinear Vlasov-Poisson equation as well as linear response. It turns out that the linearization becomes dubious at low ion velocities. In the presence of a strong magnetic field the numerically expensive solution of the Vlasov-Poisson equation is the method of choice, alternatively one may empl...

  20. Laser cooling and slowing of CaF molecules

    Science.gov (United States)

    Truppe, Stefan; Williams, Hannah; Hambach, Moritz; Sauer, Ben; Hinds, Ed; Tarbutt, Mike

    2016-05-01

    We have developed a cold and bright source for CaF molecules and use laser radiation pressure to slow the molecules to within the capture velocity of a magneto-optical trap (MOT). Using laser ablation of Ca into a continuous flow of cryogenic Helium buffer gas mixed with SF6 we produce up to 1011 molecules per steradian per pulse in a single rotational state. The molecules move with a mean forward velocity of 160m/s and have a velocity spread of 80m/s. We then apply laser radiation pressure to the molecular beam to slow and cool the molecules. We form a quasi-closed laser-cooling cycle by using a main cooling laser to drive the B2Σ+ (v' = 0) - X2Σ+ (v'' = 0) transition and a single repump laser to address the A2Π1 / 2 (v' = 0) -X2Σ+ (v'' = 1) transition. Radio-frequency sidebands applied to both lasers address the hyperfine structure. By chirping the frequencies of both lasers to keep the decelerating molecules resonant with the light, we scatter more than 10000 photons and reduce the speed to below 50 m/s. We achieve a similar effect by broadening the linewidth of the laser to several hundred MHz. This ``white-light'' slowing is compared to the chirped slowing technique. We also present progress towards a MOT of CaF molecules.

  1. Refractive beam shapers for focused laser beams

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2016-09-01

    Focusing of laser radiation is most often used approach in various industrial micromachining applications like scribing, PCB drilling, and is important in scientific researches like laser heating in geophysics experiments with diamond anvil cells (DAC). Control of intensity distribution in focal spot is important task since optimum intensity profiles are rather flat-top, doughnut or "inverse-Gauss" than typical for lasers Gaussian profile. Because of high intensity of modern CW and pulsed lasers it is advisable to use refractive beam shaping optics with smooth optical surfaces providing high radiation resistance. Workable optical solutions can be built on the base of diffraction theory conclusion that flat-top intensity profile in focal plane of a lens is created when input beam has Airy-disk intensity distribution. It is suggested to apply refractive beam shapers converting, with minimum wavefront deformation, Gaussian profile of TEM00 beam to a beam with Airy disk intensity distribution, thereby optimizing conditions of interference near the focal plane of a lens after the beam shaper and providing flat-top, doughnut, "inverse-Gauss" profiles. This approach allows operation with CW and ultra-short pulse lasers, using F-theta lenses and objectives, mirror scanners, provides extended depth of field similar to Rayleigh length of comparable TEM00 beam, easy integration in industrial equipment, simple adjustment procedure and switching between profiles, telescope and collimator implementations. There will be considered design basics of beam shapers, analysis of profile behaviour near focal plane, examples of implementations in micromachining systems and experimental DAC setups, results of profile measurements and material processing.

  2. LHC Report: No beams but still busy

    CERN Multimedia

    Mike Lamont for the LHC Team

    2012-01-01

    The LHC finished with beams for 2011 on Wednesday 7 December after a pretty good year of operation. The cryogenics team has emptied the magnets of helium for the winter technical stop and a full maintenance programme has started. The LHC is running long operational years at present with only a few short technical stops during operation with beam. This leaves very little time for much-needed maintenance and upgrades. Thus, the hardware teams involved have to take full advantage of the time available during the winter stop.   The Engineering Department is planning and coordinating the maintenance and repair activities for the whole accelerator complex. The list of planned interventions is truly impressive! There is a lot of work that involves the essential technical infrastructure systems (electricity, cooling, ventilation). Cryogenics have established a full programme aimed at maintaining and improving their already good level of availability. Other systems undergoing maintenance include: vacu...

