WorldWideScience

Sample records for bcc solid solution

  1. Calculation of thermodynamic equilibrium between bcc disordered solid solutions U and Mo

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Rubiolo, Gerardo H.

    2003-01-01

    There is actually an interest to develop a new fuel with higher density for research reactors. Fuel plates would be obtained by dispersion, a method that requires both a very dense fuel dispersant (>15.0 g U/cm 3 ) and a very high volume loading of the dispersant (>55%). Dispersants based in gamma (BCC) stabilized uranium alloys are being investigated, as they are able to reach uranium densities of 17.0 g U/cm 3 . Among them, we focus in U(Mo) bcc solid solutions with the addition of ternary elements to stabilize gamma phase. Transition metals, 4d and 5d, of groups VII and VIII are good candidates for the ternary alloy U - Mo - X. Their relative power to stabilize gamma phase seems to be in close relation with bonding energies between atoms in the alloy. A first approach to the calculation of these energies has been performed by the semi empiric method of Miedema where only bonds between pairs are considered, neglecting ternary and quaternary bonds. There is also a lack of information concerning solubilities of the ternary elements in the ternary cubic phase. In this work we aim to calculate bonding energies between atoms in the alloy using a cluster expansion of the formation energy (T=0 K) of a series of bcc ordered compounds in the systems U-Mo-X. Then the calculation of the equilibrium phase diagram by the Cluster Variation Method will be done (CVM). We show here the first part of the investigation devoted to calculation of phases equilibria in the U Mo system Formation energies of the ordered compounds were obtained by the first principles methods TB-LMTO-ASA and FP-LAPW. Another set of bonding energies was calculated in order to fit the known experimental diagram and new formation energies for the ordered compounds were derived from them. Discrepancies between both sets are discussed. (author)

  2. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating

    International Nuclear Information System (INIS)

    Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.

    2007-01-01

    X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties

  3. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy

    International Nuclear Information System (INIS)

    Rao, S.I.; Varvenne, C.; Woodward, C.; Parthasarathy, T.A.; Miracle, D.; Senkov, O.N.; Curtin, W.A.

    2017-01-01

    Molecular statics and molecular dynamics simulations are presented for the structure and glide motion of a/2〈111〉 dislocations in a randomly-distributed model-BCC Co 16.67 Fe 36.67 Ni 16.67 Ti 30 alloy. Core structure variations along an individual dislocation line are found for a/2〈111〉 screw and edge dislocations. One reason for the core structure variations is the local variation in composition along the dislocation line. Calculated unstable stacking fault energies on the (110) plane as a function of composition vary significantly, consistent with this assessment. Molecular dynamics simulations of the critical glide stress as a function of temperature show significant strengthening, and much shallower temperature dependence of the strengthening, as compared to pure BCC Fe as well as a reference mean-field BCC alloy material of the same overall composition, lattice and elastic constants as the target alloy. Interpretation of the strength versus temperature in terms of an effective kink-pair activation model shows the random alloy to have a much larger activation energy than the mean-field alloy or BCC Fe. This is interpreted as due to the core structure variations along the dislocation line that are often unfavorable for glide in the direction of the load. The configuration of the gliding dislocation is wavy, and significant debris is left behind, demonstrating the role of local composition and core structure in creating kink pinning (super jogs) and/or deflection of the glide plane of the dislocation. - Graphical abstract: Measured critical resolved shear stress scaled by the (111) shear modulus (39 GPa) necessary to achieve on-going glide as a function of temperature, for the a/2[111] screw dislocation in the model BCC Co 16.67 Fe 36.67 Ni 16.67 Ti 30 alloy. The upper and lower bounds of the critical resolved shear stress is shown in the plot. Also shown in is the measured strength for the mean-field A-atom material and BCC Fe as a function of

  4. Investigation of the structural and hydrogenation properties of disordered Ti-V-Cr-Mo BCC solid solutions

    International Nuclear Information System (INIS)

    Raufast, C.; Planté, D.; Miraglia, S.

    2014-01-01

    Highlights: • Materials synthesis and structural analysis of selected compositions of TiVCr(Mo) bcc samples. • Extraction of the thermodynamics relevant parameters for hydride formation and dissociation state of Ti 0.3 V 1.7 Cr 0.7 Mo 0.3 sample. • Discussion of the hydrides practicability. - Abstract: Selected compositions in the Ti-Cr-V-Mo system (with the BCC structure-type) have been synthesized and characterized for structural (crystalline structure, solidification microstructure) and thermodynamic properties (equilibrium and reversible hydrogen storage capacity). We present as well the effect of co-melting with a so-called activating phase that results in a secondary phase development and a subsequent enhancement of the hydrogen sorption kinetics. Ageing properties and applicability of such materials for hybrid hydrogen storage systems are also discussed

  5. First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al-TM (TM = Ti, Zr and Hf) systems: A comparison of cluster expansion and supercell methods

    International Nuclear Information System (INIS)

    Ghosh, G.; Walle, A. van de; Asta, M.

    2008-01-01

    The thermodynamic properties of solid solutions with body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures in the Al-TM (TM = Ti, Zr and Hf) systems are calculated from first-principles using cluster expansion (CE), Monte-Carlo simulation and supercell methods. The 32-atom special quasirandom structure (SQS) supercells are employed to compute properties at 25, 50 and 75 at.% TM compositions, and 64-atom supercells have been employed to compute properties of alloys in the dilute concentration limit (one solute and 63 solvent atoms). In general, the energy of mixing (Δ m E) calculated by CE and dilute supercells agree very well. In the concentrated region, the Δ m E values calculated by CE and SQS methods also agree well in many cases; however, noteworthy discrepancies are found in some cases, which we argue originate from inherent elastic and dynamic instabilities of the relevant parent lattice structures. The importance of short-range order on the calculated values of Δ m E for hcp Al-Ti alloys is demonstrated. We also present calculated results for the composition dependence of the atomic volumes in random solid solutions with bcc, fcc and hcp structures. The properties of solid solutions reported here may be integrated within the CALPHAD formalism to develop reliable thermodynamic databases in order to facilitate: (i) calculations of stable and metastable phase diagrams of binary and multicomponent systems, (ii) alloy design, and (iii) processing of Al-TM-based alloys

  6. The thermodynamics and kinetics of interstitial solid solutions

    International Nuclear Information System (INIS)

    Silva, J.R.G. da.

    1976-04-01

    Studies of hydrogen metal systems where the hidrogen is disolved in a solid solution are presented. Particular items of interest are: the thermodynamics of the hydrogen-iron system; the solubility of hidrogen in super pure iron single crytals; the thermodinamic functions of hydrogen in solid solutions of Nb, Ta and V; and the solubility of hydrogen in α-manganese. The diffusion of carbon and nitrogen in BCC iron is also studied

  7. A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, S. R.; Mendelev, M. I., E-mail: mendelev@ameslab.gov [Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States)

    2016-04-14

    We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).

  8. Metastable bcc phase formation in the Nb-Cr system

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, D.J.; Schwarz, R.B. [Los Alamos National Lab., NM (United States); Perepezko, J.H. [Wisconsin Univ., Madison, WI (United States). Dept. of Materials Science and Engineering; Plantz, D.H. [Coast Guard Academy, New London, CT (United States). Dept. of Engineering

    1993-08-01

    Extended metastable bcc solid solutions of Nb-Xat.%Cr (X = 35, 50, 57, 77, 82, and 94) were synthesized by two-anvil splat-quenching. In addition, bcc (Nb-67at.%Cr) was prepared by mechanically alloying mixtures of niobium and chromium powders. The lattice parameters were measured by X-ray diffraction and the Young`s moduli were measured by low-load microindentation. The composition dependence of the lattice parameters and elastic moduli show a positive deviation with respect to a rule of mixtures. During continuous heating at 15C/min., the metastable precursor bcc phases decomposed at temperatures above 750C to uniformly refined microstructures.

  9. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  10. Ab initio study of solute transition-metal interactions with point defects in bcc Fe

    NARCIS (Netherlands)

    Olsson, P.; Klaver, T.P.C.; Domain, C.

    2010-01-01

    The properties of 3d, 4d, and 5d transition-metal elements in ?-Fe have been studied using ab initio density-functional theory. The intrinsic properties of the solutes have been characterized as well as their interaction with point defects. Vacancies and interstitials of (110) and (111) orientations

  11. Thermotransport in interstitial solid solutions

    International Nuclear Information System (INIS)

    Fogel'son, R.L.

    1982-01-01

    On the basis of literature data the problem of thermotransport of impurities (H, N, O, C) in interstitial solid solutions is considered. It is shown that from experimental data on the thermotransport an important parameter of dissolved atoms can be found which characterizes atom state in these solutions-enthalpy of transport

  12. Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys

    Science.gov (United States)

    Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.

    2018-03-01

    We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.

  13. Solid solution or amorphous phase formation in TiZr-based ternary to quinternary multi-principal-element films

    Directory of Open Access Journals (Sweden)

    Mariana Braic

    2014-08-01

    The deposited films exhibited only solid solution (fcc, bcc or hcp or amorphous phases, no intermetallic components being detected. It was found that the hcp structure was stabilized by the presence of Hf or Y, bcc by Nb or Al and fcc by Cu. For the investigated films, the atomic size difference, mixing enthalpy, mixing entropy, Gibbs free energy of mixing and the electronegativity difference for solid solution and amorphous phases were calculated based on Miedema׳s approach of the regular solution model. It was shown that the atomic size difference and the ratio between the Gibbs free energies of mixing of the solid solution and amorphous phases were the most significant parameters controlling the film crystallinity.

  14. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Molecular Dynamics Study of Stability of Solid Solutions and Amorphous Phase in the Cu-Al System

    Science.gov (United States)

    Yang, Bin; Lai, Wen-Sheng

    2009-06-01

    The relative stability of fcc and bcc solid solutions and amorphous phase with different compositions in the Cu-Al system is studied by molecular dynamics simulations with n-body potentials. For Cu1-xAlx alloys, the calculations show that the fcc solid solution has the lowest energies in the composition region with x 0.72, while the bee solid solution has the lowest energies in the central composition range, in agreement with the ball-milling experiments that a single bcc solid solution with 0.30 < x < 0.70 is obtained. The evolution of structures in solid solutions and amorphous phase is studied by the coordination number (CN) and bond-length analysis so as to unveil the underlying physics. It is found that the energy sequence among three phases is determined by the competition in energy change originating from the bond length and CNs (or the number of bonds).

  15. On hyper BCC-algebras

    OpenAIRE

    Borzooei, R. A.; Dudek, W. A.; Koohestani, N.

    2006-01-01

    We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  16. On hyper BCC-algebras

    Directory of Open Access Journals (Sweden)

    R. A. Borzooei

    2006-01-01

    Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  17. Synthesis of solid solutions of perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Dambekalne, M.Y.; Antonova, M.K.; Perro, I.T.; Plaude, A.V.

    1986-03-01

    The authors carry out thermographic studies, using a derivatograph, in order to understand the nature of the processes taking place during the synthesis of solid solutions of perovskites. Based on the detailed studies on the phase transformations occurring in the charges of the PSN-PMN solid solutions and on the selection of the optimum conditions for carrying out their synthesis, the authors obtained a powder containing a minimum quantity of the undesirable pyrochlore phase and by sintering it using the hot pressing method, they produced single phase ceramic specimens containing the perovskite phase alone with a density close to the theoretical value and showing zero apparent porosity and water absorption.

  18. Smarandache hyper BCC-algebra

    OpenAIRE

    Ahadpanah, A.; Borumand Saeid, A.

    2011-01-01

    In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.

  19. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  20. Microwave dielectrics: solid solution, ordering and microwave ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 6. Microwave dielectrics: solid solution, ordering and microwave dielectric properties of ( 1 − x ) Ba(Mg 1 / 3 Nb 2 / 3 )O 3 − x Ba(Mg 1 / 8 Nb 3 / 4 )O3 ceramics. YOGITA BISHT RICHA TOMAR PULLANCHIYODAN ABHILASH DEEPA RAJENDRAN LEKSHMI M ...

  1. Magnetic Damping of Solid Solution Semiconductor Alloys

    Science.gov (United States)

    Szofran, Frank R.; Benz, K. W.; Croell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar

    1999-01-01

    The objective of this study is to: (1) experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in electrically conductive melts as this applies to the bulk growth of solid solution semiconducting materials; and (2) assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit reasonable growth rates. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. TEMC has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface. In conclusion, magnetic fields up to 5 Tesla are sufficient to eliminate time-dependent convection in silicon floating zones and possibly Bridgman growth of Ge-Si alloys. In both cases, steady convection appears to be more significant for mass transport than diffusion, even at 5 Tesla in the geometries used here. These results are corroborated in both growth configurations by calculations.

