WorldWideScience

Sample records for beam based optimization

  1. The beam-beam limit in asymmetric colliders: Optimization of the B-factory parameter base

    International Nuclear Information System (INIS)

    Tennyson, J.L.

    1990-01-01

    This paper presents a general theory of the beam-beam limit in symmetric and asymmetric lepton ring colliders. It shows how the beam-beam limit in these accelerators affects the maximum attainable luminosity and presents a specific algorithm for parameter base optimization. It is shown that the special problems inherent in asymmetric colliders derive not from the asymmetry, but from the fact that the two beams must be in different rings. Computer simulation experiments are used to demonstrate the various phenomena discussed in the theory

  2. Simulation based optimized beam velocity in additive manufacturing

    Science.gov (United States)

    Vignat, Frédéric; Béraud, Nicolas; Villeneuve, François

    2017-08-01

    Manufacturing good parts with additive technologies rely on melt pool dimension and temperature and are controlled by manufacturing strategies often decided on machine side. Strategies are built on beam path and variable energy input. Beam path are often a mix of contour and hatching strategies filling the contours at each slice. Energy input depend on beam intensity and speed and is determined from simple thermal models to control melt pool dimensions and temperature and ensure porosity free material. These models take into account variation in thermal environment such as overhanging surfaces or back and forth hatching path. However not all the situations are correctly handled and precision is limited. This paper proposes new method to determine energy input from full built chamber 3D thermal simulation. Using the results of the simulation, energy is modified to keep melt pool temperature in a predetermined range. The paper present first an experimental method to determine the optimal range of temperature. In a second part the method to optimize the beam speed from the simulation results is presented. Finally, the optimized beam path is tested in the EBM machine and built part are compared with part built with ordinary beam path.

  3. Development and optimization of the LHC and the SPS beam diagnostics based on synchrotron radiation monitoring

    International Nuclear Information System (INIS)

    Trad, Georges

    2015-01-01

    Measuring the beam transverse emittance is fundamental in every accelerator, in particular for colliders, where its precise determination is essential to maximize the luminosity and thus the performance of the colliding beams. Synchrotron Radiation (SR) is a versatile tool for non-destructive beam diagnostics, since its characteristics are closely related to those of the source beam. At CERN, being the only available diagnostics at high beam intensity and energy, SR monitors are exploited as the proton beam size monitor of the two higher energy machines, the Super Proton Synchrotron (SPS) and the Large Hadron Collider (LHC). The thesis work documented in this report focused on the design, development, characterization and optimization of these beam size monitors. Such studies were based on a comprehensive set of theoretical calculations, numerical simulations and experiments. A powerful simulation tool has been developed combining conventional softwares for SR simulation and optics design, thus allowing the description of an SR monitor from its source up to the detector. The simulations were confirmed by direct observations, and a detailed performance studies of the operational SR imaging monitor in the LHC, where different techniques for experimentally validating the system were applied, such as cross-calibrations with the wire scanners at low intensity (that are considered as a reference) and direct comparison with beam sizes de-convoluted from the LHC luminosity measurements. In 2015, the beam sizes to be measured with the further increase of the LHC beam energy to 7 TeV will decrease down to ∼190 μm. In these conditions, the SR imaging technique was found at its limits of applicability since the error on the beam size determination is proportional to the ratio of the system resolution and the measured beam size. Therefore, various solutions were probed to improve the system's performance such as the choice of one light polarization, the reduction of

  4. Multiobjective optimization design of an rf gun based electron diffraction beam line

    Science.gov (United States)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan; Maxson, Jared

    2017-03-01

    Multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line comprised of a 100 MV /m 1.6-cell normal conducting rf (NCRF) gun, as well as a nine-cell 2 π /3 bunching cavity placed between two solenoids, have been performed. These include optimization of the normalized transverse emittance as a function of bunch charge, as well as optimization of the transverse coherence length as a function of the rms bunch length of the beam at the sample location for a fixed charge of 1 06 electrons. Analysis of the resulting solutions is discussed in terms of the relevant scaling laws, and a detailed description of one of the resulting solutions from the coherence length optimizations is given. For a charge of 1 06 electrons and final beam sizes of σx≥25 μ m and σt≈5 fs , we found a relative coherence length of Lc ,x/σx≈0.07 using direct optimization of the coherence length. Additionally, based on optimizations of the emittance as a function of final bunch length, we estimate the relative coherence length for bunch lengths of 30 and 100 fs to be roughly 0.1 and 0.2 nm /μ m , respectively. Finally, using the scaling of the optimal emittance with bunch charge, for a charge of 1 05 electrons, we estimate relative coherence lengths of 0.3, 0.5, and 0.92 nm /μ m for final bunch lengths of 5, 30 and 100 fs, respectively.

  5. Multiobjective optimization design of an rf gun based electron diffraction beam line

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2017-03-01

    Full Text Available Multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line comprised of a 100  MV/m 1.6-cell normal conducting rf (NCRF gun, as well as a nine-cell 2π/3 bunching cavity placed between two solenoids, have been performed. These include optimization of the normalized transverse emittance as a function of bunch charge, as well as optimization of the transverse coherence length as a function of the rms bunch length of the beam at the sample location for a fixed charge of 10^{6} electrons. Analysis of the resulting solutions is discussed in terms of the relevant scaling laws, and a detailed description of one of the resulting solutions from the coherence length optimizations is given. For a charge of 10^{6} electrons and final beam sizes of σ_{x}≥25  μm and σ_{t}≈5  fs, we found a relative coherence length of L_{c,x}/σ_{x}≈0.07 using direct optimization of the coherence length. Additionally, based on optimizations of the emittance as a function of final bunch length, we estimate the relative coherence length for bunch lengths of 30 and 100 fs to be roughly 0.1 and 0.2  nm/μm, respectively. Finally, using the scaling of the optimal emittance with bunch charge, for a charge of 10^{5} electrons, we estimate relative coherence lengths of 0.3, 0.5, and 0.92  nm/μm for final bunch lengths of 5, 30 and 100 fs, respectively.

  6. Monte Carlo vs. Pencil Beam based optimization of stereotactic lung IMRT

    Directory of Open Access Journals (Sweden)

    Weinmann Martin

    2009-12-01

    Full Text Available Abstract Background The purpose of the present study is to compare finite size pencil beam (fsPB and Monte Carlo (MC based optimization of lung intensity-modulated stereotactic radiotherapy (lung IMSRT. Materials and methods A fsPB and a MC algorithm as implemented in a biological IMRT planning system were validated by film measurements in a static lung phantom. Then, they were applied for static lung IMSRT planning based on three different geometrical patient models (one phase static CT, density overwrite one phase static CT, average CT of the same patient. Both 6 and 15 MV beam energies were used. The resulting treatment plans were compared by how well they fulfilled the prescribed optimization constraints both for the dose distributions calculated on the static patient models and for the accumulated dose, recalculated with MC on each of 8 CTs of a 4DCT set. Results In the phantom measurements, the MC dose engine showed discrepancies Conclusions It is feasible to employ the MC dose engine for optimization of lung IMSRT and the plans are superior to fsPB. Use of static patient models introduces a bias in the MC dose distribution compared to the 4D MC recalculated dose, but this bias is predictable and therefore MC based optimization on static patient models is considered safe.

  7. Method of improving photoelectric efficiency for laser power beaming based on photovoltaic cell layout optimization

    Science.gov (United States)

    Li, Beibei; Li, Xiaojiang

    2017-02-01

    In accordance with the high impact of the uneven distribution of laser beam power on the photovoltaic efficiency of photovoltaic cell (PV) array, a method based on PV layout optimization is proposed to improve the photovoltaic efficiency. First of all, a mathematical model of series-parallel PV array is built, and by analyzing the influencing factors on photovoltaic efficiency, the idea and scheme to improve the photovoltaic efficiency based on PV layout optimization is provided; then, the MATLAB/Simulink simulation tool is used to simulate the effects of improving photoelectric efficiency. The simulation results show that compared to the traditional PV array, the optimized PV array can obtain higher photovoltaic efficiency, and compared to the situation with uneven temperature distribution, the array efficiency has higher efficiency under even temperature distribution.

  8. AB-BNCT beam shaping assembly based on {sup 7}Li(p,n){sup 7}Be reaction optimization

    Energy Technology Data Exchange (ETDEWEB)

    Minsky, D.M., E-mail: minsky@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)] [CONICET, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)] [CONICET, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)

    2011-12-15

    A numerical optimization of a Beam Shaping Assembly (BSA) for Accelerator Based-Boron Neutron Capture Therapy (AB-BNCT) has been performed. The reaction {sup 7}Li(p,n){sup 7}Be has been considered using a proton beam on a lithium fluoride target. Proton energy and the dimensions of a simple BSA geometry have been varied to obtain a set of different configurations. The optimal configuration of this set is shown.

  9. Optimal Design of Laminated Composite Beams

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral

    This thesis presents an optimal design framework for the structural design of laminated composite beams. The possibility of improving the static and dynamic performance of laminated composite beam through the use of optimal design techniques motivates the investigation presented here. A structural....... Furthermore, the devised beam model is able account for the different levels of anisotropic elastic couplings which depend on the laminate lay-up. An optimization model based on multi-material topology optimization techniques is described. The design variables represent the volume fractions of the different...... design of laminated composite beams. The devised framework is applied in the optimal design of laminated composite beams with different cross section geometries and subjected to different load cases. Design criteria such as beam stiffness, weight, magnitude of the natural frequencies of vibration...

  10. Optimal transport of particle beams

    International Nuclear Information System (INIS)

    Allen, C.K.; Reiser, M.

    1997-01-01

    The transport and matching problem for a low energy transport system is approached from a control theoretical viewpoint. We develop a model for a beam transport and matching section based on a multistage control network. To this model we apply the principles of optimal control to formulate techniques aiding in the design of the transport and matching section. Both nonlinear programming and dynamic programming techniques are used in the optimization. These techniques are implemented in a computer-aided design program called SPOT. Examples are presented to demonstrate the procedure and outline the results. (orig.)

  11. SU-E-T-446: Group-Sparsity Based Angle Generation Method for Beam Angle Optimization

    International Nuclear Information System (INIS)

    Gao, H

    2015-01-01

    Purpose: This work is to develop the effective algorithm for beam angle optimization (BAO), with the emphasis on enabling further improvement from existing treatment-dependent templates based on clinical knowledge and experience. Methods: The proposed BAO algorithm utilizes a priori beam angle templates as the initial guess, and iteratively generates angular updates for this initial set, namely angle generation method, with improved dose conformality that is quantitatively measured by the objective function. That is, during each iteration, we select “the test angle” in the initial set, and use group-sparsity based fluence map optimization to identify “the candidate angle” for updating “the test angle”, for which all the angles in the initial set except “the test angle”, namely “the fixed set”, are set free, i.e., with no group-sparsity penalty, and the rest of angles including “the test angle” during this iteration are in “the working set”. And then “the candidate angle” is selected with the smallest objective function value from the angles in “the working set” with locally maximal group sparsity, and replaces “the test angle” if “the fixed set” with “the candidate angle” has a smaller objective function value by solving the standard fluence map optimization (with no group-sparsity regularization). Similarly other angles in the initial set are in turn selected as “the test angle” for angular updates and this chain of updates is iterated until no further new angular update is identified for a full loop. Results: The tests using the MGH public prostate dataset demonstrated the effectiveness of the proposed BAO algorithm. For example, the optimized angular set from the proposed BAO algorithm was better the MGH template. Conclusion: A new BAO algorithm is proposed based on the angle generation method via group sparsity, with improved dose conformality from the given template. Hao Gao was partially supported by the

  12. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    Science.gov (United States)

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. © 2013 Elsevier Ltd. All rights reserved.

  13. Multiobjective optimizations of a novel cryocooled dc gun based ultrafast electron diffraction beam line

    Science.gov (United States)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan

    2016-09-01

    We present the results of multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for three different sample radii: 50, 100, and 200 μ m , for two final bunch charges: 1 05 electrons (16 fC) and 1 06 electrons (160 fC). Example optimal solutions are analyzed, and the effects of disordered induced heating estimated. In particular, a relative coherence length of Lc ,x/σx=0.27 nm /μ m was obtained for a final bunch charge of 1 05 electrons and final bunch length of σt≈100 fs . For a final charge of 1 06 electrons the cryogun produces Lc ,x/σx≈0.1 nm /μ m for σt≈100 - 200 fs and σx≥50 μ m . These results demonstrate the viability of using genetic algorithms in the design and operation of ultrafast electron diffraction beam lines.

  14. Multiobjective optimizations of a novel cryocooled dc gun based ultrafast electron diffraction beam line

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2016-09-01

    Full Text Available We present the results of multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for three different sample radii: 50, 100, and 200  μm, for two final bunch charges: 10^{5} electrons (16 fC and 10^{6} electrons (160 fC. Example optimal solutions are analyzed, and the effects of disordered induced heating estimated. In particular, a relative coherence length of L_{c,x}/σ_{x}=0.27  nm/μm was obtained for a final bunch charge of 10^{5} electrons and final bunch length of σ_{t}≈100  fs. For a final charge of 10^{6} electrons the cryogun produces L_{c,x}/σ_{x}≈0.1  nm/μm for σ_{t}≈100–200  fs and σ_{x}≥50  μm. These results demonstrate the viability of using genetic algorithms in the design and operation of ultrafast electron diffraction beam lines.

  15. A hybrid algorithm for instant optimization of beam weights in anatomy-based intensity modulated radiotherapy: a performance evaluation study

    International Nuclear Information System (INIS)

    Vaitheeswaran, Ranganathan; Sathiya Narayanan, V.K.; Bhangle, Janhavi R.; Nirhali, Amit; Kumar, Namita; Basu, Sumit; Maiya, Vikram

    2011-01-01

    The study aims to introduce a hybrid optimization algorithm for anatomy-based intensity modulated radiotherapy (AB-IMRT). Our proposal is that by integrating an exact optimization algorithm with a heuristic optimization algorithm, the advantages of both the algorithms can be combined, which will lead to an efficient global optimizer solving the problem at a very fast rate. Our hybrid approach combines Gaussian elimination algorithm (exact optimizer) with fast simulated annealing algorithm (a heuristic global optimizer) for the optimization of beam weights in AB-IMRT. The algorithm has been implemented using MATLAB software. The optimization efficiency of the hybrid algorithm is clarified by (i) analysis of the numerical characteristics of the algorithm and (ii) analysis of the clinical capabilities of the algorithm. The numerical and clinical characteristics of the hybrid algorithm are compared with Gaussian elimination method (GEM) and fast simulated annealing (FSA). The numerical characteristics include convergence, consistency, number of iterations and overall optimization speed, which were analyzed for the respective cases of 8 patients. The clinical capabilities of the hybrid algorithm are demonstrated in cases of (a) prostate and (b) brain. The analyses reveal that (i) the convergence speed of the hybrid algorithm is approximately three times higher than that of FSA algorithm (ii) the convergence (percentage reduction in the cost function) in hybrid algorithm is about 20% improved as compared to that in GEM algorithm (iii) the hybrid algorithm is capable of producing relatively better treatment plans in terms of Conformity Index (CI) (∼ 2% - 5% improvement) and Homogeneity Index (HI) (∼ 4% - 10% improvement) as compared to GEM and FSA algorithms (iv) the sparing of organs at risk in hybrid algorithm-based plans is better than that in GEM-based plans and comparable to that in FSA-based plans; and (v) the beam weights resulting from the hybrid algorithm are

  16. Performance evaluation of an algorithm for fast optimization of beam weights in anatomy-based intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Ranganathan, Vaitheeswaran; Sathiya Narayanan, V.K.; Bhangle, Janhavi R.; Gupta, Kamlesh K.; Basu, Sumit; Maiya, Vikram; Joseph, Jolly; Nirhali, Amit

    2010-01-01

    This study aims to evaluate the performance of a new algorithm for optimization of beam weights in anatomy-based intensity modulated radiotherapy (IMRT). The algorithm uses a numerical technique called Gaussian-Elimination that derives the optimum beam weights in an exact or non-iterative way. The distinct feature of the algorithm is that it takes only fraction of a second to optimize the beam weights, irrespective of the complexity of the given case. The algorithm has been implemented using MATLAB with a Graphical User Interface (GUI) option for convenient specification of dose constraints and penalties to different structures. We have tested the numerical and clinical capabilities of the proposed algorithm in several patient cases in comparison with KonRad inverse planning system. The comparative analysis shows that the algorithm can generate anatomy-based IMRT plans with about 50% reduction in number of MUs and 60% reduction in number of apertures, while producing dose distribution comparable to that of beamlet-based IMRT plans. Hence, it is clearly evident from the study that the proposed algorithm can be effectively used for clinical applications. (author)

  17. Performance evaluation of an algorithm for fast optimization of beam weights in anatomy-based intensity modulated radiotherapy

    Directory of Open Access Journals (Sweden)

    Ranganathan Vaitheeswaran

    2010-01-01

    Full Text Available This study aims to evaluate the performance of a new algorithm for optimization of beam weights in anatomy-based intensity modulated radiotherapy (IMRT. The algorithm uses a numerical technique called Gaussian-Elimination that derives the optimum beam weights in an exact or non-iterative way. The distinct feature of the algorithm is that it takes only fraction of a second to optimize the beam weights, irrespective of the complexity of the given case. The algorithm has been implemented using MATLAB with a Graphical User Interface (GUI option for convenient specification of dose constraints and penalties to different structures. We have tested the numerical and clinical capabilities of the proposed algorithm in several patient cases in comparison with KonRad® inverse planning system. The comparative analysis shows that the algorithm can generate anatomy-based IMRT plans with about 50% reduction in number of MUs and 60% reduction in number of apertures, while producing dose distribution comparable to that of beamlet-based IMRT plans. Hence, it is clearly evident from the study that the proposed algorithm can be effectively used for clinical applications.

  18. Simultaneous optimization of beam orientations, wedge filters and field weights for inverse planning with anatomy-based MLC fields

    International Nuclear Information System (INIS)

    Beaulieu, Frederic; Beaulieu, Luc; Tremblay, Daniel; Roy, Rene

    2004-01-01

    As an alternative between manual planning and beamlet-based IMRT, we have developed an optimization system for inverse planning with anatomy-based MLC fields. In this system, named Ballista, the orientation (table and gantry), the wedge filter and the field weights are simultaneously optimized for every beam. An interesting feature is that the system is coupled to Pinnacle3 by means of the PinnComm interface, and uses its convolution dose calculation engine. A fully automatic MLC segmentation algorithm is also included. The plan evaluation is based on a quasi-random sampling and on a quadratic objective function with penalty-like constraints. For efficiency, optimal wedge angles and wedge orientations are determined using the concept of the super-omni wedge. A bound-constrained quasi-Newton algorithm performs field weight optimization, while a fast simulated annealing algorithm selects the optimal beam orientations. Moreover, in order to generate directly deliverable plans, the following practical considerations have been incorporated in the system: collision between the gantry and the table as well as avoidance of the radio-opaque elements of a table top. We illustrate the performance of the new system on two patients. In a rhabdomyosarcoma case, the system generated plans improving both the target coverage and the sparing of the parotide, as compared to a manually designed plan. In the second case presented, the system successfully produced an adequate plan for the treatment of the prostate while avoiding both hip prostheses. For the many cases where full IMRT may not be necessary, the system efficiently generates satisfactory plans meeting the clinical objectives, while keeping the treatment verification much simpler

  19. Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT

    Science.gov (United States)

    Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing

    2017-04-01

    The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.

  20. Simultaneous optimization of beam orientations and beam weights in conformal radiotherapy

    International Nuclear Information System (INIS)

    Rowbottom, Carl Graham; Khoo, Vincent S.; Webb, Steve

    2001-01-01

    A methodology for the concurrent optimization of beam orientations and beam weights in conformal radiotherapy treatment planning has been developed and tested on a cohort of five patients. The algorithm is based on a beam-weight optimization scheme with a downhill simplex optimization engine. The use of random voxels in the dose calculation provides much of the required speed up in the optimization process, and allows the simultaneous optimization of beam orientations and beam weights in a reasonable time. In the implementation of the beam-weight optimization algorithm just 10% of the original patient voxels are used for the dose calculation and cost function evaluation. A fast simulated annealing algorithm controls the optimization of the beam arrangement. The optimization algorithm was able to produce clinically acceptable plans for the five patients in the cohort study. The algorithm equalized the dose to the optic nerves compared to the standard plans and reduced the mean dose to the brain stem by an average of 4.4% (±1.9, 1 SD), p value=0.007. The dose distribution to the PTV was not compromised by developing beam arrangements via the optimization algorithm. In conclusion, the simultaneous optimization of beam orientations and beam weights has been developed to be routinely used in a realistic time. The results of optimization in a small cohort study show that the optimization can reliably produce clinically acceptable dose distributions and may be able to improve dose distributions compared to those from a human planner

  1. TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.

    2011-03-28

    Dynamic aperture (DA) optimization with direct particle tracking is a straight forward approach when the computing power is permitted. It can have various realistic errors included and is more close than theoretical estimations. In this approach, a fast and parallel tracking code could be very helpful. In this presentation, we describe an implementation of storage ring particle tracking code TESLA for beam dynamics optimization. It supports MPI based parallel computing and is robust as DA calculation engine. This code has been used in the NSLS-II dynamics optimizations and obtained promising performance.

  2. Optimal beam margins in linac-based VMAT stereotactic ablative body radiotherapy: a Pareto front analysis for liver metastases.

    Science.gov (United States)

    Cilla, Savino; Ianiro, Anna; Deodato, Francesco; Macchia, Gabriella; Digesù, Cinzia; Valentini, Vincenzo; Morganti, Alessio G

    2017-11-27

    We explored the Pareto fronts mathematical strategy to determine the optimal block margin and prescription isodose for stereotactic body radiotherapy (SBRT) treatments of liver metastases using the volumetric-modulated arc therapy (VMAT) technique. Three targets (planning target volumes [PTVs] = 20, 55, and 101 cc) were selected. A single fraction dose of 26 Gy was prescribed (prescription dose [PD]). VMAT plans were generated for 3 different beam energies. Pareto fronts based on (1) different multileaf collimator (MLC) block margin around PTV and (2) different prescription isodose lines (IDL) were produced. For each block margin, the greatest IDL fulfilling the criteria (95% of PTV reached 100%) was considered as providing the optimal clinical plan for PTV coverage. Liver D mean , V7Gy, and V12Gy were used against the PTV coverage to generate the fronts. Gradient indexes (GI and mGI), homogeneity index (HI), and healthy liver irradiation in terms of D mean , V7Gy, and V12Gy were calculated to compare different plans. In addition, each target was also optimized with a full-inverse planning engine to obtain a direct comparison with anatomy-based treatment planning system (TPS) results. About 900 plans were calculated to generate the fronts. GI and mGI show a U-shaped behavior as a function of beam margin with minimal values obtained with a +1 mm MLC margin. For these plans, the IDL ranges from 74% to 86%. GI and mGI show also a V-shaped behavior with respect to HI index, with minimum values at 1 mm for all metrics, independent of tumor dimensions and beam energy. Full-inversed optimized plans reported worse results with respect to Pareto plans. In conclusion, Pareto fronts provide a rigorous strategy to choose clinical optimal plans in SBRT treatments. We show that a 1-mm MLC block margin provides the best results with regard to healthy liver tissue irradiation and steepness of dose fallout. Copyright © 2017 American Association of Medical Dosimetrists

  3. Incorporating prior knowledge into beam orientation optimization in IMRT

    International Nuclear Information System (INIS)

    Pugachev, Andrei M.S.; Lei Xing

    2002-01-01

    Purpose: Selection of beam configuration in currently available intensity-modulated radiotherapy (IMRT) treatment planning systems is still based on trial-and-error search. Computer beam orientation optimization has the potential to improve the situation, but its practical implementation is hindered by the excessive computing time associated with the calculation. The purpose of this work is to provide an effective means to speed up the beam orientation optimization by incorporating a priori geometric and dosimetric knowledge of the system and to demonstrate the utility of the new algorithm for beam placement in IMRT. Methods and Materials: Beam orientation optimization was performed in two steps. First, the quality of each possible beam orientation was evaluated using beam's-eye-view dosimetrics (BEVD) developed in our previous study. A simulated annealing algorithm was then employed to search for the optimal set of beam orientations, taking into account the BEVD scores of different incident beam directions. During the calculation, sampling of gantry angles was weighted according to the BEVD score computed before the optimization. A beam direction with a higher BEVD score had a higher probability of being included in the trial configuration, and vice versa. The inclusion of the BEVD weighting in the stochastic beam angle sampling process made it possible to avoid spending valuable computing time unnecessarily at 'bad' beam angles. An iterative inverse treatment planning algorithm was used for beam intensity profile optimization during the optimization process. The BEVD-guided beam orientation optimization was applied to an IMRT treatment of paraspinal tumor. The advantage of the new optimization algorithm was demonstrated by comparing the calculation with the conventional scheme without the BEVD weighting in the beam sampling. Results: The BEVD tool provided useful guidance for the selection of the potentially good directions for the beams to incident and was used

  4. A Study on Optimized Neutron Beam Generation by Analysis of Neutron Angular Distribution from 7Li(p,n)7Be Reaction for Accelerator-Based BNCT

    International Nuclear Information System (INIS)

    Kim, Kyung O

    2008-02-01

    Perpendicular neutrons (i.e., solid angle bin of 50-150 .deg. ) among ones generated from 7 Li(p,n) 7 Be reaction, which are focused on the relative low energy regions, was used to produce optimized epithermal neutron beam for Accelerator-based BNCT. By this time, most of the studies for generating the therapeutic neutron beam have used the neutrons emitted to the collinear with the incoming proton. However, it is very difficult to produce the high quantity of epithermal neutrons due to the relative high energy neutrons to be used. In this study, it was found that perpendicular neutrons (solid angle 50-150 .deg. ) include about two times as many neutrons in the energy range of 100 - 300 keV as the existing studies. In particular, epithermal neutron beam from the dual beam port assembly was simulated by MCNPX: this assembly was designed for using the neutrons in optimized neutron angle bin (solid angle 50-150 .deg. ). As the results of the IAEA recommendations for all parameters, and moderation length could be reduced. The advantage depth (AD) and dose rate in the mathematical phantom are calculated to evaluate the dosimetric characterization of the designed epithermal neutron beams. It was recognized that the tumor positioned at the maximum depth of 70 mm from skin could be treated, and tumor at 60 mm depth is approximately taken with only a treatment of a few minutes by using the beam from the dual beam port assembly. It is therefore expected that the neutrons emitted into the solid angle bin of 50 - 150 .deg. from 7 Li(p,n) 7 Be reaction are very effective to produce epithermal neutron beam for BNCT. The new dual beam port assembly which is possible to generate the therapeutic neutron beam satisfies with the IAEA recommendations at each beam port and can be used for reference study of epithermal neutron beam design

  5. Optimal beam forming for laser beam propagation through random media

    Science.gov (United States)

    Liu, Baoyong

    Focusing optical beams on a target through random propagation media is very important in many applications such as free space optical communications and laser weapons. Random media effects such as beam spread and scintillation can degrade the optical system's performance severely. Compensation schemes are needed in these applications to overcome these random media effects. In this research, we investigated the optimal beams for two different optimization criteria: one is to maximize the concentrated received intensity and the other is to minimize the scintillation index at the target plane. In the study of the optimal beam to maximize the weighted integrated intensity, we derive a similarity relationship between pupil-plane phase screen and extended Huygens-Fresnel model, and demonstrate the limited utility of maximizing the average integrated intensity. In the study of the optimal beam to minimize the scintillation index, we derive the first- and second-order moments for the integrated intensity of multiple coherent modes. Hermite-Gaussian and Laguerre-Gaussian modes are used as the coherent modes to synthesize an optimal partially coherent beam. The optimal beams demonstrate evident reduction of scintillation index, and prove to be insensitive to the aperture averaging effect.

  6. Design Optimization of Reinforced Concrete Beams

    Science.gov (United States)

    Chutani, Sonia; Singh, Jagbir

    2017-12-01

    This work presents a typical optimization technique i.e. Particle Swarm Optimization (PSO) to achieve optimal design of Reinforced Concrete (RC) beams. Optimal cross-sectional sizing of an RC beam results in cost saving, but it (optimal sizing) cannot be standardized for the various factors that influence a given design. An algorithm has been developed to search for a minimum cost solution that satisfies Indian codal requirements for RC beams. The objective function consists of the cost of concrete and rebars as prevalent at the place of construction. Successful implementation of the algorithm clearly establishes PSO's ability of performance in the case of RC beams. A number of examples have been presented to show the effectiveness of this formulation for achieving optimal design.

  7. Automated beam steering using optimal control

    Energy Technology Data Exchange (ETDEWEB)

    Allen, C. K. (Christopher K.)

    2004-01-01

    We present a steering algorithm which, with the aid of a model, allows the user to specify beam behavior throughout a beamline, rather than just at specified beam position monitor (BPM) locations. The model is used primarily to compute the values of the beam phase vectors from BPM measurements, and to define cost functions that describe the steering objectives. The steering problem is formulated as constrained optimization problem; however, by applying optimal control theory we can reduce it to an unconstrained optimization whose dimension is the number of control signals.

  8. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    Science.gov (United States)

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  9. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Rahman WN

    2014-05-01

    .47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects of gold nanoparticles with ionizing radiation.Keywords: gold nanoparticles, radiotherapy, monoenergetic synchrotron radiation, radiosensitizers, in vitro

  10. Uncertainty incorporated beam angle optimization for IMPT treatment planning.

    Science.gov (United States)

    Cao, Wenhua; Lim, Gino J; Lee, Andrew; Li, Yupeng; Liu, Wei; Ronald Zhu, X; Zhang, Xiaodong

    2012-08-01

    Beam angle optimization (BAO) by far remains an important and challenging problem in external beam radiation therapy treatment planning. Conventional BAO algorithms discussed in previous studies all focused on photon-based therapies. Impact of BAO on proton therapy is important while proton therapy increasingly receives great interests. This study focuses on potential benefits of BAO on intensity-modulated proton therapy (IMPT) that recently began available to clinical cancer treatment. The authors have developed a novel uncertainty incorporated BAO algorithm for IMPT treatment planning in that IMPT plan quality is highly sensitive to uncertainties such as proton range and setup errors. A linear programming was used to optimize robust intensity maps to scenario-based uncertainties for an incident beam angle configuration. Unlike conventional intensity-modulated radiation therapy with photons (IMXT), the search space for IMPT treatment beam angles may be relatively small but optimizing an IMPT plan may require higher computational costs due to larger data size. Therefore, a deterministic local neighborhood search algorithm that only needs a very limited number of plan objective evaluations was used to optimize beam angles in IMPT treatment planning. Three prostate cancer cases and two skull base chordoma cases were studied to demonstrate the dosimetric advantages and robustness of optimized beam angles from the proposed BAO algorithm. Two- to four-beam plans were optimized for prostate cases, and two- and three-beam plans were optimized for skull base cases. By comparing plans with conventional two parallel-opposed angles, all plans with optimized angles consistently improved sparing at organs at risks, i.e., rectum and femoral heads for prostate, brainstem for skull base, in either nominal dose distribution or uncertainty-based dose distributions. The efficiency of the BAO algorithm was demonstrated by comparing it with alternative methods including simulated

  11. Optimization method for electron beam melting and refining of metals

    Science.gov (United States)

    Donchev, Veliko; Vutova, Katia

    2014-03-01

    Pure metals and special alloys obtained by electron beam melting and refining (EBMR) in vacuum, using electron beams as a heating source, have a lot of applications in nuclear and airspace industries, electronics, medicine, etc. An analytical optimization problem for the EBMR process based on mathematical heat model is proposed. The used criterion is integral functional minimization of a partial derivative of the temperature in the metal sample. The investigated technological parameters are the electron beam power, beam radius, the metal casting velocity, etc. The optimization problem is discretized using a non-stationary heat model and corresponding adapted Pismen-Rekford numerical scheme, developed by us and multidimensional trapezional rule. Thus a discrete optimization problem is built where the criterion is a function of technological process parameters. The discrete optimization problem is heuristically solved by cluster optimization method. Corresponding software for the optimization task is developed. The proposed optimization scheme can be applied for quality improvement of the pure metals (Ta, Ti, Cu, etc.) produced by the modern and ecological-friendly EBMR process.

  12. Optimization and evaluation of multiple gating beam delivery in a synchrotron-based proton beam scanning system using a real-time imaging technique.

    Science.gov (United States)

    Yamada, Takahiro; Miyamoto, Naoki; Matsuura, Taeko; Takao, Seishin; Fujii, Yusuke; Matsuzaki, Yuka; Koyano, Hidenori; Umezawa, Masumi; Nihongi, Hideaki; Shimizu, Shinichi; Shirato, Hiroki; Umegaki, Kikuo

    2016-07-01

    To find the optimum parameter of a new beam control function installed in a synchrotron-based proton therapy system. A function enabling multiple gated irradiation in the flat top phase has been installed in a real-time-image gated proton beam therapy (RGPT) system. This function is realized by a waiting timer that monitors the elapsed time from the last gate-off signal in the flat top phase. The gated irradiation efficiency depends on the timer value, Tw. To find the optimum Tw value, gated irradiation efficiency was evaluated for each configurable Tw value. 271 gate signal data sets from 58 patients were used for the simulation. The highest mean efficiency 0.52 was obtained in TW=0.2s. The irradiation efficiency was approximately 21% higher than at TW=0s, which corresponds to ordinary synchrotron operation. The irradiation efficiency was improved in 154 (57%) of the 271 cases. The irradiation efficiency was reduced in 117 cases because the TW value was insufficient or the function introduced an unutilized wait time for the next gate-on signal in the flat top phase. In the actual treatment of a patient with a hepatic tumor at Tw=0.2s, 4.48GyE irradiation was completed within 250s. In contrast, the treatment time of ordinary synchrotron operation was estimated to be 420s. The results suggest that the multiple gated-irradiation function has potential to improve the gated irradiation efficiency and to reduce the treatment time. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Optimization of the beam shaping assembly in the D-D neutron generators-based BNCT using the response matrix method.

    Science.gov (United States)

    Kasesaz, Y; Khalafi, H; Rahmani, F

    2013-12-01

    Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.

    Science.gov (United States)

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2012-12-01

    A feasibility study was conducted to design a beam shaping assembly for BNCT based on D-T neutron generator. The optimization of this configuration has been realized in different steps. This proposed system consists of metallic uranium as neutron multiplier, TiF(3) and Al(2)O(3) as moderators, Pb as reflector, Ni as shield and Li-Poly as collimator to guide neutrons toward the patient position. The in-air parameters recommended by IAEA were assessed for this proposed configuration without using any filters which enables us to have a high epithermal neutron flux at the beam port. Also a simulated Snyder head phantom was used to evaluate dose profiles due to the irradiation of designed beam. The dose evaluation results and depth-dose curves show that the neutron beam designed in this work is effective for deep-seated brain tumor treatments even with D-T neutron generator with a neutron yield of 2.4×10(12) n/s. The Monte Carlo Code MCNP-4C is used in order to perform these calculations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Distributed Optimization of Multi Beam Directional Communication Networks

    Science.gov (United States)

    2017-06-30

    Distributed Optimization of Multi-Beam Directional Communication Networks Theodoros Tsiligkaridis MIT Lincoln Laboratory Lexington, MA 02141, USA...based routing. I. INTRODUCTION Missions where multiple communication goals are of in- terest are becoming more prevalent in military applications...Multilayer communications may occur within a coalition; for example, a team consisting of ground vehicles and an airborne set of assets may desire to

  16. MULTI-OBJECTIVE ONLINE OPTIMIZATION OF BEAM LIFETIME AT APS

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng

    2017-06-25

    In this paper, online optimization of beam lifetime at the APS (Advanced Photon Source) storage ring is presented. A general genetic algorithm (GA) is developed and employed for some online optimizations in the APS storage ring. Sextupole magnets in 40 sectors of the APS storage ring are employed as variables for the online nonlinear beam dynamics optimization. The algorithm employs several optimization objectives and is designed to run with topup mode or beam current decay mode. Up to 50\\% improvement of beam lifetime is demonstrated, without affecting the transverse beam sizes and other relevant parameters. In some cases, the top-up injection efficiency is also improved.

  17. Beam orientation optimization for intensity-modulated radiation therapy using mixed integer programming

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ruijie [Department of Radiation Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences/Peking Union Medical College, PO Box 2258, Beijing 100021 (China); Dai Jianrong [Department of Radiation Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences/Peking Union Medical College, PO Box 2258, Beijing 100021 (China); Yang Yong [Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232 (United States); Hu Yimin [Department of Radiation Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences/Peking Union Medical College, PO Box 2258, Beijing 100021 (China)

    2006-08-07

    The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10{sup 0} greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.

  18. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    Zimek, Zbigniew; Przybytniak, Grażyna; Nowicki, Andrzej

    2012-01-01

    The computer simulations based on Monte Carlo (MC) method and the ModeCEB software were carried out in connection with electron beam (EB) radiation set-up for crosslinking of electric wire and cable insulation. The theoretical predictions for absorbed dose distribution in irradiated electric insulation induced by scanned EB were compared to the experimental results of irradiation that was carried out in the experimental set-up based on ILU 6 electron accelerator with electron energy 0.5–2.0 MeV. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for various process parameters, namely electric wire and cable geometry (thickness of insulation layers and copper wire diameter), type of polymer insulation, electron energy, energy spread and geometry of electron beam, electric wire and cable layout in irradiation zone. The geometry of electron beam distribution in the irradiation zone was measured using CTA and PVC foil dosimeters for available electron energy range. The temperature rise of the irradiated electric wire and irradiation homogeneity were evaluated for different experimental conditions to optimize technological process parameters. The results of computer simulation are consistent with the experimental data of dose distribution evaluated by gel-fraction measurements. Such conformity indicates that ModeCEB computer simulation is reliable and sufficient for optimization absorbed dose distribution in the multi-layer circular objects irradiated with scanned electron beams. - Highlights: ► We model wire and cables irradiation process by Monte Carlo simulations. ► We optimize irradiation configuration for various process parameters. ► Temperature rise and irradiation homogeneity were evaluated. ► Calculation (dose) and experimental (gel-fraction) results were compared. ► Computer simulation was found reliable and sufficient for process optimization.

  19. Optimal dose reduction algorithm using an attenuation-based tube current modulation method for cone-beam CT imaging.

    Directory of Open Access Journals (Sweden)

    Kihong Son

    Full Text Available To reduce the radiation dose given to patients, a tube current modulation (TCM method has been widely used in diagnostic CT systems. However, the TCM method has not yet been applied to a kV-CBCT system on a LINAC machine. The purpose of this study is to investigate if a TCM method would be desirable in a kV-CBCT system for image-guided radiation therapy (IGRT or not. We have developed an attenuation-based TCM method using prior knowledge from planning CT images of patients. The TCM method can provide optimized dose reductions without degrading image quality for kV-CBCT imaging. Here, we investigate whether or not our suggested TCM method is desirable to use in kV-CBCT systems to confirm and revise the exact position of a patient for IGRT. Patients go through diagnostic CT scans for RT planning; therefore, using information from prior CT images can enable estimations of the total X-ray attenuation through a patient's body in a CBCT setting for radiation treatment. Having this planning CT image allows to use the proposed TCM method in RT. The proposed TCM method provides a minimal amount of current for each projection, as well as total current, required to reconstruct the current modulated CBCT image with an image quality similar to that of CBCT. After applying a calculated TCM current for each projection, projection images were acquired and the current modulated CBCT image was reconstructed using a FDK algorithm. To validate the proposed approach, we used a numerical XCAT phantom and a real ATOM phantom and evaluated the performance of the proposed method via visual and quantitative image quality metrics. The organ dose due to imaging radiation was calculated in both cases and compared using the GATE simulation toolkit. As shown in the quantitative evaluation, normalized noise and SSIM values of the TCM were similar to those of conventional CBCT images. In addition, the proposed TCM method yielded comparable image quality to that of conventional

  20. Optimization of beam orientations and beam weights for conformal radiotherapy using mixed integer programming

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chuang; Dai Jianrong; Hu Yimin [Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, PO Box 2258, Beijing 100021 (China)

    2003-12-21

    An algorithm for optimizing beam orientations and beam weights for conformal radiotherapy has been developed. The algorithm models the optimization of beam orientations and beam weights as a problem of mixed integer linear programming (MILP), and optimizes the beam orientations and beam weights simultaneously. The application process of the algorithm has four steps: (a) prepare a pool of beam orientation candidates with the consideration of avoiding any patient gantry collision and avoiding direct irradiation of organs at risk with quite low tolerances (e.g., eyes). (b) Represent each beam orientation candidate with a binary variable, and each beam weight with a continuous variable. (c) Set up an optimization problem according to dose prescriptions and the maximum allowed number of beam orientations. (d) Solve the optimization problem with a ready-to-use MILP solver. After optimization, the candidates with unity binary variables remain in the final beam configuration. The performance of the algorithm was tested with clinical cases. Compared with standard treatment plans, the beam-orientation-optimized plans had better dose distributions in terms of target coverage and avoidance of critical structures. The optimization processes took less than 1 h on a PC with a Pentium IV 2.4 GHz processor.

  1. Optimization of Natural Frequencies and Sound Power of Beams Using Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Nabeel T. Alshabatat

    2014-01-01

    Full Text Available This paper presents a design method to optimize the material distribution of functionally graded beams with respect to some vibration and acoustic properties. The change of the material distribution through the beam length alters the stiffness and the mass of the beam. This can be used to alter a specific beam natural frequency. It can also be used to reduce the sound power radiated from the vibrating beam. Two novel volume fraction laws are used to describe the material volume distributions through the length of the FGM beam. The proposed method couples the finite element method (for the modal and harmonic analysis, Lumped Parameter Model (for calculating the power of sound radiation, and an optimization technique based on Genetic Algorithm. As a demonstration of this technique, the optimization procedure is applied to maximize the fundamental frequency of FGM cantilever and clamped beams and to minimize the sound radiation from vibrating clamped FGM beam at a specific frequency.

  2. A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning

    International Nuclear Information System (INIS)

    Li Yongjie; Yao Dezhong; Yao, Jonathan; Chen Wufan

    2005-01-01

    Automatic beam angle selection is an important but challenging problem for intensity-modulated radiation therapy (IMRT) planning. Though many efforts have been made, it is still not very satisfactory in clinical IMRT practice because of overextensive computation of the inverse problem. In this paper, a new technique named BASPSO (Beam Angle Selection with a Particle Swarm Optimization algorithm) is presented to improve the efficiency of the beam angle optimization problem. Originally developed as a tool for simulating social behaviour, the particle swarm optimization (PSO) algorithm is a relatively new population-based evolutionary optimization technique first introduced by Kennedy and Eberhart in 1995. In the proposed BASPSO, the beam angles are optimized using PSO by treating each beam configuration as a particle (individual), and the beam intensity maps for each beam configuration are optimized using the conjugate gradient (CG) algorithm. These two optimization processes are implemented iteratively. The performance of each individual is evaluated by a fitness value calculated with a physical objective function. A population of these individuals is evolved by cooperation and competition among the individuals themselves through generations. The optimization results of a simulated case with known optimal beam angles and two clinical cases (a prostate case and a head-and-neck case) show that PSO is valid and efficient and can speed up the beam angle optimization process. Furthermore, the performance comparisons based on the preliminary results indicate that, as a whole, the PSO-based algorithm seems to outperform, or at least compete with, the GA-based algorithm in computation time and robustness. In conclusion, the reported work suggested that the introduced PSO algorithm could act as a new promising solution to the beam angle optimization problem and potentially other optimization problems in IMRT, though further studies need to be investigated

  3. Beam Delivery Simulation: BDSIM - Development & Optimization

    CERN Document Server

    Nevay, Laurence James; Garcia-Morales, H; Gibson, S M; Kwee-Hinzmann, R; Snuverink, J; Deacon, L C

    2014-01-01

    Beam Delivery Simulation (BDSIM) is a Geant4 and C++ based particle tracking code that seamlessly tracks particles through accelerators and detectors, including the full range of particle interaction physics processes from Geant4. BDSIM has been successfully used to model beam loss and background conditions for many current and future linear accelerators such as the Accelerator Test Facility 2 (ATF2) and the International Linear Collider (ILC). Current developments extend its application for use with storage rings, in particular for the Large Hadron Collider (LHC) and the High Luminosity upgrade project (HL-LHC). This paper presents the latest results from using BDSIM to model the LHC as well as the developments underway to improve performance.

  4. Direct Optimization of Printed Reflectarrays for Contoured Beam Satellite Antenna Applications

    DEFF Research Database (Denmark)

    Zhou, Min; Sorensen, Stig B.; Kim, Oleksiy S.

    2013-01-01

    An accurate and efficient direct optimization technique for the design of contoured beam reflectarrays is presented. It is based on the spectral domain method of moments assuming local periodicity and minimax optimization. Contrary to the conventional phase-only optimization techniques, the geome......An accurate and efficient direct optimization technique for the design of contoured beam reflectarrays is presented. It is based on the spectral domain method of moments assuming local periodicity and minimax optimization. Contrary to the conventional phase-only optimization techniques...

  5. Optimization of the tunnel magnetoresistance of CoFeB/ MgO/ CoFeB - based magnetic tunnel junctions (MTJs) with e-beam evaporation barriers

    Energy Technology Data Exchange (ETDEWEB)

    Zbarskyy, Vladyslav; Walter, Marvin; Eilers, Gerrit; Muenzenberg, Markus [I. Physikalisches Institut, Georg-August-Universitaet Goettingen, 37077 Goettingen (Germany); Peretzki, Patrick; Seibt, Michael [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen, 37077 Goettingen (Germany)

    2010-07-01

    The investigation of MTJs with a high tunnel magnetoresistance (TMR) is very important for the production of MRAM devices. All our CoFeB layers are prepared via magnetron sputtering and MgO barriers via e-beam evaporation. We investigate the magnetic switching properties of CoFeB/MgO/CoFeB MTJs with measurements of hysteresis curves - using the magneto-optical Kerr effect - and TMR curves, optimizing the thickness of the CoFeB layers. Another parameter we change to optimize the ferromagnetic CoFeB electrodes is the annealing temperature. Both influence the solid state epitaxy leading to crystallization directly at the MgO/CoFeB interface. The optimization of MgO barrier properties is also necessary for the quality of our devices. In this context we study the TMR behaviour with the variation of the sample temperature during the e-beam evaporation of MgO barrier.

  6. Beam based alignment at LEP

    CERN Document Server

    Dehning, Bernd; Mugnai, G; Reichel, I; Schmidt, R; Sonnemann, F; Tecker, F A

    2004-01-01

    We describe a beam-based method for finding the relative offset between beam position monitors (BPMs) and the magnetic centres of the adjacent quadrupole magnets. The strength of a given quadrupole is modulated and the induced closed orbit oscillation measured for different beam positions, reaching a minimum when the beam is centred in the quadrupole. The BPM reading at this point is a measure of its offset, which may be determined at LEP with an accuracy of ~40x10-6 m.

  7. Optimal coherence for beam propagation through random media

    Science.gov (United States)

    Schulz, Timothy J.; Liu, Baoyong

    2005-08-01

    In this paper we consider the optimal coherence for beam propagation through random media. First, we demonstrate that a beam that maximizes the average receiver intensity is fully coherent, and that the upper bounds on received intensity are nearly attained by a beam that is focused for clear air. Second, we demonstrate that a beam that maximizes the scintillation index (along with other criteria that trade-off the mean and standard deviation for the received intensity) is, in general, partially coherent. We conclude with an example in which modal intensities are optimized for a beam that is constructed from Hermite-Gaussian modes.

  8. Materials for neutron beam optimization for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo

    2001-01-01

    Several prospective materials (neutron filter/moderator, beam reflector, gamma ray shielding and beam collimator) were studied with a view to generating thermal and epithermal neutron beams suited for boron neutron capture therapy (BNCT). The beams are delivered from the thermal and thermalizing column exits situated on two opposite faces of a TRIGA-II type reactor. An investigation was performed with Monte Carlo calculations from a viewpoint of obtaining sufficiently intense thermal and epithermal neutron beams separately, and little adulterated both with neutrons of extraneous energy ranges and with gamma rays. High-density graphite (G) would be the most suitable material for thermal neutron beams as a neutron filter/moderator, and the combination of aluminum (Al) and aluminum fluoride (AlF 3 ) for epithermal neutron beams. The graphite would be also the most promising material for thermal neutron beams as a beam reflector while for epithermal neutron beams the choice would be lead fluoride (PbF 2 ). The PbF 2 would be also the most suitable material for epithermal neutron beams as a gamma ray shielding, and bismuth (Bi) for thermal neutron beam. The PbF 2 would be also the most useful material for epithermal neutron beam as a beam collimator while for thermal neutron beam the choice would be the graphite. The epithermal neutron beam for BNCT could be optimized with the progressive use of PbF 2 . (author)

  9. Optimization of a neutron production target and a beam shaping assembly based on the 7Li( p, n) 7Be reaction for BNCT

    Science.gov (United States)

    Burlon, A. A.; Kreiner, A. J.; Valda, A. A.; Minsky, D. M.; Somacal, H. R.; Debray, M. E.; Stoliar, P.

    2005-02-01

    In this work a thick LiF target was studied through the 7Li( p, n) 7Be reaction as a neutron source for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) to provide a testing ground for numerical simulations aimed at producing an optimized neutron production target and beam shaping assembly design. Proton beams in the 1.88-2.0 MeV energy range were produced with the tandem accelerator TANDAR ( TANDem ARgentino) at the Comisión Nacional de Energía Atómica (CNEA) in Buenos Aires, Argentina. A cylindrical water-filled head-phantom, containing a boric acid sample, was irradiated to study the resulting neutron flux. The dose deposited in the boric acid sample was inferred through the Compton-suppressed detection of the gamma radiation produced from the 10B( n, αγ) 7Li capture reaction. The thermal neutron flux was evaluated using bare and Cd-covered activation gold foils. In all cases, Monte Carlo simulations have been done showing good agreement with the experimental results. Extensive MCNP simulation trials have then been performed after the preliminary calculation tool validation in order to optimize a neutron beam shaping assembly. These simulations include a thick Li metal target (instead of LiF), a whole-body phantom, two different moderator-reflector assemblies (Al/AlF 3/LiF, Fluental ®, as moderator and lead as reflector and a combination of Al, PTFE (polytetrafluoroethylene) and LiF as moderator and lead as reflector) and the treatment room. The doses were evaluated for proton bombarding energies of 1.92 MeV (near to the threshold of the reaction), 2.0 MeV, 2.3 MeV (near the reaction resonance) and 2.5 MeV, and for three Fluental ® and Al/PTFE/LiF moderator thicknesses (18, 26 and 34 cm). In a later instance, the effect of the specific skin radiosensitivity (an RBE of 2.5 for the 10B( n, α) 7Li reaction) and a 10B uptake 50% greater than the healthy tissue one, was considered for the scalp. To evaluate the doses in the phantom, a comparison of

  10. OPTIMIZATION OF A NEUTRON BEAM SHAPING ASSEMBLY DESIGN FOR BNCT AND ITS DOSIMETRY SIMULATION BASED ON MCNPX

    Directory of Open Access Journals (Sweden)

    I Made Ardana

    2017-10-01

    OPTIMASI DESAIN KOLIMATOR NEUTRON UNTUK SISTEM BNCT DAN UJI DOSIMETRINYA MENGGUNAKAN PROGRAM MCNPX. Telah dilakukan penelitian tentang sistem BNCT yang meliputi dua tahapan simulasi dengan menggunakan program MCNPX yaitu uji simulasi untuk optimasi desain kolimator neutron untuk sistem BNCT berbasis Siklotron 30 MeV dan uji simulasi untuk menghitung fluks neutron dan dosimetri radiasi pada kanker sarkoma jaringan lunak pada leher dan kepala. Tujuan simulasi untuk mendapatkan desain kolimator yang paling optimal dalam memoderasi fluks neutron cepat yang dihasilkan dari sistem target berilium sehingga dapat dihasilkan fluks neutron yang sesuai untuk sistem BNCT. Uji optimasi dilakukan dengan cara memvariasikan bahan dan ketebalan masing-masing komponen dalam kolimator seperi reflektor, moderator, filter neutron cepat, filter neutron thermal, filter radiasi gamma dan lubang keluaran. Desain kolimator yang diperoleh dari hasil optimasi tersusun atas moderator berbahan Al dengan ketebalan 39 cm, filter neutron cepat berbahan LiF2 setebal 8,2 cm, dan filter neutron thermal berbahan B4C setebal 0,5 cm. Untuk reflektor, filter radiasi gamma dan lubang keluaran masing-masing menggunakan bahan PbF2, Pb dan Bi. Fluks neutron epithermal yang dihasilkan dari kolimator yang didesain adalah sebesar 2,83 x 109 n/s cm-2 dan telah memenuhi seluruh parameter fluks neutron yang sesuai untuk sistem BNCT. Selanjutnya uji simulasi dosimetri pada kanker sarkoma jaringan lunak pada leher dan kepala dilakukan dengan cara memvariasikan konsentrasi senyawa boron pada model phantom leher manusia (ORNL. Selanjutnya model phantom tersebut diiradiasi dengan fluks neutron yang berasal dari kolimator yang telah didesain sebelumnya. Hasilnya, fluks neutron thermal mencapai nilai tertinggi pada kedalaman 4,8 cm di dalam model phantom leher ORNL dengan laju dosis tertinggi terletak pada area jaringan kanker. Untuk masing-masing variasi konsentrasi senyawa boron pada model phantom leher ORNL supaya

  11. Design and optimization of a beam-shaping assembly (BSA) for BNCT based on a neutron generator located at CEADEN, Havana, Cuba

    International Nuclear Information System (INIS)

    Padilla Cabal, F.; Martin, G.; Abrahantes, A.