  3. LHC Report: No beams but still busy

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    The LHC finished with beams for 2011 on Wednesday 7 December after a pretty good year of operation. The cryogenics team has emptied the magnets of helium for the winter technical stop and a full maintenance programme has started. The LHC is running long operational years at present with only a few short technical stops during operation with beam. This leaves very little time for much-needed maintenance and upgrades. Thus, the hardware teams involved have to take full advantage of the time available during the winter stop.   The Engineering Department is planning and coordinating the maintenance and repair activities for the whole accelerator complex. The list of planned interventions is truly impressive! There is a lot of work that involves the essential technical infrastructure systems (electricity, cooling, ventilation). Cryogenics have established a full programme aimed at maintaining and improving their already good level of availability. Other systems undergoing maintenance include: vacu...

  4. Propagation Limits of High Pressure Cool Flames

    Science.gov (United States)

    Ju, Yiguang

    2016-11-01

    The flame speeds and propagation limits of premixed cool flames at elevated pressures with radiative heat loss are numerically modelled using dimethyl ether mixtures. The primary focus is paid on the effects of pressure, mixture dilution, flame size, and heat loss on cool flame propagation. The results showed that cool flames exist on both fuel lean and fuel rich sides and thus dramatically extend the lean and rich flammability limits. There exist three different flame regimes, hot flame, cool flame, and double flame. A new flame flammability diagram including both cool flames and hot flames is obtained at elevated pressure. The results show that pressure significantly changes cool flame propagation. It is found that the increases of pressure affects the propagation speeds of lean and rich cool flames differently due to the negative temperature coefficient effect. On the lean side, the increase of pressure accelerates the cool flame chemistry and shifts the transition limit of cool flame to hot flame to lower equivalence ratio. At lower pressure, there is an extinction transition from hot flame to cool flame. However, there exists a critical pressure above which the cool flame to hot flame transition limit merges with the lean flammability limit of the hot flame, resulting in a direct transition from hot flame to cool flame. On the other hand, the increase of dilution reduces the heat release of hot flame and promotes cool flame formation. Moreover, it is shown that a smaller flame size and a higher heat loss also extend the cool flame transition limit and promote cool flame formation.

  5. Experimental evaluation of cooling efficiency of the high performance cooling device

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  6. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    CERN Document Server

    Baffes, C; Leibfritz, J; Oplt, S; Rakhno, I

    2013-01-01

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.

  7. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  8. High Precision Temperature Control and Analysis of RF Deionized Cooling Water System

    CERN Document Server

    Tsai, Zong-Da; Chen June Rong; Liu, Chen-Yao

    2005-01-01

    Previously, the Taiwan Light Source (TLS) has proven the good beam quality mainly depends on the utility system stability. A serial of efforts were devoted to these studies. Further, a high precision temperature control of the RF deionized cooling water system will be achieved to meet the more critical stability requirement. The paper investigates the mixing mechanism through thermal and flow analysis and verifies the practical influences. A flow mixing mechanism and control philosophy is studied and processed to optimize temperature variation which has been reduced from ±0.1? to ±0.01?. Also, the improvement of correlation between RF performance and water cooling stability will be presented.

  9. Evaporative cooling and coherent axial oscillations of highly charged ions in a penning trap.

    Science.gov (United States)

    Hobein, M; Solders, A; Suhonen, M; Liu, Y; Schuch, R

    2011-01-07

    Externally, in an electron beam ion trap, generated Ar16+ ions were retrapped in a Penning trap and evaporatively cooled in their axial motion. The cooling was observed by a novel extraction technique based on the excitation of a coherent axial oscillation which yields short ion bunches of well-defined energies. The initial temperature of the ion cloud was decreased by a factor of more than 140 within 1 s, while the phase-space density of the coldest extracted ion pulses was increased by a factor of up to about 9.

  10. Cooling arrangement for a gas turbine component

    Science.gov (United States)

    Lee, Ching-Pang; Heneveld, Benjamin E

    2015-02-10

    A cooling arrangement (82) for a gas turbine engine component, the cooling arrangement (82) having a plurality of rows (92, 94, 96) of airfoils (98), wherein adjacent airfoils (98) within a row (92, 94, 96) define segments (110, 130, 140) of cooling channels (90), and wherein outlets (114, 134) of the segments (110, 130) in one row (92, 94) align aerodynamically with inlets (132, 142) of segments (130, 140) in an adjacent row (94, 96) to define continuous cooling channels (90) with non continuous walls (116, 120), each cooling channel (90) comprising a serpentine shape.