  2. Radiation defects in complex perovskite solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kuklja, M.M., E-mail: mkukla@nsf.gov [Materials Science and Engineering Dept., University of Maryland, College Park (United States); Kotomin, E.A. [Institute for Solid State Physics, University of Latvia, Riga (Latvia); Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Sharia, O. [Materials Science and Engineering Dept., University of Maryland, College Park (United States); Mastrikov, Yu.A. [Materials Science and Engineering Dept., University of Maryland, College Park (United States); Institute for Solid State Physics, University of Latvia, Riga (Latvia); Maier, J. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany)

    2014-05-01

    First principles density functional theory (DFT) based modeling is performed to explore formation energies of a series of point cation and oxygen defects, Frenkel and Schottky disorder, as well as structural disorder in Ba{sub 1−x}Sr{sub x}Co{sub 1−y}Fe{sub y}O{sub 3−δ} (BSCF) perovskite solid solutions. The results are compared with previous studies on a prototype SrTiO{sub 3} perovskite. It is shown that BSCF permits accommodation of a high concentration of defects and cation clusters but not antisite defects.

  3. Radiation defects in complex perovskite solid solutions

    Science.gov (United States)

    Kuklja, M. M.; Kotomin, E. A.; Sharia, O.; Mastrikov, Yu. A.; Maier, J.

    2014-05-01

    First principles density functional theory (DFT) based modeling is performed to explore formation energies of a series of point cation and oxygen defects, Frenkel and Schottky disorder, as well as structural disorder in Ba1-xSrxCo1-yFeyO3-δ (BSCF) perovskite solid solutions. The results are compared with previous studies on a prototype SrTiO3 perovskite. It is shown that BSCF permits accommodation of a high concentration of defects and cation clusters but not antisite defects.

  4. First-principles study of ternary bcc alloys using special quasi-random structures

    International Nuclear Information System (INIS)

    Jiang Chao

    2009-01-01

    Using a combination of exhaustive enumeration and Monte Carlo simulated annealing, we have developed special quasi-random structures (SQSs) for ternary body-centered cubic (bcc) alloys with compositions of A 1 B 1 C 1 , A 2 B 1 C 1 , A 6 B 1 C 1 and A 2 B 3 C 3 , respectively. The structures possess local pair and multisite correlation functions that closely mimic those of the random bcc alloy. We employed the SQSs to predict the mixing enthalpies, nearest neighbor bond length distributions and electronic density of states of bcc Mo-Nb-Ta and Mo-Nb-V solid solutions. Our convergence tests indicate that even small-sized SQSs can give reliable results. Based on the SQS energetics, the predicting powers of the existing empirical ternary extrapolation models were assessed. The present results suggest that it is important to take into account the ternary interaction parameter in order to accurately describe the thermodynamic behaviors of ternary alloys. The proposed SQSs are quite general and can be applied to other ternary bcc alloys.

  5. Pair correlations in crystalline solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ice, G.E.; Sparks, C.J. [Oak Ridge National Lab., TN (United States); Shaffer, L. [Anderson Univ., IN (United States). Dept. of Physics; Zschack, P. [Oak Ridge Institute of Science and Education, TN (United States)

    1994-06-01

    Recent measurements of pair correlations in metallic solid solutions challenge simple models of atomic size in alloy structure. These measurements take advantage of intense and tunable synchrotron X radiation to control the x-ray scattering contrast between atoms in a solid solution. For binary alloys with elements nearby in the periodic table it is possible to tune the x-ray energy near the K edge so that the scattering contrast varies from near zero to {plus_minus}5 electron units. Even larger contrast variation is possible near L edges or with complementary x-ray and neutron diffraction data sets. With adjusted scattering contrast it is possible to measure short-range-order (SRO), even in alloys with elements nearby in the periodic table. It is also possible to detect chemically-specific static displacements of {plus_minus}0.001 {angstrom} or less and with fewer assumptions than with previous experimental methods. We compare the measured chemically-specific static displacements in Fe{sub 22.5}Ni{sub 77.5} and Cr{sub 47}Fe{sub 53} with previous models and with the results of other experiments.

  6. Uranothorite solid solutions: From synthesis to dissolution

    International Nuclear Information System (INIS)

    Costin, Dan-Tiberiu

    2012-01-01

    USiO 4 coffinite appears as one of the potential phases formed in the back-end of the alteration of spent fuel, in reducing storage conditions. A study aiming to assess the thermodynamic data associated with coffinite through an approach based on the preparation of Th 1-x U x SiO 4 uranothorite solid solutions was then developed during this work. First, the preparation of uranothorite samples was successfully undertaken in hydrothermal conditions. However, the poly-phased samples systematically formed for x ≥ 0,2 underlined the kinetic hindering linked with the preparation of uranium-enriched samples, including coffinite end-member. Nevertheless, the characterization of the various samples led to confirm the formation of an ideal solid solution and allowed the constitution of a spectroscopic database. The purification of the samples was then performed by the means of different protocols based on physical (dispersion-centrifugation) or chemical (selective dissolution of secondary phases) methods. This latter led to a complete of the impurities (Th 1-y U y O 2 mixed oxide and amorphous silica) through successive washing steps in acid then basic media. Finally, dissolution experiments were undertaken on uranothorite samples (0 ≤ xexp. ≤ 0,5) and allowed pointing out the influence of composition, pH and temperature on the normalized dissolution rate of the compounds. Also, the associated thermodynamic data, such as activation energy, indicate that the reaction is controlled by surface reactions. Once the equilibrium is reached, the analogous solubility constants were determined for each composition studied, then allowing the extrapolation to coffinite value. It was then finally possible to conclude on the inversion of coffinitisation reaction with temperature. (author) [fr

  7. Theoretical and experimental study of metastable solid solutions and phase stability within the immiscible Ag-Mo binary system

    Science.gov (United States)

    Sarakinos, K.; Greczynski, G.; Elofsson, V.; Magnfält, D.; Högberg, H.; Alling, B.

    2016-03-01

    Metastable solid solutions are phases that are synthesized far from thermodynamic equilibrium and offer a versatile route to design materials with tailor-made functionalities. One of the most investigated classes of metastable solid solutions with widespread technological implications is vapor deposited ternary transition metal ceramic thin films (i.e., nitrides, carbides, and borides). The vapor-based synthesis of these ceramic phases involves complex and difficult to control chemical interactions of the vapor species with the growing film surface, which often makes the fundamental understanding of the composition-properties relations a challenging task. Hence, in the present study, we investigate the phase stability within an immiscible binary thin film system that offers a simpler synthesis chemistry, i.e., the Ag-Mo system. We employ magnetron co-sputtering to grow Ag1-xMox thin films over the entire composition range along with x-ray probes to investigate the films structure and bonding properties. Concurrently, we use density functional theory calculations to predict phase stability and determine the effect of chemical composition on the lattice volume and the electronic properties of Ag-Mo solid solutions. Our combined theoretical and experimental data show that Mo-rich films (x ≥ ˜0.54) form bcc Mo-Ag metastable solid solutions. Furthermore, for Ag-rich compositions (x ≤ ˜0.21), our data can be interpreted as Mo not being dissolved in the Ag fcc lattice. All in all, our data show an asymmetry with regards to the mutual solubility of Ag and Mo in the two crystal structures, i.e., Ag has a larger propensity for dissolving in the bcc-Mo lattice as compared to Mo in the fcc-Ag lattice. We explain these findings in light of isostructural short-range clustering that induces energy difference between the two (fcc and bcc) metastable phases. We also suggest that the phase stability can be explained by the larger atomic mobility of Ag atoms as compared to that

  8. Spheroidization behavior of dendritic b.c.c. phase in Zr-based モ-phase composite

    Directory of Open Access Journals (Sweden)

    Sun Guoyuan

    2013-03-01

    Full Text Available The spheroidization behavior of the dendritic b.c.c. phase dispersed in a bulk metallic glass (BMG matrix was investigated through applying semi-solid isothermal processing and a subsequent rapid quenching procedure to a Zr-based モ-phase composite. The Zr-based composite with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 was prefabricated by a water-cooled copper mold-casting method and characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The results show that the composite consists of a glassy matrix and uniformly distributed fine dendrites of the モ-Zr solid solution with the body-centered-cubic (b.c.c. structure. Based on the differential scanning calorimeter (DSC examination results, and in view of the b.c.c. モ-Zr to h.c.p. メ-Zr phase transition temperature, a semi-solid holding temperature of 900 ìC was determined. After reheating the prefabricated composite to the semi-solid temperature, followed by an isothermal holding process at this temperature for 5 min, and then quenching the semi-solid mixture into iced-water; the two-phase microstructure composed of a BMG matrix and uniformly dispersed spherical b.c.c. モ-Zr particles with a high degree of sphericity was achieved. The present spheroidization transition is a thermodynamically autonomic behavior, and essentially a diffusion process controlled by kinetic factors; and the formation of the BMG matrix should be attributed to the rapid quenching of the semi-solid mixture as well as the large glass-forming ability of the remaining melt in the semi-solid mixture.

  9. End-Member Formulation of Solid Solutions and Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  10. On calculation of lattice parameters of refractory metal solid solutions

    International Nuclear Information System (INIS)

    Barsukov, A.D.; Zhuravleva, A.D.; Pedos, A.A.

    1995-01-01

    Technique for calculating lattice periods of solid solutions is suggested. Experimental and calculation values of lattice periods of some solid solutions on the basis of refractory metals (V-Cr, Nb-Zr, Mo-W and other) are presented. Calculation error was correlated with experimental one. 7 refs.; 2 tabs

  11. Shear instabilities in perfect bcc crystals during simulated tensile tests

    Czech Academy of Sciences Publication Activity Database

    Černý, M.; Šesták, P.; Pokluda, J.; Šob, Mojmír

    2013-01-01

    Roč. 87, č. 1 (2013), 014117/1-014117/4 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68081723 Keywords : instabilities * tensile test * bcc metals * ab initio calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  12. Comparison of different displacive processes in bcc crystals

    Czech Academy of Sciences Publication Activity Database

    Ostapovets, Andrej; Paidar, Václav

    2009-01-01

    Roč. 73, č. 9 (2009), s. 1188-1192 ISSN 1062-8738 R&D Projects: GA MŠk OC 149 Institutional research plan: CEZ:AV0Z10100520 Keywords : twinning * bcc-hcp transition * many-body potential Subject RIV: BM - Solid Matter Physics ; Magnetism

  13. SOLISOL-handling of solid solutions. Version 1.1

    International Nuclear Information System (INIS)

    Boerjesson, S.; Emren, A.

    1992-09-01

    SOLISOL is a C computer program designed to model geochemical reactions involving solid solutions. The program searches equilibrium concentrations of the components in the aqueous phase and the solid solution given by limited quantities of the solid solution components. The equilibrium code PHREEQE is used as a subprogram in SOLISOL. Subprograms external to PHREEQE extract information from PHREEQE results, take care of conserved properties, calculate solubilities and produce inputdata for PHREEQE. The essential idea in this process is to calculate solubilities for the components in terms of saturation indices, and give directions to PHREEQE on how to search for the equilibrium under those constraints. (au)

  14. Thermal diffusivity of samarium-gadolinium zirconate solid solutions

    International Nuclear Information System (INIS)

    Pan, W.; Wan, C.L.; Xu, Q.; Wang, J.D.; Qu, Z.X.

    2007-01-01

    We synthesized samarium-gadolinium zirconate solid solutions and determined their thermal diffusivities, Young's moduli and thermal expansion coefficients, which are very important for their application in thermal barrier coatings. Samarium-gadolinium zirconate solid solutions have extremely low thermal diffusivity between 20 and 600 deg. C. The solid solutions have lower Young's moduli and higher thermal expansion coefficients than those of pure samarium and gadolinium zirconates. This combination of characteristics is promising for the application of samarium and gadolinium zirconates in gas turbines. The mechanism of phonon scattering by point defects is discussed

  15. Features of solid solutions composition in magnesium with yttrium alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Tarytina, I.E.

    1983-01-01

    Additional data on features of yttrium solid solutions composition in magnesium in the course of their decomposition investigation in the case of aging are obtianed. The investigation has been carried out on the base of a binary magnesium-yttrium alloy the composition of which has been close to maximum solubility (at eutectic temperature) and magnesium-yttrium alloys additionally doped with zinc. It is shown that higher yttrium solubility in solid magnesium than it has been expected, issueing from the difference in atomic radii of these metals indicates electron yttrium-magnesium atoms interaction. In oversaturated magnesium-yttrium solid solutions at earlier decomposition stages Mg 3 Cd type ordering is observed. At aging temperatures up to 250 deg C and long exposures corresponding to highest strengthening in oversaturated magnesium yttrium solid solutions a rhombic crystal lattice phase with three symmetric orientations is formed

  16. Solid state synthesis, crystal growth and optical properties of urea and p-chloronitrobenzene solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Kant, Shiva; Reddi, R.S.B. [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Ganesamoorthy, S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Gupta, P.K. [Laser Materials Development & Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-01-15

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB and UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solutionSolid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.