    2007-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, i.e. the absorbed dose for healthy tissue and the absorbed tumor dose at a given depth in the brain are used to measure the neutron beam quality. Also irradiation time, therapeutic gain and the power generated in the target are utilized as beam assessment parameters. Moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions 2 H(d;n) 3 He and 3 H(d;n) 4 Hedown to a suitable energy spectrum. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation as well as Fluental TM for the neutron spectrum shifting. A semi spherical target is proposed in order to dissipate twice the amount of power generated in the target, and decrease all the dimensions of the BSA. The cooling system of the target is also included in the calculations. Calculations are performed using the MCNP code. After the optimization of our beam-shaper a study of the dose distribution in the head had been made. The therapeutic gain is increased in 9% while the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT. (Author)

  12. Design and optimization of a beam-shaping assembly (BSA) for BNCT based on a neutron generator located at CEADEN, Havana, Cuba

    International Nuclear Information System (INIS)

    Padilla Cabal, F.; Martin, G; Abrahantes, A.

    2007-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, i.e. the absorbed dose for healthy tissue and the absorbed tumor dose at a given depth in the brain are used to measure the neutron beam quality. Also irradiation time, therapeutic gain and the power generated in the target are utilized as beam assessment parameters. Moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions 2 H(d;n) 3 He and 3 H(d;n) 4 He down to a suitable energy spectrum. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation as well as Fluental TM for the neutron spectrum shifting. A semispherical target is proposed in order to dissipate twice the amount of power generated in the target, and decrease all the dimensions of the BSA. The cooling system of the target is also included in the calculations. Calculations are performed using the MCNP code. After the optimization of our beam-shaper a study of the dose distribution in the head had been made. The therapeutic gain is increased in 9% while the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT. (Author)

  13. Fast optimization and dose calculation in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-01-01

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min

  14. Neutral beam injection optimization at TJ-II

    International Nuclear Information System (INIS)

    Fuentes, C.; Liniers, M.; Wolfers, G.; Alonso, J.; Marcon, G.; Carrasco, R.; Guasp, J.; Acedo, M.; Sanchez, E.; Medrano, M.; Garcia, A.; Doncel, J.; Alejaldre, C.; Tsai, C.C.; Barber, G.; Sparks, D.

    2005-01-01

    Neutral beam injection (NBI) heating has been used on the TJ-II stellarator for the first time. The beam has a port-through power between 200 and 400 kW and injection energy 28 kV. Beam transmission is limited by beam interception at the injection port and the first toroidal field coil, therefore, beam steering optimization is of critical importance. The beam interaction areas inside TJ-II vacuum chamber are surveyed by infrared thermography. Beam reionization can be a problem due to the presence of residual gas in the duct region. Halpha emission is used to monitor the reionization at the duct. A careful optimization of the injected gas has been carried out

  15. SU-D-206-06: Task-Specific Optimization of Scintillator Thickness for CMOS-Detector Based Cone-Beam Breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, S; Shrestha, S; Shi, L; Vijayaraghavan, G; Karellas, A [University of Massachusetts Medical School, Worcester, MA (United States)

    2016-06-15

    Purpose: To optimize the cesium iodide (CsI:Tl) scintillator thickness in a complimentary metal-oxide semiconductor (CMOS)-based detector for use in dedicated cone-beam breast CT. Methods: The imaging task considered was the detection of a microcalcification cluster comprising six 220µm diameter calcium carbonate spheres, arranged in the form of a regular pentagon with 2 mm spacing on its sides and a central calcification, similar to that in ACR-recommended mammography accreditation phantom, at a mean glandular dose of 4.5 mGy. Generalized parallel-cascades based linear systems analysis was used to determine Fourier-domain image quality metrics in reconstructed object space, from which the detectability index inclusive of anatomical noise was determined for a non-prewhitening numerical observer. For 300 projections over 2π, magnification-associated focal-spot blur, Monte Carlo derived x-ray scatter, K-fluorescent emission and reabsorption within CsI:Tl, CsI:Tl quantum efficiency and optical blur, fiberoptic plate transmission efficiency and blur, CMOS quantum efficiency, pixel aperture function and additive noise, and filtered back-projection to isotropic 105µm voxel pitch with bilinear interpolation were modeled. Imaging geometry of a clinical prototype breast CT system, a 60 kV Cu/Al filtered x-ray spectrum from 0.3 mm focal spot incident on a 14 cm diameter semi-ellipsoidal breast were used to determine the detectability index for 300–600 µm thick (75µm increments) CsI:Tl. The CsI:Tl thickness that maximized the detectability index was considered optimal. Results: The limiting resolution (10% modulation transfer function, MTF) progressively decreased with increasing CsI:Tl thickness. The zero-frequency detective quantum efficiency, DQE(0), in projection space increased with increasing CsI:Tl thickness. The maximum detectability index was achieved with 525µm thick CsI:Tl scintillator. Reduced MTF at mid-to-high frequencies for 600µm thick CsI:Tl lowered

  16. QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.

    2005-05-16

    Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.

  17. Beam based systems and controls

    CERN Document Server

    Jacquet, D

    2012-01-01

    This presentation will give a review from the operations team of the performance and issues of the beam based systems, namely RF, ADT, beam instrumentation, controls and injection systems. For each of these systems, statistics on performance and availability will be presented with the main issues encountered in 2012. The possible improvements for operational efficiency and safety will be discussed, with an attempt to answer the question "Are we ready for the new challenges brought by the 25ns beam and increased energy after LSI? ".

  18. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    Zimek, Z.; Przybytniak, G.; Nowicki, A.

    2011-01-01

    Complete text of publication follows. The computer simulations based on Monte Carlo method and the ModeCEB software program were carried out in connection with EB radiation set-up for crosslinking of electrical wire and cable insulation, located at the Center for Radiation Research and Technology of the Institute of Nuclear Chemistry and Technology. The theoretical predictions for absorbed dose distribution in irradiated electrical wire and cable insulation caused by scanned EB were compared to the experimental results of irradiation which were carried out in the experimental set-up based on ILU 6 electron accelerator, which is characterized by the following parameters: Electron energy 0.5-2.0 MeV; Average beam current 40-10 mA, pulse duration 400 μs; Width of scanning up to 80 cm; Scan frequency up to 50 Hz. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for different process parameters; electrical wire and cable geometry (thickness of insulation layers and cupper wire diameter), type of polymer isolation, electron energy, energy spread, geometry of electron beam and electrical wire and cable distribution at irradiation zone. The geometry of electron beam distribution in irradiation zone was measured using TVA and PVC foil dosimeters for electron energy range available in ILU 6 accelerator. The temperature rise of irradiated electrical wire and irradiation homogeneity were evaluated for different experimental conditions to optimize process parameters. The obtained results of computer simulation were supported by experimental data of dose distribution based on gel-fraction measurements. Such agreement indicates that computer simulation ModeCEB is correct and sufficient for modelling of absorbed dose distribution in multi-layer circular objects irradiated with scanned electron beams. Acknowledgement: The R and D activities are supported by the European

  19. Optimization of signal processing algorithm for digital beam position monitor

    International Nuclear Information System (INIS)

    Lai Longwei; Yi Xing; Leng Yongbin; Yan Yingbing; Chen Zhichu

    2013-01-01

    Based on turn-by-turn (TBT) signal processing, the paper emphasizes on the optimization of system timing and implementation of digital automatic gain control, slow application (SA) modules. Beam position including TBT, fast application (FA) and SA data can be acquired. On-line evaluation on Shanghai Synchrotron Radiation Facility (SSRF) shows that the processor is able to get the multi-rate position data which contain true beam movements. When the storage ring is 174 mA and 500 bunches filled, the resolutions of TBT data, FA data and SA data achieve 0.84, 0.44 and 0.23 μm respectively. The above results prove that the design could meet the performance requirements. (authors)

  20. Beam-transport optimization for cold-neutron spectrometer

    Directory of Open Access Journals (Sweden)

    Nakajima Kenji

    2015-01-01

    Full Text Available We report the design of the beam-transport system (especially the vertical geometry for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  1. Beam-Based Procedures for RF Guns

    CERN Document Server

    Krasilnikov, Mikhail; Grabosch, H J; Hartrott, Michael; Hui Han, Jang; Miltchev, Velizar; Oppelt, Anne; Petrosyan, Bagrat; Staykov, Lazar; Stephan, Frank

    2005-01-01

    A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.

  2. Actuator Location and Voltages Optimization for Shape Control of Smart Beams Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Georgios E. Stavroulakis

    2013-10-01

    Full Text Available This paper presents a numerical study on optimal voltages and optimal placement of piezoelectric actuators for shape control of beam structures. A finite element model, based on Timoshenko beam theory, is developed to characterize the behavior of the structure and the actuators. This model accounted for the electromechanical coupling in the entire beam structure, due to the fact that the piezoelectric layers are treated as constituent parts of the entire structural system. A hybrid scheme is presented based on great deluge and genetic algorithm. The hybrid algorithm is implemented to calculate the optimal locations and optimal values of voltages, applied to the piezoelectric actuators glued in the structure, which minimize the error between the achieved and the desired shape. Results from numerical simulations demonstrate the capabilities and efficiency of the developed optimization algorithm in both clamped−free and clamped−clamped beam problems are presented.

  3. Simultaneous optimization of photons and electrons for mixed beam radiotherapy.

    Science.gov (United States)

    Mueller, S; Fix, M K; Joosten, A; Henzen, D; Frei, D; Volken, W; Kueng, R; Aebersold, D M; Stampanoni, M F M; Manser, P

    2017-06-26

    The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.

  4. Simultaneous optimization of photons and electrons for mixed beam radiotherapy

    Science.gov (United States)

    Mueller, S.; Fix, M. K.; Joosten, A.; Henzen, D.; Frei, D.; Volken, W.; Kueng, R.; Aebersold, D. M.; Stampanoni, M. F. M.; Manser, P.

    2017-07-01

    The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.

  5. Optimizing beam transport in rapidly compressing beams on the neutralized drift compression experiment – II

    Directory of Open Access Journals (Sweden)

    Anton D. Stepanov

    2018-03-01

    Full Text Available The Neutralized Drift Compression Experiment-II (NDCX-II is an induction linac that generates intense pulses of 1.2 MeV helium ions for heating matter to extreme conditions. Here, we present recent results on optimizing beam transport. The NDCX-II beamline includes a 1-m-long drift section downstream of the last transport solenoid, which is filled with charge-neutralizing plasma that enables rapid longitudinal compression of an intense ion beam against space-charge forces. The transport section on NDCX-II consists of 28 solenoids. Finding optimal field settings for a group of solenoids requires knowledge of the envelope parameters of the beam. Imaging the beam on the scintillator gives the radius of the beam, but the envelope angle is not measured directly. We demonstrate how the parameters of the beam envelope (radius, envelop angle, and emittance can be reconstructed from a series of images taken by varying the B-field strengths of a solenoid upstream of the scintillator. We use this technique to evaluate emittance at several points in the NDCX-II beamline and for optimizing the trajectory of the beam at the entry of the plasma-filled drift section. Keywords: Charged-particle beams, Induction accelerators, Beam dynamics, Beam emittance, Ion beam diagnostics, PACS Codes: 41.75.-i, 41.85.Ja, 52.59.Sa, 52.59.Wd, 29.27.Eg

  6. Optimization of GATE and PHITS Monte Carlo code parameters for spot scanning proton beam based on simulation with FLUKA general-purpose code

    International Nuclear Information System (INIS)

    Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.

    2016-01-01

    Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm 3 , which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm 3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique

  7. Topological Optimization of Beam Cross Section by Employing Extrusion Constraint

    Science.gov (United States)

    Zuberi, Rehan H.; Zhengxing, Zuo; Kai, Long

    2010-05-01

    Optimal cross-section design of beams plays a characteristic role which signifies the rigidity of the member in bending, shear and torsion load conditions. Practically modern overhead crane girders, railway bridge girders or rail tracks etc. require constant cross-section along the axial direction. Conventional topological optimization modeling procedures in such cases prove inadequate for the reason that these procedures generate non-uniform topologies along the axis of the bending member. To examine optimal topology of those structural bending members which commonly possess constant cross-section along the axis the topology optimization with extrusion constraint is more appropriate. The extrusion constraint method suggests a fresh approach to investigate optimal topologies of beam cross-section under the influence of realistic loading condition across the section at the beginning of design cycle. Presented study is focused upon the influence of various configuration and location of the load and boundary conditions on the topology of the of the beam cross-section which was not possible prior to the materialization of the extrusion or stamping constraint method. Several realistic loads and boundary conditions have been applied on the 3D beam model and optimal cross-section topologies obtained have uniform compliance history and convergent solutions. The lowest compliance criteria have been suggested to choose topologies as furthers shape and size optimization candidates during beam design process.

  8. IRT-Sofia BNCT beam tube optimization study.

    Science.gov (United States)

    Belousov, S; Mitev, M; Ilieva, K; Riley, K; Harling, O

    2011-12-01

    An optimization study of IRT-Sofia BNCT beam tube is presented. In the study we used the MIT/FCB experience. The enlarging of filter/moderator cross section dimensions and the decreasing of collimator length within the limits of the IRT-Sofia reactor design were analyzed. The influence of beam and reactor core axes non-coincidence on the beam properties was also evaluated. The irradiation resistance of polytetrafluoroethylene (Teflon(®)) was also evaluated. The results provide information for making decisions on the IRT-Sofia BNCT beam construction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. SU-E-T-254: Optimization of GATE and PHITS Monte Carlo Code Parameters for Uniform Scanning Proton Beam Based On Simulation with FLUKA General-Purpose Code

    International Nuclear Information System (INIS)

    Kurosu, K; Takashina, M; Koizumi, M; Das, I; Moskvin, V

    2014-01-01

    Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximum step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of Health

  10. Large-scale Optimization of Contoured Beam Reflectors and Reflectarrays

    DEFF Research Database (Denmark)

    Borries, Oscar; Sørensen, Stig B.; Jørgensen, Erik

    2016-01-01

    Designing a contoured beam reflector or performing a direct optimization of a reflectarray requires a mathematical optimization procedure to determine the optimum design of the antenna. A popular approach, used in the market-leading TICRA software POS, can result in computation times on the order...

  11. Optimal Filtering applied to 1998 Test Beam of Module 0

    CERN Document Server

    Camarena, F; Fullana, E

    2002-01-01

    Optimal filtering is an algorithm that allows the reconstruction of energy and time for a photomultiplier multiple sampled signal, minimazing the noise coming from electronics and Minimum Bias events. This is anticipated to be the method used in ATLAS. This note treat upon the application of optimal filtering technic to real data from test beam and the comparison with the method used until now.

  12. Multi-material topology optimization of laminated composite beam cross sections

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Stolpe, Mathias

    2012-01-01

    , penalization, and filtering schemes have been extended to accommodate any number of anisotropic materials. The methodology is applied to the optimal design of several laminated composite beams with different cross sections. Solutions are presented for a minimum compliance (maximum stiffness) problem......This paper presents a novel framework for simultaneous optimization of topology and laminate properties in structural design of laminated composite beam cross sections. The structural response of the beam is evaluated using a beam finite element model comprising a cross section analysis tool which...... is suitable for the analysis of anisotropic and inhomogeneous sections of arbitrary geometry. The optimization framework is based on a multi-material topology optimization model in which the design variables represent the amount of the given materials in the cross section. Existing material interpolation...

  13. Low Dose Cone-Beam CT via Raw Counts Domain Low Signal Correction Schemes: Performance Assessment and Task-Based Parameter Optimization (Part II.Task-based parameter optimization).

    Science.gov (United States)

    Gomez-Cardona, Daniel; Hayes, John; Zhang, Ran; Li, Ke; Cruz-Bastida, Juan Pablo; Chen, Guang-Hong

    2018-03-12

    Different low signal correction (LSC) methods have been shown to efficiently reduce noise streaks and noise level in CT to provide acceptable images at low radiation dose levels. These methods usually result in CT images with highly shift-variant and anisotropic spatial resolution and noise, which makes the parameter optimization process highly nontrivial. The purpose of this work was to develop a local task-based parameter optimization framework for LSC methods. Two well-known LSC methods: the adaptive trimmed mean (ATM) filter and the anisotropic diffusion (AD) filter, were used as examples to demonstrate how to use the task-based framework to optimize filter parameter selection. Two parameters, denoted by the set ρ, for each LSC method were included in the optimization problem. For the ATM filter, these parameters are the low and high signal threshold levels pl and ph; for the AD filter the parameters are the exponents δ and γ in the brightness gradient function. The detectability index d' under the non-prewhitening (NPW) mathematical observer model was selected as the metric for parameter optimization. The optimization problem was formulated as an unconstrained optimization problem that consisted of maximizing an objective function d' i,j (ρ), where i and j correspond to the i-th imaging task and j-th spatial location respectively. Since there is no explicit mathematical function to describe the dependence of d' on the set of parameters ρ for each LSC method, the optimization problem was solved via an experimentally measured d' map over a densely sampled parameter space. In this work three high contrast-high frequency discrimination imaging tasks were defined to explore the parameter space of each of the LSC methods: a vertical bar pattern (task I), a horizontal bar pattern (task II), and a multidirectional feature (task III). Two spatial locations were considered for the analysis, a posterior region-of-interest (ROI) located within the noise streaks

  14. Investigating multi-objective fluence and beam orientation IMRT optimization

    Science.gov (United States)

    Potrebko, Peter S.; Fiege, Jason; Biagioli, Matthew; Poleszczuk, Jan

    2017-07-01

    Radiation Oncology treatment planning requires compromises to be made between clinical objectives that are invariably in conflict. It would be beneficial to have a ‘bird’s-eye-view’ perspective of the full spectrum of treatment plans that represent the possible trade-offs between delivering the intended dose to the planning target volume (PTV) while optimally sparing the organs-at-risk (OARs). In this work, the authors demonstrate Pareto-aware radiotherapy evolutionary treatment optimization (PARETO), a multi-objective tool featuring such bird’s-eye-view functionality, which optimizes fluence patterns and beam angles for intensity-modulated radiation therapy (IMRT) treatment planning. The problem of IMRT treatment plan optimization is managed as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. To achieve this, PARETO is built around a powerful multi-objective evolutionary algorithm, called Ferret, which simultaneously optimizes multiple fitness functions that encode the attributes of the desired dose distribution for the PTV and OARs. The graphical interfaces within PARETO provide useful information such as: the convergence behavior during optimization, trade-off plots between the competing objectives, and a graphical representation of the optimal solution database allowing for the rapid exploration of treatment plan quality through the evaluation of dose-volume histograms and isodose distributions. PARETO was evaluated for two relatively complex clinical cases, a paranasal sinus and a pancreas case. The end result of each PARETO run was a database of optimal (non-dominated) treatment plans that demonstrated trade-offs between the OAR and PTV fitness functions, which were all equally good in the Pareto-optimal sense (where no one objective can be improved without worsening at least one other). Ferret was able to produce high quality solutions even though a large number of parameters

  15. An optimized nanoparticle separator enabled by electron beam induced deposition

    International Nuclear Information System (INIS)

    Fowlkes, J D; Rack, P D; Doktycz, M J

    2010-01-01

    Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism for depositing/etching nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam-interaction region. Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub-50 nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular-sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects) and (2) preserved the fidelity of the spacing between nanopillars (which maximizes the size-based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.

  16. Phase optimization of a multimode fiber laser beam with SPGD algorithm

    Science.gov (United States)

    Zhang, Chi; Liu, Wenguang; Zhou, Qiong

    2017-05-01

    Compared with single-mode laser, multimode fiber laser can achieve higher output power. But with distorted phase distribution, the beam quality of multimode laser is poor. To improve the beam quality of multimode laser, phase optimization of multimode laser based on the stochastic parallel gradient descent (SPGD) algorithm is presented in this paper. To realize the phase control of beam, a multiple pixels screen used as phase correction device is added in the output light path. In the SPGD algorithm, the pixels of phase correction screen are regarded as the controlled variables, power in the bucket (PIB) of the far field is used as the evaluation function. By changing the phase modulation of each pixel, the optimal PIB is obtained by this algorithm, and the beam quality is improved. The optimization of high-order mode beam and multimode beam are calculated respectively. The multimode beam includes two modes: TEM00 and TEM21 and the proportion of output power is 1:1. The results show that the PIB of the single high-order mode beam is improved from 0.02 to 0.70 after 30000 times iteration., the multimode laser is improved from 0.02 to 0.40 after 20000 times iteration. According to the result, parameters of the algorithm are adjusted to improve efficiency and practicability.

  17. Agent-Based Optimization

    CERN Document Server

    Jędrzejowicz, Piotr; Kacprzyk, Janusz

    2013-01-01

    This volume presents a collection of original research works by leading specialists focusing on novel and promising approaches in which the multi-agent system paradigm is used to support, enhance or replace traditional approaches to solving difficult optimization problems. The editors have invited several well-known specialists to present their solutions, tools, and models falling under the common denominator of the agent-based optimization. The book consists of eight chapters covering examples of application of the multi-agent paradigm and respective customized tools to solve  difficult optimization problems arising in different areas such as machine learning, scheduling, transportation and, more generally, distributed and cooperative problem solving.

  18. Simulation Studies of Beam-Beam Effects of a Ring-Ring Electron-Ion Collider Based on CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Yuhong Zhang,Ji Qiang

    2009-05-01

    The collective beam-beam effect can potentially cause a rapid growth of beam sizes and reduce the luminosity of a collider to an unacceptably low level. The ELIC, a proposed ultra high luminosity electron-ion collider based on CEBAF, employs high repetition rate crab crossing colliding beams with very small bunch transverse sizes and very short bunch lengths, and collides them at up to 4 interaction points with strong final focusing. All of these features can make the beam-beam effect challenging. In this paper, we present simulation studies of the beam-beam effect in ELIC using a self-consistent strong-strong beam-beam simulation code developed at Lawrence Berkeley National Laboratory. This simulation study is used for validating the ELIC design and for searching for an optimal parameter set.

  19. Beam optics optimization of a negative-ion sputter source

    Indian Academy of Sciences (India)

    795–804. Beam optics optimization of a negative-ion sputter source. F OSSWALD£ and R REBMEISTER. Institut de Recherches Subatomiques, UMR 7500 CNRS-IN2P3/ULP, BP 28,. 67037 Strasbourg Cedex 2, France. £Email: francis.osswald@ires.in2p3.fr. Abstract. A negative-ion sputter source has been studied in order ...

  20. SU-F-T-195: Systematic Constraining of Contralateral Parotid Gland Led to Improved Dosimetric Outcomes for Multi-Field Optimization with Scanning Beam Proton Therapy: Promising Results From a Pilot Study in Patients with Base of Tongue Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R; Liu, A; Poenisch, F; Palmer, M; Gillin, M; Zhu, X [Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States); Crowford, C; Georges, R; Amin, M [Department of Medical Dosimetry, MD Anderson Cancer Ctr, Houston, TX (United States); Sio, T; Gunn, B; Frank, S [Radiation Oncology Department MD Anderson Cancer Ctr, Houston, TX (United States)

    2016-06-15

    Purpose: Treatment planning for Intensity Modulated Proton Therapy (IMPT) for head and neck cancer is time-consuming due to the large number of organs-at-risk (OAR) to be considered. As there are many competing objectives and also wide range of acceptable OAR constraints, the final approved plan may not be most optimal for the given structures. We evaluated the dose reduction to the contralateral parotid by implementing standardized constraints during optimization for scanning beam proton therapy planning. Methods: Twenty-four (24) consecutive patients previously treated for base of tongue carcinoma were retrospectively selected. The doses were 70Gy, 63Gy and 57Gy (SIB in 33 fractions) for high-, intermediate-, and standard-risk clinical target volumes (CTV), respectively; the treatment included bilateral neck. Scanning beams using MFO with standardized bilateral anterior oblique and PA fields were applied. New plans where then developed and optimized by employing additional contralateral parotid constraints at multiple defined dose levels. Using a step-wise iterative process, the volume-based constraints at each level were then further reduced until known target coverages were compromised. The newly developed plans were then compared to the original clinically approved plans using paired student t-testing. Results: All 24 newly optimized treatment plans maintained initial plan quality as compared to the approved plans, and the 98% prescription dose coverage to the CTV’s were not compromised. Representative DVH comparison is shown in FIGURE 1. The contralateral parotid doses were reduced at all levels of interest when systematic constraints were applied to V10, V20, V30 and V40Gy (All P<0.0001; TABLE 1). Overall, the mean contralateral parotid doses were reduced by 2.26 Gy on average, a ∼13% relative improvement. Conclusion: Applying systematic and volume-based contralateral parotid constraints for IMPT planning significantly reduced the dose at all dosimetric

  1. SU-F-T-195: Systematic Constraining of Contralateral Parotid Gland Led to Improved Dosimetric Outcomes for Multi-Field Optimization with Scanning Beam Proton Therapy: Promising Results From a Pilot Study in Patients with Base of Tongue Carcinoma

    International Nuclear Information System (INIS)

    Wu, R; Liu, A; Poenisch, F; Palmer, M; Gillin, M; Zhu, X; Crowford, C; Georges, R; Amin, M; Sio, T; Gunn, B; Frank, S

    2016-01-01

    Purpose: Treatment planning for Intensity Modulated Proton Therapy (IMPT) for head and neck cancer is time-consuming due to the large number of organs-at-risk (OAR) to be considered. As there are many competing objectives and also wide range of acceptable OAR constraints, the final approved plan may not be most optimal for the given structures. We evaluated the dose reduction to the contralateral parotid by implementing standardized constraints during optimization for scanning beam proton therapy planning. Methods: Twenty-four (24) consecutive patients previously treated for base of tongue carcinoma were retrospectively selected. The doses were 70Gy, 63Gy and 57Gy (SIB in 33 fractions) for high-, intermediate-, and standard-risk clinical target volumes (CTV), respectively; the treatment included bilateral neck. Scanning beams using MFO with standardized bilateral anterior oblique and PA fields were applied. New plans where then developed and optimized by employing additional contralateral parotid constraints at multiple defined dose levels. Using a step-wise iterative process, the volume-based constraints at each level were then further reduced until known target coverages were compromised. The newly developed plans were then compared to the original clinically approved plans using paired student t-testing. Results: All 24 newly optimized treatment plans maintained initial plan quality as compared to the approved plans, and the 98% prescription dose coverage to the CTV’s were not compromised. Representative DVH comparison is shown in FIGURE 1. The contralateral parotid doses were reduced at all levels of interest when systematic constraints were applied to V10, V20, V30 and V40Gy (All P<0.0001; TABLE 1). Overall, the mean contralateral parotid doses were reduced by 2.26 Gy on average, a ∼13% relative improvement. Conclusion: Applying systematic and volume-based contralateral parotid constraints for IMPT planning significantly reduced the dose at all dosimetric

  2. Automatic learning-based beam angle selection for thoracic IMRT.

    Science.gov (United States)

    Amit, Guy; Purdie, Thomas G; Levinshtein, Alex; Hope, Andrew J; Lindsay, Patricia; Marshall, Andrea; Jaffray, David A; Pekar, Vladimir

    2015-04-01

    The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose-volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner's clinical experience. The purpose of this work is to propose and study a computationally efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume coverage and organ at risk

  3. Numerical optimization of piezolaminated beams under static and dynamic excitations

    Directory of Open Access Journals (Sweden)

    Rajan L. Wankhade

    2017-06-01

    Full Text Available Shape and vibration controls of smart structures in structural applications have gained much attraction due to their ability of actuation and sensing. The response of structure to bending, vibration, and buckling can be controlled by the use of this ability of a piezoelectric material. In the present work, the static and dynamic control of smart piezolaminated beams is presented. The optimal locations of piezoelectric patches are found out and then a detailed analysis is performed using finite element modeling considering the higher order shear deformation theory. In the first part, for an extension mode, the piezolaminated beam with stacking sequence PZT5/Al/PZT5 is considered. The length of the beam is 100 mm, whereas the thickness of an aluminum core is 16 mm and that of the piezo layer is of 1 mm. The PZT actuators are positioned with an identical poling direction along the thickness and are excited by a direct current voltage of 10 V. For the shear mode, the stacking sequence Al/PZT5/Al is adopted. The length of the beam is kept the same as the extension mechanism i.e. 100 mm, whereas the thickness of the aluminum core is 8 mm and that of the piezo layer is of 2 mm. The actuator is excited by a direct current voltage of 20 V. In the second part, the control of the piezolaminated beam with an optimal location of the actuator is investigated under a dynamic excitation. Electromechanical loading is considered in the finite element formulation for the analysis purpose. Results are provided for beams with different boundary conditions and loading for future references. Both the extension and shear actuation mechanisms are employed for the piezolaminated beam. These results may be used to identify the response of a beam under static and dynamic excitations. From the present work, the optimal location of a piezoelectric patch can be easily identified for the corresponding boundary condition of the beam.

  4. Ultra-fast fluence optimization for beam angle selection algorithms

    Science.gov (United States)

    Bangert, M.; Ziegenhein, P.; Oelfke, U.

    2014-03-01

    Beam angle selection (BAS) including fluence optimization (FO) is among the most extensive computational tasks in radiotherapy. Precomputed dose influence data (DID) of all considered beam orientations (up to 100 GB for complex cases) has to be handled in the main memory and repeated FOs are required for different beam ensembles. In this paper, the authors describe concepts accelerating FO for BAS algorithms using off-the-shelf multiprocessor workstations. The FO runtime is not dominated by the arithmetic load of the CPUs but by the transportation of DID from the RAM to the CPUs. On multiprocessor workstations, however, the speed of data transportation from the main memory to the CPUs is non-uniform across the RAM; every CPU has a dedicated memory location (node) with minimum access time. We apply a thread node binding strategy to ensure that CPUs only access DID from their preferred node. Ideal load balancing for arbitrary beam ensembles is guaranteed by distributing the DID of every candidate beam equally to all nodes. Furthermore we use a custom sorting scheme of the DID to minimize the overall data transportation. The framework is implemented on an AMD Opteron workstation. One FO iteration comprising dose, objective function, and gradient calculation takes between 0.010 s (9 beams, skull, 0.23 GB DID) and 0.070 s (9 beams, abdomen, 1.50 GB DID). Our overall FO time is < 1 s for small cases, larger cases take ~ 4 s. BAS runs including FOs for 1000 different beam ensembles take ~ 15-70 min, depending on the treatment site. This enables an efficient clinical evaluation of different BAS algorithms.

  5. Ultra-fast fluence optimization for beam angle selection algorithms

    International Nuclear Information System (INIS)

    Bangert, M; Ziegenhein, P; Oelfke, U

    2014-01-01

    Beam angle selection (BAS) including fluence optimization (FO) is among the most extensive computational tasks in radiotherapy. Precomputed dose influence data (DID) of all considered beam orientations (up to 100 GB for complex cases) has to be handled in the main memory and repeated FOs are required for different beam ensembles. In this paper, the authors describe concepts accelerating FO for BAS algorithms using off-the-shelf multiprocessor workstations. The FO runtime is not dominated by the arithmetic load of the CPUs but by the transportation of DID from the RAM to the CPUs. On multiprocessor workstations, however, the speed of data transportation from the main memory to the CPUs is non-uniform across the RAM; every CPU has a dedicated memory location (node) with minimum access time. We apply a thread node binding strategy to ensure that CPUs only access DID from their preferred node. Ideal load balancing for arbitrary beam ensembles is guaranteed by distributing the DID of every candidate beam equally to all nodes. Furthermore we use a custom sorting scheme of the DID to minimize the overall data transportation. The framework is implemented on an AMD Opteron workstation. One FO iteration comprising dose, objective function, and gradient calculation takes between 0.010 s (9 beams, skull, 0.23 GB DID) and 0.070 s (9 beams, abdomen, 1.50 GB DID). Our overall FO time is < 1 s for small cases, larger cases take ∼ 4 s. BAS runs including FOs for 1000 different beam ensembles take ∼ 15–70 min, depending on the treatment site. This enables an efficient clinical evaluation of different BAS algorithms.

  6. BEAM OPTIMIZATION STUDY FOR AN X-RAY FEL OSCILLATOR AT THE LCLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Weilun; Huang, S.; Liu, K.X.; Huang, Z; Ding, Y.; Maxwell, T.J.; Kim, K.-J.

    2016-06-01

    The 4 GeV LCLS-II superconducting linac with high repetition beam rate enables the possibility to drive an X-Ray FEL oscillator at harmonic frequencies *. Compared to the regular LCLS-II machine setup, the oscillator mode requires a much longer bunch length with a relatively lower current. Also a flat longitudinal phase space distribution is critical to maintain the FEL gain since the X-ray cavity has extremely narrow bandwidth. In this paper, we study the longitudinal phase space optimization including shaping the initial beam from the injector and optimizing the bunch compressor and dechirper parameters. We obtain a bunch with a flat energy chirp over 400 fs in the core part with current above 100 A. The optimization was based on LiTrack and Elegant simulations using LCLS-II beam parameters.

  7. Thermo-mechanical simulation and parameters optimization for beam blank continuous casting

    International Nuclear Information System (INIS)

    Chen, W.; Zhang, Y.Z.; Zhang, C.J.; Zhu, L.G.; Lu, W.G.; Wang, B.X.; Ma, J.H.

    2009-01-01

    The objective of this work is to optimize the process parameters of beam blank continuous casting in order to ensure high quality and productivity. A transient thermo-mechanical finite element model is developed to compute the temperature and stress profile in beam blank continuous casting. By comparing the calculated data with the metallurgical constraints, the key factors causing defects of beam blank can be found out. Then based on the subproblem approximation method, an optimization program is developed to search out the optimum cooling parameters. Those optimum parameters can make it possible to run the caster at its maximum productivity, minimum cost and to reduce the defects. Now, online verifying of this optimization project has been put in practice, which can prove that it is very useful to control the actual production

  8. Proton-beam writing channel based on an electrostatic accelerator

    Science.gov (United States)

    Lapin, A. S.; Rebrov, V. A.; Kolin'ko, S. V.; Salivon, V. F.; Ponomarev, A. G.

    2016-09-01

    We have described the structure of the proton-beam writing channel as a continuation of a nuclear scanning microprobe channel. The problem of the accuracy of positioning a probe by constructing a new high-frequency electrostatic scanning system has been solved. Special attention has been paid to designing the probe-forming system and its various configurations have been considered. The probe-forming system that best corresponds to the conditions of the lithographic process has been found based on solving the problem of optimizing proton beam formation. A system for controlling beam scanning using multifunctional module of integrated programmable logic systems has been developed.

  9. The SPL-based Neutrino Super Beam

    CERN Document Server

    Baussan, E; Bobeth, C; Bouquerel, E; Caretta, O; Cupial, P; Davenne, T; Densham, C; Dracos, M; Fitton, M; Gaudiot, G; Kozien, M; Lacny, L; Lepers, B; Longhin, A; Loveridge, P; Osswald, F; Poussot, P; Rooney, M; Skoczen, B; Szybinski, B; Ustrzycka, A; Vassilopoulos, N; Wilcox, D; Wroblewski, A; Wurtz, J; Zeter, V; Zito, M

    2012-01-01

    The EUROnu Super Beam work package has studied a neutrino beam based on SPL at CERN and aimed at MEMPHYS, a large water Cherenkov detector, proposed for the Laboratoire Souterrain de Modane (Fr\\'ejus tunnel, France), with a baseline of 130 km. The aim of this proposed experiment is to study the CP violation in the neutrino sector. In the study reported here, we have developed the conceptual design of the neutrino beam, especially the target and the magnetic focusing device. Indeed, this beam present several unprecedented challenges, like the high primary proton beam power (4 MW), the high repetition rate (50 Hz) and the low energy of the protons (4.5 GeV). The design is completed by a study of all the main component of the system, starting from the transport system to guide the beam to the target up to the beam dump.

  10. Optimization of a constrained linear monochromator design for neutral atom beams.

    Science.gov (United States)

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Active Nozzle Control and Integrated Design Optimization of a Beam Subject to Fluid-Dynamic Forces

    Science.gov (United States)

    Borglund, D.

    1999-02-01

    Active nozzle control is used to improve the stability of a beam subject to forces induced by fluid flow through attached pipes. The control system has a significant effect on the structural stability, making both flutter and divergence type of instabilities possible. The stability analysis is carried out using a state-variable approach based on a finite element formulation of the structural dynamics. The simultaneous design of the control system and the beam shape minimizing structural mass is performed using numerical optimization. The inclusion of the control system in the optimization gives a considerable reduction of the structural mass but results in an optimal design which is very sensitive to imperfections. Using a simple model of the control system uncertainties, a more robust design is obtained by solving a modified optimization problem. Throughout the study, the theoretical findings are verified by experiments.

  12. Role of beam orientation optimization in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Pugachev, Andrei; Li, Jonathan G.; Boyer, Arthur L.; Hancock, Steven L.; Le, Quynh-Thu; Donaldson, Sarah S.; Lei Xing

    2001-01-01

    Purpose: To investigate the role of beam orientation optimization in intensity-modulated radiation therapy (IMRT) and to examine the potential benefits of noncoplanar intensity-modulated beams. Methods and Materials: A beam orientation optimization algorithm was implemented. For this purpose, system variables were divided into two groups: beam position (gantry and table angles) and beam profile (beamlet weights). Simulated annealing was used for beam orientation optimization and the simultaneous iterative inverse treatment planning algorithm (SIITP) for beam intensity profile optimization. Three clinical cases were studied: a localized prostate cancer, a nasopharyngeal cancer, and a paraspinal tumor. Nine fields were used for all treatments. For each case, 3 types of treatment plan optimization were performed: (1) beam intensity profiles were optimized for 9 equiangular spaced coplanar beams; (2) orientations and intensity profiles were optimized for 9 coplanar beams; (3) orientations and intensity profiles were optimized for 9 noncoplanar beams. Results: For the localized prostate case, all 3 types of optimization described above resulted in dose distributions of a similar quality. For the nasopharynx case, optimized noncoplanar beams provided a significant gain in the gross tumor volume coverage. For the paraspinal case, orientation optimization using noncoplanar beams resulted in better kidney sparing and improved gross tumor volume coverage. Conclusion: The sensitivity of an IMRT treatment plan with respect to the selection of beam orientations varies from site to site. For some cases, the choice of beam orientations is important even when the number of beams is as large as 9. Noncoplanar beams provide an additional degree of freedom for IMRT treatment optimization and may allow for notable improvement in the quality of some complicated plans

  13. Beam based measurement of beam position monitor electrode gains

    Directory of Open Access Journals (Sweden)

    D. L. Rubin

    2010-09-01

    Full Text Available Low emittance tuning at the Cornell Electron Storage Ring (CESR test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ∼0.1%.

  14. Simultaneous beam sampling and aperture shape optimization for SPORT

    International Nuclear Information System (INIS)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei; Ye, Yinyu

    2015-01-01

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and

  15. iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans

    International Nuclear Information System (INIS)

    Breedveld, Sebastiaan; Storchi, Pascal R. M.; Voet, Peter W. J.; Heijmen, Ben J. M.

    2012-01-01

    Purpose: To introduce iCycle, a novel algorithm for integrated, multicriterial optimization of beam angles, and intensity modulated radiotherapy (IMRT) profiles. Methods: A multicriterial plan optimization with iCycle is based on a prescription called wish-list, containing hard constraints and objectives with ascribed priorities. Priorities are ordinal parameters used for relative importance ranking of the objectives. The higher an objective priority is, the higher the probability that the corresponding objective will be met. Beam directions are selected from an input set of candidate directions. Input sets can be restricted, e.g., to allow only generation of coplanar plans, or to avoid collisions between patient/couch and the gantry in a noncoplanar setup. Obtaining clinically feasible calculation times was an important design criterium for development of iCycle. This could be realized by sequentially adding beams to the treatment plan in an iterative procedure. Each iteration loop starts with selection of the optimal direction to be added. Then, a Pareto-optimal IMRT plan is generated for the (fixed) beam setup that includes all so far selected directions, using a previously published algorithm for multicriterial optimization of fluence profiles for a fixed beam arrangement Breedveld et al.[Phys. Med. Biol. 54, 7199-7209 (2009)]. To select the next direction, each not yet selected candidate direction is temporarily added to the plan and an optimization problem, derived from the Lagrangian obtained from the just performed optimization for establishing the Pareto-optimal plan, is solved. For each patient, a single one-beam, two-beam, three-beam, etc. Pareto-optimal plan is generated until addition of beams does no longer result in significant plan quality improvement. Plan generation with iCycle is fully automated. Results: Performance and characteristics of iCycle are demonstrated by generating plans for a maxillary sinus case, a cervical cancer patient, and a

  16. iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans.

    Science.gov (United States)

    Breedveld, Sebastiaan; Storchi, Pascal R M; Voet, Peter W J; Heijmen, Ben J M

    2012-02-01

    To introduce iCycle, a novel algorithm for integrated, multicriterial optimization of beam angles, and intensity modulated radiotherapy (IMRT) profiles. A multicriterial plan optimization with iCycle is based on a prescription called wish-list, containing hard constraints and objectives with ascribed priorities. Priorities are ordinal parameters used for relative importance ranking of the objectives. The higher an objective priority is, the higher the probability that the corresponding objective will be met. Beam directions are selected from an input set of candidate directions. Input sets can be restricted, e.g., to allow only generation of coplanar plans, or to avoid collisions between patient/couch and the gantry in a noncoplanar setup. Obtaining clinically feasible calculation times was an important design criterium for development of iCycle. This could be realized by sequentially adding beams to the treatment plan in an iterative procedure. Each iteration loop starts with selection of the optimal direction to be added. Then, a Pareto-optimal IMRT plan is generated for the (fixed) beam setup that includes all so far selected directions, using a previously published algorithm for multicriterial optimization of fluence profiles for a fixed beam arrangement Breedveld et al. [Phys. Med. Biol. 54, 7199-7209 (2009)]. To select the next direction, each not yet selected candidate direction is temporarily added to the plan and an optimization problem, derived from the Lagrangian obtained from the just performed optimization for establishing the Pareto-optimal plan, is solved. For each patient, a single one-beam, two-beam, three-beam, etc. Pareto-optimal plan is generated until addition of beams does no longer result in significant plan quality improvement. Plan generation with iCycle is fully automated. Performance and characteristics of iCycle are demonstrated by generating plans for a maxillary sinus case, a cervical cancer patient, and a liver patient treated with

  17. Geometrically based optimization for extracranial radiosurgery

    International Nuclear Information System (INIS)

    Liu Ruiguo; Wagner, Thomas H; Buatti, John M; Modrick, Joseph; Dill, John; Meeks, Sanford L

    2004-01-01

    For static beam conformal intracranial radiosurgery, geometry of the beam arrangement dominates overall dose distribution. Maximizing beam separation in three dimensions decreases beam overlap, thus maximizing dose conformality and gradient outside of the target volume. Webb proposed arrangements of isotropically convergent beams that could be used as the starting point for a radiotherapy optimization process. We have developed an extracranial radiosurgery optimization method by extending Webb's isotropic beam arrangements to deliverable beam arrangements. This method uses an arrangement of N maximally separated converging vectors within the space available for beam delivery. Each bouquet of isotropic beam vectors is generated by a random sampling process that iteratively maximizes beam separation. Next, beam arrangement is optimized for critical structure avoidance while maintaining minimal overlap between beam entrance and exit pathways. This geometrically optimized beam set can then be used as a template for either conformal beam or intensity modulated extracranial radiosurgery. Preliminary results suggest that using this technique with conformal beam planning provides high plan conformality, a steep dose gradient outside of the tumour volume and acceptable critical structure avoidance in the majority of clinical cases

  18. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer B. [Advanced Magnet Lab, Inc., Melbourne, FL (United States); Goodzeit, Carl L. [Advanced Magnet Lab, Inc., Melbourne, FL (United States); Ball, Millicent J. [Advanced Magnet Lab, Inc., Melbourne, FL (United States)

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  19. Active vibration reduction by optimally placed sensors and actuators with application to stiffened plates by beams

    International Nuclear Information System (INIS)

    Daraji, A H; Hale, J M

    2014-01-01

    This study concerns new investigation of active vibration reduction of a stiffened plate bonded with discrete sensor/actuator pairs located optimally using genetic algorithms based on a developed finite element modeling. An isotropic plate element stiffened by a number of beam elements on its edges and having a piezoelectric sensor and actuator pair bonded to its surfaces is modeled using the finite element method and Hamilton’s principle, taking into account the effects of piezoelectric mass, stiffness and electromechanical coupling. The modeling is based on the first order shear deformation theory taking into account the effects of bending, membrane and shear deformation for the plate, the stiffening beam and the piezoelectric patches. A Matlab finite element program has been built for the stiffened plate model and verified with ANSYS and also experimentally. Optimal placement of ten piezoelectric sensor/actuator pairs and optimal feedback gain for active vibration reduction are investigated for a plate stiffened by two beams arranged in the form of a cross. The genetic algorithm was set up for optimization of sensor/actuator placement and feedback gain based on the minimization of the optimal linear quadratic index as an objective function to suppress the first six modes of vibration. Comparison study is presented for active vibration reduction of a square cantilever plate stiffened by crossed beams with two sensor/actuator configurations: firstly, ten piezoelectric sensor/actuator pairs are located in optimal positions; secondly, a piezoelectric layer of single sensor/actuator pair covering the whole of the stiffened plate as a SISO system. (paper)

  20. Risk Based Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, M.H.; Kroon, I.B.

    1992-01-01

    Optimal fatigue life testing of materials is considered. Based on minimization of the total expected costs of a mechanical component a strategy is suggested to determine the optimal stress range levels for which additional experiments are to be performed together with an optimal value of the maxi......Optimal fatigue life testing of materials is considered. Based on minimization of the total expected costs of a mechanical component a strategy is suggested to determine the optimal stress range levels for which additional experiments are to be performed together with an optimal value...

  1. SU-F-T-209: Multicriteria Optimization Algorithm for Intensity Modulated Radiation Therapy Using Pencil Proton Beam Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, C; Kamal, H [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatment planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.

  2. SU-F-T-209: Multicriteria Optimization Algorithm for Intensity Modulated Radiation Therapy Using Pencil Proton Beam Scanning

    International Nuclear Information System (INIS)

    Beltran, C; Kamal, H

    2016-01-01

    Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatment planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.

  3. Optimization of Compton Source Performance through Electron Beam Shaping

    Energy Technology Data Exchange (ETDEWEB)

    Malyzhenkov, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yampolsky, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-26

    We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of ICS sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a way so that all electrons scatter off the x-ray photons of same frequency in the same direction, arriving to the observer at the same time. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary.

  4. Risk Based Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, M.H.; Kroon, I.B.

    1992-01-01

    Optimal fatigue life testing of materials is considered. Based on minimization of the total expected costs of a mechanical component a strategy is suggested to determine the optimal stress range levels for which additional experiments are to be performed together with an optimal value...

  5. An optimized Faraday cage design for electron beam current measurements

    International Nuclear Information System (INIS)

    Turner, J.N.; Hausner, G.G.; Parsons, D.F.

    1975-01-01

    A Faraday cage detector is described for measuring electron beam intensity for use with energies up to 1.2 Mev, with the present data taken at 100 keV. The design features a readily changeable limiting aperture and detector cup geometry, and a secondary electron suppression grid. The detection efficiency of the cage is shown to be limited only by primary backscatter through the detector solid angle of escape, which is optimized with respect to primary backscattered electrons and secondary electron escape. The geometry and stopping material of the detection cup are varied, and the results show that for maximum detection efficiency with carbon as the stopping mateiral, the solid angle of escape must be equal to or less than 0.05πsr. The experimental results are consistent within the +-2% accuracy of the detection electronics, and are not limited by the Faraday cage detection efficiency. (author)

  6. Recent developments in the structural design and optimization of ITER neutral beam manifold

    Science.gov (United States)

    Chengzhi, CAO; Yudong, PAN; Zhiwei, XIA; Bo, LI; Tao, JIANG; Wei, LI

    2018-02-01

    This paper describes a new design of the neutral beam manifold based on a more optimized support system. A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase. Both the structural reliability and feasibility were confirmed with detailed analyses. Comparative analyses between two typical types of manifold support scheme were performed. All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented. Future optimization activities are described, which will give useful information for a refined setting of components in the next phase.

  7. Topology optimization of reinforced concrete beams by a spread-over reinforcement model with fixed grid mesh

    Directory of Open Access Journals (Sweden)

    Benjapon Wethyavivorn

    2011-02-01

    Full Text Available For this investigation, topology optimization was used as a tool to determine the optimal reinforcement for reinforcedconcrete beam. The topology optimization process was based on a unit finite element cell with layers of concrete and steel.The thickness of the reinforced steel layer of this unit cell was then adjusted when the concrete layer could not carry thetensile or compressive stress. At the same time, unit cells which carried very low stress were eliminated. The process wasperformed iteratively to create a topology of reinforced concrete beam which satisfied design conditions.

  8. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Kastenber, W.E.; Karni, Y.; Regev, D.; Verbeke, J.M.; Leung, K.N.; Chivers, D.; Guess, S.; Kim, L.; Waldron, W.; Zhu, Y.

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  9. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    CERN Document Server

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  10. On finding the analytic dependencies of the external field potential on the control function when optimizing the beam dynamics

    Science.gov (United States)

    Ovsyannikov, A. D.; Kozynchenko, S. A.; Kozynchenko, V. A.

    2017-12-01

    When developing a particle accelerator for generating the high-precision beams, the injection system design is of importance, because it largely determines the output characteristics of the beam. At the present paper we consider the injection systems consisting of electrodes with given potentials. The design of such systems requires carrying out simulation of beam dynamics in the electrostatic fields. For external field simulation we use the new approach, proposed by A.D. Ovsyannikov, which is based on analytical approximations, or finite difference method, taking into account the real geometry of the injection system. The software designed for solving the problems of beam dynamics simulation and optimization in the injection system for non-relativistic beams has been developed. Both beam dynamics and electric field simulations in the injection system which use analytical approach and finite difference method have been made and the results presented in this paper.

  11. Beam-based Feedback Simulations for the NLC Linac

    International Nuclear Information System (INIS)

    Hendrickson, Linda

    2000-01-01

    Extensive beam-based feedback systems are planned as an integral part of the Next Linear Collider (NLC) control system. Wakefield effects are a significant influence on the feedback design, imposing both architectural and algorithmic constraints. Studies are in progress to assure the optimal selection of devices and to refine and confirm the algorithms for the system design. The authors show the results of initial simulations, along with evaluations of system response for various conditions of ground motion and other operational disturbances

  12. Optimization of Power Allocation for Multiusers in Multi-Spot-Beam Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    Heng Wang

    2014-01-01

    Full Text Available In recent years, multi-spot-beam satellite communication systems have played a key role in global seamless communication. However, satellite power resources are scarce and expensive, due to the limitations of satellite platform. Therefore, this paper proposes optimizing the power allocation of each user in order to improve the power utilization efficiency. Initially the capacity allocated to each user is calculated according to the satellite link budget equations, which can be achieved in the practical satellite communication systems. The problem of power allocation is then formulated as a convex optimization, taking account of a trade-off between the maximization of the total system capacity and the fairness of power allocation amongst the users. Finally, an iterative algorithm based on the duality theory is proposed to obtain the optimal solution to the optimization. Compared with the traditional uniform resource allocation or proportional resource allocation algorithms, the proposed optimal power allocation algorithm improves the fairness of power allocation amongst the users. Moreover, the computational complexity of the proposed algorithm is linear with both the numbers of the spot beams and users. As a result, the proposed power allocation algorithm is easy to be implemented in practice.

  13. Design of a neutrino source based on beta beams

    Directory of Open Access Journals (Sweden)

    E. Wildner

    2014-07-01

    Full Text Available “Beta beams” produce collimated pure electron (antineutrino beams by accelerating beta active ions to high energies and having them decay in a racetrack shaped storage ring of 7 km circumference, the decay ring. EUROnu beta beams are based on CERN infrastructures and existing machines. Using existing machines may be an advantage for the cost evaluation, but will also constrain the physics performance. The isotope pair of choice for the beta beam is ^{6}He and ^{18}Ne. However, before the EUROnu studies one of the required isotopes, ^{18}Ne, could not be produced in rates that satisfy the needs for physics of the beta beam. Therefore, studies of alternative beta emitters, ^{8}Li and ^{8}B, with properties interesting for a beta beam have been proposed and have been studied within EUROnu. These alternative isotopes could be produced by using a small storage ring, in which the beam traverses a target, creating the ^{8}Li and ^{8}B isotopes. This production ring, the injection linac and the target system have been evaluated. Measurements of the cross section of the reactions to produce the beta beam isotopes show interesting results. A device to collect the produced isotopes from the target has been developed and tested. However, the yields of ^{8}Li and ^{8}B, using the production ring for production of ^{8}Li and ^{8}B, is not yet, according to simulations, giving the rates of isotopes that would be needed. Therefore, a new method of producing the ^{18}Ne isotope has been developed and tested giving good production rates. A 60 GHz ECRIS prototype, the first in the world, was developed and tested for ion production with contributions from EUROnu. The decay ring lattices for the ^{8}Li and ^{8}B have been developed and the lattice for ^{6}He and ^{18}Ne has been optimized to ensure the high intensity ion beam stability.