  11. 3D Sisyphus Cooling of Trapped Ions

    CERN Document Server

    Ejtemaee, S

    2016-01-01

    Using a laser polarization gradient, we realize 3D Sisyphus cooling of $^{171}$Yb$^+$ ions confined in and near the Lamb-Dicke regime in a linear Paul trap. The cooling rate and final mean motional energy of a single ion are characterized as a function of laser intensity and compared to semiclassical and quantum simulations. Sisyphus cooling is also applied to a linear string of four ions to obtain a mean energy of 1-3 quanta for all vibrational modes, an approximately order-of-magnitude reduction below Doppler cooled energies. This is used to enable subsequent, efficient sideband laser cooling.

  12. Development of Air-cooled Engines with Blower Cooling

    Science.gov (United States)

    Lohner, Kurt

    1933-01-01

    With the aid of a heating device, the heat transfer to cylinders with conical fins of various forms is determined both for shrouded and exposed cylinders. Simultaneously the pressure drop for overcoming the resistance to the motion of air between the fins of the enclosed cylinder is measured. Thus the relations between the heat transfer and the energy required for cooling are discovered. The investigations show that the heat transfer in a conducted air flow is much greater than in a free current and that further improvement, as compared with free exposure, is possible through narrower spaces between the fins.

  13. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  14. A radioactive ion beam facility using photofission

    CERN Document Server

    Diamond, W T

    1999-01-01

    Use of a high-power electron linac as the driver accelerator for a Radioactive Ion Beam (RIB) facility is proposed. An electron beam of 30 MeV and 100 kW can produce nearly 5x10 sup 1 sup 3 fissions/s from an optimized sup 2 sup 3 sup 5 U target and about 60% of this from a natural uranium target. An electron beam can be readily transmitted through a thin window at the exit of the accelerator vacuum system and transported a short distance through air to a water-cooled Bremsstrahlung-production target. The Bremsstrahlung radiation can, in turn, be transported through air to the isotope-production target. This separates the accelerator vacuum system, the Bremsstrahlung target and the isotope-production target, reducing remote handling problems. The electron beam can be scanned over a large target area to reduce the power density on both the Bremsstrahlung and isotope-production targets. These features address one of the most pressing technological challenges of a high-power RIB facility, namely the production o...

  15. Pressurized rf cavities in ionizing beams

    Science.gov (United States)

    Freemire, B.; Tollestrup, A. V.; Yonehara, K.; Chung, M.; Torun, Y.; Johnson, R. P.; Flanagan, G.; Hanlet, P. M.; Collura, M. G.; Jana, M. R.; Leonova, M.; Moretti, A.; Schwarz, T.

    2016-06-01

    A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. Energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SF6 and O2 were measured.

  16. Provisioning cooling elements for chillerless data centers

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.

    2016-12-13

    Systems and methods for cooling include one or more computing structure, an inter-structure liquid cooling system that includes valves configured to selectively provide liquid coolant to the one or more computing structures; a heat rejection system that includes one or more heat rejection units configured to cool liquid coolant; and one or more liquid-to-liquid heat exchangers that include valves configured to selectively transfer heat from liquid coolant in the inter-structure liquid cooling system to liquid coolant in the heat rejection system. Each computing structure further includes one or more liquid-cooled servers; and an intra-structure liquid cooling system that has valves configured to selectively provide liquid coolant to the one or more liquid-cooled servers.

  17. Heat Transfer Augmentation for Electronic Cooling

    Directory of Open Access Journals (Sweden)

    Suabsakul Gururatana

    2012-01-01

    Full Text Available Problem statement: The performance of electronic devices has been improving along with the rapid technology development. Cooling of electronic systems is consequently essential in controlling the component temperature and avoiding any hot spot. The study aims to review the present electronic cooling methods which are widely used in electronic devices. Approach: There are several methods to cool down the electronics components such as the pin-fin heat sink, confined jet impingement, heat pipe, micro heat sink and so on. Results: The cooling techniques can obviously increase heat transfer rate. Nonetheless, for active and passive cooling methods the pressure drop could extremely rise, when the heat transfer rate is increased. Conclusion: When the cooling techniques are used, it is clearly seen that the heat transfer increases with pressure drop. To avoid excessive expense due to high pressure drop, optimization method is required to obtain optimum cost and cooling rate.

