WorldWideScience

Sample records for beam cooling

  1. Bunched beam stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jie

    1992-09-01

    The scaling laws for bunched-beam stochastic cooling has been derived in terms of the optimum cooling rate and the mixing condition. In the case that particles occupy the entire sinusoidal rf bucket, the optimum cooling rate of the bunched beam is shown to be similar to that predicted from the coasting-beam theory using a beam of the same average density and mixing factor. However, in the case that particles occupy only the center of the bucket, the optimum rate decrease in proportion to the ratio of the bunch area to the bucket area. The cooling efficiency can be significantly improved if the synchrotron side-band spectrum is effectively broadened, e.g. by the transverse tune spread or by using a double rf system.

  2. Bunched beam stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jie.

    1992-01-01

    The scaling laws for bunched-beam stochastic cooling has been derived in terms of the optimum cooling rate and the mixing condition. In the case that particles occupy the entire sinusoidal rf bucket, the optimum cooling rate of the bunched beam is shown to be similar to that predicted from the coasting-beam theory using a beam of the same average density and mixing factor. However, in the case that particles occupy only the center of the bucket, the optimum rate decrease in proportion to the ratio of the bunch area to the bucket area. The cooling efficiency can be significantly improved if the synchrotron side-band spectrum is effectively broadened, e.g. by the transverse tune spread or by using a double rf system.

  3. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ, M.

    2005-05-16

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  4. Stochastic cooling of particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Moehl, Dieter [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2013-02-01

    First topical monograph on this subject matter. Provides conceptual and theoretical introduction. Introduces modern cooling schemes. This lecture note describes the main analytical approaches to stochastic cooling. The first is the time-domain picture, in which the beam is rapidly sampled at a high rate and a statistical analysis is used to describe the cooling behaviour. The second is the frequency-domain picture, which is particularly useful since the observations made on the beam and the numerical cooling simulations are mainly in this domain. This second picture is developed in detail to assess key components of modern cooling theory like mixing and signal shielding and to illustrate some of the diagnostic methods. Finally the use of a distribution function and the Fokker-Plank equation, which offer the most complete description of the beam during the cooling, are discussed.

  5. Stochastic cooling of particle beams

    CERN Document Server

    Möhl, Dieter

    2013-01-01

    This lecture note describes the main analytical approaches to stochastic cooling. The first is the time-domain picture, in which the beam is rapidly sampled at a high rate and a statistical analysis is used to describe the cooling behaviour. The second is the frequency-domain picture, which is particularly useful since the observations made on the beam and the numerical cooling simulations are mainly in this domain. This second picture is developed in detail to assess key components of modern cooling theory like mixing and signal shielding and to illustrate some of the diagnostic methods. Finally the use of a distribution function and the Fokker-Plank equation, which offer the most complete description of the beam during the cooling, are discussed.

  6. Stochastic cooling of bunched beams

    International Nuclear Information System (INIS)

    Numerical simulation studies are presented for transverse and longitudinal stochastic cooling of bunched particle beams. Radio frequency buckets of various shapes (e.g. rectangular, parabolic well, single sinusoidal waveform) are used to investigate the enhancement of phase space cooling by nonlinearities of synchrotron motion. The connection between the notions of Landau damping for instabilities and mixing for stochastic cooling are discussed. In particular, the need for synchrotron frequency spread for both Landau damping and good mixing is seen to be comparable for bunched beams

  7. Bunched Beam Cooling in the Fermilab Recycler

    CERN Document Server

    Neuffer, David V; Burov, Alexey; Nagaitsev, Sergei

    2005-01-01

    Stochastic cooling with bunched beam in a linear bucket has been obtained and implemented operationally in the fermilab recycler. In this implementation the particle bunch length is much greater than the cooling system wavelengths. The simultaneous longitudinal bunching enables cooling to much smaller longitudinal emittances than the coasting beam or barrier bucket system. Characteristics and limitations of bunched beam stochastic cooling are discussed.

  8. Buffer gas cooling of ion beams

    International Nuclear Information System (INIS)

    The cooling action of a buffer gas on ions contained within it can be used to cool an ion beam, thereby greatly improving its emittance and energy spread. It can also be used to greatly enhance the collection of an ion beam in an electromagnetic trap. The basic principles will be introduced in the context of a prototype system for such a beam cooler

  9. Resonant Laser Cooling of Circular Accelerator Beams

    OpenAIRE

    Tumanian, R. V.

    2004-01-01

    The resonant laser cooling of circular accelerator beams of relativistic charged particle is studied. It is shown that in the approximation of the given external electromagnetic wave amplitude (small gain free electron laser) the emittance of a beam of charged particles decreases. In the field of particle energy about 100 in the mass energy units the beam energy losses are negligible. The discovered effect can be used for cooling of charged particle beams in various accelerators. The signific...

  10. Workshop on beam cooling and related topics

    International Nuclear Information System (INIS)

    The sessions of the Workshop on Beam Cooling and Related Topics, held in Montreux from 4-8 October 1993, are reported in these Proceedings. This meeting brought together international experts in the field of accelerator beam cooling. Its purpose was to discuss the status of the different cooling techniques currently in use (stochastic, electron, ionization, heavy-ion, and laser) and their actual performances, technological implications, and future prospects. Certain theoretical principles (muon cooling, cyclotron maser cooling) were discussed and are reported on in these Proceedings. Also of interest in this Workshop was the possibility of beam crystallization in accelerators using ultimate cooling. In the first part of these Proceedings, overview talks on the various cooling techniques, their implications, present performance, and future prospects are presented. More detailed reports on all the topics are then given in the form of oral presentations or poster sessions. Finally, the chairmen and/or convenors then present summary talks. (orig.)

  11. Electron cooling of heavy ion beams

    International Nuclear Information System (INIS)

    An introduction to the concept of phase-space compression of heavy-ion beams by electron cooling is given. Emphasis is put on a simple rather than a rigorous theoretical treatment of the underlying ideas. Some practical aspects are discussed in connection with a presentation of the designed cooling device for the ESR project of GSI Darmstadt. The problems of cooling-electron capture are briefly addressed. (HSI)

  12. Laser-cooled continuous ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S. [and others

    1995-08-01

    A collaboration with a group in Arhus, Denmark, using their storage ring ASTRID, brought about better understanding of ion beams cooled to very low temperatures. The longitudinal Schottky fluctuation noise signals from a cooled beam were studied. The fluctuation signals are distorted by the effects of space charge as was observed in earlier measurements at other facilities. However, the signal also exhibits previously unobserved coherent components. The ions` velocity distribution, measured by a laser fluorescence technique suggests that the coherence is due to suppression of Landau damping. The observed behavior has important implications for the eventual attainment of a crystalline ion beam in a storage ring. A significant issue is the transverse temperature of the beam -- where no direct diagnostics are available and where molecular dynamics simulations raise interesting questions about equilibrium.

  13. Laser-cooled bunched ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S. [and others

    1995-08-01

    In collaboration with the Arhus group, the laser cooling of a beam bunched by an rf electrode was investigated at the ASTRID storage ring. A single laser is used for unidirectional cooling, since the longitudinal velocity of the beam will undergo {open_quotes}synchrotron oscillations{close_quotes} and the ions are trapped in velocity space. As the cooling proceeds the velocity spread of the beam, as well as the bunch length is measured. The bunch length decreases to the point where it is limited only by the Coulomb repulsion between ions. The measured length is slightly (20-30%) smaller than the calculated limit for a cold beam. This may be the accuracy of the measurement, or may indicate that the beam still has a large transverse temperature so that the longitudinal repulsion is less than would be expected from an absolutely cold beam. Simulations suggest that the coupling between transverse and longitudinal degrees of freedom is strong -- but this issue will have to be resolved by further measurements.

  14. Muon Beam Helical Cooling Channel Design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  15. SUCCESSFUL BUNCHED BEAM STOCHASTIC COOLING IN RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BRENNAN, J.M.; BLASKIEWICZ, M.; SEVERINO, F.

    2006-06-23

    We report on a successful test of bunch-beam stochastic cooling in RHIC at 100 GeV. The cooling system is designed for heavy ions but was tested in the recent RHIC run which operated only with polarized protons. To make an analog of the ion beam a special bunch was prepared with very low intensity. This bunch had {approx}1.5 x 10{sup 9} protons, while the other 100 bunches contained {approx}1.2 x 10{sup 11} protons each. With this bunch a cooling time on the order 1 hour was observed through shortening of the bunch length and increase in the peak bunch current, together with a narrowing of the spectral line width of the Scottky power at 4 GHz. The low level signal processing electronics and the isolated-frequency kicker cavities are described.

  16. The State of the Art in Hadron Beam Cooling

    CERN Document Server

    Prost, L R

    2008-01-01

    Cooling of hadron beams (including heavy-ions) is a powerful technique by which accelerator facilities around the world achieve the necessary beam brightness for their physics research. In this paper, we will give an overview of the latest developments in hadron beam cooling, for which high energy electron cooling at Fermilab's Recycler ring and bunched beam stochastic cooling at Brookhaven National Laboratory's RHIC facility represent two recent major accomplishments. Novel ideas in the field will also be introduced.

  17. The State of the Art in Hadron Beam Cooling

    OpenAIRE

    Prost, L. R.; Derwent, P.

    2008-01-01

    Cooling of hadron beams (including heavy-ions) is a powerful technique by which accelerator facilities around the world achieve the necessary beam brightness for their physics research. In this paper, we will give an overview of the latest developments in hadron beam cooling, for which high energy electron cooling at Fermilab's Recycler ring and bunched beam stochastic cooling at Brookhaven National Laboratory's RHIC facility represent two recent major accomplishments. Novel ideas in the fiel...

  18. STOCHASTIC COOLING OF HIGH-ENERGY BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-06-25

    Stochastic cooling of 100 GeV/nucleon bunched beams has been achieved in the Relativistic Heavy Ion Collider (RHIC). The physics and technology of the longitudinal cooling system are discussed, and plans for a transverse cooling system are outlined.

  19. Laser cooling of a stored ion beam: A first step towards crystalline beams

    Energy Technology Data Exchange (ETDEWEB)

    Hangst, J.S.

    1992-09-01

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid.

  20. Laser cooling of a stored ion beam: A first step towards crystalline beams

    International Nuclear Information System (INIS)

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid

  1. Radiative cooling of relativistic electron beams

    International Nuclear Information System (INIS)

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored

  2. Helical muon beam cooling channel engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary project was approved by the DOE

  3. Laser synchrotron radiation and beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Esarey, E.; Sprangle, P.; Ting, A. [Naval Research Lab., Washington, DC (United States)] [and others

    1995-12-31

    The interaction of intense {approx_gt} 10{sup 18} W/cm{sup 2}, short pulse ({approx_lt} 1 ps) lasers with electron beams and plasmas can lead to the generation of harmonic radiation by several mechanisms. Laser synchrotron radiation may provide a practical method for generating tunable, near monochromatic, well collimated, short pulse x-rays in compact, relatively inexpensive source. The mechanism for the generation of laser synchrotron radiation is nonlinear Thomson scattering. Short wavelengths can be generated via Thomson scattering by two methods, (i) backscattering from relativistic electron beams, in which the radiation frequency is upshifted by the relativistic factor 4{gamma}{sup 2}, and (ii) harmonic scattering, in which a multitude of harmonics are generated with harmonic numbers extending out to the critical harmonic number nc{approx_equal}a{sub 0}{sup 3} {much_gt} 1, where a{sub 0} {approx_equal}10{sup -9}{lambda}I{sup 1/2}, {lambda} is the laser wavelength in {mu}m and I is the laser intensity in W/cm{sup 2}. Laser synchrotron sources are capable of generating short ({approx_lt} ps) x-ray pulses with high peak flux ({approx_gt} 10{sup 21} photons/s) and brightness ({approx_gt}{sup 19} photons/s-mm{sup 2}-mrad{sup 2} 0.1%BW. As the electron beam radiates via Thomson scattering, it can subsequently be cooled, i.e., the beam emittance and energy spread can be reduced. This cooling can occur on rapid ({approximately} ps) time scales. In addition, electron distributions with sufficiently small axial energy spreads can be used to generate coherent XUV radiation via a laser-pumped FEL mechanism.

  4. Simulation of Laser-Compton Cooling of Electron Beams

    OpenAIRE

    Ohgaki, T.

    2000-01-01

    We study a method of laser-Compton cooling of electron beams. Using a Monte Carlo code, we evaluate the effects of the laser-electron interaction for transverse cooling. The optics with and without chromatic correction for the cooling are examined. The laser-Compton cooling for JLC/NLC at E_0=2 GeV is considered.

  5. Fast Laser Cooling of Long Lived Ion Beams

    OpenAIRE

    Bessonov, E. G.; Osipov, A. L.

    2013-01-01

    Some peculiarities of fast laser cooling of long-lived ion beams in storage rings are discussed. Selective interaction of ions and broadband laser beam with sharp frequency and geometric edges is used while laser and ion beams are partially overlapped. The rates of change of the ion beam density in different regions of the phase space and at different moments of time in this scheme of cooling differ. That is why the generalized Robinson theorem valid for the infinitesimal phase space regions ...

  6. Laser cooling of electron beams at linear colliders

    OpenAIRE

    Telnov, Valery

    2000-01-01

    A method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. The ultimate transverse emittances are much below those achievable by other methods. This method is especially useful for high energy gamma-gamma colliders. In this paper we review and analyse limitations in this method, also discuss a new method of obtaining very high laser powers required for the laser cooling, radiation cond...

  7. Electron Beam Size Measurements in a Cooling Solenoid

    CERN Document Server

    Kroc, Thomas K; Burov, Alexey; Seletsky, Sergey; Shemyakin, Alexander V

    2005-01-01

    The Fermilab Electron Cooling Project requires a straight trajectory and constant beam size to provide effective cooling of the antiprotons in the Recycler. A measurement system was developed using movable appertures and steering bumps to measure the beam size in a 20 m long, nearly continuous, solenoid. This paper discusses the required beam parameters, the implimentation of the measurement system and results for our application.

  8. Stability of Muon Beams to Langmuir Waves during Ionization Cooling

    International Nuclear Information System (INIS)

    Fast cooling of muon beams will be needed for building either TeV muon colliders that might explore the electroweak gauge symmetry breaking or muon storage rings that could become ultrabright neutrino sources. Stochastic and electron cooling take longer than the muon lifetime, so attention has been focused on the potentially faster but less explored ionization cooling. Addressing recent concerns that excitation of Langmuir waves might be deleterious for ionization cooling techniques, we show that, while the hydrodynamic instability indeed might be dangerous, the waves are, in fact, stabilized through a combination of resistive and kinetic effects at a very modest emittance of the beam

  9. Influence of electron beam parameters on coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wang G.; Hao, Y.; Litvinenko, V.N.; Webb, S.

    2012-05-20

    Coherent electron cooling (CeC) promises to revolutionize the cooling of high energy hadron beams. The intricate dynamics of the CeC depends both on the local density and energy distribution of the beam. The variations of the local density (beam current) are inevitable in any realistic beam. Hence, in this paper we propose a novel method of beam conditioning. The conditioning provides compensation of effect from such variation by a correlated energy modulation. We use our analytical FEL model for an electron bunch with Gaussian line charge density and cosine-type energy variation along bunch. We analyze the phase variation between the electron density modulation at the exit of the FEL-amplifier and the ions inducing it in the modulator as a function of the peak current and the electron beam energy. Based on this analysis, electron bunch parameters for optimal CeC cooling are found numerically.

  10. Pin diode calibration - beam overlap monitoring for low energy cooling

    Energy Technology Data Exchange (ETDEWEB)

    Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.

  11. Parametric-Resonance Ionization Cooling of Muon Beams

    International Nuclear Information System (INIS)

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. Combining muon ionization cooling with parametric resonant dynamics should allow an order of magnitude smaller final equilibrium transverse beam emittances than conventional ionization cooling alone. In this scheme, a half-integer parametric resonance is induced in a cooling channel causing the beam to be naturally focused with the period of the channel's free oscillations. Thin absorbers placed at the focal points then cool the beam?s angular divergence through the usual ionization cooling mechanism where each absorber is followed by RF cavities. A special continuous-field twin-helix magnetic channel with correlated behavior of the horizontal and vertical betatron motions and dispersion was developed for PIC. We present the results of modeling PIC in such a channel using GEANT4/G4 beamline. We discuss the challenge of precise beam aberration control from one absorber to another over a wide angular spread

  12. Beam cooling by using laser-undulator beat wave

    International Nuclear Information System (INIS)

    Non-Hamiltonian manipulation of internal structure of phase space of charged particle beams can result in much faster cooling than the conventional stochastic cooling. The longitudinal emittance reduction is accomplished by the ponderomotive force of the beat between the undulator and the laser adjusted appropriate in its broadband spectrum through feedback at each turn. (author)

  13. Beam loss scenarios for MuCool Test Area

    International Nuclear Information System (INIS)

    The MuCool Test Area (MTA) is an intense primary beam facility derived directly from the Fermilab Linac to test heat deposition and other technical concerns associated with the liquid hydrogen targets, gas-filled RF cavities, and other apparatus being developed to cool intense, large-emittance muon beams. In this study the results of Monte Carlo modeling of several beam loss scenarios are presented. The MTA facility was designed to test targets and other muon cooling apparatus using the intense Fermilab Linac beam. The requested intensity of the proton beam for the MTA is essentially full Linac capability, or 1.6 x 1013 protons per pulse and an energy of 400 MeV. Two modes of operation will be supported in the MuCOOL beamline: one mode for emittance measurements (and beamline studies) and a second mode for MTA experiments. Maximum beam intensity for these two modes is: 9.6 x 1015 protons/hr - 600 beam pulses/hour of full Linac beam pulse intensity (1.6 x 1013 protons/pulse) to the emittance beam absorber and 9.6 x 1014 protons/hour - 60 beam pulses/hour of full Linac beam pulse intensity to experiments in the MTA experimental hall. This extremely high intensity implies careful investigation into and application of proper shielding materials and configuration in order to satisfy the following two requirements: (i) to reduce the instantaneous dose rate outside of the experimental enclosure to prescribed levels appropriate for the area considered; (ii) to ensure the civil construction of the hall is capable of additional shielding and, further, that the weight of the shielding is commensurate with the loading specifications of the enclosure, notably the ceiling. A number of scenarios for beam loss at different locations were studied in order to determine the maximum beam intensity which is in compliance with the existing shielding. The modeling was performed with the MARS15 code.

  14. beam loss scenarios for MuCool Test Area

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, Igor; Johnstone, Carol; /Fermilab

    2010-08-01

    The MuCool Test Area (MTA) is an intense primary beam facility derived directly from the Fermilab Linac to test heat deposition and other technical concerns associated with the liquid hydrogen targets, gas-filled RF cavities, and other apparatus being developed to cool intense, large-emittance muon beams. In this study the results of Monte Carlo modeling of several beam loss scenarios are presented. The MTA facility was designed to test targets and other muon cooling apparatus using the intense Fermilab Linac beam. The requested intensity of the proton beam for the MTA is essentially full Linac capability, or 1.6 x 10{sup 13} protons per pulse and an energy of 400 MeV. Two modes of operation will be supported in the MuCOOL beamline: one mode for emittance measurements (and beamline studies) and a second mode for MTA experiments. Maximum beam intensity for these two modes is: 9.6 x 10{sup 15} protons/hr - 600 beam pulses/hour of full Linac beam pulse intensity (1.6 x 10{sup 13} protons/pulse) to the emittance beam absorber and 9.6 x 10{sup 14} protons/hour - 60 beam pulses/hour of full Linac beam pulse intensity to experiments in the MTA experimental hall. This extremely high intensity implies careful investigation into and application of proper shielding materials and configuration in order to satisfy the following two requirements: (i) to reduce the instantaneous dose rate outside of the experimental enclosure to prescribed levels appropriate for the area considered; (ii) to ensure the civil construction of the hall is capable of additional shielding and, further, that the weight of the shielding is commensurate with the loading specifications of the enclosure, notably the ceiling. A number of scenarios for beam loss at different locations were studied in order to determine the maximum beam intensity which is in compliance with the existing shielding. The modeling was performed with the MARS15 code.

  15. Wien filter for cooled low-energy radioactive ion beams

    NARCIS (Netherlands)

    Nummela, S; Dendooven, P; Heikkinen, P; Huikari, J; Nieminen, A; Jokinen, A; Rinta-Antila, S; Rubchenya, V.; Aysto, J

    2002-01-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q = +2-->q = +1 charge exchange process in an ion cooler, T

  16. BUNCHED BEAM STOCHASTIC COOLING SIMULAITONS AND COMPARISON WITH DATA

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-09-10

    With the experimental success of longitudinal, bunched beam stochastic cooling in RHIC it is natural to ask whether the system works as well as it might and whether upgrades or new systems are warranted. A computer code, very similar to those used for multi-particle coherent instability simulations, has been written and is being used to address these questions.

  17. Beam cooling using a gas-filled RFQ ion guide

    CERN Document Server

    Henry, S; De Saint-Simon, M; Jacotin, M; Képinski, J F; Lunney, M D

    1999-01-01

    A radiofrequency quadrupole mass filter is being developed for use as a high-transmission beam cooler by operating it in buffer gas at high pressure. Such a device will increase the sensitivity of on-line experiments that make use of weakly produced radioactive ion beams. We present simulations and some preliminary measurements for a device designed to cool the beam for the MISTRAL RF mass spectrometer on- line at ISOLDE. The work is carried out partly within the frame of the European Community research network: EXOTRAPS. (9 refs).

  18. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    Energy Technology Data Exchange (ETDEWEB)

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  19. Nanoscale focused ion beam from laser-cooled lithium atoms

    International Nuclear Information System (INIS)

    We demonstrate a new type of nanoscale focused ion beam (FIB) based on photoionizing laser-cooled atoms held at millikelvin temperatures in a magneto-optical trap (MOT). This new source expands the range of available ionic species and accessible ion beam energies for FIBs, enhancing their role as one of the most important tools for nanoscale characterization and fabrication. We show examples of microscopy with lithium ions obtained by scanning the FIB and collecting the resulting secondary electrons, and characterize the beam focus by a 25-75% rise distance measurement of (26.7 ± 1.0) nm at a beam energy of 2 keV. We also examine the dependence of the focal size on MOT temperature and beam energy. (paper)

  20. Laser cooling of a magnetically guided ultra cold atom beam

    Energy Technology Data Exchange (ETDEWEB)

    Aghajani-Talesh, Anoush

    2014-07-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  1. Laser cooling of a magnetically guided ultra cold atom beam

    International Nuclear Information System (INIS)

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  2. LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.

    2006-06-23

    Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.

  3. LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING

    International Nuclear Information System (INIS)

    Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling

  4. The effect of laser beam size in a zig-zag collimator on transverse cooling of a krypton atomic beam

    Indian Academy of Sciences (India)

    Vivek Singh; V B Tiwari; S Singh; S R Mishra; H S Rawat

    2014-07-01

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on transverse cooling of a krypton atomic beam is investigated. The simulation results show that discreteness in the interaction between the cooling laser beam and atomic beam, arising due to finite size and incidence angle of the cooling laser beam, significantly reduces the value of transverse velocity capture range of the collimator. The experimental observations show the trend similar to that obtained from simulations. Our study can be particularly useful where a small zig-zag collimator is required.

  5. Gyromonotron as an instrument for electron beam cooling in accelererators

    CERN Document Server

    Khoruzhiy, V

    2013-01-01

    A gyromonotron is based on energy transformation of the transverse motion of beam particles into electromagnetic wave radiation. This property is proposed to be used for electron beam cooling in the accelerator. The energy of the transverse beam motion is converted into stimulated oscillations of the H111 fundamental mode in the gyromonotron resonator. The H111 mode excitation is the result of simultaneous excitation of H111 and E010 modes in the resonator of the given length L, where L is determined by by the start-oscillation condition for certain values of transit angle {\\theta}0 in a monotron. The H111 mode actually determines the amplitude of the pump mode, which exists at whatever value of transverse velocities of the beam. We have determined basic gyromonotron parameters such as the radius R and length L of the resonator, and the amplitude of the guiding magnetic field Hz for intended radio frequency f1.

  6. Stochastic cooling of bunched beams from fluctuation and kinetic theory

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.

    1982-09-01

    A theoretical formalism for stochastic phase-space cooling of bunched beams in storage rings is developed on the dual basis of classical fluctuation theory and kinetic theory of many-body systems in phase-space. The physics is that of a collection of three-dimensional oscillators coupled via retarded nonconservative interactions determined by an electronic feedback loop. At the heart of the formulation is the existence of several disparate time-scales characterizing the cooling process. Both theoretical approaches describe the cooling process in the form of a Fokker-Planck transport equation in phase-space valid up to second order in the strength and first order in the auto-correlation of the cooling signal. With neglect of the collective correlations induced by the feedback loop, identical expressions are obtained in both cases for the coherent damping and Schottky noise diffusion coefficients. These are expressed in terms of Fourier coefficients in a harmonic decomposition in angle of the generalized nonconservative cooling force written in canonical action-angle variables of the particles in six-dimensional phase-space. Comparison of analytic results to a numerical simulation study with 90 pseudo-particles in a model cooling system is presented.

  7. Stochastic cooling of bunched beams from fluctuation and kinetic theory

    International Nuclear Information System (INIS)

    A theoretical formalism for stochastic phase-space cooling of bunched beams in storage rings is developed on the dual basis of classical fluctuation theory and kinetic theory of many-body systems in phase-space. The physics is that of a collection of three-dimensional oscillators coupled via retarded nonconservative interactions determined by an electronic feedback loop. At the heart of the formulation is the existence of several disparate time-scales characterizing the cooling process. Both theoretical approaches describe the cooling process in the form of a Fokker-Planck transport equation in phase-space valid up to second order in the strength and first order in the auto-correlation of the cooling signal. With neglect of the collective correlations induced by the feedback loop, identical expressions are obtained in both cases for the coherent damping and Schottky noise diffusion coefficients. These are expressed in terms of Fourier coefficients in a harmonic decomposition in angle of the generalized nonconservative cooling force written in canonical action-angle variables of the particles in six-dimensional phase-space. Comparison of analytic results to a numerical simulation study with 90 pseudo-particles in a model cooling system is presented

  8. Beam-cooling methods in the NICA project

    Science.gov (United States)

    Kostromin, S. A.; Meshkov, I. N.; Sidorin, A. O.; Smirnov, A. V.; Trubnikov, G. V.; Shurkhno, N.

    2012-07-01

    The Nuclotron-based Ion Collider Facility (NICA) is a new accelerator complex under construction at the Joint Institute for Nuclear Research (JINR) for experiments with colliding beams of heavy ions up to gold at energies as high as 4.5 × 4.5 GeV/u aimed at studying hot and dense strongly interacting nuclear matter and searching for possible indications of the mixed phase state and critical points of phase transitions. This facility comprises an ion source of the electron-string type, a 3-MeV/u linear accelerator, a 600-MeV/u superconducting booster synchrotron (Booster), a Nuclotron (upgraded superconducting synchrotron with a maximum energy of 4.5 GeV/u for ions with the charge-to-mass ratio Z/ A = 1/3), and a collider consisting of two vertically separated superconducting rings with an average luminosity of 1027 cm-2 s-1 in an energy range over 3.0 GeV/u. Beam cooling is supposed to be used in two NICA elements, the Booster, and the collider rings. The Booster is intended for the storage of 197Au31+ ions to an intensity of about 4 × 109 particles; their acceleration to the energy 600 MeV/u, which is sufficient for the complete stripping of nuclei (an increase in the injection energy and the charge state of ions makes the requirements for vacuum conditions in the Nuclotron less stringent); and the formation of the necessary beam emittance using the electron cooling system. Two independent beam-cooling systems, a stochastic one and an electron one, are supposed to be used in the collider. The parameters of the cooling systems, the optimum mode of operation for the collider, and the arrangement and design of the elements of the systems are discussed.

  9. Colliding beam physics at Fermilab: interaction regions, beam storage, antiproton cooling, production, and colliding

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.K. (ed.)

    1977-01-01

    The purpose of the colliding beams experment department at Fermilab was to bring about collisions of the stored beams in the energy doubler/saver and main ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the main ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part one is on interaction regions, beam storage, antiproton cooling, production, and colliding. 40 papers from this part are included in the data base. (GHT)

  10. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  11. Cooling of relativistic electron beams in chirped laser pulses

    CERN Document Server

    Yoffe, Samuel R; Kravets, Yevgen; Jaroszynski, Dino A

    2015-01-01

    The next few years will see next-generation high-power laser facilities (such as the Extreme Light Infrastructure) become operational, for which it is important to understand how interaction with intense laser pulses affects the bulk properties of a relativistic electron beam. At such high field intensities, we expect both radiation reaction and quantum effects to play a significant role in the beam dynamics. The resulting reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction depends only on the energy of the laser pulse. Quantum effects suppress this cooling, with the dynamics additionally sensitive to the distribution of energy within the pulse. Since chirps occur in both the production of high-intensity pulses (CPA) and the propagation of pulses in media, the effect of using chirps to modify the pulse shape has been investigated using a semi-classical extension to the Landau--Lifshitz theory. Results indicate that even la...

  12. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  13. Part II/Addendum Electron Beam Cooling between EBIS LINAC and Booster; Is Single Pass Cooling Possible?

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch,A.

    2008-07-01

    Due to some miscommunication, incomplete data was erroneously used in examining electron beam cooling for reducing momentum of gold ions exiting the EBIS LINAC before injection into the booster. Corrected calculations still indicate that single pass cooling is, in principle, feasible; momentum spread can be reduced by an order of magnitude in about one meter. Preliminary results suggest that this cooling deserves further consideration.

  14. Internal target effects in ion storage rings with beam cooling

    International Nuclear Information System (INIS)

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  15. Internal target effects in ion storage rings with beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gostishchev, Vitaly

    2008-06-15

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  16. Large-angle beam deflection of a laser-cooled sodium beam

    International Nuclear Information System (INIS)

    A sodium atomic beam has been decelerated and laser cooled to a longitudinal beam temperature of less than 30 mK. Subsequently these slow atoms with a typical velocity of 100 m/sec were selectively deflected by laser-light forces. The deflection angle was typically 30 degree. The deflection scheme permits a stabilization of the transverse velocities in the deflected atomic beam down to the quantum-limit temperature for one dimension (0.7x240 μK). The experimentally achieved temperatures are of the order of 1 mK

  17. Analysis and simulation for laser-Compton cooling of electron beams

    International Nuclear Information System (INIS)

    The method of the Laser-Compton cooling of the electron beams is studied. Using a Monte Carlo code, we have evaluated the effects of the Laser-electron interaction for cooling. The optics with and without chromatic correction for cooling are examined. Problems of the optics for cooling are discussed

  18. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    International Nuclear Information System (INIS)

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C3+ ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged 24Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  19. Simulation study of three-dimensional laser cooling schemes for fast stored beams

    International Nuclear Information System (INIS)

    Molecular dynamics (MD) approach is employed to study laser cooling of fast circulating beams in a storage ring. The authors compare several three-dimensional (3D) cooling methods, examining achievable minimum beam temperature. In particular, the stress is put upon the three coupling schemes, i.e. the dispersion-coupling scheme, the coupling-cavity scheme, and the tapered cooling scheme. The authors show that beam temperatures much lower than the currently achievable level could be reached with these schemes

  20. Simulation study of three-dimensional laser cooling schemes for fast stored beams

    International Nuclear Information System (INIS)

    Molecular dynamics (MD) approach is employed to study laser cooling of fast circulating beams in a storage ring. The authors compare several three-dimensional (3D) cooling methods, examining achievable minimum beam temperature. In particular, the stress is put upon the three coupling schemes, i.e., the dispersion-coupling scheme, the coupling-cavity scheme, and the tapered cooling scheme. They show that beam temperatures much lower than the currently possible level could be reached with these schemes

  1. Realization of a magneto-optical trap by using linearly-polarized cooling beams

    International Nuclear Information System (INIS)

    We realized two species of magneto-optical traps (MOTs) by using linearly-polarized cooling beams. A mirror MOT was realized by using pairs of σ-π polarized cooling beams. Since the linearly polarized field could act as opposite circular polarizations, atoms could be loaded on the mirror MOT with the elimination of one quarter-wave plate (QWP) among the four QWPs. However, for a typical MOT, counter-propagating cooling beams had to have opposite circular polarizations. The number of trapped atoms depended strongly on the polarization and optical alignment of the cooling beams when linear polarization with the elimination of one QWP was used. By using this anomalous alignment, we could increase the fluorescence of the mirror MOT. Furthermore, we were also able to realize a six-beam MOT with a configuration of pairs of orthogonal linearly-polarized cooling beams. The direction of the polarization depended strongly on the magnetic field for trapping.

  2. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran;

    2013-01-01

    Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings. The...... consumption and hence energy savings in the 2-pipe chilled beam system in comparison with the 4-pipe system. The 2-pipe chilled beam system used high temperature cooling and low temperature heating with a water temperature of 20°C to 23°C, available for free most of the year. The system can thus take...... advantage of renewable energy. The results showed that the energy consumption was 3% less in the 2-pipe chilled beam system in comparison with the conventional 4-pipe system when moving cooled and heated water through the building, transferring the energy to where it is needed. Using free cooling (taking...

  3. Simulation of laser-Compton cooling of electron beams for future linear colliders

    OpenAIRE

    Ohgaki, T.; Endo, I.

    2001-01-01

    We study a method of laser-Compton cooling of electron beams for future linear colliders. Using a Monte Carlo code, we evaluate the effects of the laser-electron interaction for transverse cooling. The optics with and without chromatic correction for the cooling are examined. The laser-Compton cooling for JLC/NLC at $E_0=2$ GeV is considered.

  4. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bogomilov, M.; Karadzhov, Y.; Kolev, D.; Russinov, I.; Tsenov, R.; Vankova-Kirilova, G.; Wang, L.; Xu, F. Y.; Zheng, S. X.; Bertoni, R.; Bonesini, M.; Ferri, F.; Lucchini, G.; Mazza, R.; Paleari, F.; Strati, F.; Palladino, V.; Cecchet, G.; Bari, A. de; Capponi, M.; Cirillo, A.; Iaciofano, A.; Manfredini, A.; Parisi, M.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Mori, Y.; Kuno, Y.; Sakamoto, H.; Sato, A.; Yano, T.; Yoshida, M.; Ishimoto, S.; Suzuki, S.; Yoshimura, K.; Filthaut, F.; Garoby, R.; Gilardoni, S.; Gruber, P.; Hanke, K.; Haseroth, H.; Janot, P.; Lombardi, A.; Ramberger, S.; Vretenar, M.; Bene, P.; Blondel, A.; Cadoux, F.; Graulich, J. -S; Grichine, V.; Gschwendtner, E.; Masciocchi, F.; Sandstrom, R.; Verguilov, V.; Wisting, H.; Petitjean, C.; Seviour, R.; Alexander, J.; Charnley, G.; Collomb, N.; Griffiths, S.; Martlew, B.; Moss, A.; Mullacrane, I.; Oates, A.; Owens, P.; White, C.; York, S.; Adams, D.; Apsimon, R.; Barclay, P.; Baynham, D. E.; Bradshaw, T. W.; Courthold, M.; Drumm, P.; Edgecock, R.; Hayler, T.; Hills, M.; Ivaniouchenkov, Y.; Jones, A.; Lintern, A.; MacWaters, C.; Nelson, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rochford, J. H.; Rogers, C.; Spensley, W.; Tarrant, J.; Tilley, K.; Watson, S.; Wilson, A.; Forrest, D.; Soler, F. J. P.; Walaron, K.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Beuselinck, R.; Clark, D.; Clark, I.; Colling, D.; Dobbs, A.; Dornan, P.; Fayer, S.; Fish, A.; Hare, R.; Greenwood, S.; Jamdagni, A.; Kasey, V.; Khaleeq, M.; Leaver, J.; Long, K.; McKigney, E.; Matsushita, T.; Pasternak, J.; Sashalmi, T.; Savidge, T.; Takahashi, M.; Blackmore, V.; Carlisle, T.; Cobb, J. H.; Lau, W.; Rayner, M.; Tunnell, C. D.; Witte, H.; Yang, S.; Booth, C. N.; Hodgson, P.; Howlett, L.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.; Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Ellis, M.; Kyberd, P.; Littlefield, M.; Nebrensky, J. J.; Bross, A. D.; Geer, S.; Neuffer, D.; Moretti, A.; Popovic, M.; Cummings, M. A. C.; Roberts, T. J.; DeMello, A.; Green, M. A.; Li, D.; Virostek, S.; Zisman, M. S.; Freemire, B.; Hanlet, P.; Huang, D.; Kafka, G.; Kaplan, D. M.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y. K.; Bravar, U.; Onel, Y.; Cline, D.; Fukui, Y.; Lee, K.; Yang, X.; Rimmer, R. A.; Cremaldi, L. M.; Gregoire, G.; Hart, T. L.; Sanders, D. A.; Summers, D. J.; Coney, L.; Fletcher, R.; Hanson, G. G.; Heidt, C.; Gallardo, J.; Kahn, S.; Kirk, H.; Palmer, R. B.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  5. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    CERN Document Server

    Bogomilov, M.