  14. Security of quantum key distribution using two-mode squeezed states against optimal beam splitter attack

    International Nuclear Information System (INIS)

    He Guangqiang; Zhu Siwei; Guo Hongbin; Zeng Guihua

    2008-01-01

    For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon information theory. The theoretical secret information rate after error correction and privacy amplification is given in terms of the squeezed parameter and channel parameters. The results show that the two-mode squeezed state quantum key distribution is secure against an optimal beam splitter attack

  15. Optimal design of a smart post-buckled beam actuator using bat algorithm: simulations and experiments

    Science.gov (United States)

    Mallick, Rajnish; Ganguli, Ranjan; Kumar, Ravi

    2017-05-01

    The optimized design of a smart post-buckled beam actuator (PBA) is performed in this study. A smart material based piezoceramic stack actuator is used as a prime-mover to drive the buckled beam actuator. Piezoceramic actuators are high force, small displacement devices; they possess high energy density and have high bandwidth. In this study, bench top experiments are conducted to investigate the angular tip deflections due to the PBA. A new design of a linear-to-linear motion amplification device (LX-4) is developed to circumvent the small displacement handicap of piezoceramic stack actuators. LX-4 enhances the piezoceramic actuator mechanical leverage by a factor of four. The PBA model is based on dynamic elastic stability and is analyzed using the Mathieu-Hill equation. A formal optimization is carried out using a newly developed meta-heuristic nature inspired algorithm, named as the bat algorithm (BA). The BA utilizes the echolocation capability of bats. An optimized PBA in conjunction with LX-4 generates end rotations of the order of 15° at the output end. The optimized PBA design incurs less weight and induces large end rotations, which will be useful in development of various mechanical and aerospace devices, such as helicopter trailing edge flaps, micro and nano aerial vehicles and other robotic systems.

  16. Optimization of thrie beam terminal end shoe connection.

    Science.gov (United States)

    2017-04-01

    Terminal thrie end shoes connect nested thrie beams to parapets or other bridge rail structure to provide a robust connectivity between a transition section and a rigid railing section. When connecting terminal end shoe to thrie beam transitions, the...

  17. An interactive beam-weight optimization tool for three-dimensional radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Burba, S.; Gardey, K.; Nadobny, J.; Stalling, D.; Seebass, M.; Beier, J.; Wust, P.; Budach, V.; Felix, R.

    1997-01-01

    Purpose: A computer software tool has been developed to aid the treatment planner in selecting beam weights for three-dimensional radiotherapy treatment planning. An approach to plan optimization has been made that is based on the use of an iterative feasibility search algorithm combined with a quadratic convergence method that seeks a set of beam weights which satisfies all the dose constraints set by the planner. Materials and Methods: A FORTRAN module for dose calculation for radiotherapy (a VOXELPLAN modification) has been integrated into an object-oriented Silicon Graphics TM platform in an IRIS Inventor environment on basis of the OpenGL which up to now has been exclusively used for the calculation of E-field distributions in hyperthermia (HyperPlan TM ). After the successful calculation and representation of the dose distribution in the Silicon Graphics TM platform, an algorithm involving the minimization method according to the principle of quadratic convergence was developed for optimizing beam weights of a number of pre-calculated fields. The verification of the algorithms for dose calculation and dose optimization has been realized by use of a standardized interface to the program VIRTUOS as well as by the collapsed cone algorithm implemented in the commercial treatment planning system Helax TMS TM . Results: The search algorithm allows the planner to incorporate relative importance weightings to target volumes and anatomical structures, specifying, for example, that a dose constraint to the spinal cord is much more crucial to the overall evaluation of a treatment plan than a dose constraint to otherwise uninvolved soft tissue. In most cases the applied minimization method according to the model of Davidon-Fletcher-Powell showed ultimate fast convergence for a general function f(x) with continuous second derivatives and fast convergence for a positive definite quadratic function. In other cases, however, the absence of an acceptable solution may indicate

  18. Optimization of VLf/ELF Wave Generation using Beam Painting

    Science.gov (United States)

    Robinson, A.; Moore, R. C.

    2017-12-01

    A novel optimized beam painting algorithm (OBP) is used to generate high amplitude very low frequency (VLF) and extremely low frequency (ELF) waves in the D-region of the ionosphere above the High-frequency Active Auroral Research Program (HAARP) observatory. The OBP method creates a phased array of sources in the ionosphere by varying the azimuth and zenith angles of the high frequency (HF) transmitter to capitalize on the constructive interference of propagating VLF/ELF waves. OBP generates higher amplitude VLF/ELF signals than any other previously proposed method. From April through June during 2014, OBP was performed at HAARP over 1200 times. We compare the BP generated signals against vertical amplitude modulated transmissions at 50 % duty cycle (V), oblique amplitude modulated transmissions at 15 degrees zenith and 81 degrees azimuth at 50 % duty cycle (O), and geometric (circle-sweep) modulation at 15 degrees off-zenith angle at 1562.5 Hz, 3125 Hz, and 5000 Hz. We present an analysis of the directional dependence of each signal, its polarization, and its dependence on the properties of the different source region elements. We find that BP increases the received signal amplitudes of VLF and ELF waves when compared to V, O, and GM methods over a statistically significant number of trials.

  19. Semiautomatic beam-based LHC collimator alignment

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2012-05-01

    Full Text Available Full beam-based alignment of the LHC collimation system was a time-consuming procedure (up to 28 hours as the collimators were set up manually. A yearly alignment campaign has been sufficient for now, although in the future due to tighter tolerances this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can reduce the beam time for collimator setup and allow for more frequent alignments, therefore reducing the risk of performance degradation. This article describes the design and testing of a semiautomatic algorithm as a first step towards a fully automatic setup procedure. The parameters used to measure the accuracy and performance of the alignment are defined and determined from experimental data. A comparison of these measured parameters at 450 GeV and 3.5 TeV with manual and semiautomatic alignment is provided.

  20. Semiautomatic beam-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Aßmann, Ralph; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Sammut, Nicholas; Wollmann, Daniel

    2012-05-01

    Full beam-based alignment of the LHC collimation system was a time-consuming procedure (up to 28 hours) as the collimators were set up manually. A yearly alignment campaign has been sufficient for now, although in the future due to tighter tolerances this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can reduce the beam time for collimator setup and allow for more frequent alignments, therefore reducing the risk of performance degradation. This article describes the design and testing of a semiautomatic algorithm as a first step towards a fully automatic setup procedure. The parameters used to measure the accuracy and performance of the alignment are defined and determined from experimental data. A comparison of these measured parameters at 450 GeV and 3.5 TeV with manual and semiautomatic alignment is provided.

  1. Semiautomatic beam-based LHC collimator alignment

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Wollmann, Daniel; Sammut, Nicholas; Rossi, Adriana; Redaelli, Stefano

    2012-01-01

    Full beam-based alignment of the LHC collimation system was a time-consuming procedure (up to 28 hours) as the collimators were set up manually. A yearly alignment campaign has been sufficient for now, although in the future due to tighter tolerances this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can reduce the beam time for collimator setup and allow for more frequent alignments, therefore reducing the risk of performance degradation. This article describes the design and testing of a semiautomatic algorithm as a first step towards a fully automatic setup procedure. The parameters used to measure the accuracy and performance of the alignment are defined and determined from experimental data. A comparison of these measured parameters at 450 GeV and 3.5 TeV with manual and semiautomatic alignment is provided.

  2. Mathematical Formulation of DMH-Based Inverse Optimization.

    Science.gov (United States)

    Mihaylov, Ivaylo B; Moros, Eduardo G

    2014-01-01

    To introduce the concept of dose-mass-based inverse optimization for radiotherapy applications. Mathematical derivation of the dose-mass-based formalism is presented. This mathematical representation is compared to the most commonly used dose-volume-based formulation used in inverse optimization. A simple example on digitally created phantom is presented. The phantom consists of three regions: a target surrounded by high- and low-density regions. The target is irradiated with two beams through those regions and inverse optimization with dose-volume and dose-mass-based objective functions is performed. The basic properties of the two optimization types are demonstrated on the phantom. It is demonstrated that dose-volume optimization is a special case of dose-mass optimization. In a homogenous media, dose-mass optimization turns into dose-volume optimization. The dose calculations performed on the digital phantom show that in this very simple case dose-mass optimization tends to penalize more the dose delivery through the high-density region and therefore it results in delivering more dose through the low-density region. It was demonstrated that dose-mass-based optimization is mathematically more general than dose-volume-based optimization. In the case of constant density media, dose-mass optimization transforms into dose-volume optimization.

  3. Optimization-Based Layout Design

    OpenAIRE

    Abdel-Malek, K.; Mi, Z.; Yang, J.; Nebel, K.

    2005-01-01

    The layout problem is of importance to ergonomists, vehicle/cockpit packaging engineers, designers of manufacturing assembly lines, designers concerned with the placement of levers, knobs, controls, etc. in the reachable workspace of a human, and also to users of digital human modeling code, where digital prototyping has become a valuable tool. This paper proposes a hybrid optimization method (gradient-based optimization and simulated annealing) to obtain the layout design. We implemented the...

  4. A beam monitor based on MPGD detectors for hadron therapy

    Science.gov (United States)

    Altieri, P. R.; Di Benedetto, D.; Galetta, G.; Intonti, R. A.; Mercadante, A.; Nuzzo, S.; Verwilligen, P.

    2018-02-01

    Remarkable scientific and technological progress during the last years has led to the construction of accelerator based facilities dedicated to hadron therapy. This kind of technology requires precise and continuous control of position, intensity and shape of the ions or protons used to irradiate cancers. Patient safety, accelerator operation and dose delivery should be optimized by a real time monitoring of beam intensity and profile during the treatment, by using non-destructive, high spatial resolution detectors. In the framework of AMIDERHA (AMIDERHA - Enhanced Radiotherapy with HAdron) project funded by the Ministero dell'Istruzione, dell'Università e della Ricerca (Italian Ministry of Education and Research) the authors are studying and developing an innovative beam monitor based on Micro Pattern Gaseous Detectors (MPDGs) characterized by a high spatial resolution and rate capability. The Monte Carlo simulation of the beam monitor prototype was carried out to optimize the geometrical set up and to predict the behavior of the detector. A first prototype has been constructed and successfully tested using 55Fe, 90Sr and also an X-ray tube. Preliminary results on both simulations and tests will be presented.

  5. Noncoplanar Beam Angle Class Solutions to Replace Time-Consuming Patient-Specific Beam Angle Optimization in Robotic Prostate Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Rossi, Linda; Breedveld, Sebastiaan; Aluwini, Shafak; Heijmen, Ben

    2015-01-01

    Purpose: To investigate development of a recipe for the creation of a beam angle class solution (CS) for noncoplanar prostate stereotactic body radiation therapy to replace time-consuming individualized beam angle selection (iBAS) without significant loss in plan quality, using the in-house “Erasmus-iCycle” optimizer for fully automated beam profile optimization and iBAS. Methods and Materials: For 30 patients, Erasmus-iCycle was first used to generate 15-, 20-, and 25-beam iBAS plans for a CyberKnife equipped with a multileaf collimator. With these plans, 6 recipes for creation of beam angle CSs were investigated. Plans of 10 patients were used to create CSs based on the recipes, and the other 20 to independently test them. For these tests, Erasmus-iCycle was also used to generate intensity modulated radiation therapy plans for the fixed CS beam setups. Results: Of the tested recipes for CS creation, only 1 resulted in 15-, 20-, and 25-beam noncoplanar CSs without plan deterioration compared with iBAS. For the patient group, mean differences in rectum D 1cc , V 60GyEq , V 40GyEq , and D mean between 25-beam CS plans and 25-beam plans generated with iBAS were 0.2 ± 0.4 Gy, 0.1% ± 0.2%, 0.2% ± 0.3%, and 0.1 ± 0.2 Gy, respectively. Differences between 15- and 20-beam CS and iBAS plans were also negligible. Plan quality for CS plans relative to iBAS plans was also preserved when narrower planning target volume margins were arranged and when planning target volume dose inhomogeneity was decreased. Using a CS instead of iBAS reduced the computation time by a factor of 14 to 25, mainly depending on beam number, without loss in plan quality. Conclusions: A recipe for creation of robust beam angle CSs for robotic prostate stereotactic body radiation therapy has been developed. Compared with iBAS, computation times decreased by a factor 14 to 25. The use of a CS may avoid long planning times without losses in plan quality

  6. Noncoplanar Beam Angle Class Solutions to Replace Time-Consuming Patient-Specific Beam Angle Optimization in Robotic Prostate Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Linda, E-mail: l.rossi@erasmusmc.nl; Breedveld, Sebastiaan; Aluwini, Shafak; Heijmen, Ben

    2015-07-15

    Purpose: To investigate development of a recipe for the creation of a beam angle class solution (CS) for noncoplanar prostate stereotactic body radiation therapy to replace time-consuming individualized beam angle selection (iBAS) without significant loss in plan quality, using the in-house “Erasmus-iCycle” optimizer for fully automated beam profile optimization and iBAS. Methods and Materials: For 30 patients, Erasmus-iCycle was first used to generate 15-, 20-, and 25-beam iBAS plans for a CyberKnife equipped with a multileaf collimator. With these plans, 6 recipes for creation of beam angle CSs were investigated. Plans of 10 patients were used to create CSs based on the recipes, and the other 20 to independently test them. For these tests, Erasmus-iCycle was also used to generate intensity modulated radiation therapy plans for the fixed CS beam setups. Results: Of the tested recipes for CS creation, only 1 resulted in 15-, 20-, and 25-beam noncoplanar CSs without plan deterioration compared with iBAS. For the patient group, mean differences in rectum D{sub 1cc}, V{sub 60GyEq}, V{sub 40GyEq}, and D{sub mean} between 25-beam CS plans and 25-beam plans generated with iBAS were 0.2 ± 0.4 Gy, 0.1% ± 0.2%, 0.2% ± 0.3%, and 0.1 ± 0.2 Gy, respectively. Differences between 15- and 20-beam CS and iBAS plans were also negligible. Plan quality for CS plans relative to iBAS plans was also preserved when narrower planning target volume margins were arranged and when planning target volume dose inhomogeneity was decreased. Using a CS instead of iBAS reduced the computation time by a factor of 14 to 25, mainly depending on beam number, without loss in plan quality. Conclusions: A recipe for creation of robust beam angle CSs for robotic prostate stereotactic body radiation therapy has been developed. Compared with iBAS, computation times decreased by a factor 14 to 25. The use of a CS may avoid long planning times without losses in plan quality.

  7. Reliability-based optimization of engineering structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    The theoretical basis for reliability-based structural optimization within the framework of Bayesian statistical decision theory is briefly described. Reliability-based cost benefit problems are formulated and exemplitied with structural optimization. The basic reliability-based optimization prob...

  8. Beam based measurement of beam position monitor electrode gains

    OpenAIRE

    D. L. Rubin; M. Billing; R. Meller; M. Palmer; M. Rendina; N. Rider; D. Sagan; J. Shanks; C. Strohman

    2010-01-01

    Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple ...

  9. Beam optics optimization of a negative-ion sputter source

    Indian Academy of Sciences (India)

    A negative-ion sputter source has been studied in order to increase the beam intensity delivered by the Vivitron tandem injector. The aim was to characterize the influence on the beam intensity of some factors related to the configuration of the source such as the shape of the target holder, the target surface topography and ...

  10. A laser-based beam profile monitor for the SLC/SLD interaction region

    International Nuclear Information System (INIS)

    Alley, R.; Arnett, D.; Bong, E.; Colocho, W.; Frisch, J.; Horton-Smith, S.; Inman, W.; Jobe, K.; Kotseroglou, T.; McCormick, D.; Nelson, J.; Scheeff, M.; Wagner, S.; Ross, M.C.

    1996-01-01

    Beam size estimates made using beam-beam deflections are used for optimization of the Stanford linear collider (SLC) electron-positron beam sizes. Typical beam sizes and intensities expected for 1996 operations are 2.1 x 0.6 μm (x, y) at 4.0.10 10 particles per pulse. Conventional profile monitors, such as scanning wires, fail at charge densities well below this. The laser-based profile monitor uses a finely-focused 350-nm wavelength tripled YLF laser pulse that traverses the particle beam path about 29 cm away from the e + /e - IP. Compton scattered photons and degraded e + /e - are detected as the beam is steered across the laser pulse. The laser pulse has a transverse size of 380 nm and a Rayleigh range of about 5 μm. (orig.)

  11. Development and Optimisation of the SPS and LHC beam diagnostics based on Synchrotron Radiation monitors

    CERN Document Server

    AUTHOR|(CDS)2081364; Roncarolo, Federico

    Measuring the beam transverse emittance is fundamental in every accelerator, in particular for colliders, where its precise determination is essential to maximize the luminosity and thus the performance of the colliding beams.
 Synchrotron Radiation (SR) is a versatile tool for non-destructive beam diagnostics, since its characteristics are closely related to those of the source beam. At CERN, being the only available diagnostics at high beam intensity and energy, SR monitors are exploited as the proton beam size monitor of the two higher energy machines, the Super Proton Synchrotron (SPS) and the Large Hadron Collider (LHC). The thesis work documented in this report focused on the design, development, characterization and optimization of these beam size monitors. Such studies were based on a comprehensive set of theoretical calculations, numerical simulations and experiments. A powerful simulation tool has been developed combining conventional softwares for SR simulation and optics design, thus allowing t...

  12. Beam-Loss Driven Design Optimization for the Spallation Neutron Source (SNS) Ring

    International Nuclear Information System (INIS)

    Wei, J.

    1999-01-01

    This paper summarizes three-state design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.)

  13. Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators

    Science.gov (United States)

    Martinez de la Ossa, A.; Hu, Z.; Streeter, M. J. V.; Mehrling, T. J.; Kononenko, O.; Sheeran, B.; Osterhoff, J.

    2017-09-01

    Density down-ramp (DDR) injection is a promising concept in beam-driven plasma wakefield accelerators for the generation of high-quality witness beams. We review and complement the theoretical principles of the method and employ particle-in-cell (PIC) simulations in order to determine constrains on the geometry of the density ramp and the current of the drive beam, regarding the applicability of DDR injection. Furthermore, PIC simulations are utilized to find optimized conditions for the production of high-quality beams. We find and explain the intriguing result that the injection of an increased charge by means of a steepened ramp favors the generation of beams with lower emittance. Exploiting this fact enables the production of beams with high charge (˜140 pC ), low normalized emittance (˜200 nm ) and low uncorrelated energy spread (0.3%) in sufficiently steep ramps even for drive beams with moderate peak current (˜2.5 kA ).

  14. Optimization of steady-state beam-driven tokamak reactors

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; Singer, C.E.

    1983-01-01

    Recent developments in neutral beam technology prompt us to reconsider the prospects for steady-state tokamak reactors. A mathematical reactor model is developed that includes the physics of beam-driven currents and reactor power balance, as well as reactor and beam system costs. This model is used to find the plasma temperatures that minimize the reactor cost per unit of net electrical output. The optimum plasma temperatures are nearly independent of β and are roughly twice as high as the optimum temperatures for ignited reactors. If beams of neutral deuterium atoms with near-optimum energies of 1 to 2 MeV are used to drive the current in a reactor the size of the International Tokamak Reactor, then the optimum temperatures are typically T /SUB e/ approx. = 12 to 15 keV and T /SUB i/ approx. = 17 to 21 keV for a wide range of model parameters. Net electrical output rises rapidly with increasing deuterium beam energy for E /SUB b/ less than or equal to 400 keV, but rises only slowly above E /SUB b/ about 1 MeV. We estimate that beam-driven steady-state reactors could be economically competitive with pulsed-ignition reactors if cyclic-loading problems limit the toroidal magnetic field strength of pulsed reactors to less than or equal to 85% of that allowed in steady-state reactors

  15. Optimization of the bending stiffness of beam-to-column and column-to-foundation connections in precast concrete structures

    Directory of Open Access Journals (Sweden)

    R. R. R. COSTA

    Full Text Available Abstract This work involved the structural optimization of precast concrete rigid frames with semi-rigid beam-to-column connections. To this end, several frames were simulated numerically using the Finite Element Method. Beams and columns were modeled using bar elements and their connections were modeled using spring elements, with variable bending stiffness. The objective function was based on the search of the least stiff connection able to ensure the global stability of the building. Lastly, a connection model with optimal stiffness was adopted to design the frame. Semi-rigid beam-to-column connections with a constraint factors of 0.33 sufficed to ensure the maximum allowable horizontal displacement and bending moment of the connection, with a global stability parameter of 1.12. This confirms that even connections with low constraints generate significant gains from the structural standpoint, without affecting construction and assembly-related aspects.

  16. Optimization-Based Layout Design

    Directory of Open Access Journals (Sweden)

    K. Abdel-Malek

    2005-01-01

    Full Text Available The layout problem is of importance to ergonomists, vehicle/cockpit packaging engineers, designers of manufacturing assembly lines, designers concerned with the placement of levers, knobs, controls, etc. in the reachable workspace of a human, and also to users of digital human modeling code, where digital prototyping has become a valuable tool. This paper proposes a hybrid optimization method (gradient-based optimization and simulated annealing to obtain the layout design. We implemented the proposed algorithm for a project at Oral-B Laboratories, where a manufacturing cell involves an operator who handles three objects, some with the left hand, others with the right hand.

  17. Physical mechanism of beam splitting based on reflective embedded double-layer grating

    Science.gov (United States)

    Wang, Bo; Li, Hongtao; Shu, Wenhao; Li, Wenhua; Chen, Li; Lei, Liang; Zhou, Jinyun

    2016-12-01

    It is not easy to achieve high performance for conventional beam splitters, such as high efficiency, good uniformity, polarization-independence, and wide bandwidth. A reflective embedded double-layer grating is described for beam splitting. With optimized grating profiles, the novel beam splitter can diffract both TE and TM polarizations into two orders with high performance. For the easy production, the fabrication tolerance is investigated and given. Most importantly, efficiencies more than 45% can be split into two orders within the wide bandwidth of 1412-1647 nm for TE polarization. The beam splitter based on multilayer coatings is sensitive to the incident angle and wavelength. And the bandwidth needs to be improved for the beam splitter based on simple grating. The design is of benefit for the performance improvement of the beam splitter by new grating configuration compared with the conventional simple grating.

  18. The optimization of pencil beam widths for use in an electron pencil beam algorithm

    International Nuclear Information System (INIS)

    Pencil beam algorithms for the calculation of electron beam dose distributions have come into widespread use. These algorithms, however, have generally exhibited difficulties in reproducing dose distributions for small field dimensions or, more specifically, for those conditions in which lateral scatter equilibrium does not exist. The work described here has determined that this difficulty can arise from the manner in which the width of the pencil beam is calculated. A unique approach for determining the pencil beam widths required to accurately reproduce small field dose distributions in a homogeneous phantom is described and compared with measurements and the results of other calculations. This method has also been extended to calculate electron beam dose distributions in heterogeneous media and the results of this work are presented. Suggestions for further improvements are discussed.

  19. Simulation-based optimization parametric optimization techniques and reinforcement learning

    CERN Document Server

    Gosavi, Abhijit

    2003-01-01

    Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to converg...

  20. Implementation of EPICS based Control System for Radioisotope Beam line

    International Nuclear Information System (INIS)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2015-01-01

    Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac

  1. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    Science.gov (United States)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  2. Negative ion based neutral beams for plasma heating

    International Nuclear Information System (INIS)

    Prelec, K.

    1978-01-01

    Neutral beam systems based on negative ions have been considered because of a high expected power efficiency. Methods for the production, acceleration and neutralization of negative ions will be reviewed and possibilities for an application in neutral beam lines explored

  3. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    International Nuclear Information System (INIS)

    Zarepisheh, M; Li, R; Xing, L; Ye, Y; Boyd, S

    2014-01-01

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves

  4. In situ growth optimization in focused electron-beam induced deposition

    Directory of Open Access Journals (Sweden)

    Paul M. Weirich

    2013-12-01

    Full Text Available We present the application of an evolutionary genetic algorithm for the in situ optimization of nanostructures that are prepared by focused electron-beam-induced deposition (FEBID. It allows us to tune the properties of the deposits towards the highest conductivity by using the time gradient of the measured in situ rate of change of conductance as the fitness parameter for the algorithm. The effectiveness of the procedure is presented for the precursor W(CO6 as well as for post-treatment of Pt–C deposits, which were obtained by the dissociation of MeCpPt(Me3. For W(CO6-based structures an increase of conductivity by one order of magnitude can be achieved, whereas the effect for MeCpPt(Me3 is largely suppressed. The presented technique can be applied to all beam-induced deposition processes and has great potential for a further optimization or tuning of parameters for nanostructures that are prepared by FEBID or related techniques.

  5. A simplified lumped model for the optimization of post-buckled beam architecture wideband generator

    Science.gov (United States)

    Liu, Weiqun; Formosa, Fabien; Badel, Adrien; Hu, Guangdi

    2017-11-01

    Buckled beams structures are a classical kind of bistable energy harvesters which attract more and more interests because of their capability to scavenge energy over a large frequency band in comparison with linear generator. The usual modeling approach uses the Galerkin mode discretization method with relatively high complexity, while the simplification with a single-mode solution lacks accuracy. It stems on the optimization of the energy potential features to finally define the physical and geometrical parameters. Therefore, in this paper, a simple lumped model is proposed with explicit relationship between the potential shape and parameters to allow efficient design of bistable beams based generator. The accuracy of the approximation model is studied with the effectiveness of application analyzed. Moreover, an important fact, that the bending stiffness has little influence on the potential shape with low buckling level and the sectional area determined, is found. This feature extends the applicable range of the model by utilizing the design of high moment of inertia. Numerical investigations demonstrate that the proposed model is a simple and reliable tool for design. An optimization example of using the proposed model is demonstrated with satisfactory performance.

  6. Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Bedford, J L; Webb, S

    2007-01-01

    Direct-aperture optimization (DAO) was applied to iterative beam-orientation selection in intensity-modulated radiation therapy (IMRT), so as to ensure a realistic segmental treatment plan at each iteration. Nested optimization engines dealt separately with gantry angles, couch angles, collimator angles, segment shapes, segment weights and wedge angles. Each optimization engine performed a random search with successively narrowing step sizes. For optimization of segment shapes, the filtered backprojection (FBP) method was first used to determine desired fluence, the fluence map was segmented, and then constrained direct-aperture optimization was used thereafter. Segment shapes were fully optimized when a beam angle was perturbed, and minimally re-optimized otherwise. The algorithm was compared with a previously reported method using FBP alone at each orientation iteration. An example case consisting of a cylindrical phantom with a hemi-annular planning target volume (PTV) showed that for three-field plans, the method performed better than when using FBP alone, but for five or more fields, neither method provided much benefit over equally spaced beams. For a prostate case, improved bladder sparing was achieved through the use of the new algorithm. A plan for partial scalp treatment showed slightly improved PTV coverage and lower irradiated volume of brain with the new method compared to FBP alone. It is concluded that, although the method is computationally intensive and not suitable for searching large unconstrained regions of beam space, it can be used effectively in conjunction with prior class solutions to provide individually optimized IMRT treatment plans

  7. Beam shaping and its solution with the use of an optimization method.

    Science.gov (United States)

    Cong, W X; Chen, N X; Gu, B Y

    1998-07-10

    We present an exact mathematical description of beam shaping and indicate that a rigorous solution does not exist: only an optimal solution can be found. An optimization method is proposed to search for the solution. The simulation results for an example are given in detail.

  8. Optimization of Laser Beam Transformation Hardening by One Single Parameter

    NARCIS (Netherlands)

    Meijer, J.; van Sprang, I.

    1991-01-01

    The process of laser beam transformation hardening is principally controlled by two independent parameters, the absorbed laser power on a given area and the interaction time. These parameters can be transformed into two functional parameters: the maximum surface temperature and the hardening depth.

  9. Beaconless operation for optimal laser beam propagation through turbulent atmosphere

    Science.gov (United States)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-09-01

    Corruption of the wavefront, beam wondering and power density degradation at the receiving end are the effects typically observed at laser beam propagation through turbulent atmosphere. Compensation of these effects can be achieved if the reciprocal conditions for the propagating wave are satisfied along the propagation range. Practical realization of these conditions requires placing a localized beacon at the receiving end of the range and high-performance adaptive optics system (AOS). The key condition for an effective performance of AOS is a high value of the reciprocal component in the outgoing wave, since only this component is getting compensated after propagating turbulence perturbed path. The nonreciprocal components that is present in the wave directed toward the target is caused by three factors (detailed in this paper) that determine the partial restoration of the structure of the beacon beam. Thus solution of a complex problem of focusing the laser beam propagating through turbulent media can be achieved for the share of the outgoing wave that has a reciprocal component. This paper examines the ways and means that can be used in achieving the stated goal of effective laser power delivery on the distant image-resolved object.

  10. A test beam upgrade based on the BEPC-LINAC

    International Nuclear Information System (INIS)

    Li Jiacai; Wu Yuanming; Cui Xiangzong; Zhang Liangsheng; Zhou Baoqing; Liu Zhengquan; Zhang Shaoping; Sun Changchun; Zhang Zhuxiang; Zhang Caidi; Zheng Linsheng; Liu Shixing; Shen Ji; Yin Zejie; Zhang Yongming; Chen Ziyu

    2004-01-01

    A total of three beam lines, E1, E2 and E3 have based on the LINAC of BEPC. The E1 beam is to be used for intense slow-positron facility. The E2 is a primary positron or electron beam with an energy of 1.3-1.5 GeV. The E3 is a secondary electron or pion test beam with a momentum can be adjustable continuously. The position accuracy of a detected particle is 0.2-0.4 mm with an event rate of 3 - 4 Hz. This beam has been successfully used for some detectors beam test. (author)

  11. A novel patch-field design using an optimized grid filter for passively scattered proton beams

    International Nuclear Information System (INIS)

    Li Yupeng; Zhang Xiaodong; Dong Lei; Mohan, Radhe

    2007-01-01

    For tumors with highly complex shapes, a 'patching' strategy is often used in passively scattered proton therapy to match the sharp distal edge of the spread-out Bragg peak (SOBP) of the patch field to the lateral penumbra of the through field at 50% dose level. The differences in the dose gradients at the distal edge and at the lateral penumbra could cause hot and cold doses at the junction. In this note, we describe an algorithm developed to optimize the range compensator design to yield a more uniform dose distribution at the junction. The algorithm is based on the fact that the distal fall-off of the SOBP can be tailored using a grid filter that is placed perpendicular to the beam's path. The filter is optimized so that the distal fall-off of the patch field complements the lateral penumbra fall-off of the through field. In addition to optimizing the fall-off, the optimization process implicitly accounts for the limitations of conventional compensator design algorithms. This algorithm uses simple ray tracing to determine the compensator shape and ignore scatter. The compensated dose distribution may therefore differ substantially from the intended dose distribution, especially when complex heterogeneities are encountered, such as those in the head and neck. In such a case, an adaptive optimization strategy can be used to optimize the 'grid' filter locally considering the tissue heterogeneities. The grid filter thus obtained is superimposed on the original range compensator so that the composite compensator leads to a more uniform dose distribution at the patch junction. An L-shaped head and neck tumor was used to demonstrate the validity of the proposed algorithm. A robustness analysis with focus on range uncertainty effect is carried out. (note)

  12. A surrogate-based metaheuristic global search method for beam angle selection in radiation treatment planning.

    Science.gov (United States)

    Zhang, H H; Gao, S; Chen, W; Shi, L; D'Souza, W D; Meyer, R R

    2013-03-21

    An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equallyspaced beams (eplans), we have developed a global search metaheuristic process based on the nested partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are of superior quality.

  13. A surrogate-based metaheuristic global search method for beam angle selection in radiation treatment planning

    International Nuclear Information System (INIS)

    Zhang, H H; D’Souza, W D; Gao, S; Shi, L; Chen, W; Meyer, R R

    2013-01-01

    An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equally-spaced beams (eplans), we have developed a global search metaheuristic process based on the nested partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are of superior quality. (paper)

  14. Application of diamond based beam loss monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); CERN, Geneva (Switzerland); Baer, Tobias [CERN, Geneva (Switzerland); Hamburg Univ. (Germany); Castro Carballo, Elena Maria [DESY, Zeuthen (Germany); Lohmann, Wolfgang [Brandenburgische Technische Univ. Cottbus (Germany); DESY, Zeuthen (Germany); Schmidt, Ruediger [CERN, Geneva (Switzerland)

    2013-07-01

    The LHC has an operational stored energy of 130MJ per beam. Only a small percentage of beam losses in the LHC equipment can damage material or lead to magnet quenches. Therefore, it is important to monitor different types of beam losses, e.g. scattering on residual gas particles, UFOs, collisions and injection losses. A detailed understanding of beam loss mechanisms is necessary to reduce them and ensure save operation. Two different beam loss monitors are installed in the LHC tunnel: ionization chambers and diamond sensors. Ionization chambers trigger a beam dump if beam losses exceed a certain threshold. They have a time resolution of 40um (half LHC turn) which is not sufficient to resolve bunch-by-bunch beam losses. Diamond sensors have a nanosecond time resolution and can therefore detect bunch-by-bunch beam losses. This time resolution allows an analysis of various types of beam losses and an understanding of the mechanisms. For the first time beam loss intensities were measured bunch-by-bunch caused by different origins of losses. Beam loss measurements using diamond sensors will be presented. The results are compared to simulations and good qualitative agreement was found. The potential of diamond sensors for LHC and experiment applications are discussed.

  15. ISOL based radioactive nuclear beam facilities

    International Nuclear Information System (INIS)

    Nomura, T.

    1991-07-01

    High-intensity and high-quality unstable nuclear beams can be realized by coupling an isotope separator on-line and a proper post accelerator in various primary beams. Some technical features and problems in the production of such beams are discussed. A brief description is given on 'Exotic Nuclei Arena' in Japanese Hadron Project. (author)

  16. Optimization of a Communication Satellite Multiple-Beam Antenna

    Science.gov (United States)

    1975-05-27

    28 In "FREQUENCY a 7.5GHz26I I I 2.0 2.5 FEElD SPACING (in.) Fig. 2. Directive gain vs feed spacing for a given lens diameter. 4I iI,’ I)~i SIl4 ’ 1...PHASE CORRECTED FREQUENCY - 7.5 GHz PEAK GAIN 31.89 d8 F/b I PLANE OF PATTERN CUT -90 dog -10 -40 DEGREES FROM BORESIGHT Fig. 4. Superimposed beams...AZIMUTH ( dog ) Fig. 10. Contour plot of a steered beam~. 15 rived minimum-directive-gain direction (i.e., AZ M -8", • - -0.75), a result obtained by

  17. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    Science.gov (United States)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-03-01

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9-9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  18. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Gulliford, Colwyn, E-mail: cg248@cornell.edu; Bartnik, Adam, E-mail: acb20@cornell.edu; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca [CLASSE, Cornell University, 161 Synchrotron Drive Ithaca, New York 14853-8001 (United States)

    2015-03-02

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  19. Gaussian beam shooting algorithm based on iterative frame decomposition

    OpenAIRE

    Ghannoum, Ihssan; Letrou, Christine; Beauquet, Gilles

    2010-01-01

    International audience; Adaptive beam re-shooting is proposed as a solution to overcome essential limitations of the Gaussian Beam Shooting technique. The proposed algorithm is based on iterative frame decompositions of beam fields in situations where usual paraxial formulas fail to give accurate enough results, such as interactions with finite obstacle edges. Collimated beam fields are successively re-expanded on narrow and wide window frames, allowing for re-shooting and further propagation...

  20. Lifecycle-Based Swarm Optimization Method for Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Hai Shen

    2014-01-01

    Full Text Available Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO. Biological lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died, the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on unconstrained benchmark optimization problems and mechanical design optimization problems. Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization techniques.

  1. On optimization of an experimental system consisting of beam guidance and nuclear detectors

    International Nuclear Information System (INIS)

    Lehr, H.; Hinderer, G.; Maier, K.H.

    1978-02-01

    This report deals with the optimization of the resolution in nuclear physics experiments with a beam of accelerated particles. The complete system consisting of the beam handling, the nuclear reaction, and the particle detection is described with a linear matrix formalism. This allows to give analytic expressions for the linewidth of any physically interesting quantities, like Q-values of scattering angle in the center of mass system, as a function of beam line-, nuclear reaction-, and spectrometer parameters. From this then general prescriptions for optimizing the resolution by matching the beam handling and the detector system are derived. Explicitly treated are the measurements of Q-values and CM-scattering angle with an energy sensitive detector, a time of flight spectrometer, and a magnetic spectrometer. (orig.) [de

  2. Optimal ''image-based'' weighting for energy-resolved CT

    International Nuclear Information System (INIS)

    Schmidt, Taly Gilat

    2009-01-01

    This paper investigates a method of reconstructing images from energy-resolved CT data with negligible beam-hardening artifacts and improved contrast-to-nosie ratio (CNR) compared to conventional energy-weighting methods. Conceptually, the investigated method first reconstructs separate images from each energy bin. The final image is a linear combination of the energy-bin images, with the weights chosen to maximize the CNR in the final image. The optimal weight of a particular energy-bin image is derived to be proportional to the contrast-to-noise-variance ratio in that image. The investigated weighting method is referred to as ''image-based'' weighting, although, as will be described, the weights can be calculated and the energy-bin data combined prior to reconstruction. The performance of optimal image-based energy weighting with respect to CNR and beam-hardening artifacts was investigated through simulations and compared to that of energy integrating, photon counting, and previously studied optimal ''projection-based'' energy weighting. Two acquisitions were simulated: dedicated breast CT and a conventional thorax scan. The energy-resolving detector was simulated with five energy bins. Four methods of estimating the optimal weights were investigated, including task-specific and task-independent methods and methods that require a single reconstruction versus multiple reconstructions. Results demonstrated that optimal image-based weighting improved the CNR compared to energy-integrating weighting by factors of 1.15-1.6 depending on the task. Compared to photon-counting weighting, the CNR improvement ranged from 1.0 to 1.3. The CNR improvement factors were comparable to those of projection-based optimal energy weighting. The beam-hardening cupping artifact increased from 5.2% for energy-integrating weighting to 12.8% for optimal projection-based weighting, while optimal image-based weighting reduced the cupping to 0.6%. Overall, optimal image-based energy weighting

  3. A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    D'Souza, Warren D; Nazareth, Daryl P; Zhang, Hao H; Shi Leyuan; Meyer, Robert R

    2008-01-01

    Coupling beam angle optimization with dose optimization in intensity-modulated radiation therapy (IMRT) increases the size and complexity of an already large-scale combinatorial optimization problem. We have developed a novel algorithm, nested partitions (NP), that is capable of finding suitable beam angle sets by guiding the dose optimization process. NP is a metaheuristic that is flexible enough to guide the search of a heuristic or deterministic dose optimization algorithm. The NP method adaptively samples from the entire feasible region, or search space, and coordinates the sampling effort with a systematic partitioning of the feasible region at successive iterations, concentrating the search in promising subsets. We used a 'warm-start' approach by initiating NP with beam angle samples derived from an integer programming (IP) model. In this study, we describe our implementation of the NP framework with a commercial optimization algorithm. We compared the NP framework with equi-spaced beam angle selection, the IP method, greedy heuristic and random sampling heuristic methods. The results of the NP approach were evaluated using two clinical cases (head and neck and whole pelvis) involving the primary tumor and nodal volumes. Our results show that NP produces better quality solutions than the alternative considered methods

  4. A nested partitions framework for beam angle optimization in intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, Warren D; Nazareth, Daryl P [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Zhang, Hao H; Shi Leyuan [Department of Industrial and Systems Engineering, University of Wisconsin, Madison, WI (United States); Meyer, Robert R [Computer Sciences Department, University of Wisconsin, Madison, WI (United States)], E-mail: dsouzaw@ohsu.edu

    2008-06-21

    Coupling beam angle optimization with dose optimization in intensity-modulated radiation therapy (IMRT) increases the size and complexity of an already large-scale combinatorial optimization problem. We have developed a novel algorithm, nested partitions (NP), that is capable of finding suitable beam angle sets by guiding the dose optimization process. NP is a metaheuristic that is flexible enough to guide the search of a heuristic or deterministic dose optimization algorithm. The NP method adaptively samples from the entire feasible region, or search space, and coordinates the sampling effort with a systematic partitioning of the feasible region at successive iterations, concentrating the search in promising subsets. We used a 'warm-start' approach by initiating NP with beam angle samples derived from an integer programming (IP) model. In this study, we describe our implementation of the NP framework with a commercial optimization algorithm. We compared the NP framework with equi-spaced beam angle selection, the IP method, greedy heuristic and random sampling heuristic methods. The results of the NP approach were evaluated using two clinical cases (head and neck and whole pelvis) involving the primary tumor and nodal volumes. Our results show that NP produces better quality solutions than the alternative considered methods.

  5. Three-dimensional polarization marked multiple-QR code encryption by optimizing a single vectorial beam

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Hua, Binbin; Wang, Zhisong

    2015-10-01

    We demonstrate the feasibility of three dimensional (3D) polarization multiplexing by optimizing a single vectorial beam using a multiple-signal window multiple-plane (MSW-MP) phase retrieval algorithm. Original messages represented with multiple quick response (QR) codes are first partitioned into a series of subblocks. Then, each subblock is marked with a specific polarization state and randomly distributed in 3D space with both longitudinal and transversal adjustable freedoms. A generalized 3D polarization mapping protocol is established to generate a 3D polarization key. Finally, multiple-QR code is encrypted into one phase only mask and one polarization only mask based on the modified Gerchberg-Saxton (GS) algorithm. We take the polarization mask as the cyphertext and the phase only mask as additional dimension of key. Only when both the phase key and 3D polarization key are correct, original messages can be recovered. We verify our proposal with both simulation and experiment evidences.

  6. [External beam radiotherapy cone beam-computed tomography-based dose calculation].

    Science.gov (United States)

    Barateau, A; Céleste, M; Lafond, C; Henry, O; Couespel, S; Simon, A; Acosta, O; de Crevoisier, R; Périchon, N

    2018-02-01

    In external beam radiotherapy, the dose planning is currently based on computed tomography (CT) images. A relation between Hounsfield numbers and electron densities (or mass densities) is necessary for dose calculation taking heterogeneities into account. In image-guided radiotherapy process, the cone beam CT is classically used for tissue visualization and registration. Cone beam CT for dose calculation is also attractive in dose reporting/monitoring perspectives and particularly in a context of dose-guided adaptive radiotherapy. The accuracy of cone beam CT-based dose calculation is limited by image characteristics such as quality, Hounsfield numbers consistency and restrictive sizes of volume acquisition. The analysis of the literature identifies three kinds of strategies for cone beam CT-based dose calculation: establishment of Hounsfield numbers versus densities curves, density override to regions of interest, and deformable registration between CT and cone beam CT images. Literature results show that discrepancies between the reference CT-based dose calculation and the cone beam CT-based dose calculation are often lower than 3%, regardless of the method. However, they can also reach 10% with unsuitable method. Even if the accuracy of the cone beam CT-based dose calculation is independent of the method, some strategies are promising but need improvements in the automating process for a routine implementation. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  7. Optimal shape control of piezolaminated beams with different boundary condition and loading using genetic algorithm

    Science.gov (United States)

    Bendine, Kouider; Wankhade, Rajan L.

    2017-12-01

    Piezoelectric actuators are effectively used to control the response of light weight structures in shape, vibration and buckling. Optimization for the shape control of piezoelectric beam is the recent challenge which requires proper numerical technique to perform. The shape control of a composite beam using surface-bounded piezoelectric actuators has been investigated in the present work. The mathematical model is developed using two-node Timoshenko beam element coupling with the theory of linear piezoelectricity. First-order shear deformation theory is employed in the formulation to consider the effect of shear. In the analysis, the effect of the actuators position for different set of boundary conditions is investigated. For different boundary conditions which include clamped-free-, clamped-clamped- and simply supported beam, optimisation of piezoelectric patch location is investigated. Moreover, a genetic algorithm is adopted and implemented to optimize the required voltage to maintain the desired shape of the beam. This optimization technique is applied to different cases of composite beams with varying the boundary condition.

  8. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy

    Science.gov (United States)

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-01

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP

  9. Duality based contact shape optimization

    DEFF Research Database (Denmark)

    Vondrák, Vít; Dostal, Zdenek; Rasmussen, John

    2001-01-01

    An implementation of semi-analytic method for the sensitivity analysis in contact shape optimization without friction is described. This method is then applied to the contact shape optimization.......An implementation of semi-analytic method for the sensitivity analysis in contact shape optimization without friction is described. This method is then applied to the contact shape optimization....

  10. Torsion sensing based on patterned piezoelectric beams

    Science.gov (United States)

    Cha, Youngsu; You, Hangil

    2018-03-01

    In this study, we investigated the sensing characteristics of piezoelectric beams under torsional loads. We used partially patterned piezoelectric beams to sense torsion. In particular, the piezoelectric patches are located symmetrically with respect to the line of the shear center of the beam. The patterned piezoelectric beam is modeled as a slender beam, and its electrical responses are obtained by piezoelectric electromechanical equations. To validate the modeling framework, experiments are performed using a setup that forces pure torsional deformation. Three different geometric configurations of the patterned piezoelectric layer are used for the experiments. The frequency and amplitude of the forced torsional load are systematically varied in order to study the behavior of the piezoelectric sensor. Experimental results demonstrate that two voltage outputs of the piezoelectric beam are approximately out of phase with identical amplitude. Moreover, the length of the piezoelectric layers has a significant influence on the sensing properties. Our theoretical predictions using the model support the experimental findings.

  11. Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, M. Y. A; Sofu, T.; Zhong, Z.; Belch, H.; Naberezhnev, D.; Nuclear Engineering Division

    2008-10-30

    A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed via the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten

  12. Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles

    International Nuclear Information System (INIS)

    Gohar, M.Y.A; Sofu, T.; Zhong, Z.; Belch, H.; Naberezhnev, D.

    2008-01-01

    A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed via the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten

  13. Simulations of beam trajectory for position target optimization of extraction system output beams cyclotron proton Decy-13

    International Nuclear Information System (INIS)

    Idrus Abdul Kudus; Taufik

    2015-01-01

    Positioning and track simulation beam the cyclotron Decy-13 for laying optimization the target system have been done using lorentz force function and scilab 5.4.1 simulation. Magnetic field and electric field is calculated using Opera3D/Tosca as a simulation input. Used radio frequency is 77.66 MHz with the amplitude voltage is 40 kV is obtained energy 13 MeV. The result showed that the coordinates of the laying of the target system in a vacuum chamber is located at x = -389 mm and y = 445 mm with the width of the output beam is 10 mm. The laying stripper position for the output in center target is located at x = -76 mm and y =416 mm from the center coordinate on the center of dee with the energy of proton is 13 MeV at the point of beam extraction carbon foil. The changes position laying is carried out on range x = -70; y = 424 mm until x = - 118; y = 374 mm result for shifting area stripper which is still capable of deflection the electron beam. (author)

  14. A Monte Carlo-based treatment-planning tool for ion beam therapy

    CERN Document Server

    Böhlen, T T; Dosanjh, M; Ferrari, A; Haberer, T; Parodi, K; Patera, V; Mairan, A

    2013-01-01

    Ion beam therapy, as an emerging radiation therapy modality, requires continuous efforts to develop and improve tools for patient treatment planning (TP) and research applications. Dose and fluence computation algorithms using the Monte Carlo (MC) technique have served for decades as reference tools for accurate dose computations for radiotherapy. In this work, a novel MC-based treatment-planning (MCTP) tool for ion beam therapy using the pencil beam scanning technique is presented. It allows single-field and simultaneous multiple-fields optimization for realistic patient treatment conditions and for dosimetric quality assurance for irradiation conditions at state-of-the-art ion beam therapy facilities. It employs iterative procedures that allow for the optimization of absorbed dose and relative biological effectiveness (RBE)-weighted dose using radiobiological input tables generated by external RBE models. Using a re-implementation of the local effect model (LEM), theMCTP tool is able to perform TP studies u...

  15. SU-F-J-11: Radiobiologically Optimized Patient Localization During Prostate External Beam Localization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y; Gardner, S; Liu, C; Zhao, B; Wen, N; Brown, S; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To present a novel positioning strategy which optimizes radiation delivery with radiobiological response knowledge, and to evaluate its application during prostate external beam radiotherapy. Methods: Ten patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions with PTV = prostate + 7 mm margin, except for 5mm in the posterior direction. Five representative pretreatment CBCT images were selected for each patient, and prostate, rectum, and bladder were delineated on all CBCT images. Each CBCT was auto-registered to the corresponding PCT. Starting from this auto-matched position (AM-position), a search for optimal treatment position was performed utilizing a score function based on radiobiological and dosimetric indices (D98-DTV, NTCP-rectum, and NTCP-bladder) for the daily target volume (DTV), rectum, and bladder. DTV was defined as prostate + 4 mm margin to account for intra-fraction motion as well as contouring variability on CBCT. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The indices, averaged over the 10 patients’ treatment plans, were (mean±SD): 77.7±0.2 Gy (D98-PTV), 12.3±2.7% (NTCP-rectum), and 53.2±11.2% (NTCP-bladder). The corresponding values calculated on all 50 CBCT images at the AM-positions were 72.9±11.3 Gy (D98-DTV), 15.8±6.4% (NTCP-rectum), and 53.0±21.1% (NTCP-bladder), respectively. In comparison, calculated on CBCT at the ROCS-positions, the indices were 77.0±2.1 Gy (D98-DTV), 12.1±5.7% (NTCP-rectum), and 60.7±16.4% (NTCP-bladder). Compared to autoregistration, ROCS-optimization recovered dose coverage to target volume and lowered the risk to rectum. Moreover, NTCPrectum for one patient remained high after ROCS-optimization and therefore could potentially benefit from adaptive planning

  16. Application-Oriented Chemical Optimization of a Metakaolin Based Geopolymer.

    Science.gov (United States)

    Ferone, Claudio; Colangelo, Francesco; Roviello, Giuseppina; Asprone, Domenico; Menna, Costantino; Balsamo, Alberto; Prota, Andrea; Cioffi, Raffaele; Manfredi, Gaetano

    2013-05-10

    In this study the development of a metakaolin based geopolymeric mortar to be used as bonding matrix for external strengthening of reinforced concrete beams is reported. Four geopolymer formulations have been obtained by varying the composition of the activating solution in terms of SiO₂/Na₂O ratio. The obtained samples have been characterized from a structural, microstructural and mechanical point of view. The differences in structure and microstructure have been correlated to the mechanical properties. A major issue of drying shrinkage has been encountered in the high Si/Al ratio samples. In the light of the characterization results, the optimal geopolymer composition was then applied to fasten steel fibers to reinforced concrete beams. The mechanical behavior of the strengthened reinforced beams was evaluated by four-points bending tests, which were performed also on reinforced concrete beams as they are for comparison. The preliminary results of the bending tests point out an excellent behavior of the geopolymeric mixture tested, with the failure load of the reinforced beams roughly twice that of the control beam.

  17. Application-Oriented Chemical Optimization of a Metakaolin Based Geopolymer

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-05-01

    Full Text Available In this study the development of a metakaolin based geopolymeric mortar to be used as bonding matrix for external strengthening of reinforced concrete beams is reported. Four geopolymer formulations have been obtained by varying the composition of the activating solution in terms of SiO2/Na2O ratio. The obtained samples have been characterized from a structural, microstructural and mechanical point of view. The differences in structure and microstructure have been correlated to the mechanical properties. A major issue of drying shrinkage has been encountered in the high Si/Al ratio samples. In the light of the characterization results, the optimal geopolymer composition was then applied to fasten steel fibers to reinforced concrete beams. The mechanical behavior of the strengthened reinforced beams was evaluated by four-points bending tests, which were performed also on reinforced concrete beams as they are for comparison. The preliminary results of the bending tests point out an excellent behavior of the geopolymeric mixture tested, with the failure load of the reinforced beams roughly twice that of the control beam.

  18. Optimization of Beam Properties with Respect to Maximum Band-Gap

    DEFF Research Database (Denmark)

    Halkjær, Søren; Sigmund, Ole

    2004-01-01

    We study numerically the frequency band-gap phenomenon for bending waves in an infinite periodic beam. The outcome of the analysis is then subjected to an optimization problem in order to maximize these band-gaps. The band-gap maximization may be performed with respect to material parameters and ...

  19. Investigation based on nano-electromechanical system double Si3N4 resonant beam pressure sensor.

    Science.gov (United States)

    Yang, Chuan; Guo, Can; Yuan, Xiaowei

    2011-12-01

    This paper presents a type of NEMS (Nano-Electromechanical System) double Si3N4 resonant beams pressure sensor. The mathematical models are established in allusion to the Si3N4 resonant beams and pressure sensitive diaphragm. The distribution state of stress has been analyzed theoretically based on the mathematical model of pressure sensitive diaphragm; from the analysis result, the position of the Si3N4 resonant beams above the pressure sensitive diaphragm was optimized and then the dominance observed after the double resonant beams are adopted is illustrated. From the analysis result, the position of the Si3N4 resonant beams above the pressure sensitive diaphragm is optimized, illustrating advantages in the adoption of double resonant beams. The capability of the optimized sensor was generally analyzed using the ANSYS software of finite element analysis. The range of measured pressure is 0-400 Kpa, the coefficient of linearity correlation is 0.99346, and the sensitivity of the sensor is 498.24 Hz/Kpa, higher than the traditional sensors. Finally the processing techniques of the sensor chip have been designed with sample being successfully processed.

  20. Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    A. Martinez de la Ossa

    2017-09-01

    Full Text Available Density down-ramp (DDR injection is a promising concept in beam-driven plasma wakefield accelerators for the generation of high-quality witness beams. We review and complement the theoretical principles of the method and employ particle-in-cell (PIC simulations in order to determine constrains on the geometry of the density ramp and the current of the drive beam, regarding the applicability of DDR injection. Furthermore, PIC simulations are utilized to find optimized conditions for the production of high-quality beams. We find and explain the intriguing result that the injection of an increased charge by means of a steepened ramp favors the generation of beams with lower emittance. Exploiting this fact enables the production of beams with high charge (∼140  pC, low normalized emittance (∼200  nm and low uncorrelated energy spread (0.3% in sufficiently steep ramps even for drive beams with moderate peak current (∼2.5  kA.

  1. Applications of power beaming from space-based nuclear power stations. [Laser beaming to airplanes; microwave beaming to ground

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.

  2. Excimer laser beam profile recording based on electrochemical etched polycarbonate

    International Nuclear Information System (INIS)

    Parvin, P.; Jaleh, B.; Zangeneh, H.R.; Zamanipour, Z.; Davoud-Abadi, Gh.R.