  18. Peltier cooling of fermionic quantum gases.

    Science.gov (United States)

    Grenier, Ch; Georges, A; Kollath, C

    2014-11-14

    We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier thermoelectric effect and energy filtering. The system to be cooled is connected to another harmonically trapped gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively cooled, and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi level of the system, in order to fill the "holes" in the energy distribution. This is achieved by a suitable energy dependence of the transmission coefficient connecting the system to the reservoir. The two processes can be viewed as simultaneous evaporative cooling of particles and holes. We show that both a significantly lower entropy per particle and faster cooling rate can be achieved in this way than by using only evaporative cooling.

  19. Peltier Cooling of Fermionic Quantum Gases

    Science.gov (United States)

    Grenier, Ch.; Georges, A.; Kollath, C.

    2014-11-01

    We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier thermoelectric effect and energy filtering. The system to be cooled is connected to another harmonically trapped gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively cooled, and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi level of the system, in order to fill the "holes" in the energy distribution. This is achieved by a suitable energy dependence of the transmission coefficient connecting the system to the reservoir. The two processes can be viewed as simultaneous evaporative cooling of particles and holes. We show that both a significantly lower entropy per particle and faster cooling rate can be achieved in this way than by using only evaporative cooling.

  20. Turbulence and cooling in cluster cores

    CERN Document Server

    Banerjee, Nilanjan

    2014-01-01

    We study the interplay between turbulent heating, mixing, and radiative cooling in an idealized model of cool cluster cores. Active galactic nuclei (AGN) jets are expected to drive turbulence and heat cluster cores. Cooling of the intracluster medium (ICM) and stirring by AGN jets are tightly coupled in a feedback loop. We impose the feedback loop by balancing radiative cooling with turbulent heating. In addition to heating the plasma, turbulence also mixes it, suppressing the formation of cold gas at small scales. In this regard, the effect of turbulence is analogous to thermal conduction. For uniform plasma in thermal balance (turbulent heating balancing radiative cooling), cold gas condenses only if the cooling time is shorter than the mixing time. This condition requires the turbulent kinetic energy to be $\\gtrsim$ the plasma internal energy; such high velocities in cool cores are ruled out by observations. The results with realistic magnetic fields and thermal conduction are qualitatively similar to the ...

  1. Polymorphic beams and Nature inspired circuits for optical current

    Science.gov (United States)

    Rodrigo, José A.; Alieva, Tatiana

    2016-10-01

    Laser radiation pressure is a basis of numerous applications in science and technology such as atom cooling, particle manipulation, material processing, etc. This light force for the case of scalar beams is proportional to the intensity-weighted wavevector known as optical current. The ability to design the optical current according to the considered application brings new promising perspectives to exploit the radiation pressure. However, this is a challenging problem because it often requires confinement of the optical current within tight light curves (circuits) and adapting its local value for a particular task. Here, we present a formalism to handle this problem including its experimental demonstration. It consists of a Nature-inspired circuit shaping with independent control of the optical current provided by a new kind of beam referred to as polymorphic beam. This finding is highly relevant to diverse optical technologies and can be easily extended to electron and x-ray coherent beams.

  2. Stopping intense beams of internally cold molecules via centrifugal forces

    Science.gov (United States)

    Wu, Xing; Gantner, Thomas; Zeppenfeld, Martin; Chervenkov, Sotir; Rempe, Gerhard

    2016-05-01

    Cryogenic buffer-gas cooling produces intense beams of internally cold molecules. It offers a versatile source for studying collision dynamics and reaction pathways in the cold regime, and could open new avenues for controlled chemistry, precision spectroscopy, and exploration of fundamental physics. However, an efficient deceleration of these beams still presents a challenge. Here, we demonstrate that intense and continuous beams of electrically guided molecules produced by a cryogenic buffer-gas cell can be brought to a halt by the centrifugal force in a rotating frame. Various molecules (e.g. CH3F and CF3CCH) are decelerated to below 20m /s at a corresponding output intensity of ~ 6 ×109mm-2 .s-1 . In addition, our RF-resonant depletion detection shows that up to 90 % rotational-state purity can be achieved in the so-produced slow molecular beams.