    2012-01-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz muon rate, with a neglible pion contamination in the beam.

  6. Preparation of a monoenergetic sodium beam by laser cooling and deflection

    International Nuclear Information System (INIS)

    This paper reports on a sodium atomic beam with a density of approx. 105 at cm3 within a velocity interval of less than 3 m/s with a mean velocity of typically 50-160 m/s which has been produced by laser deflection of a laser cooled atomic beam. Laser cooling with the frequency chirp method decelerates and cools a considerable part of an atomic beam into a narrow velocity group with a temperature of approx 30 mK as a part of the resulting atomic beam. This velocity group has been selectively deflected up to 30 degrees - 40 degrees using a light field with k vectors always perpendicular to the atomic trajectory. If the light field is prepared by use of a cylindrical lens, the angle of deflection is nearly independent from the actual orbit radius. For a laser frequency detuning of about one natural linewidth to the red, the strong frequency dependence of the light pressure force leads to a beam collimation via detuning-locking of the atomic trajectory. To avoid optical pumping we used a frequency modulated laser beam with a sideband spacing matched to the hyperfine splitting of the ground state. As the cooling was performed by the frequency chirp method, one can use a part of the cooling laser beam as deflecting laser beam. Typical velocity distributions in the deflected and undeflected atomic beam, measured 22 cm downstream the deflection zone. It shows the perfect transfer of the cooled velocity group from the laser cooled beam into the deflected beam; curve c) shows as comparison the result for the deflection of the initial thermal atomic beam

  7. Single pass electron beam cooling of gold ions between EBIS LINAC and booster is theoretically possible!

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A.

    2011-01-01

    Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Many issues, regarding a low energy high current electron beam that is needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, were examined. Computations and some experimental data indicate that none of these issues is a show stopper. Preliminary calculations indicate that single pass cooling is feasible; momentum spread can be reduced by more than an order of magnitude in about one meter. Hence, this option cooling deserves further more serious considerations.

  8. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, Michael

    2008-03-17

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C{sup 3+} ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged {sup 24}Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  9. Innovative two-pipe active chilled beam system for simultaneous heating and cooling of office buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Afshari, Alireza; Bergsøe, Niels Christian;

    2014-01-01

    The aim of this paper was to investigate the energy savings potential of an innovative two-pipe system in an active chilled beam application for heating and cooling of office buildings. The characteristic of the system is its ability to provide simultaneous heating and cooling by transferring...... heating, cooling and ventilation loads were calculated by the program and an annual energy consumption evaluation of the system was made. Simulation results showed that the innovative two-pipe active chilled beam system used approximately 5% less energy than a conventional four-pipe system....

  10. Longitudinal and transverse cooling of relativistic electron beams in intense laser pulses

    CERN Document Server

    Yoffe, Samuel R; Noble, Adam; Jaroszynski, Dino A

    2015-01-01

    With the emergence in the next few years of a new breed of high power laser facilities, it is becoming increasingly important to understand how interacting with intense laser pulses affects the bulk properties of a relativistic electron beam. A detailed analysis of the radiative cooling of electrons indicates that, classically, equal contributions to the phase space contraction occur in the transverse and longitudinal directions. In the weakly quantum regime, in addition to an overall reduction in beam cooling, this symmetry is broken, leading to significantly less cooling in the longitudinal than the transverse directions. By introducing an efficient new technique for studying the evolution of a particle distribution, we demonstrate the quantum reduction in beam cooling, and find that it depends on the distribution of energy in the laser pulse, rather than just the total energy as in the classical case.

  11. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; /Fermilab

    2005-07-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section.

  12. Laser cooling and ion beam diagnosis of relativistic ions in a storage ring

    International Nuclear Information System (INIS)

    Particle accelerator and storage ring technology has reached an advanced state, so that different heavy ion storage rings are coming into operation by now, capable of storing even fully stripped ions up to U92+. The main purpose of these machines are the accumulation of ions and the ability of improving the beam quality, that is the phase space density of the stored beams. This beam cooling is done successfully by the well established stochastic and electron cooling techniques. A new cooling method, the laser cooling, is taken over from atomic beam and ion trap experiments, where it has yielded extremely low temperatures of atomic samples. As a canditate at storage rings 7Li+ ions are stored in the Heidelberg TSR at 13.3 MeV. The ion beam properties of the metastable fraction like momentum spread, storage time and the influence of residual gas scattering are investigated by colinear laser spectroscopy in the experimental section of the TSR. An optical pumping experiment using two dye laser systems yields information about ion kinematics and velocity mixing processes in the ring. Lifetimes in the order of 100 ms for velocity classes marked in this way show that laser cooling can be applied to the stored 7Li+ beam. In an experimental situation of two strong counterpropagating laser beams, both tuned near resonance, a dramatic reduction of the ion beam momentum spread is observed. With a special geometrical control of laser and ion beam the longitudinal beam temperature is reduced from 260 K to at least 3 K with very high collection efficiency. (orig./HSI)

  13. Study of a Two-Pipe Chilled Beam System for both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Gordnorouzi, Rouzbeh; Hultmark, Göran; Afshari, Alireza;

    Active chilled beam systems are used to provide heating and cooling in order to achieve comfortable thermal indoor climate. For heating and cooling applications, an active chilled beam has two water circuits comprising four pipes that supply warm and cold water respectively to the beam coil...... according to the space demand. Lindab Comfort A/S has introduced an active chilled beam system which has just one water circuit (two pipes) that is used for both heating and cooling. The concept is based on high temperature cooling and low temperature heating. In this study the energy saving potential of...... the new two-pipe active chilled beam system is investigated....

  14. Enabling Nanotechnology with Focused Ion Beams from Laser Cooled Atoms

    Science.gov (United States)

    Steele, A. V.; Knuffman, B.; Orloff, J.; Maazouz, M.; McClelland, J. J.

    2011-05-01

    The Magneto-Optical Trap Ion Source (MOTIS) being developed at NIST has the potential to enable numerous advances in nanoscale science. In a MOTIS, atoms are captured into a MOT, photoionized, and accelerated to an energy of a few hundred eV to a few tens of kV. A beam formed in this way can be brought to a tight focus, competitive with the commercial focused ion beam machines deployed widely today. Additionally, the unique characteristics of this source, coupled with the user's choice of ion from the long and growing list of laser-coolable atomic species suggest that the MOTIS has the potential to advance the state of the art in applications such as imaging, nanofabrication, secondary ion mass spectrometry, and others. I will present high-resolution images from our lithium and chromium MOTIS-based focused ion beams and discuss applications which we will pursue with these new tools.

  15. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A. [Harwell Oxford, STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Pidcott, C.; Taylor, I. [University of Warwick, Department of Physics, Coventry (United Kingdom); Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Fayer, S.; Fish, A.; Hunt, C.; Leaver, J.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Richards, A.; Santos, E.; Savidge, T.; Takahashi, M. [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Asfandiyarov, R.; Blondel, A.; Graulich, J.S.; Karadzhov, Y.; Verguilov, V.; Wisting, H. [Universite de Geneve, DPNC, Section de Physique, Geneva (Switzerland); De Bari, A.; Cecchet, G. [Sezione INFN Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Pavia (Italy); Bayes, R.; Forrest, D.; Nugent, J.C.; Soler, F.J.P.; Walaron, K. [The University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Bertoni, R.; Bonesini, M.; Lucchini, G. [Sezione INFN Milano Bicocca (Italy); Dipartimento di Fisica G. Occhialini, Milano (Italy); Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D. [University of Oxford, Department of Physics, Oxford (United Kingdom); Blot, S.; Kim, Y.K. [University of Chicago, Enrico Fermi Institute, Chicago, IL (United States); Bogomilov, M.; Kolev, D.; Rusinov, I.; Tsenov, R.; Vankova, G. [St. Kliment Ohridski University of Sofia, Department of Atomic Physics, Sofia (Bulgaria); Booth, C.N.; Hodgson, P.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.P.; Zisman, M.S. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Bravar, U. [University of New Hampshire, Durham, NH (United States); Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R. [Fermilab, Batavia, IL (United States); Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L. [Sezione INFN Roma Tre e Dipartimento di Fisica, Roma (Italy); Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Owens, P.; White, C. [STFC Daresbury Laboratory, Cheshire (United Kingdom); Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C. [University of California, Riverside, CA (United States); Cooke, P.; Gamet, R. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J. [University of Mississippi, Oxford, MS (United States); Dick, A.J.; Ronald, K.; Whyte, C.G. [University of Strathclyde, Department of Physics, Glasgow (United Kingdom); Filthaut, F. [NIKHEF, Amsterdam (Netherlands); Freemire, B.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y. [Illinois Institute of Technology, Chicago, IL (United States); Hansen, O.M.; Ramberger, S.; Vretenar, M. [CERN, Geneva (Switzerland); Ishimoto, S. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Kuno, Y.; Sakamoto, H. [Osaka University, Graduate School of Science, Department of Physics, Toyonaka, Osaka (Japan); Kyberd, P.; Littlefield, M.; Nebrensky, J.J. [Brunel University, Uxbridge (United Kingdom); Onel, Y. [University of Iowa, Department of Physics and Astronomy, Iowa City, IA (United States); Palladino, V. [Universita Federico II, Sezione INFN Napoli (Italy); Dipartimento di Fisica, Napoli (Italy); Palmer, R.B. [Brookhaven National Laboratory, Upton, NY (US); Roberts, T.J. [Muons, Inc., Batavia, IL (US); Collaboration: The MICE Collaboration

    2013-10-15

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2-2.3 {pi} mm-rad horizontally and 0.6-1.0 {pi} mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. (orig.)

  16. Characterisation of the Muon Beams for the Muon Ionisation Cooling Experiment

    CERN Document Server

    Adams, D; Alekou, A; Apollonio, M; Asfandiyarov, R; Back, J; Barber, G; Barclay, P; de Bari, A; Bayes, R; Baynham, D E; Bertoni, R; Blackmore, V J; Blondel, A; Blot, S; Bogomilov, M; Bonesini, M; Booth, C N; Bowring, D; Boyd, S; Bradshaw, T W; Bravar, U; Bross, A D; Capponi, M; Carlisle, T; Cecchet, G; Charnley, G; Cobb, J H; Colling, D; Collomb, N; Coney, L; Cooke, P; Courthold, M; Cremaldi, L M; DeMello, A; Dick, A; Dobbs, A; Dornan, P; Fayer, S; Filthaut, F; Fish, A; Fitzpatrick, T; Fletcher, R; Forrest, D; Francis, V; Freemire, B; Fry, L; Gallagher, A; Gamet, R; Gourlay, S; Grant, A; Graulich, J S; Griffiths, S; Hanlet, P; Hansen, O M; Hanson, G G; Harrison, P; Hart, T L; Hartnett, T; Hayler, T; Heidt, C; Hills, M; Hodgson, P; Hunt, C; Iaciofano, A; Ishimoto, S; Kafka, G; Kaplan, D M; Karadzhov, Y; Kim, Y K; Kolev, D; Kuno, Y; Kyberd, P; Lau, W; Leaver, J; Leonova, M; Li, D; Lintern, A; Littlefield, M; Long, K; Lucchini, G; Luo, T; Macwaters, C; Martlew, B; Martyniak, J; Middleton, S; Moretti, A; Moss, A; Muir, A; Mullacrane, I; Nebrensky, J J; Neuffer, D; Nichols, A; Nicholson, R; Nugent, J C; Onel, Y; Orestano, D; Overton, E; Owens, P; Palladino, V; Palmer, R B; Pasternak, J; Pastore, F; Pidcott, C; Popovic, M; Preece, R; Prestemon, S; Rajaram, D; Ramberger, S; Rayner, M A; Ricciardi, S; Richards, A; Roberts, T J; Robinson, M; Rogers, C; Ronald, K; Rubinov, P; Rucinski, R; Rusinov, I; Sakamoto, H; Sanders, D A; Santos, E; Savidge, T; Smith, P J; Snopok, P; Soler, F J P; Summers, D J; Takahashi, M; Tarrant, J; Taylor, I; Tortora, L; Torun, Y; Tsenov, R; Tunnell, C D; Vankova, G; Verguilov, V; Virostek, S; Vretenar, M; Walaron, K; Watson, S; White, C; Whyte, C G; Wilson, A; Wisting, H; Zisman, M

    2013-01-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  17. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  18. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    International Nuclear Information System (INIS)

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented

  19. Suppression of propagating TE modes in the FNAL antiproton source stochastic beam cooling system

    International Nuclear Information System (INIS)

    A method of attenuating the propagation of waveguide modes in the stochastic cooling array beam pipes to be utilized in the accumulator and debuncher rings of the Fermilab antiproton source is described. The attenuation method treated involves lining the vertical walls of the beam pipes with a ferrimagnetic material. The general solution for propagation in a nonhomogeneously loaded waveguide is presented along with numerical results specific to the antiproton source beam cooling system. Also described is a broadband, automated technique for the simultaneous measurement of complex μ and epsilon developed to aid in the characterization of different ferrite materials. Permittivity and permeability data for a typical ferrite are presented along with a discussion of the effects of these parameters on waveguide mode attenuation in the ferrite lined beam pipes

  20. Suppression of propagating TE modes in the fnal antiproton source stochastic beam cooling system

    International Nuclear Information System (INIS)

    A method of attenuating the propagation of waveguide modes in the stochastic cooling array beam pipes to be utilized in the accumulator and debuncher rings of the Fermilab antiproton source is described. The attenuation method treated involves lining the vertical walls of the beam pipes with a ferrimagnetic material. The general solution for propagation in a nonhomogeneously loaded waveguide is presented along with numerical results specific to the antiproton source beam cooling system. Also described is a broadband, automated technique for the simultaneous measurement of complex μ and epsilon developed to aid in the characterization of different ferrite materials. Permittivity and permeability data for a typical ferrite is presented along with a discussion of the effects of these parameters on waveguide mode attenuation in the ferrite lined beam pipes

  1. A simple counter-flow cooling system for a supersonic free-jet beam source assembly

    Science.gov (United States)

    Barr, M.; Fahy, A.; Martens, J.; Dastoor, P. C.

    2016-05-01

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  2. A cryogenically cooled, ultra-high-energy-resolution, trap-based positron beam

    International Nuclear Information System (INIS)

    A technique is described to produce a pulsed, magnetically guided positron beam with significantly improved beam characteristics over those available previously. A pulsed, room-temperature positron beam from a buffer gas trap is used as input to a trap that captures the positrons, compresses them both radially and axially, and cools them to 50 K on a cryogenic CO buffer gas before ejecting them as a pulsed beam. The total energy spread of the beam formed using this technique is 6.9 ± 0.7 meV FWHM, which is a factor of ∼5 better than the previous state-of-the-art, while simultaneously having sub-microsecond temporal resolution and millimeter spatial resolution. Possible further improvements in beam quality are discussed

  3. A cryogenically cooled, ultra-high-energy-resolution, trap-based positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Natisin, M. R., E-mail: mnatisin@physics.ucsd.edu; Danielson, J. R.; Surko, C. M. [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-01-11

    A technique is described to produce a pulsed, magnetically guided positron beam with significantly improved beam characteristics over those available previously. A pulsed, room-temperature positron beam from a buffer gas trap is used as input to a trap that captures the positrons, compresses them both radially and axially, and cools them to 50 K on a cryogenic CO buffer gas before ejecting them as a pulsed beam. The total energy spread of the beam formed using this technique is 6.9 ± 0.7 meV FWHM, which is a factor of ∼5 better than the previous state-of-the-art, while simultaneously having sub-microsecond temporal resolution and millimeter spatial resolution. Possible further improvements in beam quality are discussed.

  4. Application of droplet evaporation model to the expansion cooling of an atomic uranium beam

    International Nuclear Information System (INIS)

    By using the technique of laser induced fluorescence to measure the velocity distribution function of an atomic uranium beam produced by evaporation from a spherical surface by electron bombardment, we have observed the phenomenon of vapour expansion cooling. Agreement between the theoretical analysis and experimental results is satisfactory. (author)

  5. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    OpenAIRE

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran; Bergsøe, Niels Christian

    2013-01-01

    Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings. The building model had a net volume of 3669 m3, (L*B: 25.5m*11.5 m) and net ceiling height of 2.55 m. The building model was assumed to consist of 78 office rooms, 6 meeting rooms and 5 corridors with a 50% o...

  6. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  7. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    International Nuclear Information System (INIS)

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at λω = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5±3.8 cm/s yielding a full divergence of only 0.48 ± 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, Λ-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two-color spectroscopy experiment

  8. Low-noise gallium-arsenide field-effect transistor preamplifiers for stochastic beam cooling systems

    International Nuclear Information System (INIS)

    The present noise performance, bandwidth capability and gain stability of bipolar and field-effect transistors, parametric amplifier, Schottky diode mixer and maser are summarized and compared in the 100 MHz to 40 GHz frequency range for stochastic beam cooling systems. Stability factor of GaAs FET's as a function of ambient temperature is presented and discussed. Performance data of several low-noise wide-band cryogenically cooled preamplifiers are presented including one with a noise figure of 0.35 dB over a bandwidth range of 150500 MHz operating at ambient temperature of 200K. Also, data are given on a broadband 1-2 GHz preamplifier having a noise figure of approximately 0.2 dB. The gain, operating noise temperature, stability, gain nonuniformity and phase-shift as function of frequency of interest for beam cooling systems are discussed

  9. Steady state performance test analysis of actively cooled extractor grids for SST-1 neutral beam injector

    International Nuclear Information System (INIS)

    Neutral beam injection (NBI) system is a workhorse to heat magnetically confined tokamak fusion plasma. The heart of any NBI system is an ion extractor system. Steady State Superconducting Tokamak-1 (SST-1) needs 0.5 MW of hydrogen beam power at 30 kV to raise the plasma ion temperature to ∼1 keV and 1.7 MW of hydrogen beam power at 55 kV for future upgradation. To meet this requirement, an ion extractor system consisting of three actively cooled grids has been designed, fabricated, and its performance test has been done at MARION test stand, IPP, Julich, Germany. During long pulse (14 s) operation, hydrogen ion beam of energy 31 MJ has been extracted at 41 kV. In this paper, we have presented detailed analysis of calorimetric data of actively cooled extractor grids and showed that by monitoring outlet water temperature, grid material temperature can be monitored for safe steady state operation of a NBI system. Steady state operation of NBI is the present day interest of fusion research. In the present experimental case, performance test analysis indicates that the actively cooled grids attain steady state heat removal condition and the grid material temperature rise is ∼18 deg. C and saturates after 10 s of beam pulse.

  10. Laser Compton Cooling of Relativistic Electron and Positron Beams and Pair Plasmas

    Science.gov (United States)

    Liang, Edison; Dahlstrom, Erin

    2010-11-01

    With the advance of high energy intense lasers, it becomes conceivable to use photons to slow down relativistic electron and positron beams, or rapidly cool a relativistic electron-positron pair plasma. Here we present results from the Monte Carlo simulations of the Compton cooling of relativistic electrons and positrons using intense lasers of one micron wavelength. We find that several hundred kJ to a MJ of laser energy is sufficient to Compton cool multi-MeV electrons/positrons down to keV energies and below. We also explore the use of resonant Compton cooling in a strong magnetic field (100 MG and above). Preliminary results using Doppler shifted laser light look promising.

  11. Laser system for cooling of relativistic C3+-ion beams in storage rings

    International Nuclear Information System (INIS)

    Cold ion beams are essential for many precision experiments at storage rings. While spectroscopic experiments gain from the high energy resolution, collision experiments benefit from the increased luminosity. Furthermore, sympathetic cooling of exotic species is conceivable with the aid of cold ion beams. Besides the long established electron cooling, alternative cooling methods are gaining in importance, especially for high energy particles. In the past, experiments to cool ions with lasers were performed. Because of the matching wavelength and output power, frequency doubled Argon-ion lasers at 257 nm were used during these experiments. Due to the strongly limited scanning potential of these systems, it was not possible to cool the full inertia spread of the ion beams. A new laser system was developed in this thesis because of the lack of commercial alternatives. After the characterization of the system, it was tested during a beamtime at the Experimentierspeicherring (ESR) at the Gesellschaft fuer Schwerionenforschung (GSI). The completely solid state based system delivers up to 180 mW of output power at 257 nm and is modehop free tunable up to 16 GHz in 10 ms at this wavelength. By using efficient diode lasers, the new system consumes considerably less power than comparable Argon-ion lasers. The fundamental wavelength of 1028 nm is amplified up to 16 W with an Yb-doped fiber amplifier. Subsequently, the target wavelength of 257 nm is realized in two consecutive build-up cavities. Another diode laser, stabilized to a wavelength meter, serves as a frequency reference. This new laser system first came to operation during beamtime in August 2012, when relativistic C3+ ions with β=0.47 were cooled successfully. For the first time it was possible to access the whole inertia spread of a bunched ion beam without electron precooling. In contrast to prior experiments, only the laser frequency was scanned and not the bunching frequency of the ion beam. The results for

  12. Production of transversely cooled, spin-polarized pulse beam from a low-velocity intense source of rubidium

    International Nuclear Information System (INIS)

    In this experiment we studied the possibility of producing a pulsed beam for greater instantaneous beam flux, cooling the beam transversely to increase the effective beam flux and finally optical pumping to produce spin polarized atomic beam. We successfully and reliably produced a pulsed beam, and observed definite transverse cooling of the beam. We developed rather elaborate control program and interface hardware to produce the pulsed beam, and transversely cool, optically pump, and detect the atoms. We have produced the low-velocity intense source(LVIS) beam and operated it in a pulsed mode. Using an electronically controlled shutter we could load a Magneto Optical Trap(MOT) for 1 sec and launched a pulse of rubidium atoms. We performed the transverse cooling experiment using the pulses. In order to detect how the cooling is working, we used a slit to narrow down the probe beam. The probe beam had a width of 1 mm and we scanned it using a micrometer-controlled translational stage. (Cho, G.S.). 7 refs., 2 figs

  13. A cryogenic beam of refractory, chemically reactive molecules with expansion cooling

    CERN Document Server

    Hutzler, Nicholas R; Gurevich, Yulia V; Hess, Paul W; Petrik, Elizabeth; Spaun, Ben; Vutha, Amar C; DeMille, David; Gabrielse, Gerald; Doyle, John M

    2011-01-01

    Cryogenically cooled buffer gas beam sources of the molecule thorium monoxide (ThO) are optimized and characterized. Both helium and neon buffer gas sources are shown to produce ThO beams with high flux, low divergence, low forward velocity, and cold internal temperature for a variety of stagnation densities and nozzle diameters. The beam operates with a buffer gas stagnation density of ~10^15-10^16 cm^-3 (Reynolds number ~1-100), resulting in expansion cooling of the internal temperature of the ThO to as low as 2 K. For the neon (helium) based source, this represents cooling by a factor of about 10 (2) from the initial nozzle temperature of about 20 K (4 K). These sources deliver ~10^11 ThO molecules in a single quantum state within a 1-3 ms long pulse at 10 Hz repetition rate. Under conditions optimized for a future precision spectroscopy application [A C Vutha et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074007], the neon-based beam has the following characteristics: forward velocity of 170 m/s, internal ...

  14. Design of Air-Cooled Beam Dump for Extraction Line of PS Booster

    CERN Document Server

    Perillo-Marcone, A; Venturi, V; Antonakakis, T; Vlachoudis, V; Nowak, E; Mason, G; Battistin, M; Czapski, M; Sgobba, S

    2013-01-01

    A new beam dump has been designed, which withstands the future proton beam extracted from the Proton Syncrotron Booster (PSB) at CERN, consisting of up to 1E14 protons per pulse at 2 GeV after its upgrade in 2018/2019. In order to be able to efficiently release the deposited heat, the new dump will be made out of a single cylindrical block of a copper alloy and cooled by forced ventilation. In order to determine the energy density distribution deposited by the beam in the dump, Monte Carlo simulations were performed using FLUKA, and thermomechanical analyses carried out by importing the energy density into Ansys. In addition, CFD simulations of the airflow were carried out in order to accurately estimate the heat transfer convection coefficient on the surface of the dump. This paper describes the design process and highlights the constraints of integrating a new dump for increased beam power into the existing facility.

  15. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    OpenAIRE

    The MICE Collaboration; Adams, D.; Adey, D.; Alekou, A.; Apollonio, M; Asfandiyarov, R.; Back, J.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.

    2013-01-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured para...

  16. A layered cooling process in whole quenching process for lightweight front axle beam

    Directory of Open Access Journals (Sweden)

    Gao Kai

    2015-01-01

    Full Text Available In order to improve the uniformity of martensite distribution and obtain consistent mechanical performance during the quenching process of front axle beam, a layered cooling process was presented in this paper. The fluid-solid coupled temperature field were investigated by finite element modeling and the prediction of micro-structure and hardness distributions were also carried out. The experimental result verifies the reliability of this model.

  17. Foil Cooling for the Rep-Rated Electron Beam Pumped Electra Laser

    Science.gov (United States)

    Giuliani, J. L.; Hegeler, F.; Wolford, M. F.; Abdel-Khalik, S.

    2005-10-01

    The Electra program at the Naval Research Laboratory is developing the science and technologies for implementation of krypton-fluoride (KrF) lasers in inertial fusion energy. Large aperture KrF lasers are pumped by electron beams which transit a foil separating the gas target at >=1 atm pressure from the vacuum diode. A fraction of the beam energy is deposited in the foil and thus long term (>=10^8 shots), rep-rated (5 Hz) operation requires active cooling of the foil to prevent thermal yield relaxation and cycling fatigue. This paper will report on experimental data and theoretical analysis of two diverse approaches to foil thermal management: convective and conductive cooling. Convective turbulent cooling has been operational on the Electra main amp through the use of oscillating louvers within a gas recirculator containing the pumped lasing region. At 5 Hz the foil temperature (Tf) can be maintained at ˜400 ^oC for a 1 mil SS foil. Conduction cooling provides the simplest configuration with only the need for water channels in the ribs of the hibachi. For a 1 mil Al foil, Tf is predicted to be ˜140 ^oC at 5 Hz. Comparison of experimental and theoretical results and advanced foil materials will be discussed.

  18. Issues concerning high current lower energy electron beams required for ion cooling between EBIS LINAC and booster

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch,A.

    2009-03-01

    Some issues, regarding a low energy high current electron beam that will be needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, are examined. Options for propagating such an electron beam, as well as the effect of neutralizing background plasma on electron and ion beam parameters are calculated. Computations and some experimental data indicate that none of these issues is a show stopper.

  19. Correlation of photon beam motion with vacuum chamber cooling on the NSLS x-ray ring

    International Nuclear Information System (INIS)

    The NSLS X-ray ring exhibits a direct correlation between photon beam motion, and distortion of the ring vacuum chamber induced by fluctuations in the cooling system. We have made long term measurements of photon beam vertical position, accelerator vacuum chamber motion, process water temperatures, and angular motions of the magnets around one superperiod of the NSLS x-ray ring. Short term transients in water temperature cause deflection of the ring vacuum chamber which have in turn been shown to induce very small angular rotations of the magnets, on the order of 10 micro-radians. A larger and more difficult to correct effect is the drift in beam position over the course of a fill. This problem has been shown to be related to the thermal gradients that develop across the vacuum chamber which, as a consequence of the configuration of the chamber cooling, depend upon stored current. Orbit simulations based upon the measured rotations are in agreement with the observed beam motions, and reveal that certain patterns of correlated motions of the magnets can produce much larger errors than random motion or concerted motion of all the magnets. During the course of these measurements global orbit feedback was installed, and found to significantly reduce the orbit errors which could not be corrected at their source

  20. Bright focused ion beam sources based on laser-cooled atoms

    CERN Document Server

    McClelland, J J; Knuffman, B; Twedt, K A; Schwarzkopf, A; Wilson, T M

    2015-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 uK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Never...

  1. Bright focused ion beam sources based on laser-cooled atoms

    Science.gov (United States)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-03-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

  2. Feasibility Study of Compact Gas-Filled Storage Ring for 6D Cooling of Muon Beams

    International Nuclear Information System (INIS)

    The future of elementary particle physics in the USA depends in part on the development of new machines such as the International Linear Collider, Muon Collider and Neutrino Factories which can produce particle beams of higher energy, intensity, or particle type than now exists. These beams will enable the continued exploration of the world of elementary particles and interactions. In addition, the associated development of new technologies and machines such as a Muon Ring Cooler is essential. This project was to undertake a feasibility study of a compact gas-filled storage ring for 6D cooling of muon beams. The ultimate goal, in Phase III, was to build, test, and operate a demonstration storage ring. The preferred lattice for the storage ring was determined and dynamic simulations of particles through the lattice were performed. A conceptual design and drawing of the magnets were made and a study of the RF cavity and possible injection/ejection scheme made. Commercial applications for the device were investigated and the writing of the Phase II proposal completed. The research findings conclude that a compact gas-filled storage ring for 6D cooling of muon beams is possible with further research and development

  3. Redundant Sb condensation on GaSb epilayers grown by molecular beam epitaxy during cooling procedure

    International Nuclear Information System (INIS)

    The effect of four different cooling receipts on the surface morphologies of unintentionally-doped GaSb epilayers on GaSb (100) substrates grown by molecular beam epitaxy is reported. Those receipts include three different Sb beam equivalent pressure (BEP) levels and two different termination temperatures. Surface morphologies of epilayers were examined by wet etching, surface profiler, atomic force microscopy, scanning electron microscopy and Raman spectroscopy. The results demonstrate that during the cooling period, a Sb BEP of 4.00 × 10−4 Pa at a termination temperature of 400 °C induces a smooth surface without Sb condensation whereas same Sb BEP at a termination temperature of 350 °C forms a 300 nm thick Sb layer on the surface. In addition, it is revealed that by applying a wet etching procedure and using a surface profiler it is possible to identify this condensed layer from the two-sloped feature of mesa profile. - Highlights: • Sb beam flux termination temperature is crucial for redundant Sb condensation. • Sb beam flux level has a role on the thickness of redundant condensed Sb layer. • Redundant Sb layer thickness can be measured by two-sloped mesa structure

  4. Experimental and theoretical JINR studies on the development of stochastic cooling of charged particle beams

    Science.gov (United States)

    Sidorin, A. O.; Trubnikov, G. V.; Shurkhno, N. A.

    2016-03-01

    In 2010, based on the superconducting heavy-ion synchrotron Nuclotron, a new accelerating complex NICA (Nuclotron-based Ion Collider fAcility) started to be constructed at the Laboratory of High Energy Physics of the Joint Institute for Nuclear Research, its key facility being the 1.0 - 4.5 GeV per nucleon heavy ion collider. For the purpose of effectively collecting statistics, an average collider luminosity of 1027 cm -2 s -1 is required. With this collider energy, the cooling of the beam both in the process of storage and during the experiment is mandatory to ensure the required parameters. In this paper, a possible new regime of stochastic cooling is examined.

  5. APT Blanket Thermal Analysis of Cavity Flood Cooling with a Beam Window Break; FINAL

    International Nuclear Information System (INIS)

    The cavity flood system is designed to be the primary safeguard for the integrity of the blanket modules and target assemblies during loss of coolant accidents, LOCA''s. In the unlikely event that the internal flow passages in a blanket module or a target assembly dryout, decay heat in the metal structures will be dissipated to the cavity flood system through the module or assembly walls. This study supplements the two previous studies by demonstrating that the cavity flood system can adequately cool the blanket modules when the cavity vessel beam window breaks

  6. A water-cooled x-ray monochromator for using off-axis undulator beam

    International Nuclear Information System (INIS)

    Undulator beamlines at third-generation synchrotrons x-ray sources are designed to use the high-brilliance radiation that is contained in the central cone of the generated x-ray beams. The rest of the x-ray beam is often unused. Moreover, in some cases, such as in the zone-plate-based microfocusing beamlines, only a small part of the central radiation cone around the optical axis is used. In this paper, a side-station branch line at the Advanced Photon Source that takes advantage of some of the unused off-axis photons in a microfocusing x-ray beamline is described. Detailed information on the design and analysis of a high-heat-load water-cooled monochromator developed for this beamline is provided

  7. Replacement of RF power supply and cooling system and sub-picosecond single pulse beam test

    International Nuclear Information System (INIS)

    We have replaced the 15 MW Klystron (2856 MHz) system and the 5 kW amplifier system of Sub-harmonic Buncher (476 MHz) in our LINAC facility. The peak power fluctuation of the klystron was measured within 0.2 % and the phase stability was measured within 0.5 degrees. Also we have replaced the cooling system of the accelerating tubes for controlling the water temperature within 0.01 degree. Then the fluctuation of the sub-pico second single pulse beams have been more stable than the old systems. The peak currents stability was measured within 2.5% (rms) and the averaging beam current stability was measured within about 10% during 30 min. (author)

  8. The mechanical design of a bunched beam stochastic cooling tank for the FNAL Tevatron

    International Nuclear Information System (INIS)

    The stringent alignment required for successful bunched beam stochastic cooling in FNAL's Tevatron necessitates the design and manufacture of a complex vacuum compatible mechanical alignment system. The design presented uses remote motion control to provide a positioning system with four degrees of freedom for placing two symmetric pickup loop arrays about the proton beam and with two degrees of freedom for aligning the arrays relative to each other. The system provides a 7.62 cm aperture between arrays during injection and a 1.90 cm aperture during operation while maintaining alignment between arrays within 50 μm. The system also allows precise remote longitudinal adjustment between pickup arrays with .002 μm resolution via a piezoelectric crystal inchworm motor in vacuum. Discussion includes the manufacture and installation of four complete pickup and kicker systems in the FNAL, Tevatron

  9. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor

    International Nuclear Information System (INIS)

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can

  10. Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  11. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-05-07

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

  12. Traveling-wave tube amplifier characteristics study for stochastic beam-cooling experiments

    International Nuclear Information System (INIS)

    The characteristics of continuous-wave wideband traveling-wave tube amplifiers have been experimentally investigated over a frequency range of 1.5 to 4.5 GHz. We present measurements of characteristics important for stochastic beam cooling systems that are generally not available from manufacturers' data sheets. The amplifers measured include models 1177 H01 and 1277 H01 having output power capabilities of 10 to 20 W, respectively, at frequencies of 2 to 4 GHz. The power transfer characteristics, the phase-shift characteristics as functions of frequency and the input power level, the voltage standing-wave ratio, noise drive transfer characteristics, harmonics and intermodulation products content were accurately measured and are discussed. Measurement procedures and description of measuring systems, which include measuring system error corrections, are given in detail. Also several approaches are discussed for the reduction of harmonics and intermodulation products

  13. Design, fabrication, installation and commissioning of water-cooled beam viewer for undulator front-ends of Indus-2

    International Nuclear Information System (INIS)

    A water-cooled beam viewer is developed indigenously to observe the bright synchrotron light coming from recently installed undulators in Indus-2 storage ring at RRCAT, Indore. The beam viewer is installed in the undulator front-end. The frontend is a long ultra high vacuum (UHV) assembly consisting of UHV valves, shutters, vacuum pumps and beam diagnostic devices. The front-end acts as an interface between Indus-2 ring and beamline. The beam viewer uses a fluorescent sheet of Chromium doped Alumina (CHROMOX) which produces visible fluorescent light when bright synchrotron light from the undulator falls on it. This visible fluorescent light is observed through a glass window by a CCD camera. The beam viewer has been successfully tested and commissioned in Indus-2 front-end for undulator. At present, the beam viewer is operating under vacuum of 5 x 10-10 mbar in the Indus-2 undulator front-end

  14. First experiments with cooled clusters at the Cryogenic Trap for fast ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Christian; Blaum, Klaus; George, Sebastian; Lange, Michael; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Breitenfeldt, Christian; Schweikhard, Lutz [Institut fuer Physik, Ernst-Moritz-Arndt Universitaet, 17487 Greifswald (Germany)

    2014-07-01

    The Cryogenic Trap for Fast ion beams (CTF) is an electrostatic ion beam trap for the investigation of charged particles in the gas phase located at the ''Max-Planck-Institut fuer Kernphysik'' in Heidelberg. It is suited to study thermionic and laser-induced electron emission of anions with complex multi-body structure such as clusters and molecules. They can be stored up to several minutes due to the low pressure of 10{sup -14} mbar in an ambient temperature down to 15 K. The experiments were so far hampered by the ion production in a sputter source leading to excited particles with high rovibrational states. In order to be able to investigate the ground state properties of such systems a new supersonic expansion source has been implemented. A laser-induced plasma is expanded into vacuum by short pulses (50 μs) of a helium carrier gas and thereby rovibrationally cooled. First test with metal cluster are presented and discussed.