    2008-01-01

    There is no polymeric detector used to register the beam profile of UV lasers. Here, a method is proposed for the measurement of intensive UV beam pattern of the excimer lasers based on the photoablated polycarbonate detector after coherent UV exposure and the subsequent electrochemical etching. UV laser induced defects in the form of self-microstructuring on polycarbonate are developed to replicate the spatial intensity distribution as a beam profiler

  3. Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization

    Directory of Open Access Journals (Sweden)

    Veliko Donchev

    2013-10-01

    Full Text Available Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials.

  4. (RadioBiological Optimization of External-Beam Radiotherapy

    Directory of Open Access Journals (Sweden)

    Alan E. Nahum

    2012-01-01

    Full Text Available “Biological optimization” (BIOP means planning treatments using (radiobiological criteria and models, that is, tumour control probability and normal-tissue complication probability. Four different levels of BIOP are identified: Level I is “isotoxic” individualization of prescription dose at fixed fraction number. is varied to keep the NTCP of the organ at risk constant. Significant improvements in local control are expected for non-small-cell lung tumours. Level II involves the determination of an individualized isotoxic combination of and fractionation scheme. This approach is appropriate for “parallel” OARs (lung, parotids. Examples are given using our BioSuite software. Hypofractionated SABR for early-stage NSCLC is effectively Level-II BIOP. Level-III BIOP uses radiobiological functions as part of the inverse planning of IMRT, for example, maximizing TCP whilst not exceeding a given NTCP. This results in non-uniform target doses. The NTCP model parameters (reflecting tissue “architecture” drive the optimizer to emphasize different regions of the DVH, for example, penalising high doses for quasi-serial OARs such as rectum. Level-IV BIOP adds functional imaging information, for example, hypoxia or clonogen location, to Level III; examples are given of our prostate “dose painting” protocol, BioProp. The limitations of and uncertainties inherent in the radiobiological models are emphasized.

  5. Parametric Design and Mechanical Analysis of Beams based on SINOVATION

    Science.gov (United States)

    Xu, Z. G.; Shen, W. D.; Yang, D. Y.; Liu, W. M.

    2017-07-01

    In engineering practice, engineer needs to carry out complicated calculation when the loads on the beam are complex. The processes of analysis and calculation take a lot of time and the results are unreliable. So VS2005 and ADK are used to develop a software for beams design based on the 3D CAD software SINOVATION with C ++ programming language. The software can realize the mechanical analysis and parameterized design of various types of beams and output the report of design in HTML format. Efficiency and reliability of design of beams are improved.

  6. Interactive Reliability-Based Optimal Design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle; Siemaszko, A.

    1994-01-01

    Interactive design/optimization of large, complex structural systems is considered. The objective function is assumed to model the expected costs. The constraints are reliability-based and/or related to deterministic code requirements. Solution of this optimization problem is divided in four main...... be used in interactive optimization....

  7. Progress on optimization of the nonlinear beam dynamics in the MEIC collider rings

    International Nuclear Information System (INIS)

    Nosochkov, Y. M.; Cai, Y.; Sullivan, M.; Wang, M-H; Wienands, U.; Morozov, V. S.; Derbenev, Ya. S.; Lin, F.; Pilat, F.; Zhang, Y.

    2015-01-01

    One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 10 34 cm -2 s -1 . The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.

  8. Progress on Optimization of the Nonlinear Beam Dynamics in the MEIC Collider Rings

    International Nuclear Information System (INIS)

    Morozov, Vasiliy S.; Derbenev, Yaroslav S.; Lin, Fanglei; Pilat, Fulvia; Zhang, Yuhong; Cai, Y.; Nosochkov, Y. M.; Sullivan, Michael; Wang, M.-H.; Wienands, Uli

    2015-09-01

    One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 10 34 cm -2 s -1 . The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.

  9. Maximum stiffness and minimum weight optimization of laminated composite beams using continuous fiber angles

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Stolpe, Mathias

    2011-01-01

    This paper deals with identification of optimal fiber orientations and laminate thicknesses in maximum stiffness and minimum weight design of laminated composite beams. The structural response is evaluated using beam finite elements which correctly account for the influence of the fiber orientation...... and cross section geometry. The resulting finite element matrices are significantly smaller than those obtained using equivalent finite element models. This modeling approach is therefore an attractive alternative in computationally intensive applications at the conceptual design stage where the focus...... and laminate thicknesses in the design of slender laminated composite structures....

  10. A piezoelectric vibration harvester based on clamped-guided beams

    NARCIS (Netherlands)

    Wang, Z.; Matova, S.; Elfrink, R.; Jambunathan, M.; Nooijer, C. de; Schaijk, R. van; Vullers, R.J.M.

    2012-01-01

    The paper addresses the design, modeling, fabrication and experimental results of a piezoelectric energy harvester based on clamped-guided beams. The design is featured by shorter mass displacement and higher reliability than cantilever beams. Two separate sets of capacitors allow exploiting both

  11. Optimization of the transporting beam for the CMS Barrel under a displacement constraint

    CERN Document Server

    AUTHOR|(CDS)2139604; Spadinger, Markus

    The aim of this research was to find the optimal solution for the design of the new transporting beam for the Compact Muon Solenoid (CMS) Barrel. Once the new crane in the experimental cavern is installed, the previous design of the beam will become obsolete due to its weight. The current beam is made from steel and has four air-pads to support it. The new design of the beam, which will be presented in this thesis, will be made of aluminium alloy and will have only two air-pads supporting it. Two main issues that guided the direction of this research were the concentrations of stresses and the displacements due to bending. At the beginning of the research, all of the focus will be on the beam. This approach will prove to be limited, which will lead to the gradual inclusion of other interfacing components in the analysis. In order to correctly mimic the behaviour of the beam under such loads, representative models of the air-pads will be introduced into the Finite Element Analysis (FEA). Part of the original B...

  12. Multiobjective evolutionary optimization of the number of beams, their orientations and weights for intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Schreibmann, Eduard; Lahanas, Michael; Xing, Lei; Baltas, Dimos

    2004-01-01

    We propose a hybrid multiobjective (MO) evolutionary optimization algorithm (MOEA) for intensity-modulated radiotherapy inverse planning and apply it to optimize the number of incident beams, their orientations and intensity profiles. The algorithm produces a set of efficient solutions, which represent different clinical trade-offs and contains information such as variety of dose distributions and dose-volume histograms. No importance factors are required and solutions can be obtained in regions not accessible by conventional weighted sum approaches. The application of the algorithm using a test case, a prostate and a head and neck tumour case is shown. The results are compared with MO inverse planning using a gradient-based optimization algorithm

  13. SU-F-T-197: Investigating Optimal Oblique-Beam Arrangement for Bilateral Metallic Prosthesis Prostate Cancer in Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rana, S; Tesfamicael, B; Park, S [McLaren Proton Therapy Center, Karmanos Cancer Institute at McLaren-Flint, Flint, MI (United States); Zheng, Y; Singh, H; Twyford, T [Procure Proton Therapy Center, Oklahoma City, OK (United States); Cheng, C [Vantage Oncology, West Hills, CA (United States)

    2016-06-15

    Purpose: The main purpose of this study is to investigate the optimum oblique-beam arrangement for bilateral metallic prosthesis prostate cancer treatment in pencil beam scanning (PBS) proton therapy. Methods: A computed tomography dataset of bilateral metallic prosthesis prostate cancer case was selected for this retrospective study. A total of four beams (rightanterior- oblique [RAO], left-anterior-oblique [LAO], left-posterior-oblique [LPO], and right-posterior-oblique [RPO]) were selected for treatment planning. PBS plans were generated using multi-field-optimization technique for a total dose of 79.2 Gy[RBE] to be delivered in 44 fractions. Specifically, five different PBS plans were generated based on 2.5% ± 2 mm range uncertainty using five different beam arrangements (i)LAO+RAO+LPO+RPO, (ii)LAO+RAO, (iii)LPO+RPO, (iv)RAO+LPO, and (v)LAO+RPO. Each PBS plan was optimized by applying identical dose-volume constraints to the PTV, rectum, and bladder. Treatment plans were then compared based on the dose-volume histograms results. Results: The PTV coverage was found to be greater than 99% in all five plans. The homogeneity index (HI) was found to be almost identical (range, 0.03–0.04). The PTV mean dose was found to be comparable (range, 81.0–81.1 Gy[RBE]). For the rectum, the lowest mean dose (8.0 Gy[RBE]) and highest mean dose (31.1 Gy[RBE]) were found in RAO+LAO plan and LPO+RPO plan, respectively. LAO+RAO plan produced the most favorable dosimetric results of the rectum in the medium-dose region (V50) and high-dose region (V70). For the bladder, the lowest (5.0 Gy[RBE]) and highest mean dose (10.3 Gy[RBE]) were found in LPO+RPO plan and RAO+LAO plan, respectively. Other dosimetric results (V50 and V70) of the bladder were slightly better in LPO+RPO plan than in other plans. Conclusion: Dosimetric findings from this study suggest that two anterior-oblique proton beams arrangement (LAO+RAO) is a more favorable option with the possibility of reducing rectal

  14. Beam Based RF Voltage Measurements and Longitudinal Beam Tomography at the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab; Bhat, S. [Fermilab

    2017-10-19

    Increasing proton beam power on neutrino production targets is one of the major goals of the Fermilab long term accelerator programs. In this effort, the Fermilab 8 GeV Booster synchrotron plays a critical role for at least the next two decades. Therefore, understanding the Booster in great detail is important as we continue to improve its performance. For example, it is important to know accurately the available RF power in the Booster by carrying out beam-based measurements in order to specify the needed upgrades to the Booster RF system. Since the Booster magnetic field is changing continuously measuring/calibrating the RF voltage is not a trivial task. Here, we present a beam based method for the RF voltage measurements. Data analysis is carried out using computer programs developed in Python and MATLAB. The method presented here is applicable to any RCS which do not have flat-bottom and flat-top in the acceleration magnetic ramps. We have also carried out longitudinal beam tomography at injection and extraction energies with the data used for RF voltage measurements. Beam based RF voltage measurements and beam tomography were never done before for the Fermilab Booster. The results from these investigations will be very useful in future intensity upgrades.

  15. An Electron Beam Profile Instrument Based on FBGs

    Directory of Open Access Journals (Sweden)

    Dan Sporea

    2014-08-01

    Full Text Available Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application.

  16. Beam based feedback for the Linac coherent light source

    International Nuclear Information System (INIS)

    Fairley, D.; Kim, K.; Luchini, K; Natampalli, P.; Piccoli, L.; Rogind, D.; Straumann, T.

    2012-01-01

    Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6*6 longitudinal feedback loop, and a loop to maintain the electron bunch charge have been commissioned on the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 120 Hz. This paper will discuss the design, configuration and commissioning of the beam-based Fast Feedback System for LCLS. Topics include algorithms for 120 Hz feedback, multi-cast network performance, actuator and sensor performance for single-pulse control and sensor read back, and feedback configuration and run-time control. (authors)

  17. GPU-Monte Carlo based fast IMRT plan optimization

    Directory of Open Access Journals (Sweden)

    Yongbao Li

    2014-03-01

    Full Text Available Purpose: Intensity-modulated radiation treatment (IMRT plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow.Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, a rough dose calculation is conducted with only a few number of particle per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final result.Results: For a lung case with 5317 beamlets, 105 particles per beamlet in the first round, and 108 particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec.Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.--------------------------------Cite this article as: Li Y, Tian Z

  18. Performance and perspectives of the diamond based Beam Condition Monitor for beam loss monitoring at CMS

    CERN Document Server

    AUTHOR|(CDS)2080862

    2015-01-01

    At CMS, a beam loss monitoring system is operated to protect the silicon detectors from high particle rates, arising from intense beam loss events. As detectors, poly-crystalline CVD diamond sensors are placed around the beam pipe at several locations inside CMS. In case of extremely high detector currents, the LHC beams are automatically extracted from the LHC rings.Diamond is the detector material of choice due to its radiation hardness. Predictions of the detector lifetime were made based on FLUKA monte-carlo simulations and irradiation test results from the RD42 collaboration, which attested no significant radiation damage over several years.During the LHC operational Run1 (2010 â?? 2013), the detector efficiencies were monitored. A signal decrease of about 50 times stronger than expectations was observed in the in-situ radiation environment. Electric field deformations due to charge carriers, trapped in radiation induced lattice defects, are responsible for this signal decrease. This so-called polarizat...

  19. Beam-based alignment of CLIC drive beam decelerator using girders movers

    CERN Document Server

    Sterbini, G

    2011-01-01

    The CLIC drive beams will provide the rf power to accelerate the colliding beams: in order to reach the design performance, an efficient transport of the drive beam has to be ensured in spite of its challenging energy spread and large current intensity. As shown in previous studies, the specifications can be met by coupling a convenient optics design with the state-of-the-art of pre-alignment and beambased alignment techniques. In this paper we consider a novel beam-based alignment scheme that does not require quadrupole movers or dipole correctors but uses the motors already foreseen for the pre-alignment system. This implies potential savings in terms of complexity and cost at the expense of the alignment flexibility: the performance, limitations and sensitivity to pre-alignment tolerances of this method are discussed.

  20. Optimized treatment parameters to account for interfractional variability in scanned ion beam therapy of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Brevet, Romain

    2015-02-04

    Scanned ion beam therapy of lung tumors is severely limited in its clinical applicability by intrafractional organ motion, interference effects between beam and tumor motion (interplay) as well as interfractional anatomic changes. To compensate for dose deterioration by intrafractional motion, motion mitigation techniques, such as gating have been developed. The latter confines the irradiation to a predetermined breathing state, usually the stable end-exhale phase. However, optimization of the treatment parameters is needed to further improve target dose coverage and normal tissue sparing. The aim of the study presented in this dissertation was to determine treatment planning parameters that permit to recover good target coverage and homogeneity during a full course of lung tumor treatments. For 9 lung tumor patients from MD Anderson Cancer Center (MDACC), a total of 70 weekly time-resolved computed tomography (4DCT) datasets were available, which depict the evolution of the patient anatomy over the several fractions of the treatment. Using the GSI in-house treatment planning system (TPS) TRiP4D, 4D simulations were performed on each weekly 4DCT for each patient using gating and optimization of a single treatment plan based on a planning CT acquired prior to treatment. It was found that using a large beam spot size, a short gating window (GW), additional margins and multiple fields permitted to obtain the best results, yielding an average target coverage (V95) of 96.5%. Two motion mitigation techniques, one approximating the rescanning process (multiple irradiations of the target with a fraction of the planned dose) and one combining the latter and gating, were then compared to gating. Both did neither show an improvement in target dose coverage nor in normal tissue sparing. Finally, the total dose delivered to each patient in a simulation of a fractioned treatment was calculated and clinical requirements in terms of target coverage and normal tissue sparing were

  1. Tertiary particle production and target optimization of the H2 beam line in the SPS North Area

    CERN Document Server

    Tellander, Felix

    2016-01-01

    H2 beam line of SPS North Area is a high energy, high resolution and multipurpose particle beam line. It is able to transport secondary hadron and pure electron beams with momenta between 10 and 400 GeV/c to be exploited by several different experiments. In this work, tertiary particle production from a secondary target placed in the line is studied. The introduction of this “filter” target enhances the middle to low momentum hadron (20 - 60 GeV/c) and electron production. In this work, a systematic Monte Carlo simulation study using a GEANT 4 based package, G4beamline, has been performed in order to investigate the tertiary particle production from several different targets. More specifically, Cu, W and polyethylene targets with different thicknesses have been studied. The proton over pi+ ratio is of particular interest, as well as the optimal electron production for several momenta. The present work will act as a reference to be used by the future test-beam users of the line as an indication of the expe...

  2. Segment-based dose optimization using a genetic algorithm

    International Nuclear Information System (INIS)

    Cotrutz, Cristian; Xing Lei

    2003-01-01

    Intensity modulated radiation therapy (IMRT) inverse planning is conventionally done in two steps. Firstly, the intensity maps of the treatment beams are optimized using a dose optimization algorithm. Each of them is then decomposed into a number of segments using a leaf-sequencing algorithm for delivery. An alternative approach is to pre-assign a fixed number of field apertures and optimize directly the shapes and weights of the apertures. While the latter approach has the advantage of eliminating the leaf-sequencing step, the optimization of aperture shapes is less straightforward than that of beamlet-based optimization because of the complex dependence of the dose on the field shapes, and their weights. In this work we report a genetic algorithm for segment-based optimization. Different from a gradient iterative approach or simulated annealing, the algorithm finds the optimum solution from a population of candidate plans. In this technique, each solution is encoded using three chromosomes: one for the position of the left-bank leaves of each segment, the second for the position of the right-bank and the third for the weights of the segments defined by the first two chromosomes. The convergence towards the optimum is realized by crossover and mutation operators that ensure proper exchange of information between the three chromosomes of all the solutions in the population. The algorithm is applied to a phantom and a prostate case and the results are compared with those obtained using beamlet-based optimization. The main conclusion drawn from this study is that the genetic optimization of segment shapes and weights can produce highly conformal dose distribution. In addition, our study also confirms previous findings that fewer segments are generally needed to generate plans that are comparable with the plans obtained using beamlet-based optimization. Thus the technique may have useful applications in facilitating IMRT treatment planning

  3. Efficient design of a truss beam by applying first order optimization method

    Science.gov (United States)

    Fedorik, Filip

    2013-10-01

    Applications of optimization procedures in structural designs are widely discussed problems, which are caused by currently still-increasing demands on structures. Using of optimization methods in efficient designs passes through great development, especially in duplicate production where even small savings might lead to considerable reduction of total costs. The presented paper deals with application and analysis of the First Order optimization technique, which is implemented in the Design Optimization module that uses the main features of multi-physical FEM program ANSYS, in steel truss-beam design. Constraints of the design are stated by EN 1993 Eurocode 3, for uniform compression forces in compression members and tensile resistance moments in tension members. Furthermore, a minimum frequency of the first natural modal shape of the structure is determined. The aim of the solution is minimizing the weight of the structure by changing members' cross-section properties.

  4. Equilibrium-Based Nonhomogeneous Anisotropic Beam Element

    DEFF Research Database (Denmark)

    Krenk, Steen; Couturier, Philippe

    2017-01-01

    The stiffness matrix and the nodal forces associated with distributed loads are obtained for a nonhomogeneous anisotropic elastic beam element by the use of complementary energy. The element flexibility matrix is obtained by integrating the complementary-energy density corresponding to six beam...... equilibrium states, and then inverted and expanded to provide the element-stiffness matrix. Distributed element loads are represented via corresponding internal-force distributions in local equilibrium with the loads. The element formulation does not depend on assumed shape functions and can, in principle......, include any variation of cross-sectional properties and load variation, provided that these are integrated with sufficient accuracy in the process. The ability to represent variable cross-sectional properties, coupling from anisotropic materials, and distributed element loads is illustrated by numerical...

  5. Reactor - and accelerator-based filtered beams

    International Nuclear Information System (INIS)

    Mill, A.J.; Harvey, J.R.

    1980-01-01

    The neutrons produced in high flux nuclear reactors and in accelerator, induced fission and spallation reactions, represent the most intense sources of neutrons available for research. However, the neutrons from these sources are not monoenergetic, covering the broad range extending from 10 -3 eV up to 10 7 eV or so. In order to make quantitative measurements of the effects of neutrons and their dependence on neutron energy it is desirable to have mono-energetic neutron sources. The paper describes briefly methods of obtaining mono-energetic neutrons and different methods of filtration. This is followed by more detailed discussion of neutron window filters and a summary of the filtered beam facilities using this technique. The review concludes with a discussion of the main applications of filtered beams and their present and future importance

  6. Optimization of the standards clinico-neurology and beam diagnostics of an easy brain injury

    International Nuclear Information System (INIS)

    Vakulenko, I.P.; Semisalov, S.Ya.; Sajko, D.Yu.

    2003-01-01

    16825 cases of a brain injury (BI) at the persons are investigated is more senior than 14 years. Axial computer topography (ACT) at concussion of a head brain was made 1/3 injureds. The careful analysis clinico-neuralgic symptoms allows to optimize purpose the ACT at easy BI, that not only improves quality of diagnostics, but in the certain degree normalizes beam loading on the injureds

  7. Reliability-Based Optimization in Structural Engineering

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1994-01-01

    In this paper reliability-based optimization problems in structural engineering are formulated on the basis of the classical decision theory. Several formulations are presented: Reliability-based optimal design of structural systems with component or systems reliability constraints, reliability-b...

  8. An optimal algorithm for configuring delivery options of a one-dimensional intensity-modulated beam

    International Nuclear Information System (INIS)

    Luan Shuang; Chen, Danny Z; Zhang, Li; Wu Xiaodong; Yu, Cedric X

    2003-01-01

    The problem of generating delivery options for one-dimensional intensity-modulated beams (1D IMBs) arises in intensity-modulated radiation therapy. In this paper, we present an algorithm with the optimal running time, based on the 'rightmost-preference' method, for generating all distinct delivery options for an arbitrary 1D IMB. The previously best known method for generating delivery options for a 1D IMB with N left leaf positions and N right leaf positions is a 'brute-force' solution, which first generates all N! possible combinations of the left and right leaf positions and then removes combinations that are not physically allowed delivery options. Compared with the brute-force method, our algorithm has several advantages: (1) our algorithm runs in an optimal time that is linearly proportional to the total number of distinct delivery options that it actually produces. Note that for a 1D IMB with multiple peaks, the total number of distinct delivery options in general tends to be considerably smaller than the worst case N!. (2) Our algorithm can be adapted to generating delivery options subject to additional constraints such as the 'minimum leaf separation' constraint. (3) Our algorithm can also be used to generate random subsets of delivery options; this feature is especially useful when the 1D IMBs in question have too many delivery options for a computer to store and process. The key idea of our method is that we impose an order on how left leaf positions should be paired with right leaf positions. Experiments indicated that our rightmost-preference algorithm runs dramatically faster than the brute-force algorithm. This implies that our algorithm can handle 1D IMBs whose sizes are substantially larger than those handled by the brute-force method. Applications of our algorithm in therapeutic techniques such as intensity-modulated arc therapy and 2D modulations are also discussed

  9. Image reconstruction of cyclotron beam based on Hopfield network

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Tetsuya; Murakami, Thoru; Tanizaki, Naoaki (Sumitomo Heavy Industries, Tanashi, Tokyo (Japan). Systems Engineering Lab.)

    1991-12-01

    This paper describes a beam image reconstruction method based on Hopfield neural networks. The images of beam emitted from cyclotrons are measured as three projection patterns by 3-wire beam sensors. The reconstruction of beam image is necessary because the measured projection patterns are not easy to understand for inexperienced operators. First, the energy function is defined using the measured projection patterns as constraints. Then surface tension terms, which make the surface area minimal, are added to it in order to generate smooth images. The weights of links of the Hopfield network are determined by the coefficients of the energy function. Through the convergence of the network, beam images which satisfy the projection patterns and look natural for human sense can be reconstructed. (author).

  10. Recent progress in tailoring trap-based positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Natisin, M. R.; Hurst, N. C.; Danielson, J. R.; Surko, C. M. [Physics Department, University of California, San Diego La Jolla CA 92093-0319 (United States)

    2013-03-19

    Recent progress is described to implement two approaches to specially tailor trap-based positron beams. Experiments and simulations are presented to understand the limits on the energy spread and pulse duration of positron beams extracted from a Penning-Malmberg (PM) trap after the particles have been buffer-gas cooled (or heated) in the range of temperatures 1000 {>=} T {>=} 300 K. These simulations are also used to predict beam performance for cryogenically cooled positrons. Experiments and simulations are also presented to understand the properties of beams formed when plasmas are tailored in a PM trap in a 5 tesla magnetic field, then non-adiabatically extracted from the field using a specially designed high-permeability grid to create a new class of electrostatically guided beams.

  11. Beam-based Feedback for the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Fairley, D.; Allison, S.; Chevtsov, S.; Chu, P.; Decker, F.J.; Emma, P.; Frisch, J.; Himel, T.; Kim, K.; Krejcik, P.; Loos, H.; Lahey, T.; Natampalli, P.; Peng, S.; Rogind, D.; Shoaee, H.; Straumann, T.; Williams, E.; White, G.; Wu, J.; Zelazney, M.; /SLAC

    2010-02-11

    Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6 x 6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.

  12. First experiences of beam presence detection based on dedicated beam position monitors

    International Nuclear Information System (INIS)

    Jalal, A.; Gabourin, S.; Gasior, M.; Todd, B.

    2012-01-01

    High intensity particle beam injection into the LHC is only permitted when a low intensity pilot beam is already circulating in the LHC. This requirement addresses some of the risks associated with high intensity injection, and is enforced by a so-called Beam Presence Flag (BPF) system which is part of the interlock chain between the LHC and its injector complex. For the 2010 LHC run, the detection of the presence of this pilot beam was implemented using the LHC Fast Beam Current Transformer (FBCT) system. However, the primary function of the FBCTs, that is reliable measurement of beam currents, did not allow the BPF system to satisfy all quality requirements of the LHC Machine Protection System (MPS). Safety requirements associated with high intensity injections triggered the development of a dedicated system, based on Beam Position Monitors (BPM). This system was meant to work first in parallel with the FBCT BPF system and eventually replace it. At the end of 2010 and in 2011, this new BPF implementation based on BPMs was designed, built, tested and deployed. This paper reviews both the FBCT and BPM implementation of the BPF system, outlining the changes during the transition period. The paper briefly describes the testing methods, focuses on the results obtained from the tests performed during the end of 2010 LHC run and shows the changes made for the BPM BPF system deployment in LHC in 2011. Whilst the system has been proved to work with a threshold of 6*10 8 charges, it has been implemented with a threshold of 2*10 9 charges to protect the LHC. (authors)

  13. New reference trajectory optimization algorithm for a flight management system inspired in beam search

    Directory of Open Access Journals (Sweden)

    Alejandro MURRIETA-MENDOZA

    2017-08-01

    Full Text Available With the objective of reducing the flight cost and the amount of polluting emissions released in the atmosphere, a new optimization algorithm considering the climb, cruise and descent phases is presented for the reference vertical flight trajectory. The selection of the reference vertical navigation speeds and altitudes was solved as a discrete combinatory problem by means of a graph-tree passing through nodes using the beam search optimization technique. To achieve a compromise between the execution time and the algorithm’s ability to find the global optimal solution, a heuristic methodology introducing a parameter called “optimism coefficient was used in order to estimate the trajectory’s flight cost at every node. The optimal trajectory cost obtained with the developed algorithm was compared with the cost of the optimal trajectory provided by a commercial flight management system(FMS. The global optimal solution was validated against an exhaustive search algorithm(ESA, other than the proposed algorithm. The developed algorithm takes into account weather effects, step climbs during cruise and air traffic management constraints such as constant altitude segments, constant cruise Mach, and a pre-defined reference lateral navigation route. The aircraft fuel burn was computed using a numerical performance model which was created and validated using flight test experimental data.

  14. Performance based analysis of hidden beams in reinforced concrete structures

    Directory of Open Access Journals (Sweden)

    Helou Samir H.

    2014-01-01

    Full Text Available Local and perhaps regional vernacular reinforced concrete building construction leans heavily against designing slabs with imbedded hidden beams for flooring systems in most structures including major edifices. The practice is distinctive in both framed and in shear wall structures. Hidden beams are favoured structural elements due to their many inherent features that characterize them; they save on floor height clearance; they also save on formwork, labour and material cost. Moreover, hidden beams form an acceptable aesthetic appearance that does not hinder efficient interior space partitioning. Such beams have the added advantage of clearing the way for horizontal electromechanical ductwork. However, seismic considerations, in all likelihood, are seldom seriously addressed. The mentioned structural system of shallow beams is adopted in ribbed slabs, waffle slabs and at times with solid slabs. Ribbed slabs and waffle slabs are more prone to hidden beam inclusion due to the added effective height of the concrete section. Due to the presence of a relatively high reinforcement ratio at the joints the sections at such location tend to become less ductile with unreliable contribution to spandrel force resistance. In the following study the structural influence of hidden beams within slabs is investigated. With the primary focus on a performance based analysis of such elements within a structure. This is investigated with due attention to shear wall contribution to the overall behaviour of such structures. Numerical results point in the direction that the function of hidden beams is not as adequate as desired. Therefore it is strongly believed that they are generally superfluous and maybe eliminated altogether. Conversely, shallow beams seem to render the overall seismic capacity of the structure unreliable. Since such an argument is rarely manifested within the linear analysis domain; a pushover analysis exercise is thus mandatory for behaviour

  15. Integrated beam orientation and scanning-spot optimization in intensity-modulated proton therapy for brain and unilateral head and neck tumors.

    Science.gov (United States)

    Gu, Wenbo; O'Connor, Daniel; Nguyen, Dan; Yu, Victoria Y; Ruan, Dan; Dong, Lei; Sheng, Ke

    2018-02-02

    Intensity-Modulated Proton Therapy (IMPT) is the state-of-the-art method of delivering proton radiotherapy. Previous research has been mainly focused on optimization of scanning spots with manually selected beam angles. Due to the computational complexity, the potential benefit of simultaneously optimizing beam orientations and spot pattern could not be realized. In this study, we developed a novel integrated beam orientation optimization (BOO) and scanning-spot optimization algorithm for intensity-modulated proton therapy (IMPT). A brain chordoma and three unilateral head-and-neck patients with a maximal target size of 112.49 cm 3 were included in this study. A total number of 1162 noncoplanar candidate beams evenly distributed across 4π steradians were included in the optimization. For each candidate beam, the pencil-beam doses of all scanning spots covering the PTV and a margin were calculated. The beam angle selection and spot intensity optimization problem was formulated to include three terms: a dose fidelity term to penalize the deviation of PTV and OAR doses from ideal dose distribution; an L1-norm sparsity term to reduce the number of active spots and improve delivery efficiency; a group sparsity term to control the number of active beams between 2 and 4. For the group sparsity term, convex L2,1-norm and nonconvex L2,1/2-norm were tested. For the dose fidelity term, both quadratic function and linearized equivalent uniform dose (LEUD) cost function were implemented. The optimization problem was solved using the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The IMPT BOO method was tested on three head-and-neck patients and one skull base chordoma patient. The results were compared with IMPT plans created using column generation selected beams or manually selected beams. The L2,1-norm plan selected spatially aggregated beams, indicating potential degeneracy using this norm. L2,1/2-norm was able to select spatially separated beams and achieve

  16. GEM-based beam profile monitors for the antiproton decelerator

    CERN Document Server

    Duarte Pinto, S.; Ropelewski, L.; Spanggaard, J.; Tranquille, G.

    2012-01-01

    The new beam profile measurement for the Antiproton Decelerator (AD) at CERN is based on a single Gas Electron Multiplier (GEM) with a 2D readout structure. This detector is very light, ~0.4% X0, as required by the low energy of the antiprotons, 5.3 MeV. This overcomes the problems previously encountered with multi-wire proportional chambers (MWPC) for the same purpose, where beam interactions with the detector severely affect the obtained profiles. A prototype was installed and successfully tested in late 2010, with another five detectors now installed in the ASACUSA and AEGIS beam lines. We will provide a detailed description of the detector and discuss the results obtained. The success of these detectors in the AD makes GEM-based detectors likely candidates for upgrade of the beam profile monitors in all experimental areas at CERN. The various types of MWPC currently in use are aging and becoming increasingly difficult to maintain.

  17. Classifiers based on optimal decision rules

    KAUST Repository

    Amin, Talha

    2013-11-25

    Based on dynamic programming approach we design algorithms for sequential optimization of exact and approximate decision rules relative to the length and coverage [3, 4]. In this paper, we use optimal rules to construct classifiers, and study two questions: (i) which rules are better from the point of view of classification-exact or approximate; and (ii) which order of optimization gives better results of classifier work: length, length+coverage, coverage, or coverage+length. Experimental results show that, on average, classifiers based on exact rules are better than classifiers based on approximate rules, and sequential optimization (length+coverage or coverage+length) is better than the ordinary optimization (length or coverage).

  18. Quadrupole Beam-Based Alignment in the RHIC Interaction Regions

    Energy Technology Data Exchange (ETDEWEB)

    T. Satogata, J. Ziegler

    2011-03-01

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements.

  19. GA BASED GLOBAL OPTIMAL DESIGN PARAMETERS FOR ...

    African Journals Online (AJOL)

    This article uses Genetic Algorithm (GA) for the global design optimization of consecutive reactions taking place in continuous stirred tank reactors (CSTRs) connected in series. GA based optimal design determines the optimum number of CSTRs in series to achieve the maximum conversion, fractional yield and selectivity ...

  20. Investigation and optimization of transverse non-linear beam dynamics in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Dominic Markus

    2010-03-10

    The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a

  1. Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides

    Science.gov (United States)

    Wood, Michael G.; Chen, Li; Burr, Justin R.; Reano, Ronald M.

    2014-01-01

    We carried out a multiparameter fabrication study designed to reduce the line edge roughness (LER) of electron beam (e-beam) patterned hydrogen silsesquioxane resist for the purpose of producing low-loss silicon strip waveguides. Reduced mask roughness was achieved for 50°C pre-exposure baking, 5000 μC/cm2 dose with a beam spot size more than twice as large as the electron beam step size, development in 25% tetramethylammonium hydroxide and postdevelopment baking with rapid thermal annealing in an O2 ambient at 1000°C. The LER caused by pattern fracturing and stage stitches was reduced with multipass writing and per-pass linear and rotational offsets. Si strip waveguides patterned with the optimized mask have root-mean-square sidewall roughness of 2.1 nm with a correlation length of 94 nm, as measured by three-dimensional atomic force microscopy. Measured optical propagation losses of these waveguides across the telecommunications C-band were 2.5 and 2.8 dB/cm for the transverse magnetic and transverse electric modes, respectively. These reduced loss waveguides enable the fabrication of advanced planar lightwave circuit topologies.

  2. Reliability Based Optimization of Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1987-01-01

    The optimization problem to design structural systems such that the reliability is satisfactory during the whole lifetime of the structure is considered in this paper. Some of the quantities modelling the loads and the strength of the structure are modelled as random variables. The reliability...... is estimated using first. order reliability methods ( FORM ). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements satisfies given requirements or such that the systems reliability satisfies a given requirement....... For these optimization problems it is described how a sensitivity analysis can be performed. Next, new optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability based optimization problem sequentially using quasi-analytical derivatives. Finally...

  3. Theoretical and numerical studies on the transport of transverse beam quality in plasma-based accelerators

    International Nuclear Information System (INIS)

    Mehrling, Timon Johannes

    2014-11-01

    This work examines effects, which impact the transverse quality of electron-beams in plasma-based accelerators, by means of theoretical and numerical methods. Plasma-based acceleration is a promising candidate for future particle accelerator technologies. In plasma-based acceleration, highly intense laser beams or high-current relativistic particle beams are focused into a plasma to excite plasma-waves with extreme transverse and longitudinal electric fields. The amplitude of these fields exceed with 10-100 GV/m the ones in today's radio-frequency accelerators by several orders of magnitude, hence, in principle allowing for accordingly shorter and cheaper accelerators based on plasma. Despite the tremendous progress in the recent decade, beams from plasma accelerators are not yet achieving the quality as demanded for pivotal applications of relativistic electron-beams, e.g. free-electron lasers (FELs).Studies within this work examine how the quality can be optimized in the production of the beams and preserved during the acceleration and transport to the interaction region. Such studies cannot be approached purely analytical but necessitate numerical methods, such as the Particle-In-Cell (PIC) method, which can model kinetic, electrodynamic and relativistic plasma phenomena. However, this method is computationally too expensive for parameter-scans in three-dimensional geometries. Hence, a quasi-static PIC code was developed in connection with this work, which is significantly more effective than the full PIC method for a class of problems in plasma-based acceleration.The evolution of the emittance of beams which are injected into plasma modules was studied in this work by means of theoretical and the above numerical methods. It was shown that the beam parameters need to be matched accurately into the focusing plasma-channel in order to allow for beam-quality preservation. This suggested that new extraction and injection-techniques are required in staged plasma

  4. Computer optimization of noncoplanar beam setups improves stereotactic treatment of liver tumors

    International Nuclear Information System (INIS)

    Pooter, Jacco A. de; Mendez Romero, Alejandra; Jansen, Wim; Storchi, Pascal; Woudstra, Evert; Levendag, Peter C.; Heijmen, Ben

    2006-01-01

    Purpose: To investigate whether computer-optimized fully noncoplanar beam setups may improve treatment plans for the stereotactic treatment of liver tumors. Methods: An algorithm for automated beam orientation and weight selection (Cycle) was extended for noncoplanar stereotactic treatments. For 8 liver patients previously treated in our clinic using a prescription isodose of 65%, Cycle was used to generate noncoplanar and coplanar plans with the highest achievable minimum planning target volume (PTV) dose for the clinically delivered isocenter and mean liver doses, while not violating the clinically applied hard planning constraints. The clinical and the optimized coplanar and noncoplanar plans were compared, with respect to D PTV,99% , the dose received by 99% of the PTV, the PTV generalized equivalent uniform dose (gEUD), and the compliance with the clinical constraints. Results: For each patient, the ratio between D PTV,99% and D isoc , and the gEUD -5 and gEUD -2 values of the optimized noncoplanar plan were higher than for the clinical plan with an average increase of respectively 18.8% (range, 7.8-24.0%), 6.4 Gy (range, 3.4-11.8 Gy), and 10.3 Gy (range, 6.7-12.5). D PTV,99% /D isoc , gEUD -5 , and gEUD -2 of the optimized noncoplanar plan was always higher than for the optimized coplanar plan with an average increase of, respectively, 4.5% (range, 0.2-9.7%), 2.7 Gy (range, 0.6-9.7 Gy), and 3.4 Gy (range, 0.6-9.9 Gy). All plans were within the imposed hard constraints. On average, the organs at risk were better spared with the optimized noncoplanar plan than with the optimized coplanar plan and the clinical plan. Conclusions: The use of automatically generated, fully noncoplanar beam setups results in plans that are favorable compared with coplanar techniques. Because of the automation, we found that the planning workload can be decreased from 1 to 2 days to 1 to 2 h

  5. PARTICLE SWARM OPTIMIZATION BASED OF THE MAXIMUM ...

    African Journals Online (AJOL)

    2010-06-30

    Jun 30, 2010 ... PARTICLE SWARM OPTIMIZATION BASED OF THE MAXIMUM. PHOTOVOLTAIC POWER TRACTIOQG UNDER DIFFERENT CONDITIONS. Y. Labbi*, D. Ben Attous and H. Sarhoud. Department of Electrotechnics, Faculty of Electrical Engineering El-Oued University. Center, Algeria. Received: 01 ...

  6. Ion acceleration in electrostatic collisionless shock: on the optimal density profile for quasi-monoenergetic beams

    Science.gov (United States)

    Boella, E.; Fiúza, F.; Stockem Novo, A.; Fonseca, R.; Silva, L. O.

    2018-03-01

    A numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ions by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.

  7. An embeddable optical strain gauge based on a buckled beam

    Science.gov (United States)

    Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie

    2017-11-01

    We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.

  8. Automated beam placement for breast radiotherapy using a support vector machine based algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xuan; Kong, Dewen; Jozsef, Gabor; Chang, Jenghwa; Wong, Edward K.; Formenti, Silvia C.; Wang Yao [Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, New York 11201 (United States); Department of Radiation Oncology, School of Medicine, Langone Medical Center, New York University, New York, New York 10016 (United States); Department of Computer Science and Engineering, Polytechnic Institute of New York University, Brooklyn, New York 11201 (United States); Department of Radiation Oncology, School of Medicine, Langone Medical Center, New York University, New York, New York 10016 (United States); Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, New York 11201 (United States)

    2012-05-15

    Purpose: To develop an automated beam placement technique for whole breast radiotherapy using tangential beams. We seek to find optimal parameters for tangential beams to cover the whole ipsilateral breast (WB) and minimize the dose to the organs at risk (OARs). Methods: A support vector machine (SVM) based method is proposed to determine the optimal posterior plane of the tangential beams. Relative significances of including/avoiding the volumes of interests are incorporated into the cost function of the SVM. After finding the optimal 3-D plane that separates the whole breast (WB) and the included clinical target volumes (CTVs) from the OARs, the gantry angle, collimator angle, and posterior jaw size of the tangential beams are derived from the separating plane equation. Dosimetric measures of the treatment plans determined by the automated method are compared with those obtained by applying manual beam placement by the physicians. The method can be further extended to use multileaf collimator (MLC) blocking by optimizing posterior MLC positions. Results: The plans for 36 patients (23 prone- and 13 supine-treated) with left breast cancer were analyzed. Our algorithm reduced the volume of the heart that receives >500 cGy dose (V5) from 2.7 to 1.7 cm{sup 3} (p = 0.058) on average and the volume of the ipsilateral lung that receives >1000 cGy dose (V10) from 55.2 to 40.7 cm{sup 3} (p = 0.0013). The dose coverage as measured by volume receiving >95% of the prescription dose (V95%) of the WB without a 5 mm superficial layer decreases by only 0.74% (p = 0.0002) and the V95% for the tumor bed with 1.5 cm margin remains unchanged. Conclusions: This study has demonstrated the feasibility of using a SVM-based algorithm to determine optimal beam placement without a physician's intervention. The proposed method reduced the dose to OARs, especially for supine treated patients, without any relevant degradation of dose homogeneity and coverage in general.

  9. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    Science.gov (United States)

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Implementation of Accelerated Beam-Specific Matched-Filter-Based Optical Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, A S; Rice, K L; Taha, T M

    2009-01-29

    Accurate automated alignment of laser beams in the National Ignition Facility (NIF) is essential for achieving extreme temperature and pressure required for inertial confinement fusion. The alignment achieved by the integrated control systems relies on algorithms processing video images to determine the position of the laser beam images in real-time. Alignment images that exhibit wide variations in beam quality require a matched-filter algorithm for position detection. One challenge in designing a matched-filter based algorithm is to construct a filter template that is resilient to variations in imaging conditions while guaranteeing accurate position determination. A second challenge is to process the image as fast as possible. This paper describes the development of a new analytical template that captures key recurring features present in the beam image to accurately estimate the beam position under good image quality conditions. Depending on the features present in a particular beam, the analytical template allows us to create a highly tailored template containing only those selected features. The second objective is achieved by exploiting the parallelism inherent in the algorithm to accelerate processing using parallel hardware that provides significant performance improvement over conventional processors. In particular, a Xilinx Virtex II Pro FPGA hardware implementation processing 32 templates provided a speed increase of about 253 times over an optimized software implementation running on a 2.0 GHz AMD Opteron core.

  11. Risk based surveillance test interval optimization

    International Nuclear Information System (INIS)

    Cepin, M.; Mavko, B.

    1995-01-01

    First step towards the risk based regulation is to determine the optimal surveillance test intervals for the safety equipment which is tested at nuclear power plant operation. In the paper we have presented the process of optimal surveillance test interval optimization from our perspective. It consist of three levels: component level, system level and plant level. It bases on the results of the Probabilistic Safety Assessment and is focused to minimize risk. At component and system level the risk measure is component or system mean unavailability respectively. At plant level the risk measure is core damage frequency. (author)

  12. A study of optical design and optimization applied to lens module of laser beam shaping of advanced modern optical device

    Science.gov (United States)

    Tsai, Cheng-Mu; Fang, Yi-Chin; Chen, Zhen Hsiang

    2011-10-01

    This study used the aspheric lens to realize the laser flat-top optimization, and applied the genetic algorithm (GA) to find the optimal results. Using the characteristics of aspheric lens to obtain the optimized high quality Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using two aspheric lenses in the aspheric surface optical system to complete 80% spot narrowing under standard deviation of 0.6142.

  13. Application of diamond based beam loss monitors at LHC

    International Nuclear Information System (INIS)

    Hempel, Maria

    2013-04-01

    collimators. Ionization chambers have a time resolution of 40 s that is a half LHC turn and in case of a large beam loss, they request a beam dump. Another type of beam loss monitors are diamond sensors because of a time resolution of about one nanosecond and high radiation hardness. One diamond detector system is located in the cleaning region of the LHC and is able to detect various types of beam losses. Another diamond detector system (BCM1F) is installed inside the CMS detector to protect the CMS from adverse beam conditions. BCM1F monitors also the luminosity during collisions and delivers important beam parameters. Additional condition monitors, based on the BCM1F system, are located next to CMS, near to LHCb and ALICE to measure large beam losses in the LHC ring. The process of a beam loss due to dust particles is explained, and additional simulations were done to understand these process in more detail. The result of the simulation are also given. Beam loss data recorded by the diamond sensors in the cleaning region and the BCM1F diamonds are presented.

  14. Application of diamond based beam loss monitors at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria

    2013-04-15

    the LHC, especially near each quadrupole and next to collimators. Ionization chambers have a time resolution of 40 s that is a half LHC turn and in case of a large beam loss, they request a beam dump. Another type of beam loss monitors are diamond sensors because of a time resolution of about one nanosecond and high radiation hardness. One diamond detector system is located in the cleaning region of the LHC and is able to detect various types of beam losses. Another diamond detector system (BCM1F) is installed inside the CMS detector to protect the CMS from adverse beam conditions. BCM1F monitors also the luminosity during collisions and delivers important beam parameters. Additional condition monitors, based on the BCM1F system, are located next to CMS, near to LHCb and ALICE to measure large beam losses in the LHC ring. The process of a beam loss due to dust particles is explained, and additional simulations were done to understand these process in more detail. The result of the simulation are also given. Beam loss data recorded by the diamond sensors in the cleaning region and the BCM1F diamonds are presented.

  15. Optimal Placement of Piezoelectric Plates to Control Multimode Vibrations of a Beam

    Directory of Open Access Journals (Sweden)

    Fabio Botta

    2013-01-01

    Full Text Available Damping of vibrations is often required to improve both the performance and the integrity of engineering structures, for example, gas turbine blades. In this paper, we explore the possibility of using piezoelectric plates to control the multimode vibrations of a cantilever beam. To develop an effective control strategy and optimize the placement of the active piezoelectric elements in terms of vibrations amplitude reduction, a procedure has been developed and a new analytical solution has been proposed. The results obtained have been corroborated by comparison with the results from a multiphysics finite elements package (COMSOL, results available in the literature, and experimental investigations carried out by the authors.

  16. Study of low energy neutron beam formation based on GEANT4 simulations

    Science.gov (United States)

    Avagyan, R.; Avetisyan, R.; Ivanyan, V.; Kerobyan, I.

    2017-07-01

    The possibility of obtaining thermal/epithermal energy neutron beams using external protons from cyclotron C18/18 is studied based on GEANT4 simulations. This study will be the basis of the Beam Shaped Assembly (BSA) development for future Boron Neutron Capture Therapy (BNCT). Proton induced reactions on 9Be target are considered as a neutron source, and dependence of neutron yield on target thickness is investigated. The problem of reducing the ratio of gamma to neutron yields by inserting a lead sheet after the beryllium target is studied as well. By GEANT4 modeling the optimal thicknesses of 9Be target and lead absorber are determined and the design characteristics of beam shaping assembly, including the materials and thicknesses of reflector and moderator are considered.

  17. Structural Optimization based on the Concept of First Order Analysis

    International Nuclear Information System (INIS)

    Shinji, Nishiwaki; Hidekazu, Nishigaki; Yasuaki, Tsurumi; Yoshio, Kojima; Noboru, Kikuchi

    2002-01-01

    Computer Aided Engineering (CAE) has been successfully utilized in mechanical industries such as the automotive industry. It is, however, difficult for most mechanical design engineers to directly use CAE due to the sophisticated nature of the operations involved. In order to mitigate this problem, a new type of CAE, First Order Analysis (FOA) has been proposed. This paper presents the outcome of research concerning the development of a structural topology optimization methodology within FOA. This optimization method is constructed based on discrete and function-oriented elements such as beam and panel elements, and sequential convex programming. In addition, examples are provided to show the utility of the methodology presented here for mechanical design engineers

  18. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  19. Development of GPT-based optimization algorithm

    International Nuclear Information System (INIS)

    White, J.R.; Chapman, D.M.; Biswas, D.

    1985-01-01

    The University of Lowell and Westinghouse Electric Corporation are involved in a joint effort to evaluate the potential benefits of generalized/depletion perturbation theory (GPT/DTP) methods for a variety of light water reactor (LWR) physics applications. One part of that work has focused on the development of a GPT-based optimization algorithm for the overall design, analysis, and optimization of LWR reload cores. The use of GPT sensitivity data in formulating the fuel management optimization problem is conceptually straightforward; it is the actual execution of the concept that is challenging. Thus, the purpose of this paper is to address some of the major difficulties, to outline our approach to these problems, and to present some illustrative examples of an efficient GTP-based optimization scheme

  20. Experimental demonstration of dielectric structure based two beam acceleration

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-01-01

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented

  1. High energy beam line based on bent crystal

    International Nuclear Information System (INIS)

    Biryukov, V.M.; Chesnokov, Yu.A.; Greth, V.N.; Ivanov, A.A.; Kotov, V.I.; Selesnev, V.S.; Tarakanov, M.V.; Terekhov, V.I.; Tsarik, S.V.

    1995-01-01

    A peculiarities of the beam bent with crystals is the independence of the crystal deflector strength Θ=L D /R c ∼0.5 rad of the particle energy (L D is the dechanneling length, R c is the critical radius). The possibility of abrupt bending with crystal of a beam fraction at a large angle allows one to make over a short base a non-traditional beam line to carry out physical experiments. At IHEP, a 150 mrad bent crystal was used to create a test area, to work in parallel with other set-ups consuming practically no power. A 100 mm long Si crystal, placed in the halo of the intense extracted 70 GeV/c beam, extracts along the ∼20 m base 10 6 protons/sec beyond the 2-meter iron-concrete shield. The beam high quality (low emittance and high stability) allows one to carry out the program of the studies of channeling and testing the microstrip detectors. 2 refs.; 2 figs

  2. Application of ion beams for polymeric carbon based biomaterials

    Science.gov (United States)

    Evelyn, A. L.

    2001-07-01

    Ion beams have been shown to be quite suitable for the modification and analysis of carbon based biomaterials. Glassy polymeric carbon (GPC), made from cured phenolic resins, has a high chemical inertness that makes it useful as a biomaterial in medicine for drug delivery systems and for the manufacture of heart valves and other prosthetic devices. Low and high-energy ion beams have been used, with both partially and fully cured phenolic resins, to enhance biological cell/tissue growth on, and to increase tissue adhesion to GPC surfaces. Samples bombarded with energetic ion beams in the keV to MeV range exhibited increased surface roughness, measured using optical microscopy and atomic force microscopy. Ion beams were also used to perform nuclear reaction analyses of GPC encapsulated drugs for use in internal drug delivery systems. The results from the high energy bombardment were more dramatic and are shown in this paper. The interaction of energetic ions has demonstrated the useful application of ion beams to enhance the properties of carbon-based biomaterials.

  3. A suite of diagnostics to validate and optimize the prototype ITER neutral beam injector

    Science.gov (United States)

    Pasqualotto, R.; Agostini, M.; Barbisan, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Dalla Palma, M.; Delogu, R. S.; De Muri, M.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rebai, M.; Rizzolo, A.; Sartori, E.; Serianni, G.; Spagnolo, S.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.

    2017-10-01

    The ITER project requires additional heating provided by two neutral beam injectors using 40 A negative deuterium ions accelerated at 1 MV. As the beam requirements have never been experimentally met, a test facility is under construction at Consorzio RFX, which hosts two experiments: SPIDER, full-size 100 kV ion source prototype, and MITICA, 1 MeV full-size ITER injector prototype. Since diagnostics in ITER injectors will be mainly limited to thermocouples, due to neutron and gamma radiation and to limited access, it is crucial to thoroughly investigate and characterize in more accessible experiments the key parameters of source plasma and beam, using several complementary diagnostics assisted by modelling. In SPIDER and MITICA the ion source parameters will be measured by optical emission spectroscopy, electrostatic probes, cavity ring down spectroscopy for H^- density and laser absorption spectroscopy for cesium density. Measurements over multiple lines-of-sight will provide the spatial distribution of the parameters over the source extension. The beam profile uniformity and its divergence are studied with beam emission spectroscopy, complemented by visible tomography and neutron imaging, which are novel techniques, while an instrumented calorimeter based on custom unidirectional carbon fiber composite tiles observed by infrared cameras will measure the beam footprint on short pulses with the highest spatial resolution. All heated components will be monitored with thermocouples: as these will likely be the only measurements available in ITER injectors, their capabilities will be investigated by comparison with other techniques. SPIDER and MITICA diagnostics are described in the present paper with a focus on their rationale, key solutions and most original and effective implementations.

  4. Plasma based Ar+ beam assisted poly(dimethylsiloxane) surface modification

    International Nuclear Information System (INIS)

    Vladkova, T.G.; Keranov, I.L.; Dineff, P.D.; Youroukov, S.Y.; Avramova, I.A.; Krasteva, N.; Altankov, G.P.