  3. Fan-beam intensity modulated proton therapy

    Science.gov (United States)

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-01-01

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  4. Attainment of an MeV-range, DC electron beam for the Fermilab cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. E-mail: shemyakin@fnal.gov; Burov, A.; Carlson, K.; Dudnikov, V.; Kramper, B.; Kroc, T.; Leibfritz, J.; McGee, M.; Nagaitsev, S.; Saewert, G.; Schmidt, C.W.; Warner, A.; Seletskiy, S.; Tupikov, V

    2004-10-11

    To prepare a beam generation device for Fermilab's future Recycler Electron Cooling system, an experimental set-up with a simplified beam line has been commissioned at Fermilab. Stable operation was achieved at an electron energy of 3.5 MeV and a DC beam current of up to 0.5 A. The main reason for interruptions of the operation was found to be microsecond long bursts of the cathode current. While the frequency of the interruptions is determined primarily by a flow of secondary ions, the resulting reduction in the duty factor depends on the beam optics, the protection systems, and the tube electric field strength.

  5. Design of the plasma chamber and beam extraction system for SC ECRIS of RAON accelerator

    Science.gov (United States)

    Kim, Y.; Choi, S.; Hong, I. S.

    2014-02-01

    The RAON accelerator is the heavy ion accelerator being built in Korea. It contains a 3rd generation SC ECRIS which uses 28 GHz/18 GHz microwave power to extract 12 puA uranium ion beams. A plasma chamber for that ECRIS is made of aluminum machined from bulk Al. That chamber contains cooling channels to remove dumped power and another access port for microwave introduction and plasma diagnostics. Beam extraction electrodes were designed considering the engineering issues and preliminary beam extraction analysis was done. That plasma chamber will be assembled with a cryostat, and beam extraction experiment will be done.

  6. Advanced ion beam calorimetry for the test facility ELISE

    Science.gov (United States)

    Nocentini, R.; Bonomo, F.; Pimazzoni, A.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Pasqualotto, R.; Riedl, R.; Ruf, B.; Wünderlich, D.

    2015-04-01

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m2 in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m2, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and correlates

  7. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  8. KEKB beam instrumentation systems

    Science.gov (United States)

    Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.

    2003-02-01

    For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.

  9. Liquid Cooling/Warming Garment

    Science.gov (United States)

    Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.

    2010-01-01

    The NASA liquid cooling/ventilating garment (LCVG) currently in use was developed over 40 years ago. With the commencement of a greater number of extra-vehicular activity (EVA) procedures with the construction of the International Space Station, problems of astronaut comfort, as well as the reduction of the consumption of energy, became more salient. A shortened liquid cooling/warming garment (SLCWG) has been developed based on physiological principles comparing the efficacy of heat transfer of different body zones; the capability of blood to deliver heat; individual muscle and fat body composition as a basis for individual thermal profiles to customize the zonal sections of the garment; and the development of shunts to minimize or redirect the cooling/warming loop for different environmental conditions, physical activity levels, and emergency situations. The SLCWG has been designed and completed, based on extensive testing in rest, exercise, and antiorthostatic conditions. It is more energy efficient than the LCVG currently used by NASA. The total length of tubing in the SLCWG is approximately 35 percent less and the weight decreased by 20 percent compared to the LCVG. The novel features of the innovation are: 1. The efficiency of the SLCWG to maintain thermal status under extreme changes in body surface temperatures while using significantly less tubing than the LCVG. 2. The construction of the garment based on physiological principles of heat transfer. 3. The identification of the body areas that are most efficient in heat transfer. 4. The inclusion of a hood as part of the garment. 5. The lesser consumption of energy.

  10. Hyperon beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P.S.

    1996-03-01

    This report reviews the present status and recent results in hyperon physics concentrating on results from high energy hyperon beam experiments performed at Fermilab over the past several years. The report focuses on hyperon production polarization, precision hyperon magnetic moment measurements and radiative decay studies. Modern charged hyperon beam experiments are characterized by {approx}100m long apparatus and hyperon beams with {gamma}{sub Y}{approx}100 and hyperon fluxes in the 1-100 kHz range.

  11. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... the mechanical behavior of the beam is explained. Finally, some design criterions for reinforced glass beams are discussed....

  12. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    Science.gov (United States)

    Kurennoy, Sergey

    2002-04-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two transversely separated beams in a common beam pipe in the splitter sections imposes certain requirements on beam diagnostics for these sections. We explore a two-beam system in a generic beam monitor and study the feasibility of resolving the transverse positions of the two beams with one diagnostics device. Effects of unequal beam currents and of finite transverse sizes of the beams are explored analytically for both the ultra relativistic case and the long-wavelength limit.