  17. Surface phase transitions in cu-based solid solutions

    Science.gov (United States)

    Zhevnenko, S. N.; Chernyshikhin, S. V.

    2017-11-01

    We have measured surface energy in two-component Cu-based systems in H2 + Ar gas atmosphere. The experiments on solid Cu [Ag] and Cu [Co] solutions show presence of phase transitions on the surfaces. Isotherms of the surface energy have singularities (the minimum in the case of copper solid solutions with silver and the maximum in the case of solid solutions with cobalt). In both cases, the surface phase transitions cause deficiency of surface miscibility: formation of a monolayer (multilayer) (Cu-Ag) or of nanoscale particles (Cu-Co). At the same time, according to the volume phase diagrams, the concentration and temperature of the surface phase transitions correspond to the solid solution within the volume. The method permits determining the rate of diffusional creep in addition to the surface energy. The temperature and concentration dependence of the solid solutions' viscosity coefficient supports the fact of the surface phase transitions and provides insights into the diffusion properties of the transforming surfaces.

  18. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  19. Design principles for radiation-resistant solid solutions

    Science.gov (United States)

    Schuler, Thomas; Trinkle, Dallas R.; Bellon, Pascal; Averback, Robert

    2017-05-01

    We develop a multiscale approach to quantify the increase in the recombined fraction of point defects under irradiation resulting from dilute solute additions to a solid solution. This methodology provides design principles for radiation-resistant materials. Using an existing database of solute diffusivities, we identify Sb as one of the most efficient solutes for this purpose in a Cu matrix. We perform density-functional-theory calculations to obtain binding and migration energies of Sb atoms, vacancies, and self-interstitial atoms in various configurations. The computed data informs the self-consistent mean-field formalism to calculate transport coefficients, allowing us to make quantitative predictions of the recombined fraction of point defects as a function of temperature and irradiation rate using homogeneous rate equations. We identify two different mechanisms according to which solutes lead to an increase in the recombined fraction of point defects; at low temperature, solutes slow down vacancies (kinetic effect), while at high temperature, solutes stabilize vacancies in the solid solution (thermodynamic effect). Extension to other metallic matrices and solutes are discussed.

  20. Structure and high-piezoelectricity in lead oxide solid solutions

    NARCIS (Netherlands)

    Noheda, B.

    2002-01-01

    A review of the recent advances in the understanding of piezoelectricity in lead oxide solid solutions is presented, giving special attention to the structural aspects. It has now become clear that the very high electromechanical response in these materials is directly related to the existence of

  1. Thermodynamic properties of Ag–Au–Hg solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chudnenko, Konstantin, E-mail: chud@igc.irk.ru [Vinogradov Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Pal’yanova, Galina [Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2013-11-20

    Highlights: • The natural data in the Ag–Au–Hg ternary system have been summarized. • Standard thermodynamic functions of Au{sub x1}Ag{sub x2}Hg{sub x3} solid solution have been calculated. • The obtained data can be used for developing models processes with Au, Ag and Hg. - Abstract: We have summarized data on natural Ag–Au amalgams. Standard thermodynamic functions of ternary Ag–Au–Hg solid solution in the system were estimated. Several thermodynamic models of solid solutions were constructed on the basis of data on boundary binary systems. The convergence of results for different models suggests the validity of prediction. The obtained data can be used in different software packages and thermodynamic databases for developing physicochemical models in technological processes with participation of gold, silver and mercury. It will be used for modeling of ore deposit formation taking account of subregular solid solutions in a wide T, P-parameters interval.

  2. Temperature-dependent phonon spectra of magnetic random solid solutions

    NARCIS (Netherlands)

    Ikeda, Yuji; Körmann, F.H.W.; Dutta, Biswanath; Carreras, Abel; Seko, Atsuto; Neugebauer, Jörg; Tanaka, Isao

    2018-01-01

    A first-principles-based computational tool for simulating phonons of magnetic random solid solutions including thermal magnetic fluctuations is developed. The method takes fluctuations of force constants due to magnetic excitations as well as due to chemical disorder into account. The developed

  3. Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources

    DEFF Research Database (Denmark)

    Atlung, Sven; West, Keld; Jacobsen, Torben

    1979-01-01

    Battery systems based on alkali metal anodes and solid solution cathodes,i.e., cathodes based on the insertion of the alkali cation in a "host lattice,"show considerable promise for high energy density storage batteries. Thispaper discusses the interaction between battery requirements...

  4. Luminescence spectra and kinetics of disordered solid solutions

    DEFF Research Database (Denmark)

    Klochikhin, A.; Reznitsky, A.; Permogorov, S.

    1999-01-01

    that the analysis of the exciton-phonon interaction gives the information about the character of the localization of excitons. We have shown that the model used describes quite well the experimental cw spectra of CdS(1-c) Se-c and ZnSe(1-c)Tec solid solutions. Further, the experimental results are presented...

  5. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  6. On the solution of a lubrication problem with particulate solids

    Science.gov (United States)

    Dai, F.; Khonsari, M. M.

    1991-01-01

    The lubrication characteristic of a fluid with solid particles is studied using the continuum theory of mixtures. The governing equations are formulated and appropriate boundary conditions are introduced for an arbitrary-shaped lubricant film thickness. As a special case, closed-form analytical perturbation solutions for pressure and shear stress are obtained for a mixture of a conventional oil and solid particles with small values of solid-volume fraction sheared in the clearance space of an infinitely long slider bearing. It is found that when compared with a pure fluid, the mixture of the fluid and solid generates a higher pressure and therefore a higher load-carrying capacity with the added advantage of a reduction in the coefficient of friction.

  7. Hydrothermal crystallization of zirconia and zirconia solid solutions

    International Nuclear Information System (INIS)

    Pyda, W.; Haberko, K.; Bucko, M.M.

    1991-01-01

    Zirconia as well as yttria-zirconia and calcia-zirconia solid-solution powders were crystallized under hydrothermal conditions from (co)precipitated hydroxides. The morphology of the power particles is strongly dependent on the crystallization conditions. The powders crystallized in a water solution of Na, K, and Li hydroxides show elongated particles of much larger sizes than those which result from the process carried out in pure water or a water solution of Na, K, or Li chlorides. The shapes of the latter particles are isometric. In this paper the growth mechanism of the elongated particles is suggested

  8. Atomic displacements in bcc dilute alloys

    Indian Academy of Sciences (India)

    We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method. Wills and ...

  9. Atomic displacements in bcc dilute alloys

    Indian Academy of Sciences (India)

    Abstract. We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc. (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method.

  10. Investigation of samarium solubility in the magnesium based solid solution

    International Nuclear Information System (INIS)

    Rokhlin, L.L.; Padezhnova, E.M.; Guzej, L.S.

    1976-01-01

    Electric resistance measurements and microscopic analysis were used to investigate the solubility of samarium in a magnesium-based solid solution. The constitutional diagram Mg-Sm on the magnesium side is of an eutectic type with the temperature of the eutectic transformation of 542 deg C. Samarium is partly soluble in solid magnesium, the less so, the lower is the temperature. The maximum solubility of samarium in magnesium (at the eutectic transformation point) is 5.8 % by mass (0.99 at. %). At 200 deg C, the solubility of samarium in magnesium is 0.4 % by mass (0.063 at. %)

  11. Agglomeration Versus Localization Of Hydrogen In BCC Fe Vacancies

    International Nuclear Information System (INIS)

    Simonetti, S.; Juan, A.; Brizuela, G.; Simonetti, S.

    2006-01-01

    Severe embrittlement can be produced in many metals by small amounts of hydrogen. The interactions of hydrogen with lattice imperfections are important and often dominant in determining the influence of this impurity on the properties of solids. The interaction between four-hydrogen atoms and a BCC Fe structure having a vacancy has been studied using a cluster model and a semiempirical method. For a study of sequential absorption, the hydrogen atoms were positioned in their energy minima configurations, near to the tetrahedral sites neighbouring the vacancy. VH 2 and VH 3 complexes are energetically the most stables in BCC Fe. The studies about the stability of the hydrogen agglomeration gave as a result that the accumulation is unfavourable in complex vacancy-hydrogen with more than three atoms of hydrogen. (authors)

  12. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  13. Design of non-molecular coordination solids from aqueous solution ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 126, No. 5, September 2014, pp. 1433–1442. c Indian Academy of Sciences. Design of non-molecular coordination solids from aqueous solution: [Cu. II. LnX(H2O)], where X=SO4, Cl or H2O and L=pyrazole, imidazole or glutamic acid and n=1 or 4. VINEET KUMARa, ARITRA KUNDUa, MONIKA SINGHa,.

  14. Theromdynamics of carbon in nickel-based multicomponent solid solutions

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1978-04-01

    The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215 0 C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO 2 equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by many investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented

  15. Theromdynamics of carbon in nickel-based multicomponent solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D. J.

    1978-04-01

    The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215/sup 0/C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO/sub 2/ equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by many investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented.

  16. Synthesis and characterization of solid solutions in ABCO 4 system

    Science.gov (United States)

    Novoselov, A.; Zimina, G.; Komissarova, L.; Pajaczkowska, A.

    2006-01-01

    Formation of continuous solid solutions with a tetragonal structure of K 2NiF 4-type was investigated by direct solid-state synthesis, carbonate precipitations, the freeze-drying method and the Czochralski crystal growth technique. In the systems of SrLaAlO 4-CaLaAlO 4, SrNdAlO 4-CaNdAlO 4, SrPrAlO 4-CaPrAlO 4, SrLaAlO 4-SrLaGaO 4 and SrLaAlO 4-SrLaFeO 4 solid solutions are formed in the whole concentration range (0.0⩽ x⩽1.0) and in the systems of SrLaAlO 4-SrLaMnO 4 and SrLaAlO 4-SrLaCrO 4 in the limited compositional interval of (0.0⩽ x⩽0.20) and (0.0⩽ x⩽0.25), respectively, with composition dependency of lattice constants following Vegard's law.

  17. BCC and Childhood Low Dose Radiation

    Directory of Open Access Journals (Sweden)

    Arash Beiraghi Toosi

    2014-10-01

    Full Text Available Skin cancer is a late complication of ionizing radiation. Two skin neoplasms prominent Basal Cell Carcinoma (BCC and Squamous Cell Carcinoma (SCC are the most famous complications of radiotherapy. Basal Cell Carcinoma (BCC is the most common human malignant neoplasm. Many genetic and environmental factors are involved in its onset. BCC is observed in sun-exposed areas of skin. Some patients with scalp BCC have had a history of scalp radiation for the treatment of tinea capitis in childhood. Evidence that ionizing radiation is carcinogenic first came from past reports of nonmelanoma skin cancers on the hands of workers using radiation devices. The total dose of radiation and irradiated site exposed to sunlight can lead to a short incubation period. It is not clear whether BCC in these cases has a more aggressive nature and requires a more aggressive resection of the lesion. The aim of this review was to evaluate the differences between BCC specification and treatment results between irradiated and nonirradiated patients.

  18. Specific heats of thoria-urania solid solutions

    Science.gov (United States)

    Banerjee, Joydipta; Parida, S. C.; Kutty, T. R. G.; Kumar, Arun; Banerjee, Srikumar

    2012-08-01

    Thoria-urania solid solutions having compositions ThO2-4%UO2, ThO2-10%UO2, ThO2-20%UO2, ThO2-50%UO2 and ThO2-80%UO2 (all compositions are in wt%) were prepared by coated agglomerate pelletization (CAP) process and powder metallurgy (P/M) routes, characterized by ICP-AES, density, grain size, oxygen to metal (O/M) ratio, X-ray diffraction (XRD), lattice parameter and scanning electron microscope (SEM). Specific heats of pure ThO2, UO2 and these solid solutions were measured by differential scanning calorimeter in the temperature range from 300 to 1650 K. The results obtained in this study were compared with those available in the literature and on this basis it was found out that the molar specific heats of these substances obtained in the present study are within an accuracy limit of ±4%.

  19. Solid state synthesis, crystal growth and optical properties of urea and p-chloronitrobenzene solid solution

    Science.gov (United States)

    Rai, R. N.; Kant, Shiva; Reddi, R. S. B.; Ganesamoorthy, S.; Gupta, P. K.

    2016-01-01

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB and UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal.