    2005-01-01

    Plasma based Ar + beam performed in RF (13.56 MHz) low-pressure (200 mTorr) glow discharge (at 100 W, 1200 W and 2500 W) with a serial capacitance was employed for surface modification of poly(dimethylsiloxane) (PDMS) aimed at improvement of its interactions with living cells. The presence of a serial capacitance ensures arise of an ion-flow inside the plasma volume directed toward the treated sample and the vary of the discharge power ensures varied density of the ion-flow. XPS analysis was performed to study the changes in the surface chemical composition of the modified samples and the corresponding changes in the surface energy were monitored by contact angle measurements. We found that plasma based Ar + beam transforms the initially hydrophobic PDMS surface into a hydrophilic one mainly due to a raising of the polar component of the surface tension, this effect being most probably due to an enrichment of the modified surface layer with permanent dipoles of a [SiO x ]-based network and elimination of the original methyl groups. The initial adhesion of human fibroblast cells was studied on the described above plasma based Ar + beam modified and acrylic acid (AA) grafted or not fibronectin (FN) pre-coated or bare surfaces. The cell response seems to be related with the peculiar structure and wettability of the modified PDMS surface layer after plasma based Ar + beam treatment followed or not by AA grafting

  5. An optimized calibration method for surface measurements with MOSFETs in shaped-beam radiosurgery.

    Science.gov (United States)

    Sors, A; Cassol, E; Latorzeff, I; Duthil, P; Sabatier, J; Lotterie, J A; Redon, A; Berry, I; Franceries, X

    2014-02-01

    Nowadays MOSFET dosimeters are widely used for dose verification in radiotherapy procedures. Although their sensitive area satisfies size requirements for small field dosimetry, their use in radiosurgery has rarely been reported. The aim of this study is to propose and optimize a calibration method to perform surface measurements in 6 MV shaped-beam radiosurgery for field sizes down to 18 × 18 mm(2). The effect of different parameters such as recovery time between 2 readings, batch uniformity and build-up cap attenuation was studied. Batch uniformity was found to be within 2% and isocenter dose attenuation due to the build-up cap over the MOSFET was near 2% irrespective of field size. Two sets of sensitivity coefficients (SC) were determined for TN-502RD MOSFET dosimeters using experimental and calculated calibration; the latter being developed using an inverse square law model. Validation measurements were performed on a realistic head phantom in irregular fields. MOSFET dose values obtained by applying either measured or calculated SC were compared. For calibration, optimal results were obtained for an inter-measurement time lapse of 5 min. We also found that fitting the SC values with the inverse square law reduced the number of measurements required for calibration. The study demonstrated that combining inverse square law and Sterling-Worthley formula resulted in an underestimation of up to 4% of the dose measured by MOSFETs for complex beam geometries. With the inverse square law, it is possible to reduce the number of measurements required for calibration for multiple field-SSD combinations. Our results suggested that MOSFETs are suitable sensors for dosimetry when used at the surface in shaped-beam radiosurgery down to 18 × 18 mm(2). Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    Physical properties of proton interactions in matter give them a theoretical advantage over photons in radiation therapy for cancer treatment, but they are seldom used relative to photons. The primary barriers to wider acceptance of proton therapy are the technical feasibility, size, and price of proton therapy systems. Several aspects of the proton therapy landscape are investigated, and new techniques for treatment planning, optimization, and beam delivery are presented. The results of these investigations suggest a means by which proton therapy can be delivered more efficiently, effectively, and to a much larger proportion of eligible patients. An analysis of the existing proton therapy market was performed. Personal interviews with over 30 radiation oncology leaders were conducted with regard to the current and future use of proton therapy. In addition, global proton therapy market projections are presented. The results of these investigations serve as motivation and guidance for the subsequent development of treatment system designs and treatment planning, optimization, and beam delivery methods. A major factor impacting the size and cost of proton treatment systems is the maximum energy of the accelerator. Historically, 250 MeV has been the accepted value, but there is minimal quantitative evidence in the literature that supports this standard. A retrospective study of 100 patients is presented that quantifies the maximum proton kinetic energy requirements for cancer treatment, and the impact of those results with regard to treatment system size, cost, and neutron production is discussed. This study is subsequently expanded to include 100 cranial stereotactic radiosurgery (SRS) patients, and the results are discussed in the context of a proposed dedicated proton SRS treatment system. Finally, novel proton therapy optimization and delivery techniques are presented. Algorithms are developed that optimize treatment plans over beam angle, spot size, spot spacing

  7. National negative-ion-based neutral-beam development plan

    International Nuclear Information System (INIS)

    Cooper, W.S.; Pyle, R.V.

    1983-08-01

    The plan covers facilities required, program milestones, and decision points. It includes identification of applications, experiments, theoretical research areas, development of specific technologies and reactor development and demonstration facilities required to bring about the successful application of negative-ion-based neutral beams. Particular emphasis is placed on those activities leading to use on existing plasma confinement experiments or their upgrades

  8. Update on MEMS-based scanned beam imager

    Science.gov (United States)

    James, Richard; Gibson, Greg; Metting, Frank; Davis, Wyatt; Drabe, Christian

    2007-01-01

    In 2004, Microvision presented "Scanned Beam Medical Imager" as an introduction to our MEMS-based, full color scanned beam imaging system. This presentation will provide an update of the technological advancements since this initial work from 2004. This recent work includes the development of functional prototypes that are much smaller than previous prototypes using a design architecture that is easily scalable. Performance has been significantly improved by increasing the optical field of views and video refresh rate. Real-time image processing capabilities have been developed to enhance the image quality and functionality over a wide range of operating conditions. Actual images of various objects will be presented.

  9. Network secure communications based on beam halo-chaos

    International Nuclear Information System (INIS)

    Liu Qiang; Fang Jinqing; Li Yong

    2010-01-01

    Based on beam halo-chaos synchronization in the beam transport network (line)with small-world effect, using three synchronization methods:the driver-response synchronization, small-world topology coupling synchronization and multi-local small-world topology coupling synchronization, three kinds of secure communication projects were designed respectively, and were studied numerically by the Simulink tool of the Matlab software. Numerical experimental results demonstrate that encryption and decryption of the original signal are realized successfully. It provides effective theoretical foundation and reference for the next engineering design and network experiment. (authors)

  10. Coverage-based constraints for IMRT optimization

    Science.gov (United States)

    Mescher, H.; Ulrich, S.; Bangert, M.

    2017-09-01

    Radiation therapy treatment planning requires an incorporation of uncertainties in order to guarantee an adequate irradiation of the tumor volumes. In current clinical practice, uncertainties are accounted for implicitly with an expansion of the target volume according to generic margin recipes. Alternatively, it is possible to account for uncertainties by explicit minimization of objectives that describe worst-case treatment scenarios, the expectation value of the treatment or the coverage probability of the target volumes during treatment planning. In this note we show that approaches relying on objectives to induce a specific coverage of the clinical target volumes are inevitably sensitive to variation of the relative weighting of the objectives. To address this issue, we introduce coverage-based constraints for intensity-modulated radiation therapy (IMRT) treatment planning. Our implementation follows the concept of coverage-optimized planning that considers explicit error scenarios to calculate and optimize patient-specific probabilities q(\\hat{d}, \\hat{v}) of covering a specific target volume fraction \\hat{v} with a certain dose \\hat{d} . Using a constraint-based reformulation of coverage-based objectives we eliminate the trade-off between coverage and competing objectives during treatment planning. In-depth convergence tests including 324 treatment plan optimizations demonstrate the reliability of coverage-based constraints for varying levels of probability, dose and volume. General clinical applicability of coverage-based constraints is demonstrated for two cases. A sensitivity analysis regarding penalty variations within this planing study based on IMRT treatment planning using (1) coverage-based constraints, (2) coverage-based objectives, (3) probabilistic optimization, (4) robust optimization and (5) conventional margins illustrates the potential benefit of coverage-based constraints that do not require tedious adjustment of target volume objectives.

  11. Electron Beam Diagnostic Based on a Short Seeded FEL

    CERN Document Server

    Graves, W; Kaertner, Franz X; Zwart, T

    2005-01-01

    The optical properties of an FEL amplifier are sensitively dependent on the electron beam current profile, energy spread, and transverse emittance. In this paper we consider using a short FEL amplifier operating on a low harmonic of a visible-IR input seed as a mildly destructive electron beam diagnostic able to measure these properties for sub-ps time slices. The optical methods are described as well as a planned implementation of the device for the FERMI@Elettra XUV FEL under construction at Sincrotrone Trieste, including its fiber-based seed laser closely coupled with the facility timing system, undulator parameters, and requirements on the electron and FEL pulses. This diagnostic is conveniently integrated with a "laser heater" designed to increase the very low electron beam energy spread produced by a photoinjector in order to avoid space charge and coherent synchrotron radiation instabilities.

  12. Laser induced breakdown spectroscopy based on single beam splitting and geometric configuration for effective signal enhancement.

    Science.gov (United States)

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-05

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS.

  13. Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement

    Science.gov (United States)

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-01

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS. PMID:25557721

  14. Sound beam manipulation based on temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Feng [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Quan, Li; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  15. Sound beam manipulation based on temperature gradients

    International Nuclear Information System (INIS)

    Qian, Feng; Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2015-01-01

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking

  16. Optimization methodology for beam gauges of the bus body for weight reduction

    Directory of Open Access Journals (Sweden)

    Jain R.

    2014-06-01

    Full Text Available During service, a bus is subjected to various loads that cause stresses, vibrations and noise in the different components of its structure. It requires appropriate strength, stiffness and fatigue properties of the components to be able to stand these loads. Besides, quality and optimum weight of the vehicle, for efficient energy consumption, safety and provision of the comfort to the user are highly desired. The present work proposes a methodology to minimize the bus weight by modifying its beam gauges to optimum thickness. The bus performance is evaluated by multiple iterations on the basis of parameters like frequency, distortion, stress and stiffness. The algorithm performs gauge optimization of the bus by analyzing and satisfying its structural strength through linear static analysis on a laden bus. It also performs structural stiffness analysis and vibration analysis for safety of the bus structure. This work unfolds an integrated methodology to the bus manufacturers to optimize the structural weight for improving the fuel efficiency, static and dynamic safety, and robust design. The work is implemented by creating a finite element model of the bus and optimizing in HyperWorks environment. The results are verified for a full length 11 m, 65 seats bus. The methodology helps in weight reduction along with improvement in performance parameters.

  17. Performance-based Pareto optimal design

    NARCIS (Netherlands)

    Sariyildiz, I.S.; Bittermann, M.S.; Ciftcioglu, O.

    2008-01-01

    A novel approach for performance-based design is presented, where Pareto optimality is pursued. Design requirements may contain linguistic information, which is difficult to bring into computation or make consistent their impartial estimations from case to case. Fuzzy logic and soft computing are

  18. Reliability Based Optimization of Fire Protection

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    It is well known that fire is one of the major risks of serious damage or total loss of several types of structures such as nuclear installations, buildings, offshore platforms/topsides etc. This paper presents a methodology and software for reliability based optimization of the layout of passive...

  19. Reliability-Based Optimization of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tarp-Johansen, N.J.

    2004-01-01

    Reliability-based optimization of the main tower and monopile foundation of an offshore wind turbine is considered. Different formulations are considered of the objective function including benefits and building and failure costs of the wind turbine. Also different reconstruction policies in case...

  20. Development of a nuclear data base for relativistic ion beams

    International Nuclear Information System (INIS)

    Townsend, L.W.; Wong, M.; Schimmerling, W.; Wilson, J.W.

    1987-01-01

    The primary limitation on the development of heavy ion beam transport methods is the lack of an accurate nuclear data base. Because of the large number of ion/target combinations, the complexity of the reaction products, and the broad range of energies required, it is unlikely that the data base will ever be compiled from experiments alone. For the last 15 years, relativistic heavy-ion accelerators have been available, but the experimental data base remains inadequate. However, theoretical models of heavy-ion reactions are being derived to provide cross section data for beam transport problems. A concurrent experimental program to provide sufficient experimental data to validate the model is also in progress. Model development and experimental results for model validation are discussed. The need for additional nuclear fragmentation data is identified

  1. Polynomials of Gaussians and vortex-Gaussian beams as complete, transversely confined bases.

    Science.gov (United States)

    Gutiérrez-Cuevas, Rodrigo; Alonso, Miguel A

    2017-06-01

    A novel type of discrete basis for paraxial beams is proposed, consisting of monomial vortices times polynomials of Gaussians in the radial variable. These bases have the distinctive property that the effective size of their elements is roughly independent of element order, meaning that the optimal scaling for expanding a localized field does not depend significantly on truncation order. This behavior contrasts with that of bases composed of polynomials times Gaussians, such as Hermite-Gauss and Laguerre-Gauss modes, where the scaling changes roughly as the inverse square root of the truncation order.

  2. Parameter optimization toward optimal microneedle-based dermal vaccination.

    Science.gov (United States)

    van der Maaden, Koen; Varypataki, Eleni Maria; Yu, Huixin; Romeijn, Stefan; Jiskoot, Wim; Bouwstra, Joke

    2014-11-20

    Microneedle-based vaccination has several advantages over vaccination by using conventional hypodermic needles. Microneedles are used to deliver a drug into the skin in a minimally-invasive and potentially pain free manner. Besides, the skin is a potent immune organ that is highly suitable for vaccination. However, there are several factors that influence the penetration ability of the skin by microneedles and the immune responses upon microneedle-based immunization. In this study we assessed several different microneedle arrays for their ability to penetrate ex vivo human skin by using trypan blue and (fluorescently or radioactively labeled) ovalbumin. Next, these different microneedles and several factors, including the dose of ovalbumin, the effect of using an impact-insertion applicator, skin location of microneedle application, and the area of microneedle application, were tested in vivo in mice. The penetration ability and the dose of ovalbumin that is delivered into the skin were shown to be dependent on the use of an applicator and on the microneedle geometry and size of the array. Besides microneedle penetration, the above described factors influenced the immune responses upon microneedle-based vaccination in vivo. It was shown that the ovalbumin-specific antibody responses upon microneedle-based vaccination could be increased up to 12-fold when an impact-insertion applicator was used, up to 8-fold when microneedles were applied over a larger surface area, and up to 36-fold dependent on the location of microneedle application. Therefore, these influencing factors should be considered to optimize microneedle-based dermal immunization technologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    International Nuclear Information System (INIS)

    Ellison, C.L.; Fuchs, J.

    2010-01-01

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  4. Installation and testing of an optimized epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Kalef-Ezra, J.; Saraf, S.K.; Fiarman, S.; Ramsey, E.; Wielopolski, L.; Laster, B.; Wheeler, F. (Brookhaven National Lab., Upton, NY (USA); Ioannina Univ. (Greece); Brookhaven National Lab., Upton, NY (USA); State Univ. of New York, Stony Brook, NY (USA). Health Science Center; Brookhaven National Lab., Upton, NY (USA); EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1989-01-01

    Various calculations indicate that an optimized epithermal neutron beam can be produced by moderating fission neutrons either with a combination of Al and D{sub 2}O, or with Al{sub 2}O{sub 3}. We have designed, installed and tested an Al{sub 2}O{sub 3} moderated epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). The epithermal neutron fluence rate of 1.8 {times} 10{sup 9} n/cm{sup 2}-sec produces a peak thermal neutron fluence rate of 1.9 to 2.8 {times} 10{sup 9} n/cm{sup 2}-sec in a tissue equivalent (TE) phantom head, depending on the configuration. Thus a single therapy treatment of 5 {times} 10{sup 12} n/cm{sup 2} can be delivered in 30--45 minutes. All irradiation times are given for a BMRR power of 3 MW, which is the highest power which can be delivered continuously. 18 refs., 8 figs., 4 tabs.

  5. Optimizing ring-based CSR sources

    International Nuclear Information System (INIS)

    Byrd, J.M.; De Santis, S.; Hao, Z.; Martin, M.C.; Munson, D.V.; Li, D.; Nishimura, H.; Robin, D.S.; Sannibale, F.; Schlueter, R.D.; Schoenlein, R.; Jung, J.Y.; Venturini, M.; Wan, W.; Zholents, A.A.; Zolotorev, M.

    2004-01-01

    Coherent synchrotron radiation (CSR) is a fascinating phenomenon recently observed in electron storage rings and shows tremendous promise as a high power source of radiation at terahertz frequencies. However, because of the properties of the radiation and the electron beams needed to produce it, there are a number of interesting features of the storage ring that can be optimized for CSR. Furthermore, CSR has been observed in three distinct forms: as steady pulses from short bunches, bursts from growth of spontaneous modulations in high current bunches, and from micro modulations imposed on a bunch from laser slicing. These processes have their relative merits as sources and can be improved via the ring design. The terahertz (THz) and sub-THz region of the electromagnetic spectrum lies between the infrared and the microwave . This boundary region is beyond the normal reach of optical and electronic measurement techniques and sources associated with these better-known neighbors. Recent research has demonstrated a relatively high power source of THz radiation from electron storage rings: coherent synchrotron radiation (CSR). Besides offering high power, CSR enables broadband optical techniques to be extended to nearly the microwave region, and has inherently sub-picosecond pulses. As a result, new opportunities for scientific research and applications are enabled across a diverse array of disciplines: condensed matter physics, medicine, manufacturing, and space and defense industries. CSR will have a strong impact on THz imaging, spectroscopy, femtosecond dynamics, and driving novel non-linear processes. CSR is emitted by bunches of accelerated charged particles when the bunch length is shorter than the wavelength being emitted. When this criterion is met, all the particles emit in phase, and a single-cycle electromagnetic pulse results with an intensity proportional to the square of the number of particles in the bunch. It is this quadratic dependence that can

  6. SU-F-T-501: Dosimetric Comparison of Single Arc-Per-Beam and Two Arc-Per-Beam VMAT Optimization in the Monaco Treatment Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Kalet, A; Cao, N; Meyer, J; Dempsey, C [University of Washington Medical Center, Seattle, WA (United States); Seattle Cancer Care Alliance, Seattle, WA (United States); Richardson, H [Seattle Cancer Care Alliance, Seattle, WA (United States)

    2016-06-15

    Purpose: The purpose of this study was to evaluate the dosimetric and practical effects of the Monaco treatment planning system “max arcs-per-beam” optimization parameter in pelvic radiotherapy treatments. Methods: A total of 17 previously treated patients were selected for this study with a range of pelvic disease site including prostate(9), bladder(1), uterus(3), rectum(3), and cervix(1). For each patient, two plans were generated, one using a arc-per-beam setting of ‘1’ and another with setting of ‘2’. The setting allows the optimizer to add a gantry direction change, creating multiple arc passes per beam sequence. Volumes and constraints established from the initial clinical treatments were used for planning. All constraints and dose coverage objects were kept the same between plans, and all plans were normalized to 99.7% to ensure 100% of the PTV received 95% of the prescription dose. We evaluated the PTV conformity index, homogeneity index, total monitor units, number of control points, and various dose volume histogram (DVH) points for statistical comparison (alpha=0.05). Results: We found for the 10 complex shaped target volumes (small central volumes with extending bilateral ‘arms’ to cover nodal regions) that the use of 2 arcs-per-beam achieved significantly lower average DVH values for the bladder V20 (p=0.036) and rectum V30 (p=0.001) while still meeting the high dose target constraints. DVH values for the simpler, more spherical PTVs were not found significantly different. Additionally, we found a beam delivery time reduction of approximately 25%. Conclusion: In summary, the dosimetric benefit, while moderate, was improved over a 1 arc-per-beam setting for complex PTVs, and equivalent in other cases. The overall reduced delivery time suggests that the use of multiple arcs-per-beam could lead to reduced patient on table time, increased clinical throughput, and reduced medical physics quality assurance effort.

  7. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziani, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France); Delmotte, F., E-mail: Franck.Delmotte@InstitutOptique.fr [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Le Paven-Thivet, C. [Institut d' Electronique et de Télécommunications de Rennes (IETR) UMR-CNRS 6164, Université de Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex France (France); Meltchakov, E.; Jérome, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Roulliay, M. [Institut des Sciences Moléculaires d’Orsay UMR 8214, Univ Paris Sud, 91405 Orsay France (France); Bridou, F. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Gasc, K. [Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France)

    2014-02-03

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B{sub 4}C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source.

  8. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    International Nuclear Information System (INIS)

    Ziani, A.; Delmotte, F.; Le Paven-Thivet, C.; Meltchakov, E.; Jérome, A.; Roulliay, M.; Bridou, F.; Gasc, K.

    2014-01-01

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B 4 C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source

  9. Damage identification in beams by a response surface based technique

    Directory of Open Access Journals (Sweden)

    Teidj S.

    2014-01-01

    Full Text Available In this work, identification of damage in uniform homogeneous metallic beams was considered through the propagation of non dispersive elastic torsional waves. The proposed damage detection procedure consisted of the following sequence. Giving a localized torque excitation, having the form of a short half-sine pulse, the first step was calculating the transient solution of the resulting torsional wave. This torque could be generated in practice by means of asymmetric laser irradiation of the beam surface. Then, a localized defect assumed to be characterized by an abrupt reduction of beam section area with a given height and extent was placed at a known location of the beam. Next, the response in terms of transverse section rotation rate was obtained for a point situated afterwards the defect, where the sensor was positioned. This last could utilize in practice the concept of laser vibrometry. A parametric study has been conducted after that by using a full factorial design of experiments table and numerical simulations based on a finite difference characteristic scheme. This has enabled the derivation of a response surface model that was shown to represent adequately the response of the system in terms of the following factors: defect extent and severity. The final step was performing the inverse problem solution in order to identify the defect characteristics by using measurement.

  10. Optimization of GEANT4 settings for Proton Pencil Beam Scanning simulations using GATE

    Energy Technology Data Exchange (ETDEWEB)

    Grevillot, Loic, E-mail: loic.grevillot@gmail.co [Universite de Lyon, F-69622 Lyon (France); Creatis, CNRS UMR 5220, F-69622 Villeurbanne (France); Centre de Lutte Contre le Cancer Leon Berard, F-69373 Lyon (France); IBA, B-1348 Louvain-la-Neuve (Belgium); Frisson, Thibault [Universite de Lyon, F-69622 Lyon (France); Creatis, CNRS UMR 5220, F-69622 Villeurbanne (France); Centre de Lutte Contre le Cancer Leon Berard, F-69373 Lyon (France); Zahra, Nabil [Universite de Lyon, F-69622 Lyon (France); IPNL, CNRS UMR 5822, F-69622 Villeurbanne (France); Centre de Lutte Contre le Cancer Leon Berard, F-69373 Lyon (France); Bertrand, Damien; Stichelbaut, Frederic [IBA, B-1348 Louvain-la-Neuve (Belgium); Freud, Nicolas [Universite de Lyon, F-69622 Lyon (France); CNDRI, INSA-Lyon, F-69621 Villeurbanne Cedex (France); Sarrut, David [Universite de Lyon, F-69622 Lyon (France); Creatis, CNRS UMR 5220, F-69622 Villeurbanne (France); Centre de Lutte Contre le Cancer Leon Berard, F-69373 Lyon (France)

    2010-10-15

    This study reports the investigation of different GEANT4 settings for proton therapy applications in the context of Treatment Planning System comparisons. The GEANT4.9.2 release was used through the GATE platform. We focused on the Pencil Beam Scanning delivery technique, which allows for intensity modulated proton therapy applications. The most relevant options and parameters (range cut, step size, database binning) for the simulation that influence the dose deposition were investigated, in order to determine a robust, accurate and efficient simulation environment. In this perspective, simulations of depth-dose profiles and transverse profiles at different depths and energies between 100 and 230 MeV have been assessed against reference measurements in water and PMMA. These measurements were performed in Essen, Germany, with the IBA dedicated Pencil Beam Scanning system, using Bragg-peak chambers and radiochromic films. GEANT4 simulations were also compared to the PHITS.2.14 and MCNPX.2.5.0 Monte Carlo codes. Depth-dose simulations reached 0.3 mm range accuracy compared to NIST CSDA ranges, with a dose agreement of about 1% over a set of five different energies. The transverse profiles simulated using the different Monte Carlo codes showed discrepancies, with up to 15% difference in beam widening between GEANT4 and MCNPX in water. A 8% difference between the GEANT4 multiple scattering and single scattering algorithms was observed. The simulations showed the inability of reproducing the measured transverse dose spreading with depth in PMMA, corroborating the fact that GEANT4 underestimates the lateral dose spreading. GATE was found to be a very convenient simulation environment to perform this study. A reference physics-list and an optimized parameters-list have been proposed. Satisfactory agreement against depth-dose profiles measurements was obtained. The simulation of transverse profiles using different Monte Carlo codes showed significant deviations. This point

  11. Isotretinoin Oil-Based Capsule Formulation Optimization

    Directory of Open Access Journals (Sweden)

    Pi-Ju Tsai

    2013-01-01

    Full Text Available The purpose of this study was to develop and optimize an isotretinoin oil-based capsule with specific dissolution pattern. A three-factor-constrained mixture design was used to prepare the systemic model formulations. The independent factors were the components of oil-based capsule including beeswax (X1, hydrogenated coconut oil (X2, and soybean oil (X3. The drug release percentages at 10, 30, 60, and 90 min were selected as responses. The effect of formulation factors including that on responses was inspected by using response surface methodology (RSM. Multiple-response optimization was performed to search for the appropriate formulation with specific release pattern. It was found that the interaction effect of these formulation factors (X1X2, X1X3, and X2X3 showed more potential influence than that of the main factors (X1, X2, and X3. An optimal predicted formulation with Y10 min, Y30 min, Y60 min, and Y90 min release values of 12.3%, 36.7%, 73.6%, and 92.7% at X1, X2, and X3 of 5.75, 15.37, and 78.88, respectively, was developed. The new formulation was prepared and performed by the dissolution test. The similarity factor f2 was 54.8, indicating that the dissolution pattern of the new optimized formulation showed equivalence to the predicted profile.

  12. Optimization of the irradiation beam in the BNCT research facility at IEA-R1 reactor

    International Nuclear Information System (INIS)

    Castro, Vinicius Alexandre de

    2014-01-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapeutic technique for the treatment of some types of cancer whose useful energy comes from a nuclear reaction that occurs when thermal neutron impinges upon a Boron-10 atom. In Brazil there is a research facility built along the beam hole number 3 of the IEA-R1 research reactor at IPEN, which was designed to perform BNCT research experiments. For a good performance of the technique, the irradiation beam should be mostly composed of thermal neutrons with a minimum as possible gamma and above thermal neutron components. This work aims to monitor and evaluate the irradiation beam on the sample irradiation position through the use of activation detectors (activation foils) and also to propose, through simulation using the radiation transport code, MCNP, new sets of moderators and filters which shall deliver better irradiation fields at the irradiation sample position In this work, a simulation methodology, based on a MCNP card, known as wwg (weight window generation) was studied, and the neutron energy spectrum has been experimentally discriminated at 5 energy ranges by using a new set o activation foils. It also has been concluded that the BNCT research facility has the required thermal neutron flux to perform studies in the area and it has a great potential for improvement for tailoring the irradiation field. (author)

  13. Physical performance and image optimization of megavoltage cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Olivier; Aubry, Jean-Francois; Aubin, Michele; Chen, Josephine; Descovich, Martina; Hashemi, Ali-Bani; Pouliot, Jean [Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 (United States); Siemens Oncology Care Systems, Concord, California 94520 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States)

    2009-04-15

    Megavoltage cone-beam CT (MVCBCT) is the most recent addition to the in-room CT systems developed for image-guided radiation therapy. The first generation MVCBCT system consists of a 6 MV treatment x-ray beam produced by a conventional linear accelerator equipped with a flat panel amorphous silicon detector. The objective of this study was to evaluate the physical performance of MVCBCT in order to optimize the system acquisition and reconstruction parameters for image quality. MVCBCT acquisitions were performed with the clinical system but images were reconstructed and analyzed with a separate research workstation. The geometrical stability and the positioning accuracy of the system were evaluated by comparing geometrical calibrations routinely performed over a period of 12 months. The beam output and detector intensity stability during MVCBCT acquisition were also evaluated by analyzing in-air acquisitions acquired at different exposure levels. Several system parameters were varied to quantify their impact on image quality including the exposure (2.7, 4.5, 9.0, 18.0, and 54.0 MU), the craniocaudal imaging length (2, 5, 15, and 27.4 cm), the voxel size (0.5, 1, and 2 mm), the slice thickness (1, 3, and 5 mm), and the phantom size. For the reconstruction algorithm, the study investigated the effect of binning, averaging and diffusion filtering of raw projections as well as three different projection filters. A head-sized water cylinder was used to measure and improve the uniformity of MVCBCT images. Inserts of different electron densities were placed in a water cylinder to measure the contrast-to-noise ratio (CNR). The spatial resolution was obtained by measuring the point-spread function of the system using an iterative edge blurring technique. Our results showed that the geometric stability and accuracy of MVCBCT were better than 1 mm over a period of 12 months. Beam intensity variations per projection of up to 35.4% were observed for a 2.7 MU MVCBCT acquisition

  14. Biogeography-Based Optimization with Orthogonal Crossover

    Directory of Open Access Journals (Sweden)

    Quanxi Feng

    2013-01-01

    Full Text Available Biogeography-based optimization (BBO is a new biogeography inspired, population-based algorithm, which mainly uses migration operator to share information among solutions. Similar to crossover operator in genetic algorithm, migration operator is a probabilistic operator and only generates the vertex of a hyperrectangle defined by the emigration and immigration vectors. Therefore, the exploration ability of BBO may be limited. Orthogonal crossover operator with quantization technique (QOX is based on orthogonal design and can generate representative solution in solution space. In this paper, a BBO variant is presented through embedding the QOX operator in BBO algorithm. Additionally, a modified migration equation is used to improve the population diversity. Several experiments are conducted on 23 benchmark functions. Experimental results show that the proposed algorithm is capable of locating the optimal or closed-to-optimal solution. Comparisons with other variants of BBO algorithms and state-of-the-art orthogonal-based evolutionary algorithms demonstrate that our proposed algorithm possesses faster global convergence rate, high-precision solution, and stronger robustness. Finally, the analysis result of the performance of QOX indicates that QOX plays a key role in the proposed algorithm.

  15. Particle swarm optimization based optimal bidding strategy in an ...

    African Journals Online (AJOL)

    user

    Test results indicate that the proposed algorithm outperforms the Genetic. Algorithm approach with respect to total profit and convergence time. Keywords: Electricity Market, Market Clearing Price (MCP), Optimal bidding strategy, Particle Swarm Optimization (PSO). DOI: http://dx.doi.org/10.4314/ijest.v3i6.23. 1. Introduction.

  16. Advanced rapid prototyping by laser beam sintering of metal prototypes: design and development of an optimized laser beam delivery system

    Science.gov (United States)

    Geiger, Manfred; Coremans, A.; Neubauer, Norbert; Niebling, F.

    1996-08-01

    Fast technological advances and steadily increasing severe worldwide competition force industry to respond all the time faster to new and chanced customer wishes. Some of the recently emerged processes, commonly referred to as 'rapid prototyping' (RP), have proved to be powerful tools for accelerating product and process development. Early approaches aimed at the automated production of plastic models. These techniques achieved industrial maturity extremely fast and are meanwhile established as standard utilities in the field of development/design processes. So far, their applicability to metal working industry was limited to design studies because the mechanical properties of the prototypes, e.g. modulus of elasticity and mechanical strength were not comparable to the final products they represented. Therefore, RP-processes aimed at the direct production of metallic prototypes gained more and more importance during recent years. A technique belonging to this group is manufacturing of prototypes by using a laser beam sintering machine capable of directly processing metal powders. This so called laser beam sintering process showed a great potential for direct manufacturing of functional tools and prototypes in early feasibility studies. Detailed examinations were performed at several research centers to determine the attainable quality of the parts concerning roughness, dimensional accuracy and mechanical strength. These examinations showed, that there still is a considerable demand for quality improvements of the previously mentioned parameters. The practical application and the potential for improvement of the geometrical accuracy of laser beam sintered parts by using a dual beam concept was proven. An innovative beam guiding and forming concept, similar to the previously mentioned patented beam guiding system, was developed and built with the goal to improve the process parameters governing mechanical properties as well as geometrical accuracy. Further reaching

  17. A squid-based beam current monitor for FAIR/CRYRING

    International Nuclear Information System (INIS)

    Geithner, Rene; Stöhlker, Thomas; Kurian, Febin; Reeg, Hansjörg; Schwickert, Marcus; Neubert, Ralf; Seidel, Paul

    2015-01-01

    A SQUID-based beam current monitor was developed for the upcoming FAIR-Project, providing a non-destructive online monitoring of the beam currents in the nA-range. The cryogenic current comparator (CCC) was optimized for lowest possible noise-limited current resolution together with a high system bandwidth. This CCC is foreseen to be installed in the CRYRING facility (CRYRING@ESR: A study group report www.gsi.de/fileadmin/SPARC/documents/Cryring/ReportCryring-40ESR.PDF), working as a test bench for FAIR. In this contribution we present results of the completed CCC for FAIR/CRYRING and also arrangements that have been done for the installation of the CCC at CRYRING, regarding the cryostat design. (paper)

  18. Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization

    Science.gov (United States)

    Khatir, Samir; Dekemele, Kevin; Loccufier, Mia; Khatir, Tawfiq; Abdel Wahab, Magd

    2018-02-01

    In this paper, a technique is presented for the detection and localization of an open crack in beam-like structures using experimentally measured natural frequencies and the Particle Swarm Optimization (PSO) method. The technique considers the variation in local flexibility near the crack. The natural frequencies of a cracked beam are determined experimentally and numerically using the Finite Element Method (FEM). The optimization algorithm is programmed in MATLAB. The algorithm is used to estimate the location and severity of a crack by minimizing the differences between measured and calculated frequencies. The method is verified using experimentally measured data on a cantilever steel beam. The Fourier transform is adopted to improve the frequency resolution. The results demonstrate the good accuracy of the proposed technique.

  19. Optimal depth-based regional frequency analysis

    Directory of Open Access Journals (Sweden)

    H. Wazneh

    2013-06-01

    Full Text Available Classical methods of regional frequency analysis (RFA of hydrological variables face two drawbacks: (1 the restriction to a particular region which can lead to a loss of some information and (2 the definition of a region that generates a border effect. To reduce the impact of these drawbacks on regional modeling performance, an iterative method was proposed recently, based on the statistical notion of the depth function and a weight function φ. This depth-based RFA (DBRFA approach was shown to be superior to traditional approaches in terms of flexibility, generality and performance. The main difficulty of the DBRFA approach is the optimal choice of the weight function ϕ (e.g., φ minimizing estimation errors. In order to avoid a subjective choice and naïve selection procedures of φ, the aim of the present paper is to propose an algorithm-based procedure to optimize the DBRFA and automate the choice of ϕ according to objective performance criteria. This procedure is applied to estimate flood quantiles in three different regions in North America. One of the findings from the application is that the optimal weight function depends on the considered region and can also quantify the region's homogeneity. By comparing the DBRFA to the canonical correlation analysis (CCA method, results show that the DBRFA approach leads to better performances both in terms of relative bias and mean square error.

  20. Optimal depth-based regional frequency analysis

    Science.gov (United States)

    Wazneh, H.; Chebana, F.; Ouarda, T. B. M. J.

    2013-06-01

    Classical methods of regional frequency analysis (RFA) of hydrological variables face two drawbacks: (1) the restriction to a particular region which can lead to a loss of some information and (2) the definition of a region that generates a border effect. To reduce the impact of these drawbacks on regional modeling performance, an iterative method was proposed recently, based on the statistical notion of the depth function and a weight function φ. This depth-based RFA (DBRFA) approach was shown to be superior to traditional approaches in terms of flexibility, generality and performance. The main difficulty of the DBRFA approach is the optimal choice of the weight function ϕ (e.g., φ minimizing estimation errors). In order to avoid a subjective choice and naïve selection procedures of φ, the aim of the present paper is to propose an algorithm-based procedure to optimize the DBRFA and automate the choice of ϕ according to objective performance criteria. This procedure is applied to estimate flood quantiles in three different regions in North America. One of the findings from the application is that the optimal weight function depends on the considered region and can also quantify the region's homogeneity. By comparing the DBRFA to the canonical correlation analysis (CCA) method, results show that the DBRFA approach leads to better performances both in terms of relative bias and mean square error.

  1. A large-area perfect crystal neutron interferometer optimized for coherent beam-deflection experiments: Preparation and performance

    International Nuclear Information System (INIS)

    Zawisky, M.; Springer, J.; Farthofer, R.; Kuetgens, U.

    2010-01-01

    The fabrication and benefits of the actually largest perfect crystal interferometer are presented. New features are longer beam paths, precise symmetric lattice orientation and the use of several higher order reflections. The optimized design offers ample space for beam manipulators, in particular the use of different prism arrangements for coherent beam-deflection experiments. The interferometer can be utilized in one- or two-loop configuration at different wavelengths (2.7, 1.36, 0.9 and 0.7 A) by selecting (2 2 0) or higher order reflections (4 4 0), (6 6 0) and (8 8 0), without changing the beam geometry. The interferometer was tested successfully at ILL instrument S18 where 73% visibility of interference fringes have been reached in (4 4 0) reflection. This indicates that larger interferometers of this type are feasible in future.

  2. Structural single and multiple crack detection in cantilever beams using a hybrid Cuckoo-Nelder-Mead optimization method

    Science.gov (United States)

    Moezi, Seyed Alireza; Zakeri, Ehsan; Zare, Amin

    2018-01-01

    In this study, the number, location and depth of cracks created in several Euler-Bernoulli beams, such as a simple beam and a more complex multi-step beam are investigated. The location and depth of the created cracks are determined using the hybrid Cuckoo-Nelder-Mead Optimization Algorithm (COA-NM) with high accuracy. The natural frequencies of the cracked beams are determined by solving frequency response equations, and performing modal test experiments. Results of COA-NM show a higher accuracy and convergence speed compared with other methods such as GA-NM, PSO-NM, GA, PSO, COA and several previous studies. Amount of calculations performed by COA-NM to achieve this accuracy is much less compared to other methods.

  3. Optimal interference code based on machine learning

    Science.gov (United States)

    Qian, Ye; Chen, Qian; Hu, Xiaobo; Cao, Ercong; Qian, Weixian; Gu, Guohua

    2016-10-01

    In this paper, we analyze the characteristics of pseudo-random code, by the case of m sequence. Depending on the description of coding theory, we introduce the jamming methods. We simulate the interference effect or probability model by the means of MATLAB to consolidate. In accordance with the length of decoding time the adversary spends, we find out the optimal formula and optimal coefficients based on machine learning, then we get the new optimal interference code. First, when it comes to the phase of recognition, this study judges the effect of interference by the way of simulating the length of time over the decoding period of laser seeker. Then, we use laser active deception jamming simulate interference process in the tracking phase in the next block. In this study we choose the method of laser active deception jamming. In order to improve the performance of the interference, this paper simulates the model by MATLAB software. We find out the least number of pulse intervals which must be received, then we can make the conclusion that the precise interval number of the laser pointer for m sequence encoding. In order to find the shortest space, we make the choice of the greatest common divisor method. Then, combining with the coding regularity that has been found before, we restore pulse interval of pseudo-random code, which has been already received. Finally, we can control the time period of laser interference, get the optimal interference code, and also increase the probability of interference as well.

  4. Development of Microcontroller-Based Ball and Beam Trainer Kit

    Directory of Open Access Journals (Sweden)

    Gunawan Dewantoro

    2015-03-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE A ball and beam trainer kit based on microcontroller was developed for teaching control system course for the sophomore students. This specially-purposed kit consists of a ball located on a beam with a fixed axle at one of its end. At the other end, a servomotor was employed to control the position of the ball by adjusting the rotation angle of the servomotor. Seven predetermined positions were set to 10, 20, 30, 40, 50, 60, and 70 cm relative to the fixed axle of the beam. The Proportional-Integral-Derivative (PID scheme was then used to compensate the error. This kit is equipped with a user interface to configure controller coefficients, select the set points, plot the actual ball position, and display parameter values. The user interface program runs on PC or notebook connected to microcontroller via serial communications. A questionnaire-based assessment about the use of this kit was conducted by 17 students taking the course, giving a rating value of 94.12%.

  5. An online replanning method using warm start optimization and aperture morphing for flattening-filter-free beams.

    Science.gov (United States)

    Ahunbay, Ergun E; Ates, O; Li, X A

    2016-08-01

    In a situation where a couch shift for patient positioning is not preferred or prohibited (e.g., MR-linac), segment aperture morphing (SAM) can address target dislocation and deformation. For IMRT/VMAT with flattening-filter-free (FFF) beams, however, SAM method would lead to an adverse translational dose effect due to the beam unflattening. Here the authors propose a new two-step process to address both the translational effect of FFF beams and the target deformation. The replanning method consists of an offline and an online step. The offline step is to create a series of preshifted-plans (PSPs) obtained by a so-called "warm start" optimization (starting optimization from the original plan, rather than from scratch) at a series of isocenter shifts. The PSPs all have the same number of segments with very similar shapes, since the warm start optimization only adjusts the MLC positions instead of regenerating them. In the online step, a new plan is obtained by picking the closest PSP or linearly interpolating the MLC positions and the monitor units of the closest PSPs for the shift determined from the image of the day. This two-step process is completely automated and almost instantaneous (no optimization or dose calculation needed). The previously developed SAM algorithm is then applied for daily deformation. The authors tested the method on sample prostate and pancreas cases. The two-step interpolation method can account for the adverse dose effects from FFF beams, while SAM corrects for the target deformation. Plan interpolation method is effective in diminishing the unflat beam effect and may allow reducing the required number of PSPs. The whole process takes the same time as the previously reported SAM process (5-10 min). The new two-step method plus SAM can address both the translation effects of FFF beams and target deformation, and can be executed in full automation except the delineation of target contour required by the SAM process.

  6. Global stability-based design optimization of truss structures using ...

    Indian Academy of Sciences (India)

    objective optimization; island models; genetic algorithm; arc-length method. ... Furthermore, a pure pareto-ranking based multi-objective optimization model is employed for the design optimization of the truss structure with multiple objectives.

  7. Optimizing the modified microdosimetric kinetic model input parameters for proton and 4He ion beam therapy application

    Science.gov (United States)

    Mairani, A.; Magro, G.; Tessonnier, T.; Böhlen, T. T.; Molinelli, S.; Ferrari, A.; Parodi, K.; Debus, J.; Haberer, T.

    2017-06-01

    Models able to predict relative biological effectiveness (RBE) values are necessary for an accurate determination of the biological effect with proton and 4He ion beams. This is particularly important when including RBE calculations in treatment planning studies comparing biologically optimized proton and 4He ion beam plans. In this work, we have tailored the predictions of the modified microdosimetric kinetic model (MKM), which is clinically applied for carbon ion beam therapy in Japan, to reproduce RBE with proton and 4He ion beams. We have tuned the input parameters of the MKM, i.e. the domain and nucleus radii, reproducing an experimental database of initial RBE data for proton and He ion beams. The modified MKM, with the best fit parameters obtained, has been used to reproduce in vitro cell survival data in clinically-relevant scenarios. A satisfactory agreement has been found for the studied cell lines, A549 and RENCA, with the mean absolute survival variation between the data and predictions within 2% and 5% for proton and 4He ion beams, respectively. Moreover, a sensitivity study has been performed varying the domain and nucleus radii and the quadratic parameter of the photon response curve. The promising agreement found in this work for the studied clinical-like scenarios supports the usage of the modified MKM for treatment planning studies in proton and 4He ion beam therapy.

  8. An energy-based beam hardening model in tomography

    Energy Technology Data Exchange (ETDEWEB)

    Casteele, E van de; Dyck, D van; Sijbers, J; Raman, E [Vision Lab, Physics Departement, University of Antwerp (RUCA) (Belgium)

    2002-12-07

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography ({mu}CT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages.

  9. Resolution and systematic limitations in beam based alignment

    Energy Technology Data Exchange (ETDEWEB)

    Tenenbaum, P.G.

    2000-03-15

    Beam based alignment of quadrupoles by variation of quadrupole strength is a widely-used technique in accelerators today. The authors describe the dominant systematic limitation of this technique, which arises from the change in the center position of the quadrupole as the strength is varied, and derive expressions for the resulting error. In addition, the authors derive an expression for the statistical resolution of such techniques in a periodic transport line, given knowledge of the line's transport matrices, the resolution of the beam position monitor system, and the details of the strength variation procedure. These results are applied to the Next Linear Collider main linear accelerator, an 11 kilometer accelerator containing 750 quadrupoles and 5,000 accelerator structures. The authors find that in principle a statistical resolution of 1 micron is easily achievable but the systematic error due to variation of the magnetic centers could be several times larger.

  10. High current nonlinear transmission line based electron beam driver

    Directory of Open Access Journals (Sweden)

    B. W. Hoff

    2017-10-01

    Full Text Available A gigawatt-class nonlinear transmission line based electron beam driver is experimentally demonstrated. Four experimental series, each with a different Marx bank charge voltage (15, 20, 25, and 30 kV, were completed. Within each experimental series, shots at peak frequencies ranging from 950 MHz to 1.45 GHz were performed. Peak amplitude modulations of the NLTL output voltage signal were found to range between 18% and 35% for the lowest frequency shots and between 5% and 20% for the highest frequency shots (higher modulation at higher Marx charge voltage. Peak amplitude modulations of the electron beam current were found to range between 10% and 20% for the lowest frequency shots and between 2% and 7% for the highest frequency shots (higher modulation at higher Marx charge voltage.

  11. Testing of a nuclear-reactor-based positron beam

    International Nuclear Information System (INIS)

    Van Veen, A.; Labohm, F.; Schut, H.; De Roode, J.; Heijenga, T.; Mijnarends, P.E.

    1997-01-01

    This paper describes the testing of a positron beam which is primarily based on copper activation near the core of a nuclear reactor and extraction of the positrons through a beam guide tube. An out-of-core test with a 22 Na source and an in-core test with the reactor at reduced power have been performed. Both tests indicated a high reflectivity of moderated positrons at the tungsten surfaces of the moderation discs which enhanced the expected yield. Secondary electrons generated in the source materials during the in-core test caused electrical field distortions in the electrode system of the system by charging of the insulators. At 100 kW reactor power during one hour, positrons were observed with an intensity of 4.4x10 4 e + s -1 of which 90% was due to positrons created by pair formation and 10% by copper activation

  12. An energy-based beam hardening model in tomography

    International Nuclear Information System (INIS)

    Casteele, E van de; Dyck, D van; Sijbers, J; Raman, E

    2002-01-01

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography (μCT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages

  13. High current nonlinear transmission line based electron beam driver

    Science.gov (United States)

    Hoff, B. W.; French, D. M.; Simon, D. S.; Lepell, P. D.; Montoya, T.; Heidger, S. L.

    2017-10-01

    A gigawatt-class nonlinear transmission line based electron beam driver is experimentally demonstrated. Four experimental series, each with a different Marx bank charge voltage (15, 20, 25, and 30 kV), were completed. Within each experimental series, shots at peak frequencies ranging from 950 MHz to 1.45 GHz were performed. Peak amplitude modulations of the NLTL output voltage signal were found to range between 18% and 35% for the lowest frequency shots and between 5% and 20% for the highest frequency shots (higher modulation at higher Marx charge voltage). Peak amplitude modulations of the electron beam current were found to range between 10% and 20% for the lowest frequency shots and between 2% and 7% for the highest frequency shots (higher modulation at higher Marx charge voltage).

  14. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    KAUST Repository

    Majid, Mohammed Abdul

    2012-12-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  15. Treatment planning considerations in contrast-enhanced radiotherapy: energy and beam aperture optimization

    Energy Technology Data Exchange (ETDEWEB)

    Garnica-Garza, H M, E-mail: hgarnica@cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Monterrey, Via del Conocimiento 201 Parque de Investigacion e Innovacion Tecnologica, Apodaca NL CP 66600 (Mexico)

    2011-01-21

    It has been shown that the use of kilovoltage x-rays in conjunction with a contrast agent incorporated into the tumor can lead to acceptable treatment plans with regard to the absorbed dose distribution produced in the target as well as in the tissue and organs at risk surrounding it. In this work, several key aspects related to the technology and irradiation techniques necessary to clinically implement this treatment modality are addressed by means of Monte Carlo simulation. The Zubal phantom was used to model a prostate radiotherapy treatment, a challenging site due to the depth of the prostate and the presence of bony structures that must be traversed by the x-ray beam on its way to the target. It is assumed that the concentration levels of the enhancing agent present in the tumor are at or below 10 mg per 1 g of tissue. The Monte Carlo code PENELOPE was used to model a commercial x-ray tube having a tungsten target. X-ray energy spectra for several combinations of peak electron energy and added filtration were obtained. For each energy spectrum, a treatment plan was calculated, with the PENELOPE Monte Carlo code, by modeling the irradiation of the patient as 72 independent conformal beams distributed at intervals of 5{sup 0} around the phantom in order to model a full x-ray source rotation. The Cimmino optimization algorithm was then used to find the optimum beam weight and energy for different treatment strategies. It is shown that for a target dose prescription of 72 Gy covering the whole tumor, the maximum rectal wall and bladder doses are kept below 52 Gy for the largest concentration of contrast agent of 10 mg per 1 g of tissue. It is also shown that concentrations of as little as 5 mg per 1 g of tissue also render dose distributions with excellent sparing of the organs at risk. A treatment strategy to address the presence of non-uniform distributions of the contrast agent in the target is also modeled and discussed.

  16. Design and Additive Manufacturing of 3D Phononic Band Gap Structures Based on Gradient Based Optimization

    Directory of Open Access Journals (Sweden)

    Maximilian Wormser

    2017-09-01

    Full Text Available We present a novel approach for gradient based maximization of phononic band gaps. The approach is a geometry projection method combining parametric shape optimization with density based topology optimization. By this approach, we obtain, in a two dimension setting, cellular structures exhibiting relative and normalized band gaps of more than 8 and 1.6, respectively. The controlling parameter is the minimal strut size, which also corresponds with the obtained stiffness of the structure. The resulting design principle is manually interpreted into a three dimensional structure from which cellular metal samples are fabricated by selective electron beam melting. Frequency response diagrams experimentally verify the numerically determined phononic band gaps of the structures. The resulting structures have band gaps down to the audible frequency range, qualifying the structures for an application in noise isolation.

  17. Design and Additive Manufacturing of 3D Phononic Band Gap Structures Based on Gradient Based Optimization.

    Science.gov (United States)

    Wormser, Maximilian; Wein, Fabian; Stingl, Michael; Körner, Carolin

    2017-09-22

    We present a novel approach for gradient based maximization of phononic band gaps. The approach is a geometry projection method combining parametric shape optimization with density based topology optimization. By this approach, we obtain, in a two dimension setting, cellular structures exhibiting relative and normalized band gaps of more than 8 and 1.6, respectively. The controlling parameter is the minimal strut size, which also corresponds with the obtained stiffness of the structure. The resulting design principle is manually interpreted into a three dimensional structure from which cellular metal samples are fabricated by selective electron beam melting. Frequency response diagrams experimentally verify the numerically determined phononic band gaps of the structures. The resulting structures have band gaps down to the audible frequency range, qualifying the structures for an application in noise isolation.

  18. Smell Detection Agent Based Optimization Algorithm

    Science.gov (United States)

    Vinod Chandra, S. S.

    2016-09-01

    In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.

  19. Adjoint-based optimization for flapping wings

    Science.gov (United States)

    Xu, Min; Wei, Mingjun

    2012-11-01

    Adjoint-based methods show great potential in flow control and optimization of complex problems with high- or infinite-dimensional control space. It is attractive to solve an adjoint problem to understand the complex effects from multiple control parameters to a few performance indicators of the flight of birds or insects. However, the traditional approach to formulate the adjoint problem becomes either impossible or too complex when arbitrary moving boundary (e.g. flapping wings) and its perturbation is considered. Here, we use non-cylindrical calculus to define the perturbation. So that, a simple adjoint system can be derived directly in the inertial coordinate. The approach is first applied to the optimization of cylinder oscillation and later to flapping wings. Supported by AFOSR.

  20. Modeling FAMA ion beam diagnostics based on the Ptolemy II model

    Energy Technology Data Exchange (ETDEWEB)

    Balvanovic, R., E-mail: broman@vinca.rs [Laboratory of Physics, Vinca Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Belicev, P. [Laboratory of Physics, Vinca Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Radjenovic, B. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2012-10-21

    The previously developed model of ion beam transport control of the FAMA facility is further enhanced by equipping it with the model of ion beam diagnostics. The model of control, executing once, is adjusted so that it executes in iterative mode, where each iteration samples the input beam normally distributed over initial phase space and calculates a single trajectory through the facility beam lines. The model takes into account only the particles that manage to pass through all the beam line apertures, emulating in this way a Faraday cup and a beam profile meter. Generated are also beam phase space distributions and horizontal and vertical beam profiles at the end of the beam transport lines the FAMA facility consists of. By adding the model of ion beam diagnostics to the model of ion beam transport control, the process of determining optimal ion beam control parameters is eased and speeded up, and the understanding of influence of control parameters on the ion beam characteristics is improved.

  1. Design optimization of PVDF-based piezoelectric energy harvesters

    Directory of Open Access Journals (Sweden)

    Jundong Song

    2017-09-01

    Full Text Available Energy harvesting is a promising technology that powers the electronic devices via scavenging the ambient energy. Piezoelectric energy harvesters have attracted considerable interest for their high conversion efficiency and easy fabrication in minimized sensors and transducers. To improve the output capability of energy harvesters, properties of piezoelectric materials is an influential factor, but the potential of the material is less likely to be fully exploited without an optimized configuration. In this paper, an optimization strategy for PVDF-based cantilever-type energy harvesters is proposed to achieve the highest output power density with the given frequency and acceleration of the vibration source. It is shown that the maximum power output density only depends on the maximum allowable stress of the beam and the working frequency of the device, and these two factors can be obtained by adjusting the geometry of piezoelectric layers. The strategy is validated by coupled finite-element-circuit simulation and a practical device. The fabricated device within a volume of 13.1 mm3 shows an output power of 112.8 μW which is comparable to that of the best-performing piezoceramic-based energy harvesters within the similar volume reported so far.

  2. Risk-based optimization of land reclamation

    International Nuclear Information System (INIS)

    Lendering, K.T.; Jonkman, S.N.; Gelder, P.H.A.J.M. van; Peters, D.J.