  13. Theoretical insight of adsorption cooling

    KAUST Repository

    Chakraborty, Anutosh

    2011-06-03

    This letter proposes and presents a thermodynamic formulation to calculate the energetic performances of an adsorption cooler as a function of pore widths and volumes of solid adsorbents. The simulated results in terms of the coefficient of performance are validated with experimental data. It is found from the present analysis that the performance of an adsorption cooling device is influenced mainly by the physical characteristics of solid adsorbents, and the characteristics energy between the adsorbent-adsorbate systems. The present study confirms that there exists a special type of silicagel having optimal physical characteristics that allows us to obtain the best performance.

  14. Information technology equipment cooling system

    Science.gov (United States)

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  15. Assessment of spent fuel cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, J.G.; Jones, W.R.; Lanik, G.F. [and others

    1997-02-01

    The paper presents the methodology, the findings, and the conclusions of a study that was done by the Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) on loss of spent fuel pool cooling. The study involved an examination of spent fuel pool designs, operating experience, operating practices, and procedures. AEOD`s work was augmented in the area of statistics and probabilistic risk assessment by experts from the Idaho Nuclear Engineering Laboratory. Operating experience was integrated into a probabilistic risk assessment to gain insight on the risks from spent fuel pools.

  16. Thermoelectric Devices Cool, Power Electronics

    Science.gov (United States)

    2009-01-01

    Nextreme Thermal Solutions Inc., based in Research Triangle Park, North Carolina, licensed thermoelectric technology from NASA s Jet Propulsion Laboratory. This has allowed the company to develop cutting edge, thin-film thermoelectric coolers that effective remove heat generated by increasingly powerful and tightly packed microchip components. These solid-state coolers are ideal solutions for applications like microprocessors, laser diodes, LEDs, and even potentially for cooling the human body. Nextreme s NASA technology has also enabled the invention of thermoelectric generators capable of powering technologies like medical implants and wireless sensor networks.

  17. Hot moons and cool stars

    Directory of Open Access Journals (Sweden)

    Heller René

    2013-04-01

    Full Text Available The exquisite photometric precision of the Kepler space telescope now puts the detection of extrasolar moons at the horizon. Here, we firstly review observational and analytical techniques that have recently been proposed to find exomoons. Secondly, we discuss the prospects of characterizing potentially habitable extrasolar satellites. With moons being much more numerous than planets in the solar system and with most exoplanets found in the stellar habitable zone being gas giants, habitable moons could be as abundant as habitable planets. However, satellites orbiting planets in the habitable zones of cool stars will encounter strong tidal heating and likely appear as hot moons.

  18. Biofouling Control in Cooling Water

    Directory of Open Access Journals (Sweden)

    T. Reg Bott

    2009-01-01

    Full Text Available An important aspect of environmental engineering is the control of greenhouse gas emissions. Fossil fuel-fired power stations, for instance, represent a substantial contribution to this problem. Unless suitable steps are taken the accumulation of microbial deposits (biofouling on the cooling water side of the steam condensers can reduce their efficiency and in consequence, the overall efficiency of power production, with an attendant increase in fuel consumption and hence CO2 production. Biofouling control, therefore, is extremely important and can be exercised by chemical or physical techniques or a combination of both. The paper gives some examples of the effectiveness of different approaches to biofouling control.

  19. Confirmation of shutdown cooling effects

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kotaro, E-mail: ksato@nelted.co.jp; Tabuchi, Masato; Sugimura, Naoki; Tatsumi, Masahiro [Nuclear Engineering, Limited, 1-3-7 Tosabori Nishi-ku, Osaka-shi, Osaka 550-0001 (Japan)

    2015-12-31

    After the Fukushima accidents, all nuclear power plants in Japan have gradually stopped their operations and have long periods of shutdown. During those periods, reactivity of fuels continues to change significantly especially for high-burnup UO{sub 2} fuels and MOX fuels due to radioactive decays. It is necessary to consider these isotopic changes precisely, to predict neutronics characteristics accurately. In this paper, shutdown cooling (SDC) effects of UO{sub 2} and MOX fuels that have unusual operation histories are confirmed by the advanced lattice code, AEGIS. The calculation results show that the effects need to be considered even after nuclear power plants come back to normal operation.

  20. Beam cavity interaction

    CERN Document Server

    Gamp, A

    2011-01-01

    We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.