  15. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W., E-mail: luwang@impcas.ac.cn; Qian, C.; Sun, L. T.; Zhang, X. Z.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.; Zhan, W. L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); Fang, X.; Guo, J. W.; Yang, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, B.; Ruan, L. [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Xie, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-02-15

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O{sup 7+}, 620 eμA of Ar{sup 11+}, 430 eμA of Ar{sup 12+}, 430 eμA of Xe{sup 20+}, and so on. The comparison will be discussed in the paper.

  16. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    International Nuclear Information System (INIS)

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O7+, 620 eμA of Ar11+, 430 eμA of Ar12+, 430 eμA of Xe20+, and so on. The comparison will be discussed in the paper

  17. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    Science.gov (United States)

    Lu, W.; Qian, C.; Sun, L. T.; Zhang, X. Z.; Fang, X.; Guo, J. W.; Yang, Y.; Feng, Y. C.; Ma, B. H.; Xiong, B.; Ruan, L.; Zhao, H. W.; Zhan, W. L.; Xie, D.

    2016-02-01

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O7+, 620 eμA of Ar11+, 430 eμA of Ar12+, 430 eμA of Xe20+, and so on. The comparison will be discussed in the paper.

  18. Mass measurement of halo nuclides and beam cooling with the mass spectrometer Mistral

    International Nuclear Information System (INIS)

    Halo nuclides are a spectacular drip-line phenomenon and their description pushes nuclear theories to their limits. The most critical input parameter is the nuclear binding energy; a quantity that requires excellent measurement precision, since the two-neutron separation energy is small at the drip-line by definition. Moreover halo nuclides are typically very short-lived. Thus, a high accuracy instrument using a quick method of measurement is necessary. MISTRAL is such an instrument; it is a radiofrequency transmission mass spectrometer located at ISOLDE/CERN. In July 2003 we measured the mass of the Li11, a two-neutron halo nuclide. Our measurement improves the precision by a factor 6, with an error of 5 keV. Moreover the measurement gives a two-neutron separation energy 20% higher than the previous value. This measurement has an impact on the radius of the nucleus, and on the state of the two valence neutrons. At the same time, a measurement of the Be11 was performed with an uncertainty of 4 keV, in excellent agreement with previous measurements. In order to measure the mass of the two-neutron halo nuclide Be14, an ion beam cooling system is presently under development which will increase the sensitivity of the spectrometer. The second part of this work presents the development of this beam cooler using a gas-filled Paul trap. (author)

  19. Low-noise gallium-arsenide field-effect transistor preamplifiers for stochastic beam-cooling systems

    International Nuclear Information System (INIS)

    The present noise performance, bandwidth capability and gain stability of bipolar and field-effect transistors, parametric amplifier, Schottky diode mixer and maser are summarized and compared in the 100 MHz to 40 GHz frequency range for stochastic beam cooling systems. Stability factor of GaAs FET's as a function of ambient temperature is presented and discussed. Performance data of several low-noise wide-band cryogenically cooled preamplifiers are presented including one with a noise figure of 0.35 dB over a bandwidth range of 150 to 500 MHz operating at ambient temperature of 200K. Also, data are given on a broadband 1 to 2 GHz preamplifier having a noise figure of approximately 0.2 dB. The gain, operating noise temperature, stability, gain nonuniformity and phase-shift as function of frequency of interest for beam cooling systems are discussed

  20. The preparation of particle beams for experiments of hadron physics: Slow extraction at ELFE rate at DESY and ELSA, as well as beam cooling at HERA

    International Nuclear Information System (INIS)

    Various complementary experimental approaches are possible to study hadron physics, all of which require dedicated accelerator facilities. One approach, known as the ELFE rate at DESY project, makes use of a continuous electron beam with an energy of 15 to 25 GeV, a current of at least 30 μA and very small emittance, for fixed target experiments. The formation of such a beam by stretching a pulsed LINAC beam with the help of the HERA electron ring has been studied. At lower beam energies and currents this concept is already being used at the ELSA facility of Bonn University. Here the extraction process has been studied intensively and has been compared with measurements. Another approach to study hadron physics is the use of an electron - ion collider. To achieve high integrated luminosities cooling of the ion beam is necessary, especially in the case of heavy ions. For HERA high energy beam cooling with the help of an electron storage ring has been studied. (orig.)

  1. Simulation studies of the beam cooling process in presence of heating effects in the Extra Low ENergy Antiproton ring (ELENA)

    International Nuclear Information System (INIS)

    The Extra Low ENergy Antiproton ring (ELENA) is a small synchrotron equipped with an electron cooler, which is currently being constructed at CERN to further decelerate antiprotons from the Antiproton Decelerator (AD) from 5.3 MeV to energies as low as 100 keV. At such low energies it is very important to carefully take contributions from electron cooling and beam heating mechanisms (e.g. on the residual gas and intrabeam scattering) into account. Detailed investigations into the ion kinetics under consideration of effects from electron cooling and heating sources have been carried out, and the equilibrium phase space dimensions of the beam have been computed, based on numerical simulations using the code BETACOOL. The goal is to provide a consistent explanation of the different physical effects acting on the beam in ELENA

  2. High Pressure Gas Filled RF Cavity Beam Test at the Fermilab MuCool Test Area

    Energy Technology Data Exchange (ETDEWEB)

    Freemire, Ben [Illinois Inst. of Technology, Chicago, IL (United States)

    2013-05-01

    The high energy physics community is continually looking to push the limits with respect to the energy and luminosity of particle accelerators. In the realm of leptons, only electron colliders have been built to date. Compared to hadrons, electrons lose a large amount of energy when accelerated in a ring through synchrotron radiation. A solution to this problem is to build long, straight accelerators for electrons, which has been done with great success. With a new generation of lepton colliders being conceived, building longer, more powerful accelerators is not the most enticing option. Muons have been proposed as an alternative particle to electrons. Muons lose less energy to synchrotron radiation and a Muon Collider can provide luminosity within a much smaller energy range than a comparable electron collider. This allows a circular collider to be built with higher attainable energy than any present electron collider. As part of the accelerator, but separate from the collider, it would also be possible to allow the muons to decay to study neutrinos. The possibility of a high energy, high luminosity muon collider and an abundant, precise source of neutrinos is an attractive one. The technological challenges of building a muon accelerator are many and diverse. Because the muon is an unstable particle, a muon beam must be cooled and accelerated to the desired energy within a short amount of time. This requirement places strict requisites on the type of acceleration and focusing that can be used. Muons are generated as tertiary beams with a huge phase space, so strong magnetic fields are required to capture and focus them. Radio frequency (RF) cavities are needed to capture, bunch and accelerate the muons. Unfortunately, traditional vacuum RF cavities have been shown to break down in the magnetic fields necessary for capture and focusing.

  3. Photon detection system for laser spectroscopy experiments with cooled/bunched beams at BECOLA facility at NSCL

    Science.gov (United States)

    Hughes, Maximilian; Minamisono, Kei; Mantica, Paul; Rossi, Dominic; Ryder, Caleb; Klose, Andrew; Tarazona, David; Strum, Ryan; Bollen, Georg; Ringle, Ryan; Barquest, Brad; Geppert, Christopher

    2013-10-01

    The BEam COoler and LAser spectroscopy (BECOLA) facility at NSCL is designed to determine fundamental properties of the atomic nucleus such as the charge radii, the spin and electromagnetic moments. Commissioning tests of BECOLA has been completed using a stable 39K beam produced from an offline ion source. The 39K beam was cooled and bunched and propagated collinearly with laser light. The resulting fluorescence was detected in a photomultiplier tube (PMT)sensitive to the wavelength of D1 transition of 39K The PMT was cooled to minimize background due to dark counts. The resulting fluorescence light was measured as a function of laser frequency and time relative to the 39K beam bunch. An EPICS-based Control Systems Studio (CSS) was used for data acquisition and the software package Root was used for data analysis. The performance characteristics of the photon detection system as well as the laser spectroscopy of bunched 39K will be discussed. Work was supported in part by the National Science Foundation, Grant PHY-11-02511.

  4. Design concept for a direct water-cooled silicon crystal for use in a high-power synchrotron radiation beam

    International Nuclear Information System (INIS)

    The onset of high-power Synchrotron Radiation beams, now available at several of the Synchrotron Radiation facilities, has resulted in a search for new ways on how to handle the increased thermal load on optical components that are directly exposed to these beams. This report examines one possible way of the direct water-cooling of a silicon crystal as used in monochromators and how to get the water to the crystal with the least possible strain on the crystal. Suggestions are made on how to mount the crystal assembly in an experimental setup, so that physical properties of the crystal can be measured during direct exposure to a suitable high-power Synchrotron Radiation beam. Ways of making small correction movements to the crystal in two directions are outlined. (author)

  5. Production of cold beams of ND3 with variable rotational state distributions by electrostatic extraction of He and Ne buffer-gas-cooled beams

    International Nuclear Information System (INIS)

    The measurement of the rotational state distribution of a velocity-selected, buffer-gas-cooled beam of ND3 is described. In an apparatus recently constructed to study cold ion-molecule collisions, the ND3 beam is extracted from a cryogenically cooled buffer-gas cell using a 2.15 m long electrostatic quadrupole guide with three 90° bends. (2+1) resonance enhanced multiphoton ionization spectra of molecules exiting the guide show that beams of ND3 can be produced with rotational state populations corresponding to approximately Trot = 9–18 K, achieved through manipulation of the temperature of the buffer-gas cell (operated at 6 K or 17 K), the identity of the buffer gas (He or Ne), or the relative densities of the buffer gas and ND3. The translational temperature of the guided ND3 is found to be similar in a 6 K helium and 17 K neon buffer-gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively). The characterization of this cold-molecule source provides an opportunity for the first experimental investigations into the rotational dependence of reaction cross sections in low temperature collisions

  6. Development of polyvinyl pyrrolidone (PVP) based hydrogel as cooling fever plester induced by electron beam irradiation

    International Nuclear Information System (INIS)

    The development of PVP based hydrogel as cooling fever plester using electron, beam irradiation technique has been done. The hydrogel was prepared by irradiating mixtures of PVP, PVA and another ingredients with various compositions (formula I, II, III and IV) at dose of 20 to 40 kGy. Several parameters of hydrogel such as physical properties, gel fraction, water content, tackiness and reduction time of water temperature from 40°C to 37°C were evaluated. The results showed that at irradiation dose of 20 kGy, hydrogel formula I had un appropriate physical characteristics such as brittle, the surface of hydrogel was watery and leave residues when it is applied to the skin. While hydrogel formula IV was rigid, unelastic and brittle. At 20 kGy irradiation dose, hydrogel formula II and III showed physical characteristics such as a bit brittle. At 30 kGy, it was shown appropriate physical characteristics such as no residu leave on skin, tough, the surface of hydrogel was not watery and gave pleasant feeling when it applied on the skin. But at 40 kGy, it was abit rigit. Gel fraction increase with increasing of dose from 20 to 30 kGy, further more the increase in dose was not give significant increase of gel fraction. At 20 kGy of irradiation dose, gel fraction was 83 - 87% and it was becomes 83 - 98% for irradiation dose of 30 to 40 kGy. Water content of hydrogel was depend on polymer concentration in hydrogel. It decreased by increasing of polymer concentration and it was not affected by irradiation dose. Hydrogel had water content around 73 - 84%. The tackiness of hydrogel formula II and III irradiated by 30 to 40 kGy was 8,3 - 8,9 gf. It was in proportion to tackiness of commercial hydrogel Bye Bye Fever. The ability of hydrogels in reducing water temperature from 40°C to 37°C showed that hydrogel formula I was the fastest among formulas used, that is 11 minutes. While it was 12 minutes for hydrogel formula II and III and in proportion with commercial hydrogel Bye

  7. Generations of dark hollow beams and their applications in laser cooling of atoms and all optical-type Bose-Einstein condensation

    Institute of Scientific and Technical Information of China (English)

    印建平; 高伟建; 王海峰; 龙全; 王育竹

    2002-01-01

    We report on a new experimental result to generate dark hollow beams by using a geometric optical method.We propose two new methods to produce focused and localized hollow laser beams by using π-phase plates. UsingMonte-Carlo simulations, we have studied the Sisyphus cooling of alkali atoms in pyramidal hollow beam gravito-opticaltraps. We discuss some potential applications of the dark hollow beams in atom optics and the preparation of an alloptically-cooled and optically-trapped atomic Bose-Einstein condensation (BEC).Our research shows that an ultracoldatomic sample with a temperature of ~ 2μK can be obtained in the pyramidal hollow beam dipole trap and an alloptical-type BEC may be realized in a far blue-detuned, hollow beam trap.

  8. An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms.

    Science.gov (United States)

    Füzesi, F; Jornod, A; Thomann, P; Plimmer, M D; Dudle, G; Moser, R; Sache, L; Bleuler, H

    2007-10-01

    This article describes the design, characterization, and performance of an electrostatic glass actuator adapted to an ultrahigh vacuum environment (10(-8) mbar). The three-phase rotary motor is used to drive a turbine that acts as a velocity-selective light trap for a slow continuous beam of laser-cooled atoms. This simple, compact, and nonmagnetic device should find applications in the realm of time and frequency metrology, as well as in other areas of atomic, molecular physics and elsewhere. PMID:17979408

  9. Schottky diagnosis and BTF measurements on cooled beams in the heavy ion storage ring ESR

    International Nuclear Information System (INIS)

    This report describes a non-destructive diagnosis system installed at the ESR (Experimental Storage Ring). Using this system a variety of beam and machine parameters can be evaluated. It turned out to be a very important diagnostic tool during all beam-times of the ESR. (orig./HSI)

  10. Stability and signal suppression of Schottky signals from stochastically cooled beams

    International Nuclear Information System (INIS)

    Several thorough treatments of stochastic cooling now exist which go far beyond the original conceptual picture of ''removing fluctuations from the Schottky noise''. The trend has been to replace this statistical picture with ensemble evolution equations amenable to continuum treatment. High performance antiproton accumulation systems attempt operation at the limits of system feedback gain as dictated by instability thresholds and signal suppression degradation. The many admitted and implicit assumptions associated with the current models are most questionable near the high gain limit. This paper first highlights a few of these assumptions and points out inconsistencies to which they lead. In particular it reveals a fundamental difference between transverse (including Palmer) cooling and filter cooling. It then points out an alternative for a refined cooling approach called the ''renormalization group'' (RG). Instability thresholds may be viewed as phase transitions. The unique success of the RG approach in describing the behavior of systems near phase transitions is well known in other branches of physics. In this paper the author limits himself to making this approach plausible and sketching out its methodology but argues also for a re-examination of a statistical approach to stochastic cooling

  11. Electrodynamic cooling of an ion beam in a ring storage with a transparent target

    International Nuclear Information System (INIS)

    Operation principles of ion ring storage equipped with internal permeable target and energy loss compensation by high-frequency field, are studied. Beam circulation conditions in a storage ring are studied, effects of electrodynamic damping of ion oscillations in circulating clusters caused by energy losses in isotropic target and by dependence of the efficient accelerating voltage on ion rate are forecasted and analyzed. It is shown, that damping may compensate for destabilizing effect of elastic and inelastic scattering on the target atoms. Numerical simulation of 1.75 MeV energy proton beam dynamics in a storage ring with permeable carbon target is carried out. It is determined that ion undergo several hundreds of rotations under stable circulation mode. 5 refs.; 2 figs

  12. A full-scale experimental set-up for assessing the energy performance of radiant wall and active chilled beam for cooling buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    in decreasing the cooling need of the radiant wall compared to the active chilled beam. It has also been observed that the type and repartition of heat load have an influence on the cooling demand. Regarding the comfort level, both terminals met the general requirements, except at high solar heat...... gains: overheating has been observed due to the absence of solar shading and the limited cooling capacity of the terminals. No local discomfort has been observed although some segments of the thermal manikin were slightly colder....

  13. The MK III actively cooled duct liner for the JET neutral beam line: Thermo-mechanical performance and lifetime estimation

    International Nuclear Information System (INIS)

    This paper describes the analyses performed to investigate and validate the proposed design for the updated JET MKIII duct side liner, which will replace the present inertial cooled one in the frame of the EP2 neutral beam enhancement project. The thermal-hydraulic and thermo-mechanical performance of a duct liner's generic module, under various loading scenarios has been assessed. Due to difference in scale between a generic liner module length and the relevant load bearing section thickness (∼1.2 m against 4 mm) two different scale FE models have been assessed, the first ones to evaluate the overall reactions and displacements and the others to calculate concentrated stresses in the most loaded sections. Conformity to ITER design criteria has been verified for both monotonic and cyclic loads. The effects of fatigue have been considered and an operational life of 8.5 years is predicted for the liner

  14. Generation of high power cw laser light at 257 nm for laser cooling of intense 24Mg+ beams at the ESR

    International Nuclear Information System (INIS)

    We report on the generation of 750 mW cw laser radiation at a wavelength of 257 nm obtained by frequency doubling the green Ar+ line in a Brewster-cut BBO crystal placed in the spherical focus of an external ring resonator. The system is optimized for laser cooling studies of intense 83.7 MeV 21Mg+ ion beams at the ESR dedicated to the investigation of space charge-dominated beams

  15. Further tests on liquid-nitrogen-cooled, thin silicon-crystal monochromators using a focused wiggler synchrotron beam

    International Nuclear Information System (INIS)

    A newly designed cryogenically cooled, thin Si crystal monochromator was tested at the European Synchrotrons Radiation Facility (ESRF) beamline BL3. It exhibited less than 1 arcsec of thermal strain up to a maximum incident power of 186 W and average power density of 521 W/mm2. Data were collected for the thin (0.7 mm) portion of the crystal and for the thick (>25 mm) part. Rocking curves were measured as a function of incident power. With a low power beam, the Si(333) rocking curve at 30 keV for the thin and thick sections was < 1 arcsec FWHM at room temperature. The rocking curve of the thin section increased to 2.0 arcsec when cooled to 78 K, while the thick part was unaffected by the reduction in temperature. The rocking curve of the this section broadened to 2.5 arcsec FWHM and that of the thick section broadened to 1.7 arcsec at the highest incident power. The proven range of performance for this monochromator has been extended to the power density, but not the absorbed power, expected for the Advanced Photon Source (APS) undulator A in closed-gap operation (first harmonic at 3.27 kev) at a storage-ring current of 300 mA

  16. Final Technical Report on STTR Project DE-FG02-06ER86282 Development and Demonstration of 6-Dimensional Muon Beam Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Muons, Inc.

    2011-05-24

    The overarching purpose of this project was to prepare a proposal for an experiment to demonstrate 6-dimensional muon beam cooling. The technical objectives were all steps in preparing the proposal, which was successfully presented to the Fermilab Accelerator Advisory Committee in February 2009. All primary goals of this project have been met.

  17. Thermal deformation of cryogenically cooled silicon crystals under intense X-ray beams: measurement and finite-element predictions of the surface shape

    International Nuclear Information System (INIS)

    The shape of cryogenically cooled monochromator crystals deformed by the heat load of the X-ray beam is derived from rocking curve measurements at various vertical positions of a narrow-gap slit downstream from the monochromator. Experimentally, it is observed that the crystal shape changes from concave to convex when beam power increases. The observations are accurately modelled by finite-element analysis, showing an excellent quantitative agreement with experiments. X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results

  18. Laser system for cooling of relativistic C{sup 3+}-ion beams in storage rings; Lasersystem zur Kuehlung relativistischer C{sup 3+}-Ionenstrahlen in Speicherringen

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Tobias

    2015-02-15

    Cold ion beams are essential for many precision experiments at storage rings. While spectroscopic experiments gain from the high energy resolution, collision experiments benefit from the increased luminosity. Furthermore, sympathetic cooling of exotic species is conceivable with the aid of cold ion beams. Besides the long established electron cooling, alternative cooling methods are gaining in importance, especially for high energy particles. In the past, experiments to cool ions with lasers were performed. Because of the matching wavelength and output power, frequency doubled Argon-ion lasers at 257 nm were used during these experiments. Due to the strongly limited scanning potential of these systems, it was not possible to cool the full inertia spread of the ion beams. A new laser system was developed in this thesis because of the lack of commercial alternatives. After the characterization of the system, it was tested during a beamtime at the Experimentierspeicherring (ESR) at the Gesellschaft fuer Schwerionenforschung (GSI). The completely solid state based system delivers up to 180 mW of output power at 257 nm and is modehop free tunable up to 16 GHz in 10 ms at this wavelength. By using efficient diode lasers, the new system consumes considerably less power than comparable Argon-ion lasers. The fundamental wavelength of 1028 nm is amplified up to 16 W with an Yb-doped fiber amplifier. Subsequently, the target wavelength of 257 nm is realized in two consecutive build-up cavities. Another diode laser, stabilized to a wavelength meter, serves as a frequency reference. This new laser system first came to operation during beamtime in August 2012, when relativistic C{sup 3+} ions with β=0.47 were cooled successfully. For the first time it was possible to access the whole inertia spread of a bunched ion beam without electron precooling. In contrast to prior experiments, only the laser frequency was scanned and not the bunching frequency of the ion beam. The results

  19. Effect of Cooling Rate and Deformation on Microstructures and Critical Phase-Transformation Temperature of Boron-Nickel Added HSLA H-Beams

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao; WANG Zuo-cheng; WANG Xie-bin; WANG Yi-ran; GAO Jun-qing; ZHAO Xiu-ling

    2012-01-01

    Microstructures and critical phase-transformation temperature of boron-nickel added Nb-treated high strength low alloy (HSLA) H-beams cooled at different cooling rate, with different deformation were investigated. Continuous cooling transformation (CCT) diagram of this new type of steel was obtained by using Gleeble 1500 ther- momechanical simulator. Microstructures and hardness, especially micro-hardness of the experimental steel were in- vestigated by optical microscopy (OM), scanning electron microscope (SEM), Rockwell and Vickers hardness tests. Phase analysis was also studied by X~ray diffraction (XRD). The results indicated that with increase of cooling rate, microstructures of continuous cooled specimens gradually transformed from polygonal ferrite and pearlite, grain boundary ferrite and bainite, bainite and martensite to single martensite. The CCT diagram revealed that slow cool- ing was needed to avoid austenite-bainite transformation to ensure toughness of this steel. By plastic deformation of 40%, austenite-ferrite transformation temperature increased by 46℃, due to deformation induced ferrite transfor- mation during continuous cooling, but Rockwell hardness has little change.

  20. Direct detection of Rydberg-Rydberg millimeter-wave transitions in a buffer gas cooled molecular beam

    Science.gov (United States)

    Zhou, Yan; Grimes, David D.; Barnum, Timothy J.; Patterson, David; Coy, Stephen L.; Klein, Ethan; Muenter, John S.; Field, Robert W.

    2015-11-01

    Millimeter-wave transitions between molecular Rydberg states (n ∼ 35) of barium monofluoride are directly detected via Free Induction Decay (FID). Two powerful technologies are used in combination: Chirped-Pulse millimeter-Wave (CPmmW) spectroscopy and a buffer gas cooled molecular beam photoablation source. Hundreds of Rydberg-Rydberg transitions are recorded in 1 h with >10:1 signal:noise ratio and ∼150 kHz resolution. This high resolution, high spectral velocity experiment promises new strategies for rapid measurements of structural and dynamical information, such as the electric structure (multipole moments and polarizabilities) of the molecular ion-core and the strengths and mechanisms of resonances between Rydberg electron and ion-core motions. Direct measurements of Rydberg-Rydberg transitions with kilo-Debye dipole moments support efficient and definitive spectral analysis techniques, such as the Stark demolition and polarization diagnostics, which enable semi-automatic assignments of core-nonpenetrating Rydberg states. In addition, extremely strong radiation-mediated collective effects (superradiance) in a dense Rydberg gas of barium atoms are observed.

  1. CO2 laser beam test of an actively cooled first-wall element with a graphite-clad SiC armor tile

    International Nuclear Information System (INIS)

    A graphite-clad SiC tile of 29mm dia and 15mm thickness is bonded to a base metal (Cu or 316 SS) with insertion of Cu-35 vol%C composite sheet. The elements are tested under active cooling condition by using 3.5kW CO2 laser beam at heat flux condition of 0.3 ∼ 1.7kW/cm2 and a pulse length of 40s

  2. Electron Beam Welding of Reduced Activation Ferritic Martensitic ODS-EUROFER Steel for Application in Helium Cooled Modular Divertor Concepts

    International Nuclear Information System (INIS)

    For specific blanket and divertor applications in future fusion power reactors a replacement of presently considered Reduced Activation Ferritic Martensitic (RAFM) steels as structural material by suitable oxide dispersion strengthened (ODS) ferritic martensitic or ferritic steels would allow a substantial increase of the operating temperature from ∼ 550 oC to about 650 oC. In all cases appropriate joining technologies have to be developed. Diffusion welding techniques to perform similar and dissimilar joints have been studied successfully. Friction Stir Welding (FSW) has shown a good potential but application is limited due to geometrical restrictions and needs further development. For the advanced helium-cooled modular divertor concept various joining techniques are required for joining the complex structural parts made of different materials. First attempts have been made for joining the divertor structures of ODS EUROFER by means of the Electron beam welding process with its highly concentrated energy input. This welding is widely used to produce high quality-high integrity welded similar and dissimilar joints of a large variety of materials. For this purpose, samples of ODS-EUROFER steel were welded using a PTR 150 kV/15 kW EB welding facility. Two different post-weld heat treatments (PWHT) were applied to investigate their influence on the mechanical and microstructural properties of the welded joints. Miniaturised tensile specimens were used to determine the tensile behaviour in the temperature range between RT and 700 oC. KLST specimens were used for Charpy impact tests. The microstructure of the weld and heat affected zone was examined using optical and scanning electron microscopy. Transmission electron microscopical methods were applied to investigate the size and spatial distribution of the dispersed oxides and potential segregation phenomena. (author)

  3. Cooling tower

    International Nuclear Information System (INIS)

    The proposal concerns the reinforcement of a cooling tower made of reinforced concrete, which has a dish-shaped supporting structure and has ribs running in the vertical direction. In order to reduce the cost for fitting the reinforcement, the dish-shaped supporting structure is made wholly or partly as an anisotropic dish. By this construction of the reinforcement (spatial grating with different thickness of beam reinforcement of vertical ribs and of the circular beams provided in the dish, site reinforcement of the areas between the beams) one achieves the anisotropy of the dish. The fixing of constructional steel mats as site reinforcement is advantageous. (UWI)

  4. ELECTRON COOLING STUDY FOR MEIC

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhang [Jefferson Lab, Newport News, VA; Douglas, David R. [Jefferson Lab, Newport News, VA; Derbenev, Yaroslav S. [Jefferson Lab, Newport News, VA; Zhang, Yuhong [Jefferson Lab, Newport News, VA

    2015-09-01

    Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab's MEIC proposal. In the present MEIC design, a multi-staged cooling scheme is adapted, which includes DC electron cooling in the booster ring and bunched beam electron cooling in the collider ring at both the injection energy and the collision energy. We explored the feasibility of using both magnetized and non-magnetized electron beam for cooling, and concluded that a magnetized electron beam is necessary. Electron cooling simulation results for the newly updated MEIC design is also presented.

  5. Studies on electron cooling of heavy particle beams made by the VAPP-NAP group at the Nuclear Physics Institute of the Siberian Branch of the USSR Academy of Science at Novosibirsk

    International Nuclear Information System (INIS)

    This report consists of three parts: the first one is a summary report of electron cooling studies, both theoretical and experimental, which were performed during the years 1966-1976. The second part, which describes the electron beam device for the electron cooling experiments, is the translation of a Novosibirsk preprint. Finally, a bibliography of papers on electron cooling and related problems is given in part three. (Auth.)

  6. Proposal for the award of a contract for the supply of cooling tubes for the beam screens of the LHC arc magnets

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the supply of cooling tubes for the beam screens of the LHC arc magnets. Following a market survey carried out among 32 firms in twelve Member States, a call for tenders (IT-2968/LHC/LHC) was sent on 23 July 2001 to two firms in two Member States. By the closing date, CERN had received one tender. The Finance Committee is invited to agree to the negotiation of a contract with FINE TUBES (GB), for the supply of 7 950 cooling tubes, of two different lengths, for the beam screens of the LHC arc magnets for a total amount of 887 597 pounds sterling (2 041 392 Swiss francs), not subject to revision, with an option for up to 20% of additional cooling tubes, for an additional amount of 177 519 pounds sterling (408 278 Swiss francs), not subject to revision, bringing the total amount to 1 065 116 pounds sterling (2 449 670 Swiss francs), not subject to revision. The rate of exchange which has been used is that stipulated in the tender. The firm has indicated the foll...

  7. High energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Parkhomchuk, V. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  8. Stochastic cooling

    International Nuclear Information System (INIS)

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  9. Human perception of indoor environment generated by chilled ceiling combined with mixing ventilation or localised chilled beam under cooling mode

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Nygaard, Linette; Uth, Simon C.;

    2014-01-01

    Experiments with 24 subjects were performed to study and compare the human perception of the indoor environment under summer conditions generated by a chilled ceiling combined with overhead mixing ventilation and localised chilled beam. The experiments were performed in an experimental chamber (4...... simulate direct solar load on the floor (270 W). The total heat load in the room was 56 W/m2. The air temperature around the workstation by the window was kept either 26 or 28 oC. The supplied air by the overhead mixing ventilation and the primary supply air of the localised chilled beam was kept at 13 L....../s and 16 0C. The localised chilled beam was installed over the workstation placed by the simulated window. During the experiment the subjects were delegated control over the primary flow rate supplied by the localised chilled beam. The whole exposure lasted 2 hours with 30 min of acclimatisation before...

  10. Stacking with stochastic cooling

    International Nuclear Information System (INIS)

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes

  11. Performance of a 100J cryogenically cooled multi-slab amplifier with respect to the pump beam parameters and geometry

    Czech Academy of Sciences Publication Activity Database

    Divoký, Martin; Sawicka, Magdalena; Lucianetti, Antonio; Novák, Jakub; Mocek, Tomáš; Rus, Bedřich

    Bellingham : SPIE, 2012 - (Clarkson, W.; Shori, R.) ISBN 978-0-8194-8878-7. ISSN 0277-786X. - (Proceedings of SPIE. 8235). [Conference on Solid State Lasers - Technology and Devices /21./. San Francisco (US), 22.01.2012-25.01.2012] R&D Projects: GA MŠk ED2.1.00/01.0027 Grant ostatní: HILASE(XE) CZ.1.05/2.1.00/01.0027 Institutional support: RVO:68378271 Keywords : multi-slab * amplifier * cryogenical cooling * amplified spontaneous emission Subject RIV: BH - Optics, Masers, Lasers

  12. Photoinduced intramolecular charge-transfer reactions in 4-amino-3-methyl benzoic acid methyl ester: A fluorescence study in condensedphase and jet-cooled molecular beams

    Indian Academy of Sciences (India)

    Amrita Chakraborty; Samiran Kar; D N Nath; Nikhil Guchhait

    2007-03-01

    Photoinduced intramolecular charge-transfer reactions in 4-amino-3-methyl benzoic acid methyl ester (AMBME) have been investigated spectroscopically. AMBME, with its weak charge donor primary amino group, shows dual emission in polar solvents. Absorption and emission measurements in the condensed phase support the premise that the short wavelength emission band corresponds to local emission and the long wavelength emission band to the charge transfer emission. Laser-induced fluorescence excitation spectra show the presence of two low-energy conformers in jet-cooled molecular beams. Theoretical calculations using density functional theory help to determine structure, vibrational modes, potential energy surface, transition energy and oscillator strength for correlating experimental findings with theoretical results.

  13. CONFERENCE: Electron cooling

    International Nuclear Information System (INIS)

    ECOOL 84, held at the Kernforschungszentrum Karlsruhe (KfK) last year, was the first international meeting on electron cooling and related applications and reflected the increasing interest in this area of particle beam physics

  14. Electron cooling for RHIC

    International Nuclear Information System (INIS)

    Electron cooling of completely stripped gold ions 197Au79+ in RHIC is considered for the store energy, γ=108. The optimal parameters of the required electron storage ring are discussed and proposed. The cooling time is calculated as 15 min, which would allow not only to avoid the beam loss due to the intra-beam scattering, but also reduce the transverse emittance and increase the luminosity several times

  15. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  16. Passive vibro-acoustic detection of a sodium-water reaction in a steam generator of a sodium-cooled fast neutrons nuclear reactor by beam forming

    International Nuclear Information System (INIS)

    This thesis deals with a new method to detect a sodium-water reaction in a steam generator of a fast sodium-cooled nuclear reactor. More precisely, the objective is to detect a micro-leak of water (flow ≤ 1 g/s) in less than 10 seconds by measuring the external shell vibrations of the component. The strong background noise in operation makes impossible the use of a detection system based on a threshold overrun. A beam forming method applied to vibrations measured by a linear array of accelerometers is developed in this thesis to increase the signal-to-noise ratio and to detect and locate the leak in the steam generator. A numerical study is first realized. Two models are developed in order to simulate the signals measured by the accelerometers of the array. The performances of the beam forming are then studied in function of several parameters, such as the source location and frequency, the damping factor, the background noise considered. The first model consists in an infinite plate in contact with a heavy fluid, excited by an acoustic monopole located in this fluid. Analyzing the transverse displacements in the wavenumber domain is useful to establish a criterion to sample correctly the vibration field of the plate. A second model, more representative of the system is also proposed. In this model, an elastic infinite cylindrical shell, filled with a heavy fluid is considered. The finite dimensions in the radial and circumferential directions lead to a modal behavior of the system which impacts the beam forming. Finally, the method is tested on an experimental mock-up which consists in a cylindrical pipe made in stainless steel and filled with water connected to hydraulic circuit. The water flow speed can be controlled by varying the speed of the pump. The acoustic source is generated by a hydro-phone. The performances of the beam forming are studied for different water flow speeds and different amplitude and frequencies of the source. (author)

  17. Neon helium mixtures as a refrigerant for the FCC beam screen cooling: comparison of cycle design options

    Science.gov (United States)

    Kloeppel, S.; Quack, H.; Haberstroh, C.; Holdener, F.