  20. Microstructure and luminescence of rare earth doped Li(Nb,Ti)O{sub 3} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Hiroyuki [KRI, Inc. Nano-Device Research Laboratory, Kyoto Research Park, 134, Chudoji Minami-machi, Shimogyou-ku, Kyoto 600-8813 (Japan); Nakano, Hiromi [Toyohashi University of Technology Cooperative Research Facility Centre, Tempaku, Toyohashi, 441-8580 (Japan); Jones, Mark I, E-mail: h-hayasi@kri-inc.jp [Department of Chemical and Materials Engineering, University of Auckland, Auckland, Private Bag 92019, Auckland (New Zealand)

    2011-10-29

    Li{sub 1+x-y}Nb{sub 1-x-3y}Ti{sub x+4y}O{sub 3} (0.11{<=}x{<=}0.33, 0{<=}y{<=}0.09) solid solutions in the Li{sub 2}O-Nb{sub 2}O{sub 5}-TiO{sub 2} ternary system are known as M Phase with superstructure. Eu doped Li{sub 1+x-y}Nb{sub 1-x-3y}Ti{sub x+4y}O{sub 3} (LNT) solid solutions were prepared by firing mixed powders at temperatures of 1120 deg. C for up to 24 hours. The interval of intergrowth layers of Eu doped LNT solid solution was as twice as that of no doped LNT solid solution. Another rare earth (Dy, Sm, Tm, Er) doped LNT solid solutions were also prepared each other. These LNT solid solutions with 20 mol%-TiO{sub 2} did possess a disorder structure, but did not possess a superstructure. PL intensity of Eu doped LNT solid solution was higher than Eu doped LiNbO{sub 3} (LN) solid solution. However, PL intensity of another rare earth doped LNT solid solutions was less than LN solid solutions each other. It was thought that the distribution of Eu and Ti and a relative distance between Eu and Ti were optimized by the formation of the superstructure and PL intensity of Eu doped LNT solid solutions increased.

  1. Solubility and thermodynamic properties of oxygen in solid molybdenum

    Science.gov (United States)

    Srivastava, S. C.; Seigle, L. L.

    1974-01-01

    A formula is obtained for the solubility of oxygen in solid Mo, determined in the range from 1400 to 1900 C by equilibrating rods of zone-refined Mo with mixtures of Mo and MoO2 powders. Using the known value of the free energy of formation of MoO2, a formula is obtained for the chemical potential of oxygen in the dilute solid solution. The heat of solution of oxygen in solid Mo and the excess entropy for the interstitial solid solution are also determined, assuming that the oxygen atoms reside in the octahedral interstices of bcc Mo.

  2. Magneto-volume effects in Fe-Cu solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, P. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain)]. E-mail: pgorria@uniovi.es; Martinez-Blanco, D. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Iglesias, R. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Palacios, S.L. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Perez, M.J. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Fernandez Barquin, L. [Departamento CITIMAC, F. Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Hernando, A. [Instituto de Magnetismo Aplicado, UCM-RENFE, 28230 Las Rozas, Madrid (Spain); Gonzalez, M.A. [Instituto de Ciencia de Materiales de Aragon, CSIC, 50009 Zaragoza (Spain); Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)

    2006-05-15

    The magnetic properties of Fe-Cu metastable solid solutions have been investigated by means of neutron diffraction and magnetisation measurements. These compounds exhibit ferromagnetic order with Curie temperatures above room temperature for concentrations beyond 40 at% in Fe. The magnetic moment at 5 K can reach values over 2 {mu} {sub B}, while the high field susceptibility is similar to that found in FCC-FeNi Invar alloys. These features together with the low values for the linear coefficient for thermal expansion in the ferromagnetic region suggest that magneto-volume anomalies, including Invar behaviour, play a major role in the magnetic properties of this system when the crystal structure is face centred cubic. Such behaviour could be explained using theoretical total-band energy calculations.

  3. Functional Ceramic Ferroelectromagnetic Materials in Single Phase Solid-Solutions

    Science.gov (United States)

    2007-12-05

    PbTiO3)1-x, where x= 0.10, 0.20, 0.30, 0.40, 0.67. ( work is still going on) Introduction: Recently BaTiO3 is doped with Ni and Co to get...xBaxMnO3 was expected to enhance the magnetic properties. LaMnO3 is an antiferromagnetic insulator and have cubic perovskite structure. The doping with...research in solid solutions like x (BiFeO3)-(1-x) (PbTiO3) ( BF-PT), BiFeO3- BaTiO3 , BiFeO3- Pb(FeNb)O3, BiFeO3-ReFeO3- BaTiO3 .Mainly the aim of the

  4. Engineering solutions to the management of solid radioactive waste

    International Nuclear Information System (INIS)

    1991-01-01

    The management of radioactive waste, its safe handling and ultimate disposal, is of vital concern to engineers in the nuclear industry. The international conference 'Engineering Solutions to the Management of Solid Radioactive Waste', organized by the Institution of Mechanical Engineers and held in Manchester in November 1991, provided a forum for the discussion and comparison of the different methods of waste management used in Europe and America. Papers presented and discussed included: the interaction between the design of containers for low level radioactive waste and the design of a deep repository, commercial low level waste disposal sites in the United States, and the development of radioactive waste monitoring systems at the Sellafield reprocessing complex. This volume is a collection of 22 papers presented at the conference. All are indexed separately. (author)

  5. Applicability of Solid Solution Heat Treatments to Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Miguel Rodríguez-Pérez

    2012-12-01

    Full Text Available Present research work evaluates the influence of both density and size on the treatability of Aluminum-based (6000 series foam-parts subjected to a typical solid solution heat treatment (water quenching. The results are compared with those obtained for the bulk alloy, evaluating the fulfilment of cooling requirements. Density of the foams was modeled by tomography analysis and the thermal properties calculated, based on validated density-scaled models. With this basis, cooling velocity maps during water quenching were predicted by finite element modeling (FEM in which boundary conditions were obtained by solving the inverse heat conduction problem. Simulations under such conditions have been validated experimentally. Obtained results address incomplete matrix hardening for foam-parts bigger than 70 mm in diameter with a density below 650 kg/m3. An excellent agreement has been found in between the predicted cooling maps and final measured microhardness profiles.

  6. A solid dielectric gated graphene nanosensor in electrolyte solutions.

    Science.gov (United States)

    Zhu, Yibo; Wang, Cheng; Petrone, Nicholas; Yu, Jaeeun; Nuckolls, Colin; Hone, James; Lin, Qiao

    2015-03-23

    This letter presents a graphene field effect transistor (GFET) nanosensor that, with a solid gate provided by a high- κ dielectric, allows analyte detection in liquid media at low gate voltages. The gate is embedded within the sensor and thus is isolated from a sample solution, offering a high level of integration and miniaturization and eliminating errors caused by the liquid disturbance, desirable for both in vitro and in vivo applications. We demonstrate that the GFET nanosensor can be used to measure pH changes in a range of 5.3-9.3. Based on the experimental observations and quantitative analysis, the charging of an electrical double layer capacitor is found to be the major mechanism of pH sensing.

  7. Microstructure and luminescence of rare earth doped Li(Nb,Ti)O3 solid solutions

    Science.gov (United States)

    Hayashi, Hiroyuki; Nakano, Hiromi; Jones, Mark I.

    2011-10-01

    Li1+x-yNb1-x-3yTix+4yO3 (0.11LNT) solid solutions were prepared by firing mixed powders at temperatures of 1120 °C for up to 24 hours. The interval of intergrowth layers of Eu doped LNT solid solution was as twice as that of no doped LNT solid solution. Another rare earth (Dy, Sm, Tm, Er) doped LNT solid solutions were also prepared each other. These LNT solid solutions with 20 mol%-TiO2 did possess a disorder structure, but did not possess a superstructure. PL intensity of Eu doped LNT solid solution was higher than Eu doped LiNbO3 (LN) solid solution. However, PL intensity of another rare earth doped LNT solid solutions was less than LN solid solutions each other. It was thought that the distribution of Eu and Ti and a relative distance between Eu and Ti were optimized by the formation of the superstructure and PL intensity of Eu doped LNT solid solutions increased.

  8. Solution properties of solid and liquid potassium-indium alloys

    International Nuclear Information System (INIS)

    Takenaka, T.; Saboungi, M.L.

    1987-01-01

    It was recently shown by a combination of electrical resistivity, thermodynamic, and structural measurements that equiatomic alloys formed between K or Na and either Bi, Sb, Te, or Pb show pronounced deviations from ordinary metallic behavior and from ideal solution behavior, e.g., small values for the electrical conductivity and sharp peaks for the Darken excess stability function. Physical explanation of this behavior has been advanced on the basis of the formation of complex structural species similar to those reported for the corresponding solid alloys. The authors have chosen K-In alloys for several reasons. Phase diagram considerations coupled with small electronegativity differences between K and In would lead one to predict small deviations from ideal behavior, thus, this system would be suitable to test for oddities in alloy solution behavior in systems which deviate little from ideal behavior. Others have demonstrated that the position of the peak in the electrical resistivity changed in going from Li to Na and to K in the following sequence X/sub In/ ≅ 0.25, 0.40, and 0.50, respectively. The thermodynamic properties of these alloys would be expected to present similar trends

  9. Structural analysis and magnetic properties of solid solutions of Co–Cr system obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Cantera, J.A. [Área Académica de Ciencias de la Tierra y Materiales, UAEH Carr., Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Sánchez-De Jesús, F., E-mail: fsanchez@uaeh.edu.mx [Área Académica de Ciencias de la Tierra y Materiales, UAEH Carr., Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Bolarín-Miró, A.M. [Área Académica de Ciencias de la Tierra y Materiales, UAEH Carr., Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Betancourt, I.; Torres-Villaseñor, G. [Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-03-15

    In this paper, a systematic study on the structural and magnetic properties of Co{sub 100−x}Cr{sub x} alloys (0solid solutions based on Co-hcp, Co-fcc and Cr-bcc structures were obtained. The saturation polarization indicated a maximum value of 1.17 T (144 Am{sup 2}/kg) for the Co{sub 90}Cr{sub 10}, which decreases with the increasing of the Cr content up to x=80, as a consequence of the dilution effect of the magnetic moment which is caused by the Cr content and by the competition between ferromagnetic and antiferromagnetic exchange interactions. The coercivity increases up to 34 kA/m (435 Oe) for Co{sub 40}Cr{sub 60}. For Cr rich compositions, it is observed an important decrease reaching 21 kA/m (272 Oe) for Co{sub 10}Cr{sub 90,} it is related to the grain size and the structural change. Besides, the magnetic anisotropy constant was determined for each composition. Magnetic thermogravimetric analysis allowed to obtain Curie temperatures corresponding to the formation of hcp-Co(Cr) and fcc-Co(Cr) solid solutions. - Highlights: • Mechanical alloying (MA) induces the formation of solid solutions of Co–Cr system in non-equilibrium. • We report the crystal structure and the magnetic behavior of Co–Cr alloys produced by MA. • MA improves the magnetic properties of Co–Cr system.

  10. Determination of positions and curved transition pathways of screw dislocations in BCC crystals from atomic displacements

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Vítek, V.

    2015-01-01

    Roč. 643, SEP (2015), s. 203-210 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Screw dislocation * BCC metal * Dislocation pathway Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.647, year: 2015

  11. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus

    2014-01-01

    The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell.......6% per charge-discharge cycle is observed. The electrochemical stability of the LiBH4-LiI solid solution was investigated using cyclic voltammetry and is found to be limited to 3 V. The impedance of the battery cells was measured using impedance spectroscopy. A strong correlation is found between...

  12. Two-dimensional fully adaptive solutions of solid--solid alloying reactions

    International Nuclear Information System (INIS)

    Smooke, M.D.; Koszykowski, M.L.

    1986-01-01

    Solid--solid alloying reactions occur in a variety of pyrotechnical applications. They arise when a mixture of powders composed of appropriate oxidizing and reducing agents is heated. The large quantity of heat evolved produces a self-propagating reaction front that is often very narrow with sharp changes in both the temperature and the concentrations of the reacting species. Solution of problems of this type with an equispaced or mildly nonuniform grid can be extremely inefficient. In this paper we develop a two-dimensional fully adaptive method for solving problems of this class. The method adaptively adjusts the number of grid points needed to equidistribute a positive weight function over a given mesh interval in each direction at each time level. We monitor the solution from one time level to another to ensure that the local error per unti step associated with the time differencing method is below some specified tolerance. The method is applied to several examples involving exothermic, diffusion-controlled, self-propagating reactions in packed bed reactors

  13. Studies on mixed metal oxides solid solutions as heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    H. R. Arandiyan

    2009-03-01

    Full Text Available In this work, a series of perovskite-type mixed oxide LaMo xV1-xO3+δ powder catalysts (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, with 0.5 < δ < 1.5, prepared by the sol-gel process and calcined at 750ºC, provide an attractive and effective alternative means of synthesizing materials with better control of morphology. Structures of resins obtained during the gel formation process by FT-IR spectroscopy and XRD analysis showed that all the LaMo xV1-xO3+δ samples are single phase perovskite-type solid solutions. The surface area (BET between 2.5 - 5.0 m²/g (x = 0.1 and 1.0 respectively increases with increasing Mo ratio in the samples. They show high purity, good chemical homogeneity, and lower calcinations temperatures as compared with the solid-state chemistry route. SEM coupled to EDS and thermogravimetric analysis/differential thermal analyses (TGA/DTA have been carried out in order to evaluate the homogeneity of the catalyst. Finally, the experimental studies show that the calcination temperature and Mo content exhibited a significant influence on catalytic activity. Among the LaMo xV1-xO3+δ samples, LaMo0.7V0.3O4.2 showed the best catalytic activity for the topic reaction and the best activity and stability for ethane reforming at 850ºC under 8 bar.