    2015-01-01

    Large-scale land reclamations are generally constructed by means of a landfill well above mean sea level. This can be costly in areas where good quality fill material is scarce. An alternative to save materials and costs is a ‘polder terminal’. The quay wall acts as a flood defense and the terminal level is well below the level of the quay wall. Compared with a conventional terminal, the costs are lower, but an additional flood risk is introduced. In this paper, a risk-based optimization is developed for a conventional and a polder terminal. It considers the investment and residual flood risk. The method takes into account both the quay wall and terminal level, which determine the probability and damage of flooding. The optimal quay wall level is found by solving a Lambert function numerically. The terminal level is bounded by engineering boundary conditions, i.e. piping and uplift of the cover layer of the terminal yard. It is found that, for a representative case study, the saving of reclamation costs for a polder terminal is larger than the increase of flood risk. The model is applicable to other cases of land reclamation and to similar optimization problems in flood risk management. - Highlights: • A polder terminal can be an attractive alternative for a conventional terminal. • A polder terminal is feasible at locations with high reclamation cost. • A risk-based approach is required to determine the optimal protection levels. • The depth of the polder terminal yard is bounded by uplifting of the cover layer. • This paper can support decisions regarding alternatives for port expansions.

  3. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    OpenAIRE

    Cortesi, M.; Zboray, R.; Adams, R.; Dangendorf, V.; Prasser, H. -M.

    2012-01-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has ...

  4. Enhanced piezoelectric wind energy harvesting based on a buckled beam

    Science.gov (United States)

    Zhang, Jiantao; Zhang, Jia; Shu, Chang; Fang, Zhou

    2017-05-01

    In order to improve the wind energy conversion efficiency, this study entails a concept utilizing the buckling behavior of a buckled beam to induce large amplitude oscillations in a PVDF beam harvester. Specifically, when the buckled beam subjected to the buckling load is in an unstable condition, the wind load can trigger the drastic vibration of the PVDF beam harvester. Experimental results demonstrate that the output performances of the proposed harvester are improved dramatically compared with a traditional cantilever beam harvester.

  5. Optimal design of a beam stop for Indus-2 using finite element heat ...

    Indian Academy of Sciences (India)

    The radiation source impinges ∼ 1 kW power on the beam stop and the heat transfer capabilities of the beam stop have been evaluated. Temperature distribution in the beam stop has been obtained under various cooling conditions using the finite element analysis calculations with ANSYS software. Design parameters of ...

  6. Improved Biogeography-Based Optimization Based on Affinity Propagation

    Directory of Open Access Journals (Sweden)

    Zhihao Wang

    2016-07-01

    Full Text Available To improve the search ability of biogeography-based optimization (BBO, this work proposed an improved biogeography-based optimization based on Affinity Propagation. We introduced the Memetic framework to the BBO algorithm, and used the simulated annealing algorithm as the local search strategy. MBBO enhanced the exploration with the Affinity Propagation strategy to improve the transfer operation of the BBO algorithm. In this work, the MBBO algorithm was applied to IEEE Congress on Evolutionary Computation (CEC 2015 benchmarks optimization problems to conduct analytic comparison with the first three winners of the CEC 2015 competition. The results show that the MBBO algorithm enhances the exploration, exploitation, convergence speed and solution accuracy and can emerge as the best solution-providing algorithm among the competing algorithms.

  7. Optical Frequency Optimization of a High Intensity Laser Power Beaming System Utilizing VMJ Photovoltaic Cells

    Science.gov (United States)

    Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.

    2012-01-01

    An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of

  8. Sequential ensemble-based optimal design for parameter estimation: SEQUENTIAL ENSEMBLE-BASED OPTIMAL DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    Man, Jun [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Zhang, Jiangjiang [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Li, Weixuan [Pacific Northwest National Laboratory, Richland Washington USA; Zeng, Lingzao [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside California USA

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees of freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.

  9. Optimization of dose distribution for the system of linear accelerator-based stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Suh Taesuk.

    1990-01-01

    This work addresses a method for obtaining an optimal dose distribution of stereotactic radiosurgery. Since stereotactic radiosurgery utilizes multiple noncoplanar arcs and a three-dimensional dose evaluation technique, many beam parameters and complex optimization criteria are included in the dose optimization. Consequently, a lengthy computation time is required to optimize even the simplest case by a trial and error method. The basic approach presented here is to use both an analytical and an experimental optimization to minimize the dose to critical organs while maintaining a dose shaped to the target. The experimental approach is based on shaping the target volumes using multiple isocenters from dose experience, or on field shaping using a beam's eye view technique. The analytical approach is to adapt computer-aided design optimization to find optimum parameters automatically. Three-dimensional approximate dose models are developed to simulate the exact dose model using a spherical or cylindrical coordinate system. Optimum parameters are found much faster with the use of computer-aided design optimization techniques. The implementation of computer-aided design algorithms with the approximate dose model and the application of the algorithms to several cases are discussed. It is shown that the approximate dose model gives dose distributions similar to those of the exact dose model, which makes the approximate dose model an attractive alternative to the exact dose model, and much more efficient in terms of computer-aided design and visual optimization

  10. PRODUCT OPTIMIZATION METHOD BASED ON ANALYSIS OF OPTIMAL VALUES OF THEIR CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Constantin D. STANESCU

    2016-05-01

    Full Text Available The paper presents an original method of optimizing products based on the analysis of optimal values of their characteristics . Optimization method comprises statistical model and analytical model . With this original method can easily and quickly obtain optimal product or material .

  11. Electromagnetic Design and Optimization of Directivity of Stripline Beam Position Monitors for the High Luminosity Large Hadron Collider

    CERN Document Server

    Draskovic, Drasko; Jones, Owain Rhodri; Lefèvre, Thibaut; Wendt, Manfred

    2015-01-01

    This paper presents the preliminary electromagnetic design of a stripline Beam Position Monitor (BPM) for the High Luminosity program of the Large Hadron Collider (HL-LHC) at CERN. The design is fitted into a new octagonal shielded Beam Screen for the low-beta triplets and is optimized for high directivity. It also includes internal Tungsten absorbers, required to reduce the energy deposition in the superconducting magnets. The achieved broadband directivity in wakefield solver simulations presents significant improvement over the directivity of the current stripline BPMs installed in the LHC.

  12. Optimal ''image-based'' weighting for energy-resolved CT

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Taly Gilat [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53201 (United States)

    2009-07-15

    This paper investigates a method of reconstructing images from energy-resolved CT data with negligible beam-hardening artifacts and improved contrast-to-nosie ratio (CNR) compared to conventional energy-weighting methods. Conceptually, the investigated method first reconstructs separate images from each energy bin. The final image is a linear combination of the energy-bin images, with the weights chosen to maximize the CNR in the final image. The optimal weight of a particular energy-bin image is derived to be proportional to the contrast-to-noise-variance ratio in that image. The investigated weighting method is referred to as ''image-based'' weighting, although, as will be described, the weights can be calculated and the energy-bin data combined prior to reconstruction. The performance of optimal image-based energy weighting with respect to CNR and beam-hardening artifacts was investigated through simulations and compared to that of energy integrating, photon counting, and previously studied optimal ''projection-based'' energy weighting. Two acquisitions were simulated: dedicated breast CT and a conventional thorax scan. The energy-resolving detector was simulated with five energy bins. Four methods of estimating the optimal weights were investigated, including task-specific and task-independent methods and methods that require a single reconstruction versus multiple reconstructions. Results demonstrated that optimal image-based weighting improved the CNR compared to energy-integrating weighting by factors of 1.15-1.6 depending on the task. Compared to photon-counting weighting, the CNR improvement ranged from 1.0 to 1.3. The CNR improvement factors were comparable to those of projection-based optimal energy weighting. The beam-hardening cupping artifact increased from 5.2% for energy-integrating weighting to 12.8% for optimal projection-based weighting, while optimal image-based weighting reduced the cupping to 0

  13. Cone-beam and fan-beam image reconstruction algorithms based on spherical and circular harmonics

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Gullberg, Grant T

    2004-01-01

    A cone-beam image reconstruction algorithm using spherical harmonic expansions is proposed. The reconstruction algorithm is in the form of a summation of inner products of two discrete arrays of spherical harmonic expansion coefficients at each cone-beam point of acquisition. This form is different from the common filtered backprojection algorithm and the direct Fourier reconstruction algorithm. There is no re-sampling of the data, and spherical harmonic expansions are used instead of Fourier expansions. As a special case, a new fan-beam image reconstruction algorithm is also derived in terms of a circular harmonic expansion. Computer simulation results for both cone-beam and fan-beam algorithms are presented for circular planar orbit acquisitions. The algorithms give accurate reconstructions; however, the implementation of the cone-beam reconstruction algorithm is computationally intensive. A relatively efficient algorithm is proposed for reconstructing the central slice of the image when a circular scanning orbit is used

  14. Optimization of power output and study of electron beam energy spread in a Free Electron Laser oscillator

    CERN Document Server

    Abramovich, A; Efimov, S; Gover, A; Pinhasi, Y; Yahalom, A

    2001-01-01

    Design of a multi-stage depressed collector for efficient operation of a Free Electron Laser (FEL) oscillator requires knowledge of the electron beam energy distribution. This knowledge is necessary to determine the voltages of the depressed collector electrodes that optimize the collection efficiency and overall energy conversion efficiency of the FEL. The energy spread in the electron beam is due to interaction in the wiggler region, as electrons enter the interaction region at different phases relative to the EM wave. This interaction can be simulated well by a three-dimensional simulation code such as FEL3D. The main adjustable parameters that determine the electron beam energy spread after interaction are the e-beam current, the initial beam energy, and the quality factor of the resonator out-coupling coefficient. Using FEL3D, we study the influence of these parameters on the available radiation power and on the electron beam energy distribution at the undulator exit. Simulations performed for I=1.5 A, E...

  15. Do existing research reactors teach us all about beam tube optimization?

    International Nuclear Information System (INIS)

    Roegler, Hans Joachim; Feltes, Wolfgang

    1998-01-01

    The contribution makes the attempt to analyse the data base available in the literature and in Siemens' own projects and to find out potential systematics from the existing research reactor with beam tubes, separated into reactors with different reflectors and distinguished for tangential and radial tubes and cold neutron sources, resp. Some generic calculations serve as gauging data. The contribution is not meant as critics on any design.The results might serve supporting designers and operators when evaluating the pros and cons of existing or planned design in terms of the optimum beam tubes. Existing lacks of systematics are evaluated in view of suitable explanations and constraints, which do not allow optimisation. Examples pf such constraints are the different material layers between fuel zone and reflector zone which have various reasons. The limited data in the literature plus the numerous lacks of precision of the representation of those data should be an incentive to improve the performed analysis by collecting more exact data and re-doing the evaluation before answering the title-question really. (author)

  16. 3D dictionary learning based iterative cone beam CT reconstruction

    Directory of Open Access Journals (Sweden)

    Ti Bai

    2014-03-01

    Full Text Available Purpose: This work is to develop a 3D dictionary learning based cone beam CT (CBCT reconstruction algorithm on graphic processing units (GPU to improve the quality of sparse-view CBCT reconstruction with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms of 3 × 3 × 3 was trained from a large number of blocks extracted from a high quality volume image. On the basis, we utilized cholesky decomposition based orthogonal matching pursuit algorithm to find the sparse representation of each block. To accelerate the time-consuming sparse coding in the 3D case, we implemented the sparse coding in a parallel fashion by taking advantage of the tremendous computational power of GPU. Conjugate gradient least square algorithm was adopted to minimize the data fidelity term. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with tight frame (TF by performing reconstructions on a subset data of 121 projections. Results: Compared to TF based CBCT reconstruction that shows good overall performance, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, remove more streaking artifacts and also induce less blocky artifacts. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppress the noise, and hence to achieve high quality reconstruction under the case of sparse view. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application.-------------------------------Cite this article as: Bai T, Yan H, Shi F, Jia X, Lou Y, Xu Q, Jiang S, Mou X. 3D dictionary learning based iterative cone beam CT reconstruction. Int J Cancer Ther Oncol 2014; 2(2:020240. DOI: 10

  17. A laser beam quality definition based on induced temperature rise.

    Science.gov (United States)

    Miller, Harold C

    2012-12-17

    Laser beam quality metrics like M(2) can be used to describe the spot sizes and propagation behavior of a wide variety of non-ideal laser beams. However, for beams that have been diffracted by limiting apertures in the near-field, or those with unusual near-field profiles, the conventional metrics can lead to an inconsistent or incomplete description of far-field performance. This paper motivates an alternative laser beam quality definition that can be used with any beam. The approach uses a consideration of the intrinsic ability of a laser beam profile to heat a material. Comparisons are made with conventional beam quality metrics. An analysis on an asymmetric Gaussian beam is used to establish a connection with the invariant beam propagation ratio.

  18. Beam-based compensation of extracted-beam displacement caused by field ringing of pulsed kicker magnets in the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Harada, Hiroyuki; Saha, Pranab Kumar; Tamura, Fumihiko; Meigo, Shin-ichiro; Hotchi, Hideaki; Hayashi, Naoki; Kinsho, Michikazu; Hasegawa, Kazuo

    2017-09-01

    Commissioned in October 2007, the 3 GeV rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex was designed for a high-intensity output beam power of 1 MW. The RCS extracts 3 GeV proton beams of two bunches by using eight pulsed kicker magnets and three DC septum magnets with 25 Hz repetition. These beams are delivered to a materials and life science experimental facility (MLF) and a 50 GeV main ring synchrotron (MR). However, the flat-top fields of the kicker magnets experience ringing that displaces the position of the extracted beam. This displacement is a major issue from the viewpoint of target integrity at the MLF and emittance growth at MR injection. To understand the flat-top uniformity of the total field of all the kickers, the uniformity was measured as the displacement of the extracted beams by using a shorter bunched beam and scanning the entire trigger timing of the kickers. The beam displacement of the first bunch exceeded the required range. Therefore, we performed beam-based measurements kicker by kicker to understand each field-ringing effect, and then we understood the characteristics (strength and temporal structure) of each ringing field. We managed to cancel out the ringing by using all the beam-based measurement data and optimizing each trigger timing. As a result, the field-ringing effect of the kickers was successfully compensated by optimizing the trigger timing of each kicker without hardware upgrades or improvements to the kicker system. By developing an automatic monitoring and correction system, we now have a higher stability of extracted beams during routine user operation. In this paper, we report our procedure for ringing compensation and present supporting experimental results.

  19. Beam-Based Alignment of Magnetic Field in the Fermilab Electron Cooler Cooling Section

    International Nuclear Information System (INIS)

    Seletskiy, S. M.; Tupikov, V.

    2006-01-01

    The Fermilab Electron Cooling Project requires low effective anglular spread of electrons in the cooling section. One of the main components of the effective electron angles is an angle of electron beam centroid with respect to antiproton beam. This angle is caused by the poor quality of magnetic field in the 20 m long cooling section solenoid and by the mismatch of the beam centroid to the entrance of the cooling section. This paper focuses on the beam-based procedure of the alignment of the cooling section field and beam centroid matching. The discussed procedure allows to suppress the beam centroid angles below the critical value of 0.1 mrad

  20. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  1. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Soevik, Aaste; Skogmo, Hege K. (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)), E-mail: aste.sovik@nvh.no; Roedal, Jan (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)); Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik (Dept. of Medical Physics, The Norwegian Radium Hospital, Oslo Univ. Hospital, Oslo (Norway))

    2010-10-15

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  2. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    International Nuclear Information System (INIS)

    Soevik, Aaste; Skogmo, Hege K.; Roedal, Jan; Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2010-01-01

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  3. Performance-based shape optimization of continuum structures

    International Nuclear Information System (INIS)

    Liang Qingquan

    2010-01-01

    This paper presents a performance-based optimization (PBO) method for optimal shape design of continuum structures with stiffness constraints. Performance-based design concepts are incorporated in the shape optimization theory to achieve optimal designs. In the PBO method, the traditional shape optimization problem of minimizing the weight of a continuum structure with displacement or mean compliance constraints is transformed to the problem of maximizing the performance of the structure. The optimal shape of a continuum structure is obtained by gradually eliminating inefficient finite elements from the structure until its performance is maximized. Performance indices are employed to monitor the performance of optimized shapes in an optimization process. Performance-based optimality criteria are incorporated in the PBO method to identify the optimum from the optimization process. The PBO method is used to produce optimal shapes of plane stress continuum structures and plates in bending. Benchmark numerical results are provided to demonstrate the effectiveness of the PBO method for generating the maximum stiffness shape design of continuum structures. It is shown that the PBO method developed overcomes the limitations of traditional shape optimization methods in optimal design of continuum structures. Performance-based optimality criteria presented can be incorporated in any shape and topology optimization methods to obtain optimal designs of continuum structures.

  4. Optical simulation of laser beam phase-shaping focusing optimization in biological tissues

    Science.gov (United States)

    Gomes, Ricardo; Vieira, Pedro; Coelho, João. M. P.

    2013-11-01

    In this paper we report the development of an optical simulator that can be used in the development of methodologies for compensate/decrease the light scattering effect of most biological tissues through phase-shaping methods. In fact, scattering has long been a major limitation for the medical applications of lasers where in-depth tissues concerns due to the turbid nature of most biological media in the human body. In developing the simulator, two different approaches were followed: one using multiple identical beams directed to the same target area and the other using a phase-shaped beam. In the multiple identical beams approach (used mainly to illustrate the limiting effect of scattering on the beam's propagation) there was no improvement in the beam focus at 1 mm compared to a single beam layout but, in phase-shaped beam approach, a 8x improvement on the radius of the beam at the same depth was achieved. The models were created using the optical design software Zemax and numerical algorithms created in Matlab programming language to shape the beam wavefront. A dedicated toolbox allowed communication between both programs. The use of the two software's proves to be a simple and powerful solution combining the best of the two and allowing a significant potential for adapting the simulations to new systems and thus allow to assess their response and define critical engineering parameters prior to laboratorial implementation.

  5. Human behavior-based particle swarm optimization.

    Science.gov (United States)

    Liu, Hao; Xu, Gang; Ding, Gui-Yan; Sun, Yu-Bo

    2014-01-01

    Particle swarm optimization (PSO) has attracted many researchers interested in dealing with various optimization problems, owing to its easy implementation, few tuned parameters, and acceptable performance. However, the algorithm is easy to trap in the local optima because of rapid losing of the population diversity. Therefore, improving the performance of PSO and decreasing the dependence on parameters are two important research hot points. In this paper, we present a human behavior-based PSO, which is called HPSO. There are two remarkable differences between PSO and HPSO. First, the global worst particle was introduced into the velocity equation of PSO, which is endowed with random weight which obeys the standard normal distribution; this strategy is conducive to trade off exploration and exploitation ability of PSO. Second, we eliminate the two acceleration coefficients c 1 and c 2 in the standard PSO (SPSO) to reduce the parameters sensitivity of solved problems. Experimental results on 28 benchmark functions, which consist of unimodal, multimodal, rotated, and shifted high-dimensional functions, demonstrate the high performance of the proposed algorithm in terms of convergence accuracy and speed with lower computation cost.

  6. Elite Opposition-Based Water Wave Optimization Algorithm for Global Optimization

    OpenAIRE

    Wu, Xiuli; Zhou, Yongquan; Lu, Yuting

    2017-01-01

    Water wave optimization (WWO) is a novel metaheuristic method that is based on shallow water wave theory, which has simple structure, easy realization, and good performance even with a small population. To improve the convergence speed and calculation precision even further, this paper on elite opposition-based strategy water wave optimization (EOBWWO) is proposed, and it has been applied for function optimization and structure engineering design problems. There are three major optimization s...

  7. Optimization of the Hewlett-Packard particle-beam liquid chromatography-mass spectrometry interface by statistical experimental design.

    Science.gov (United States)

    Huang, S K; Garza, N R

    1995-06-01

    Optimization of both sensitivity and ionization softness for the Hewlett-Packard particle-beam liquid chromatography-mass spectrometry interface has been achieved by using a statistical experimental design with response surface modeling. Conditions for both optimized sensitivity and ionization softness were found to occur at 55-lb/in.(2) nebulizer flow, 35°C desolvation chamber temperature with approximately 45% organic modifier in the presence of 0.02-F ammonium acetate and a liquid chromatography flow rate of 0.2 mL/min.

  8. Optimization of High-Current Ion Beam Acceleration and Charge Compensation in Two Cusps of Induction Linac

    CERN Document Server

    Karas, Vyacheslav I

    1996-01-01

    Results of the numerical simulation of the hollow high-current ion beam (HHCIB) dynamics in two magnet-isolated accelerat- ing gaps separated by the drift gap are presented. The previous study has shown that the good charge and current compensations of the ion beam by the specially injected electron beam occur in the accelerating gaps of the i nduction linac. However in the drift gap the high positive electric potential due to the positive space charge of HHCIB was obtained because the essential dif- ference between the electron and ion drift velocities exists un- der this compensation method. This disadvantage impairing the brightness of the ion beam can be considerably reduced by the additional injection of the thermal electrons into the drift region. In present report the some cases of the cold electron injection into drift gap are considered. The more optimal regime for the effec- tive charge and current compensations of HHCIB without loss in the stability of ion beam was found

  9. The dose distribution determination in two kinds of polyethylene materials irradiated by electron beams-an experimental method for optimizing technology of radiation processing

    International Nuclear Information System (INIS)

    Zhang Daming

    2000-01-01

    The dose distribution in two kinds of polyethylene materials were determined by use of electron beam from 1.0-3.0 MeV electron accelerator. The effects of four different metal base-plate such as Al, Fe, Cu and Pb for dose depth distribution in materials were compared. And the boundary effects of absorbed dose were also observed. The expand uncertainty of absorbed dose measurement was 7.8%. This work is a useful experimental method for optimizing technology of radiation processing and realizing quality control of irradiation products

  10. Beam closed orbit feedback based on PID control

    International Nuclear Information System (INIS)

    Xuan Ke; Wang Lin; Liu Gongfa; Li Weimin; Li Chuan; Wang Jigang; Bao Xun; Xu Hongliang

    2013-01-01

    The algorithm in the feedback system has important influence on the performance of the beam orbit. Good feedback algorithm can greatly improve the beam orbit stability. In this paper, the theory of beam closed orbit correction, the principle of PID control and the beam closed orbit feedback correction using PID control were introduced. The simulation results were given. Compared with least-square method, the PID feedback algorithm makes the steady-state error smaller and more accurate, and enhances the beam orbit stability. (authors)

  11. Micromirror-based manipulation of synchrotron x-ray beams

    Science.gov (United States)

    Walko, D. A.; Chen, Pice; Jung, I. W.; Lopez, D.; Schwartz, C. P.; Shenoy, G. K.; Wang, Jin

    2017-08-01

    Synchrotron beamlines typically use macroscopic, quasi-static optics to manipulate x-ray beams. We present the use of dynamic microelectromechanical systems-based optics (MEMS) to temporally modulate synchrotron x-ray beams. We demonstrate this concept using single-crystal torsional MEMS micromirrors oscillating at frequencies of 75 kHz. Such a MEMS micromirror, with lateral dimensions of a few hundred micrometers, can interact with x rays by operating in grazing-incidence reflection geometry; x rays are deflected only when an x-ray pulse is incident on the rotating micromirror under appropriate conditions, i.e., at an angle less than the critical angle for reflectivity. The time window for such deflections depends on the frequency and amplitude of the MEMS rotation. We demonstrate that reflection geometry can produce a time window of a few microseconds. We further demonstrate that MEMS optics can isolate x rays from a selected synchrotron bunch or group of bunches. With ray-trace simulations we explain the currently achievable time windows and suggest a path toward improvements.

  12. Beam Diagnostics for Laser Undulator Based on Compton Backward Scattering

    CERN Document Server

    Kuroda, R

    2005-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on Compton backward scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser (10ps FWHM) and about 5 MeV high quality electron beam (10ps FWHM) generated from rf gun system. The range of X-ray energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein's coefficient in this range, a dehydration of the specimens is not necessary. To generate the soft X-ray pulse stably, the electron beam diagnostics have been developed such as the emittance measurement using double slit scan technique, the bunch length measurement using two frequency analysis technique. In this confere...

  13. Quadrupole beam-based alignment in the RHIC interaction regions

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, J.; Satogata, T.

    2011-03-28

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  14. Transfer line scattering model of therapeutic hadron beams and applications to nozzle and gantry optimization

    Directory of Open Access Journals (Sweden)

    M. Palm

    2013-01-01

    Full Text Available The field of hadron therapy is growing rapidly with several facilities currently being planned, under construction or in commissioning worldwide. In the “active scanning” irradiation technique, the target is irradiated using a narrow pencil beam that is scanned transversally over the target while the penetration depth is altered with the beam energy. Together, the target dose can thereby be conformed in all three dimensions to the shape of the tumor. For applications where a sharp lateral beam penumbra is required in order to spare critical organs from unwanted dose, beam size blowup due to scattering in on-line beam diagnostic monitors, air gaps and passive elements like the ripple filter must be minimized. This paper presents a model for transverse scattering of therapeutic hadron beams along arbitrary multislab geometries. The conventional scattering formulation, which is only applicable to a drift space, is extended to not only take beam optics into account, but also non-Gaussian transverse beam profiles which are typically obtained from the slow resonant extraction from a synchrotron. This work has been carried out during the design phase of the beam delivery system for MedAustron, an Austrian hadron therapy facility with first patient treatment planned for the end of 2015. Irradiation will be performed using active scanning with proton and carbon ion beams. As a direct application of the scattering model, design choices for the MedAustron proton gantry and treatment nozzles are evaluated with respect to the transverse beam profile at the focal point; in air and at the Bragg peak.

  15. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy.

    Science.gov (United States)

    Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2015-04-07

    Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 10(6) particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 10(5) particles per beamlet. Correspondingly, the computation

  16. Reliability-Based Optimization of Structural Elements

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    In this paper structural elements from an optimization point of view are considered, i.e. only the geometry of a structural element is optimized. Reliability modelling of the structural element is discussed both from an element point of view and from a system point of view. The optimization...

  17. Laser beam shaping design based on micromirror array

    Science.gov (United States)

    Fang, Han; Su, Bida; Liu, Jiaguo; Fan, Xiaoli; Jing, Wang

    2017-10-01

    In the practical application of the laser, it is necessary to use the laser beam shaping technology to shape the output beam of laser device to the uniform light intensity distribution. The shaping divergent optical system of compound eye integrator way is composed of beam expanding mirror group and lens array. Its working principle is to expand the output laser to a certain size of caliber, and then divide the beam with lens array into multiple sub beam, where the lens unit of lens array can control the divergence angle of sub beam through the design of focal length, with mutual superposition of the sub beam in far field, to make up for the nonuniformity of beam, so that the radiant exitance on the radiated surface may become uniform. In this paper, we use a reflective microlens array to realize the laser beam shaping. By through of the practical optical path model established, the ray tracing is carried out and the simulation results for single-mode Gaussian beam with noise circumstance is provided. The analysis results show that the laser beam shaping under different inputs can be effectively realized by use of microlens array. All the energy is within the signal window, with a high energy efficiency of more than 90%; The measured surface has a better uniformity, and the uniformity is better than 99.5% at 150m.

  18. An online replanning method using warm start optimization and aperture morphing for flattening-filter-free beams

    International Nuclear Information System (INIS)

    Ahunbay, Ergun E.; Ates, O.; Li, X. A.

    2016-01-01

    Purpose: In a situation where a couch shift for patient positioning is not preferred or prohibited (e.g., MR-linac), segment aperture morphing (SAM) can address target dislocation and deformation. For IMRT/VMAT with flattening-filter-free (FFF) beams, however, SAM method would lead to an adverse translational dose effect due to the beam unflattening. Here the authors propose a new two-step process to address both the translational effect of FFF beams and the target deformation. Methods: The replanning method consists of an offline and an online step. The offline step is to create a series of preshifted-plans (PSPs) obtained by a so-called “warm start” optimization (starting optimization from the original plan, rather than from scratch) at a series of isocenter shifts. The PSPs all have the same number of segments with very similar shapes, since the warm start optimization only adjusts the MLC positions instead of regenerating them. In the online step, a new plan is obtained by picking the closest PSP or linearly interpolating the MLC positions and the monitor units of the closest PSPs for the shift determined from the image of the day. This two-step process is completely automated and almost instantaneous (no optimization or dose calculation needed). The previously developed SAM algorithm is then applied for daily deformation. The authors tested the method on sample prostate and pancreas cases. Results: The two-step interpolation method can account for the adverse dose effects from FFF beams, while SAM corrects for the target deformation. Plan interpolation method is effective in diminishing the unflat beam effect and may allow reducing the required number of PSPs. The whole process takes the same time as the previously reported SAM process (5–10 min). Conclusions: The new two-step method plus SAM can address both the translation effects of FFF beams and target deformation, and can be executed in full automation except the delineation of target contour

  19. Optimal starting gantry angles using equiangular-spaced beams with intensity modulated radiation therapy for prostate cancer on RTOG 0126: A clinical study of 5 and 7 fields

    International Nuclear Information System (INIS)

    Potrebko, Peter S.; McCurdy, Boyd M.C.; Butler, James B.; El-Gubtan, Adel S.; Nugent, Zoann

    2007-01-01

    Background and Purpose: To investigate the effects of starting gantry angle and number of equiangular-spaced beams for prostate cancer radiotherapy on the Radiation Therapy Oncology Group (RTOG) 0126 protocol using intensity-modulated radiation therapy (IMRT). Materials and methods: Ten localized prostate cancer patients were prescribed to 79.2 Gy in 44 fractions. Static IMRT plans using five and seven equiangular-spaced beams were generated. The starting gantry angles were incremented by 5 o resulting in 15 (5 beams) and 11 (7 beams) plans per patient. Constant target coverage was ensured for all plans in order to isolate the variation in the rectal and bladder metrics as a function of starting gantry angle. Results: The variation with starting gantry angle in rectal metrics using 5 beams was statistically significant (p o and 50 o . Statistically insignificant differences were observed for the bladder metrics using 5 beams. There was little dosimetric variation in the rectal and bladder metrics with 7 beams. Nearly equivalent rectal V 75 Gy was achieved between 5 optimal equiangular-spaced beams starting at 20 o (class solution) and 7 equiangular-spaced beams starting at 0 o for most patients. Conclusions: The use of an optimal starting gantry angle for 5 equiangular-spaced beams, as indicated by a class solution in this study, will facilitate rectal sparing and can produce plans that are equivalent to those employing 7 equiangular-spaced beams

  20. Electron beam based transversal profile measurements of intense ion beams; Elektronenstrahl-Diagnostik zur Bestimmung vom transversalen Profil intensiver Ionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    El Moussati, Said

    2014-11-03

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  1. A combined approach to cartographic displacement for buildings based on skeleton and improved elastic beam algorithm.

    Directory of Open Access Journals (Sweden)

    Yuangang Liu

    Full Text Available Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS. Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1 an automated parameter-setting method for elastic beams, (2 explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3 preservation of local building groups through displacement over an adjusted proximity graph, and (4 an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm.

  2. A combined approach to cartographic displacement for buildings based on skeleton and improved elastic beam algorithm.

    Science.gov (United States)

    Liu, Yuangang; Guo, Qingsheng; Sun, Yageng; Ma, Xiaoya

    2014-01-01

    Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS). Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT) skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas) were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1) an automated parameter-setting method for elastic beams, (2) explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3) preservation of local building groups through displacement over an adjusted proximity graph, and (4) an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm.

  3. Logic-based methods for optimization combining optimization and constraint satisfaction

    CERN Document Server

    Hooker, John

    2011-01-01

    A pioneering look at the fundamental role of logic in optimization and constraint satisfaction While recent efforts to combine optimization and constraint satisfaction have received considerable attention, little has been said about using logic in optimization as the key to unifying the two fields. Logic-Based Methods for Optimization develops for the first time a comprehensive conceptual framework for integrating optimization and constraint satisfaction, then goes a step further and shows how extending logical inference to optimization allows for more powerful as well as flexible

  4. Thickness optimization and activity induction in beam slit monitor for Indus

    International Nuclear Information System (INIS)

    Petwal, V.C.; Pramod, R.; Dwivedi, Jishnu; Senecha, V.K.

    2009-01-01

    A large number of beam slit monitors are planned to be installed in the TL-2 and TL-3 of Indus for probing the 450 MeV and 700 MeV electron beams. The beam slit monitor consists of 2 pairs of metallic blades, mounted in orthogonal direction and shall be installed inside the beam chamber. These shutters provide current signals, on interception with electron beam, which can be used to determine precisely beam position, shape and size. The physical dimensions of the shutter blades are of crucial importance due to the requirement of high resolution, accuracy and space constraints. As part of design study of beam slit monitors, Monte Carlo simulation using MCNP code has been performed to investigate the radiological characteristics of the suitable blade materials e.g. Cu, Ta, W, and Inermet. The thickness has been optimised to absorb 90% of electron beam. The power density profiles along thickness and radial direction have been simulated to carry out thermal design. The high energy electron beam on interception with shutter blade develops cascading shower, containing secondary particles such as photons, photoneutrons, pions, and muons etc, which induce radioactivity in shutter material as well in the surrounding components. The state of the art Monte Carlo Code FLUKA has been used to estimate the amount of the activity induced in the shutter blade. In the first step, the FLUKA calculations are compared with data reported in IAEA TRS 188 for Cu, W target in the energy range 15 - 35 MeV, which shows good agreement. In second step, these calculations are extended to estimate induced activity in the shutter blade at actual electron energy 450 MeV and 700 MeV. (author)

  5. Radioactive nuclear beam facilities based on projectile fragmentation

    International Nuclear Information System (INIS)

    Sherrill, B.M.

    1992-01-01

    The production of radioactive beams using direct separation techniques is discussed. The reaction mechanisms which can be used to produce radioactive beams with these techniques can be broadly divided into three groups, projectile fragmentation, nucleon transfer, and Coulomb disassociation. Radioactive nuclei produced in these ways have large forward momenta with relatively sharp angular distributions peaked near zero degrees which are suitable for collection with magnetic devices. Secondary beam intensities of up to a few percent of the primary beam intensity are possible, although depending on the production mechanism the beam emittance may be poor. Further beam purification can be achieved using atomic processes with profiled energy degraders. The features of the production reaction mechanism, separation techniques, and a review of world wide efforts are presented. The advantages and disadvantages of the method are presented, with discussion of techniques to overcome some of the disadvantages. (Author)

  6. Accelerator development for a radioactive beam facility based on ATLAS

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed

  7. Accelerator development for a radioactive beam facility based on ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  8. Differential correction system of laser beam directional dithering based on symmetrical beamsplitter

    Science.gov (United States)

    Hongwei, Yang; Wei, Tao; Xiaoqia, Yin; Hui, Zhao

    2018-02-01

    This paper proposes a differential correction system with a differential optical path and a symmetrical beamsplitter for correcting the directional dithering of the laser beams. This system can split a collimated laser beam into two laser beams with equal and opposite movements. Thus, the positional averages of the two split laser beams remain constant irrespective of the dithering angle. The symmetrical beamsplitter designed based on transfer matrix principle is to balance the optical paths and irradiances of the two laser beams. Experimental results show that the directional dithering is reduced to less than one-pixel value. Finally, two examples show that this system can be widely used in one-dimensional measurement.

  9. Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron

    CERN Document Server

    Garcia, J B

    2011-01-01

    The proton beams used for the fixed target physics at the Super Proton Synchrotron (SPS) are extracted from the Proton Synchrotron ( PS) by a multiturn technique called continuous transfer (CT). During the CT extraction, large losses are observed in locations where the machine aperture should be large enough to accommodate the circulating beam. This limits the maximum intensity deliverable due to the induced stray radiation outside the PS tunnel. Scattered particles from the interaction with the electrostatic septum are identified as the possible source of these losses. This article presents a detailed study aiming to understand the origin of losses and propose possible cures. The simulations could reproduce accurately the beam loss pattern measured in real machine operation and determine the beam shaving, intrinsic to the extraction process, as the cause for the unexpected losses. Since these losses are unavoidable, the proposed solution implies a new optics scheme displacing the losses to a region with bett...

  10. Optimal design of a beam stop for Indus-2 using finite element heat ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The radiation source impinges ∼ 1 kW power on the beam stop and the heat transfer capabilities of ... ring and will give out, from its bending magnets, a continuous spectrum of hard X-rays with critical photon ... safer side, in our calculations we have assumed 1.25 kW of power impinging on the beam stop. The size of the ...

  11. Optimization-Based Military Capital Planning

    National Research Council Canada - National Science Library

    Brown, Gerald

    2004-01-01

    ..., and the sheer scale of the endeavor. Mathematical optimization models have long played a key role in unraveling the complexities of capital planning, and the military has lead the development and use of such models. We survey the history of optimizing civilian and military capital plans and then present prototypic models exhibiting features that render these models useful for real-world decision support.

  12. Transmission tariffs based on optimal power flow

    International Nuclear Information System (INIS)

    Wangensteen, Ivar; Gjelsvik, Anders

    1998-01-01

    This report discusses transmission pricing as a means of obtaining optimal scheduling and dispatch in a power system. This optimality includes consumption as well as generation. The report concentrates on how prices can be used as signals towards operational decisions of market participants (generators, consumers). The main focus is on deregulated systems with open access to the network. The optimal power flow theory, with demand side modelling included, is briefly reviewed. It turns out that the marginal costs obtained from the optimal power flow gives the optimal transmission tariff for the particular load flow in case. There is also a correspondence between losses and optimal prices. Emphasis is on simple examples that demonstrate the connection between optimal power flow results and tariffs. Various cases, such as open access and single owner are discussed. A key result is that the location of the ''marketplace'' in the open access case does not influence the net economical result for any of the parties involved (generators, network owner, consumer). The optimal power flow is instantaneous, and in its standard form cannot deal with energy constrained systems that are coupled in time, such as hydropower systems with reservoirs. A simplified example of how the theory can be extended to such a system is discussed. An example of the influence of security constraints on prices is also given. 4 refs., 24 figs., 7 tabs

  13. Model based optimization of MSWC process control

    NARCIS (Netherlands)

    Kessel, L.B.M. van; Leskens, M.

    2002-01-01

    Optimization of municipal solid waste combustion (MSWC), processes is an im portant issue doe to the ever-lasting need for emission reduction. more optimal use of raw materials and overall cost reduction. The key of the approach of TNO (Netherlands Orgaru sation for Applied Scientific Research) to

  14. Optimizing the e-beam profile of a single carbon nanotube field emission device for electric propulsion systems

    Directory of Open Access Journals (Sweden)

    Juliano Fujioka Mologni

    2010-04-01

    Full Text Available Preliminary studies on field emission (FE arrays comprised of carbon nanotubes (CNT as an electron source for electric propulsion system show remarkably promising results. Design parameters for a carbon nanotube (CNT field-emission device operating on triode configuration were numerically simulated and optimized in order to enhance the e-beam focusing quality. An additional focus gate (FG was integrated to the device to control the profile of the emitted e-beam. An axisymmetric finite element model was developed to calculate the electric field distribution on the vacuum region and a modified Fowler-Nordheim (FN equation was used to evaluate the current density emission and the effective emitter area. Afterward, a FE simulation was employed in order to calculate the trajectory of the emitted electrons and define the electron-optical properties of the e-beam. The integration of the FG was fully investigated via computational intelligence techniques. The best performance device according to our simulations presents a collimated e-beam profile that suits well for field emission displays, magnetic field detection and electron microscopy. The automated computational design tool presented in this study strongly benefits the robust design of integrated electron-optical systems for vacuum field emission applications, including electrodynamic tethering and electric propulsion systems.

  15. A set cover approach to fast beam orientation optimization in intensity modulated radiation therapy for total marrow irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chieh-Hsiu Jason; Aleman, Dionne M [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada); Sharpe, Michael B, E-mail: chjlee@mie.utoronto.ca, E-mail: aleman@mie.utoronto.ca, E-mail: michael.sharpe@rmp.uhn.on.ca [Princess Margaret Hospital, Department of Radiation Oncology, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9 (Canada)

    2011-09-07

    The beam orientation optimization (BOO) problem in intensity modulated radiation therapy (IMRT) treatment planning is a nonlinear problem, and existing methods to obtain solutions to the BOO problem are time consuming due to the complex nature of the objective function and size of the solution space. These issues become even more difficult in total marrow irradiation (TMI), where many more beams must be used to cover a vastly larger treatment area than typical site-specific treatments (e.g., head-and-neck, prostate, etc). These complications result in excessively long computation times to develop IMRT treatment plans for TMI, so we attempt to develop methods that drastically reduce treatment planning time. We transform the BOO problem into the classical set cover problem (SCP) and use existing methods to solve SCP to obtain beam solutions. Although SCP is NP-Hard, our methods obtain beam solutions that result in quality treatments in minutes. We compare our approach to an integer programming solver for the SCP to illustrate the speed advantage of our approach.

  16. Optimization of four-button beam position monitor configuration for small-gap vacuum chambers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.

    1998-03-27

    Induced charges on a four-button beam position monitor (BPM) system attached on a beam chamber of narrow rectangular cross sections are calculated as a 2-D electrostatic problem of image charges. The calculation shows that for a narrow chamber of width/height (2w/2h) {much_gt} 1, over 90% of the induced charges are distributed within a distance of 2h from the charged beam position in the direction of the chamber width. Therefore, a four-button system with a button diameter of (2--2.5)h and no button offset from the beam position is the most efficient configuration. The four-button BPMs used for 8-mm and 5-mm chambers in the APS have relatively low sensitivities because the button locations are outside the range where the induced charge densities are low and the button diameters are less than 2h. Using derived formulae, button sensitivities and beam position coefficients are calculated for the buttons of the most efficient case and of the 8-mm and 5-mm chambers. The formulae may be used to validate the method of computer modeling for BPM buttons on a beam chamber of an arbitrary cross section.

  17. Treatment planning for heavy ion radiotherapy: physical beam model and dose optimization

    International Nuclear Information System (INIS)

    Kraemer, M.; Haberer, T.; Kraft, G.; Schardt, D.; Weber, U.

    2000-09-01

    We describe a novel code system, TRiP, dedicated to the planning of radiotherapy with energetic ions, in particular 12 C. The software is designed to cooperate with three-dimensional active dose shaping devices like the GSI raster scan system. This unique beam delivery system allows to select any combination from a list of 253 individual beam energies, 7 different beam spot sizes and 15 intensity levels. The software includes a beam model adapted to and verified for carbon ions. Inverse planning techniques are implemented in order to obtain a uniform target dose distribution from clinical input data, i.e. CT images and patient contours. This implies the automatic generation of intensity modulated fields of heavy ions with as many as 40000 raster points, where each point corresponds to a specific beam position, energy and particle fluence. This set of data is directly passed to the beam delivery and control system. The treatment planning code is in clinical use since the start of the GSI pilot project in December 1997. To this end 48 patients have been successfully planned and treated. (orig.)

  18. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization

    Science.gov (United States)

    Krämer, M.; Jäkel, O.; Haberer, T.; Kraft, G.; Schardt, D.; Weber, U.

    2000-11-01

    We describe a novel code system, TRiP, dedicated to the planning of radiotherapy with energetic ions, in particular 12C. The software is designed to cooperate with three-dimensional active dose shaping devices like the GSI raster scan system. This unique beam delivery system allows us to select any combination from a list of 253 individual beam energies, 7 different beam spot sizes and 15 intensity levels. The software includes a beam model adapted to and verified for carbon ions. Inverse planning techniques are implemented in order to obtain a uniform target dose distribution from clinical input data, i.e. CT images and patient contours. This implies the automatic generation of intensity modulated fields of heavy ions with as many as 40 000 raster points, where each point corresponds to a specific beam position, energy and particle fluence. This set of data is directly passed to the beam delivery and control system. The treatment planning code has been in clinical use since the start of the GSI pilot project in December 1997. Forty-eight patients have been successfully planned and treated.

  19. Warehouse Optimization Model Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Guofeng Qin

    2013-01-01

    Full Text Available This paper takes Bao Steel logistics automated warehouse system as an example. The premise is to maintain the focus of the shelf below half of the height of the shelf. As a result, the cost time of getting or putting goods on the shelf is reduced, and the distance of the same kind of goods is also reduced. Construct a multiobjective optimization model, using genetic algorithm to optimize problem. At last, we get a local optimal solution. Before optimization, the average cost time of getting or putting goods is 4.52996 s, and the average distance of the same kinds of goods is 2.35318 m. After optimization, the average cost time is 4.28859 s, and the average distance is 1.97366 m. After analysis, we can draw the conclusion that this model can improve the efficiency of cargo storage.

  20. Enhancing the accelerated beam current in the booster synchrotron ...

    Indian Academy of Sciences (India)

    Based on these measured beam parameters, beam optics of a transport line was optimized and its results are alsodiscussed in this paper. This beam transport line is used to transport the electron beam from the 20MeV microtron to the booster synchrotron. The booster synchrotron works as a main injector for Indus-1 and ...

  1. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  2. Flexural Test of Fly Ash based Geopolimer Concrete Beams

    Directory of Open Access Journals (Sweden)

    Nindyawati

    2017-01-01

    Full Text Available Fly ash is a by-product from the coal industry, which is widely available in Indonesia. Fly ash contains quite high silicate and alumina. Silica and alumina reacts with alkaline solution to produce alumina silicate gel which binds the aggregate to produce geopolymer concrete. Geopolymer concrete is introduced as an environmental concrete with high compressive strength. The use of geopolymer concrete beams is a solution to reduce the effects of greenhouse gases. This research uses experimental designs. The data are obtained from the testing of 4 pieces of reinforced geopolymer concrete beams and reinforced ordinary concrete beams with a / d of 1.11 and 2.24. The results are obtained from the maximum load that can be accepted by the beam. The results of this study are: (1 Geopolymer concrete cylinder has 26.78% higher compressive strength than ordinary concrete cylinders (2 Ordinary concrete beams can withstand 34.8% load higher compared to the geopolymer concrete beam (3 Reinforced ordinary concrete beams experience bending shear collapse while reinforced geopolymer concrete beam experience pure bending collapse.

  3. Polystyrene as a zwitter resist in electron beam lithography based ...

    Indian Academy of Sciences (India)

    The resist action of polystyrene (w, 2,600,000) towards electroless deposition of gold on Si(100) surface following cross-linking by exposing to a 10 kV electron beam, has been investigated employing a scanning electron microscope equipped with electron beam lithography tool. With a low dose of electrons (21 C/cm2), ...

  4. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion ...

  5. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    Abstract. Mass analyzed highly charged ion beams of energy ranging from a few keV to a few. MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply ...

  6. Two-color beam generation based on wakefield excitation

    Directory of Open Access Journals (Sweden)

    S. Bettoni

    2016-05-01

    Full Text Available Several beam manipulation methods have been studied and experimentally tested to generate two-color photon beams in free electron laser facilities to accommodate the user requests. We propose to use the interaction of the beam with an oscillating longitudinal wakefield source to obtain a suitable electron beam structure. The bunch generates two subpulses with different energies and delayed in time passing through a magnetic chicane after its longitudinal phase space has been modulated by the wakefield source. According to this approach the power of the emitted radiation is not degraded compared to the monochromatic beam, and the setup in the machine is quite simple because the bunch is manipulated only in the high energy section, where it is more rigid. We present the design applied to SwissFEL. We identified the parameters and the corresponding range of tunability of the time and energy separation among the two subbunches.

  7. Global stability-based design optimization of truss structures using ...

    Indian Academy of Sciences (India)

    Furthermore, a pure pareto-ranking based multi-objective optimization model is employed for the design optimization of the truss structure with multiple objectives. The computational performance of the optimization model is increased by implementing an island model into its evolutionary search mechanism. The proposed ...

  8. Topology Optimization of Metamaterial-Based Electrically Small Antennas

    DEFF Research Database (Denmark)

    Erentok, Aycan; Sigmund, Ole

    2007-01-01

    A topology optimized metamaterial-based electrically small antenna configuration that is independent of a specific spherical and/or cylindrical metamaterial shell design is demonstrated. Topology optimization is shown to provide the optimal value and placement of a given ideal metamaterial in space...

  9. Broadband and high-efficiency vortex beam generator based on a hybrid helix array.

    Science.gov (United States)

    Fang, Chaoqun; Wu, Chao; Gong, Zhijie; Zhao, Song; Sun, Anqi; Wei, Zeyong; Li, Hongqiang

    2018-04-01

    The vortex beam which carries the orbital angular momentum has versatile applications, such as high-resolution imaging, optical communications, and particle manipulation. Generating vortex beams with the Pancharatnam-Berry (PB) phase has drawn considerable attention for its unique spin-to-orbital conversion features. Despite the PB phase being frequency independent, an optical element with broadband high-efficiency circular polarization conversion feature is still needed for the broadband high-efficiency vortex beam generation. In this work, a broadband and high-efficiency vortex beam generator based on the PB phase is built with a hybrid helix array. Such devices can generate vortex beams with arbitrary topological charge. Moreover, vortex beams with opposite topological charge can be generated with an opposite handedness incident beam that propagates backward. The measured efficiency of our device is above 65% for a wide frequency range, with the relative bandwidth of 46.5%.

  10. Development of a Laser-based Emittance Monitor for Negative Hydrogen Beams

    CERN Document Server

    AUTHOR|(CDS)2078368; Schmauss, Bernhard; Gibson, Stephen; Boorman, Gary; Bosco, Alessio

    High energy particle accelerators are designed to collide charged particle beams and thus study the collision products. Maximising the collision rate, to generate sufficient statistics for precise measurements of rare processes, is one of the key parameters for optimising the overall collider performance. The CERN Large Hadron Collider (LHC) Injectors Upgrade (LIU) includes the construction of LINAC4, a completely new machine working as a first linear acceleration stage for the LHC beam. By accelerating a negative hydrogen beam (H-) instead of protons, it aims to double the beam brightness via a more efficient transfer to the first circular accelerator and subsequently boost the LHC collision rate. To achieve this, a precise knowledge of the transverse beam characteristics in terms of beam emittance is essential. This thesis work covers the development of a laser-based monitor meant to measure non-destructively the LINAC4 beam transverse profile and emittance. This included the implementation of dif...

  11. Beam-Based Calibration of the Electron Energy in the Fermilab Electron Cooler

    CERN Document Server

    Seletsky, Sergey

    2005-01-01

    Electron cooling of 8.9 GeV antiprotons in the Fermilab's Recycler ring requires precise matching of electron and antiproton velocities. While the final match can be done by optimization of the cooling process, for the very first cooling one should rely on the knowledge of absolute values of electron and antiproton energies. The upper limit for the energy uncertainty of both beams is determined by the Recycler's momentum aperture and is equal to 0.3%. The paper discusses a method of the electron energy calibration that is based on the measurement of the electron's Larmor wavelength in the field of the cooling section solenoid. The method was tested in an 18 m long cooling section prototype with 3.5 MeV electrons. An accuracy of 0.3% was demonstrated.

  12. SU-F-BRD-08: Guaranteed Epsilon-Optimal Treatment Plans with Minimum Number of Beams for SBRT Using RayStation

    International Nuclear Information System (INIS)

    Yarmand, H; Winey, B; Craft, D

    2014-01-01

    Purpose: To efficiently find quality-guaranteed treatment plans with the minimum number of beams for stereotactic body radiation therapy using RayStation. Methods: For a pre-specified pool of candidate beams we use RayStation (a treatment planning software for clinical use) to identify the deliverable plan which uses all the beams with the minimum dose to organs at risk (OARs) and dose to the tumor and other structures in specified ranges. Then use the dose matrix information for the generated apertures from RayStation to solve a linear program to find the ideal plan with the same objective and constraints allowing use of all beams. Finally we solve a mixed integer programming formulation of the beam angle optimization problem (BAO) with the objective of minimizing the number of beams while remaining in a predetermined epsilon-optimality of the ideal plan with respect to the dose to OARs. Since the treatment plan optimization is a multicriteria optimization problem, the planner can exploit the multicriteria optimization capability of RayStation to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus OARs sparing, and then use the proposed technique to reduce the number of beams while guaranteeing quality. For the numerical experiments two liver cases and one lung case with 33 non-coplanar beams are considered. Results: The ideal plan uses an impractically large number of beams. The proposed technique reduces the number of beams to the range of practical application (5 to 9 beams) while remaining in the epsilon-optimal range of 1% to 5% optimality gap. Conclusion: The proposed method can be integrated into a general algorithm for fast navigation of the ideal dose distribution Pareto surface and finding the treatment plan with the minimum number of beams, which corresponds to the delivery time, in epsilon-optimality range of the desired ideal plan. The project was supported by the Federal Share of program income

  13. SU-F-BRD-08: Guaranteed Epsilon-Optimal Treatment Plans with Minimum Number of Beams for SBRT Using RayStation

    Energy Technology Data Exchange (ETDEWEB)

    Yarmand, H; Winey, B; Craft, D [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-15

    Purpose: To efficiently find quality-guaranteed treatment plans with the minimum number of beams for stereotactic body radiation therapy using RayStation. Methods: For a pre-specified pool of candidate beams we use RayStation (a treatment planning software for clinical use) to identify the deliverable plan which uses all the beams with the minimum dose to organs at risk (OARs) and dose to the tumor and other structures in specified ranges. Then use the dose matrix information for the generated apertures from RayStation to solve a linear program to find the ideal plan with the same objective and constraints allowing use of all beams. Finally we solve a mixed integer programming formulation of the beam angle optimization problem (BAO) with the objective of minimizing the number of beams while remaining in a predetermined epsilon-optimality of the ideal plan with respect to the dose to OARs. Since the treatment plan optimization is a multicriteria optimization problem, the planner can exploit the multicriteria optimization capability of RayStation to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus OARs sparing, and then use the proposed technique to reduce the number of beams while guaranteeing quality. For the numerical experiments two liver cases and one lung case with 33 non-coplanar beams are considered. Results: The ideal plan uses an impractically large number of beams. The proposed technique reduces the number of beams to the range of practical application (5 to 9 beams) while remaining in the epsilon-optimal range of 1% to 5% optimality gap. Conclusion: The proposed method can be integrated into a general algorithm for fast navigation of the ideal dose distribution Pareto surface and finding the treatment plan with the minimum number of beams, which corresponds to the delivery time, in epsilon-optimality range of the desired ideal plan. The project was supported by the Federal Share of program income

  14. Availability based spare optimization using renewal process

    Energy Technology Data Exchange (ETDEWEB)

    Dinesh Kumar, U.; Knezevic, J

    1998-02-01

    In this article, we develop mathematical models for spare components with exponential, gamma, normal and Weibull time to failure distribution using a renewal process. The models can be used to predict the number of spares required for a component or system to achieve specified inherent availability. The paper also presents optimization models for systems with components in series where the time to failure distribution of the components follow any general distribution. The objective of the optimization problem is to maximize the availability of the system satisfying constraints on cost and weight. The optimization model developed in the paper can be solved using many general purpose software like LINDO, SOLVER of EXCEL etc. An efficient branch and bound procedure which can be used to solve the optimization problem is also presented in the article.