    2015-12-01

    In the course of the studies for the next generation particle accelerators, in this case the Future Circular Collider for hadron-hadron interaction (FCC-hh), different aspects are being investigated. One of these is the heat load on the beam screen, which results mainly from the synchrotron radiation. In case of the FCC-hh, a heat load of 6 MW is expected. The heat has to be absorbed at 40 to 60 K due to vacuum restrictions. In this range, refrigeration is possible with both helium and neon. Our investigations are focused on a mixed refrigerant of these two components, which combines the advantages of both. Especially promising is the possible substitution of the oil flooded screw compressors by more efficient turbo compressors. This paper investigates different flow schemes and mixture compositions with respect to complexity and efficiency. Furthermore, thermodynamic aspects, e.g. whether to use cold or warm secondary cycle compressors are discussed. Additionally, parameters of the main compressor are established.

  18. MEIC electron cooling program

    International Nuclear Information System (INIS)

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D

  19. Electron cooling experiments in CSR

    Institute of Scientific and Technical Information of China (English)

    PARKHOMCHUK; Vasily; REVA; Vladimir

    2011-01-01

    The six species heavy ion beam was accumulated with the help of electron cooling in the main ring of Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR). The ion beam accumulation dependence on the parameters of cooler was investigated experimentally. The 400 MeV/u 12C6+ and 200 MeV/u 129Xe54+ were stored and cooled in the experimental ring CSRe, and the cooling force was measured in different conditions.

  20. Electron Cooling Experiments in CSR

    CERN Document Server

    Xiaodong, Yang

    2011-01-01

    The six species heavy ion beam was accumulated with the help of electron cooling in the main ring of Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou(HIRFL-CSR), the ion beam accumulation dependence on the parameters of cooler was investigated experimentally. The 400MeV/u 12C6+ and 200MeV/u 129Xe54+ was stored and cooled in the experimental ring CSRe, the cooling force was measured in different condition.

  1. Workshop on phase space cooling

    International Nuclear Information System (INIS)

    A discussion is given of phase space damping (''cooling'') of particle beams. Interest in this topic derives chiefly from the possibility that antiproton beams produced by collision of an intense proton beam with a target can be compressed in phase space. This could make it possible to accumulate antiproton beams in a storage ring repeatedly, thus leading to a relatively high stacked anti p beam suitable for anti p p collisions with interesting luminosities

  2. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  3. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  4. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  5. Muon cooling channels

    International Nuclear Information System (INIS)

    Parameters of muon cooling channels are discussed that achieve cooling of a muon beam from initial to final emittances in all three degrees of freedom in a given length. Published theories of ionisation cooling yield equilibrium emittances from multiple scattering and energy straggling, and partition numbers. Limits are obtained on the amplitude functions in all three degrees of freedom. Parameters of wedge-shaped absorbers and partition numbers are derived for simultaneous longitudinal and transverse cooling. Limits on length and material of absorbers, and dispersion at the wedge-shaped absorbers are obtained. Parameters are presented for the RF system, e.g. peak voltage, frequency, and stable phase angle. The properties of the magnetic lattice which satisfies the conditions imposed by the longitudinal dynamics are studied. The consequences of changes in the assumed performance of the cooling channel on its parameters are discussed

  6. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1978-01-01

    ICE was built in 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring. Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project, to be launched in 1978. Already early in 1978, stochastic cooling proved a resounding success, such that the antiproton (p-pbar)project was entirely based on it. Tests of electron cooling followed later: protons of 46 MeV kinetic energy were cooled with an electron beam of 26 kV and 1.3 A. The cage seen prominently in the foreground houses the HV equipment, adjacent to the "cooler" installed in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7908242.

  7. Elementary stochastic cooling

    International Nuclear Information System (INIS)

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback

  8. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  9. Stacking with Stochastic Cooling

    CERN Document Server

    Caspers, Friedhelm

    2004-01-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles seen by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly protected from the Schottky noise of the stack. Vice versa the stack has to be efficiently shielded against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105, the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters)....

  10. Electron cooling for low-energy antiprotons

    International Nuclear Information System (INIS)

    Divergence and size of stored ion beams can be reduced superimposing on them an intense, monoenergetic electron beam with little transverse motion ('electron cooling'). The present work first considers the theoretical foundations of the method and then describes the planning and construction of an electron beam device for cooling antiprotons with MeV energies in the storage ring LEAR and CERN. With respect to the quantitative description of the method, the microscopic processes during the damping of the ion motion, the effect of the damping on an ion in a storage ring, and the properties of the intense, magnetically guided electron beam are discussed. Special attention is paid to the improvement of ion beam cooling due to the magnetic field guiding the electron beam. The electron beam device, operated in ultra-high vacuum, and the experience gained during its construction are described; experiments performed during the test period are presented. The work further develops a numerical simulation of electron cooling on the basis of the theory discussed. Given realistic external parameters, the simulation yields cooling times and equilibrium states of the ion beam during electron cooling in a storage ring. Finally, non-destructive methods for measuring the velocity distribution in the electron beam are described, which may prove helpful for optimizing the beam cooling. (orig.)

  11. New Approaches to Final Cooling

    CERN Document Server

    Neuffer, David

    2015-01-01

    A high-energy muon collider scenario requires a "final cooling" system that reduces transverse emittance by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of the alternative approach. A more explicit understanding of solenoidal cooling beam dynamics is introduced.

  12. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  13. Rectlinear cooling scheme for bright muon sources

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    A fast cooling technique is described that simultaneously reduces all six phase-space dimensions of a charged particle beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in absorbers and replenishing the momentum loss only in the longitudinal direction rf cavities. In this work we review its main features and describe the main results.

  14. Advance in MEIC cooling studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [JLAB, Newport News, VA (United States); Derbenev, Ya. [JLAB, Newport News, VA (United States); Douglas, D. [JLAB, Newport News, VA (United States); Hutton, A. [JLAB, Newport News, VA (United States); Kimber, A. [JLAB, Newport News, VA (United States); Li, R. [JLAB, Newport News, VA (United States); Nissen, E. [JLAB, Newport News, VA (United States); Tennant, [JLAB, Newport News, VA (United States); Zhang, H. [JLAB, Newport News, VA (United States)

    2013-06-01

    Cooling of ion beams is essential for achieving a high luminosity for MEIC at Jefferson Lab. In this paper, we present the design concept of the electron cooling system for MEIC. In the design, two facilities are required for supporting a multi-staged cooling scheme; one is a 2 MeV DC cooler in the ion pre-booster; the other is a high electron energy (up to 55 MeV) ERL-circulator cooler in the collider ring. The simulation studies of beam dynamics in an ERL-circulator cooler are summarized and followed by a report on technology development for this cooler. We also discuss two proposed experiments for demonstrating high energy cooling with a bunched electron beam and the ERL-circulator cooler.

  15. Principles and applications of muon cooling

    International Nuclear Information System (INIS)

    The basic principles of the application of ionization cooling to obtain high phase-space density muon beams are described, and its limitations are outlined. Sample cooling scenarios are presented. Applications of cooled muon beams in high-energy accelerators are suggested; high-luminosity μ+-μ- and μ-p colliders at greater than or equal to -TeV energy are possible

  16. Spray cooling

    International Nuclear Information System (INIS)

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with

  17. Status of MICE, the international Muon Ionisation Cooling Experiment

    CERN Document Server

    KARADZHOV, Y

    2010-01-01

    Muon ionization cooling provides the only practical solution to prepare high brilliance beams necessary for a neutrino factory or muon colliders, because it is fast enough to cool the beam within the muon lifetime. The muon ionization cooling experiment (MICE) is under development at the Rutherford Appleton Laboratory (UK). The goal of the experiment is to build a section of a cooling channel that can demonstrate the principle of cooling and to prove this by measuring its performance in a muon beam. In July 2010 the beamline and most of the detectors have been commissioned and the time of the first measurement of input beam emittance is closely approaching.

  18. Cool contrails

    OpenAIRE

    U. Schumann

    2012-01-01

    Contrails are cirrus clouds which warm or cool the Earth depending on flight route and weather. Hence, the climate impact of aviation can be minimised by avoiding warming contrails and allowing for cooling contrails by proper weather dependent route selection. This article summarises recent research results on this topic.

  19. Stochastic cooling of a high energy collider

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.; Brennan, J.M.; Lee, R.C.; Mernick, K.

    2011-09-04

    Gold beams in RHIC revolve more than a billion times over the course of a data acquisition session or store. During operations with these heavy ions the event rates in the detectors decay as the beams diffuse. A primary cause for this beam diffusion is small angle Coloumb scattering of the particles within the bunches. This intra-beam scattering (IBS) is particularly problematic at high energy because the negative mass effect removes the possibility of even approximate thermal equilibrium. Stochastic cooling can combat IBS. A theory of bunched beam cooling was developed in the early eighties and stochastic cooling systems for the SPS and the Tevatron were explored. Cooling for heavy ions in RHIC was also considered.

  20. Capture, Electron-Cooling and Compression of Antiprotons in a Large Penning-Trap for Physics Experiments with an Ultra-Low Energy Extracted Antiproton Beam

    CERN Multimedia

    2002-01-01

    % PS200 \\\\ \\\\The availability of ultra-low energy antiprotons is a crucial ingredient for the execution of the gravity measurements PS200. We have developed a method to provide such low energy antiprotons based on a large Penning trap (the PS200 catching trap). This system can accept a fast-extracted pulse from LEAR, reduce the energy of the antiprotons in the pulse from 5.9~MeV to several tens of kilovolts using a degrading foil, and then capture the antiprotons in a large Penning trap. These antiprotons are cooled by electrons previously admitted to the trap and are collected in a small region at the center of the trap. We have demonstrated our capability to capture up to 1~million antiprotons from LEAR in a single shot, electron cool these antiprotons, and transfer up to 95\\% of them into the inner, harmonic region. A storage time in excess of 1 hour was observed. These results have been obtained with the cryogenic trap vacuum coupled to a room temperature vacuum at about l0$ ^- ^{1} ^0 $ Torr, which is an...

  1. Mass measurement of halo nuclides and beam cooling with the mass spectrometer Mistral; Mesure de masse de noyaux a halo et refroidissement de faisceaux avec l'experience MISTRAL

    Energy Technology Data Exchange (ETDEWEB)

    Bachelet, C

    2004-12-01

    Halo nuclides are a spectacular drip-line phenomenon and their description pushes nuclear theories to their limits. The most critical input parameter is the nuclear binding energy; a quantity that requires excellent measurement precision, since the two-neutron separation energy is small at the drip-line by definition. Moreover halo nuclides are typically very short-lived. Thus, a high accuracy instrument using a quick method of measurement is necessary. MISTRAL is such an instrument; it is a radiofrequency transmission mass spectrometer located at ISOLDE/CERN. In July 2003 we measured the mass of the Li{sup 11}, a two-neutron halo nuclide. Our measurement improves the precision by a factor 6, with an error of 5 keV. Moreover the measurement gives a two-neutron separation energy 20% higher than the previous value. This measurement has an impact on the radius of the nucleus, and on the state of the two valence neutrons. At the same time, a measurement of the Be{sup 11} was performed with an uncertainty of 4 keV, in excellent agreement with previous measurements. In order to measure the mass of the two-neutron halo nuclide Be{sup 14}, an ion beam cooling system is presently under development which will increase the sensitivity of the spectrometer. The second part of this work presents the development of this beam cooler using a gas-filled Paul trap. (author)

  2. The MICE Demonstration of Muon Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, Jean-Baptiste [Imperial Coll., London; Hunt, Christopher [Imperial Coll., London; Palladino, Vittorio [INFN, Naples; Pasternak, Jaroslaw [Imperial Coll., London

    2016-06-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions up to several TeV at the Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate muon ionization cooling, the technique proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam traverses a material (the absorber) loosing energy, which is replaced using RF cavities. The combined effect is to reduce the transverse emittance of the beam (transverse cooling). The configuration of MICE required to deliver the demonstration of ionization cooling is being prepared in parallel to the execution of a programme designed to measure the cooling properties of liquid-hydrogen and lithium hydride. The design of the cooling-demonstration experiment will be presented together with a summary of the performance of each of its components and the cooling performance of the experiment.

  3. Beam-Beam Effects

    OpenAIRE

    Herr, W; Pieloni, T.

    2016-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  4. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  5. Study of stochastic cooling in the accumulator cooler ring at MUSES project

    International Nuclear Information System (INIS)

    We studied availability of a stochastic cooling for a cooling accumulation of RI beam in the ACR. In the ACR fast cooling is essential for an RI beam with large emittance and momentum spread because the RI has an intrinsic life time. In general the stochastic cooling is useful to obtain a fast cooling time in a region where emittance and momentum spread are large. From calculations under some conditions, we could get a very short cooling time (< 0.1 s) and confirm that the stochastic cooling is available with cooling of the RI beam in the ACR. (author)

  6. Electron drift instability in storage rings with electron cooling

    CERN Document Server

    Burov, A

    2000-01-01

    Transverse drift mobility of the cooling electrons allows them to respond to the transverse offset of the cooled beam. This electron dipole feedback introduces imaginary parts in transverse collective modes of the cooled beam. The sign of these imaginary parts is found to be dependent on the charge sign of the cooled particles, giving a coherent damping for protons and instability for antiprotons. A coupling between the transverse degrees of freedom of the stored cooled beam changes the result, causing an instability for any sign of the charge. For typical low-energy cooler parameters, these growth/damping times are found to be in the region 0.1-10 s.

  7. Electron drift instability in storage rings with electron cooling

    International Nuclear Information System (INIS)

    Transverse drift mobility of the cooling electrons allows them to respond to the transverse offset of the cooled beam. This electron dipole feedback introduces imaginary parts in transverse collective modes of the cooled beam. The sign of these imaginary parts is found to be dependent on the charge sign of the cooled particles, giving a coherent damping for protons and instability for antiprotons. A coupling between the transverse degrees of freedom of the stored cooled beam changes the result, causing an instability for any sign of the charge. For typical low-energy cooler parameters, these growth/damping times are found to be in the region 0.1-10 s

  8. Cooling Vest

    Science.gov (United States)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  9. New pick-up for stochastic cooling of MUSES project

    International Nuclear Information System (INIS)

    A fast stochastic cooling is an inevitable function for the pre-cooling of RI beam. A new pick-up structure is designed and tested with heavy ion beam of 200 MeV/u. The measured results of characteristics of pick-up were described. In addition, a beam simulator was developed for the off line measurement of pick-up characteristic. Results of measurement of new type pick-up electrode were presented with the beam simulator

  10. Cool snacks

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Brock, Steen; Brunsø, Karen;

    2016-01-01

    product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...

  11. Cooling towers

    International Nuclear Information System (INIS)

    This paper investigates the internal elements of the typical types of cooling towers currently used, delineates their functions and shows how to upgrade them in the real world for energy savings and profitability of operation. Before and after statistics of costs and profits obtained through optimization of colder water by engineered thermal upgrading are discussed

  12. MICE: The International Muon Ionization Cooling Experiment

    CERN Document Server

    Kaplan, D M

    2006-01-01

    Ionization cooling of a muon beam is a key technique for a Neutrino Factory or Muon Collider. An international collaboration is mounting an experiment to demonstrate muon ionization cooling at the Rutherford Appleton Laboratory. We aim to complete the experiment by 2010.

  13. MICE: The International Muon Ionization Cooling Experiment

    CERN Document Server

    Kaplan, D M

    2007-01-01

    Muon storage rings have been proposed for use as a source of high-energy neutrino beams (the Neutrino Factory) and as the basis for a high-energy lepton-antilepton collider (the Muon Collider). The Neutrino Factory is widely believed to be the machine of choice for the search for leptonic CP violation while the Muon Collider may prove to be the most practical route to multi-TeV lepton-antilepton collisions. The baseline conceptual designs for each of these facilities requires the phase-space compression (cooling) of the muon beams prior to acceleration. The short muon lifetime makes it impossible to employ traditional techniques to cool the beam while maintaining the muon-beam intensity. Ionization cooling, a process in which the muon beam is passed through a series of liquid-hydrogen absorbers followed by accelerating RF cavities, is the technique proposed to cool the muon beam. The international Muon Ionization Cooling Experiment (MICE) collaboration will carry out a systematic study of ionization cooling. ...

  14. Beam transport

    International Nuclear Information System (INIS)

    The beam diagnostic components for both the transfer and the high-energy beamlines perform well except for some of the scanners whose noise pick-up has become a problem, especially at low beam intensities. This noise pick-up is primarily due to deterioration of the bearings in the scanner. At some locations in the high-energy beamlines, scanners were replaced by harps as the scanners proved to be practically useless for the low-intensity beams required in the experimental areas. The slits in the low-energy beamline, which are not water-cooled, have to be repaired at regular intervals because of vacuum leaks. Overheating causes the ceramic feedthroughs to deteriorate resulting in the vacuum leaks. Water-cooled slits have been ordered to replace the existing slits which will later be used in the beamlines associated with the second injector cyclotron SPC2. The current-measurement system will be slightly modified and should then be much more reliable. 3 figs

  15. Pion contamination in the MICE muon beam

    OpenAIRE

    Adams, D.; Alekou, A.; Apollonio, M; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~1% contamination. To make the final muon sel...

  16. Pion contamination in the MICE muon beam

    OpenAIRE

    Adams, D.; Alekou, A.; Apollonio, M; Asfandiyarov, R.; Barber, G.; Barclay, P.; Bari, AD; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, VJ; Warburton, P; Watson, S; White, C.; Whyte, CG

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1\\% contamination. To make the final m...

  17. Beam current measurement and beam positioning for baby-ebm

    International Nuclear Information System (INIS)

    This paper describes the electron beam detection of Baby EBM. The detection is divided by two categories; beam current measurement and beam positioning under the scanning window. The beam detector system was completely fabricated and tested and the detector was able to detect the electron beam of Baby EBM. It has been found that the beam current of this EBM is 1.62 mA for energy of 0.14 MeV. A higher beam current can be obtained if a proper cooling system to the window foil is installed. (Author)

  18. Cooling systems

    International Nuclear Information System (INIS)

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  19. Electron cooling performance at HIRFL-CSR

    International Nuclear Information System (INIS)

    In order to investigate the one-dimensional beam ordering in HIRFL-CSR, the ion beam of 58Ni19+ with the energy of 6.39 MeV/u was accumulated in the main ring of HIRFL-CSR with the help of electron cooling. The maximum accumulated ion beam intensity in the 10 seconds was measured, and the lifetime of ion beams was measured. The momentum spread of the ion beam varying with the particle number was measured during the ion beam decay, the power exponent was derived from these data, in additional, the momentum spread in the case of a constant particle number was plotted with the angle between ion and electron beams and electron beam profile. The oscillation and shift of the central frequency of the ion beam were observed during the experiments when the angle was large. (authors)

  20. 基于有限元法异型坯动态二冷控制模型开发与应用%Development and application of a dynamic secondary cooling control model for beam blanks based on finite element method

    Institute of Scientific and Technical Information of China (English)

    常运合; 张家泉; 钱宏智; 韩占光; 曾智

    2011-01-01

    A mathematical model for thermal transmission and solidification of beam blanks was established, and it was discretized and solved by finite element method ( FEM ). A dynamic secondary cooling control model of beam blanks was developed on the basis of the mathematical model. The dynamic secondary cooling control model can dynamically calculate the entire real-time temperature field of beam blanks with a cycle of five seconds, set up and optimize the amount of water for second cooling by using virtual casting speed and target surface temperature. A dynamic secondary cooling control system of beam blanks was programmed by using Visual C + + 6. 0. Under the same conditions of casting processes, the simulation result of the dynamic secondary cooling control system is in a good accordance with that produced by Marc software, indicating that the dynamic secondary cooling control system can be applied to online control or offline design and optimization for secondary cooling in beam blank continuous casting.%建立了异型坯连铸凝固传热数学模型,并利用有限元法进行离散求解.在此基础上开发了异型坯连铸动态二冷控制模型,模型以5 s为周期动态计算整个铸坯实时温度场,并采用有效拉速和表面目标温度法对二冷水量进行设定和优化.用可视化编程工具Visual C++6.0编制了异型坯连铸动态二冷控制系统.在相同工况情况下,动态二冷控制系统仿真结果与大型商业软件Marc计算结果一致,可用于在线控制或异型坯连铸二冷工艺离线设计优化.

  1. Muon Ionization Cooling Experiment (MICE)

    CERN Document Server

    Zisman, M S

    2004-01-01

    There is presently considerable activity worldwide on developing the technical capability for a “neutrino factory” based on a muon storage ring and, a muon collider. Muons are obtained from the decay of pions produced when an intense proton beam hits a high-Z target, so the initial muon beam has a large 6-dimensional phase space. To increase the muons’ phase-space density, we use ionization cooling, which is based on energy loss in an absorber, followed by re-acceleration with high-gradient, normal-conducting RF cavities. The absorber of choice is liquid hydrogen to minimize multiple scattering. A superimposed solenoidal focusing channel contains the muons. Although the physics is straightforward, the technology and its implementation are not. The international MICE collaboration will demonstrate ionization cooling of a muon beam in a short section of a typical cooling channel. The experiment is approved for operation at Rutherford Appleton Lab. We will measure the cooling effect...

  2. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  3. Electron Cooling Performance at IMP Facility

    OpenAIRE

    Xiaodong, Yang

    2011-01-01

    The ion beam of 58Ni19+ with the energy of 6.39MeV/u was accumulated in the main ring of HIRFL-CSR with the help of electron cooling. The related angle between ion and electron beams in the horizontal and vertical planes was intentionally created by the steering coils in the cooling section after maximized the accumulated ion beam in the ring. The radial electron intensity distribution was changed by the ratio of potentials of grid electrode and anode of the electron gun, the different electr...

  4. Magnets for Muon 6D Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  5. Low-energy muons via frictional cooling

    OpenAIRE

    Bao, Yu; Caldwell, Allen; Greenwald, Daniel; Xia, Guoxing

    2010-01-01

    Low-energy muon beams are useful for a range of physics experiments. We consider the production of low-energy muon beams with small energy spreads using frictional cooling. As the input beam, we take a surface muon source such as that at the Paul Scherrer Institute. Simulations show that the efficiency of low energy muon production can potentially be raised to 1%, which is significantly higher than that of current schemes.

  6. Epicyclic helical channels for parametric resonance ionization cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johson, Rolland Paul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Muons, Inc., Batavia, IL (United States)

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  7. Cool snacks

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Brock, Steen; brunsø, karen;

    2016-01-01

    product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  8. Research on the Design and Simulation of the CSRe Stochastic Cooling System

    OpenAIRE

    Hu, Xue-Jing; Yuan, You-Jin; Wu, Jun-xia; Zhang, Xiao-Hu; Jia, Huan

    2014-01-01

    Stochastic cooling, as the different cooling mechanism from electron cooling, is designed and constructed on CSRe (experimental Cooling Storage Ring) in HIRFL (Heavy Ion Research Facility in Lanzhou) at present. The beam extracted from CSRm (main Cooling Storage Ring) is injected into the CSRe, and then the secondary beam with large momentum spread and large emittance is produced at the internal target area. This paper is designed to optimize the lattice of CSRe in order to satisfy the requir...

  9. ATLAS - Liquid Cooling Systems

    CERN Document Server

    Bonneau, P.

    1998-01-01

    Photo 1 - Cooling Unit - Side View Photo 2 - Cooling Unit - Detail Manifolds Photo 3 - Cooling Unit - Rear View Photo 4 - Cooling Unit - Detail Pump, Heater and Exchanger Photo 5 - Cooling Unit - Detail Pump and Fridge Photo 6 - Cooling Unit - Front View

  10. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  11. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  12. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  13. Device for cooling down cooling water especially in cooling towers

    International Nuclear Information System (INIS)

    A cooling tower is described where water runs over packing plates being cooled by steaming air. In the cooling process a combination of wet and dry cooling is applied, namely by special design of the packing plates which are arranged inclined to the vertical. Spraying device and packing plates are shaped in such a way that the plates are wetted almost on one side only. 13 drawings explain the construction of the device described in detail. (UWI)

  14. IBS for Ion Distribution Under Electron Cooling

    CERN Document Server

    Fedotov, Alexei V; Eidelman, Yury I; Litvinenko, Vladimir N; Parzen, George; Sidorin, Anatoly O; Smirnov, Alexander V; Troubnikov, Grigory

    2005-01-01

    Standard models of the intra-beam scattering (IBS) are based on the growth of the rms beam parameters for a Gaussian beam distribution. As a result of electron cooling, the core of beam distribution is cooled much faster than the tails, producing a denser core. Formation of such a core is an important feature since it plays dominant role in the luminosity increase. A simple use of standard rms-based IBS approach may significantly underestimate IBS for the beam core. A detailed treatment of IBS, which depends on individual particle amplitudes, was recently proposed by Burov,* with an analytic formulation done for a Gaussian distribution. However, during the cooling process the beam distribution quickly deviates from a Gaussian profile. To understand the extent of the dense core formation in the ion distribution, the "core-tail" model for IBS, based on the diffusion coefficients for bi-Gaussian distributions, was employed in cooling studies for RHIC. In addition, the standard IBS theory was recently reformulate...

  15. FNAL R and D in medium energy electron cooling

    CERN Document Server

    Nagaitsev, S; Crawford, A C; Kroc, T; MacLachlan, J; Saewert, G; Schmidt, C W; Shemyakin, A; Warner, A

    2000-01-01

    The first stage of the Fermilab Electron Cooling R and D program is now complete: a technology necessary to generate hundreds of milliamps of electron beam current at MeV energies has been demonstrated. Conceptual design studies show that with an electron beam current of 200 mA and with a cooling section of 20 m electron cooling in the 8.9 GeV/c Fermilab Recycler ring can provide antiproton stacking rates suitable for the Tevatron upgrades beyond Run II luminosity goals. A novel electron beam transport scheme with a weak magnetic field at the cathode and in the cooling section, and with discrete focusing elements in between will be used. A prototype of such an electron cooling system is now being built at Fermilab as part of the continuing R and D program. This paper describes the status of the electron cooling R and D program at Fermilab.

  16. JUELICH: COSY acceleration and cooling

    International Nuclear Information System (INIS)

    The COSY cooler synchrotron at the KFA Forschungszentrum Jülich, inaugurated on 1 April, is now well on its way towards precision-defined high energy beams to open new fields for Jülich physics experiments. In two important goals, on 25 May the first beam cooled by electrons circulated inside the accelerator, then on 25 July physicists succeeded in accelerating the beam from the 270 MeV/c injection momentum to 600 MeV. Shortly after, this was pushed well above 1 GeV. Throughout the tuning process the number of stored particles increased steadily, finally peaking at 1.1 x 1011, a value compatible with the predicted limit at the injection energy. This success was the result of a painstaking search for the optimum parameter set, the commissioning crew being acutely aware that bringing such a large machine on line was a major experiment in its own right. The 3.3 GeV/c COSY machine belongs to the new class of hadron storage and cooler synchrotrons which started with CERN's LEAR low energy antiproton ring. COSY will 'sharpen' its beams to a narrow momentum spread using both electron and stochastic cooling to control the circulating particles. In addition it will provide space for internal experiments. Both features will allow for novel experimental approaches, and more than 100 physicists are eagerly waiting for the first proton reactions in their detectors

  17. Electron Cooling Performance at IMP Facility

    CERN Document Server

    Xiaodong, Yang

    2011-01-01

    The ion beam of 58Ni19+ with the energy of 6.39MeV/u was accumulated in the main ring of HIRFL-CSR with the help of electron cooling. The related angle between ion and electron beams in the horizontal and vertical planes was intentionally created by the steering coils in the cooling section after maximized the accumulated ion beam in the ring. The radial electron intensity distribution was changed by the ratio of potentials of grid electrode and anode of the electron gun, the different electron beam profiles were formed from solid to hollow in the experiments. In these conditions, the maximum accumulated ion beam intensity in the 10 seconds was measured, the lifetime of ion beam was measured, simultaneously the momentum spread of the ion beam varying with particle number was measured during the ion beam decay, furthermore, and the power coefficient was derived from these data. In additional, the momentum spread in the case of constant particle number was plotted with the angle and electron beam profile. The o...

  18. Three-dimensional cooling of muons

    CERN Document Server

    Vsevolozhskaya, T A

    2000-01-01

    The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.

  19. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  20. Electron Beam for LHC

    CERN Document Server

    Krasny, M W

    2005-01-01

    A method of delivering a monochromatic electron beam to the LHC interaction points is proposed. In this method, heavy ions are used as carriers of the projectile electrons. Acceleration, storage and collision-stability aspects of such a hybrid beam is discussed and a new beam-cooling method is presented. This discussion is followed by a proposal of the Parasitic Ion-Electron collider at LHC (PIE@LHC). The PIE@LHC provides an opportunity, for the present LHC detectors, to enlarge the scope of their research program by including the program of electron-proton and electron-nucleuscollisions with minor machine and detector investments.

  1. Stochastic cooling equipment at the ISR

    CERN Multimedia

    1983-01-01

    The photo shows (centre) an experimental set-up for stochastic cooling of vertical betatron oscillations, used at the ISR in the years before the ICE ring was built. Cooling times of about 30 min were obtained in the low intensity range (~0.3 A). To be noted the four 50 Ohm brass input/output connections with cooling fins, and the baking-out sheet around the cylinder. On the left one sees a clearing electrode box allowing the electrode current to be measured, and the pressure seen by the beam to be evaluated.

  2. Evaporative cooling of the dipolar radical OH

    CERN Document Server

    Stuhl, Benjamin K; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-01-01

    Atomic physics was revolutionized by the development of forced evaporative cooling: it led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases, and ultracold optical lattice simulations of condensed matter phenomena. More recently, great progress has been made in the production of cold molecular gases, whose permanent electric dipole moment is expected to generate rich, novel, and controllable phases, dynamics, and chemistry in these ultracold systems. However, while many strides have been made in both direct cooling and cold-association techniques, evaporative cooling has not yet been achieved due to unfavorable elastic-to-inelastic ratios and impractically slow thermalization rates in the available trapped species. We now report the observation of microwave-forced evaporative cooling of hydroxyl (OH) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least an order of magnitude in tempera...

  3. Intermediate energy electron cooling to improve the luminosity of an anti pp SSC

    International Nuclear Information System (INIS)

    A very intense several MeV electron beam is being developed by the Fermilab-Wisconsin group in collaboration with the National Electrostatics Corporation. This beam can be used for electron cooling of (5-10) GeV/c antiproton and proton beams. Electron cooling might be used to assist in the accumulation of antiprotons and could be useful to cool a core or stack to the small emittance required for injection into the SSC

  4. Measurement of transverse laser cooling effect using scrapers

    International Nuclear Information System (INIS)

    Transverse beam sizes were measured with use of scrapers during transverse laser cooling experiments. Two scrapers were used; the first scraper was used to reduce the uncooled hot part of the beam, the second scraper was used to measure the beam survival ratio after its insertion. In this measurement, resonant coupling condition of longitudinal and horizontal direction gives the smallest beam sizes of (σx, σy)=(0.5mm, 1.0mm). With changing the delay of second scraper insertion, the horizontal cooling time was measured as 1.7 s in the resonant coupling condition. (author)

  5. Pion contamination in the MICE muon beam

    CERN Document Server

    Bogomilov, M.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Japan, Ibaraki; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Blondel, A.; Drielsma, F.; Karadzhov, Y.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.R.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Drews, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Winter, M.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1\\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi < 1.4\\%$ at 90\\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  6. Pion Contamination in the MICE Muon Beam

    Energy Technology Data Exchange (ETDEWEB)

    Bogomilov, M.; et al.

    2016-03-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1\\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi < 1.4\\%$ at 90\\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  7. Pion contamination in the MICE muon beam

    Science.gov (United States)

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Brashaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drews, M.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Greis, J. R.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Winter, M.; Yang, X.; Young, A.; Zisman, M.

    2016-03-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  8. Pion contamination in the MICE muon beam

    International Nuclear Information System (INIS)

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ∼1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling

  9. Horizontal-vertical coupling for three dimensional laser cooling

    International Nuclear Information System (INIS)

    In order to achieve three dimensional crystal beam, laser cooling forces are required not only in the longitudinal direction, but also in the transverse directions. With the resonance coupling method, transverse temperature is transmitted into longitudinal direction, and we have already demonstrated the horizontal laser cooling experimentally. In the present paper, we will describe an approach to extend this result to three dimensional cooling. The vertical cooling requires that the horizontal oscillation couples with the vertical oscillation. For achieving horizontal-vertical coupling, the solenoid in electron beam cooling apparatus is utilized with an experiment (νx =2.07, νy=1.07). For various solenoidal magnetic fields from 0 to 100 Gauss, horizontal and vertical betatron tunes are measured by beam transfer function. For a certain region of the solenoidal magnetic field, these tunes are mixed up each other. (author)

  10. Optics of electron beam in the Recycler

    International Nuclear Information System (INIS)

    Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of ∼0.2 A or higher DC electron beam have to be parallel in the cooling section, within ∼0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as ∼0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analyzed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved

  11. Inductive cooling in quantum magnetomechanics

    Science.gov (United States)

    Romero-Sanchez, Erick; Twamley, Jason; Bowen, Warwick P.; Vanner, Michael R.

    Coupling to light or microwave fields allows quantum control of the motion of a mechanical oscillator, and offers prospects for precision sensing, quantum information systems, and tests of fundamental physics. In cavity electromechanics ground state cooling has been achieved using resolved sideband cooling. Here we present an alternative approach based on a magnetomechanical system that inductively couples an LC resonator to a mechanical oscillator. The experimental setup consists of a micro cantilever with a pyramidal magnetic tip attached at the end of the beam. The sharp end of the magnetic tip is positioned close to the planar microfabricated inductor of the LC resonator. The displacement in the position of the end of the cantilever generates a change in flux through the coil inducing an electromotive force in the circuit. The current in the LC resonator generates a magnetic field, and then a force between the tip and the coil. When they are strongly coupled and the mechanical resonance frequency ωm exceeds the electrical decay rate of the resonator γe, resolved sideband cooling can be used to cool the mechanics. We present estimations for the coupling rates and the experimental parameters required for these experiments. E. Romero acknowledges to CONACyT.

  12. Hybrid radiator cooling system

    Energy Technology Data Exchange (ETDEWEB)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  13. Possibilities for stochastic cooling at RHIC

    CERN Document Server

    Brennan, J M; Wei, J

    2004-01-01

    Intra-Beam Scattering (IBS) is the fundamental performance limitation for RHIC. The emittance growth from IBS determines the ultimate luminosity lifetime and the only cure is cooling. Full-energy electron cooling will be installed to not only control emittance growth but also reduce emittances during a store. Before that, stochastic cooling could increase integrated luminosity by momentum cooling. Two significant benefits would follow; the average luminosity in a 10 h store would double, and the problem of coasting beam in the abort gap would be solved. Of course high-frequency bunched beam stochastic cooling is required and previous attempts at this at the Tevatron and SPS were not successful. It appears that the conditions in the heavy ion collider are more favorable. First, the high charge state of ions gives better signal to noise ratio in the Schottky signal. Second, the anomalous coherent components in the pick up signals that caused saturation in the electronics in previous attempts are greatly reduced...

  14. FREE ELECTRON LASERS AND HIGH-ENERGY ELECTRON COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    LITVINENKO,V.N.