  14. Sustainable solutions for solid waste management in Southeast Asian countries

    International Nuclear Information System (INIS)

    Uyen Nguyen Ngoc; Schnitzer, Hans

    2009-01-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  15. Impact of vacancy-solute clusters on the aging of α-Fe solid solutions

    International Nuclear Information System (INIS)

    Schuler, Thomas

    2015-01-01

    Understanding and monitoring the aging of steels under vacancy supersaturation is a challenge of great practical interest for many industrial groups, and most of all for those related to nuclear energy. These steels always contain interstitial solutes, either as alloying elements or as impurities, and vacancies (V) that are equilibrium structural defects of materials. We have chosen the Fe-V -X system (X = C, N or O) as a model system for ferritic steels. Vacancy-solute clusters are likely to form in such systems because, despite the very low concentrations of their components, these cluster show very high attractive bonding. First of all, we have been working on the computation of intrinsic equilibrium properties of individual clusters, both thermodynamic (free binding energies) and kinetic (mobilities, dissociation coefficients, and their relationship with continuum diffusion) properties. Thanks to this atomic-scale characterization procedure, we have been able to highlight various effects of these clusters on a macroscopic system containing different cluster types: increase of solute solubility limits and total vacancy concentrations, flux couplings between interstitial solutes and vacancies, acceleration of solute precipitation kinetics and precipitate dissolution by solid solution stabilization due to vacancies. These results would not have been obtained without the development and/or extension of analytical methods in statistical physics which are able to describe cluster's components and their interactions at the atomic scale. Finally, we have also been working on cavities in α-iron, the study of which requires a different approach. Our study highlights the impact of the atomic discrete lattice on the equilibrium shape of cavities, and describes various kinetic mechanisms of these objects at the atomic scale. (author) [fr

  16. Crystal-Structure Contribution to the Solid Solubility in Transition Metal Alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1998-01-01

    The solution energies of 4d metals in other 4d metals as well as the bcc-hcp structural energy differences in random 4d alloys are calculated by density functional theory. It is shown that the crystal structure of the host plays a crucial role in the solid solubility. A local virtual bond...

  17. Raman spectroscopic study of solid solution spinel oxides

    Science.gov (United States)

    Hosterman, Brian D.

    Solid solution spinel oxides of composition MgxNi1-x Cr2O4, NiFexCr2-xO 4, and FexCr3-xO4 were synthesized and characterized using x-ray diffraction and Raman spectroscopy. Frequencies of the Raman-active modes are tracked as the metal cations within the spinel lattice are exchanged. This gives information about the dependence of the lattice vibrations on the tetrahedral and octahedral cations. The highest frequency Raman-active mode, A1g, is unaffected by substitution of the divalent tetrahedral cation, whereas the lower frequency vibrations are more strongly affected by substitution of the tetrahedral cation. The change in frequency of many phonons is nonlinear upon cation exchange. All detected modes of MgxNi1-xCr2O4 and FexCr3-xO4 exhibit one-mode behavior. Additional modes are detected in NiFexCr2-xO4 due to cation inversion of the spinel lattice. Results from the FexCr3-xO4 spinels are applied to identifying the corrosion layers of several stainless steel samples exposed to lead-bismuth eutectic in a high-temperature, oxygen controlled environment. The Raman spectrum of the outer corrosion layer in all steels is identified as Fe3O4. The position of the A 1g mode for the inner corrosion layer indicates an iron chromium spinel oxide. Micro-Raman spectroscopy proves capable of determining structural and compositional differences between complex corrosion layers of stainless steels.

  18. Influence of Ce 0.68 Zr 0.32 O 2 solid solution on depositing ...

    Indian Academy of Sciences (India)

    The results show that the addition of Ce0.68Zr0.32O2 solid solution into slurries can improve -Al2O3-based washcoat adhesion on FeCrAl foils. The more the Ce0.68Zr0.32O2 solid solution added into slurries, the higher was the specific surface area of aged samples. XRD characterization proved that ceria–zirconia solid ...

  19. Solid-solution aqueous-solution equilibria: thermodynamic theory and representation

    Science.gov (United States)

    Glynn, P.D.; Reardon, E.J.

    1990-01-01

    Thorstenson and Plummer's (1977) "stoichiometric saturation' model is reviewed, and a general relation between stoichiometric saturation Kss constants and excess free energies of mixing is derived for a binary solid-solution B1-xCxA: GE = RT[ln Kss - xln(xKCA) - (l-x)ln((l-x)KBA)]. This equation allows a suitable excess free energy function, such as Guggenheim's (1937) sub-regular function, to be fitted from experimentally determined Kss constants. Solid-phase free energies and component activity-coefficients can then be determined from one or two fitted parameters and from the endmember solubility products KBA and KCA. A general form of Lippmann's (1977,1980) "solutus equation is derived from an examination of Lippmann's (1977,1980) "total solubility product' model. Lippmann's ??II or "total solubility product' variable is used to represent graphically not only thermodynamic equilibrium states and primary saturation states but also stoichiometric saturation and pure phase saturation states. -from Authors

  20. Design of non-molecular coordination solids from aqueous solution ...

    Indian Academy of Sciences (India)

    provides chemical insights to the supramolecular aggregation of a crystal driven by the various competing intermolecular forces. Keywords. Non-molecular coordination solids; supramolecular aggregation; coordination polymers. 1. Introduction. Non-molecular solids such as coordination polymers. (CPs) and metal organic ...

  1. Thermodynamic Relationship between Enthalpy of Mixing and Excess Entropy in Solid Solutions of Binary Alloys

    OpenAIRE

    Hara, Shigeta; Gokcen, Nev A.; Kumar C. Kumar; Morita, Zen-ichiro; Tanaka, Toshihiro

    1996-01-01

    Thermodynamic relationships between enthalpy of mixing and excess entropy, and partial enthalpy of solution and partial excess entropy in solid solutions of binary alloys have been derived based on the free volume theory. Using the above relations, excess entropy and excess Gibbs energy of solid solutions in Ag-Au, Ag-Pd and Au-Pd binary alloys have been calculated from enthalpy of mixing, and compared with the literature values.

  2. A Local Composition Model for Paraffinic Solid Solutions

    DEFF Research Database (Denmark)

    Coutinho, A.P. João; Knudsen, Kim; Andersen, Simon Ivar

    1996-01-01

    The description of the solid-phase non-ideality remains the main obstacle in modelling the solid-liquid equilibrium of hydrocarbons. A theoretical model, based on the local composition concept, is developed for the orthorhombic phase of n-alkanes and tested against experimental data for binary sy...... systems. It is shown that it can adequately predict the experimental phase behaviour of paraffinic mixtures. This work extends the applicability of local composition models to the solid phase. Copyright (C) 1996 Elsevier Science Ltd....

  3. Evolution of mixed surfactant aggregates in solutions and at solid/solution interfaces

    Science.gov (United States)

    Zhang, Rui

    Surfactant systems have been widely used in such as enhanced oil recovery, waste treatment and metallurgy, etc., in order to solve the problem of global energy crisis, to remove the pollutants and to generate novel energy resources. Almost all surfactant systems are invariably mixtures due to beneficial and economic considerations. The sizes and shapes of aggregates in solutions and at solid/solution interfaces become important, since the nanostructures of mixed aggregates determine solution and adsorption properties. A major hurdle in science is the lack of information on the type of complexes and aggregates formed by mixtures and the lack of techniques for deriving such information. Using techniques such as analytical ultracentrifuge, small angle neutron scattering, surface tension, fluorescence, cryo-TEM, light scattering and ultrafiltration, the nanostructures of aggregates of sugar based n-dodecyl-beta-D-maltoside (DM) and nonionic pentaethyleneglycol monododecyl ether or nonyl phenol ethoxylated decyl ether (NP-10) and their mixtures have been investigated to prove the hypothesis that the aggregation behavior is linked to packing of the surfactant governed by the molecular interactions as well as the molecular structures. The results from both sedimentation velocity and sedimentation equilibrium experiments suggest coexistence of two types of micelles in nonyl phenol ethoxylated decyl ether solutions and its mixtures with n-dodecyl-beta-D-maltoside while only one micellar species is present in n-dodecyl-beta-D-maltoside solutions, in good agreement with those from small angle neutron scattering, cryo-TEM, light scattering and ultrafiltration. Type I micelles were primary micelles at cmc while type II micelles were elongated micelles. On the other hand, the nanostructures of mixed surface aggregates have been quantitatively predicted for the first time using a modified packing index. As a continuation of the Somasundaran-Fuersteneau adsorption model, a

  4. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.

    Science.gov (United States)

    Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise

    2011-09-15

    Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Precipitation in Al–Mg solid solution prepared by solidification under high pressure

    International Nuclear Information System (INIS)

    Jie, J.C.; Wang, H.W.; Zou, C.M.; Wei, Z.J.; Li, T.J.

    2014-01-01

    The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al 12 Mg 17 phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solution appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β

  6. Nanometric solid solutions of the fluorite and perovskite type crystal structures: Synthesis and properties

    Directory of Open Access Journals (Sweden)

    Snežana Bošković

    2012-09-01

    Full Text Available In this paper a short review of our results on the synthesis of nanosized CeO2, CaMnO3 and BaCeO3 solid solutions are presented. The nanopowders were prepared by two innovative methods: self propagating room temperature synthesis (SPRT and modified glycine/nitrate procedure (MGNP. Different types of solid solutions with rare earth dopants in concentrations ranging from 0–0.25 mol% were synthesized. The reactions forming solid solutions were studied. In addition, the characteristics of prepared nanopowders, phenomena during sintering and the properties of sintered samples are discussed.

  7. Low temperature preparation of nanocrystalline solid solution of ...

    Indian Academy of Sciences (India)

    Unknown

    ration process is discussed elsewhere (Das and Pramanik. 2000; Panda et al 2002). Stoichiometric amounts of aqueous solutions of Sr(NO3)2, Ba(NO3)2, and ammo- nium EDTA were taken and mixed together to obtain a clear solution of the barium- and strontium-EDTA com- plexes, where the overall EDTA to metal ion ...

  8. Ab initio calculations of mechanical properties of bcc W-Re-Os random alloys: effects of transmutation of W.

    Science.gov (United States)

    Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2016-06-03

    To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W 1-x-y  Re x  Os y (0  ⩽  x, y  ⩽  6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young's modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11 , the other elastic parameters including C 12 , C 44 , Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W-Re-Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch-Nabarro model for solid-solution hardening predicts larger strengthening effects in W 1-y  Os y than in W 1-x  Re x . A strong correlation between C' and the fcc-bcc structural energy difference for W 1-x-y  Re x  Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C'. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.

  9. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    National Research Council Canada - National Science Library

    Chen, Kuiying; Cheng, Leon M

    2006-01-01

    ... and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the atomic bond strengths in the alloys, and were then used to assess the alloying strengthening characteristics...

  10. Synthesis of (U,Zr)C solid solutions under exothermic conditions

    International Nuclear Information System (INIS)

    Wang, L.L.; Moore, H.G.; Gladson, J.W.

    1993-01-01

    The reactions of forming (U,Zr)C solid solutions from their elemental components or similarly less stable reactants such as UC 2 are strongly exothermic due to the high stability of these solid solutions. A simple approach of utilizing this heat of formation energy to assist the solid solution reaction process is to intimately mix the less stable reactant powders and then pressed them into a compact. The compact is then heated to the ignition temperature of the reaction. The feasibility of this reaction method to synthesize (U,Zr)C solid solutions has been demonstrated in this study. The preliminary results also show that both the initial composition and the heating rate have a significant effect on the nature of the reaction process. As expected the degree of powder mixing was also found to affect the completeness of the reaction

  11. Stress dependence of the Peierls barrier of 1/2111 screw dislocations in BCC metals

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Vitek, V.

    2013-01-01

    Roč. 61, č. 17 (2013), s. 6362-6371 ISSN 1359-6454 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GAP204/10/0255 Institutional support: RVO:68081723 Keywords : Screw dislocation * Peierls barrier * Nudged elastic band * BCC metals * Peierls stress Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.940, year: 2013

  12. Which stresses affect the glide of screw dislocations in bcc metals?

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman

    2014-01-01

    Roč. 94, č. 18 (2014), s. 2021-2030 ISSN 1478-6435 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Grant - others:Marie Curie Actions(CZ) 247705 MesoPhysDel Institutional support: RVO:68081723 Keywords : Peierls stress * screw dislocation * bcc metal * non-glide stress * yield criterion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.825, year: 2014

  13. Planet Patrol. An Educational Unit on Solid Waste Solutions for Grades 4-6.

    Science.gov (United States)

    Shively, Patti J.; And Others

    This educational unit on solid waste solutions is intended to convey to students an understanding of the four methods of solid waste handling, in priority order, as recommended by the Environmental Protection Agency: (1) reduction in the volume of waste produced; (2) recycling and composting; (3) waste combustion, i.e., incineration of waste; and…

  14. Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation

    Czech Academy of Sciences Publication Activity Database

    Ma, D.; Friák, Martin; von Pezold, J.; Raabe, D.; Neugebauer, J.