  15. Product portfolio optimization based on substitution

    DEFF Research Database (Denmark)

    Myrodia, Anna; Moseley, A.; Hvam, Lars

    2017-01-01

    The development of production capabilities has led to proliferation of the product variety offered to the customer. Yet this fact does not directly imply increase of manufacturers' profitability, nor customers' satisfaction. Consequently, recent research focuses on portfolio optimization through...... substitution and standardization techniques. However when re-defining the strategic market decisions are characterized by uncertainty due to several parameters. In this study, by using a GAMS optimization model we present a method for supporting strategic decisions on substitution, by quantifying the impact...

  16. Optimization for manufacturing system based on Pheromone

    OpenAIRE

    Lei Wang; Dunbing Tang

    2011-01-01

    A new optimization approach, called pheromone, which comes from the collective behavior of ant colonies for food foraging is proposed to optimize task allocation. These ants spread pheromone information and make global information available locally; thus, an ant agent only needs to observe its local environment in order to account for nonlocal concerns in its decisions. This approach has the capacity for task allocation model to automatically find efficient routing paths for processing orders...

  17. Efficient tight focusing of laser beams optimally matched to their thin-film linear-to-radial polarization conversion: Method, implementation, and field near focus

    Science.gov (United States)

    Sedukhin, Andrey G.; Poleshchuk, Alexander G.

    2018-01-01

    A method is proposed for efficient, rotationally symmetric, tight mirror focusing of laser beams that is optimally matched to their thin-film linear-to-radial polarization conversion by a constant near-Brewster angle of incidence of the beams onto a polarizing element. Two optical systems and their modifications are considered that are based on this method and on the use of Toraldo filters. If focusing components of these systems operate in media with refractive indices equal to that of the focal region, they take the form of an axicon and an annular reflector generated by the revolution of an inclined parabola around the optical axis. Vectorial formulas for calculating the diffracted field near the focus of these systems are derived. Also presented are the results of designing a thin-film obliquely illuminated polarizer and a numerical simulation of deep UV laser beams generated by one of the systems and focused in an immersion liquid. The transverse and axial sizes of a needle longitudinally polarized field generated by the system with a simplest phase Toraldo filter were found to be 0.39 λ and 10.5 λ, with λ being the wavelength in the immersion liquid.

  18. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams.

    Science.gov (United States)

    Patel, Darshana; Bronk, Lawrence; Guan, Fada; Peeler, Christopher R; Brons, Stephan; Dokic, Ivana; Abdollahi, Amir; Rittmüller, Claudia; Jäkel, Oliver; Grosshans, David; Mohan, Radhe; Titt, Uwe

    2017-11-01

    Accurate modeling of the relative biological effectiveness (RBE) of particle beams requires increased systematic in vitro studies with human cell lines with care towards minimizing uncertainties in biologic assays as well as physical parameters. In this study, we describe a novel high-throughput experimental setup and an optimized parameterization of the Monte Carlo (MC) simulation technique that is universally applicable for accurate determination of RBE of clinical ion beams. Clonogenic cell-survival measurements on a human lung cancer cell line (H460) are presented using proton irradiation. Experiments were performed at the Heidelberg Ion Therapy Center (HIT) with support from the Deutsches Krebsforschungszentrum (DKFZ) in Heidelberg, Germany using a mono-energetic horizontal proton beam. A custom-made variable range selector was designed for the horizontal beam line using the Geant4 MC toolkit. This unique setup enabled a high-throughput clonogenic assay investigation of multiple, well defined dose and linear energy transfer (LETs) per irradiation for human lung cancer cells (H460) cultured in a 96-well plate. Sensitivity studies based on application of different physics lists in conjunction with different electromagnetic constructors and production threshold values to the MC simulations were undertaken for accurate assessment of the calculated dose and the dose-averaged LET (LET d ). These studies were extended to helium and carbon ion beams. Sensitivity analysis of the MC parameterization revealed substantial dependence of the dose and LET d values on both the choice of physics list and the production threshold values. While the dose and LET d calculations using FTFP_BERT_LIV, FTFP_BERT_EMZ, FTFP_BERT_PEN and QGSP_BIC_EMY physics lists agree well with each other for all three ions, they show large differences when compared to the FTFP_BERT physics list with the default electromagnetic constructor. For carbon ions, the dose corresponding to the largest LET d

  19. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control.

    Science.gov (United States)

    Reza, Syed Azer; Khwaja, Tariq Shamim; Mazhar, Mohsin Ali; Niazi, Haris Khan; Nawab, Rahma

    2017-07-20

    Various existing target ranging techniques are limited in terms of the dynamic range of operation and measurement resolution. These limitations arise as a result of a particular measurement methodology, the finite processing capability of the hardware components deployed within the sensor module, and the medium through which the target is viewed. Generally, improving the sensor range adversely affects its resolution and vice versa. Often, a distance sensor is designed for an optimal range/resolution setting depending on its intended application. Optical triangulation is broadly classified as a spatial-signal-processing-based ranging technique and measures target distance from the location of the reflected spot on a position sensitive detector (PSD). In most triangulation sensors that use lasers as a light source, beam divergence-which severely affects sensor measurement range-is often ignored in calculations. In this paper, we first discuss in detail the limitations to ranging imposed by beam divergence, which, in effect, sets the sensor dynamic range. Next, we show how the resolution of laser-based triangulation sensors is limited by the interpixel pitch of a finite-sized PSD. In this paper, through the use of tunable focus lenses (TFLs), we propose a novel design of a triangulation-based optical rangefinder that improves both the sensor resolution and its dynamic range through adaptive electronic control of beam propagation parameters. We present the theory and operation of the proposed sensor and clearly demonstrate a range and resolution improvement with the use of TFLs. Experimental results in support of our claims are shown to be in strong agreement with theory.

  20. The effect of using a robust optimality criterion in model based adaptive optimization.

    Science.gov (United States)

    Strömberg, Eric A; Hooker, Andrew C

    2017-08-01

    Optimizing designs using robust (global) optimality criteria has been shown to be a more flexible approach compared to using local optimality criteria. Additionally, model based adaptive optimal design (MBAOD) may be less sensitive to misspecification in the prior information available at the design stage. In this work, we investigate the influence of using a local (lnD) or a robust (ELD) optimality criterion for a MBAOD of a simulated dose optimization study, for rich and sparse sampling schedules. A stopping criterion for accurate effect prediction is constructed to determine the endpoint of the MBAOD by minimizing the expected uncertainty in the effect response of the typical individual. 50 iterations of the MBAODs were run using the MBAOD R-package, with the concentration from a one-compartment first-order absorption pharmacokinetic model driving the population effect response in a sigmoidal EMAX pharmacodynamics model. The initial cohort consisted of eight individuals in two groups and each additional cohort added two individuals receiving a dose optimized as a discrete covariate. The MBAOD designs using lnD and ELD optimality with misspecified initial model parameters were compared by evaluating the efficiency relative to an lnD-optimal design based on the true parameter values. For the explored example model, the MBAOD using ELD-optimal designs converged quicker to the theoretically optimal lnD-optimal design based on the true parameters for both sampling schedules. Thus, using a robust optimality criterion in MBAODs could reduce the number of adaptations required and improve the practicality of adaptive trials using optimal design.

  1. A beam intensity profile monitor based on secondary electron emission

    International Nuclear Information System (INIS)

    Berdoz, A.R.; Birchall, J.; Campbell, J.R.; Davis, C.A.; Davison, N.E.; Mosscrop, D.R.; Page, S.A.; Ramsay, W.D.; Sekulovich, A.M.; Van Oers, W.T.H.; MIschke, R.E.

    1991-03-01

    Two dual function intensity profile monitors have been designed for a measurement of parity violation in antiproton-proton scattering at about 230 MeV using longitudinally polarized protons. Each device contains a set of split secondary electron emission (SEM) foils to determine the median of the beam current distribution (in x and y). The split foils, coupled through servoamplifiers and operational amplifiers to upstream air core steering magnets, have demonstrated the ability to hold the beam position stable to within ± 3 μm after one hour of data taking with a 100 nA, 15 mm FWHM Gaussian beam. (Author) 16 refs., 10 figs., tab

  2. Reconstruction of laser beam wavefronts based on mode analysis

    CSIR Research Space (South Africa)

    Schulze, C

    2013-07-01

    Full Text Available . Experimental Setup To measure the influence of defined Zernike aberra- tions on a laser beam, we used an experimental setup as outlined in Fig. 3. The beam of a helium–neon laser (10 mW power, 633 nm wavelength) was expanded and collimated [ f �L 1 � � 15 mm, f.... Insets depict the shapes of the corresponding aberrations. Fig. 3. Schematic of the experimental setup to modally decom- pose differently aberrated Gaussian beams. He–Ne, helium–neon laser; L 1–5 , lenses; M, mirror; SLM 1;2, spatial light modulator...

  3. Optimization of a space based radiator

    International Nuclear Information System (INIS)

    Sam, Kien Fan Cesar Hung; Deng Zhongmin

    2011-01-01

    Nowadays there is an increased demand in satellite weight reduction for the reduction of costs. Thermal control system designers have to face the challenge of reducing both the weight of the system and required heater power while maintaining the components temperature within their design ranges. The main purpose of this paper is to present an optimization of a heat pipe radiator applied to a practical engineering design application. For this study, a communications satellite payload panel was considered. Four radiator areas were defined instead of a centralized one in order to improve the heat rejection into space; the radiator's dimensions were determined considering worst hot scenario, solar fluxes, heat dissipation and the component's design temperature upper limit. Dimensions, thermal properties of the structural panel, optical properties and degradation/contamination on thermal control coatings were also considered. A thermal model was constructed for thermal analysis and two heat pipe network designs were evaluated and compared. The model that allowed better radiator efficiency was selected for parametric thermal analysis and optimization. This pursues finding the minimum size of the heat pipe network while keeping complying with thermal control requirements without increasing power consumption. - Highlights: →Heat pipe radiator optimization applied to a practical engineering design application. →The heat pipe radiator of a communications satellite panel is optimized. →A thermal model was built for parametric thermal analysis and optimization. →Optimal heat pipe network size is determined for the optimal weight solution. →The thermal compliance was verified by transient thermal analysis.

  4. Beam Based Calibration of Slow Orbit Bump in the NSLS Booster

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Shaftan, T.; Rose, J.

    2009-05-04

    The orbit bumps in NSLS booster are used to move the beam orbit within 2mm of the extraction septum aperture on a time scale of millisecond at extraction in order to reduce the requirement on the amplitude of the fast extraction kicker. This may cause charge losses since before extraction, the beam stays on the distorted orbit for thousands of revolutions. In order to find the optimal orbit bump setpoint, which brings the maximum distortion at the extraction position and minimum distortions everywhere else, we developed an extraction model and performed an experiment to validate it. Afterwards, the model was applied to optimize the extraction process.

  5. Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper

    DEFF Research Database (Denmark)

    Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin

    2011-01-01

    -cost binary-phase optics fabricated using photolithography and chemical etching techniques can replace the SLM in static and high power beam shaping applications. The design parameters for the binary-phase elements of the module are chosen according to the results of our previously conducted analysis......We report the first experimental demonstration of Gaussian beam-shaping based on the Generalized Phase Contrast (GPC) approach. We show that, when using a dynamic spatial light modulator (SLM), this approach can rapidly generate arbitrarily shaped beams. Moreover, we demonstrate that low...... and numerical demonstrations [Opt. Express 15, 11971 (2007)]. Beams with a variety of cross-sections such as circular, rectangular and square, with near flat-top intensity distributions are demonstrated. GPC-based beam shaping is inherently speckle-free and the shaped beams maintain a flat output phase. The non...

  6. A fast beam hardening correction method incorporated in a filtered back-projection based MAP algorithm

    Science.gov (United States)

    Luo, Shouhua; Wu, Huazhen; Sun, Yi; Li, Jing; Li, Guang; Gu, Ning

    2017-03-01

    The beam hardening effect can induce strong artifacts in CT images, which result in severely deteriorated image quality with incorrect intensities (CT numbers). This paper develops an effective and efficient beam hardening correction algorithm incorporated in a filtered back-projection based maximum a posteriori (BHC-FMAP). In the proposed algorithm, the beam hardening effect is modeled and incorporated into the forward-projection of the MAP to suppress beam hardening induced artifacts, and the image update process is performed by Feldkamp-Davis-Kress method based back-projection to speed up the convergence. The proposed BHC-FMAP approach does not require information about the beam spectrum or the material properties, or any additional segmentation operation. The proposed method was qualitatively and quantitatively evaluated using both phantom and animal projection data. The experimental results demonstrate that the BHC-FMAP method can efficiently provide a good correction of beam hardening induced artefacts.

  7. Study of biomaterials by ion-beam based methods

    International Nuclear Information System (INIS)

    Racolta, Petru; Craciun, Liviu; Cincu, Emanuela; Voiculescu, Dana; Muresan, Ofelia; Serban, Alin; Filip, Andrei Ilie; Bunea, Danil; Antoniac, Vasile; Tudor, Tiberiu Laurian; Visan, Teodor; Visan, Sanda; Ibris, Neluta

    2002-01-01

    The extension lifetime of prosthetic devices, dental materials and orthodontic devices is one main goal of the international medical supply community. In the frame of an interdisciplinary national project, IFIN-HH has started experimentation on some alternative procedures to study the wear/corrosion phenomena of biological materials by using ion-beam based techniques. Since joint prostheses are mechanical bearings there are concerns over friction and wear just as there are with any bearing. These concerns date back to the early introduction of total hip prostheses and were shown to be justified by the early failures due to wear. Subsequently, changes in materials and designs reduced the incidence of wear failure to a low level at which failures due to other mechanisms became dominant. Interest turned to preventing femoral component fracture, reducing the rates of infection, and reducing the rates of loosening. Attention to wear as a mechanism of failure has recently increased. The failure rate for joint replacement at the hip or knee has been progressively reduced. The biologic effects of wear debris have been recognized; wearing out of the prosthesis is no longer a prerequisite for an adverse outcome. There is an active search for new materials with increased wear resistance. In the case of metallic component from hip, knee prostheses and dental alloys, we present the optimum nuclear reactions according with the main parameters of our U-120 Cyclotron (p, d, E max = 13 MeV and α particle, E max = 26 MeV). In the case of polymers, one of an articulating couple of the prosthetic devices, direct activation causes severe changes in its surface morphology and its structure (formation of defects and free radicals). We have developed an indirect activation mode using the principle of recoil ion implantation, applied to 56 Co radioactive ions generated by proton particle beams on a Fe target (thickness ∼ 10 mm). A thin target of elementary composition A is bombarded by

  8. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1993-01-01

    Reliability-based design of structural systems is considered. In particular, systems where the reliability model is a series system of parallel systems are treated. A sensitivity analysis for this class of problems is presented. Optimization problems with series systems of parallel systems......) a sequential formulation based on optimality criteria; and (4) a sequential formulation including a new so-called bounds iteration method (BIM). Numerical tests indicate that the sequential technique including the BIM is particularly fast and stable. The B1M is not only effective in reliabilitybased...... optimization of series systems of parallel systems, but it is also efficient in reliability-based optimization of series systems in general....

  9. Negative-ion-based neutral beams for fusion

    International Nuclear Information System (INIS)

    Cooper, W.S.; Anderson, O.A.; Chan, C.F.

    1987-10-01

    To maximize the usefulness of an engineering test reactor (e.g., ITER, TIBER), it is highly desirable that it operate under steady-state conditions. The most attractive option for maintaining the circulating current needed in the center of the plasma is the injection of powerful beams of neutral deuterium atoms. The beam simultaneously heats the plasma. At the energies required, in excess of 500 keV, such beams can be made by accelerating D - ions and then removing the electron. Sources are being developed that generate the D - ions in the volume of a specially constructed plasma discharge, without the addition of cesium. These sources must operate with minimum gas flow, to avoid stripping the D - beam, and with minimum electron output. We are designing at LBL highly efficient electrostatic accelerators that combine electric strong-focusing with dc acceleration and offer the possibility of varying the beam energy at constant current while minimizing breakdown. Some form of rf acceleration may also be required. To minimize irradiation of the ion sources and accelerators, the D - beam can be transported through a maze in the neutron shielding. The D - ions can be converted to neutrals in a gas or plasma target, but advances in laser and mirror technology may make possible very efficient photodetachment systems by the time an ETR becomes operational. 9 refs., 4 figs

  10. Optimization of Neutrino Rates from the EURISOL Beta-Beam Accelerator Complex

    CERN Document Server

    Wildner, E; Emelianenko, N; Fabich, A; Hancock, S; Lindroos, M

    2007-01-01

    The beta beam concept for the production of intense (anti-)neutrino beams is now well established. A baseline design has recently been published for a beta-beam facility at CERN. It has the virtue of respecting the known limitations of the CERN PS and SPS synchrotrons, but falls short of delivering the requested annual rate of neutrinos. We report on a first analysis to increase the rate using the baseline ions of 6He and 18 Ne. A powerful method to understand the functional dependence of the many parameters that influence the figure of merit for a given facility is available with modern analytical calculation software. The method requires that a symbolic analytical description is produced of the full accelerator chain. Such a description has been made using Mathematica for the proposed beta beam facility at CERN. The direct access from Mathematica to an ORACLE database for reading basic design parameters and re-injecting derived parameters for completion of the parameter list is both convenient and efficient...

  11. Optimization of the electron beam properties from intense laser pulses interacting with structured gas jets

    Science.gov (United States)

    Swanson, K. K.; Tsai, H.-E.; Barber, S. K.; Lehe, R.; Mao, H.-S.; Steinke, S.; van Tilborg, J.; Nakamura, K.; Geddes, C. G. R.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2017-05-01

    Laser plasma acceleration has been intensely investigated for its ability to produce energetic, ultrashort electron bunches in a compact distance. A high intensity laser pulse propagating through a plasma expels the electrons from the optical axis via the ponderomotive force, leaving behind a column of ions and driving a density wake. The accelerating electric fields present in the wake can reach several orders of magnitude greater than those found in radio-frequency cavities, allowing for compact systems much smaller than those using conventional accelerators. This compact source can provide electrons for various applications including stages for a high energy collider or for production of x-ray pulses from coherent undulator radiation. However, these applications require tunable, stable and high-quality electron beams. We report on a study of controlled injection along a shock-induced density downramp of laser-plasma- accelerated electrons through precision tailoring of the density profile produced from a mm-scale gas jet. Using BELLA Center's TREX Ti:Sapphire laser, the effects of the plasma density profile and the tilt of the shock front on the beam spatial profile, steering, and energy were investigated experimentally. To explain these rela- tionships, we propose simple models which agree well with experimental results. Using this technique, electron beam quality was tailored, allowing for the production of high-quality electron beams with percent-level energy spreads over a range of energies.

  12. Optimization of Neutrino Rates from the EURISOL Beta-beam Acclerator Complex

    CERN Document Server

    Wildner, E; Emelianenko, N; Fabich, A; Hancock, S; Lindroos, M

    The beta beam concept for the production of intense (anti-)neutrino beams is now well established. A baseline design has recently been published for a beta-beam facility at CERN. It has the virtue of respecting the known limitations of the CERN PS and SPS synchrotrons, but falls short of delivering the requestedannual rate of neutrinos. We report on a first analysis to increase the rate using the baseline ions of 6He and18 Ne. A powerful method to understand the functional dependence of the many parameters that influencethe figure of merit for a given facility is available with modern analytical calculation software. The methodrequires that a symbolic analytical description is produced of the full accelerator chain. Such a descriptionhas been made using Mathematica for the proposed beta beam facility at CERN. The direct access fromMathematica to an ORACLE database for reading basic design parameters and re-injecting derivedparameters for completion of the parameter list is both convenient and efficient.We ack...

  13. Design recommendations for the optimized continuity diaphragm for prestressed concrete bulb-T beams.

    Science.gov (United States)

    2008-01-01

    This research focused on prestressed concrete bulb-T (PCBT) beams made composite with a cast-in-place concrete deck and continuous over several spans through the use of continuity diaphragms. The current design procedure in AASHTO states that a conti...

  14. Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement

    OpenAIRE

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-01

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS)...

  15. Development of a computerized tomographic system based on the FAN-BEAM technique

    International Nuclear Information System (INIS)

    Junqueira, M.M.; Santos, C.A.C.; Borges, J.C.

    1986-01-01

    The Nuclear Instrumentation Laboratory, at COPPE/UFRJ, concentrates its researches in the development of computerized tomographic systems, looking for applications in industrial and medical non destructive analysing techniques. In this work we have projected and constructed a tomographic prototype, based on the FAN-BEAM technique for irradiating the object under analysis. An algorithm previously developed to analyse parallel beams, was modified and adapted to the FAN-BEAM geometry. (Author) [pt

  16. SPES: A new cyclotron-based facility for research and applications with high-intensity beams

    Science.gov (United States)

    Maggiore, M.; Campo, D.; Antonini, P.; Lombardi, A.; Manzolaro, M.; Andrighetto, A.; Monetti, A.; Scarpa, D.; Esposito, J.; Silvestrin, L.

    2017-06-01

    In 2016, Laboratori Nazionali di Legnaro (Italy) started the commissioning of a new accelerator facility based on a high-power cyclotron able to deliver proton beams up to 70 MeV of energy and 700 μA current. Such a machine is the core of the Selective Production of Exotic Species (SPES) project whose main goal is to provide exotics beam for nuclear and astrophysics research and to deliver high-intensity proton beams for medical applications and neutrons generator.

  17. Topology optimization based on the harmony search method

    International Nuclear Information System (INIS)

    Lee, Seung-Min; Han, Seog-Young

    2017-01-01

    A new topology optimization scheme based on a Harmony search (HS) as a metaheuristic method was proposed and applied to static stiffness topology optimization problems. To apply the HS to topology optimization, the variables in HS were transformed to those in topology optimization. Compliance was used as an objective function, and harmony memory was defined as the set of the optimized topology. Also, a parametric study for Harmony memory considering rate (HMCR), Pitch adjusting rate (PAR), and Bandwidth (BW) was performed to find the appropriate range for topology optimization. Various techniques were employed such as a filtering scheme, simple average scheme and harmony rate. To provide a robust optimized topology, the concept of the harmony rate update rule was also implemented. Numerical examples are provided to verify the effectiveness of the HS by comparing the optimal layouts of the HS with those of Bidirectional evolutionary structural optimization (BESO) and Artificial bee colony algorithm (ABCA). The following conclu- sions could be made: (1) The proposed topology scheme is very effective for static stiffness topology optimization problems in terms of stability, robustness and convergence rate. (2) The suggested method provides a symmetric optimized topology despite the fact that the HS is a stochastic method like the ABCA. (3) The proposed scheme is applicable and practical in manufacturing since it produces a solid-void design of the optimized topology. (4) The suggested method appears to be very effective for large scale problems like topology optimization.

  18. Topology optimization based on the harmony search method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Min; Han, Seog-Young [Hanyang University, Seoul (Korea, Republic of)

    2017-06-15

    A new topology optimization scheme based on a Harmony search (HS) as a metaheuristic method was proposed and applied to static stiffness topology optimization problems. To apply the HS to topology optimization, the variables in HS were transformed to those in topology optimization. Compliance was used as an objective function, and harmony memory was defined as the set of the optimized topology. Also, a parametric study for Harmony memory considering rate (HMCR), Pitch adjusting rate (PAR), and Bandwidth (BW) was performed to find the appropriate range for topology optimization. Various techniques were employed such as a filtering scheme, simple average scheme and harmony rate. To provide a robust optimized topology, the concept of the harmony rate update rule was also implemented. Numerical examples are provided to verify the effectiveness of the HS by comparing the optimal layouts of the HS with those of Bidirectional evolutionary structural optimization (BESO) and Artificial bee colony algorithm (ABCA). The following conclu- sions could be made: (1) The proposed topology scheme is very effective for static stiffness topology optimization problems in terms of stability, robustness and convergence rate. (2) The suggested method provides a symmetric optimized topology despite the fact that the HS is a stochastic method like the ABCA. (3) The proposed scheme is applicable and practical in manufacturing since it produces a solid-void design of the optimized topology. (4) The suggested method appears to be very effective for large scale problems like topology optimization.

  19. GPU-based ultra-fast dose calculation using a finite size pencil beam model

    Science.gov (United States)

    Gu, Xuejun; Choi, Dongju; Men, Chunhua; Pan, Hubert; Majumdar, Amitava; Jiang, Steve B.

    2009-10-01

    Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity-modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation in the case of a water phantom and the case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200 to 400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27 GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a nine-field prostate IMRT plan with this new framework is less than 1 s. This indicates that the GPU-based FSPB algorithm is well suited for online re-planning for adaptive radiotherapy.

  20. Development of an Eccentric CAM Based Active Pre-Alignment System for the CLIC Main Beam Quadrupole Magnet

    CERN Document Server

    Lackner, F; Collette, C; Mainaud Durand, H; Hauviller, C; Kemppinen, J; Leuxe, R

    2010-01-01

    CLIC (Compact Linear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities of today's particle accelerators. The demanding transverse and vertical beam sizes and emittance specifications are resulting in stringent alignment and a nanometre stability requirement. In the current feasibility study, the main beam quadrupole magnets have to be actively pre-aligned with a precision of 1 µm in 5 degrees of freedom (d.o.f.) before being mechanically stabilized to the nm scale above 1 Hz. This contribution describes the approach of performing this active pre-alignment based on an eccentric cam system. In order to limit the amplification of the vibration sources at resonant frequencies a sufficiently high Eigenfrequency is required. Therefore the contact region between cam and support was optimized for adequate stiffness based on the Hertzian theory. Furthermore, practical tests performed on a single degree of freedom mock-up wil...

  1. Tertiary particle production and target optimization of the H2 beam line in the SPS North Area

    CERN Document Server

    AUTHOR|(CDS)2079540; Tellander, Felix; CERN. Geneva. ATS Department

    2016-01-01

    In this note, the tertiary particle yield from secondary targets of different materials placed at the ‘filter’ position of the H2 beam line of SPS North Area are presented. The production is studied for secondary beams of different momenta in the range of 50-250 GeV/c. More specifically, we studied six different targets: two copper cylinders with a radius of 40 mm and lengths of 100 and 300 mm, one solid tungsten cylinder with a radius of 40 mm and a length of 150 mm and three polyethylene cylinders with radius of 40 mm and lengths of 550, 700 and 1000 mm. Eight different momenta of the secondary beam (50, 60, 70, 100, 120, 150, 200 and 250 GeV/c) as well as two different physics lists (QGSP_BIC and FTFP_BERT) have been extensively studied. The purpose of this study is (a) to optimize (using the appropriate filter target) the particle production from the secondary targets as demanded by the experiments (b) investigate the proton production (with respect to the pion production) in the produced tertiary bea...

  2. Optimal separable bases and molecular collisions

    International Nuclear Information System (INIS)

    Poirier, L.W.

    1997-12-01

    A new methodology is proposed for the efficient determination of Green's functions and eigenstates for quantum systems of two or more dimensions. For a given Hamiltonian, the best possible separable approximation is obtained from the set of all Hilbert space operators. It is shown that this determination itself, as well as the solution of the resultant approximation, are problems of reduced dimensionality for most systems of physical interest. Moreover, the approximate eigenstates constitute the optimal separable basis, in the sense of self-consistent field theory. These distorted waves give rise to a Born series with optimized convergence properties. Analytical results are presented for an application of the method to the two-dimensional shifted harmonic oscillator system. The primary interest however, is quantum reactive scattering in molecular systems. For numerical calculations, the use of distorted waves corresponds to numerical preconditioning. The new methodology therefore gives rise to an optimized preconditioning scheme for the efficient calculation of reactive and inelastic scattering amplitudes, especially at intermediate energies. This scheme is particularly suited to discrete variable representations (DVR's) and iterative sparse matrix methods commonly employed in such calculations. State to state and cumulative reactive scattering results obtained via the optimized preconditioner are presented for the two-dimensional collinear H + H 2 → H 2 + H system. Computational time and memory requirements for this system are drastically reduced in comparison with other methods, and results are obtained for previously prohibitive energy regimes

  3. Genetic based optimization for multicast routing algorithm for MANET

    Indian Academy of Sciences (India)

    Algorithm (GA) and particle swarm optimization (PSO) to improve the solution. Sim- ulations were conducted by varying number of mobile nodes and results compared with Multicast AODV (MAODV) protocol, PSO based and GA based solution. The proposed optimization improves jitter, end to end delay and Packet Delivery ...

  4. Nonlinear Inertia Weighted Teaching-Learning-Based Optimization for Solving Global Optimization Problem.

    Science.gov (United States)

    Wu, Zong-Sheng; Fu, Wei-Ping; Xue, Ru

    2015-01-01

    Teaching-learning-based optimization (TLBO) algorithm is proposed in recent years that simulates the teaching-learning phenomenon of a classroom to effectively solve global optimization of multidimensional, linear, and nonlinear problems over continuous spaces. In this paper, an improved teaching-learning-based optimization algorithm is presented, which is called nonlinear inertia weighted teaching-learning-based optimization (NIWTLBO) algorithm. This algorithm introduces a nonlinear inertia weighted factor into the basic TLBO to control the memory rate of learners and uses a dynamic inertia weighted factor to replace the original random number in teacher phase and learner phase. The proposed algorithm is tested on a number of benchmark functions, and its performance comparisons are provided against the basic TLBO and some other well-known optimization algorithms. The experiment results show that the proposed algorithm has a faster convergence rate and better performance than the basic TLBO and some other algorithms as well.

  5. Application of Monte Carlo techniques to optimization of high-energy beam transport in a stochastic environment

    Science.gov (United States)

    Parrish, R. V.; Dieudonne, J. E.; Filippas, T. A.

    1971-01-01

    An algorithm employing a modified sequential random perturbation, or creeping random search, was applied to the problem of optimizing the parameters of a high-energy beam transport system. The stochastic solution of the mathematical model for first-order magnetic-field expansion allows the inclusion of state-variable constraints, and the inclusion of parameter constraints allowed by the method of algorithm application eliminates the possibility of infeasible solutions. The mathematical model and the algorithm were programmed for a real-time simulation facility; thus, two important features are provided to the beam designer: (1) a strong degree of man-machine communication (even to the extent of bypassing the algorithm and applying analog-matching techniques), and (2) extensive graphics for displaying information concerning both algorithm operation and transport-system behavior. Chromatic aberration was also included in the mathematical model and in the optimization process. Results presented show this method as yielding better solutions (in terms of resolutions) to the particular problem than those of a standard analog program as well as demonstrating flexibility, in terms of elements, constraints, and chromatic aberration, allowed by user interaction with both the algorithm and the stochastic model. Example of slit usage and a limited comparison of predicted results and actual results obtained with a 600 MeV cyclotron are given.

  6. An ion beam facility based on a 3 MV tandetron accelerator in Sichuan University, China

    Science.gov (United States)

    Han, Jifeng; An, Zhu; Zheng, Gaoqun; Bai, Fan; Li, Zhihui; Wang, Peng; Liao, Xiaodong; Liu, Mantian; Chen, Shunli; Song, Mingjiang; Zhang, Jun

    2018-03-01

    A new ion beam facility based on a 3 MV tandetron accelerator system has been installed in Sichuan University, China. The facility was developed by High Voltage Engineering Europa and consists of three high-energy beam lines including the ion beam analysis, ion implantation and nuclear physics experiment end stations, respectively. The terminal voltage stability of the accelerator is better than ±30 V, and the brightness of the proton beam is approximately 5.06 A/rad2/m2/eV. The system demonstrates a great application potential in fields such as nuclear, material and environmental studies.

  7. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    International Nuclear Information System (INIS)

    Tafalla, D.; Tabares, F.L.; Ortiz, P.; Herrero, V.J.; Tanarro, I.

    1998-01-01

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  8. Multi-beam synchronous measurement based on PSD phase detection using frequency-domain multiplexing

    Science.gov (United States)

    Duan, Ying; Qin, Lan; Xue, Lian; Xi, Feng; Mao, Jiubing

    2013-10-01

    According to the principle of centroid measurement, position-sensitive detectors (PSD) are commonly used for micro displacement detection. However, single-beam detection method cannot satisfy such tasks as multi-dimension position measurement, three dimension vision reconstruction, and robot precision positioning, which require synchronous measurement of multiple light beams. Consequently, we designed PSD phase detection method using frequency-domain multiplexing for synchronous detection of multiple modulated light beams. Compared to previous PSD amplitude detection method, the phase detection method using FDM has advantages of simplified measuring system, low cost, high capability of resistance to light interference as well as improved resolution. The feasibility of multi-beam synchronous measurement based on PSD phase detection using FDM was validated by multi-beam measuring experiments. The maximum non-linearity error of the multi-beam synchronous measurement is 6.62%.

  9. Application of Diamond Based Beam Loss Monitors at LHC

    CERN Document Server

    AUTHOR|(CDS)2080642; Lohmann, W; Rüdiger, S

    2013-05-14

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus (ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due...

  10. Characterisation of metakaolin-based geopolymers using beam-based and conventional PALS

    Energy Technology Data Exchange (ETDEWEB)

    Guagliardo, P; Sergeant, A D; Howie, A; Wilkie, P; Williams, J; Samarin, S [Centre for Antimatter-Matter Studies, School of Physics, University of Western Australia, Crawley, WA, 6009 (Australia); Roberts, J; Weed, R; Went, M; Sullivan, J; Buckman, S [Centre for Antimatter-Matter Studies, Research School of Physical Sciences, Australian National University, Canberra, ACT, 2600 (Australia); Vance, E R, E-mail: guaglp01@student.uwa.edu.au [Institute for Materials Engineering, ANSTO, Menai, NSW, 2234 (Australia)

    2011-01-01

    The nano-porosity of metakaolin-based geopolymers and the effect of heat-treatment on porosity have been studied with conventional and beam-based positron annihilation lifetime spectroscopy (PALS). Conventional PALS found significant nano-porosity in the geopolymers, as indicated by the presence in the PALS spectrum of two long lifetime components, {tau}{sub 3} = 1.58 ns and {tau}{sub 4} = 47 ns, associated with pore diameters of approximately 0.5 and 3 nm respectively. The lifetime of the shorter component was found to decrease monotonically with successive heat treatments of 300{sup o}C and 600{sup o}C. Beam-based PALS, conducted at 5 keV, also indicated two long lifetime components, {tau}{sub 3} = 4.84 ns and {tau}{sub 4} = 54.6 ns. These are significantly longer than those observed by conventional PALS and the monotonic decrease of {tau}{sub 3} with successive heat treatments was not observed. As the beam-based PALS probed only the near-surface region, with an average implantation depth of about 350 nm, these results suggest that the near-surface structure may vary significantly from that of the bulk. This could be an inherent property of the samples or an artefact caused by surface effects or sample outgassing.

  11. Defining a region of optimization based on engine usage data

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-08-04

    Methods and systems for engine control optimization are provided. One or more operating conditions of a vehicle engine are detected. A value for each of a plurality of engine control parameters is determined based on the detected one or more operating conditions of the vehicle engine. A range of the most commonly detected operating conditions of the vehicle engine is identified and a region of optimization is defined based on the range of the most commonly detected operating conditions of the vehicle engine. The engine control optimization routine is initiated when the one or more operating conditions of the vehicle engine are within the defined region of optimization.

  12. Multiple local minima in IMRT optimization based on dose-volume criteria

    International Nuclear Information System (INIS)

    Wu Qiuwen; Mohan, Radhe

    2002-01-01

    Multiple local minima traps are known to exist in dose-volume and dose-response objective functions. Nevertheless, their presence and consequences are not considered impediments in finding satisfactory solutions in routine optimization of IMRT plans using gradient methods. However, there is often a concern that a significantly superior solution may exist unbeknownst to the planner and that the optimization process may not be able to reach it. We have investigated the soundness of the assumption that the presence of multiple minima traps can be ignored. To find local minima, we start the optimization process a large number of times with random initial intensities. We investigated whether the occurrence of local minima depends upon the choice of the objective function parameters and the number of variables and whether their existence is an impediment in finding a satisfactory solution. To learn about the behavior of multiple minima, we first used a symmetric cubic phantom containing a cubic target and an organ-at-risk surrounding it to optimize the beam weights of two pairs of parallel-opposed beams using a gradient technique. The phantom studies also served to test our software. Objective function parameters were chosen to ensure that multiple minima would exist. Data for 500 plans, optimized with random initial beam weights, were analyzed. The search process did succeed in finding the local minima and showed that the number of minima depends on the parameters of the objective functions. It was also found that the consequences of local minima depended on the number of beams. We further searched for the multiple minima in intensity-modulated treatment plans for a head-and-neck case and a lung case. In addition to the treatment plan scores and the dose-volume histograms, we examined the dose distributions and intensity patterns. We did not find any evidence that multiple local minima affect the outcome of optimization using gradient techniques in any clinically

  13. Optimal design of a beam stop for Indus-2 using finite element heat ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    e-mail: anil@cat.ernet.in. MS received 31 July 2000; revised 11 April 2001. Abstract. This paper describes the design of an in-vacuum, water-cooled beam stop (X-ray shutter) for the materials science (X-ray diffraction) beamline proposed to be built on the wavelength shifter in the Indus-2 (2.5 GeV) synchrotron radiation.

  14. Physical bases for diffusion welding processes optimization

    International Nuclear Information System (INIS)

    Bulygina, S.M.; Berber, N.N.; Mukhambetov, D.G.

    1999-01-01

    One of wide-spread method of different materials joint is diffusion welding. It has being brought off at the expense of mutual diffusion of atoms of contacting surfaces under long-duration curing at its heating and compression. Welding regime in dependence from properties of welding details is defining of three parameters: temperature, pressure, time. Problem of diffusion welding optimization concludes in determination less values of these parameters, complying with requirements for quality of welded joint. In the work experiments on diffusion welding for calculated temperature and for given surface's roughness were carried out. Tests conduct on samples of iron and iron-nickel alloy with size 1·1·1 cm 3 . Optimal regime of diffusion welding of examined samples in vacuum is defined. It includes compression of welding samples, heating, isothermal holding at temperature 650 deg C during 0.5 h and affords the required homogeneity of joint

  15. A Novel Optimal Control Method for Impulsive-Correction Projectile Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Ruisheng Sun

    2016-01-01

    Full Text Available This paper presents a new parametric optimization approach based on a modified particle swarm optimization (PSO to design a class of impulsive-correction projectiles with discrete, flexible-time interval, and finite-energy control. In terms of optimal control theory, the task is described as the formulation of minimum working number of impulses and minimum control error, which involves reference model linearization, boundary conditions, and discontinuous objective function. These result in difficulties in finding the global optimum solution by directly utilizing any other optimization approaches, for example, Hp-adaptive pseudospectral method. Consequently, PSO mechanism is employed for optimal setting of impulsive control by considering the time intervals between two neighboring lateral impulses as design variables, which makes the briefness of the optimization process. A modification on basic PSO algorithm is developed to improve the convergence speed of this optimization through linearly decreasing the inertial weight. In addition, a suboptimal control and guidance law based on PSO technique are put forward for the real-time consideration of the online design in practice. Finally, a simulation case coupled with a nonlinear flight dynamic model is applied to validate the modified PSO control algorithm. The results of comparative study illustrate that the proposed optimal control algorithm has a good performance in obtaining the optimal control efficiently and accurately and provides a reference approach to handling such impulsive-correction problem.

  16. Interleaver Optimization using Population-Based Metaheuristics

    Czech Academy of Sciences Publication Activity Database

    Snášel, V.; Platoš, J.; Krömer, P.; Abraham, A.; Ouddane, N.; Húsek, Dušan

    2010-01-01

    Roč. 20, č. 5 (2010), s. 591-608 ISSN 1210-0552 R&D Projects: GA ČR GA205/09/1079 Grant - others:GA ČR(CZ) GA102/09/1494 Institutional research plan: CEZ:AV0Z10300504 Keywords : turbo codes * global optimization * genetic algorithms * differential evolution * noisy communication channel Subject RIV: IN - Informatics, Computer Science Impact factor: 0.511, year: 2010

  17. Optimal trajectories based on linear equations

    Science.gov (United States)

    Carter, Thomas E.

    1990-01-01

    The Principal results of a recent theory of fuel optimal space trajectories for linear differential equations are presented. Both impulsive and bounded-thrust problems are treated. A new form of the Lawden Primer vector is found that is identical for both problems. For this reason, starting iteratives from the solution of the impulsive problem are highly effective in the solution of the two-point boundary-value problem associated with bounded thrust. These results were applied to the problem of fuel optimal maneuvers of a spacecraft near a satellite in circular orbit using the Clohessy-Wiltshire equations. For this case two-point boundary-value problems were solved using a microcomputer, and optimal trajectory shapes displayed. The results of this theory can also be applied if the satellite is in an arbitrary Keplerian orbit through the use of the Tschauner-Hempel equations. A new form of the solution of these equations has been found that is identical for elliptical, parabolic, and hyperbolic orbits except in the way that a certain integral is evaluated. For elliptical orbits this integral is evaluated through the use of the eccentric anomaly. An analogous evaluation is performed for hyperbolic orbits.

  18. TH-AB-BRA-02: Automated Triplet Beam Orientation Optimization for MRI-Guided Co-60 Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, D; Thomas, D; Cao, M; O’Connor, D; Lamb, J; Sheng, K [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States)

    2016-06-15

    Purpose: MRI guided Co-60 provides daily and intrafractional MRI soft tissue imaging for improved target tracking and adaptive radiotherapy. To remedy the low output limitation, the system uses three Co-60 sources at 120° apart, but using all three sources in planning is considerably unintuitive. We automate the beam orientation optimization using column generation, and then solve a novel fluence map optimization (FMO) problem while regularizing the number of MLC segments. Methods: Three patients—1 prostate (PRT), 1 lung (LNG), and 1 head-and-neck boost plan (H&NBoost)—were evaluated. The beamlet dose for 180 equally spaced coplanar beams under 0.35 T magnetic field was calculated using Monte Carlo. The 60 triplets were selected utilizing the column generation algorithm. The FMO problem was formulated using an L2-norm minimization with anisotropic total variation (TV) regularization term, which allows for control over the number of MLC segments. Our Fluence Regularized and Optimized Selection of Triplets (FROST) plans were compared against the clinical treatment plans (CLN) produced by an experienced dosimetrist. Results: The mean PTV D95, D98, and D99 differ by −0.02%, +0.12%, and +0.44% of the prescription dose between planning methods, showing same PTV dose coverage. The mean PTV homogeneity (D95/D5) was at 0.9360 (FROST) and 0.9356 (CLN). R50 decreased by 0.07 with FROST. On average, FROST reduced Dmax and Dmean of OARs by 6.56% and 5.86% of the prescription dose. The manual CLN planning required iterative trial and error runs which is very time consuming, while FROST required minimal human intervention. Conclusions: MRI guided Co-60 therapy needs the output of all sources yet suffers from unintuitive and laborious manual beam selection processes. Automated triplet orientation optimization is shown essential to overcome the difficulty and improves the dosimetry. A novel FMO with regularization provides additional controls over the number of MLC segments

  19. Finite element analysis of rotating beams physics based interpolation

    CERN Document Server

    Ganguli, Ranjan

    2017-01-01

    This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.

  20. The design of the electronic system on neutron beam monitor based on GEM

    International Nuclear Information System (INIS)

    Zuo Min; Zhuang Bao'an; Zhao Yubin; Chen Shaojia; Wang Na; Zhang Hongyu; Zhao Jingwei

    2012-01-01

    The Neutron Beam Monitor - a GEM based system used to monitor the neutron beams in real time - is introduced. The electronic parts are described in details, including the principles of the circuit, the system structure, the design of the Daughterboard and the logic and algorithm of the FPGA on the Monitor board. The test results are also given out in the final. (authors)

  1. SLC beam line error analysis using a model-based expert system

    International Nuclear Information System (INIS)

    Lee, M.; Kleban, S.

    1988-02-01

    Commissioning particle beam line is usually a very time-consuming and labor-intensive task for accelerator physicists. To aid in commissioning, we developed a model-based expert system that identifies error-free regions, as well as localizing beam line errors. This paper will give examples of the use of our system for the SLC commissioning. 8 refs., 5 figs

  2. Empty tracks optimization based on Z-Map model

    Science.gov (United States)

    Liu, Le; Yan, Guangrong; Wang, Zaijun; Zang, Genao

    2017-12-01

    For parts with many features, there are more empty tracks during machining. If these tracks are not optimized, the machining efficiency will be seriously affected. In this paper, the characteristics of the empty tracks are studied in detail. Combining with the existing optimization algorithm, a new tracks optimization method based on Z-Map model is proposed. In this method, the tool tracks are divided into the unit processing section, and then the Z-Map model simulation technique is used to analyze the order constraint between the unit segments. The empty stroke optimization problem is transformed into the TSP with sequential constraints, and then through the genetic algorithm solves the established TSP problem. This kind of optimization method can not only optimize the simple structural parts, but also optimize the complex structural parts, so as to effectively plan the empty tracks and greatly improve the processing efficiency.

  3. Molecular beam detector on the MX7304 mass spectrometer base

    International Nuclear Information System (INIS)

    Akimov, V.M.; Rusin, L.Yu.; Tsyganov, F.A.

    1991-01-01

    A modified monitor for the MKh-7304 mass spectrometer installed in one of differentially evacuated chambers of the time-of-flight spectrometer. The limit vacuum under operational conditions is 10 -8 torr. The results of testing the molecular beams when recording time-of-flight spectra of Ar, Xe, N 2 are given. It is revealed that the vacuum system time conctant decrease as compared with the system with standard monitor gives an opportunity to register reliability the time-of-flight spectra of molecular beams

  4. Photovoltaic-Concentrator Based Power Beaming For Space Elevator Application

    International Nuclear Information System (INIS)

    Becker, Daniel E.; Chiang, Richard; Keys, Catherine C.; Lyjak, Andrew W.; Starch, Michael D.; Nees, John A.

    2010-01-01

    The MClimber team, at the Student Space Systems Fabrication Laboratory of the University of Michigan, has developed a prototype robotic climber for competition in the NASA sponsored Power Beaming Challenge. This paper describes the development of the system that utilizes a simple telescope to deliver an 8 kW beam to a photovoltaic panel in order to power a one kilometer climb. Its unique approach utilizes a precision GPS signal to track the panel. Fundamental systems of the project were implemented using a design strategy focusing on robustness and modularity. Development of this design and its results are presented.

  5. Dose calculation based on Cone Beam CT images

    DEFF Research Database (Denmark)

    Slot Thing, Rune

    Cone beam CT (CBCT) imaging is frequently used in modern radiotherapy to ensure the proper positioning of the patient prior to each treatment fraction. With the increasing use of CBCT imaging for image guidance, interest has grown in exploring the potential use of these 3– or 4–D medical images...... image lag, scatter within the CBCT detector assembly, x-ray beam hardening from the patient, and truncation of the CBCT field of view were implemented for clinical CBCT imaging of lung cancer patients. Through the artefact corrections, Hounsfield Units in the CBCT images were recovered and shown...

  6. Shape signature based on Ricci flow and optimal mass transportation

    Science.gov (United States)

    Luo, Wei; Su, Zengyu; Zhang, Min; Zeng, Wei; Dai, Junfei; Gu, Xianfeng

    2014-11-01

    A shape signature based on surface Ricci flow and optimal mass transportation is introduced for the purpose of surface comparison. First, the surface is conformally mapped onto plane by Ricci flow, which induces a measure on the planar domain. Second, the unique optimal mass transport map is computed that transports the new measure to the canonical measure on the plane. The map is obtained by a convex optimization process. This optimal transport map encodes all the information of the Riemannian metric on the surface. The shape signature consists of the optimal transport map, together with the mean curvature, which can fully recover the original surface. The discrete theories of surface Ricci flow and optimal mass transportation are explained thoroughly. The algorithms are given in detail. The signature is tested on human facial surfaces with different expressions accquired by structured light 3-D scanner based on phase-shifting method. The experimental results demonstrate the efficiency and efficacy of the method.

  7. Group Elevator Peak Scheduling Based on Robust Optimization Model

    OpenAIRE

    ZHANG, J.; ZONG, Q.

    2013-01-01

    Scheduling of Elevator Group Control System (EGCS) is a typical combinatorial optimization problem. Uncertain group scheduling under peak traffic flows has become a research focus and difficulty recently. RO (Robust Optimization) method is a novel and effective way to deal with uncertain scheduling problem. In this paper, a peak scheduling method based on RO model for multi-elevator system is proposed. The method is immune to the uncertainty of peak traffic flows, optimal scheduling is re...

  8. Optimal Design of DC Electromagnets Based on Imposed Dynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Sergiu Ivas

    2016-10-01

    Full Text Available In this paper is proposed a method for computing of optimal geometric dimensions of a DC electromagnet, based on the imposed dynamical characteristics. For obtaining the optimal design, it is built the criterion function in an analytic form that may be optimized in the order to find the constructive solution. Numerical simulations performed in Matlab software confirm the proposed work. The presented method can be extended to other electromagnetic devices which frequently operate in dynamic regime.

  9. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  10. Beta Beams: an accelerator based facility to explore Neutrino oscillation physics

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Payet, J; Chance, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, VL; Gramegna, F; Marchi, T; Collazuol, G; De Rosa, G; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A

    2011-01-01

    The discovery that the neutrino changes flavor as it travels through space has implications for the Standard Model of particle physics (SM)[1]. To know the contribution of neutrinos to the SM, needs precise measurements of the parameters governing the neutrino oscillations. This will require a high intensity beam-based neutrino oscillation facility. The EURONu Design Study will review three currently accepted methods of realizing this facility (the so-called Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make a decision on the layout and construction of the future European neutrino oscillation facility. ”Beta Beams” produce collimated pure electron neutrino and antineutrino beams by accelerating beta active ions to high energies and letting them decay in a race-track shaped storage ring. EURONu Beta Beams are based on CERNs infrastructure and the fact that some of the already ...

  11. portfolio optimization based on nonparametric estimation methods

    Directory of Open Access Journals (Sweden)

    mahsa ghandehari

    2017-03-01

    Full Text Available One of the major issues investors are facing with in capital markets is decision making about select an appropriate stock exchange for investing and selecting an optimal portfolio. This process is done through the risk and expected return assessment. On the other hand in portfolio selection problem if the assets expected returns are normally distributed, variance and standard deviation are used as a risk measure. But, the expected returns on assets are not necessarily normal and sometimes have dramatic differences from normal distribution. This paper with the introduction of conditional value at risk ( CVaR, as a measure of risk in a nonparametric framework, for a given expected return, offers the optimal portfolio and this method is compared with the linear programming method. The data used in this study consists of monthly returns of 15 companies selected from the top 50 companies in Tehran Stock Exchange during the winter of 1392 which is considered from April of 1388 to June of 1393. The results of this study show the superiority of nonparametric method over the linear programming method and the nonparametric method is much faster than the linear programming method.

  12. Performance investigation of multigrid optimization for DNS-based optimal control problems

    Science.gov (United States)

    Nita, Cornelia; Vandewalle, Stefan; Meyers, Johan

    2016-11-01

    Optimal control theory in Direct Numerical Simulation (DNS) or Large-Eddy Simulation (LES) of turbulent flow involves large computational cost and memory overhead for the optimization of the controls. In this context, the minimization of the cost functional is typically achieved by employing gradient-based iterative methods such as quasi-Newton, truncated Newton or non-linear conjugate gradient. In the current work, we investigate the multigrid optimization strategy (MGOpt) in order to speed up the convergence of the damped L-BFGS algorithm for DNS-based optimal control problems. The method consists in a hierarchy of optimization problems defined on different representation levels aiming to reduce the computational resources associated with the cost functional improvement on the finest level. We examine the MGOpt efficiency for the optimization of an internal volume force distribution with the goal of reducing the turbulent kinetic energy or increasing the energy extraction in a turbulent wall-bounded flow; problems that are respectively related to drag reduction in boundary layers, or energy extraction in large wind farms. Results indicate that in some cases the multigrid optimization method requires up to a factor two less DNS and adjoint DNS than single-grid damped L-BFGS. The authors acknowledge support from OPTEC (OPTimization in Engineering Center of Excellence, KU Leuven, Grant No PFV/10/002).

  13. An integrated reliability-based design optimization of offshore towers

    International Nuclear Information System (INIS)

    Karadeniz, Halil; Togan, Vedat; Vrouwenvelder, Ton

    2009-01-01

    After recognizing the uncertainty in the parameters such as material, loading, geometry and so on in contrast with the conventional optimization, the reliability-based design optimization (RBDO) concept has become more meaningful to perform an economical design implementation, which includes a reliability analysis and an optimization algorithm. RBDO procedures include structural analysis, reliability analysis and sensitivity analysis both for optimization and for reliability. The efficiency of the RBDO system depends on the mentioned numerical algorithms. In this work, an integrated algorithms system is proposed to implement the RBDO of the offshore towers, which are subjected to the extreme wave loading. The numerical strategies interacting with each other to fulfill the RBDO of towers are as follows: (a) a structural analysis program, SAPOS, (b) an optimization program, SQP and (c) a reliability analysis program based on FORM. A demonstration of an example tripod tower under the reliability constraints based on limit states of the critical stress, buckling and the natural frequency is presented.

  14. Optimal Reliability-Based Planning of Experiments for POD Curves

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, Michael Havbro; Kroon, I. B.