    2007-08-31

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation of such beams is too feeble to provide significant cooling: even in the Large Hadron Collider (LHC) with 7 TeV protons, the longitudinal damping time is about thirteen hours. Decrements of traditional electron cooling decrease rapidly as the high power of beam energy, and an effective electron cooling of protons or antiprotons at energies above 100 GeV seems unlikely. Traditional stochastic cooling still cannot catch up with the challenge of cooling high-intensity bunched proton beams--to be effective, its bandwidth must be increased by about two orders-of-magnitude. Two techniques offering the potential to cool high-energy hadron beams are optical stochastic cooling (OSC) and coherent electron cooling (CEC)--the latter is the focus of this paper. In the early 1980s, CEC was suggested as a possibility for using various instabilities in an electron beam to enhance its interaction with hadrons (i.e., cooling them). The capabilities of present-day accelerator technology, Energy Recovery Linacs (ERLs), and high-gain Free-Electron Lasers (FELs), finally caught up with the idea and provided the all necessary ingredients for realizing such a process. In this paper, we discuss the principles, and the main limitations of the CEC process based on a high-gain FEL driven by an ERL. We also present, and summarize in Table 1, some numerical examples of CEC for ions and protons in RHIC and the LHC.

  15. Phase space exchange in thick wedge absorbers for ionization cooling

    International Nuclear Information System (INIS)

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such ''thick wedge'' cases are presented, and beam phase-space transformations through such wedges are discussed

  16. Present status of the RCNP circulation ring comments on magnetized electron cooling

    International Nuclear Information System (INIS)

    After the brief introduction of the RCNP cooling synchrotron (MSR - Multipurpose Storage Ring), the characteristics of the circulation ring (CR), which is now under construction, are summarized. Some efforts toward the MSR, the next stage of the CR, are also described. In the MSR the completely new scheme will be used for beam cooling. The possibility of stimmulated magnetized electron cooling (say, advanced electron cooling), which lies between the ordinary electron cooling and the new scheme, is discussed. (author)

  17. Preliminary Experimental Study of Ion Beam Extraction of EAST Neutral Beam Injector

    Institute of Scientific and Technical Information of China (English)

    XU Yong-Jian; HU Chun-Dong; LIU Sheng; XIE Ya-Hong; LIANG Li-Zhen; JIANG Cai-Chao

    2012-01-01

    Neutral beam injection is recognized as one of the most effective means for plasma heating.The preliminary data of ion beam extraction is obtained on the EAST neutral beam injector test-stand.Beam extraction from the ion source of EAST-NBI is verified by measuring the beam current with a Faraday cup and by analyzing the results obtained by means of water calorimetric measurement on the temperature rises of water cooling the accelerator electrodes.

  18. Progress on Superconducting Magnets for the MICE Cooling Channel

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A; Virostek, Steve P.; Li, Derun; Zisman, Michael S.; Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Xu, FengYu; Liu, X. K.; Zheng, S. X.; Bradshaw, Thomas; Baynham, Elwyn; Cobb, John; Lau, Wing; Lau, Peter; Yang, Stephanie Q.

    2009-09-09

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in he United States, China, and the United Kingdom respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that re used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  19. Implementation of Stochastic Cooling Hardware at Fermilab's Tevatron Collider

    International Nuclear Information System (INIS)

    The invention of Stochastic cooling by Simon van der Meer made possible the increase in phase space density of charged particle beams. In particular, this feedback technique allowed the development of proton antiproton colliders at both CERN and Fermilab. This paper describes the development of hardware systems necessary to cool antiprotons at the Fermilab Tevatron Collider complex.

  20. Progress on Superconducting Magnets for the MICE Cooling Channel

    International Nuclear Information System (INIS)

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in he United States, China, and the United Kingdom respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that re used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  1. Solar energy as a renewable resource for cooling

    OpenAIRE

    Yang, Yingying

    2012-01-01

    The thesis contains mainly two parts: 1) the solar energy resource assessment through measurements and comparison of solar irradiance models and analysis of atmospheric turbidity factors; 2) Sensitivity analysis of solar cooling system, monitoring on solar cooling system and pre-design of a solar cooling system test rig in Politecnico di Torino. Firstly, the solar energy resource assessment is based on the measurements of solar beam normal irradiance and solar global horizontal irradiance in ...

  2. Laser Cooled Strontium Source for an Ion Interferometer

    Science.gov (United States)

    Lyon, Mary; Archibald, James; Erickson, Christopher; Durfee, Dallin

    2010-10-01

    We present a Strontium-87 magneto-optical trap (MOT) in a Low-Velocity-Intense-Source (LVIS) as the source of cooled, collimated atoms for an ion interferometer. Laser cooling and trapping is accomplished with a 461 nm frequency doubled laser and a pair of permanent magnets. A beam of cooled atoms is produced by passing the atoms through a hole drilled in one of the retroreflecting optics. The atoms are then photo-ionized in a two photon process.

  3. MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement

    CERN Document Server

    Hart, Terrence Lee

    2009-01-01

    MICE is an experiment with a section of an ionization cooling channel and a muon beam. The muons will be produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, a threshold Cherenkov counter, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

  4. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  5. Nonlinear beam-beam resonances

    International Nuclear Information System (INIS)

    Head-on collisions of bunched beams are considered, assuming the two colliding beams have opposite charges. A few experimental observations are described. The single resonance analysis is developed that is applicable to the strong-weak case of the beam-beam interaction. In this case, the strong beam is unperturbed by the beam-beam interaction; motions of the weak beam particles are then analyzed in the presence of the nonlinear electromagnetic force produced by the strong beam at the collision points. The coherent motions of the two coupled strong beams are shown to exhibit distinct nonlinear resonance behavior. 16 refs., 22 figs

  6. Ionization Cooling using Parametric Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  7. Ionization Cooling using Parametric Resonances

    International Nuclear Information System (INIS)

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  8. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    Energy Technology Data Exchange (ETDEWEB)

    Fong, K.F., E-mail: bssquare@cityu.edu.hk [Building Energy and Environmental Technology Research Unit, School of Energy and Environment and Division of Building Science and Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong (China); Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S. [Building Energy and Environmental Technology Research Unit, School of Energy and Environment and Division of Building Science and Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong (China)

    2011-08-15

    Highlights: {yields} A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. {yields} An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. {yields} Year-round cooling and energy performances were evaluated through dynamic simulation. {yields} Its annual primary energy consumption was lower than conventional system up to 36.5%. {yields} The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual

  9. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  10. RF and Stochastic Cooling System of the HESR

    CERN Document Server

    Stassen, R; Schug, G; Stockhorst, H; Katayama, T; Thorndahl, L

    2012-01-01

    The High-Energy Storage Ring HESR (1.5-15 GeV/c) for antiprotons at the FAIR complex (Facility for Antiprotons and Ion Research) in Darmstadt (GSI) will have a dedicated stochastic cooling system not only during the experiments to fulfill the beam requirements, but also during the accumulation due to the postponed RESR. Here the cooperation of stochastic cooling with different barrier-bucket configurations is necessary for high accumulation efficiency. The latest hardware configurations and recent tests results of both the RFsystem with air-cooled cavities and the stochastic cooling based on slot-ring couplers will be presented.

  11. Effect of magnetized electron cooling on a Hopf bifurcation

    International Nuclear Information System (INIS)

    We have observed longitudinal limit cycle oscillations of a proton beam when a critical threshold in the relative velocity between the proton beam and the cooling electrons has been exceeded. The threshold for the bifurcation of a fixed point into a limit cycle, also known as a Hopf bifurcation, was found to be asymmetric with respect to the relative velocity. Further experiments were performed to verify that the asymmetry was related to electron beam alignment with respect to the stored proton beam. The measured amplitudes of the ensuing limit cycle were used to determine the cooling drag force, which exhibits the essential characteristics of the magnetized cooling, where the limit cycle attractor can coexist with a damping-free region and/or a fixed point attractor. copyright 1996 The American Physical Society

  12. Electron-cooling scenarios at Fermilab

    International Nuclear Information System (INIS)

    According to Run II upgrade plans, peak luminosity of the proton-antiproton beams in the Tevatron has to increase 7-8 times in coming years. This requires 5-6 times more antiprotons, which is supposed to be reached by means of electron cooling of accumulated pbars. A main scenario is to apply this in the Recycler (RR). However, there is an alternative, i.e to e-cool pbars in the accumulator, without using RR at all. Advantages and disadvantages of both scenarios are discussed

  13. A beam position monitor system for electron cooler in HIRFL-CSR

    International Nuclear Information System (INIS)

    The efficient electron cooling requires that the ion beam and electron beam are parallel and overlapped. In order to measure the positions of ion beam and electron beam simultaneously, a beam position monitor system is developed for the HIRFL-CSR electron cooler device, which probe consists of four capacitive cylinder linear-cut poles. One can get the both beam positions from the picking up signals of four poles by using Fourier transform (FFT) method. The measurement results show that the beam position monitor system is accurate. This system is suitable for investigating the relation between electron cooling processing and the angle of ion beam and electron beam. (authors)

  14. Emittance in particle and radiation beam techniques

    International Nuclear Information System (INIS)

    The author discusses the important and diverse role of the phase space area - the emittance - in the advanced techniques involving interaction of particle and radiation beams. For undulator radiation from unbunched beams, the radiation phase space is diluted from the coherent phase space of the single electron radiation. When the undulator radiation is used as a light source, it is important to minimize the dilution by decreasing the beam emittance and matching the phase space distributions of the particle and the radiation beams. For optical stochastic cooling, on the other hand, the phase space should be maximally mismatched for efficient cooling. In the case particles are bunched to a length much shorter than the radiation wavelength, the emittance appears as an intensity enhancement factor. In the operation of free electron lasers, the phase space matching becomes doubly important, once as the dilution factor in the initial stage of energy modulation and then as the radiation efficiency factor at the end where the beam is density modulated. The author then discusses some of the beam cooling techniques producing smaller emittances, especially the recent suggestions for relativistic heavy ions in storage rings or electron beams in linacs. These are based on the radiative cooling that occurs when particle beams backscatter powerful laser beams

  15. Doublet III vacuum vessel neutral beam armor

    International Nuclear Information System (INIS)

    The evolution of the Doublet III neutral beam armor is followed from the initial design of a radiation cooled metallic tile to the present actively cooled graphite design. Results of the thermal and stress analyses that dictated the present design are reviewed

  16. Field measurements in the Fermilab electron cooling solenoid prototype

    CERN Document Server

    Crawford, A C

    2003-01-01

    To increase the Tevatron luminosity, Fermilab is developing a high-energy electron cooling system [1] to cool 8.9-GeV/c antiprotons in the Recycler ring. The schematic layout of the Recycler Electron Cooling (REC) system is shown in Figure 1. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through a cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 10 sup - sup 4 rad, the cooling section will be immersed into a solenoidal field of 50-150G. As part of the R and D effort, a cooling section prototype consisting of 9 modules (90% of the total length of a future section) was assembled and measured. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of solenoid prototype field measurements. The design of the cooling section solenoid is discussed in Chapter 2. Chapter 3 describes details of a dedicated ...

  17. Grazing incidence beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  18. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floo...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  19. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    The description is given of a water cooled nuclear reactor comprising a core, cooling water that rises through the core, vertical guide tubes located inside the core and control rods vertically mobile in the guide tubes. In this reactor the cooling water is divided into a first part introduced at the bottom end of the core and rising through it and a second part introduced at the top end of the guide tubes so as to drop in them

  20. Solar absorption cooling

    OpenAIRE

    Kim, D.-S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still remains a challenge to the academic and industrial communities. In an effort to meet this challenge, this thesis reports the R&D activities carried out for the development of a new solar cooling machine,...

  1. Achromatic Cooling Channel with Li Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2002-04-29

    A linear cooling channel with Li lenses, solenoids, and 201 MHz RF cavities is considered. A special lattice design is used to minimize chromatic aberrations by suppression of several betatron resonances. Transverse emittance of muon beam decreases from 2 mm to 0.5 mm at the channel of about 110 m length. Longitudinal heating is modest, therefore transmission of the channel is rather high: 96% without decay and 90% with decay. Minimal beam emittance achievable by similar channel estimated as about 0.25 mm at surface field of Li lenses 10 T.

  2. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  3. Emergency core cooling device

    International Nuclear Information System (INIS)

    The present invention provides an emergency core cooling device without using a reactor core spray device, in which the reactor core of a BWR type reactor is cooled effectively and certainly by flooding of the reactor core. That is, the emergency core cooling device comprises a high pressure core water injection system as an emergency core cooling system (ECCS) for cooling the inside of the reactor core upon loss of coolants accident (LOCA). By means of the high pressure core water injection system, water is injected from a condensate storage vessel or a suppression pool to the inside of the reactor core shroud upon LOCA. Accordingly, the reactor core is cooled effectively by reactor core flooding. In this device, cooling water can be injected to the inside of the reactor core shroud by means of the high pressure core injection system upon LOCA in which the coolants are discharged from the outside of the reactor core shroud. On the other hand, upon LOCA in which the coolants are discharged from the inside of the reactor core shroud, the cooling water can be supplied to the reactor core by means of a cooling system upon reactor isolation which injects water to the outside of the reactor core or a low pressure water injection system. (I.S.)

  4. Air cooling system

    International Nuclear Information System (INIS)

    A procedure for cooling the steam from a turbine used in conjunction with a power nuclear reactor has been described in the main patent. According to said procedure, use is made of a circuit where a two-phase mixture is circulated, said closed circuit connecting the turbine condenser to a cooling tower. According to the present addition patent, the cooling structure is provided with cooling fins previously hollowed in view of increasing the interface between the fluid and said structure, which improves the performance of the system

  5. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  6. Liquid nitrogen cooled liners for 2XIIB

    International Nuclear Information System (INIS)

    Liquid-nitrogen-cooled liners have been installed in the neutral-beam source tanks of 2XIIB. The installation has resulted in improvements in vacuum pumping, although testing is not complete. The liners are stainless-steel-flooded-type liners, using spot-welded-and-inflation construction. The natural-convection flow system must keep the liners cold during the high heat loads imposed during Ti gettering

  7. Modeling of active beam units with Modelica

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Hultmark, Göran; Vorre, Anders; Afshari, Alireza; Bergsøe, Niels Christian

    2015-01-01

    This paper proposes an active beam model suitable for building energy simulations with the programming language Modelica. The model encapsulates empirical equations derived by a novel active beam terminal unit that operates with low-temperature heating and high-temperature cooling systems...

  8. An investigation of stochastic cooling in the framework of control theory

    International Nuclear Information System (INIS)

    This thesis provides a description of unbunched beam stochastic cooling in the framework of system theory. The main interest in the investigation is concentrated on the beam stability in an active cooling system. A stochastic cooling system must be considered as a closed-loop, similar to the feedback systems used to damp collective instabilities. These systems, which are able to act upon themselves, are potentially unstable and therefore their stability must be carefully analysed. Assuming a linear transverse cooling interaction, the self-consistent solution for the beam motion is derived by means of a mode analysis of the collective beam motion. Furthermore the calculation treats the pick-up and kicker of the cooling system as localized objects which impose a discrete time structure on the dynamics of the beam particles. This solution then yields a criterion for the stability of each collective mode. The expressions which have been obtained also allow for overlapping frequency bands in the beam spectrum and thus are valid over the entire frequency range. Having established the boundaries of stability in this way, the Fokker-Planck equation is used to describe the cooling process. The drift and diffusion coefficients are derived in the frequency domain taking into account the localization of pick-up and kicker and the sampled nature of the cooling interaction. The Fokker-Planck equation provides a purely statistical description, which does not include collective effects and thus a stable beam must be assumed. Hence the predictions about the cooling process following from the Fokker-Planck equation only make physical sense within the boundaries of beam stability. Finally it is verified that the parameters of the cooling system which give the best cooling results are compatible with the stability of the beam. (orig.)

  9. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  10. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  11. Passive evaporative cooling

    NARCIS (Netherlands)

    Tzoulis, A.

    2011-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Smart & Bioclimatic Design. Passive techniques for cooling are a great way to cope with the energy problem of the present day. This manual introduces passive cooling by evaporation. These methods have been used for many years in traditi

  12. DOAS, Radiant Cooling Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2012-12-01

    The article discusses dedicated outdoor air systems (DOAS) and radiant cooling technologies. Both of these topics were covered in previous ASHRAE Journal columns. This article reviews the technologies and their increasing acceptance. The two steps that ASHRAE is taking to disseminate DOAS information to the design community, available energy savings and the market potential of radiant cooling systems are addressed as well.

  13. Data center cooling method

    Science.gov (United States)

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  14. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.-S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still remain

  15. Gas-cooled reactors

    International Nuclear Information System (INIS)

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  16. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1979-01-01

    ICE was built in 1977, using the modified bending magnets of the g-2 muon storage ring (see 7405430). Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project. Stochastic cooling proved a resounding success early in 1978 and the antiproton project could go ahead, now entirely based on stochastic cooling. Electron cooling was experimented with in 1979. The 26 kV equipment is housed in the cage to the left of the picture, adjacent to the "e-cooler" located in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7809081.

  17. Conceptual design of proton beam window

    International Nuclear Information System (INIS)

    In a MW-scale neutron scattering facility coupled with a high-intensity proton accelerator, a proton beam window is installed as the boundary between a high vacuum region of the proton beam transport line and a helium environment around the target assembly working as a neutron source. The window is cooled by water so as to remove high volumetric heat generated by the proton beam. A concept of the flat-type proton beam window consisting of two plates of 3 mm thick was proposed, which was found to be feasible under the proton beam power of 5 MW through thermal-hydraulic and structural strength analyses. (authors)

  18. Electron Beam Generation in Tevatron Electron Lenses

    International Nuclear Information System (INIS)

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  19. Electron beam generation in Tevatron electron lenses

    International Nuclear Information System (INIS)

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  20. Collimator for the SPS extracted beam

    CERN Multimedia

    1976-01-01

    This is a water cooled copper collimator (TCSA) which has exactly the shape of the cross section of the downstream magnetic beam splitter. Parts of the blown up primary proton beam pass above/below and left through this collimator. A small part of the protons is absorbed in the thin copper wedges. In this way the downstream magnetic splitter of the same cross section receives already a beam where its magnetic wedges are no longer hit by protons. The upstream, water cooled collimator, more resistant to protons, has cast a 'shadow' onto the downstream magnetic splitter, less resistant to protons. Gualtero Del Torre stands on the left.

  1. Some aspects of electron cooling technique at different energies

    Energy Technology Data Exchange (ETDEWEB)

    Reva, Vladimir B. E-mail: v.b.reva@inp.nsk.su

    2004-10-11

    The cooling rate depends on the property of collision between an ion and electron. The magnetized electron cooling is able to strongly increase the cooling rate and enables it to obtain higher parameters of the ion (proton) beams. At medium and high energies of the electron beam it is difficult to have magnetized motion of electron at a whole cooling device. The length of the Larmor spiral is larger or almost equal to the characteristic length of parts of a cooler device, moreover it is difficult to combine the longitudinal magnetic field with RF accelerating structures. So, the special methods for the electron transport along a cooler are necessary. In this article, the different ways of problem solving are described. The merits and demerits of variants with continuous and discontinuous longitudinal magnetic fields are discussed.

  2. Influence of plasma loading in a hybrid muon cooling channel

    Energy Technology Data Exchange (ETDEWEB)

    Freemire, B.; Stratakis, D.; Yonehara, K.

    2015-05-03

    In a hybrid 6D cooling channel, cooling is accomplished by reducing the beam momentum through ionization energy loss in wedge absorbers and replenishing the momentum loss in the longitudinal direction with gas-filled rf cavities. While the gas acts as a buffer to prevent rf breakdown, gas ionization also occurs as the beam passes through the pressurized cavity. The resulting plasma may gain substantial energy from the rf electric field which it can transfer via collisions to the gas, an effect known as plasma loading. In this paper, we investigate the influence of plasma loading on the cooling performance of a rectilinear hybrid channel. With the aid of numerical simulations we examine the sensitivity in cooling performance and plasma loading to key parameters such as the rf gradient and gas pressure.

  3. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  4. Dry well cooling device

    International Nuclear Information System (INIS)

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  5. Thermal environment in simulated offices with convective and radiant cooling systems under cooling (summer) mode of operation

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin;

    2016-01-01

    The thermal environment in a double office room and in a six-person meeting room obtained with chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition-mounted local radiant cooling panels with mixing...... ventilation (MVRC) under summer (cooling) condition was compared. MVRC system was measured only for the office room case. CB provided convective cooling while the remaining three systems (CBR, CCMV and MVRC) provided combined radiant and convective cooling. Solar radiation, office equipment, lighting and...... occupants were simulated to obtain two different heat load conditions: 38 W/m2 and 64 W/m2 in the case of office room, and 71 W/m2 and 86 W/m2 in the case of meeting room. Air temperature, globe (operative) temperature, radiant asymmetry, air velocity and turbulent intensity were measured and draught rate...

  6. Proceedings of the workshop on crystalline ion beams

    International Nuclear Information System (INIS)

    The workshop consisted of mainly invited and some contributed papers. More informal discussions took place in three working groups on the following topics: beam cooling techniques; diagnostics of crystalline beams; storage rings for crystalline beams. The present volume collects all papers as well as the summaries of the working groups. See hints under the relevant topics. (orig./HSI)

  7. Feedback cooling of currents

    Science.gov (United States)

    Washburn, Sean

    1989-02-01

    Just as feedback can be used to correct errors in the output voltages of amplifiers, it can also be used to remove noise from the current through a resistor. Such a feedback amplifier behaves as a refrigerator cooling the electrons in a resistor connnected to it. This principle has been recognized since the 1940s but has been largely ignored because the cooling power available from such refrigerators is miniscule. It is pointed out here that the method might be practical for cooling the currents in the microscopic circuits that are typical of modern electrical engineering and recent studies in transport physics.

  8. Cooling System Analysis

    OpenAIRE

    Almeida, Fernando Jorge Gonçalves; Cruz, João Pedro Brás da

    2012-01-01

    ABSTRACT This master thesis report describes the behavior of a cooling system based on the power consumption and power losses during the velocity range. The thesis is a report of the behavior of the cooling system to understand were we having more needs to cold down the system. It was used a excel sheet to describe the values of power, losses and efficiencies of the various components of the cooling. With the excel sheets built we studied various cases in the system to show ...

  9. Personal Cooling System

    Science.gov (United States)

    1986-01-01

    Cool Head, a personal cooling system for use in heat stress occupations, is a spinoff of a channeled cooling garment for space wear. It is portable and includes a heat exchanger, control display unit, liquid reservoir and temperature control unit. The user can eliminate 40 to 60 percent of his body's heat storage and lower heart rate by 50 to 80 beats a minute. The system is used by the Army, Navy, crop dusting pilots, heavy equipment operators and auto racing drivers and is marketed by Life Enhancement Technologies, LLC. Further applications are under consideration.

  10. Storage-ring Electron Cooler for Relativistic Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Johnson, Rolland P. [Muons Inc., Batavia, IL (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.

  11. Phase space exchange in thick wedge absorbers for ionization cooling

    International Nuclear Information System (INIS)

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such open-quotes thick wedgeclose quotes cases are presented, and beam phase-space transformations through such wedges are discussed. copyright 1998 American Institute of Physics

  12. Sisyphus Cooling of Lithium

    CERN Document Server

    Hamilton, Paul; Kim, Geena; Mukherjee, Biswaroop; Tiarks, Daniel; Müller, Holger

    2013-01-01

    Laser cooling to sub-Doppler temperatures by optical molasses is thought to be inhibited in atoms with unresolved, near-degenerate hyperfine structure in the excited state. We demonstrate that such cooling is possible in one to three dimensions, not only near the standard D2 line for laser cooling, but over a range extending to the D1 line. Via a combination of Sisyphus cooling followed by adiabatic expansion, we reach temperatures as low as 40 \\mu K, which corresponds to atomic velocities a factor of 2.6 above the limit imposed by a single photon recoil. Our method requires modest laser power at a frequency within reach of standard frequency locking methods. It is largely insensitive to laser power, polarization and detuning, magnetic fields, and initial hyperfine populations. Our results suggest that optical molasses should be possible with all alkali species.

  13. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floo...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented.......In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...

  14. LHC cooling gains ground

    CERN Multimedia

    Huillet-Miraton Catherine

    The nominal cryogenic conditions of 1.9 K have been achieved in sectors 5-6 and 7-8. This means that a quarter of the machine has reached the nominal conditions for LHC operation, having attained a temperature of below 2 K (-271°C), which is colder than interstellar space! Elsewhere, the cryogenic system in Sector 8-1 has been filled with liquid helium and cooled to 2K and will soon be available for magnet testing. Sectors 6-7 and 2-3 are being cooled down and cool-down operations have started in Sector 3-4. Finally, preparations are in hand for the cool-down of Sector 1-2 in May and of Sector 4-5, which is currently being consolidated. The LHC should be completely cold for the summer. For more information: http://lhc.web.cern.ch/lhc/Cooldown_status.htm.

  15. Waveguide cooling system

    Science.gov (United States)

    Chen, B. C. J.; Hartop, R. W. (Inventor)

    1981-01-01

    An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel.

  16. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  17. Cooling with Superfluid Helium

    CERN Document Server

    Lebrun, P

    2014-01-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics

  18. Alternative Room Cooling System

    Directory of Open Access Journals (Sweden)

    Md. Fazle Rabbi

    2015-06-01

    Full Text Available The rapidly growing population results in an increasing demand for much more residential and commercial buildings, which leads to vertical growth of the buildings and needs proper ventilation of those buildings. Natural air ventilation system is not sufficient for conventional building structures. Hence fans and air-conditioners are must to meet the requirement of proper ventilation as well as space conditioning. Globally building sector consumes largest energy in heating, cooling, ventilation and space conditioning. This load can be minimized by the application of solar chimney and modification in building structure for heating, cooling, ventilation and space conditioning. Passive solar cooling is a subject of interest to provide cooling by using the sun, a powerful energy source. This is done for ensuring human comfort in hot climates. ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers defines Comfort as ‘that state of mind which expresses satisfaction with the thermal environment.’ The present paper describes the development of a solar passive cooling system, which can provide thermal cooling throughout the summer season in hot and humid climates. The constructed passive system works on natural convection mode of air. Such system reduces the inside temperature of up to 5°C from the atmospheric temperature. Temperature can further be reduced by the judicious use of night ventilation.

  19. TSR: A storage and cooling ring for HIE-ISOLDE

    Science.gov (United States)

    Butler, P. A.; Blaum, K.; Davinson, T.; Flanagan, K.; Freeman, S. J.; Grieser, M.; Lazarus, I. H.; Litvinov, Yu. A.; Lotay, G.; Page, R. D.; Raabe, R.; Siesling, E.; Wenander, F.; Woods, P. J.

    2016-06-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  20. Halo particle confinement in the VLHC using optical stochastic cooling

    International Nuclear Information System (INIS)

    Beam halo particles following the extreme trajectories near the physical aperture limit radiate Smith-Purcell radiation when moving over a diffraction grating. This grating can be used as a pick-up and a kicker for optical stochastic cooling of the halo particles. In this application cooling would have the effect of slowing down the halo particle diffusion onto the aperture. Cooling efficiency would quickly diminish with the distance from the aperture and would only affect the halo particles. A preliminary analysis of this system is considered

  1. Magnetic Flux Dynamics in Horizontally Cooled Superconducting Cavities

    CERN Document Server

    Martinello, M; Grassellino, A; Crawford, A C; Melnychuk, O; Romanenko, A; Sergatkov, D A

    2015-01-01

    Previous studies on magnetic flux expulsion as a function of cooling details have been performed for superconducting niobium cavities with the cavity beam axis placed parallel respect to the helium cooling flow, and findings showed that for sufficient cooling thermogradients all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper we investigate the flux trapping and its impact on radio frequency surface resistance when the resonators are positioned perpendicularly to the helium cooling flow, which is representative of how superconducting radio-frequency (SRF) cavities are cooled in an accelerator. We also extend the studies to different directions of applied magnetic field surrounding the resonator. Results show that in the cavity horizontal configuration there is a different impact of the various field components on the final surface resistance, and that several parameters have to be considered to understand flux dynamics. A newly discovered phenomenon of concent...

  2. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  3. Environmental assessment of cooling reservoirs

    International Nuclear Information System (INIS)

    The environmental impacts, both adverse and beneficial, of cooling reservoirs are compared to cooling towers as an alternative closed cycle cooling system. Generally, the impacts associated with the construction of a cooling reservoir system are greater than for a comparable cooling tower system. Operational impacts are generally greater for cooling towers due to their visual impact, plus icing, fogging, and noise problems. The principle advantages of cooling reservoirs are their lower operating and maintenance costs, greater reliability, greater cooling efficiency, reduced water consumption in areas where cooling water storage is required, and their multiple use potential. A review of pertinent literature on cooling reservoir ecosystems, has revealed that entrainment, thermal, and chemical effects generally result in reduced populations of phytoplankton, zooplankton, and benthos in the vicinity of the power plant discharge. Adverse far field effects are generally less significant and are sometimes stimulatory. The overall effects of a power plant on the fish populations of cooling reservoirs appear to be minor. Based on the thermal characteristics of a model 6400 acre cooling reservoir with four 1150 MWe reactors, the ecological characteristics of the reservoir were predicted. The multiple use possibilities of cooling reservoirs provide their most significant beneficial aspect when compared to cooling towers. In addition, the cage culture of food fishes in cooling reservoirs provides an economical and practical method of commercially utilizing the waste heat discharged by power plants. For many areas of the country, cooling reservoirs appear to provide an environmentally and socially desirable alternative to cooling towers

  4. Totally Active Scintillator Tracker-Calorimeter for the Muon Ionization Cooling Experiment

    CERN Document Server

    Asfandiyarov, Ruslan

    2014-09-31

    The recent discoveries in particle physics, the Higgs Boson and neutrino oscillations, voiced the need for new machines that can provide higher intensities, energy and precision. To study the neutrino oscillations in great details and to access new physics, a Neutrino Factory stands as an ultimate tool that offers a high intensity, well understood neutrino beam. On the other hand, a Muon Collider is indispensable for better understanding of a Higgs physics. Both machines share similar ingredients and one of them, that is essential to achieve high luminosity of the beams, is beam cooling. And the only feasible method to achieve cooling of a muons beam is based on ionization. An R&D project was established to verify a possibility of such a cooling, Muon Ionization Cooling Experiment (MICE). Its purpose is to build a cooling cell capable of cooling a muon beam by 10% and measure the effect (the cooling effect is attributed to a reduction of beam emittance) with an absolute precision of 0.1%. This is achieve...

  5. Fully immersed liquid cooling thin-disk oscillator

    International Nuclear Information System (INIS)

    A novel Nd:YAG thin-disk laser with excellent cooling configuration is demonstrated. A maximum output energy of 653 mJ is realized, corresponding to the optical–optical efficiency of 30% and the slope efficiency of 35%. The coefficient of output instability is as low as 1.1% at a repetition rate of 1 Hz. Beam propagation analysis reveals that beam distortion caused by temperature gradient will decrease effectively with this laser configuration. (letter)

  6. Feasibility study of stochastic cooling of bunches in the SPS

    International Nuclear Information System (INIS)

    The average luminosity of the SPS collider could be improved if the slow blow-up of transverse emittances due to beam-beam and intrabeam scattering effects were to be reduced by a transverse cooling system. We examine the parameters of such a system and propose a technological approach which seems better suited to the case of a few bunches circulating in a large machine. (orig./HSI)

  7. Storage-ring Electron Cooler for Relativistic Ion Beams

    OpenAIRE

    Lin, F; Derbenev, Y. S.; Douglas, D.; Guo, J.; Johnson, R P.; Krafft, G.; Morozov, V. S.; Zhang, Y.

    2016-01-01

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring elect...

  8. Measuring the coolness of interactive products: the COOL questionnaire

    DEFF Research Database (Denmark)

    Bruun, Anders; Raptis, Dimitrios; Kjeldskov, Jesper;

    2016-01-01

    is the COOL questionnaire. We based the creation of the questionnaire on literature suggesting that perceived coolness is decomposed to outer cool (the style of a product) and inner cool (the personality characteristics assigned to it). In this paper, we focused on inner cool, and we identified 11...... inner cool characteristics. These were used to create an initial pool of question items and 2236 participants were asked to assess 16 mobile devices. By performing exploratory and confirmatory factor analyses, we identified three factors that can measure the perceived inner coolness of interactive...

  9. Beam - cavity interaction beam loading

    International Nuclear Information System (INIS)

    The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)

  10. Cool WISPs for stellar cooling excesses

    Science.gov (United States)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  11. Production of annular flat-topped vortex beams

    Institute of Scientific and Technical Information of China (English)

    Jiannong Chen; Yongjiang Yu; Feifei Wang

    2011-01-01

    @@ A model of an annular flat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.%A model of an annular fiat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.

  12. Frozen Beams

    CERN Document Server

    Okamoto, Hiromi

    2005-01-01

    In general, the temperature of a charged particle beam traveling in an accelerator is very high. Seen from the rest frame of the beam, individual particles randomly oscillate about the reference orbit at high speed. This internal kinetic energy can, however, be removed by introducing dissipative interactions into the system. As a dissipative process advances, the beam becomes denser in phase space or, in other words, the emittance is more diminished. Ideally, it is possible to reach a "zero-emittance" state where the beam is Coulomb crystallized. The space-charge repulsion of a crystalline beam just balances the external restoring force provided by artificial electromagnetic elements. In this talk, general discussion is made of coasting and bunched crystalline beams circulating in a storage ring. Results of molecular dynamics simulations are presented to demonstrate the dynamic nature of various crystalline states. A possible method to approach such an ultimate state of matter is also discussed.

  13. Storage-ring Electron Cooler for Relativistic Ion Beams

    CERN Document Server

    Lin, F; Douglas, D; Guo, J; Johnson, R P; Krafft, G; Morozov, V S; Zhang, Y

    2016-01-01

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the...

  14. LS1 Report: Summer cool down

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    As the final LS1 activities are carried out in the machine, teams have been cooling down the accelerator sector by sector in preparation for beams.   The third sector of the LHC to be cooled down - sector 1-2 - has seen the process begin this week. During the cool-down phase, survey teams are measuring and smoothing (or realigning) the magnets at cold. By the end of August, five sectors of the machine will be in the process of cooling down, with one (sector 6-7) at cold. The LHC Access Safety System (LASS) is now being commissioned, and will be validated during the DSO tests at the beginning of October. As teams consolidate the modifications made to LASS during the shutdown, many points were closed for testing purposes. The CSCM (copper stabiliser continuity measurement) tests have been completed in the first sector (6-7) and no defect has been found. These results will be presented to the LHC Machine Committee next week. CSCM tests will start in the second sector in mid-August. Following many...

  15. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  16. Core cooling systems

    International Nuclear Information System (INIS)

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  17. Doppler cooling a microsphere

    CERN Document Server

    Barker, P F

    2010-01-01

    Doppler cooling the center-of-mass motion of an optically levitated microsphere via the velocity dependent scattering force from narrow whispering gallery mode (WGM) resonances is described. Light that is red detuned from the WGM resonance can be used to damp the center-of-mass motion in a process analogous to the Doppler cooling of atoms. Leakage of photons out of the microsphere when the incident field is near resonant with the narrow WGM resonance acts to damp the motion of the sphere. The scattering force is not limited by saturation, but can be controlled by the incident power. Cooling times on the order of seconds are calculated for a 20 micron diameter silica microsphere trapped within optical tweezers, with a Doppler temperature limit in the microKelvin regime.

  18. Passive containment cooling system

    Science.gov (United States)

    Billig, Paul F.; Cooke, Franklin E.; Fitch, James R.