    2015-01-01

    Roč. 85, FEB (2015), s. 53-66 ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Solid-solution strengthening * DFT * Peierls–Nabarro model * Ab initio * Al alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.058, year: 2015

  15. Study of reaction sequences for formation of solid solution: 0,48 ...

    African Journals Online (AJOL)

    To study the reaction sequences of formation of solid solution zirconate-lead titanate (PZT) in this work, we took into account the effect of adding oxide dopants on the progress of the reaction, so we added oxides ZnO, Cr2O3, Sb2O3 to our material composition in small quantities so that the solid solution must verify the ...

  16. Formation of solid solution during mutual diffusion of tungsten and molybdenum in the process of sintering

    International Nuclear Information System (INIS)

    Timofeeva, A.A.; Bulat, I.B.; Voronin, Yu.V.; Fedoseev, G.K.; Karasev, V.M.

    1984-01-01

    A process of a solid solution homogenization during sintering of W-15Mo and W-5Mo alloys is studied by the methods of density measurements, analysis of the X-ray lines physical broadening and determination of crystalline lattice constant. Study of the process of solid solution formation under conditions of powder composite sintering is shown to be conducted with account of peculiarities of tungsten and molybdenum mutual diffusion in the investigated temperature range of concentrations

  17. Experimental investigation of Cs 137 distribution in a system of aquatic solution - solid phase - plant

    International Nuclear Information System (INIS)

    Marchiulioniene, D.; Kiponas, D.; Lukshiene, B.

    2005-01-01

    Investigation of Cs 137 accumulation in the plant Lepidium sativum L. (seeds, roots, aboveground part) and in the solid phase from the aquatic solution under laboratory conditions was performed. According to the obtained results, evaluation of Cs 137 distribution in the system aquatic solution - solid phase - plant and transfer of this radionuclide from the root system to the plant aboveground part during the plant growth process was done. (authors)

  18. Low temperature preparation of nanocrystalline solid solution of ...

    Indian Academy of Sciences (India)

    SrBa1–Nb2O6 (with = 0.4, 0.5 and 0.6) powders have been prepared by thermolysis of aqueous precursor solutions consisting of triethanolamine (TEA), niobium tartarate and, EDTA complexes of strontium and barium ions. Complete evaporation of the precursor solution by heating at ∼ 200°C, yields in a fluffy, ...

  19. Modelling solid solutions with cluster expansion, special quasirandom structures, and thermodynamic approaches

    Science.gov (United States)

    Saltas, V.; Horlait, D.; Sgourou, E. N.; Vallianatos, F.; Chroneos, A.

    2017-12-01

    Modelling solid solutions is fundamental in understanding the properties of numerous materials which are important for a range of applications in various fields including nanoelectronics and energy materials such as fuel cells, nuclear materials, and batteries, as the systematic understanding throughout the composition range of solid solutions for a range of conditions can be challenging from an experimental viewpoint. The main motivation of this review is to contribute to the discussion in the community of the applicability of methods that constitute the investigation of solid solutions computationally tractable. This is important as computational modelling is required to calculate numerous defect properties and to act synergistically with experiment to understand these materials. This review will examine in detail two examples: silicon germanium alloys and MAX phase solid solutions. Silicon germanium alloys are technologically important in nanoelectronic devices and are also relevant considering the recent advances in ternary and quaternary groups IV and III-V semiconductor alloys. MAX phase solid solutions display a palette of ceramic and metallic properties and it is anticipated that via their tuning they can have applications ranging from nuclear to aerospace industries as well as being precursors for particular MXenes. In the final part, a brief summary assesses the limitations and possibilities of the methodologies discussed, whereas there is discussion on the future directions and examples of solid solution systems that should prove fruitful to consider.

  20. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids.

    Science.gov (United States)

    Jun, Seoung Wook; Kim, Min-Soo; Jo, Guk Hyun; Lee, Sibeum; Woo, Jong Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-12-01

    Cefuroxime axetil (CA) solid dispersions with HPMC 2910/PVP K-30 were prepared using solution enhanced dispersion by supercritical fluids (SEDS) in an effort to increase the dissolution rate of poorly water-soluble drugs. Their physicochemical properties in solid state were characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy. No endothermic and characteristic diffraction peaks corresponding to CA were observed for the solid dispersions in DSC and PXRD. FTIR analysis demonstrated the presence of intermolecular hydrogen bonds between CA and HPMC 2910/PVP K-30 in solid dispersions, resulting in the formation of amorphous or non-crystalline CA. Dissolution studies indicated that the dissolution rates were remarkably increased in solid dispersions compared with those in the physical mixture and drug alone. In conclusion, an amorphous or non-crystalline CA solid dispersion prepared using SEDS could be very useful for the formulation of solid dosage forms.

  1. Superficial composition in binary solid solutions A(B): Drastic effect of pure element surface tensions

    Science.gov (United States)

    Rolland, A.; Aufray, B.

    1985-10-01

    This paper deals with a comparative study of surface segragation of Pb and Ni respectively from Ag(Pb)(111) and Ag(Ni)(111) solid solutions. A high level of segregation of the solute is observed for both systems characterized by very low solute solubility. However, the superficial composition strongly depends on the relative surface tensions of the pure elements: the solute atoms are strictly on superficial sites when γ solute is smaller than γ solvent; in contrast uppermost layer consists purely of solvent when γ solute is greater than γ solvent. Two schematic distributions in close proximity to the surface are proposed in the last case.

  2. Precipitation of Nd-Ca carbonate solid solution at 25 degrees C

    International Nuclear Information System (INIS)

    Carroll, S.A.

    1993-01-01

    The formation of a Nd-Ca carbonate solid solution was studied by monitoring the reactions of calcite with aqueous Nd, orthorhombic NdOHCO 3 (s) with aqueous Ca, and calcite with hexagonal Nd-carbonate solid phase as a function of time at 25 degrees C and controlled pCO 2 (g). All experiments reached steady state after 200 h of reaction. The dominant mechanism controlling the formation of the solid solution was precipitation of a Nd-Ca carbonate phase from the bulk solution as individual crystals or at the orthorhombic NdOHCO 3 (s)-solution interface. The lack of Nd adsorption or solid solution at the calcite-solution interface suggests that the solid solution was orthorhombic and may be modeled as a mixture of orthorhombic NdOHCO 3 (s) and aragonite. Orthorhombic NdOHCO 3 (s) was determined to be the stable Nd-carbonate phase in the Nd-CO 2 -H 2 O system at pCO 2 (g) 0.1 atmospheres at 25 degrees C. The equilibrium constant corrected to zero ionic strength for orthorhombic NdOHCO 3 (s) solubility is 10 10.41(±0.29) for the following: NdOHCO 3 (s) + 3H + = Nd 3+ + CO 2 (g) + H 2 O. Results are discussed in relation to radioactive waste disposal by burial, and specifically in relation to americium chemistry

  3. Peptide synthesis: ball-milling, in solution, or on solid support, what is the best strategy?

    Directory of Open Access Journals (Sweden)

    Ophélie Maurin

    2017-10-01

    Full Text Available While presenting particularly interesting advantages, peptide synthesis by ball-milling was never compared to the two traditional strategies, namely peptide syntheses in solution and on solid support (solid-phase peptide synthesis, SPPS. In this study, the challenging VVIA tetrapeptide was synthesized by ball-milling, in solution, and on solid support. The three strategies were then compared in terms of yield, purity, reaction time and environmental impact. The results obtained enabled to draw some strengths and weaknesses of each strategy, and to foresee what will have to be implemented to build more efficient and sustainable peptide syntheses in the near future.

  4. Synthesis, characterization and thermal expansion studies on thorium-praseodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Full text: Thorium-praseodymium mixed oxide solid solutions containing 15, 25, 40 and 55 mole percent of praseodymia were synthesized by mixing the solutions of thorium nitrate in water and praseodymium oxide (Pr 6 O 11 ) in conc. HNO 3 . Subsequently, their hydroxides were co-precipitated by the addition of aqueous ammonia. Further the precipitate was dried at 50 deg C, calcined at 600 deg C for 4 hours and sintered at 1200 deg C for 6 h in air. X-ray diffraction measurements were performed for phase identification and lattice parameter derivation. Single-phase fluorite structure was observed for all the compositions. Bulk and theoretical densities of solid solutions were also determined by immersion and X-ray techniques. Thermal expansion coefficients and percentage linear thermal expansion of the solid solutions were determined using high temperature X-ray diffraction technique in the temperature range 300 to 1700 K for the first time. The room temperature lattice constants estimated for above compositions are 0.5578, 0.5565, 0.5545 and 0.5526 nm, respectively. The mean linear thermal expansion coefficients for the solid solutions are 15.48 x 10 -6 K -1 , 18.35 x 10 -6 K -1 , 22.65 x 10 -6 K -1 and 26.95 x 10 -6 K -1 , respectively. The percentage linear thermal expansions in this temperature range are 1.68, 1.89, 2.21 and 2.51 respectively. It is seen that the solid solutions are stable up to 1700 K. It is also seen that the effect and nature of the dopant are the important parameters influencing the thermal expansion of the ThO 2 . The lattice parameter of the solid solutions exhibited a decreasing trend with respect to praseodymia addition. The percentage linear thermal expansion of the solid solutions increases steadily with increasing temperature

  5. Low temperature preparation of nanocrystalline solid solution of ...

    Indian Academy of Sciences (India)

    Unknown

    ASIT B PANDA, AMITA PATHAK and PANCHANAN PRAMANIK*. Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India. Abstract. SrxBa1–xNb2O6 (with x = 0⋅4, 0⋅5 and 0⋅6) powders have been prepared by thermolysis of aqueous precursor solutions consisting of triethanolamine (TEA), ...

  6. Subdiffusion kinetics of nanoprecipitate growth and destruction in solid solutions

    Science.gov (United States)

    Sibatov, R. T.; Svetukhin, V. V.

    2015-06-01

    Based on fractional differential generalizations of the Ham and Aaron-Kotler precipitation models, we study the kinetics of subdiffusion-limited growth and dissolution of new-phase precipitates. We obtain the time dependence of the number of impurities and dimensions of new-phase precipitates. The solutions agree with the Monte Carlo simulation results.

  7. Theoretical and Experimental Study of LiBH4-LiCl Solid Solution

    Directory of Open Access Journals (Sweden)

    Torben R. Jensen

    2012-03-01

    Full Text Available Anion substitution is at present one of the pathways to destabilize metal borohydrides for solid state hydrogen storage. In this work, a solid solution of LiBH4 and LiCl is studied by density functional theory (DFT calculations, thermodynamic modeling, X-ray diffraction, and infrared spectroscopy. It is shown that Cl substitution has minor effects on thermodynamic stability of either the orthorhombic or the hexagonal phase of LiBH4. The transformation into the orthorhombic phase in LiBH4 shortly after annealing with LiCl is for the first time followed by infrared measurements. Our findings are in a good agreement with an experimental study of the LiBH4-LiCl solid solution structure and dynamics. This demonstrates the validity of the adopted combined theoretical (DFT calculations and experimental (vibrational spectroscopy approach, to investigate the solid solution formation of complex hydrides.

  8. Lattice dynamical calculations for bcc caesium chloride | Taura ...

    African Journals Online (AJOL)

    We present a lattice dynamical calculation of Caesium Chloride (CsCl) whose atoms form a bcc lattice having one type of atom at the cube centre and the other type on the corners of the cube. Dispersion curves, density of state, and lattice specific heat of bcc Caesium Chloride were computed. The code used in the ...

  9. Lattice dynamical calculations for bcc caesium chloride | Taura ...

    African Journals Online (AJOL)

    In general, the obtained results agree reasonably well with the experimental data of the bcc Caesium Chloride. Keywords: Bcc caesium chloride; Lattice dynamics; Phonon dispersion; Density of state; Specific heat. Journal of the Nigerian Association of Mathematical Physics, Volume 20 (March, 2012), pp 261 – 266 ...

  10. Hydrogen solid solutions in niobium - molybdenum single crystal alloys

    International Nuclear Information System (INIS)

    Silva, J.R.G. da; Ishikawa, T.T.