    Optimal planning of the crack detection test is considered. The test are used to update the information on the reliability of the inspection techniques modelled by probability of detection (P.O.D.) curves. It is shown how cost-optimal and reliability based test plans can be obtained using First O...... Order Reliability Methods in combination with life-cycle cost-optimal inspection and maintenance planning. The methodology is based on preposterior analyses from Bayesian decision theory. An illustrative example is shown.......Optimal planning of the crack detection test is considered. The test are used to update the information on the reliability of the inspection techniques modelled by probability of detection (P.O.D.) curves. It is shown how cost-optimal and reliability based test plans can be obtained using First...

  15. Mixed-Integer Constrained Optimization Based on Memetic Algorithm

    Directory of Open Access Journals (Sweden)

    Y.C. Lin

    2013-04-01

    Full Text Available Evolutionary algorithms (EAs are population-based global search methods. They have been successfully applied to many complex optimization problems. However, EAs are frequently incapable of finding a convergence solution in default of local search mechanisms. Memetic Algorithms (MAs are hybrid EAs that combine genetic operators with local search methods. With global exploration and local exploitation in search space, MAs are capable of obtaining more high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE, as an EA-based search algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, a memetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most of real-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order to effectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solve the mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on two benchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithm can find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposed memetic algorithm is a good approach to mixed-integer optimization problems.

  16. A GIS-Based Optimization Technique for Spatial Location of ...

    African Journals Online (AJOL)

    GIS)-based package; TransCAD v. 5.0 was used to determine the optimal locations of one to ten waste bins. This optimization technique requires less computational time and the output of ten computer runs showed that partial service coverage ...

  17. Robust ensemble-based multi-objective optimization

    NARCIS (Netherlands)

    Fonseca, R.M.; Stordahl, A.; Leeuwenburgh, O.; Van den Hof, P.M.J.; Jansen, J.D.

    2014-01-01

    We consider robust ensemble-based multi-objective optimization using a hierarchical switching algorithm for combined long-term and short term water flooding optimization. We apply a modified formulation of the ensemble gradient which results in improved performance compared to earlier formulations.

  18. Genetic based optimization for multicast routing algorithm for MANET

    Indian Academy of Sciences (India)

    In this paper, a Hybrid Genetic Based Optimization for Multicast Routing algorithm is proposed. The proposed algorithm uses the best features of Genetic Algorithm (GA) and particle swarm optimization (PSO) to improve the solution. Simulations were conducted by varying number of mobile nodes and results compared with ...

  19. Optimizing block-based maintenance under random machine usage

    NARCIS (Netherlands)

    de Jonge, Bram; Jakobsons, Edgars

    Existing studies on maintenance optimization generally assume that machines are either used continuously, or that times until failure do not depend on the actual usage. In practice, however, these assumptions are often not realistic. In this paper, we consider block-based maintenance optimization

  20. MVMO-based approach for optimal placement and tuning of ...

    African Journals Online (AJOL)

    ... optimal placement and coordinated tuning of power system supplementary damping controllers (POCDCs). The effectiveness of the approach is evaluated based on the classical IEEE 39-bus (New England) test system. Numerical results include performance comparisons with other metaheuristic optimization techniques, ...

  1. Optimal capacitor sizing and placement based on real time analysis ...

    African Journals Online (AJOL)

    In this paper, optimal capacitor sizing and placement method was used to improve energy efficiency. It involves the placement of capacitors in a specific location with suitable sizing based on the current load of the electrical system. The optimization is done in real time scenario where the sizing and placement of the ...

  2. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...... problems are described. Numerical tests indicate that a sequential technique called the bounds iteration method (BIM) is particularly fast and stable....

  3. OPF-Based Optimal Location of Two Systems Two Terminal HVDC to Power System Optimal Operation

    Directory of Open Access Journals (Sweden)

    Mehdi Abolfazli

    2013-04-01

    Full Text Available In this paper a suitable mathematical model of the two terminal HVDC system is provided for optimal power flow (OPF and optimal location based on OPF such power injection model. The ability of voltage source converter (VSC-based HVDC to independently control active and reactive power is well represented by the model. The model is used to develop an OPF-based optimal location algorithm of two systems two terminal HVDC to minimize the total fuel cost and active power losses as objective function. The optimization framework is modeled as non-linear programming (NLP and solved by Matlab and GAMS softwares. The proposed algorithm is implemented on the IEEE 14- and 30-bus test systems. The simulation results show ability of two systems two terminal HVDC in improving the power system operation. Furthermore, two systems two terminal HVDC is compared by PST and OUPFC in the power system operation from economical and technical aspects.

  4. Optimization of the beam crossing angle at the ILC for e+e‑ and γ γ collisions

    Science.gov (United States)

    Telnov, V. I.

    2018-03-01

    At this time, the design of the International Linear Collider (ILC) is optimized for e+e‑ collisions; the photon collider (γ γ and >=) is considered as an option. Unexpected discoveries, such as the diphoton excess digamma(750) seen at the LHC, could strongly motivate the construction of a photon collider. In order to enable the γ γ collision option, the ILC design should be compatible with it from the very beginning. In this paper, we discuss the problem of the beam crossing angle. In the ILC technical design [1], this angle is 14 mrad, which is just enough to provide enough space for the final quadrupoles and outgoing beams. For γ γ collisions, the crossing angle must be larger because the low-energy electrons that result from multiple Compton scattering get large disruption angles in collisions with the opposing electron beam and some deflection in the solenoidal detector field. For a 2E0=500 GeV collider, the required crossing angle is about 25 mrad. In this paper, we consider the factors that determine the crossing angle as well as its minimum permissible value that does not yet cause a considerable reduction of the γ γ luminosity. It is shown that the best solution is to increase the laser wavelength from the current 1 μm (which is optimal for 2E0=500 GeV) to 2 μm as this makes possible achieving high γ γ luminosities at a crossing angle of 20 mrad, which is also quite comfortable for e+e‑ collisions, does not cause any degradation of the e+e‑ luminosity and opens the possibility for a more energetic future collider in the same tunnel (e.g., CLIC). Moreover, the 2 μm wavelength is optimal for a 2E0 = 1 TeV collider, e.g., a possible ILC energy upgrade. Please consider this paper an appeal to increase the ILC crossing angle from 14 to 20 mrad.

  5. Optimization algorithm based on densification and dynamic canonical descent

    Science.gov (United States)

    Bousson, K.; Correia, S. D.

    2006-07-01

    Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.

  6. Analysis, optimization and implementation of a variable retardance based polarimeter

    Directory of Open Access Journals (Sweden)

    Moreno I.

    2010-06-01

    Full Text Available We present a comprehensive analysis, optimization and implementation of a Stokes polarimeter based on two liquid crystals acting as variable retarders. For the optimization process, the Conditional Number or the Equally Weighted Variance indicators are applied and compared as a function of different number of polarization analyzers. Moreover, some of the optimized polarimeter configurations are experimentally implemented and the influence of small experimental deviations from the optimized configuration values on the amplification of the Stokes component error is also studied. Some experimental results obtained by using the implemented polarimeters, when measuring different incidence states of polarization, are provided.

  7. Optimization of welding parameters of Ti6Al4V alloy using electron beam

    Directory of Open Access Journals (Sweden)

    Petr Havlík

    2016-06-01

    Full Text Available Titanium alloys and their weld joints find wide application, in particular in the aircraft, automotive and chemical industries, because of their outstanding specific strength and corrosion resistance. The high reactivity of these alloys and the strong degradation effect of elements contained in the atmosphere (H, N and O make it necessary for these alloys to be welded in protective atmospheres or in vacuum. From this viewpoint, Electron Beam Welding is an advantageous welding technology, especially in large series production. In the literature, there is sufficient information about the effect of the basic welding parameters, namely accelerating voltage, current and welding speed, on the properties of welded joints. In the paper, the effects of the spot diameter and beam focusing on the penetration depth and the weld shape in the Ti6Al4V alloy are studied. The results obtained are complemented by an analysis of the microstructure and microhardness measurements across the welds.

  8. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results

    Science.gov (United States)

    Muthalif, Asan G. A.; Nordin, N. H. Diyana

    2015-03-01

    Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.

  9. Enhancement of proton beam writing in PMMA through optimization of the development procedure

    International Nuclear Information System (INIS)

    Bolhuis, S.; Kan, J.A. van; Watt, F.

    2009-01-01

    The development step of the proton beam writing (PBW) process plays an important role in the performance characteristics that can be achieved with a resist-developer system. A common developer for PBW in PMMA resist is the mixture IPA/water, used in combination with conventional dip development. In this paper, we investigate the use of the GG-developer, much used in the LIGA-process, and show that the GG-developer is able to dip develop proton beam written structures of feature sizes down to 133 nm in a PMMA layer of 2.4 μm thickness. Moreover, both contrast and sensitivity are found to be higher for the GG-developer compared to dip development in 7:3 IPA/water. The development method as well as the type of developer influences resist development. The effect of megasonic agitation (frequency of 1 MHz) on the development of structures in PMMA was investigated for the developer 7:3 IPA/water. Compared to conventional dip development, structures developed with megasonic agitation showed larger feature sizes, indicating that the development rate was increased. However, performance characteristics were not enhanced: both contrast and sensitivity were found to be lower than after dip development in 7:3 IPA/water.

  10. A novel substructure-based topology optimization method for the design of wing structure

    Directory of Open Access Journals (Sweden)

    Zhao Yu-bo

    2017-01-01

    Full Text Available The purpose of this paper is to demonstrate a substructure-based method dealing with the optimal material layout of the aircraft wing structure system. In this method, the topology optimization design domain of the aircraft wing is divided into multiple subordinate topological units which are called substructure. The material layout of each subordinate topology design unit is found for maximizing the total stiffness under a prescribed material usage constraint by using the Solid Isotropic Microstructures with Penalization (SIMP method. Firstly, the proposed method is implemented to find the optimal material layouts of a high aspect-ratio I-beam. Different division ways and material constraints of the substructure have proven important influence on the total stiffness. The design formulation is applied to the optimization of an aircraft wing. Compared with the traditional one, the proposed method can find a reasonable and clearer material layout of the wing, especially material piled up near the fixed end is pushed toward the tip or the middle of the wing. The optimized design indicates the proposed method can enhance the guidance of topology optimization in finding reasonable stiffener layouts of wing structure.

  11. Feature-based plan adaptation for fast treatment planning in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Chen Wenjing; Gemmel, Alexander; Rietzel, Eike

    2013-01-01

    We propose a plan adaptation method for fast treatment plan generation in scanned ion beam therapy. Analysis of optimized treatment plans with carbon ions indicates that the particle number modulation of consecutive rasterspots in depth shows little variation throughout target volumes with convex shape. Thus, we extract a depth-modulation curve (DMC) from existing reference plans and adapt it for creation of new plans in similar treatment situations. The proposed method is tested with seven CT serials of prostate patients and three digital phantom datasets generated with the MATLAB code. Plans are generated with a treatment planning software developed by GSI using single-field uniform dose optimization for all the CT datasets to serve as reference plans and ‘gold standard’. The adapted plans are generated based on the DMC derived from the reference plans of the same patient (intra-patient), different patient (inter-patient) and phantoms (phantom-patient). They are compared with the reference plans and a re-positioning strategy. Generally, in 1 min on a standard PC, either a physical plan or a biological plan can be generated with the adaptive method provided that the new target contour is available. In all the cases, the V95 values of the adapted plans can achieve 97% for either physical or biological plans. V107 is always 0 indicating no overdosage, and target dose homogeneity is above 0.98 in all cases. The dose received by the organs at risk is comparable to the optimized plans. The plan adaptation method has the potential for on-line adaptation to deal with inter-fractional motion, as well as fast off-line treatment planning, with either the prescribed physical dose or the RBE-weighted dose. (paper)

  12. Process optimization of friction stir welding based on thermal models

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup

    2010-01-01

    This thesis investigates how to apply optimization methods to numerical models of a friction stir welding process. The work is intended as a proof-of-concept using different methods that are applicable to models of high complexity, possibly with high computational cost, and without the possibility...... information of the high-fidelity model. The optimization schemes are applied to stationary thermal models of differing complexity of the friction stir welding process. The optimization problems considered are based on optimizing the temperature field in the workpiece by finding optimal translational speed...... and the backingplate by solving an inverse modelling problem in which experimental data and a numerical model are used for determining the contact heat transfer coefficient. Different parametrizations of the spatial distribution of the heat transfer coefficient are studied and discussed, and the optimization problem...

  13. Fuzzy-logic-based active vibration control of beams using piezoelectric patches

    Science.gov (United States)

    Sharma, Manu; Singh, S. P.; Sachdeva, B. L.

    2003-10-01

    The present work presents a fuzzy logic based controller with a compact rule base, for active vibration control of beams. The controller was implemented experimentally on a test beam and the results were found satisfactory. The test system consists of a cantilevered beam with two piezoelectric patches mounted near its root in collocated fashion. This piezo-beam system was modelled using Finite Element Method. To derive the equations of motion, Hamilton's principle was used. Electro-mechanical interaction of the piezoelectric patch with the beam was modelled using linear constitutive equations for piezoceramics, which relate strain and electric displacement to stress and electric field. The fuzzy logic controller is based on modal velocity of the beam. The basis for generating the fuzzy logic rule base of this controller is obtained from negative velocity feedback control. Modal velocity of the beam acts as an input to the fuzzy controller and actuation force is the output from the inference engine. Linear decay of vibratory amplitude is observed in case of fuzzy logic controller as opposed to logarithmic decay in case of negative velocity feedback control Present controller has just three rules. This is an important achievement because bulky fuzzy logic controllers for active vibration control require fast processors for real time implementation (Kwak and Sciulli and Mayhan and Washington).

  14. VARIATIONALLY-BASED EFFECTIVE DYNAMIC THICKNESS FOR LAMINATED GLASS BEAMS

    Directory of Open Access Journals (Sweden)

    Jaroslav Schmidt

    2017-11-01

    Full Text Available Laminated glass, consisting of glass layers connected with transparent foils, has found its applications in civil, automotive, or marine engineering. Due to a high contrast in layer properties, mechanical response of laminated glass structures cannot be predicted using classical laminate theories. On the other hand, engineering applications demand easy-to-use formulas of acceptable accuracy. This contribution addresses such simplified models for free vibrations of laminated glass beams, with the goal to determine their natural frequencies and modal damping properties. Our strategy is to approximate the complex behavior of a laminated structure with that of an equivalent monolithic beam. Its effective thickness is determined by the variational method proposed by Galuppi and Royer-Carfagni for static problems, which we extended for modal analysis. We show that this new approach overcomes inaccuracies of the currently used dynamic effective thickness model by López-Aenlle and Pelayo.

  15. Pelletron-based MeV-range electron beam recirculation

    CERN Document Server

    Crawford, A C; Sharapa, A N; Shemyakin, A

    1999-01-01

    In this paper we describe the successful recirculation of a DC electron beam at energies 1-1.5 MeV and currents up to 0.7 A with typical relative losses of 5-20x10 sup - sup 6. Currents of 200 mA were maintained for periods of up to five hours without a single breakdown. We found that the aperture-limiting diaphragm in the gun anode significantly increased the stability of the recirculation. We also found that the stability depended strongly on vacuum pressure in the beamline. The performance of the collector with transverse magnetic fields was found to be adequate for beam currents up to 0.6 A, which is in agreement with our low-energy bench test results. (author)

  16. Mixed-Integer Constrained Optimization Based on Memetic Algorithm

    Directory of Open Access Journals (Sweden)

    Y. C. Lin

    2013-03-01

    Full Text Available Evolutionary algorithms (EAs are population-based global search methods. They have been successfully applied tomany complex optimization problems. However, EAs are frequently incapable of finding a convergence solution indefault of local search mechanisms. Memetic Algorithms (MAs are hybrid EAs that combine genetic operators withlocal search methods. With global exploration and local exploitation in search space, MAs are capable of obtainingmore high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE, as an EA-basedsearch algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, amemetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most ofreal-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order toeffectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solvethe mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on twobenchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithmcan find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposedmemetic algorithm is a good approach to mixed-integer optimization problems.

  17. Bi-objective optimization for multi-modal transportation routing planning problem based on Pareto optimality

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2015-09-01

    Full Text Available Purpose: The purpose of study is to solve the multi-modal transportation routing planning problem that aims to select an optimal route to move a consignment of goods from its origin to its destination through the multi-modal transportation network. And the optimization is from two viewpoints including cost and time. Design/methodology/approach: In this study, a bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. Minimizing the total transportation cost and the total transportation time are set as the optimization objectives of the model. In order to balance the benefit between the two objectives, Pareto optimality is utilized to solve the model by gaining its Pareto frontier. The Pareto frontier of the model can provide the multi-modal transportation operator (MTO and customers with better decision support and it is gained by the normalized normal constraint method. Then, an experimental case study is designed to verify the feasibility of the model and Pareto optimality by using the mathematical programming software Lingo. Finally, the sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case. Findings: The calculation results indicate that the proposed model and Pareto optimality have good performance in dealing with the bi-objective optimization. The sensitivity analysis also shows the influence of the variation of the demand and supply on the multi-modal transportation organization clearly. Therefore, this method can be further promoted to the practice. Originality/value: A bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. The Pareto frontier based sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case.

  18. Alanine-EPR dosimetry in 10 MeV electron beam to optimize process parameters for food irradiation

    International Nuclear Information System (INIS)

    Sanyal, B.; Kumar, S.; Kumar, M.; Mittal, K.C.; Sharma, A.

    2011-01-01

    Absorbed dose in a food product is determined and controlled by several components of the LINAC irradiation facility as well as the product. Standardization of the parameters characterizing the facility components, process load and the irradiation conditions collectively termed as 'process parameters' are of paramount importance for successful dose delivery to the food products. In the present study alanine-EPR dosimetry system was employed to optimize the process parameters of 10 MeV electron beam of a LINAC facility for commercial irradiation of food. Three sets of experiments were carried out with different food commodities namely, mango, potato and rawa with the available product conveying system of different irradiation geometry like one sided or both sided mode of irradiation. Three dimensional dose distributions into the process load for low dose requiring food commodities (0.25 to 1 kGy) were measured in each experiment. The actual depth dose profile in food product and useful scan width of the electron beam were found out to be satisfactory for commercial radiation processing of food. Finally a scaled up experiment with commercial food product (packets of Rawa) exhibited adequate dose uniformity ratio of 3 proving the feasibility of the facility for large scale radiation processing of food commodities. (author)

  19. Optimized pre-thinning procedures of ion-beam thinning for TEM sample preparation by magnetorheological polishing.

    Science.gov (United States)

    Luo, Hu; Yin, Shaohui; Zhang, Guanhua; Liu, Chunhui; Tang, Qingchun; Guo, Meijian

    2017-10-01

    Ion-beam-thinning is a well-established sample preparation technique for transmission electron microscopy (TEM), but tedious procedures and labor consuming pre-thinning could seriously reduce its efficiency. In this work, we present a simple pre-thinning technique by using magnetorheological (MR) polishing to replace manual lapping and dimpling, and demonstrate the successful preparation of electron-transparent single crystal silicon samples after MR polishing and single-sided ion milling. Dimples pre-thinned to less than 30 microns and with little mechanical surface damage were repeatedly produced under optimized MR polishing conditions. Samples pre-thinned by both MR polishing and traditional technique were ion-beam thinned from the rear side until perforation, and then observed by optical microscopy and TEM. The results show that the specimen pre-thinned by MR technique was free from dimpling related defects, which were still residual in sample pre-thinned by conventional technique. Nice high-resolution TEM images could be acquired after MR polishing and one side ion-thinning. MR polishing promises to be an adaptable and efficient method for pre-thinning in preparation of TEM specimens, especially for brittle ceramics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Stochastic learning and optimization a sensitivity-based approach

    CERN Document Server

    Cao, Xi-Ren

    2007-01-01

    Performance optimization is vital in the design and operation of modern engineering systems. This book provides a unified framework based on a sensitivity point of view. It introduces new approaches and proposes new research topics.

  1. A Low-cost Beam Profiler Based On Cerium-doped Silica Fibers

    Science.gov (United States)

    Potkins, David Edward; Braccini, Saverio; Nesteruk, Konrad Pawel; Carzaniga, Tommaso Stefano; Vedda, Anna; Chiodini, Norberto; Timmermans, Jacob; Melanson, Stephane; Dehnel, Morgan Patrick

    A beam profiler called the Universal Beam Monitor (UniBEaM) has been developed by D-Pace Inc. (Canada) and the Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern (Switzerland). The device is based on passing 100 to 600 micron cerium-doped optical fibers through a particle beam. Visible scintillation light from the sensor fibers is transmitted over distances of tens of meters to the light sensors with minimal signal loss and no susceptibility to electromagnetic fields. The probe has an insertion length of only 70 mm. The software plots the beam intensity distribution in the horizontal and vertical planes, and calculates the beam location and integrated profile area, which correlates well with total beam current. UniBEaM has a large dynamic range, operating with beam currents of ∼pA to mA, and a large range of particle kinetic energies of ∼keV to GeV, depending on the absorbed power density. Test data are presented for H- beams at 25keV for 500 μA, and H+ beams at 18MeV for 50pA to 10 μA. Maximum absorbed power density of the optical fiber before thermal damage is discussed in relation to dE/dx energy deposition as a function of particle type and kinetic energy. UniBEaM is well suited for a wide variety of beamlines including discovery science applications, radio-pharmaceutical production, hadron therapy, industrial ion beam applications including ion implantation, industrial electron beams, and ion source testing.

  2. A Plasma Based Beam Combiner for Very High Fluence and Energy

    Science.gov (United States)

    Kirkwood, Robert

    2017-10-01

    Recent work at NIF has demonstrated a plasma-based optic that combines the energy and fluence of many laser beams into a single bright beam, thus creating a new technique for designing future high energy density physics experiments. The technique uses the Cross Beam Energy Transfer (CBET) process and shows for the first time that a plasma can combine beams to produce a single beam that emerges with energy and fluence beyond that of any of those input for delivery to a range of experimental targets. In an initial demonstration multiple beams of the National Ignition Facility (NIF) laser have been combined in a plasma to produce a directed pulse of light with 4 +1 kJ of energy in its 1 ns duration which is 3.6 times the energy and 3.2 times the fluence of any of the incident beams during that period and is NIFs brightest 1ns duration beam of UV light. These enhancements are due to the non-linear interaction of the beams with a self-generated plasma diffractive optic which is far more damage resistant than existing solid state optics, and is inherently capable of producing much higher single beam fluence and radiance than solid state refractive or reflective optics can. The initial results are presently being used to further validate models of CBET which predict a larger number of non-resonant pump beams will scale up outputs still further. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Development of an Efficient Steel Beam Section for Modular Construction Based on Six-Sigma

    Directory of Open Access Journals (Sweden)

    Tae-Hyu Ha

    2016-01-01

    Full Text Available This study presents a systematic approach for the development of an efficient steel beam section for modular construction based on Six-Sigma. Although the Six-Sigma is frequently implemented in manufacturing and other service industries, it is a relatively new concept in the area of building design and construction. As a first step in this approach, market studies and surveys are conducted to obtain the opinions of potential customers. Then the opinions of customers are converted into quality characteristics for the steel beam using the quality function deployment methodology. A steel hollow flanged channel is chosen as the main modular beam shape, and the design concept is derived and developed by applying the Pugh matrix methodology. A pilot test was performed to validate the effectiveness of the developed beam section. The results indicated that the developed channel beam section showed excellent performance and retained high accuracy in fabrication, thus resulting in a significant reduction of steel consumption.

  4. Optimizing the average longitudinal phase of the beam in the SLC linac

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1989-09-01

    The relation of the beam's average linac phase, φ 0 , to the final energy spectrum in the SLC linac has been studied by many people over the years, with much of the work left unpublished. In this note we perform a somewhat thorough in vestigation of the problem. First we describe the calculation method, and discuss some common features of the energy spectrum. Then we calculate the value of φ 0 that minimizes δ rms for the conceivable range of bunch population and bunch lengths of the SLC linac. This is followed by luminosity calculations, including the sensitivity of luminosity to variations in φ 0 . Finally we suggest a practical method of implementing the proper phase setting on the real machine

  5. A Monte Carlo code to optimize the production of Radioactive Ion Beams by the ISOL technique

    CERN Document Server

    Santana-Leitner, M

    2005-01-01

    Currently the nuclear chart includes around 3000 nuclides, distributed as ${\\beta}^+$, ${\\beta}^-$ and $\\alpha$-emitters, stable and spontaneously fissioning isotopes. A similar amount of unknown nuclei belongs to the so-called \\textit{terra incognita}, the uncertain region contained also within the proton, neutron and (fast) fission driplines and thereby stable against nucleon emission. The exploration of this zone is to be assisted by the use of radioactive ion beams (RIB) and could provide a new understanding of several nuclear properties. Moreover, besides pointing at crucial questions such as the validity of the shell model, the dilute matter and the halo structure, challenging experiments outside nuclear physics are also attended, e.g., explanations of the nucleosythesis processes that may justify why the matter in the universe has evolved to present proportions of elements, and which represents a major challenge to nuclear physics. These, together with other fascinating research lines in particle physi...

  6. Evaluation of the effective dose of cone beam computed tomography and multi-slice computed tomography for temporomandibular joint examinations at optimized exposure levels.

    Science.gov (United States)

    Kadesjö, Nils; Benchimol, Daniel; Falahat, Babak; Näsström, Karin; Shi, Xie-Qi

    2015-06-02

    To compare the effective dose to patients from temporomandibular joint examinations using a dental cone-beam CT device and a multi-slice CT device, both before and after dose optimization. A Promax3D (Planmeca, Helsinki, Finland) dental cone-beam CT and a Lightspeed VCT (GE, Fairfield, USA) multi-slice CT were used. Organ doses and effective doses were estimated from thermoluminescent dosimeters at 61 positions inside an anthropomorphic phantom at the exposure settings in clinical use. Optimized exposure protocols were obtained through an optimization study using a dry skull phantom, where four observers rated image quality taken at different exposure levels. The optimal exposure level was obtained when all included criteria were rated as acceptable or better by all observers. The effective dose from a bilateral examination was 184 µSv for Promax3D and 113 µSv for Lightspeed VCT before optimization. Post optimization the bilateral effective dose was 92 µSv for Promax3D and 124 µSv for Lightspeed VCT. At optimized exposure levels, the effective dose from cone-beam CT was comparable to MSCT.

  7. Optimization of beam weights in conformal radiotherapy planning of stage III non-small cell lung cancer: effects on therapeutic ratio

    International Nuclear Information System (INIS)

    Gersem, Werner R.T. de; Derycke, Sylvie; Wagter, Carlos de; Neve, Wilfried C.J. de

    2000-01-01

    Purpose: To evaluate the effects of beam weight optimization for 3D conformal radiotherapy plans, with or without beam intensity modulation, in Stage III non-small cell lung cancer (NSCLC). Methods and Materials: Ten patients with Stage III NSCLC were planned using a conventional 3D technique and a technique involving noncoplanar beam intensity modulation (BIM). Two planning target volumes (PTVs) were defined: PTV1 included macroscopic tumor volume and PTV2 included macroscopic and microscopic tumor volume. Virtual simulation defined the beam shapes and incidences as well as the wedge orientations (3D) and segment outlines (BIM). Weights of wedged beams, unwedged beams, and segments were determined by human trial and error for the 3D-plans (3D-manual), by a standard weight table (SWT) for the BIM-plans (BIM-SWT) and by optimization (3D-optimized and BIM-optimized) using an objective function with a biological and a physical component. The resulting non-optimized and optimized dose distributions were compared, using physical endpoints, after normalizing the median dose of PTV1 to 80 Gy. Results: Optimization improved dose homogeneity at the target for 3D- and BIM-plans and the minimum dose at PTV1. The minimum dose at PTV2 was decreased by optimization especially in 3D-plans. After optimization, the dose-volume histograms (DVHs) of lung and heart were shifted to lower doses for 80-90% of the organ volume. Since lung is the dose-limiting organ in Stage III NSCLC, an increased minimum dose at PTV1 together with a decreased dose at the main lung volume suggests an improved therapeutic ratio. Optimization allows 10% dose escalation for 3D-plans and 20% for BIM-plans at isotoxicity levels of lung and spinal cord. Upon dose escalation, esophagus may become the dose-limiting structure when PTV1 extends close to the esophagus. Conclusions: Optimization using a biophysical objective function allowed an increase of the therapeutic ratio of radiotherapy planning for Stage III

  8. Optimal Reliability-Based Planning of Experiments for POD Curves

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, M. H.; Kroon, I. B.

    Optimal planning of the crack detection test is considered. The test are used to update the information on the reliability of the inspection techniques modelled by probability of detection (P.O.D.) curves. It is shown how cost-optimal and reliability based test plans can be obtained using First O...... Order Reliability Methods in combination with life-cycle cost-optimal inspection and maintenance planning. The methodology is based on preposterior analyses from Bayesian decision theory. An illustrative example is shown....

  9. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    The availability of location information in mobile devices, e.g., through built-in GPS receivers in smart phones, has motivated the investigation of the usefulness of location based network optimizations. Since the quality of input information is important for network optimizations, a main focus...... the achievable accuracy of future localization system in mobile settings, as well as quantifying the impact of having a realistic model of the required measurement exchanges. Secondly, this work has considered different large scale and small scale location based network optimizations, namely centralized relay...... and highly mobile scenarios....

  10. Adaptive Central Force Optimization Algorithm Based on the Stability Analysis

    Directory of Open Access Journals (Sweden)

    Weiyi Qian

    2015-01-01

    Full Text Available In order to enhance the convergence capability of the central force optimization (CFO algorithm, an adaptive central force optimization (ACFO algorithm is presented by introducing an adaptive weight and defining an adaptive gravitational constant. The adaptive weight and gravitational constant are selected based on the stability theory of discrete time-varying dynamic systems. The convergence capability of ACFO algorithm is compared with the other improved CFO algorithm and evolutionary-based algorithm using 23 unimodal and multimodal benchmark functions. Experiments results show that ACFO substantially enhances the performance of CFO in terms of global optimality and solution accuracy.

  11. Optimal portfolio model based on WVAR

    OpenAIRE

    Hao, Tianyu

    2012-01-01

    This article is focused on using a new measurement of risk-- Weighted Value at Risk to develop a new method of constructing initiate from the TVAR solving problem, based on MATLAB software, using the historical simulation method (avoiding income distribution will be assumed to be normal), the results of previous studies also based on, study the U.S. Nasdaq composite index, combining the Simpson formula for the solution of TVAR and its deeply study; then, through the representation of WVAR for...

  12. A conceptual design of a beam-shaping assembly for boron neutron capture therapy based on deuterium-tritium neutron generators

    International Nuclear Information System (INIS)

    Martin, Guido; Abrahantes, Arian

    2004-01-01

    A conceptual design of a beam-shaping assembly for boron neutron capture therapy using deuterium-tritium accelerator based neutrons source is developed. Calculations based on a simple geometry model for the radiation transport are initially performed to estimate the assembly materials and their linear dimensions. Afterward, the assembly geometry is produced, optimized and verified. In order to perform these calculations the general-purpose MCNP code is used. Irradiation time and therapeutic gain are utilized as beam assessment parameters. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation. In the present beam-shaping assembly proposal, the therapeutic gain is improved by 23% and the accelerator current required for a fixed irradiation period is reduced by six times compared to previous proposals based on the same D-T reaction

  13. An Improved Real-Coded Population-Based Extremal Optimization Method for Continuous Unconstrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Zeng

    2014-01-01

    Full Text Available As a novel evolutionary optimization method, extremal optimization (EO has been successfully applied to a variety of combinatorial optimization problems. However, the applications of EO in continuous optimization problems are relatively rare. This paper proposes an improved real-coded population-based EO method (IRPEO for continuous unconstrained optimization problems. The key operations of IRPEO include generation of real-coded random initial population, evaluation of individual and population fitness, selection of bad elements according to power-law probability distribution, generation of new population based on uniform random mutation, and updating the population by accepting the new population unconditionally. The experimental results on 10 benchmark test functions with the dimension N=30 have shown that IRPEO is competitive or even better than the recently reported various genetic algorithm (GA versions with different mutation operations in terms of simplicity, effectiveness, and efficiency. Furthermore, the superiority of IRPEO to other evolutionary algorithms such as original population-based EO, particle swarm optimization (PSO, and the hybrid PSO-EO is also demonstrated by the experimental results on some benchmark functions.

  14. A materials selection procedure for sandwiched beams via parametric optimization with applications in automotive industry

    International Nuclear Information System (INIS)

    Aly, Mohamed F.; Hamza, Karim T.; Farag, Mahmoud M.

    2014-01-01

    Highlights: • Sandwich panels optimization model. • Sandwich panels design procedure. • Study of sandwich panels for automotive vehicle flooring. • Study of sandwich panels for truck cabin exterior. - Abstract: The future of automotive industry faces many challenges in meeting increasingly strict restrictions on emissions, energy usage and recyclability of components alongside the need to maintain cost competiveness. Weight reduction through innovative design of components and proper material selection can have profound impact towards attaining such goals since most of the lifecycle energy usage occurs during the operation phase of a vehicle. In electric and hybrid vehicles, weight reduction has another important effect of extending the electric mode driving range between stops or gasoline mode. This paper adopts parametric models for design optimization and material selection of sandwich panels with the objective of weight and cost minimization subject to structural integrity constraints such as strength, stiffness and buckling resistance. The proposed design procedure employs a pre-compiled library of candidate sandwich panel material combinations, for which optimization of the layered thicknesses is conducted and the best one is reported. Example demonstration studies from the automotive industry are presented for the replacement of Aluminum and Steel panels with polypropylene-filled sandwich panel alternatives

  15. Joint global optimization of tomographic data based on particle swarm optimization and decision theory

    Science.gov (United States)

    Paasche, H.; Tronicke, J.

    2012-04-01

    In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto

  16. Simulation-based Investigations of Electrostatic Beam Energy Analysers

    CERN Document Server

    Pahl, Hannes

    2015-01-01

    An energy analyser is needed to measure the beam energy profile behind the REX-EBIS at ISOLDE. The device should be able to operate with an accuracy of 1 V at voltages up to 30 kV. In order to find a working concept for an electrostatic energy analyser different designs were evaluated with simulations. A spherical device and its design issues are presented. The potential deformation effects of grids at high voltages and their influence on the energy resolution were investigated. First tests were made with a grid-free ring electrode device and show promising results.

  17. Nonlinear lattice structures based on families of complex nondiffracting beams

    International Nuclear Information System (INIS)

    Rose, Patrick; Boguslawski, Martin; Denz, Cornelia

    2012-01-01

    We present a new concept for the generation of optical lattice waves. For all four families of nondiffracting beams, we are able to realize corresponding nondiffracting intensity patterns in a single setup. The potential of our approach is shown by demonstrating the optical induction of complex photonic discrete, Bessel, Mathieu and Weber lattices in a nonlinear photorefractive medium. However, our technique itself is very general and can be transferred to optical lattices in other fields such as atom optics or cold gases in order to add such complex optical potentials as a new concept to these areas as well. (paper)

  18. Modified Chaos Particle Swarm Optimization-Based Optimized Operation Model for Stand-Alone CCHP Microgrid

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-07-01

    Full Text Available The optimized dispatch of different distributed generations (DGs in stand-alone microgrid (MG is of great significance to the operation’s reliability and economy, especially for energy crisis and environmental pollution. Based on controllable load (CL and combined cooling-heating-power (CCHP model of micro-gas turbine (MT, a multi-objective optimization model with relevant constraints to optimize the generation cost, load cut compensation and environmental benefit is proposed in this paper. The MG studied in this paper consists of photovoltaic (PV, wind turbine (WT, fuel cell (FC, diesel engine (DE, MT and energy storage (ES. Four typical scenarios were designed according to different day types (work day or weekend and weather conditions (sunny or rainy in view of the uncertainty of renewable energy in variable situations and load fluctuation. A modified dispatch strategy for CCHP is presented to further improve the operation economy without reducing the consumers’ comfort feeling. Chaotic optimization and elite retention strategy are introduced into basic particle swarm optimization (PSO to propose modified chaos particle swarm optimization (MCPSO whose search capability and convergence speed are improved greatly. Simulation results validate the correctness of the proposed model and the effectiveness of MCPSO algorithm in the optimized operation application of stand-alone MG.

  19. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  20. Selection of optimal variant route based on dynamic fuzzy GRA

    Directory of Open Access Journals (Sweden)

    Jalil Heidary Dahooie

    2018-09-01

    Full Text Available Given the high costs of construction and maintenance, an optimum design methodology is one of the most important steps towards the development of transportation infrastructure, especially freeways. However, the effects of different variables on the decision-making process to find an optimal variant have caused the choice to become a very difficult and professional task for decision makers. So, the current paper aims to determine the optimal variant route for Isfahan-Shiraz freeway through MADM approaches. First, evaluation indices for an optimal route variant are derived through literature review and expert panel assessment. Then, a dynamic fuzzy GRA method is used for weightings and optimal route selection. Bases on the results, the road longevity, views of NGOs and route integration are identified as the highest-weighted criteria in route variant prioritization. Further, Route 3 is defined as the priority for the optimal variant for Isfahan–Shiraz freeway, which is the main basis in practice.

  1. PRODUCTION OPTIMIZATION USING AGENT-BASED SYSTEM

    Directory of Open Access Journals (Sweden)

    Aleksandar Vujovic

    2016-03-01

    Full Text Available Production systems suffer frequent changes due to the growing demand and need for providing market competitiveness. Therefore, the application of intelligent systems can greatly increase the level of flexibility and efficiency, but also reduce the overall costs. On example of system for the production of irregular and variable shaped parts by cutting the wooden flat surfaces, it is discussed the possibility of applying intelligent agent-based system. In order to implement it in the production process, it was necessary to firstly performed an analysis and assessment of the initial situation. Then, we spotted a weak points and gave some suggestions to improve process by application of agents. The obtained solution has reduced the number of engaged workers, reduced the scope of their duties, made faster flow of materials, improved its utilization and we finally introduced the scheme of the new agent-based manufacturing process that achieves the foregoing benefits.

  2. Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID on cantilever tips

    Directory of Open Access Journals (Sweden)

    Soraya Sangiao

    2017-10-01

    Full Text Available In this work, we present a detailed investigation of the magnetic properties of cobalt nanospheres grown on cantilever tips by focused electron beam induced deposition (FEBID. The cantilevers are extremely soft and the cobalt nanospheres are optimized for magnetic resonance force microscopy (MRFM experiments, which implies that the cobalt nanospheres must be as small as possible while bearing high saturation magnetization. It was found that the cobalt content and the corresponding saturation magnetization of the nanospheres decrease for nanosphere diameters less than 300 nm. Electron holography measurements show the formation of a magnetic vortex state in remanence, which nicely agrees with magnetic hysteresis loops performed by local magnetometry showing negligible remanent magnetization. As investigated by local magnetometry, optimal behavior for high-resolution MRFM has been found for cobalt nanospheres with a diameter of ≈200 nm, which present atomic cobalt content of ≈83 atom % and saturation magnetization of 106 A/m, around 70% of the bulk value. These results represent the first comprehensive investigation of the magnetic properties of cobalt nanospheres grown by FEBID for application in MRFM.

  3. Robust optimization-based DC optimal power flow for managing wind generation uncertainty

    Science.gov (United States)

    Boonchuay, Chanwit; Tomsovic, Kevin; Li, Fangxing; Ongsakul, Weerakorn

    2012-11-01

    Integrating wind generation into the wider grid causes a number of challenges to traditional power system operation. Given the relatively large wind forecast errors, congestion management tools based on optimal power flow (OPF) need to be improved. In this paper, a robust optimization (RO)-based DCOPF is proposed to determine the optimal generation dispatch and locational marginal prices (LMPs) for a day-ahead competitive electricity market considering the risk of dispatch cost variation. The basic concept is to use the dispatch to hedge against the possibility of reduced or increased wind generation. The proposed RO-based DCOPF is compared with a stochastic non-linear programming (SNP) approach on a modified PJM 5-bus system. Primary test results show that the proposed DCOPF model can provide lower dispatch cost than the SNP approach.

  4. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems

    Directory of Open Access Journals (Sweden)

    Vivek Patel

    2012-08-01

    Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.

  5. Ion Beam Optimized Mechanical Characteristics of Glassy Polymeric Carbon for Medical Applications

    International Nuclear Information System (INIS)

    Rodrigues, M.G.; Cruz, N.C. da; Rangel, E.C.; Zimmerman, R.L.; Ila, D.; Poker, D.B.; Hensley, D.K.

    2003-01-01

    Glassy Polymeric Carbon (GPC) has medical applications owing to its inertness and biocompatible characteristics. Commercial GPC prosthetics include mitral, aortic and hydrocephalic valves. Surface treatment of GPC increases the adhesion of endothelic tissue on GPC and avoids the occurrence of thrombus in cardiac implant. In this work, ion beam was used to improve the mechanical characteristics of GPC surface. Hardness was measured as a function of depth in precursor and GPC samples heat treated from 300 to 2500 deg. C before and after bombardment with energetic ions of silicon, carbon, oxygen and gold at energies of 5, 6, 8 and 10 MeV and fluences between 1.0x1013 and 1.0x1016 ions/cm2. Comparison shows that hardness increases of the bombarded samples depend on heat treatment temperature. We verify that ion bombardment promotes carbonization due to an increased linkage between the chains of the polymeric material in lateral groups that are more numerous for samples heat treated to 700 deg. C

  6. Optimization of ion assist beam deposition of magnesium oxide template films during initial nucleation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Groves, James R [Los Alamos National Laboratory; Matias, Vladimir [Los Alamos National Laboratory; Stan, Liliana [Los Alamos National Laboratory; De Paula, Raymond F [Los Alamos National Laboratory; Hammond, Robert H [STANFORD UNIV.; Clemens, Bruce M [STANFOED UNIV.

    2010-01-01

    Recent efforts in investigating the mechanism of ion beam assisted deposition (IBAD) of biaxially textured thin films of magnesium oxide (MgO) template layers have shown that the texture develops suddenly during the initial 2 nm of deposition. To help understand and tune the behavior during this initial stage, we pre-deposited thin layers of MgO with no ion assist prior to IBAD growth of MgO. We found that biaxial texture develops for pre-deposited thicknesses < 2 nm, and that the thinnest layer tested, at 1 nm, resulted in the best qualitative RHEED image, indicative of good biaxial texture development. The texture developed during IBAD growth on the 1.5 nm pre-deposited layer is slightly worse and IBAD growth on the 2 nm pre-deposited layer produces a fiber texture. Application of these layers on an Al{sub 2}O{sub 3} starting surface, which has been shown to impede texture development, improves the overall quality of the IBAD MgO and has some of the characteristics of a biaxially texture RHEED pattern. It is suggested that the use of thin (<2 nm) pre-deposited layers may eliminate the need for bed layers like Si{sub 3}N{sub 4} and Y{sub 2}O{sub 3} that are currently thought to be required for proper biaxial texture development in IBAD MgO.

  7. Measurement profiles of nano-scale ion beam for optimized radiation energy losses

    International Nuclear Information System (INIS)

    Woo, T.H.; Cho, H.S.

    2011-01-01

    The behavior of charged particles is investigated for nano-scale ion beam therapy using a medical accelerator. Computational work is performed for the Bragg-peak simulation, which is focused on human organ material of pancreas and thyroid. The Results show that the trends of the dose have several different kinds of distributions. Before constructing a heavy ion collider, this study can give us the reliability of the therapeutic effect. Realistic treatment using human organs is calculated in a simple and cost effective manner using the computational code, the Stopping and Range of Ions in Matter 2008 (SRIM 2008). Considering the safety of the therapy, it is suggested to give a patient orient planning of the cancer therapy. The energy losses in ionization and phonon are analyzed, which are the behaviors in the molecular level nano-scopic investigation. The different fluctuations are shown at 150 MeV, where the lowest temperature is found in proton and pancreas case. Finally, the protocol for the radiation therapy is constructed by the simulation in which the procedure for a better therapy is selected. An experimental measurement incorporated with the simulations could be programmed by this protocol.

  8. Strengthening of reinforced concrete beams with basalt-based FRP sheets: An analytical assessment

    International Nuclear Information System (INIS)

    Nerilli, Francesca; Vairo, Giuseppe

    2016-01-01

    In this paper the effectiveness of the flexural strengthening of RC beams through basalt fiber-reinforced sheets is investigated. The non-linear flexural response of RC beams strengthened with FRP composites applied at the traction side is described via an analytical formulation. Validation results and some comparative analyses confirm soundness and consistency of the proposed approach, and highlight the good mechanical performances (in terms of strength and ductility enhancement of the beam) produced by basalt-based reinforcements in comparison with traditional glass or carbon FRPs.

  9. Strengthening of reinforced concrete beams with basalt-based FRP sheets: An analytical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nerilli, Francesca [Unicusano - Università degli Studi Niccolò Cusano Telematica Roma, 00166 Rome (Italy); Vairo, Giuseppe [Università degli Studi di Roma “Tor Vergata”- (DICII), 00133 Rome (Italy)

    2016-06-08

    In this paper the effectiveness of the flexural strengthening of RC beams through basalt fiber-reinforced sheets is investigated. The non-linear flexural response of RC beams strengthened with FRP composites applied at the traction side is described via an analytical formulation. Validation results and some comparative analyses confirm soundness and consistency of the proposed approach, and highlight the good mechanical performances (in terms of strength and ductility enhancement of the beam) produced by basalt-based reinforcements in comparison with traditional glass or carbon FRPs.

  10. Modulation Transfer Function of a Gaussian Beam Based on the Generalized Modified Atmospheric Spectrum

    Directory of Open Access Journals (Sweden)

    Chao Gao

    2016-01-01

    Full Text Available This paper investigates the modulation transfer function of a Gaussian beam propagating through a horizontal path in weak-fluctuation non-Kolmogorov turbulence. Mathematical expressions are obtained based on the generalized modified atmospheric spectrum, which includes the spectral power law value of non-Kolmogorov turbulence, the finite inner and outer scales of turbulence, and other optical parameters of the Gaussian beam. The numerical results indicate that the atmospheric turbulence would produce less negative effects on the wireless optical communication system with an increase in the inner scale of turbulence. Additionally, the increased outer scale of turbulence makes a Gaussian beam influenced more seriously by the atmospheric turbulence.

  11. T-junction waveguide-based combining high power microwave beams

    International Nuclear Information System (INIS)

    Zhang Qiang; Yuan Chengwei; Liu Lie

    2011-01-01

    Waveguide-based combining microwave beams is an attractive technique for enhancing the output capacities of narrow-band high power microwave devices. A specific T-junction combiner is designed for combining the X/X band microwave beams, and the detailed combining method and experimental results are presented. In the experiments, two microwave sources which can generate gigawatt level microwaves are driven by a single accelerator simultaneously, and their operation frequencies are 9.41 and 9.60 GHz, respectively. The two microwave beams with durations of about 35 ns have been successfully combined, and no breakdown phenomenon occurs.

  12. A teaching learning based optimization technique for optimal location and size of DG in distribution network

    Directory of Open Access Journals (Sweden)

    Banaja Mohanty

    2016-05-01

    Full Text Available DGs are placed for the purpose of real power loss minimization and voltage improvement in distribution network system. This paper presents a recent optimization technique, i.e. teaching learning based optimization (TLBO technique for finding the optimal size and location of Distributed generation (DG in radial distribution system (RDS. The optimal location and size of DG is analyzed considering voltage stability index as an objective function. The superiority of the proposed approach has been shown by comparing the results with GA and PSO methods in RDS. The comparison is done using system performances such as the real power loss and voltage profile of RDS. In this paper, performance analysis is carried out considering IEEE 33 bus and 69 buses as the test system.

  13. Optimal design of planar slider-crank mechanism using teaching-learning-based optimization algorithm

    International Nuclear Information System (INIS)

    Chaudhary, Kailash; Chaudhary, Himanshu

    2015-01-01

    In this paper, a two stage optimization technique is presented for optimum design of planar slider-crank mechanism. The slider crank mechanism needs to be dynamically balanced to reduce vibrations and noise in the engine and to improve the vehicle performance. For dynamic balancing, minimization of the shaking force and the shaking moment is achieved by finding optimum mass distribution of crank and connecting rod using the equipemental system of point-masses in the first stage of the optimization. In the second stage, their shapes are synthesized systematically by closed parametric curve, i.e., cubic B-spline curve corresponding to the optimum inertial parameters found in the first stage. The multi-objective optimization problem to minimize both the shaking force and the shaking moment is solved using Teaching-learning-based optimization algorithm (TLBO) and its computational performance is compared with Genetic algorithm (GA).

  14. Scanning laser beam displays based on a 2D MEMS

    Science.gov (United States)

    Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason

    2010-05-01

    The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.

  15. Small animal imaging using a flat panel detector-based cone beam computed tomography (FPD-CBCT) imaging system

    Science.gov (United States)

    Conover, David L.; Ning, Ruola; Yu, Yong; Lu, Xianghua; Wood, Ronald W.; Reeder, Jay E.; Johnson, Aimee M.

    2005-04-01

    Flat panel detector-based cone beam CT (FPD-CBCT) imaging system prototypes have been constructed based on modified clinical CT scanners (a modified GE 8800 CT system and a modified GE HighSpeed Advantage (HSA) spiral CT system) each with a Varian PaxScan 2520 imager. The functions of the electromechanical and radiographic subsystems of the CT system were controlled through specially made hardware, software and data acquisition modules to perform animal cone beam CT studies. Small animal (mouse) imaging studies were performed to demonstrate the feasibility of an optimized CBCT imaging system to have the capability to perform longitudinal studies to monitor the progression of cancerous tumors or the efficacy of treatments. Radiographic parameters were optimized for fast (~10 second) scans of live mice to produce good reconstructed image quality with dose levels low enough to avoid any detectable radiation treatment to the animals. Specifically, organs in the pelvic region were clearly imaged and contrast studies showed the feasibility to visualize small vasculature and space-filling bladder tumors. In addition, prostate and mammary tumors were monitored in volume growth studies.

  16. Optimization-Based Management of Energy Systems

    Science.gov (United States)

    2011-05-11

    collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE MAY 2011 2. REPORT TYPE 3. DATES COVERED 00-00...microgrid control provides an average annual 5-20% cost reduction compared with simple rule-based control strategy Annual Operating Cost Comparison NC...Generator Solar PV Battery G T IL I V Rs   STC STC STCMPPT MPPT TTk G P GP  1ˆ , E(SOC) RB ID IC 0 1 2 3 4 5 0 10 20 30 40 50 60 DC generator

  17. Optimization of segment weight using simulated dynamics algorithm for beamlet-based IMRT

    International Nuclear Information System (INIS)

    Chen Bingzhou; Hou Qing

    2007-01-01

    With accurate calculation algorithms in inverse planning for beamlet-based intensity modulated radiotherapy (IMRT), it takes time to calculate the dose matrix, which represents the dose distribution of each beamlet element to each voxel for unit fluence. To reduce the calculation time, coarse or approximate algorithms are often a choice, but this results in a final dose distribution that cannot reflect the real value. In addition, it is necessary to test if a coarse algorithm is capable of calculating the dose matrix of beamlets. In this work, simulated dynamics optimization algorithm was applied to optimize the segment weight to minish the dose error from the dose matrix calculation. After calculating the dose matrix by ray-tracing algorithm which takes into account just the primary component of absorbed dose, the original beam profile intensity distribution was optimized by using the simulated dynamics algorithm. Before segmentation, the even-spaced algorithm and genetic algorithm were applied in clustering. The dose distribution of every segment was calculated accurately by using convolution-superposition algorithm, and the weight of any voxel was in inverse proportion to the voxel number of the PTV or OAR it belonged. The segment weight was optimized by using the simulated dynamics algorithm. By comparing the dose distributions before and after optimization of segment weight, one finds that the dose distribution is improved obviously., It was also found that some segments which contained fewer beamlets or lower weight value could be omitted because the decay of dose distribution could be improved by re-optimizing the segment weight, and that some segments could be omitted by re-optimizing the segment weight during the process of beamlet-based IMRT. (authors)

  18. Optimal Dispatching of Active Distribution Networks Based on Load Equilibrium

    Directory of Open Access Journals (Sweden)

    Xiao Han

    2017-12-01

    Full Text Available This paper focuses on the optimal intraday scheduling of a distribution system that includes renewable energy (RE generation, energy storage systems (ESSs, and thermostatically controlled loads (TCLs. This system also provides time-of-use pricing to customers. Unlike previous studies, this study attempts to examine how to optimize the allocation of electric energy and to improve the equilibrium of the load curve. Accordingly, we propose a concept of load equilibrium entropy to quantify the overall equilibrium of the load curve and reflect the allocation optimization of electric energy. Based on this entropy, we built a novel multi-objective optimal dispatching model to minimize the operational cost and maximize the load curve equilibrium. To aggregate TCLs into the optimization objective, we introduced the concept of a virtual power plant (VPP and proposed a calculation method for VPP operating characteristics based on the equivalent thermal parameter model and the state-queue control method. The Particle Swarm Optimization algorithm was employed to solve the optimization problems. The simulation results illustrated that the proposed dispatching model can achieve cost reductions of system operations, peak load curtailment, and efficiency improvements, and also verified that the load equilibrium entropy can be used as a novel index of load characteristics.

  19. Dynamically reconfigurable multiple beam illumination based on optical correlation

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Dam, Jeppe Seidelin

    2009-01-01

    We adapt concepts from optical correlation and optical pattern recognition to propose a method for generating reconfigurable multiple spots with high efficiency. The generated spots correspond to the correlation spikes in optical pattern recognition. In pattern recognition, optimizing...... reconfigurable optical patterns with high efficiency for optical micromanipulation and other applications....

  20. Optimization-based topology identification of complex networks

    International Nuclear Information System (INIS)

    Tang Sheng-Xue; Chen Li; He Yi-Gang

    2011-01-01

    In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method. (general)