    1994-01-01

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  19. Effect of secondary ions on the electron beam optics in the Recycler Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A.; Prost, L.; Saewert, G.; /Fermilab

    2010-05-01

    Antiprotons in Fermilab's Recycler ring are cooled by a 4.3 MeV, 0.1-0.5 A DC electron beam (as well as by a stochastic cooling system). The unique combination of the relativistic energy ({gamma} = 9.49), an Ampere-range DC beam, and a relatively weak focusing makes the cooling efficiency particularly sensitive to ion neutralization. A capability to clear ions was recently implemented by way of interrupting the electron beam for 1-30 {micro}s with a repetition rate of up to 40 Hz. The cooling properties of the electron beam were analyzed with drag rate measurements and showed that accumulated ions significantly affect the beam optics. For a beam current of 0.3 A, the longitudinal cooling rate was increased by factor of {approx}2 when ions were removed.

  20. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  1. Experimental characterization of beam quality of a Yb:YAG thin disk laser

    Science.gov (United States)

    Kazemi, S.; Mahdieh, M. H.

    2015-02-01

    In this paper we investigate the effects of cooling water temperature and pumping diode laser beam profile on the disk laser beam quality. The results show that both issues are important and can influence the beam quality but at the conditions of our experiment these issues do not affect the beam quality significantly.

  2. Anomalous law of cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lapas, Luciano C., E-mail: luciano.lapas@unila.edu.br [Universidade Federal da Integração Latino-Americana, Caixa Postal 2067, 85867-970 Foz do Iguaçu, Paraná (Brazil); Ferreira, Rogelma M. S., E-mail: rogelma.maria@gmail.com [Centro de Ciências Exatas e Tecnológicas, Universidade Federal do Recôncavo da Bahia, 44380-000 Cruz das Almas, Bahia (Brazil); Rubí, J. Miguel, E-mail: mrubi@ub.edu [Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain); Oliveira, Fernando A., E-mail: fernando.oliveira@pq.cnpq.br [Instituto de Física and Centro Internacional de Física da Matéria Condensada, Universidade de Brasília, Caixa Postal 04513, 70919-970 Brasília, Distrito Federal (Brazil)

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton’s law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  3. Superconductor rotor cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  4. Multiphase cooling flows

    OpenAIRE

    Thomas, Peter A.

    1996-01-01

    I discuss the multiphase nature of the intracluster medium whose neglect can lead to overestimates of the baryon fraction of clusters by up to a factor of two. The multiphase form of the cooling flow equations are derived and reduced to a simple form for a wide class of self-similar density distributions. It is shown that steady-state cooling flows are \\emph{not} consistent with all possible emissivity profiles which can therefore be used as a test of the theory. In combination, they provide ...

  5. Anomalous law of cooling

    International Nuclear Information System (INIS)

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton’s law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics

  6. Doppler Cooling a Microsphere

    OpenAIRE

    Barker, P F

    2010-01-01

    Doppler cooling the center-of-mass motion of an optically levitated microsphere via the velocity dependent scattering force from narrow whispering gallery mode (WGM) resonances is described. Light that is red detuned from the WGM resonance can be used to damp the center-of-mass motion in a process analogous to the Doppler cooling of atoms. Leakage of photons out of the microsphere when the incident field is near resonant with the narrow WGM resonance acts to damp the motion of the sphere. The...

  7. Anomalous law of cooling

    Science.gov (United States)

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  8. Stochastic cooling for beginners

    International Nuclear Information System (INIS)

    These two lectures have been prepared to give a simple introduction to the principles. In Part I we try to explain stochastic cooling using the time-domain picture which starts from the pulse response of the system. In Part II the discussion is repeated, looking more closely at the frequency-domain response. An attempt is made to familiarize the beginners with some of the elementary cooling equations, from the 'single particle case' up to equations which describe the evolution of the particle distribution. (orig.)

  9. Electronic Cooling in Graphene

    OpenAIRE

    Bistritzer, R.; Macdonald, A. H.

    2009-01-01

    Energy transfer to acoustic phonons is the dominant low-temperature cooling channel of electrons in a crystal.For cold neutral graphene we find that the weak cooling power of its acoustical modes relative to the heat capacity of the system leads to a power law decay of the electronic temperature when far from equilibrium. For heavily doped graphene a high electronic temperature is shown to initially decrease linearly with time at a rate proportional to n^(3/2) with n being the electronic dens...

  10. Diverse topics in crystalline beams

    International Nuclear Information System (INIS)

    Equations of motion are presented, appropriate to interacting charged particles of diverse charge and mass, subject to the external forces produced by various kinds of magnetic fields and radio-frequency (rf) electric fields in storage rings. These equations are employed in the molecular dynamics simulations to study the properties of crystalline beams. The two necessary conditions for the formation and maintenance of crystalline beams are summarized. The transition from ID to 2D, and from 2D to 3D is explored, and the scaling behavior of the heating rates is discussed especially in the high temperature limit. The effectiveness of various cooling techniques in achieving crystalline states has been investigated. Crystalline beams made of two different species of ions via sympathetic cooling are presented, as well as circulating ''crystal balls'' bunched in all directions by magnetic focusing and rf field. By numerically reconstructing the original experimental conditions of the NAP-M ring, it is found that only at extremely low beam intensities, outside of the range of the original measurement, proton particles can form occasionally-passing disks. The proposed New ASTRID ring is shown to be suitable for the formation and maintenance of crystalline beams of all dimensions

  11. Status of the International Muon Ionization Cooling Experiment (MICE)

    International Nuclear Information System (INIS)

    An international experiment to demonstrate muon ionization cooling is scheduled for beam at Rutherford Appleton Laboratory (RAL) in 2007. The experiment comprises one cell of the Study II cooling channel [1], along with upstream and downstream detectors to identify individual muons and measure their initial and final 6D phase-space parameters to a precision of 0.1 percent. Magnetic design of the beam line and cooling channel are complete and portions are under construction. The experiment will be described, including cooling channel hardware designs, fabrication status, and running plans. Phase 1 of the experiment will prepare the beam line and provide detector systems, including time-of-flight, Cherenkov, scintillating-fiber trackers and their spectrometer solenoids, and an electromagnetic calorimeter. The Phase 2 system will add the cooling channel components, including liquid-hydrogen absorbers embedded in superconducting Focus Coil solenoids, 201-MHz normal conducting RF cavities, and their surrounding Coupling Coil solenoids. The MICE Collaboration goal is to complete the experiment by 2010; progress toward this is discussed

  12. High-Power Diffusion Cooling Planar Waveguide CO2 Laser

    OpenAIRE

    TAŞAL, E.; KILIÇKAYA, M. S.

    1998-01-01

    A diffusion-cooled CO2 laser using a coaxial waveguide is investigated theoretically. The resonator extracting the laser beam consits of two annular plane mirrors enclosing the two ends of the waveguide. A theoretical resonator model based on the vector modes of propagation in a dielectric coaxial waveguide is described.

  13. Analysis of optical stochastic cooling including transverse effects

    International Nuclear Information System (INIS)

    The phase space area plays an important role in determining the performance of optical stochastic cooling. Specifically, the number of samples in the beam consists of three factors corresponding to three dimensions, the factor in each dimension being given by the ratio of the total phase space area in that dimension to the radiation wavelength

  14. Optimum strategy for energy degraders and ionization cooling

    CERN Document Server

    Farley, F J M

    2004-01-01

    Methodology for calculating the profile and emittance of a particle beam as it is slowed down in matter, including the effects of multiple scattering, axial magnetic field and lithium lens. Strategies are determined for minimum final emittance. For ionization cooling, boron carbide is superior to liquid hydrogen while a beryllium lens has merit.

  15. Studies on stochastic cooling of heavy ions in the LHC

    CERN Document Server

    Schaumann, M; Salvant, B; Wendt, M; Blaskiewicz, M; Verdú-Andrés, S

    2014-01-01

    Future high luminosity heavy-ion operation of the LHC will be dominated by very rapid luminosity decay due to the large collision cross-section and, to a lesser extent, emittance growth from intra-beam scattering (IBS) due to the high bunch intensities. A stochastic cooling system could reduce the emittance far below its initial value and reduce the losses from debunching during collisions, allowing more of the initial beam intensity to be converted into integrated luminosity before the beams are dumped. We review the status of this proposal, system and hardware properties and potential locations for the equipment in the tunnel.

  16. Possible demonstration of ionization cooling using absorbers in a solenoidal field

    International Nuclear Information System (INIS)

    Ionization cooling may play an important role in reducing the phase space volume of muons for a future muon-muon collider. We describe a possible experiment to demonstrate transverse emittance cooling using a muon beam at the AGS at Brookhaven National Laboratory. The experiment uses device dimensions and parameters and beam conditions similar to what is expected in an actual muon-muon collider

  17. Experimental Test of Momentum Cooling Model Predictions at COSY and Conclusions for WASA and HESR

    CERN Document Server

    Stockhorst, H; Maier, R; Prasuhn, D; Katayama, T; Thorndahl, L

    2007-01-01

    The High-Energy Storage Ring (HESR) of the future International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an anti-proton cooler ring in the momentum range from 1.5 to 15 GeV/c. An important and challenging feature of the new facility is the combination of highly dense phase space cooled beams with internal targets. A detailed numerical and analytical approach to the Fokker-Planck equation for longitudinal filter cooling including the beam - target interaction has been carried out to demonstrate the stochastic cooling capability. To gain confidence in the model predictions a series of experimental stochastic cooling studies with the internal target ANKE at COSY have been carried out. A remarkable agreement between model and experiment was achieved. On this basis longitudinal stochastic cooling simulations were performed to predict the possibilities and limits of cooling when the newly installed WASA Pellet-target is operated.

  18. Statistical phenomena in particle beams

    International Nuclear Information System (INIS)

    Particle beams are subject to a variety of apparently distinct statistical phenomena such as intrabeam scattering, stochastic cooling, electron cooling, coherent instabilities, and radiofrequency noise diffusion. In fact, both the physics and mathematical description of these mechanisms are quite similar, with the notion of correlation as a powerful unifying principle. In this presentation we will attempt to provide both a physical and a mathematical basis for understanding the wide range of statistical phenomena that have been discussed. In the course of this study the tools of the trade will be introduced, e.g., the Vlasov and Fokker-Planck equations, noise theory, correlation functions, and beam transfer functions. Although a major concern will be to provide equations for analyzing machine design, the primary goal is to introduce a basic set of physical concepts having a very broad range of applicability

  19. On the possibilities of electron cooling for HERA

    CERN Document Server

    Gentner, M; Derbenev, Yaroslav S; Husmann, D; Steier, C

    1999-01-01

    It is under discussion to operate HERA with heavy ions instead of protons. Because of the heavily increased intrabeam scattering of heavy ions compared to protons, the achievable luminosity is much smaller than desired by the experiments. A way to increase luminosity could be electron cooling of the heavy ion beam. Because of the high electron energy of 180 MeV necessary for cooling heavy ions in HERA the conventional approach using electrostatic DC sources is not possible. Instead an electron storage ring could be used. For this ring there are special requirements like small damping times, emittances and energy spread. The feasibility of such an electron storage ring has been studied, and the results with a possible solution are presented in this paper. Electron cooling of the HERA proton beam is also discussed briefly.

  20. Cooling tower and environment

    International Nuclear Information System (INIS)

    The influence of a cooling tower on the environment, or rather the influence of the environment on the cooling tower stands presently -along with the cooling water supply - in the middle of much discussion. The literature on these questions can hardly be overlooked by the experts concerned, especially not by the power station designers and operators. The document 'Cooling Tower and Environment' is intented to give a general idea of the important publications in this field, and to inform of the present state of technology. In this, the explanations on every section make it easier to get to know the specific subject area. In addition to older standard literature, this publication contains the best-known literature of recent years up to spring 1975, including some articles written in English. Further English literature has been collected by the ZAED (KFK) and is available at the VGB-Geschaefsstelle. Furthermore, The Bundesumweltamt compiles the literature on the subject of 'Environmental protection'. On top of that, further documentation centres are listed at the end of this text. (orig.)

  1. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  2. Stochastic processes in muon ionization cooling

    Science.gov (United States)

    Errede, D.; Makino, K.; Berz, M.; Johnstone, C. J.; Van Ginneken, A.

    2004-02-01

    A muon ionization cooling channel consists of three major components: the magnet optics, an acceleration cavity, and an energy absorber. The absorber of liquid hydrogen contained by thin aluminum windows is the only component which introduces stochastic processes into the otherwise deterministic acceleration system. The scattering dynamics of the transverse coordinates is described by Gaussian distributions. The asymmetric energy loss function is represented by the Vavilov distribution characterized by the minimum number of collisions necessary for a particle undergoing loss of the energy distribution average resulting from the Bethe-Bloch formula. Examples of the interplay between stochastic processes and deterministic beam dynamics are given.

  3. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  4. Benefits of cryogenic cooling on the operation of a pulsed CO2 laser

    Indian Academy of Sciences (India)

    Utpal Nundy

    2014-01-01

    The paper presents results of a theoretical model of a pulsed electron beam controlled CO2 laser (EBCL) to investigate the effect of cooling on the laser gas mixture. It is shown that cryogenic cooling can significantly improve the performance of the laser. The efficiency of an EBCL improved from 20% to 25.3% by cooling it to 200 K. The improvement is mainly due to the decrease of thermal population of the CO2 (0 1 0) vibration level.

  5. Commissioning of Fermilab's Electron Cooling System for 8-GeV Antiprotons

    CERN Document Server

    Nagaitsev, Sergei; Burov, Alexey; Carlson, Kermit; Gai, Wei; Gattuso, Consolato; Hu, Martin; Kazakevich, Grigory; Kramper, Brian J; Kroc, Thomas K; Leibfritz, Jerry; Prost, Lionel; Pruss, Stanley M; Saewert, Greg W; Schmidt, Chuck; Seletsky, Sergey; Shemyakin, Alexander V; Sutherland, Mary; Tupikov, Vitali; Warner, Arden

    2005-01-01

    A 4.3-MeV electron cooling system has been installed at Fermilab in the Recycler antiproton storage ring and is being currently commissioned. The cooling system is designed to assist accumulation of 8.9-GeV/c antiprotons for the Tevatron collider operations. This paper will report on the progress of the electron beam commissioning effort as well as on detailed plans of demonstrating the cooling of antiprotons.

  6. Continuous magnetic trapping of laser cooled atoms

    International Nuclear Information System (INIS)

    The authors present here initial results of the deceleration of a thermal atomic beam from -- 1000 to -- 100 m/s. The experiment was conducted in the 1.4-m long vertical superconducting solenoid which produced the slowing field. The fluorescence of the slowed atomic beam has been studied as a function of laser frequency. Figure 2 is a 12-GHz scan showing the fluorescence at a position 150 cm from the beginning of the solenoid. The wide peak corresponds to unslowed atoms with generally the initial velocity distribution. The second, narrower, peak corresponds to slowed atoms with a velocity of -- 150 m/s. Similar spectra have been obtained for various positions along the magnetic slower and trap. These data should allow better understanding of the cooling process and will be compared to computer models

  7. State machine operation of the MICE cooling channel

    International Nuclear Information System (INIS)

    The Muon Ionization Cooling Experiment (MICE) is a demonstration experiment to prove the feasibility of cooling a beam of muons for use in a Neutrino Factory and/or Muon Collider. The MICE cooling channel is a section of a modified Study II cooling channel which will provide a 10% reduction in beam emittance. In order to ensure a reliable measurement, MICE will measure the beam emittance before and after the cooling channel at the level of 1%, a relative measurement of 0.001. This renders MICE a precision experiment which requires strict controls and monitoring of all experimental parameters in order to control systematic errors. The MICE Controls and Monitoring system is based on EPICS and integrates with the DAQ, Data monitoring systems, and a configuration database. The cooling channel for MICE has between 12 and 18 superconductnig solenoid coils in 3 to 7 magnets, depending on the staged development of the experiment. The magnets are coaxial and in close proximity which requires coordinated operation of the magnets when ramping, responding to quench conditions, and quench recovery. To reliably manage the operation of the magnets, MICE is implementing state machines for each magnet and an over-arching state machine for the magnets integrated in the cooling channel. The state machine transitions and operating parameters are stored/restored to/from the configuration database and coupled with MICE Run Control. Proper implementation of the state machines will not only ensure safe operation of the magnets, but will help ensure reliable data quality. A description of MICE, details of the state machines, and lessons learned from use of the state machines in recent magnet training tests will be discussed.

  8. Cryogen spray cooling during laser tissue welding.

    Science.gov (United States)

    Fried, N M; Walsh, J T

    2000-03-01

    Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing. PMID:10730969

  9. The RF System for the International Muon Ionisation Cooling Experiment

    CERN Document Server

    Ronald, K.; Dick, A.J.; Speirs, D.C.; Moss, A.; Grant, A.; White, C.; Griffiths, S.; Stanley, T.; Li, D.; DeMello, A.J.; Virostek, S.; Moretti, A.; Pasquinelli, R.; Peterson, D.; Schultz, R.; Volk, J.; Popovic, M.; Torun, Y.; Hanlet, P.; Alsari, S.; Long, K.; Pasternak, J.; Hunt, C.; Summers, D.; Luo, T.; Smith, P.J.

    2014-01-01

    The International Muon Ionisation Cooling Experiment (MICE) is designed to demonstrate the effectiveness of ionisation cooling to reduce the phase space footprint of a charged particle beam, principally to allow the subsequent acceleration of muons for next generation colliders and/or neutrino factories. The experiment (and indeed any subsequent accelerator cooling channel based on the same principles) poses certain unusual requirements on its RF system, whilst the precision measurement of the ionisation cooling process demands special diagnostics. This paper shall outline the key features of the RF system, including the low level RF control, the power amplifier chain, distribution network, cavities, tuners and couplers, many parts of which are required to operate in a high magnetic field environment. The RF diagnostics which, in conjunction with the other MICE diagnostics, shall allow detailed knowledge of the amplitude and phase of the acceleration field during the transit of each individual muon will also ...

  10. Polarized muon beams for muon collider

    International Nuclear Information System (INIS)

    An option for the production of intense and highly polarized muon beams, suitable for a high-luminosity muon collider, is described briefly. It is based on a multi-channel pion-collection system, narrow-band pion-to-muon decay channels, proper muon spin gymnastics, and ionization cooling to combine all of the muon beams into a single bunch of ultimately low emittance. (orig.)

  11. The Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    On February 13, 1987, construction started on the Continuous Electron Beam Accelerator Facility - a 4-GeV, 200-μA, continuous beam, electron accelerator facility designed for nuclear physics research. The machine has a racetrack configuration with two antiparallel, 500-MeV, superconducting linac segments connected by beam lines to allow four passes of recirculation. The accelerating structure consists of 1500-MHz, five-cell niobium cavities developed at Cornell University. A liquid helium cryogenic system cools the cavities to an operating temperature of 2 K. Beam extraction after any three of the four passes allows simultaneous delivery of up to three beams of independently variable currents and different, but correlated, energies to the three experimental areas. Beam breakup thresholds exceed the design current by nearly two orders of magnitude. Project completion and the start of physics operations are scheduled for 1993. The total estimated cost is $255 million

  12. Cooling pond temperature prediction

    International Nuclear Information System (INIS)

    A model is described which predicts temperature responses in the environment that are associated with the operation of a natural gas fueled thermoelectric power generation station. The model is a piecewise computer simulation, limited at present to closed cooling water systems. However, the techniques developed should be applicable to a much larger class of cooling system. The problem encountered consists of two parts: (1) data characterization and (2) modeling. An efficient characterization scheme for the environmental variables greatly simplifies the task of modeling. Methods borrowed from signal theory, but not yet applied to this field are applicable to and greatly simplify the digital computer investigation of environmental data. An optimal data set, from the point of view of information per unit cost, is described for the model

  13. Water Cooled Mirror Design

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pulliam, Elias Noel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  14. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change in...... the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen......, helium or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which...

  15. Cool Stars in Hot Places

    OpenAIRE

    Megeath, S. T.; Gaidos, E.; Hester, J. J.; Adams, F. C.; Bally, J.; Lee, J. -E.; Wolk, S.

    2007-01-01

    During the last three decades, evidence has mounted that star and planet formation is not an isolated process, but is influenced by current and previous generations of stars. Although cool stars form in a range of environments, from isolated globules to rich embedded clusters, the influences of other stars on cool star and planet formation may be most significant in embedded clusters, where hundreds to thousands of cool stars form in close proximity to OB stars. At the cool stars 14 meeting, ...

  16. New materials for cooling systems

    International Nuclear Information System (INIS)

    New materials based on rubber-vulcanite compounds and used for manufacturing cooling tower elements and coating's of hydraulic structure surfaces are proposed and their production technology is described. A series of studies on physicomechanical and chemical characteristics and hydroaerothermal parameters of cooling tower elements and coatings revealed an obvious advantage of these materials over existing ones. The materials proposed provide high efficiency of cooling tower elements, hydraulic structures and the cooling tower as a whole

  17. Conduction cooled tube supports

    Science.gov (United States)

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  18. Beam-beam compensation studies in the Tevatron with electron lenses

    CERN Document Server

    Stancari, Giulio

    2013-01-01

    At the Fermilab Tevatron collider, we studied the feasibility of suppressing the antiproton head-on beam-beam tune spread using a magnetically confined 5-keV electron beam with Gaussian transverse profile overlapping with the circulating beam. When electron cooling of antiprotons was applied in regular Tevatron operations, the nonlinear head-on beam-beam effect on antiprotons was small. Therefore, we first focused on the operational aspects, such as beam alignment and stability, and on fundamental observations of tune shifts, tune spreads, lifetimes, and emittances. We also attempted two special collider stores with only 3 proton bunches colliding with 3 antiproton bunches, to suppress long-range forces and enhance head-on effects. We present here the results of this study and a comparison between numerical simulations and observations. These results contributed to the application of this compensation concept to RHIC at Brookhaven.

  19. Radiation shielding calculations for MuCool Test Area at Fermilab

    CERN Document Server

    Rakhno, I

    2004-01-01

    The MuCool Test Area (MTA) is an intense primary beam facility derived directly from the Fermilab Linac to test heat deposition and other technical concerns associated with the liquid hydrogen targets being developed for cooling intense muon beams. In this shielding study the results of Monte Carlo radiation shielding calculations performed using the MARS14 code for the MuCool Test Area and including the downstream portion of the target hall and berm around it, access pit, service building, and parking lot are presented and discussed within the context of the proposed MTA experimental configuration.

  20. Radiation shielding calculations for MuCool test area at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Igor Rakhno; Carol Johnstone

    2004-05-26

    The MuCool Test Area (MTA) is an intense primary beam facility derived directly from the Fermilab Linac to test heat deposition and other technical concerns associated with the liquid hydrogen targets being developed for cooling intense muon beams. In this shielding study the results of Monte Carlo radiation shielding calculations performed using the MARS14 code for the MuCool Test Area and including the downstream portion of the target hall and berm around it, access pit, service building, and parking lot are presented and discussed within the context of the proposed MTA experimental configuration.

  1. Ground state cooling of a nanomechanical resonator via a Cooper pair box qubit

    OpenAIRE

    Jaehne, Konstanze; Hammerer, Klemens; Wallquist, Margareta

    2008-01-01

    In this paper we present a scheme for ground state cooling of a flexural mode of a nanomechanical beam incorporated in a loop-shaped Cooper-pair box (CPB) circuit. Via the Lorentz force coupling of the beam motion to circulating CPB-circuit currents, energy is transferred to the CPB qubit which acts as a dissipative two-level system. The cooling process is driven by a detuned gate-voltage drive acting on the CPB. We analyze the cooling force spectrum and present analytical expressions for the...

  2. Low mass integrated cooling

    CERN Document Server

    Mapelli, Alessandro

    2014-01-01

    Low mass on - detec tor cooling systems are being developed and stud ied by the Detector Technology group (PH - DT) in the CERN Physics Department in close collaboration with LHC and non - LHC experiments . Two approaches are currently being investigated. The first approach, for barrel configurations, consists in integrating the cooli ng apparatus in light mechanical structures support ing the detectors. In this case , the thermal management can be achieved either with light cooling pipes and thin plates or with a network of microchannels embedded in thin strips of silicon or polyimide . Both configuratio ns are being investigated in the context of the 2018 upgrade program of the ALICE Inner Tracking System (ITS). Moreover, it is also possible to use a s ilicon microchannel cooling device itself as structural support for the detectors and electronics. Such a configur ation has been adopted by the NA62 collaboration for the ir GigaTracKer (GTK) as well as by the LHCb collaboration for the 2018 major upgrade of...

  3. Project S'COOL

    Science.gov (United States)

    Green, Carolyn J.; Chambers, Lin H.

    1998-01-01

    The Students Clouds Observations On-Line or S'COOL project was piloted in 1997. It was created with the idea of using students to serve as one component of the validation for the Clouds and the Earth's Radiant Energy System (CERES) instrument which was launched with the Tropical Rainfall Measuring Mission (TRMM) in November, 1997. As part of NASA's Earth Science Enterprise CERES is interested in the role clouds play in regulating our climate. Over thirty schools became involved in the initial thrust of the project. The CERES instrument detects the location of clouds and identifies their physical properties. S'COOL students coordinate their ground truth observations with the exact overpass of the satellite at their location. Their findings regarding cloud type, height, fraction and opacity as well as surface conditions are then reported to the NASA Langley Distributed Active Archive Center (DAAC). The data is then accessible to both the CERES team for validation and to schools for educational application via the Internet. By March of 1998 ninety-three schools, in nine countries had enrolled in the S'COOL project. Joining the United States participants were from schools in Australia, Canada, France, Germany, Norway, Spain, Sweden, and Switzerland. The project is gradually becoming the global project envisioned by the project s creators. As students obtain the requested data useful for the scientists, it was hoped that students with guidance from their instructors would have opportunity and motivation to learn more about clouds and atmospheric science as well.

  4. Molecular beams

    International Nuclear Information System (INIS)

    This book is a timeless and rather complete theoretical and experimental treatment of electric and magnetic resonance molecular-beam experiments for studying the radio frequency spectra of atoms and molecules. The theory of interactions of the nucleus with atomic and molecular fields is extensively presented. Measurements of atomic and nuclear magnetic moments, electric multipole moments, and atomic fine and hyperfine structure are detailed. Useful but somewhat outdated chapters on gas kinetics, molecular beam design, and experimental techniques are also included

  5. Conduction cooling: multicrate fastbus hardware

    International Nuclear Information System (INIS)

    Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications

  6. Cooling Rate Determination in Additively Manufactured Aluminum Alloy 2219

    Science.gov (United States)

    Brice, Craig A.; Dennis, Noah

    2015-05-01

    Metallic additive manufacturing processes generally utilize a conduction mode, welding-type approach to create beads of deposited material that can be arranged into a three-dimensional structure. As with welding, the cooling rates in the molten pool are relatively rapid compared to traditional casting techniques. Determination of the cooling rate in the molten pool is critical for predicting the solidified microstructure and resultant properties. In this experiment, wire-fed electron beam additive manufacturing was used to melt aluminum alloy 2219 under different thermal boundary conditions. The dendrite arm spacing was measured in the remelted material, and this information was used to estimate cooling rates in the molten pool based on established empirical relationships. The results showed that the thermal boundary conditions have a significant effect on the resulting cooling rate in the molten pool. When thermal conduction is limited due to a small thermal sink, the dendrite arm spacing varies between 15 and 35 µm. When thermal conduction is active, the dendrite arm spacing varies between 6 and 12 µm. This range of dendrite arm spacing implies cooling rates ranging from 5 to 350 K/s. Cooling rates can vary greatly as thermal conditions change during deposition. A cooling rate at the higher end of the range could lead to significant deviation from microstructural equilibrium during solidification.

  7. Comparison of radiant and convective cooling of office room: effect of workstation layout

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Rezgals, Lauris;

    2014-01-01

    The impact of heat source location (room layout) on the thermal environment generated in a double office room with four cooling ventilation systems - overhead ventilation, chilled ceiling with overhead ventilation, active chilled beam and active chilled beam with radiant panels was measured and...

  8. Electron cooling application for luminosity preservation in an experiment with internal targets at COSY

    CERN Document Server

    Meshkov, I N; Maier, R; Prasuhn, D; Sidorin, A O; Smirnov, A V; Stein, H J; Stockhorst, H; Trubnikov, G V

    2003-01-01

    This report is an investigation of the beam parameter evolution in the experiments with internal target. In calculations of the proton and deuteron beams we concentrated on cluster, atomic beam, storage cell and pellet targets at ANKE experiment mainly. In these calculations electron and stochastic cooling, intrabeam scattering, scattering on the target and residual gas atoms are taken into account. Beam parameter evolution is investigated in the long-term time scale, up to one hour, at different beam energies in the range from 1.0 to 2.7 GeV for proton beam and from 1 to 2.11 GeV for deuteron beam. The results of numerical simulations of the proton and deuteron beam parameters at different energies obtained using new version of BETACOOL program (elaborated at the first stage of this work [1]) are presented. Optimum parameters of the electron cooling system are estimated. The COSY experiment requirements can be satisfied even when electron cooling time is rather long. That allows to apply an electron cooling ...

  9. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  10. Sisyphus Laser Cooling of a Polyatomic Molecule

    CERN Document Server

    Kozyryev, Ivan; Matsuda, Kyle; Augenbraun, Benjamin L; Anderegg, Loic; Sedlack, Alexander P; Doyle, John M

    2016-01-01

    We perform magnetically-assisted Sisyphus laser cooling of the triatomic free radical strontium monohydroxide (SrOH). This is achieved with principal optical cycling in the rotationally closed $P\\left(N"=1\\right)$ branch of either the $\\tilde{X}^{2}\\Sigma^{+}\\left(000\\right)\\leftrightarrow\\tilde{A}^{2}\\Pi_{1/2}\\left(000\\right)$ or the $\\tilde{X}^{2}\\Sigma^{+}\\left(000\\right)\\leftrightarrow\\tilde{B}^{2}\\Sigma^{+}\\left(000\\right)$ vibronic transitions. Molecules lost into the excited vibrational states during the cooling process are repumped back through the $\\tilde{B}\\left(000\\right)$ state for both the $\\left(100\\right)$ level of the Sr-O stretching mode and the $\\left(02^{0}0\\right)$ level of the bending mode. The transverse temperature of a SrOH molecular beam is reduced in one dimension by two orders of magnitude to $\\sim700\\ {\\rm \\mu K}$. This approach opens a path towards creating a variety of ultracold polyatomic molecules, including much larger ones, by means of direct laser cooling.

  11. Operating experience with ESCAR magnet cooling system

    International Nuclear Information System (INIS)

    The ESCAR magnet cooling system has been successfully demonstrated. This two-phase helium cooling system includes a CTI-Sulzer gas-bearing turbine refrigerator with two-stage compression by oil-lubricated screw compressors, 120 m of 5-cm-diameter vacuum-insulated transfer line and twelve series-connected magnet cryostats with weirs for liquid level control. The refrigeration plant provides up to 1900 w of refrigeration at 4.5 K with a mass flow of 113 g/s. Heat load within the transfer line has been measured at 0.25 w/m in sub-system testing. Cool-down times to 4.5 K for the 12 warm-iron magnets with a cold mass of 2500 kg have been about 12 hours. The magnet cryostats separate the liquid by gravitational extraction and fill in sequence at a rate of up to 400 l/hr. A heater in the transfer line allows adjustment of the inlet coolant quality (ratio of gas to liquid) to the cryostats. Pressure levels in the cold bore, beam orbit space were below -10 torr

  12. Helium Loop Cooling Channel Hydraulic Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, Robert Vaughn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-02

    New methods for generating ⁹⁹Mo are being explored in an effort to eliminate proliferation issues and provide a domestic supply of ⁹⁹mTc for medical imaging. Electron accelerating technology is used by sending an electron beam through a series of ¹⁰⁰Mo targets. During this process a large amount of heat is created, which directly affects the operating temperature set for the system. In order to maintain the required temperature range, helium gas is used to serve as a cooling agent that flows through narrow channels between the target disks. Currently we are tailoring the cooling channel entrance and exits to decrease the pressure drop through the targets. Currently all hardware has be procured and manufactured to conduct flow measurements and visualization via solid particle seeder. Pressure drop will be studied as a function of mass flow and diffuser angle. The results from these experiments will help in determining target cooling geometry and validate CFD code results.

  13. Beam emittance and beam disruption

    International Nuclear Information System (INIS)

    Beam disruption during the collision of intense relativistic bunches has been studied by R. Hollebeek. In the case of oppositely charged bunches, focussing effects occur causing a decrease in the effective bunch cross section, and thereby an increase of luminosity by an enhancement factor H. The term disruption derives from the fact that the beam emittance changes markedly during the collision. 1 ref., 1 fig., 1 tab

  14. Semi-classical beam cooling in an intense laser pulse

    OpenAIRE

    Yoffe, Samuel R.; Kravets, Yevgen; Noble, Adam; Jaroszynski, Dino A.

    2014-01-01

    We present a novel technique for studying the evolution of a particle distribution using single particle dynamics such that the distribution can be accurately reconstructed using fewer particles than existing approaches. To demonstrate this, the Landau-Lifshiftz description of radiation reaction is adapted into a semi-classical model, for which the Vlasov equation is intractable. Collision between an energetic electron bunch and high-intensity laser pulses are then compared using the two theo...

  15. Laser cooling of a magnetically guided ultra cold atom beam

    OpenAIRE

    Aghajani-Talesh, Anoush

    2014-01-01

    In dieser Dissertation werden zwei komplementäre Methoden für die Laserkühlung eines magnetisch geführten, ultrakalten Atomstrahls untersucht. Kombiniert könnten diese Methoden den Ausgangspunkt für eine, möglicherweise sogar kontinuierliche, Hochdurchsatzproduktion von Bose-Einstein-Kondensaten darstellen. Als erstes wird ein Mechanismus vorgestellt, mit dem sich ultrakalte Atome aus einem magnetisch geführten Atomstrahl in eine optische Dipolfalle umladen lassen. Es wird ein kontinuierli...

  16. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  17. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    In the reactor operating with supercritical pressure and temperature part of the water flowing through the moderator tubes is deflected at the outlet and mixed with a residual partial flow of the coolant fed into the core as well as passed along the fuel rods in opposite direction. By special guiding of the flow downward through the guide tubes of the control rods insertion of the control rods is simplified because of reduced frictional forces. By this means it is also achieved to design less critical the control rod cooling with respect to flow rate control and operating behavior in case of a scram. (orig.)

  18. Rotary engine cooling system

    Science.gov (United States)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  19. Slot-type kicker for the AA stochastic cooling

    CERN Multimedia

    Photographic Service

    1979-01-01

    A "slotted transmission line" structure was used for both pickups and the kicker of one of the stochastic cooling systems of the Antiproton Accumulator (AA). They served for the cooling of the high-density stack, in momentum and in both transverse planes. In the beginning in a single band, 1-2 GHz, later in 3 bands, 1-2, 2-4 and 4-8 GHz. The kicker of the first generation, shown here, was located where the dispersion was zero and the beam size small, and thus had a quadratic cross-section. The pickups were rectangular and wider in the horizontal plane. See also 7906193

  20. Muon Cooling, Muon Colliders, and the MICE Experiment

    CERN Document Server

    Kaplan, Daniel M

    2013-01-01

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of parameters of the Higgs boson and the neutrino mixing matrix. The performance and cost of these depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities can be built during the coming decade. The status of the key technologies and their various demonstration experiments is summarized.

  1. Cooled spool piston compressor

    Science.gov (United States)

    Morris, Brian G. (Inventor)

    1993-01-01

    A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.

  2. ASTROMAG coil cooling study

    Science.gov (United States)

    Maytal, Ben-Zion; Vansciver, Steven W.

    1990-01-01

    ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.