    1981-01-01

    The temperature variation of the hydrogen solubility in a series of single crystal Nb-Mo alloys ('binary solvents') in equilibrium with the gaseous phase at atmospheric pressure is presented. The partial thermodynamic properties of the intersticially dissolved hydrogen atoms were calculated from of solubility versus temperature curves. The hydrogen solution obeys the quasi-regular model at all the compositions of the investigated alloys. The variation of the partial entalphy Hu sup(-) with the solvent alloys composition (Mo/Nb + Mo ratio) is compared with the variation of the electronic structure of the solvent. The non-random solute distribution in the binary solvent lattice is shown, with the H atoms prefering interstitial sites next to Nb atoms. (Author) [pt

  11. Colloidal quantum dot solids for solution-processed solar cells

    KAUST Repository

    Yuan, Mingjian

    2016-02-29

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally tuneable infrared bandgap, which enables use in multi-junction cells, as well as the benefit of generating and harvesting multiple charge carrier pairs per absorbed photon. Here we review recent progress in colloidal quantum dot photovoltaics, focusing on three fronts. First, we examine strategies to manage the abundant surfaces of quantum dots, strategies that have led to progress in the removal of electronic trap states. Second, we consider new device architectures that have improved device performance to certified efficiencies of 10.6%. Third, we focus on progress in solution-phase chemical processing, such as spray-coating and centrifugal casting, which has led to the demonstration of manufacturing-ready process technologies.

  12. Solution and solid trinitrotoluene (TNT) photochemistry: persistence of TNT-like ultraviolet (UV) resonance Raman bands.

    Science.gov (United States)

    Gares, Katie L; Bykov, Sergei V; Godugu, Bhaskar; Asher, Sanford A

    2014-01-01

    We examined the 229 nm deep-ultraviolet resonance Raman (DUVRR) spectra of solution and solid-state trinitrotoluene (TNT) and its solution and solid-state photochemistry. Although TNT photodegrades with a solution quantum yield of ϕ ∼ 0.015, the initial photoproducts show DUVRR spectra extraordinarily similar to pure TNT, due to the similar photoproduct enhancement of the -NO2 stretching vibrations. This results in TNT-like DUVRR spectra even after complete TNT photolysis. These ultraviolet resonance Raman spectral bands enable DUVRR of trace as well as DUVRR standoff TNT detection. We determined the structure of various initial TNT photoproducts by using liquid chromatography-mass spectrometry and tandem mass spectrometry. Similar TNT DUVRR spectra and photoproducts are observed in the solution and solid states.

  13. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    International Nuclear Information System (INIS)

    Le, T.T. Yen; Hendriks, A. Jan

    2014-01-01

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  14. The elastic solid solution model for minerals at high pressures and temperatures

    Science.gov (United States)

    Myhill, R.

    2018-02-01

    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  15. Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution

    KAUST Repository

    Xia, Chuan

    2017-01-06

    An effective multifaceted strategy is demonstrated to increase active edge site concentration in NiCoSe solid solutions prepared by in situ selenization process of nickel cobalt precursor. The simultaneous control of surface, phase, and morphology result in as-prepared ternary solid solution with extremely high electrochemically active surface area (C = 197 mF cm), suggesting significant exposure of active sites in this ternary compound. Coupled with metallic-like electrical conductivity and lower free energy for atomic hydrogen adsorption in NiCoSe, identified by temperature-dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt. Specifically, the NiCoSe solid solutions show a low overpotential of 65 mV at -10 mV cm, with onset potential of mere 18 mV, an impressive small Tafel slope of 35 mV dec, and a large exchange current density of 184 μA cm in acidic electrolyte. Further, it is shown that the as-prepared NiCoSe solid solution not only works very well in acidic electrolyte but also delivers exceptional hydrogen evolution reaction (HER) performance in alkaline media. The outstanding HER performance makes this solid solution a promising candidate for mass hydrogen production.

  16. Zirconium-cerin solid solutions: thermodynamic model and thermal stability at high temperature; Solutions solides de zirconium dans la cerine: modele thermodynamique et stabilite thermique a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Janvier, C.

    1998-04-02

    The oxides-gaseous dioxygen equilibria and the textural thermal stability of six zirconium-cerin solutions Ce{sub 1-x}Zr{sub x}O{sub 2} (0solid solutions and the gaseous oxygen by thermal gravimetric analysis at 600 degrees Celsius has shown that these solutions have not a ideal behaviour. A thermodynamic model where the point defects of solutions are included describe them the best. It becomes then possible to know the variations of the concentrations of the point defects in terms of temperature, oxygen pressure and zirconium concentration. A kinetic study (by calcination at 950 degrees Celsius of the solid solutions) of the specific surface area decrease has revealed a minima (0

  17. Cutting solid figures by plane - analytical solution and spreadsheet implementation

    Science.gov (United States)

    Benacka, Jan

    2012-07-01

    In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and cosine rules. The basic problem is to find the section of the figure by a plane that is defined by three points related to the figure. In this article, a formula is derived that gives the positions of the intersection points of such a plane and the figure edges, that is, the vertices of the section polygon. Spreadsheet implementations of the formula for cuboid and right rectangular pyramids are presented. The user can check his/her graphical solution, or proceed if he/she is not able to complete the section.

  18. Diffusion behavior of Cr diluted in bcc and fcc Fe: Classical and quantum simulation methods

    Energy Technology Data Exchange (ETDEWEB)

    Ramunni, Viviana P., E-mail: vpram@cnea.gov.ar [CONICET, Avda. Rivadavia 1917, Cdad. de Buenos Aires C.P. 1033 (Argentina); Comisión Nacional de Energía Atómica, Gerencia Materiales, Av. Del Libertador 8250, C1429BNP Ciudad de Buenos Aires (Argentina); Rivas, Alejandro M.F. [CONICET, Avda. Rivadavia 1917, Cdad. de Buenos Aires C.P. 1033 (Argentina); Comisión Nacional de Energía Atómica, Departamento de Física Teórica, Tandar, Av. Del Libertador 8250, C1429BNP Ciudad de Buenos Aires (Argentina)

    2015-07-15

    We characterize the atomic mobility behavior driven by vacancies, in bcc and fcc Fe−Cr diluted alloys, using a multi-frequency model. We calculate the full set of the Onsager coefficients and the tracer self and solute diffusion coefficients in terms of the mean jump frequencies. The involved jump frequencies are calculated using a classical molecular static (CMS) technique. For the bcc case, we also perform quantum calculations based on the density functional theory (DFT). There, we show that, in accordance with Bohr's correspondence principle, as the size of the atomic cell (total number of atoms) is increased, quantum results with DFT recover the classical ones obtained with CMS calculations. This last ones, are in perfect agreement with available experimental data for both, solute and solvent diffusion coefficients. For high temperatures, in the fcc phase where no experimental data are yet available, our CMS calculations predict the expected solute and solvent diffusion coefficients. - Graphical abstract: Display Omitted - Highlights: • Comparison of diffusion coefficients obtained from classical and quantum methods. • We perform our calculations in diluted bcc/fcc Fe–Cr alloy. • Magnetic and phonon effects must be taken into account. • Classical calculations are in perfect agreement with experimental data.

  19. Magnetic Phase Transition In CocMg1-CO Solid Solutions

    International Nuclear Information System (INIS)

    Mironova-Ulmane, N.; Ulmanis, U.; Kuzmin, A.; Sildos, I.; Pars, M.

    2007-01-01

    Full text: Co c Mg 1-C O system is a nice example of diluted antiferromagnet. It forms a continuous series of solid solutions, whose magnetic properties vary with the composition from antiferromagnetic-like behaviour with the Neel temperature T N =300 K for pure CoO to diamagnetic-like behaviour for pure MgO. For intermediate compositions with c>0.5, the paramagnetic-to-antiferromagnetic phase transition occurs upon cooling. In order to examine the influence of the dilution by diamagnetic ions on the magnetic ordering of single-crystal Co c Mg 1-c O solid solutions, we have performed Raman spectroscopy and domain structure studies. The temperature dependence of the intensity of Raman scattering from Co c Mg 1-c O solid solutions has been measured in a wide range of compositions (0.5< c<1) and temperatures (6 K< T<200 K). The obtained results will be discussed. (Authors)

  20. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  1. A thermodynamic model for solid solutions and its application to the C-Fe-Co, C-Fe-Ni and Mn-Cr-Pt solid dilutions

    International Nuclear Information System (INIS)

    Tao, D.P.

    2004-01-01

    Based on the free volume theory and the lattice model, the partition functions of pure solids and their mixtures were expressed. This resulted in the establishment of a thermodynamic model for solid solutions. The model naturally combines the excess entropy and excess enthalpy of a solution by means of new expressions of the configurational partition functions of solids and their mixtures derived from statistical thermodynamics, which is approximate to real solid solutions, that is S E ≠0 (V E ≠0) and H E ≠0. It can describe the thermodynamic properties of partially miscible systems and predict the thermodynamic properties in a multicomponent solid solution system using only the related binary infinite dilute activity coefficients. The predicted activity coefficients from the model are in good agreement with the experimental data of the ternary solid dilutions. This shows that the prediction effect of the proposed model is of better stability and reliability because it has a good physical basis

  2. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  3. Formation of boron solid solution in Fe-Ni invar upon severe plastic deformation

    Science.gov (United States)

    Shabashov, V. A.; Litvinov, A. V.; Kataeva, N. V.; Lyashkov, K. A.; Novikov, S. I.; Titova, S. G.

    2011-09-01

    Mössbauer spectroscopy, X-ray diffraction, electron microscopy, and magnetic susceptibility measurements have been used to study the process of mechanical synthesis of the solid solution of boron in the matrix of an Fe-Ni alloy. The internal effective field, the Curie temperature, and the lattice parameter of the Fe-Ni austenite were found to increase after severe plastic deformation in Bridgman anvils, which is related to the incorporation of boron into the matrix and the formation of a crystalline supersaturated solid solution coexisting with metastable borides.

  4. Characterization of solid-solution interface by potentiometric titration and electrophoretic mobility

    International Nuclear Information System (INIS)

    Lindecker, C.; Drot, R.; Fourest, B.; Simoni, E.

    1999-01-01

    The study of nuclear waste storage in deep geological sites involves the understanding of processes which could produce a possible dispersion or retention of radioelements. The dispersion of solid particles in aqueous solution is consequently important to be characterized. In this bi-phased system it is necessary to determine the characteristics of the solid-solution interface. The method used of this study is the techniques of potentiometric titration applied to heterogeneous systems. The material studied were phosphate matrices which were synthesized in the laboratory. The dependence of their surface change upon the nature of the electrolytes was investigated

  5. Direct measurements of the enthalpy of solution of solid solute in supercritical fluids: study on the CO2-naphthalene system.

    Science.gov (United States)

    Zhang, X; Han, B; Zhang, J; Li, H; He, J; Yan, H

    2001-10-01

    A setup for a calorimeter for simultaneously measuring the solubility and the solution enthalpy of solid solutes in supercritical fluids (SCFs) has been established. The enthalpy of solution of naphthalene in supercritical CO2 was measured at 308.15 K in the pressure range from 8.0-11.0 MPa. It was found that the enthalpy of solution (deltaH) was negative in the pressure range from 8.0 to 9.5 MPa, and the absolute value decreased with increasing pressure. In this pressure range, the dissolution of the solute was enthalpy driven. However, the deltaH became positive at pressures higher than 9.5 MPa, and the dissolution was entropy driven. Monte Carlo simulation was performed to analyze the local structural environment of the solvated naphthalene molecules in supercritical CO2 under the experimental conditions for the calorimetric measurements. By combining the enthalpy data and the simulation results, it can be deduced that the energy level of CO2 in the high compressible region is higher than that at higher pressures, which results in the large negative enthalpy of solution and the larger degree of solvent-solute clustering in the high compressible region.

  6. Cementation of the solid radioactive waste with polymer-cement solutions using the method of impregnation

    International Nuclear Information System (INIS)

    Gorbunova, O.