  3. Low-Energy Ions from Laser-Cooled Atoms

    Science.gov (United States)

    Shayeganrad, G.; Fioretti, A.; Guerri, I.; Tantussi, F.; Ciampini, D.; Allegrini, M.; Viteau, M.; Fuso, F.

    2016-05-01

    We report the features of an ion source based on two-color photoionization of a laser-cooled cesium beam outsourced from a pyramidal magneto-optical trap. The ion source operates in continuous or pulsed mode. At acceleration voltages below 300 V, it delivers some ten ions per bunch with a relative energy spread Δ Urms/U ≃0.032 , as measured through the retarding field-energy-analyzer approach. Space-charge effects are negligible thanks to the low ion density attained in the interaction volume. The performances of the ion beam in a configuration using focused laser beams are extrapolated on the basis of the experimental results. Calculations demonstrate that our low-energy and low-current ion beam can be attractive for the development of emerging technologies requiring the delivery of a small amount of charge, down to the single-ion level and its eventual focusing in the 10-nm range.

  4. Measurement of Neutral Particle Contamination in the MICE Muon Beam

    CERN Document Server

    Fletcher, Rob Roy; Hanson, Gail

    2011-01-01

    The Muon Ionization Cooling Experiment (MICE) is being built at the ISIS proton synchrotron at Rutherford Appleton Laboratory (RAL) to measure ionization cooling of a muon beam. During recent data-taking, it was determined that there is a significant background contamination of neutral particles populating the MICE muon beam. This contamination creates unwanted triggers in MICE, thus reducing the percentage of useful data taken during running. This paper describes the analysis done with time-of-flight detectors, used to measure and identify the source of the contamination in both positive and negative muon beams.

  5. Toward design of the Collider Beam Collimation System

    International Nuclear Information System (INIS)

    A multi-component beam collimation system for the Superconducting Super Collider is described. System choice justification and design requirements are presented. System consists of targets, scrapers, and collimators with appropriate cooling and radiation shielding. Each component has an independent control for positioning and aligning with respect to the beam. Results of beam loss distribution, energy deposition calculations, and thermal analyses, as well as cost estimate, are presented

  6. Cooling Performance of an Impingement Cooling Device Combined with Pins

    Institute of Scientific and Technical Information of China (English)

    Dongliang QUAN; Songling LIU; Jianghai LI; Gaowen LIU

    2005-01-01

    Experimental study and one dimensional model analysis were conducted to investigate cooling performance of an integrated impingement and pin fin cooling device. A typical configuration specimen was made and tested in a large scale low speed closed-looped wind tunnel. Detailed two-dimensional contour maps of the temperature and cooling effectiveness were obtained for different pressure ratios and therefore different coolant flow-rates through the tested specimen. The experimental results showed that very high cooling effectiveness can be achieved by this cooling device with relatively small amount of coolant flow. Based on the theory of transpiration cooling in porous material, a one dimensional heat transfer model was established to analyze the effect of various parameters on cooling effectiveness. It was found from this model that the variation of heat transfer on the gas side, including heat transfer coefficient and film cooling effectiveness, of the specimen created much more effect on its cooling effectiveness than that of the coolant side. The predictions of the one-dimensional mode were compared and agreed well with the experimental data.

  7. New method of beam bunching in free-ion lasers

    International Nuclear Information System (INIS)

    An effective ion beam bunching method is suggested. This method is based on a selective interaction of line spectrum laser light (e.g. axial mode structure light) with non-fully stripped ion beam cooled in a storage rings, arranging the ion beam in layers in radial direction of an energy-longitudinal coordinate plane and following rotation of the beam at the right angle after switching on the RF cavity or undulator grouper/buncher. Laser cooling of the ion beam can be used at this position after switching off the resonator to decrease the energy spread caused by accelerating field of the resonator. A relativistic multilayer ion mirror will be produced this way. Both monochromatic laser beams and intermediate monochromaticity and bandwidth light sources of spontaneous incoherent radiation can be used for production of hard and high power electromagnetic radiation by reflection from this mirror. The reflectivity of the mirror is rather high because of the cross-section of the backward Rayleigh scattering of photon light by non-fully stripped relativistic ions (∼λ2) is much greater (∼ 10 divided-by 15 orders) then Thompson one (∼ re2). This position is valid even in the case of non-monochromatic laser light (Δω/ω ∼ 10-4). Ion cooling both in longitudinal plane and three-dimensional radiation ion cooling had been proposed based on this observation. The using of these cooling techniques will permit to store high current and low emittance relativistic ion beams in storage rings. The bunched ion beam can be used in ordinary Free-Ion Lasers as well. After bunching the ion beam can be extracted from the storage ring in this case. Storage rings with zero momentum compaction function will permit to keep bunching of the ion beam for a long time

  8. New method of beam bunching in free-ion lasers

    Energy Technology Data Exchange (ETDEWEB)

    Bessonov, E.G. [Lebedev Physics Institute, Moscow (Russian Federation)

    1995-12-31

    An effective ion beam bunching method is suggested. This method is based on a selective interaction of line spectrum laser light (e.g. axial mode structure light) with non-fully stripped ion beam cooled in a storage rings, arranging the ion beam in layers in radial direction of an energy-longitudinal coordinate plane and following rotation of the beam at the right angle after switching on the RF cavity or undulator grouper/buncher. Laser cooling of the ion beam can be used at this position after switching off the resonator to decrease the energy spread caused by accelerating field of the resonator. A relativistic multilayer ion mirror will be produced this way. Both monochromatic laser beams and intermediate monochromaticity and bandwidth light sources of spontaneous incoherent radiation can be used for production of hard and high power electromagnetic radiation by reflection from this mirror. The reflectivity of the mirror is rather high because of the cross-section of the backward Rayleigh scattering of photon light by non-fully stripped relativistic ions ({approximately}{lambda}{sup 2}) is much greater ({approximately} 10{divided_by}15 orders) then Thompson one ({approximately} r{sub e}{sup 2}). This position is valid even in the case of non-monochromatic laser light ({Delta}{omega}/{omega} {approximately} 10{sup -4}). Ion cooling both in longitudinal plane and three-dimensional radiation ion cooling had been proposed based on this observation. The using of these cooling techniques will permit to store high current and low emittance relativistic ion beams in storage rings. The bunched ion beam can be used in ordinary Free-Ion Lasers as well. After bunching the ion beam can be extracted from the storage ring in this case. Storage rings with zero momentum compaction function will permit to keep bunching of the ion beam for a long time.

  9. Modelization of cooling system components

    International Nuclear Information System (INIS)

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  10. Two-dimensional streaming flows induced by resonating, thin beams.

    Science.gov (United States)

    Açikalin, Tolga; Raman, Arvind; Garimella, Suresh V

    2003-10-01

    Miniaturized resonating slender beams are finding increased applications as fluidic actuators for portable electronics cooling. Piezoelectric and ultrasonic "fans" drive a flexural mode of the beam into resonance thus inducing a streaming flow, which can be used to cool microelectronic components. This paper presents analytical, computational, and experimental investigations of the incompressible two-dimensional streaming flows induced by resonating thin beams. Closed-form analytical streaming solutions are presented first for an infinite beam. These are used to motivate a computational scheme to predict the streaming flows from a baffled piezoelectric fan. Experiments are conducted to visualize the asymmetric streaming flows from a baffled piezoelectric fan and the experimental results are found to be in close agreement with the predicted results. The findings are expected to be of relevance in the optimal design and positioning of these solid-state devices in cooling applications. PMID:14587580

  11. Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yonehara, Katsuya [Fermilab; Abrams, Robert [MUONS Inc., Batavia; Dinkel, Holly [U. Missouri, Columbia; Freemire, Ben [IIT, Chicago; Johnson, Rolland [MUONS Inc., Batavia; Kazakevich, Grigory [MUONS Inc., Batavia; Tollestrup, Alvin [Fermilab; Zwaska, Robert [Fermilab

    2016-06-01

    MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at the MuCool Test Area at Fermilab.

  12. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  13. Chopping high intensity proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Christoph; Dinter, Hannes; Droba, Martin; Meusel, Oliver; Mueller, Ilja; Noll, Daniel; Payir, Onur; Ratzinger, Ulrich; Schneider, Philipp [IAP, Goethe-Universitaet Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)

    2013-07-01

    A novel E x B chopper system for high intensity proton beams is being developed to deliver 100 ns beam pulses in the low energy transport line of the accelerator driven neutron source FRANZ. It combines a static magnetic deflection field with a pulsed electric compensation field in a Wien filter-type E x B configuration. Behind the deflection unit a massless septum system is used for beam separation. The setup minimizes the risk of voltage breakdowns and provides secure beam dumping outside the transport line. The electric deflection field is driven by a HV pulse generator providing ±6 kV at a repetition rate of 250 kHz. Accurate layout of the deflection plates is required to tackle the issues of field quality, cooling and spark prevention. Careful matching of electric and magnetic deflection forces is required to prevent aberrations and emittance growth. Numerical studies for the field design and their effects on beam transport are presented and an overview of the hardware development is given.

  14. To Be Cool or Uncool?

    Institute of Scientific and Technical Information of China (English)

    袁会珍

    2007-01-01

    The western world has always been divided into two types of people-the cool and the uncool. It is a division that __1__ in school. The cool kids are good at __2__. They are __3__ with the opposite sex. They are good-looking and people want to __4__ their style. They can do their homework but they don't make a big effort. That would __5__ be cool.

  15. 165-W cryogenically cooled Yb:YAG laser.

    Science.gov (United States)

    Ripin, Daniel J; Ochoa, Juan R; Aggarwal, R L; Fan, Tso Yee

    2004-09-15

    Thermo-optic distortions often limit the beam quality and power scaling of high-average-power lasers. Cryogenically cooled Yb:YAG is used to efficiently generate 165 W of near-diffraction-limited beam from a power oscillator with negligible thermo-optic effects. End pumped with 215 W of incident pump power from two diode modules, the laser has an optical-optical efficiency of 76%, a slope efficiency of 85%, and an M2 value of 1.02. PMID:15460887

  16. Electron beam diagnostic for profiling high power beams

    Science.gov (United States)

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  17. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  18. Cooling of rectangular bars

    International Nuclear Information System (INIS)

    A solution of the time-transient Heat Transfer Differential Equation in rectangular coordinates is presented, leading to a model which describes the temperature drop with time in rectangular bars. It is similar to an other model for cilindrical bars which has been previously developed in the Laboratory of Mechanical Metallurgy of UFRGS. Following these models, a generalization has been made, which permits cooling time evaluation for all profiles. These results are compared with experimental laboratory data in the 1200 to 8000C range. Some other existing models were also studied which have the purpose of studing the same phenomenon. Their mathematical forms and their evaluated values are analyzed and compared with experimental ones. (Author)

  19. ATLAS' major cooling project

    CERN Document Server

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  20. Fluid cooled electrical assembly

    Science.gov (United States)

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  1. Application of small diameter nozzles systems for cyclotron targets cooling

    International Nuclear Information System (INIS)

    In the present work estimating calculations of cadmium targets cooling conditions under proton beam irradiation are cited. Irradiation conditions and targets parameters are as follows: a) proton initial energy - 16 MeV, beam current - 20 μA; b) metallic cadmium layer thickness - 660 μm; target diameter - 9 mm, it squire - 0.64 cm2; c) vanadium substrate thickness, on which the cadmium layer is fixed - 200 μm; d) proton energy losses in the target - 15 MeV, heat release in the cadmium layer - 300 W, heat release on the target surface - 471 W·cm-2; e) proton energy losses in the substrate - 1 MeV, heat release in vanadium - 15 W. For the calculation the system of 7 nozzles was selected. It is noted, that cooling change by single jet of nozzle systems with small diameter provides to heat transfer coefficient increase and sharply reduces (into 3 times) water flow

  2. CW fountain of laser-cooled Yb atoms

    CERN Document Server

    Rathod, K D; Natarajan, Vasant

    2013-01-01

    We demonstrate launching of laser-cooled Yb atoms in a continuous atomic fountain. The continuous fountain has significant advantages over the more common pulsed fountain, which was also demonstrated by us recently. The fountain is formed in the following steps---(i) Atoms from a thermal beam are first Zeeman slowed to a small final velocity, (ii) the slowed atoms are captured in a two-dimensional magneto-optic trap (2D-MOT), and (iii) atoms are launched {\\em continuously} in the vertical direction using two sets of moving-molasses beams, inclined at $\\pm 15^\\circ$ to the vertical. The cooling transition used is the strongly-allowed ${^1S}_0 \\rightarrow {^1P}_1$ transition at 399 nm. We capture about $7 \\times 10^6$ atoms in the 2D-MOT, and then launch them with a vertical velocity of 13 m/s at a longitudinal temperature of 125(6) mK.

  3. Scaling laws with current for equilibrium momentum spread and emittances from intrabeam scattering and electron cooling

    International Nuclear Information System (INIS)

    Based on the theories of Piwinski, Bjorken-Mtingawa and Martini of Coulomb scattering, expressions for the heating rates due to intrabeam scattering were known since a long time. Simplifications by Wei-Parzen and Rao and Piwinski led to analytic approximations which are easily applicable to existing lattices. We use these approximations and also the formulae from thermal equilibration of Struckmeier and equate them to either constant cooling rates from electron cooling or to the Novosibirsk cooling rates for electron cooling to calculate the equilibrium values of the horizontal and vertical emittances and the momentum spread (longitudinal emittance) for typical beams in the ESR or in the HESR. For constant cooling and all approximation formulae the ratio of current to the product of the three emittances remains almost constant. This yields a slope of the momentum spread with current between 0.2 and 0.3, in agreement with experimental data. Using the Novosibirsk cooling rates this slope is much larger

  4. Film cooling for a closed loop cooled airfoil

    Science.gov (United States)

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  5. Air cooled absorption chillers for solar cooling applications

    Science.gov (United States)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    The chemical composition of a 'best' absorption refrigerant system is identified, and those properties of the system necessary to design hot water operated, air cooled chilling equipment are determined. Air cooled chillers from single family residential sizes into the commercial rooftop size range are designed and operated.

  6. Toward a cold electron beam in the Fermilab's Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Vitali S. Tupikov et al.

    2004-05-12

    Fermilab is developing a high-energy electron cooling system to cool 8.9-GeV/c antiprotons in the Recycler ring [1]. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through 20-m long cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 0.1 mrad, the cooling section will be immersed into a solenoidal field of 50-150G. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of beam quality measurements in the cooler prototype.

  7. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    International Nuclear Information System (INIS)

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power

  8. Experimental Tests of Cooling: Expectations and Additional Needs

    International Nuclear Information System (INIS)

    Cooling is a critical aspect for a high-performance Neutrino Factory or a Muon Collider. For this reason, considerable effort is being put toward the experimental verification of this technique. The international Muon Ionization Cooling Experiment, MICE, was approved to operate at Rutherford Appleton Laboratory (RAL) in the UK and beam line commissioning commenced in March, 2008. The MICE collaboration comprises about 130 scientists and engineers from Asia, Europe, and the U.S. In this paper we present the motivation and goals for this experiment and describe its present status. MICE is scheduled for completion in 2011. We will also indicate the prospects for a future 6D muon cooling experiment and discuss its possible time schedule

  9. Conversion of industrial compression cooling to absorption cooling in an integrated district heating and cooling system

    OpenAIRE

    Vilafranca Manguán, Ana

    2008-01-01

    Astra Zeneca plant in Gärtuna has many compression cooling machines for comfort that consume about 11.7 GWh of electricity per year. Many of the cooling machines are old; due to the increase of production of the plant, cooling capacity was limited and new machines have been built. Now, the cooling capacity is over-sized. Söderenergi is the district heating plant that supplies heating to Astra Zeneca plant. Due to the strict environmental policy in the energy plant, last year, a bio-fuelled CH...

  10. A Possible Hybrid Cooling Channel for a Neutrino Factory

    International Nuclear Information System (INIS)

    A Neutrino Factory requires an intense and well-cooled (in transverse phase space) muon beam. We discuss a hybrid approach for a linear 4D cooling channel consisting of high-pressure gas-filled RF cavities--potentially allowing high gradients without breakdown--and discrete LiH absorbers to provide the necessary energy loss that results in the required muon beam cooling. We report simulations of the channel performance and its comparison with the vacuum case; we also briefly discuss technical and safety issues associated with cavities filled with high-pressure hydrogen gas. Even with additional windows that might be needed for safety reasons, the channel performance is comparable to that of the original, all-vacuum Feasibility Study 2a channel on which our design is based. If tests demonstrate that the gas-filled RF cavities can operate effectively with an intense beam of ionizing particles passing through them, our approach would be an attractive way of avoiding possible breakdown problems with a vacuum RF channel.

  11. Physical installation of Pelletron and electron cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Hurh, P.

    1997-09-01

    Bremsstrahlung of 5 MeV electrons at a loss current of 50 microamp in the acceleration region is estimated to produce X-ray intensities of 7 Rad/sec. Radiation losses due to a misteer or sudden obstruction will of course be much higher still (estimated at 87,500 Rad/hr for a 0.5 mA beam current). It is estimated that 1.8 meters of concrete will be necessary to adequately shield the surrounding building areas at any possible Pelletron installation site. To satisfy our present electron cooling development plan, two Pelletron installations are required, the first at our development lab in the Lab B/NEF Enclosure area and the second at the operational Main Injector service building, MI-30, in the main Injector ring. The same actual Pelletron and electron beam-line components will be used at both locations. The Lab B installation will allow experimentation with actual high energy electron beam to develop the optics necessary for the cooling straight while Main Injector/Recycler commissioning is taking place. The MI-30 installation is obviously the permanent home for the Pelletron when electron cooling becomes operational. Construction plans for both installations will be discussed here.

  12. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  13. Ultrashort pulse amplification in cryogenically cooled amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Backus, Sterling J.; Kapteyn, Henry C.; Murnane, Margaret Mary

    2004-10-12

    A laser amplifier system amplifies pulses in a single "stage" from .about.10.sup.-9 joules to more than 10.sup.-3 joules, with average power of 1-10 watts, and beam quality M.sup.2 <2. The laser medium is cooled substantially below room temperature, as a means to improve the optical and thermal characteristics of the medium. This is done with the medium inside a sealed, evacuated or purged cell to avoid moisture or other materials condensing on the surface. A "seed" pulse from a separate laser is passed through the laser medium, one or more times, in any of a variety of configurations including single-pass, multiple-pass, and regenerative amplifier configurations.

  14. Newton's Law of Cooling Revisited

    Science.gov (United States)

    Vollmer, M.

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…

  15. Large cooling tower drift deposition

    International Nuclear Information System (INIS)

    A model for the determination of drift deposition around natural-draft cooling towers is presented. An application of the model in actual operating conditions indicates the effect of drift rate at the cooling tower outlet and weather conditions on the size and shape of wetted area. (author)

  16. Be Cool, Man! / Jevgeni Levik

    Index Scriptorium Estoniae

    Levik, Jevgeni

    2005-01-01

    Järg 1995. aasta kriminaalkomöödiale "Tooge jupats" ("Get Shorty") : mängufilm "Be Cool, Chili Palmer on tagasi!" ("Be Cool") : režissöör F. Gary Gray, peaosades J. Travolta ja U. Thurman : USA 2005. Lisatud J. Travolta ja U. Thurmani lühiintervjuud

  17. Dialogues in the COOL Project

    NARCIS (Netherlands)

    Stalpers, S.I.P.; Kroeze, C.

    2013-01-01

    The Climate Options for the Long-term (COOL) Project is a participatory integrated assessment (PIA) comprising extensive dialogues at three levels: national, European and global. The objective of the COOL Project was to ‘develop strategic notions on how to achieve drastic reductions of greenhouse ga

  18. Automotive Cooling and Lubricating Systems.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide new mechanics with a source of study materials to assist them in becoming more proficient in their jobs. The course contains four study units covering automotive cooling system maintenance, cooling system repair, lubricating systems, and lubrication…

  19. Cooling off with physics

    International Nuclear Information System (INIS)

    You might think of ice cream as a delicious treat to be enjoyed on a sunny summer's day. However, to the ice-cream scientists who recently gathered in Thessaloniki in Greece for the 2nd International Ice Cream Symposium, it is a complex composite material. Ice cream consists of three dispersed phases: ice crystals, which have a mean size of 50 microns, air bubbles with a diameter of about 70 microns, and fat droplets with a size of 1 micron. These phases are held together by what is called the matrix - not a sci-fi film, but a viscous solution of sugars, milk proteins and polysaccharides. The microstructure, and hence the texture that you experience when you eat ice cream, is created in a freezing process that has remained fundamentally unchanged since the first ice-cream maker was patented in the 1840s. The ingredients - water, milk protein, fat, sugar, emulsifiers, stabilizers, flavours and a lot of air - are mixed together before being pasteurized and homogenized. They are then pumped into a cylinder that is cooled from the outside with a refrigerant. As the mixture touches the cylinder wall it freezes and forms ice crystals, which are quickly scraped off by a rotating blade. The blade is attached to a beater that disperses the ice crystals into the mixture. At the same time, air is injected and broken down into small bubbles by the shear that the beater generates. As the mixture passes along the cylinder, the number of ice crystals increases and its temperature drops. As a result, the viscosity of the mixture increases, so that more energy input is needed to rotate the beater. This energy is dissipated as heat, and when the ice cream reaches about -6 deg. C the energy input through the beater equals the energy removed as heat by the refrigerant. The process therefore becomes self-limiting and it is not possible to cool the ice cream any further. However, at -6 deg. C the microstructure is unstable. The ice cream therefore has to be removed from the freezer and

  20. Preparation of a beam quality indicator for effective energy determinations of continuum beams: establishment of traceability

    CERN Document Server

    Matsubayashi, M; Kobayashi, H

    1999-01-01

    A new beam quality indicator (BQI) was designed and fabricated to determine effective energies of beams extracted from neutron radiography facilities. Performances of the five new BQIs were compared with the original BQI which was recently proposed and tested by various beams. Non-filtered thermal neutrons, filtered thermal neutrons, and cold neutrons from a guide tube were used in the performance test program. The new BQIs were also examined by four different detection systems using a combination of a Gd converter and a X-ray film, a neutron imaging plate, a cooled charge coupled device camera, and a silicon intensified target tube camera.

  1. Radio Galaxies in Cooling Cores

    CERN Document Server

    Eilek, J A

    2003-01-01

    A currently active radio galaxy sits at the center of almost every strong cooling core. What effect does it have on the cooling core? Could its effect be strong enough to offset the radiative cooling which should be occuring in these cores? In order to answer these questions we need to know how much energy the radio jet carries to the cooling core; but we have no way to measure the jet power directly. We therefore need to understand how the radio source evolves with time, and how it radiates, in order to use the data to determine the jet power. When some simple models are compared to the data, we learn that cluster-center radio galaxies probably are energetically important -- but not necessarily dominant -- in cooling cores.

  2. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  3. Experiences in solar cooling systems

    Science.gov (United States)

    Ward, D. S.

    The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.

  4. Cryogenic cooling for high power laser amplifiers

    International Nuclear Information System (INIS)

    The Extreme Light Infrastructure (ELI) will be a new scientific European infrastructure devoted to scientific research in lasers field, dedicated to the investigation and applications of laser-matter interaction at the highest intensity level (more than 6 orders of magnitude higher than today’s laser intensity). The ELI project, a collaboration of 13 European countries, will comprise three branches: Ultra High Field Science that will explore laser-matter interaction, attosecond Laser Science designed to conduct temporal investigation of electron dynamics in atoms, molecules, plasmas and solids at attosecond scale, High Energy Beam Science devoted to the development and usage o f dedicated beam lines with ultra short pulses of high energy radiation. Using DPSSL (Diode Pumped Solid State Lasers) as pumping technology, PW-cIass lasers with enhanced repetition rates are developed. Each of the Yb YaG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz), The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100K-170K with a heat flux of 1 MW*m-2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser. (author)

  5. Cryogenic cooling for high power laser amplifiers

    International Nuclear Information System (INIS)

    The Extreme Light Infrastructure (ELI) will be a new scientific European infrastructure devoted to scientific research in lasers field, dedicated to the investigation and applications of laser-matter interaction at the highest intensity level (more than 6 orders of magnitude higher than today's laser intensity). The ELI project, a collaboration of 13 European countries, will comprise three branches: Ultra High Field Science that will explore laser-matter interaction, atto-second Laser Science designed to conduct temporal investigation of electron dynamics in atoms, molecules, plasmas and solids at atto-second scale, High Energy Beam Science devoted to the development and usage of dedicated beam lines with ultra short pulses of high energy radiation. Using DPSSL (Diode Pumped Solid State Lasers) as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YaG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz). The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K-170 K with a heat flux of 1 MW.m-2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser. (authors)

  6. Applications of heat pipes for high thermal load beam lines

    International Nuclear Information System (INIS)

    The high flux beam produced by insertion devices often requires special heat removal techniques. For the optical elements used in such high thermal load beam lines the required precision demands a highly accurate design. Heat pipe cooling of critical elements of the x-1 beam line at the National Synchrotron Light Source is described. This method reduces vibrations caused by water cooling systems and simplifies the design. In some of these designs, deposited heat must be transferred through unbonded contact interfaces. A pinhole assembly and a beam position monitor designed for the x-1 beam line both transfer heat through such interfaces in an ultrahigh vacuum environment. The fundamental design objective is that of removing the heat with minimal interface thermal resistance. We present our test method and results for measuring the thermal resistance across metallic interfaces as a function of contact pressure. The design of some devices which utilize both heat pipes and thermal contact interfaces will also be described. (orig.)

  7. PYRAMIDAL-HOLLOW-BEAM DIPOLE TRAP FOR ALKALI ATOMS

    Institute of Scientific and Technical Information of China (English)

    YIN JIAN-PING; GAO WEI-JIAN; WANG YU-ZHU; ZHU YI-FU; WANG YI-QIU

    2000-01-01

    We propose a dark gravito-optical dipole trap, for alkali atoms, consisting of a blue-detuned, pyramidal-hollow laser beam propagating upward and the gravity field. When cold atoms from a magneto-optical trap are loaded into the pyramidal-hollow beam and bounce inside the pyramidal-hollow beam, they experience efficient Sisyphus cooling and geometric cooling induced by the pyramidal-hollow beam and the weak repumping beam propagating downward. Our study shows that an ultracold and dense atomic sample with an equilibrium 3D momentum of ~ 3hk and an atomic density above the point of Bose-Einstein condensation may be obtained in this pure optical trap.

  8. Film cooling air pocket in a closed loop cooled airfoil

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  9. Liquid gallium metal cooling for optical element with high heat loads

    International Nuclear Information System (INIS)

    Photon beams from the insertion devices of the Argonne synchrotron facility (APS) have very high total powers, which in some cases will exceed 10 kW, spread over a few cm2. These high heat loads require special cooling methods to keep them from degrading the quality of the photon beam. A set of finite element analysis calculations were made in three dimensions to determine the temperature distributions and thermal stresses in a single crystal of silicon with heat loads of 2 kW to 20 kW. Different geometric arrangements and different cooling fluids (water, gallium, oil, Na, etc.) were considered. The two best fluids for room temperature operation were found to be water and liquid gallium metal. The variation in temperature across the face of the crystal and the distortion of the surface was at least a factor of two less for the gallium cooling case than for the water cooling case. The water cooling was effective only for very high flow rates. Efficient cooling and the very low vapor pressure for liquid gallium (less than 10-12 Torr at 1000C) make liquid gallium a very attractive cooling fluid for high vacuum synchrotron applications. A small electromagnetic induction pump for liquid Ga was built to test this cooling method. The new system is portable, controls the output temperature of the Ga and can handle heat loads of 10 kW. 13 figs

  10. The ATLAS Diamond Beam Monitor

    CERN Document Server

    Schaefer, Douglas; The ATLAS collaboration

    2015-01-01

    After the first three years of the LHC running the ATLAS experiment extracted it's pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to also install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes were assembled based on chemical vapour deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This talk will describe the lessons learned in construction and commissioning of the ATLAS x Diamond Beam Monitor (DBM). We will show results from the construction quality assurance tests, commissioning performance, including results from cosmic ray running in early 2015 and also expected first results from LHC run 2 collisions.

  11. Magnet cooling economics

    International Nuclear Information System (INIS)

    The recommendation to use superfluid helium II in superconducting magnet design has become more prevalent in recent years. Advanced fusion reactor studies such as the Mirror Advanced Reactor Study recently completed by the Lawrence Livermore National Laboratory (LLML) have based superconducting magnet design on the use of He II because of reduced magnet volume, improved stability characteristics, or increased superconductor critical current at fields above 9 Tesla. This paper reports the results of a study to determine the capital costs ($/watt) and the operating costs (watts/watt) of refrigeration systems in the 1.8K to 300K temperature range. The cost data is applied to a 1.8K magnet that is subject to neutronic heating wherein the magnet case is insulated from the winding so that the case can be cooled at a higher temperature (less costly) than the winding. The life cycle cost (capital plus operating) is reported as a function of coil temperature and insulation thickness. In some cases there is an optimum, least-cost thickness. In addition, the basic data can be used to evaluate the impact of neutron shielding effectiveness trades on the combined shield, magnet, cryorefrigerator, and operating life cycle cost

  12. Liquid cooled nuclear reactors

    International Nuclear Information System (INIS)

    A construction is described for a liquid metal cooled fast reactor, in which the core is supported in a pool of liquid coolant, wherein a catchment tray is provided for any debris falling from the core. The tray comprises a complex of open top collecting vessels with central support struts, the vessels being spaced apart and arranged in layers in a lattice pitch. The lattice pitches of the vessels in each layer are off-set to the lattice pitches of the vessels in the other layers, so that upper vessels partially overlap lower vessels, and the support struts extend through interspaces defined by the vessels in off-set pitch to a common supporting sub-structure. The complex of vessels offers a complete catchment area for falling debris, whilst being pervious to liquid coolant circulating upwardly by convection. The collecting vessels preferably comprise conical dishes and are arranged in triangular lattice pitch in each layer, and the complex of vessels comprises three layers. Alternatively the collecting vessels may be rectilinear and arranged on a square lattice. The catchment tray may comprise two or more such complexes in stacked array. (U.K.)

  13. Central cooling: absorptive chillers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-08-01

    This technology evaluation covers commercially available single-effect, lithium-bromide absorption chillers ranging in nominal cooling capacities of 3 to 1,660 tons and double-effect lithium-bromide chillers from 385 to 1,060 tons. The nominal COP measured at operating conditions of 12 psig input steam for the single-effect machine, 85/sup 0/ entering condenser water, and 44/sup 0/F exiting chilled-water, ranges from 0.6 to 0.65. The nominal COP for the double-effect machine varies from 1.0 to 1.15 with 144 psig entering steam. Data are provided to estimate absorption-chiller performance at off-nominal operating conditions. The part-load performance curves along with cost estimating functions help the system design engineer select absorption equipment for a particular application based on life-cycle costs. Several suggestions are offered which may be useful for interfacing an absorption chiller with the remaining Integrated Community Energy System. The ammonia-water absorption chillers are not considered to be readily available technology for ICES application; therefore, performance and cost data on them are not included in this evaluation.

  14. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a...

  15. Cryogenic design of the stochastic cooling pick-ups for the CERN antiproton collector (ACOL)

    International Nuclear Information System (INIS)

    Stochastic cooling, a technique of prime importance for obtaining antiproton beams usable at high-energy colliders, requires wide-band and low-noise signal acquisition and processing. For this purpose, the CERN Antiproton Collector (ACOL), presently under construction, is equipped with six beam pick-up stations operating at cryogenic temperatures. Each station consists of a high-vacuum vessel housing two mobile arrays of pick-up electrodes, cooled to about 100 K by radiation to a surrounding thermal shield, and two preamplifiers kept below 20 K. Refrigeration is provided by a pair of two-stage Gifford-McMahon helium cryogenerators, thermally linked to the preamplifiers and to the thermal shield. The cryogenerators also cool activated charcoal cryopanels, in order to maintain a residual pressure in the vessel below 10-8 mbar. The choice of such cryogenic options is dictated by performance (steady-state and cool-down), simplicity of operation and maintenance, and high reliability

  16. Beam quality measure for vector beams.

    Science.gov (United States)

    Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2016-08-01

    Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580

  17. Optimal design of a beam stop for Indus-2 using finite element heat transfer studies

    Indian Academy of Sciences (India)

    A K Sinha; K J S Sawhney; R V Nandedkar

    2001-12-01

    This paper describes the design of an in-vacuum, water-cooled beam stop (X-ray shutter) for the materials science (X-ray diffraction) beamline proposed to be built on the wavelength shifter in the Indus-2 (2.5 GeV) synchrotron radiation source. The radiation source impinges ∼ 1 kW power on the beam stop and the heat transfer capabilities of the beam stop have been evaluated. Temperature distribution in the beam stop has been obtained under various cooling conditions using the finite element analysis calculations with ANSYS software. Design parameters of the beam stop have been optimised. It is also shown that radiation cooling alone is not sufficient for taking away the heat load. Water-cooling of the beam stop is essential.

  18. The Cool 100 book

    Energy Technology Data Exchange (ETDEWEB)

    Haselip, J.; Pointing, D.

    2011-07-01

    The aim of The Cool 100 book is to document 100 inspiring, educational and practical examples of sustainable and accessible energy supply solutions created by, or suitable for, isolated communities in the cooler regions of the world. The book features the following projects, explored in detail: 1. Promoting Unst Renewable Energy (PURE) project, a pioneering project that demonstrates how wind power and hydrogen technologies can be combined to meet the energy needs of a remote industrial estate on the island of Unst in the British Isles. 2. The EDISON project, or Electric vehicles in a Distributed and Integrated market using Sustainable energy and Open Networks that explored increased renewable energy use and electric vehicle operation in Denmark, with a case study on the island of Bornholm. 3. The Sarfannguit Wireless Electricity Reading project, which has significantly improved utility metering and enabled improved energy management, reduced electricity demand, and the introduction of renewable energy technologies in the isolated villages of Greenland. 4. The Renewable Energy Croft and Hydrogen facility, which uses innovative technologies to support a gardening facility in the Outer Hebrides (Scotland), and is also a working laboratory for students of the local university to develop a hydrogen energy economy. 5. The Samsoe Renewable Energy Island in Denmark, an iconic example of how an island community can consume only green electricity by using a range of innovative technologies and behavioural changes to reduce demand and to harness green energy resources. 6. The Hydrogen Office Project which demonstrates how a commercial office in the coastal town of Methil in Scotland can be supported by a novel renewable, hydrogen and fuel cell energy system, and how the local community is engaged with the project. 7. The Northern Sustainable House in Nunavut, Canada, which explores the process and results of a project to design and implement housing for local families that

  19. Novel cooling strategy for electronic packages: Directly injected cooling

    NARCIS (Netherlands)

    Wits, W.W.; Vaneker, T.H.J.; Mannak, J.H.; Legtenberg, R.

    2009-01-01

    This publication describes the development of a novel cooling strategy for electronic packages. During the conceptual design phase, the engineering disciplines involved are considered simultaneously. Through a case study, it is demonstrated that this integrative approach is an effective methodology

  20. Observation of anti-stokes fluorescence cooling in thulium-doped glass

    Science.gov (United States)

    Hoyt; Sheik-Bahae; Epstein; Edwards; Anderson

    2000-10-23

    We report the first observation of anti-Stokes fluorescence cooling in a thulium-doped solid with pump excitation at 1.82 &mgr;mPbF2) sample cooled to -1.2 degrees C from room temperature for a single pass of the pump beam. This corresponds to an absorbed pump power of approximately 40 mW and a peak temperature change per absorbed power of approximately -30 degrees C/W from room temperature. PMID:11030960

  1. Laser Cooling of 87Rb to 1.5 μK in a Fountain Clock

    Institute of Scientific and Technical Information of China (English)

    WANG Bin; L(U) De-Sheng; QU Qiu-Zhi; ZHAO Jian-Bo; LI Tang; LIU Liang; WANG Yu-Zhu

    2011-01-01

    @@ We report an experiment on the adiabatic cooling of Rb atoms in an atomic fountain to a temperature as low as 1.5μK, which is roughly twice the recoil temperature.The atomic fountain has the (1,1,1) optical geometry for cooling and launching of cold atoms.The atoms are first cooled in an optical molasses of 6 beams to 3.4μK by polarization gradient geometry and then are adiabatically cooled by decreasing the intensity of laser from 1.8I per beam to zero in i ms during the launching of cold atoms.We also study the dependences of atomic temperature on different laser parameters.The method we used is useful in any cold atom physics experiment.%We report an experiment on the adia.ba.tic cooling ofS7Rb atoms in an atomic fountain to a temperature as low as 1.5fj,K, which is roughly twice the recoil temperature. The atomic fountain has the (1,1,1) optical geometry for cooling and launching of cold atoms. The atoms are first cooled in an optical molasses of 6 beams to 3.4 (iK by polarization gradient geometry and then are adiabatically cooled by decreasing the intensity of laser from 1.81., per beam to zero in 1 ms during the launching of cold atoms. We also study the dependences of atomic temperature on different laser parameters. The method we used is useful in any cold atom physics experiment.

  2. Mechanical response of local rapid cooling by spray water on constrained steel frame structure at high temperature in fire

    Directory of Open Access Journals (Sweden)

    Xia Yunchun

    2015-01-01

    Full Text Available Locally rapid cooling of spray water had strong impact on high temperature steel structure. When temperature of beam reached 600°C and cooling rate was more than 20°C/s, the maximum axial tension could reach more than 5 times of the originally compressive force. The compressive bending moment at joint of beam-to-column changed to tensile bending moment, and the maximum bending moment could reach above 4 times as that when heated. After rapid cooling by spray water, deflection at mid-span increased slightly.

  3. A He-gas Cooled, Stationary Granular Target

    CERN Document Server

    Pugnat, P

    2003-01-01

    In the CERN approach to the design of a neutrino factory, the repetition frequency of the proton beam is high enough to consider stationary solid targets as a viable solution for multi-MW beams. The target consists of high density tantalum spheres of 2 mm diameter which can efficiently be cooled by passing a high mass flow He-gas stream through the voids between the Ta-granules. Very small thermal shocks and stresses will arise in this fine grained structure due to the relatively long burst of 3.3 ms from the SPL-proton linac. In a quadruple target system where each target receives only one quarter of the total beam power of 4 MW, conservative temperature levels and adequate lifetimes of the target are estimated in its very high radiation environment. A conceptual design of the integration of the target into the magnetic horn-pion-collector is presented.

  4. The Cooling of Compact Stars

    CERN Document Server

    Page, D; Weber, F; Page, Dany; Geppert, Ulrich; Weber, Fridolin

    2005-01-01

    The cooling of a compact star depends very sensitively on the state of dense matter at supranuclear densities, which essentially controls the neutrino emission, as well as on the structure of the stellar outer layers which control the photon emission. Open issues concern the hyperon population, the presence of meson condensates, superfluidity and superconductivity, and the transition of confined hadronic matter to quark matter. This paper describes these issues and presents cooling calculations based on a broad collection of equations of state for neutron star matter and strange matter. These results are tested against the body of observed cooling data.

  5. CO$_2$ cooling experience (LHCb)

    CERN Document Server

    Van Lysebetten, Ann; Verlaat, Bart

    2007-01-01

    The thermal control system of the LHCb VErtex LOcator (VELO) is a two-phase C0$_2$ cooling system based on the 2-Phase Accumulator Controlled Loop (2PACL) method. Liquid carbon dioxide is mechanically pumped in a closed loop, chilled by a water-cooled freon chiller and evaporated in the VELO detector. The main goal of the system is the permanent cooling of the VELO silicon sensors and of the heat producing front-end electronics inside a vacuum environment. This paper describes the design and the performance of the system. First results obtained during commissioning are also presented.

  6. Cooling towers principles and practice

    CERN Document Server

    Hill, G B; Osborn, Peter D

    2013-01-01

    Cooling Towers: Principles and Practice, Third Edition, aims to provide the reader with a better understanding of the theory and practice, so that installations are correctly designed and operated. As with all branches of engineering, new technology calls for a level of technical knowledge which becomes progressively higher; this new edition seeks to ensure that the principles and practice of cooling towers are set against a background of up-to-date technology. The book is organized into three sections. Section A on cooling tower practice covers topics such as the design and operation of c

  7. Device for measuring charge density distribution in charged particle beams

    International Nuclear Information System (INIS)

    A device to measure charge density distribution in charged particle beams has been described. The device contains a set of hollow interinsulated current-receiving electrodes, recording system, and cooling system. The invention is aimed at the increase of admissible capacity of the beams measured at the expense of cooling efficiency increase. The aim is achieved by the fact, that in the device a dynamic evaporating-condensational cooling of electrodes is realized by means of cooling agent supply in perpendicular to their planes through the tubes introduced inside special cups. Spreading in radial direction over electrode surface the cooling agent gradually and intensively washes the side surface of the cup, after that, it enters the cooling cavity in the form of vapour-liquid mixture. In the cavity the cooling agent, supplied using dispensina and receiving collectors in which vapoUr is condensed, circulates. In the device suggested the surface of electrode cooling is decreased significantly at the expense of side surface of the cups which receives the electrode heat

  8. Beam propagation

    International Nuclear Information System (INIS)

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  9. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  10. Compensating tune spread induced by space charge in bunched beams

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Wang, G.

    2015-05-03

    The effects of space charge play a significant role in modern-day accelerators, frequently constraining the beam parameters attainable in an accelerator or in an accelerator chain. They also can limit the luminosity of hadron colliders operating either at low energies or with sub-TeV high-brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. Using an appropriate electron beam would compensate both the tune shift and the tune spread in the hadron beam in a coasting beam. But these methods cannot compensate space charge tune spread in a bunched hadron beam. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with mismatched longitudinal velocity to compensate the space charge induced tune-shift and tune spread.

  11. ATOMIC BEAM STUDIES IN THE RHIC H-JET POLARIMETER.

    Energy Technology Data Exchange (ETDEWEB)

    MAKDISI,Y.; ZELENSKI,A.; GRAHAM,D.; KOKHANOVSKI,S.; MAHLER,G.; NASS,A.; RITTER,J.; ZUBETS,V.; ET AL.

    2005-01-28

    The results of atomic beam production studies are presented. Improved cooling of the atoms before jet formation in the dissociator cold nozzle apparently reduces the atomic beam velocity spread and improves beam focusing conditions. A carefully designed sextupole separating (and focusing) magnet system takes advantage of the high brightness source. As a result a record beam intensity of a 12.4 {center_dot} 10{sup 16} atoms/s was obtained within 10 mm acceptance at the collision point. The results of the polarization dilution factor measurements (by the hydrogen molecules at the collision point) are also presented.

  12. Polarizing a stored proton beam by spin flip?

    CERN Document Server

    Oellers, D; Barsov, S; Bechstedt, U; Benati, P; Bertelli, S; Chiladze, D; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Dietrich, J; Dolfus, N; Dymov, S; Engels, R; Erven, W; Garishvili, A; Gebel, R; Goslawski, P; Grigoryev, K; Hadamek, H; Kacharava, A; Khoukaz, A; Kulikov, A; Langenberg, G; Lehrach, A; Lenisa, P; Lomidze, N; Lorentz, B; Macharashvili, G; Maier, R; Martin, S; Merzliakov, S; Meshkov, I N; Meyer, H O; Mielke, M; Mikirtychiants, M; Mikirtychiants, S; Nass, A; Nekipelov, M; Nikolaev, N N; Nioradze, M; d'Orsaneo, G; Papenbrock, M; Prasuhn, D; Rathmann, F; Sarkadi, J; Schleichert, R; Smirnov, A; Seyfarth, H; Sowinski, J; Spoelgen, D; Stancari, G; Stancari, M; Statera, M; Steffens, E; Stein, H J; Stockhorst, H; Straatmann, H; Ströher, H; Tabidze, M; Tagliente, G; Engblom, P Thoerngren; Trusov, S; Vasilyev, A; Weidemann, Chr; Welsch, D; Wieder, P; Wüstner, P; Zupranski, P

    2009-01-01

    We discuss polarizing a proton beam in a storage ring, either by selective removal or by spin flip of the stored ions. Prompted by recent, conflicting calculations, we have carried out a measurement of the spin flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam. This invalidates a recent proposal to use co-moving polarized positrons to polarize a stored antiproton beam.

  13. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.

  14. Wedge Absorbers for Final Cooling for a High-Energy High-Luminosity Lepton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Mohayai, Tanaz [IIT, Chicago (main); Snopok, Pavel [IIT, Chicago; Summers, Don [Mississippi U.

    2016-06-01

    A high-energy high-luminosity muon collider scenario requires a "final cooling" system that reduces transverse emittance to ~25 microns (normalized) while allowing longitudinal emittance increase. Ionization cooling using high-field solenoids (or Li Lens) can reduce transverse emittances to ~100 microns in readily achievable configurations, confirmed by simulation. Passing these muon beams at ~100 MeV/c through cm-sized diamond wedges can reduce transverse emittances to ~25 microns, while increasing longitudinal emittance by a factor of ~5. Implementation will require optical matching of the exiting beam into downstream acceleration systems.

  15. Cooled Ceramic Turbine Vane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — N&R Engineering will investigate the feasibility of cooled ceramics, such as ceramic matrix composite (CMC) turbine blade concepts that can decrease specific...

  16. Surface-induced evaporative cooling

    Institute of Scientific and Technical Information of China (English)

    Ke Min; Yan Bo; Cheng Feng; Wang Yu-Zhu

    2009-01-01

    The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to the surface. Rapid decrease of the temperature and number of the atoms is found when the atom-surface distance is < 100 μm. A gain of about a factor of five on the phase-space density is obtained. It is found that the efficiency of the surface-induced evaporative cooling depends on the atom-surface distance and the shape of the evaporative trap. When the atoms are moved very close to the surface, severe heating is observed, which dominates when the holding time is > 8 ms. It is important that the surface-induced evaporative cooling offers novel possibilities for the realization of a continuous condensation, where a spatially varying evaporative cooling is required.

  17. Cooled water rod (loca conditions)

    International Nuclear Information System (INIS)

    A process is described for providing a radiation heat sink for fuel bundles having a large water moderator tube in the event of a loss of coolant accident the fuel bundles having an upper tie plate, a lower tie plate, a channel surrounding and connecting the tie plate, a plurality of fuel rods supported between the tie plates and within the channels in side by side upstanding relation; a large water moderator tube having at least twice the diameter of the fuel rods. The process consists of: spraying core cooling spray in an evenly divided flow over the upper tie plate; collecting core cooling spray at an uper end of the large water moderator tube; and distributing the core cooling spray circumferentially along the inner surfaces of the large water moderator tube in a downward flow separating the flow of the core cooling spray from the flow of steam resulting from the flashing of water to steam within the moderator tube

  18. Acoustical Convective Cooling Or Heating

    Science.gov (United States)

    Trinh, Eugene H.; Robey, Judith L.

    1988-01-01

    Small, efficient ultrasonic device circulates fluid. Vibrating at ultrasonic frequency, piezoelectric driver sets up vortexes transfering heat to or from object in space. Used on Earth to apply localized or concentrated cooling to individual electronic components or other small parts.

  19. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  20. The separated-sector cyclotron: beam transport

    International Nuclear Information System (INIS)

    The diagnostic components that were ordered for the rest of the proposed beamlines at the NAC have been delivered. Design and manufacture of a special harp for the beam swinger has commenced. The Faraday cups and slits in the transfer beamline were replaced by water-cooled versions, owing to the decision to transport beams of higher intensity than initially specified. A prototype water-cooled slit for use in the low-energy beamline emittance measurement system has been installed, replacing the previous uncooled slit, to meet the requirement to measure the emittance of high-intensity beams. Software to automate the emittance measurement procedure is being developed. The method of calibration and alignment of the beamline scanners has been improved resulting in a more accurate measurement of the beam position. Software is being developed to regulate the beam current on the neutron therapy target. Current measurement from the target is used as feedback to regulate the aperture of a slit-system in the low-energy transfer beamline. This procedure will be implemented as soon as final tests have been carried out during the next scheduled shutdown. 3 figs

  1. Photoionization studies with molecular beams

    International Nuclear Information System (INIS)

    A molecular beam photoionization apparatus which combines the advantages of both the molecular beam method with photoionization mass spectrometry has been designed and constructed for carrying out some unique photoionization experiments. Rotational cooling during the supersonic expansion has resulted in high resolution photoionization efficiency curves for NO, ICl, C2H2 and CH3I. The analysis of these spectra has yielded ionization potentials for these molecules to an accuracy of +- 3 MeV. Detailed autoionization structures were also resolved. This allows the investigation of the selection rules for autoionization, and the identification of the Rydberg series which converge to the excited states of the molecular ions. The degree of relaxation for thermally populated excited states has been examined using NO and ICl as examples. As a result of adiabatic cooling, a small percentage of dimers is also formed during the expansion. The photoionization efficiency curves for (NO)2, ArICl, Ar2, Kr2 and Xe2 have been obtained near the thresholds. Using the known dissociation energies of the (NO)2, Ar2, Kr2 and Xe2 van der Waals molecules, the corresponding dissociation energies for NO-NO+, Ar2+, Kr2+, and Xe2+ have been determined. The ionization mechanisms for this class of molecules are examined and discussed

  2. Compressor bleed cooling fluid feed system

    Science.gov (United States)

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  3. Molecular-beam scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  4. Molecular-beam scattering

    International Nuclear Information System (INIS)

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl → NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(22P/sub 3/2/) and Na(32P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included

  5. ATA diagnostic beam dump conceptual design

    International Nuclear Information System (INIS)

    A diagnostic beam dump, able to withstand 72,000 pulses (10 kA, 50 MeV/pulse) per shift was designed and analyzed. The analysis shows that the conceptual beam dump design consisting of 80 vitreous carbon plate-foam elements is able to withstand the thermal and mechanical stresses generated. X-rays produced by bremsstrahlung are absorbed by a three element copper plate-foam x-ray absorber. Cooling between bursts of electron pulses is provided by pressurized helium

  6. Thermal response of the multiplier of an accelerator-driven system to beam interruptions

    International Nuclear Information System (INIS)

    Thermal response of the multiplier of an accelerator-driven system to beam trips has been calculated for sodium cooled and lead-bismuth cooled multipliers. The temperature transients caused by a beam trip lead to thermal fatigue in structural components, and restoring the beam causes an additional temperature transient that adds to thermal fatigue. Design lifetimes for various multiplier components are calculated, based on the frequency of beam interruptions and on the thermal fatigue per interruption. Mitigation strategies to increase design lifetimes are discussed. (author)

  7. Thermal response of the multiplier of an accelerator driven system to beam interruptions

    International Nuclear Information System (INIS)

    Thermal response of the multiplier of an accelerator driven system to beam trips has been calculated for sodium cooled and lead-bismuth cooled multipliers. The temperature transients caused by a beam trip lead to thermal fatigue in structural components, and restoring the beam causes an additional temperature transient that adds to thermal fatigue. Design lifetimes for various multiplier components are calculated, based on the frequency of beam interruptions and on the thermal fatigue per interruption. Mitigation strategies to increase design lifetimes are discussed

  8. Oil cooled, hermetic refrigerant compressor

    Science.gov (United States)

    English, William A.; Young, Robert R.

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  9. Performance of Conduction Cooled Splittable Superconducting Magnet Package for Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimire S. [Fermilab; Andreev, N. [Fermilab; Cheban, S. [Fermilab; DiMarco, J. [Fermilab; Kimura, N. [KEK, Tsukuba; Makarov, A. [Fermilab; Orlov, Y. [Fermilab; Poloubotko. V., Poloubotko. V. [Fermilab; Tartaglia, M. [Fermilab; Yamamoto, A. [KEK, Tsukuba

    2015-01-01

    New Linear Superconducting Accelerators need a superconducting magnet package installed inside SCRF Cryomodules to focus and steer electron or proton beams. A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a splittable in the vertical plane configuration, and features for conduction cooling. The magnet was successfully tested at room temperature, in a liquid He bath, and in a conduction cooling experiment. The paper describes the design and test results including: magnet cooling, training, and magnetic measurements by rotational coils. The effects of superconductor and iron yoke magnetization, hysteresis, and fringe fields are discussed.

  10. Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator

    International Nuclear Information System (INIS)

    Recent theoretical work has shown that radiation pressure effects can in principle cool a mechanical degree of freedom to its ground state. In this paper, we apply this theory to our realization of an optomechanical system in which the motion of mechanical oscillator modulates the resonance frequency of a superconducting microwave circuit. We present experimental data demonstrating the large mechanical quality factors possible with metallic, nanomechanical beams at 20 mK. Further measurements also show damping and cooling effects on the mechanical oscillator due to the microwave radiation field. These data motivate the prospects for employing this dynamical backaction technique to cool a mechanical mode entirely to its quantum ground state.

  11. SRF photoinjector for proof-of-principle experiment of coherent electron cooling at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kayran D.; Belomestnykh, S.; Ben-Zvi, I.; Brutus, J.C.; et al

    2012-05-20

    Coherent Electron Cooling (CEC) based on Free Electron Laser (FEL) amplifier promises to be a very good way to cool protons and ions at high energies. A proof of principle experiment to demonstrate cooling at 40 GeV/u is under construction at BNL. One of possible sources to provide sufficient quality electron beam for this experiment is a SRF photoinjector. In this paper we discuss design and simulated performance of the photoinjector based on existing 112 MHz SRF gun and newly designed single-cavity SRF linac operating at 704 MHz.

  12. Numerical analyses on cooling process of superconducting insertion quadrupole magnets for BEPC II

    International Nuclear Information System (INIS)

    A pair of superconducting insertion quadrupole magnets (SCQ), and a superconducting solenoid magnets (SSM) were used in the Beijing Electron-Positron Collider Upgrade (BEPC II) in order to reduce the length of the beam, and to increase distinguish and identification ability of the particle. A cryogenic plant of 500 W at 4.5 K was to be built for the operation of the superconducting magnets. The paper described the cooling process for the SCQ and SSM magnets. Two kinds of cooling schemes for SCQ magnets, supercritical helium cooling and subcooled liquid helium cooling, were compared by numerical method. Thermal parameters of two kinds of cooling process were provided. Finally, the design of the subcooler, one of key components was presented. (authors)

  13. Sample Loading and Accelerated Cooling of Cryogen-free Dilution Refrigerators

    International Nuclear Information System (INIS)

    We present results from system tests of top and bottom loading cryogen-free dilution refrigerators which enable cool-down times from room temperature to mK temperatures in 6 to 8 hours. The loading and unloading processes take only a few minutes to perform and the cooling procedure is fully automated. Sample temperatures of less than 10 mK have been achieved with up to 8 coaxial cables and 25 DC-wires connected to the sample holder. We also present cool-down tests of a beam line dilution refrigerator with a 35 kg mass installed on the mixing chamber. A heat pipe was developed to accelerate the cooling of large experimental payloads and the mass was cooled from room temperature to 30 mK in less than 28 hours.

  14. Production of Palladium-103 (103Pd) from a thin rhodium foil target - Improved cooling concept

    International Nuclear Information System (INIS)

    Palladium-103 (103Pd) is one of the commonly used radioisotopes for prostate cancer treatment. The current irradiation technique used to produce this radioisotope suffers from several serious inherent drawbacks, of which one is the low beam current due to cooling limitation and the other is the electroplating process used to prepare the target. A liquid-metal jet impingement target cooling system developed at Soreq NRC demonstrated recently a cooling capacity of 8.4 kW/cm2 while the pressure of the cooling liquid on the target back was less than 1 bar. The latter value implies that the target can be made very thin and that the copper back-plate might be removed. Hence, we propose a new target design based on the use of a thin rhodium foil directly cooled by a liquid-metal such as gallium

  15. A computer simulation appraisal of non-residential low energy cooling systems in California

    International Nuclear Information System (INIS)

    An appraisal of the potential performance of different Low Energy Cooling (LEC) systems in nonresidential buildings in California is being conducted using computer simulation. The paper presents results from the first phase of the study, which addressed the systems that can be modeled, with the DOE-2.1E simulation program. The following LEC technologies were simulated as variants of a conventional variable-air-volume system with vapor compression cooling and mixing ventilation in the occupied spaces: Air-side indirect and indirect/direct evaporative pre-cooling. Cool beams. Displacement ventilation. Results are presented for four populous climates, represented by Oakland, Sacramento, Pasadena and San Diego. The greatest energy savings are obtained from a combination of displacement ventilation and air-side indirect/direct evaporative pre-cooling. Cool beam systems have the lowest peak demand but do not reduce energy consumption significantly because the reduction in fan energy is offse t by a reduction in air-side free cooling. Overall, the results indicate significant opportunities for LEC technologies to reduce energy consumption and demand in nonresidential new construction and retrofit

  16. Microtextured Surfaces for Turbine Blade Impingement Cooling

    Science.gov (United States)

    Fryer, Jack

    2014-01-01

    Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can exceed the blade and disk material limits by 600 F or more, necessitating both internal and film cooling schemes in addition to the use of thermal barrier coatings. Internal convective cooling is inadequate in many blade locations, and both internal and film cooling approaches can lead to significant performance penalties in the engine. Micro Cooling Concepts, Inc., has developed a turbine blade cooling concept that provides enhanced internal impingement cooling effectiveness via the use of microstructured impingement surfaces. These surfaces significantly increase the cooling capability of the impinging flow, as compared to a conventional untextured surface. This approach can be combined with microchannel cooling and external film cooling to tailor the cooling capability per the external heating profile. The cooling system then can be optimized to minimize impact on engine performance.

  17. Design of an adaptive cooled first crystal for an X-ray monochromator

    International Nuclear Information System (INIS)

    We report here on the design of the first crystal in an x-ray monochromator for E.S.R.F. beam lines. This crystal is a thin silicon foil bonded to a cooled beryllium support. A system of piezoelectric actuators is used to counterbalance the deformations induced by synchrotron beams. This work was carried out by the C.E.A. in collaboration with the E.S.R.F. and the LASERDOT Company (Aerospatiale Group). (orig.)

  18. Method and apparatus for efficient photodetachment and purification of negative ion beams

    Science.gov (United States)

    Beene, James R.; Liu, Yuan; Havener, Charles C.

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  19. Fabrication and high heat flux test of divertor cooling elements

    International Nuclear Information System (INIS)

    The plasma facing components in ITER are subjected to a high heat flux from fusion plasma. The heat flux is not only higher than that of existing tokamaks but also has a longer pulse duration (burn time). To minimize a peaking of the heat flux, the thermal deformation towards the plasma should be restrained. One-meter-long monoblock divertor modules with a sliding support structure were fabricated and tested at JAERI. Two kinds of support mechanisms were provided to minimize the thermal deformation of the modules in the upward and downward directions ; one is a pin type sliding structure and the other is a rail type support structure. Both modules were tested on the electron beam HHF test facility, JEBIS (JAERI Electron Beam Irradiation System), in JAERI. The steady-state heat flux of 15 MW/m2 was applied to the surface of the modules to simulate the design condition of ITER CDA. As a result of the HHF test, the performance of the sliding support structures was successfully demonstrated. Three dimensional elastic stress analyses were conducted using a finite element method. The result shows that the relatively high thermal stress is observed at the cooling tube ; and that the maximum thermal stress at the cooling tube exceeds its yield strength. It is necessary to perform the lifetime evaluation of the copper cooling tube against cyclic thermal stresses. (author)

  20. Evaporative Cooling of Atoms to Quantum Degeneracy in an Optical Dipole Trap

    International Nuclear Information System (INIS)

    We discuss our experimental results on forced evaporative cooling of cold rubidium 87Rb atoms to quantum degeneracy in an Optical Dipole Trap. The atoms are first trapped and cooled in a magneto-optical trap (MOT) loaded from a continuous beam of cold atoms. More than 1010 atoms are trapped in the MOT and then about 108 atoms are transferred to a Quasi-Electrostatic Trap (QUEST) formed by tightly focused CO2 laser (λ = 10.6μm) beams intersecting at their foci in an orthogonal configuration in the horizontal plane. Before loading the atoms into the dipole trap, the phase-space density of the atomic ensemble was increased making use of sub-doppler cooling at large detuning and the temporal dark MOT technique. In a MOT the phase-space density of the atomic ensemble is six orders of magnitude less than what is required to achieve quantum degeneracy. After transferring atoms into the dipole trap efficiently, phase-space density increases by a factor of 103. Further increase in phase-space density to quantum degeneracy is achieved by forced evaporative cooling of atoms in the dipole trap. The evaporative cooling process involves a gradual reduction of the trap depth by ramping down the trapping laser intensity over a second. The temperature of the cold atomic cloud was measured by time-of-flight (TOF) technique. The spatial distribution of the atoms is measured using absorption imaging. We report results of evaporative cooling in a single beam and in a crossed double-beam dipole traps. Due to the large initial phase space density, and large initial number of atoms trapped, the quantum phase transition occurs after about 600 ms of evaporative cooling in our optimized crossed dipole trap

  1. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  2. Angular-momentum-dominated electron beams and flat-beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 {+-} 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  3. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  4. Cooled snubber structure for turbine blades

    Science.gov (United States)

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  5. New cooling regulation technology of secondary cooling station in DCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Yan, Jun-wei; Zhu, Dong-sheng; Liu, Fei-long; Lei, Jun-xi [The Key Lab of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510641 (China); Liang, Lie-quan [The Key Lab of E-Commerce Market Application Technology of Guangdong Province, Guangdong University of Business Studies, Guangzhou 510320 (China)

    2008-07-01

    In this paper, a kind of new control technology of secondary cooling station (constant flow rate/variable temperature difference) in district cooling system (DCS) is proposed in view of serial consequences including low efficiency and high operating cost caused by low temperature of supply water in DCS. This technology has been applied in DCS of Guangzhou University City. The result has already indicated that such technology can increase the supply and return temperatures of buildings, return water temperature of primary side in the plate heat exchanger unit, moreover, the efficiency of both the chiller and the whole system are improved significantly. (author)

  6. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  7. Axion Cooling of Neutron Stars

    CERN Document Server

    Sedrakian, Armen

    2015-01-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting X-ray sources puts constraints on the properties of axions, and by extension of any light pseudo-scalar dark matter particles, whose existence has been postulated to solve the strong-CP problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by $S$- and $P$-wave nucleonic condensates in a benchmark code for cooling simulations as well as provide fit formulae for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring non-accreted iron and accreted light element envelopes, and a range of nucleon-axion coupling. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the tempe...

  8. Newton's law of cooling revisited

    International Nuclear Information System (INIS)

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer from any object to its surrounding is not only due to conduction and convection but also due to radiation. The latter does not vary linearly with temperature difference, which leads to deviations from Newton's law. This paper presents a theoretical analysis of the cooling of objects with a small Biot number. It is shown that Newton's law of cooling, i.e. simple exponential behaviour, is mostly valid if temperature differences are below a certain threshold which depends on the experimental conditions. For any larger temperature differences appreciable deviations occur which need the complete nonlinear treatment. This is demonstrated by results of some laboratory experiments which use IR imaging to measure surface temperatures of solid cooling objects with temperature differences of up to 300 K.

  9. STRUCTURE DESIGN OF THE BEIJING SPECTROMETER Ⅲ BEAM PIPE

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lifang; JI Quan; WANG Li; LI Xunfeng; XU Shaowang; DONG Sujun; ZHAO Libin; LIU Jianping

    2008-01-01

    The Beijing spectrometer Ⅲ (BESⅢ) beam pipe is in the center of the BESⅢ, which is the detector of the upgrade project of Beijing electron and positron collider (BEPCⅡ). Electrons and positrons collide in the BESⅢ beam pipe. According to the demands of the BEPCⅡ, a key program of Chinese Academy of Sciences, the BESⅢ beam pipe is designed based on the finite elements analysis. The BESⅢ beam pipe is installed in the inner cylinder of the BESⅢ drift chamber. As a vacuum tube, the BESⅢ beam pipe is designed as 1 000 mm in length, 63 mm in inner diameter and 114 mm in outer diameter, respectively. The BESⅢ beam pipe consists of a central beryllium pipe cooled by EDM-1, the oil No.1 for electric discharge machining, and two extended copper pipes cooled by deionized water (DW). The three parts are jointed by vacuum welding. Factors taken into account in the design are as follows. ① The wall thickness of the central beryllium pipe should be designed as small as possible to reduce the multi-scattering and improve the particle momentum resolution. And the wall thickness of the extended copper pipe should be designed as large as possible to protect the detectors from the backgrounds. ② The BESⅢ beam pipe must be sufficiently cooled to avoid the damage and prevents its influence to the BESⅢ drift chamber (DC) operation. The inner surface temperature of the DC inner cylinder must be maintained at 293±2 K. ③ The magnetic permeability of the materials used in the BESⅢ beam pipe must be less than 1.05 H/m to avoid large magnetic field distortions. ④ The static pressure of the vacuum chamber of the BESⅢ beam pipe must be less than 800 (Pa. The simulating results show that the designed structure of the BESⅢ beam pipe satisfies the requirements mentioned above. The structure design scheme is evaluated and adopted by the headquarters of BEPCⅡ.

  10. High perveance electron gun for the electron cooling system

    CERN Document Server

    Korotaev, Yu V; Petrov, A; Sidorin, A; Smirnov, A; Syresin, E M; Titkova, I

    2000-01-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 mu A/V sup 3 sup / sup 2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual).

  11. High perveance electron gun for the electron cooling system

    International Nuclear Information System (INIS)

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 μA/V3/2, Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual)

  12. Performance predictions for a laser intensified thermal beam for use in high resolution Focused Ion Beam instruments

    CERN Document Server

    Wouters, S H W; Notermans, R P M J W; Debernardi, N; Mutsaers, P H A; Luiten, O J; Vredenbregt, E J D

    2014-01-01

    Photo-ionization of a laser-cooled and compressed atomic beam from a high-flux thermal source can be used to create a high-brightness ion beam for use in Focus Ion Beam (FIB) instruments. Here we show using calculations and Doppler cooling simulations that an atomic rubidium beam with a brightness of $2.1 \\times 10^7 A/(m^2\\,sr\\,eV)$ at a current of 1 nA can be created using a compact 5 cm long 2D magneto-optical compressor which is more than an order of magnitude better than the current state of the art Liquid Metal Ion Source.

  13. High-power, electron beam-induced switching in diamond

    International Nuclear Information System (INIS)

    The authors are developing a high-voltage, high-average-power, electron beam-controlled diamond switch that could significantly impact high power solid-state electronics in industrial and defense applications. An electron beam-controlled, thin film diamond could switch, with high efficiency, well over 100 kW average power at MHz frequencies greater than 5kV. This performance is due to the excellent thermal and electronic properties of diamond, the high efficiency achieved with electron beam control, and the demonstrated effectiveness of microchannel cooling. The authors' electron beam penetration-depth measurements agree with their Monte Carlo calculations. They have not observed electron beam damage in diamond for beam energies up to 150 keV. This report describes their experimental and calculational results and research objectives

  14. Single-laser, one beam, tetrahedral magneto-optical trap

    CERN Document Server

    Vangeleyn, Matthieu; Riis, Erling; Arnold, Aidan S

    2009-01-01

    We have realised a 4-beam pyramidal magneto-optical trap ideally suited for future microfabrication. Three mirrors split and steer a single incoming beam into a tripod of reflected beams, allowing trapping in the four-beam overlap volume. We discuss the influence of mirror angle on cooling and trapping, finding optimum efficiency in a tetrahedral configuration. We demonstrate the technique using an ex-vacuo mirror system to illustrate the previously inaccessible supra-plane pyramid MOT configuration. Unlike standard pyramidal MOTs both the pyramid apex and its mirror angle are non-critical and our MOT offers improved molasses free from atomic shadows in the laser beams. The MOT scheme naturally extends to a 2-beam refractive version with high optical access. For quantum gas experiments, the mirror system could also be used for a stable 3D tetrahedral optical lattice.

  15. Active and passive beam application design guide for global application

    CERN Document Server

    Rimmer, Julian

    2015-01-01

    The Active and Passive Beam Application Design Guide is the result of collaboration by worldwide experts to give system designers a current, authoritative guide on successfully applying active and passive beam technology. Active and Passive Beam Application Design Guide provide energy-efficient methods of cooling, heating, and ventilating indoor areas, especially spaces that require individual zone control and where internal moisture loads are moderate. The systems are simple to operate, with low maintenance requirements. This book is an essential resource for consulting engineers, architects, owners, and contractors who are involved in the design, operation, and installation of these systems. Building on REHVA’s Chilled Beam Application Guidebook, this new guide provides up-to-date tools and advice for designing, commissioning, and operating chilled-beam systems to achieve a determined indoor climate, and includes examples of active and passive beam calculations and selections. Dual units (SI and I-P) are...

  16. A frictional cooling demonstration experiment with protons

    International Nuclear Information System (INIS)

    Muon cooling is the main technological obstacle in the building of a muon collider. A muon cooling scheme based on Frictional Cooling holds promise in overcoming this obstacle. An experiment designed to demonstrate the Frictional Cooling concept using protons was undertaken. Although the results were inconclusive in the observation of cooling, the data allowed for the qualification of detailed simulations which are used to simulate the performance of a muon collider

  17. Direct Liquid Cooling for Electronic Equipment

    OpenAIRE

    Coles, Henry

    2014-01-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using wat...

  18. Strangeness in Neutron Star Cooling

    CERN Document Server

    Lim, Yeunhwan; Lee, Chang-Hwan

    2016-01-01

    We study the thermal evolution of neutron stars in the presence of hyperons or kaons in the core. Our results indicate that the nucleon and hyperon direct Urca processes play crucial roles for the cooling of neutron stars. The presence of hyperons drives fast cooling mechanisms in two ways: 1) it allows the hyperon direct Urca prior to the nucleon direct Urca, 2) and it makes the nucleon direct Urca more feasible by reducing the neutron Fermi momentum. We found that the neutron star equation of state (EOS) with hyperons can be consistent with both mass and temperature observations. We also found that the neutron star EOS with kaon condensation can be consistent with observations, even though the cooling behavior is seldom useful to identify or isolate the effect of kaon condensation.

  19. Predicting cooling tower plume dispersion

    International Nuclear Information System (INIS)

    An assessment of the effects of visible cooling tower plumes on the local environment can be a necessary part of any proposal for a new large industrial process. Predictions of the dispersion of plumes from cooling towers are based on methods developed for chimney emissions. However, the kinds of criteria used to judge the acceptability of cooling tower plumes are different from those used for stack plumes. The frequency of long elevated plumes and the frequency of ground fogging are the two main issues. It is shown that events associated with significant plumes visibility are dependent both on the operating characteristics of the tower and on the occurrence of certain meteorological conditions. The dependence on atmospheric conditions is shown to be fairly complex and simple performance criteria based on the exit conditions from the tower are not sufficient for assessments. (author)

  20. Emergency cooling apparatus for reactor

    International Nuclear Information System (INIS)

    A nuclear reactor is described which has the core surrounded by coolant and an inert cover gas all sealed within a container, an emergency cooling apparatus employing a detector that will detect cover gas or coolant, particularly liquid sodium, leaking from the container of the reactor, to release a heat exchange material that is inert to the coolant, which heat exchange material is cooled during operation of the reactor. The heat exchange material may be liquid niitrogen or a combination of spheres and liquid nitrogen, for example, and is introduced so as to contact the coolant that has leaked from the container quickly so as to rapidly cool the coolant to prevent or extinguish combustion. (Official Gazette)