    2015-01-01

    Cementation of solid radioactive waste (SRW), i.e. inclusion of solid radioactive waste into cement matrix without cavities - is one of the main technological processes used for conditioning low and intermediate level radioactive waste. At FSUE 'Radon' the industrialized method of impregnation has been developed and since 2003 has been using for cementation of solid radioactive waste. The technology is that the polymer-cement solution, having high penetrating properties, is supplied under pressure through a tube to the bottom of the container in which solid radioactive waste has preliminarily been placed. The polymer-cement solution is evenly moving upwards through the channels between the particles of solid radioactive waste, fills the voids in the bulk volume of the waste and hardens, forming a cement compound, the amount of which is equal to the original volume. The aim of the investigation was a selection of a cement solution suitable for SRW impregnation (including fine particles) without solution depletion and bottom layers stuffing. It has been chosen a polymer: PHMG (polyhexamethylene-guanidine), which is a stabilizing and water-retaining component of the cement solution. The experiments confirm that the polymer increases the permeability of the cement solution by a 2-2.5 factor, the viscosity by a 1.2 factor, the stability of the consistency by a 1.5-1.7 factor, and extends the operating range of the W/C ratio to 0.5-1.1. So it is possible to penetrate a volume of SRW bigger by a 1.5-2.0 factor. It has been proved, that PHMG polymer increases strength and frost-resistance of the final compounds by a 1.8-2.7 factor, and contributes to fast strength development at the beginning of hardening and it decreases Cs-137 leashing rate by a 1.5-2 factor

  7. Hydrogen-bonding interactions in T-2 toxin studied using solution and solid-state NMR.

    Science.gov (United States)

    Chaudhary, Praveen; Shank, Roxanne A; Montina, Tony; Goettel, James T; Foroud, Nora A; Hazendonk, Paul; Eudes, François

    2011-10-01

    The structure of T-2 toxin in the solid-state is limited to X-ray crystallographic studies, which lack sufficient resolution to provide direct evidence for hydrogen-bonding interactions. Furthermore, its solution-structure, despite extensive Nuclear Magnetic Resonance (NMR) studies, has provided little insight into its hydrogen-bonding behavior, thus far. Hydrogen-bonding interactions are often an important part of biological activity. In order to study these interactions, the structure of T-2 toxin was compared in both the solution- and solid-state using NMR Spectroscopy. It was determined that the solution- and solid-state structure differ dramatically, as indicated by differences in their carbon chemical shifts, these observations are further supported by solution proton spectral parameters and exchange behavior. The slow chemical exchange process and cross-relaxation dynamics with water observed between the hydroxyl hydrogen on C-3 and water supports the existence of a preferential hydrogen bonding interaction on the opposite side of the molecule from the epoxide ring, which is known to be essential for trichothecene toxicity. This result implies that these hydrogen-bonding interactions could play an important role in the biological function of T-2 toxin and posits towards a possible interaction for the trichothecene class of toxins and the ribosome. These findings clearly illustrate the importance of utilizing solid-state NMR for the study of biological compounds, and suggest that a more detailed study of this whole class of toxins, namely trichothecenes, should be pursued using this methodology.

  8. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics.

    Science.gov (United States)

    Gheribi, Aïmen E; Salanne, Mathieu; Chartrand, Patrice

    2015-03-28

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail.

  9. Solution and solid-phase halogen and C-H hydrogen bonding to perrhenate.

    Science.gov (United States)

    Massena, Casey J; Riel, Asia Marie S; Neuhaus, George F; Decato, Daniel A; Berryman, Orion B

    2015-01-28

    (1)H NMR spectroscopic and X-ray crystallographic investigations of a 1,3-bis(4-ethynyl-3-iodopyridinium)benzene scaffold with perrhenate reveal strong halogen bonding in solution, and bidentate association in the solid state. A nearly isostructural host molecule demonstrates significant C-H hydrogen bonding to perrhenate in the same phases.

  10. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    DEFF Research Database (Denmark)

    Bialy, Agata; Jensen, Peter Bjerre; Blanchard, Didier

    2015-01-01

    with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained...

  11. Solid solution in Al-4.5 wt% Cu produced by mechanical alloying

    International Nuclear Information System (INIS)

    Fogagnolo, J.B.; Amador, D.; Ruiz-Navas, E.M.; Torralba, J.M.

    2006-01-01

    Mechanical alloying has been used to produce oxide dispersion strengthened alloys, intermetallic compounds, aluminium alloys and to obtain nanostructured and amorphous materials, as well as to extend the solid solution limit. In this work, Al and Cu elemental powders were subjected to high-energy milling to produce Al-4.5 wt% Cu powder alloy. The powders obtained were characterized by scanning electron microscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), aiming to explore if the copper is present in solid solution or as small particles after high-energy milling. Related to the formation of a supersaturated solid solution, the results of scanning electron microscopy and X-ray diffraction are non-conclusive: the copper could be dispersed with a very small size, undetectable to both techniques. The Al 2 Cu precipitation at temperatures between 160 and 230 deg. C, verified by DSC and XRD analyses, substantiated that mechanical alloying had produced a supersaturated solid solution of copper in aluminium. The crystallite size as a function of milling time and annealing temperature was also determined by X-ray techniques

  12. Exact Solution of the Two-Level System and the Einstein Solid in the Microcanonical Formalism

    Science.gov (United States)

    Bertoldi, Dalia S.; Bringa, Eduardo M.; Miranda, E. N.

    2011-01-01

    The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In…

  13. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells.

    Science.gov (United States)

    Kumar, Mulmudi Hemant; Yantara, Natalia; Dharani, Sabba; Graetzel, Michael; Mhaisalkar, Subodh; Boix, Pablo P; Mathews, Nripan

    2013-12-07

    A ZnO compact layer formed by electrodeposition and ZnO nanorods grown by chemical bath deposition (CBD) allow the processing of low-temperature, solution based and flexible solid state perovskite CH3NH3PbI3 solar cells. Conversion efficiencies of 8.90% were achieved on rigid substrates while the flexible ones yielded 2.62%.

  14. Thermal expansion of TRU nitride solid solutions as fuel materials for transmutation of minor actinides

    International Nuclear Information System (INIS)

    Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2009-01-01

    The lattice thermal expansion of the transuranium nitride solid solutions was measured to investigate the composition dependence. The single-phase solid solution samples of (Np 0.55 Am 0.45 )N, (Pu 0.59 Am 0.41 )N, (Np 0.21 Pu 0.52 Am 0.22 Cm 0.05 )N and (Pu 0.21 Am 0.18 Zr 0.61 )N were prepared by carbothermic nitridation of the respective transuranium dioxides and nitridation of Zr metal through hydride. The lattice parameters were measured by the high temperature X-ray diffraction method from room temperature up to 1478 K. The linear thermal expansion of each sample was determined as a function of temperature. The average thermal expansion coefficients over the temperature range of 293-1273 K for the solid solution samples were 10.1, 11.5, 10.8 and 8.8 x 10 -6 K -1 , respectively. Comparison of these values with those for the constituent nitrides showed that the average thermal expansion coefficients of the solid solution samples could be approximated by the linear mixture rule within the error of 2-3%.

  15. On the calculation of lattice parameters of solid solutions on the basis of noble metals

    International Nuclear Information System (INIS)

    Barsukov, A.D.; Zhuravleva, N.S.; Ageeva, G.N.; Pedos, A.A.

    1996-01-01

    Lattice constants for noble metal solid solutions have been calculated taking into account atomic volumes, number of bonding electrons as well as chemical interaction between the components. Miscount is of the same order as the experimental error. 10 refs.; 2 tabs

  16. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  17. First-Principles Modeling of ThO2 Solid Solutions with Oxides of Trivalent Cations

    Science.gov (United States)

    Alexandrov, Vitaly; Asta, Mark; Gronbech-Jensen, Niels

    2010-03-01

    Solid solutions formed by doping ThO2 with oxides of trivalent cations, such as Y2O3 and La2O3, are suitable for solid electrolyte applications, similar to doped zirconia and ceria. ThO2 has also been gaining much attention as an alternative to UO2 in nuclear energy applications, the aforementioned trivalent cations being important fission products. In both cases the mixing energetics and short-range ordering/clustering are key to understanding structural and transport properties. Using first-principles atomistic calculations, we address intra- and intersublattice interactions for both cation and anion sublattices in ThO2-based fluorite-type solid solutions and compare the results with similar modeling studies for related trivalent-doped zirconia systems.

  18. Geochemical and numerical modelling of interactions between solid solutions and an aqueous solution. Extension of a reactive transport computer code called Archimede and application to reservoirs diagenesis; Modelisation geochimique et numerique des interactions entre des solutions solides et une solution aqueuse: extension du logiciel de reaction-transport archimede et application a la diagenese des reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nourtier-Mazauric, E.

    2003-03-15

    This thesis presents a thermodynamic and kinetic model of interactions between a fluid and ideal solid solutions represented by several end-members. The reaction between a solid solution and the aqueous solution results from the competition between the stoichiometric dissolution of the initial solid solution and the co-precipitation of the least soluble solid solution in the fluid at considered time. This model was implemented in ARCHIMEDE, a computer code of reactive transport in porous media, then applied to various examples. In the case of binary solid solutions, a graphical method allowed to determine the compositions of the precipitating solid solutions, with the aid of the end-member chemical potentials. The obtained program could be used to notably model the diagenesis of clayey or carbonated oil reservoirs, or the ground pollutant dispersion. (author)

  19. Rotational excitations in concentrated solid Kr-CH4 solutions. Calorimetric studies

    OpenAIRE

    Bagatskii, M. I.; Manzhelii, V. G.; Minchina, I. Ya.; Mashchenko, D. A.; Gospodarev, I. A.

    2002-01-01

    The heat capacity of solid Kr-CH4 solutions with 30 and 60 mol.% CH4 has been studied at 0.8-20 K. The contribution of the rotational subsystem Crot to the heat capacity of the solutions is separated. The results obtained in this study and Ref. [4] were used to estimate the difference between the lowest-level energies of the nuclear spin A and T modifications of CH4 and to find the characteristic conversion times for the solutions with 5-60 mol.% CH4 at low temperatures.

  20. Ideal strength of bcc molybdenum and niobium

    Science.gov (United States)

    Luo, Weidong; Roundy, D.; Cohen, Marvin L.; Morris, J. W.

    2002-09-01

    The behavior of bcc Mo and Nb under large strain was investigated using the ab initio pseudopotential density-functional method. We calculated the ideal shear strength for the {211} and {011} slip systems and the ideal tensile strength in the direction, which are believed to provide the minimum shear and tensile strengths. As either material is sheared in either of the two systems, it evolves toward a stress-free tetragonal structure that defines a saddle point in the strain-energy surface. The inflection point on the path to this tetragonal ``saddle-point'' structure sets the ideal shear strength. When either material is strained in tension along , it initially follows the tetragonal, ``Bain,'' path toward a stress-free fcc structure. However, before the strained crystal reaches fcc, its symmetry changes from tetragonal to orthorhombic; on continued strain it evolves toward the same tetragonal saddle point that is reached in shear. In Mo, the symmetry break occurs after the point of maximum tensile stress has been passed, so the ideal strength is associated with the fcc extremum as in W. However, a Nb crystal strained in becomes orthorhombic at tensile stress below the ideal strength. The ideal tensile strength of Nb is associated with the tetragonal saddle point and is caused by failure in shear rather than tension. In dimensionless form, the ideal shear and tensile strengths of Mo (τ*=τm/G111=0.12, σ*=σm/E100=0.078) are essentially identical to those previously calculated for W. Nb is anomalous. Its dimensionless shear strength is unusually high, τ*=0.15, even though the saddle-point structure that causes it is similar to that in Mo and W, while its dimensionless tensile strength, σ*=0.079, is almost the same as that of Mo and W, even though the saddle-point structure is quite different.

  1. Equilibrium model for agglomeration phenomena in solid polydispersions subject to adsorption from liquid solution

    Science.gov (United States)

    Mezzasalma, Stefano A.

    1997-06-01

    A general thermodynamic-electrochemical model, supported by an experimental titration procedure, is proposed to determine the number of solid aggregates of a polydispersed (and/or colloidal) system in a liquid medium subject to simultaneous agglomeration phenomena and adsorption of H+ and/or OH- ions from solution and endowed with an interparticle potential which is not strongly attractive. In a previous work [D. Beruto, S. Mezzasalma, and D. Baldovino, J. Chem. Soc. Faraday Trans. 2 91, 323 (1995)] adsorptions of protons and/or oxidryles onto the solid surfaces of monomodal silicon nitride aqueous dispersions were obtained by titration measurements made with a metal-oxide-semiconductor ion-sensitive field-effect transistor pH-meter device and employed to obtain the number of solid aggregates from the thermodynamic equilibrium state of the slurries, derived from the total Gibbs function. More generally, to apply the same titration procedure to liquid dispersions involving many solid phases, it is shown here that a simple partition criterion can be defined to obtain the experimental adsorption data related to each solid phase of the polydispersed system. Theoretically, the equilibrium state is achieved from the total Gibbs free function of the slurries with respect to each single solid aggregate species and to the ``mixed'' aggregates, containing all solid phases. To this end, following the Derjaguin-Landau-Verwey-Overbeek theory, Coulombic charge-charge interactions and dispersion-force effects, other than general multipole contributions among mixed clusters, are considered as not too strong perturbations of the ideal Gibbs free energy. By inserting the titration data in the physico-chemical condition theoretically derived, it is possible to obtain all numbers of solid aggregates as a function of the electrolyte concentration (pH) in the liquid solution.

  2. Failure criterion effect on solid production prediction and selection of completion solution

    Directory of Open Access Journals (Sweden)

    Dariush Javani

    2017-12-01

    Full Text Available Production of fines together with reservoir fluid is called solid production. It varies from a few grams or less per ton of reservoir fluid posing only minor problems, to catastrophic amount possibly leading to erosion and complete filling of the borehole. This paper assesses solid production potential in a carbonate gas reservoir located in the south of Iran. Petrophysical logs obtained from the vertical well were employed to construct mechanical earth model. Then, two failure criteria, i.e. Mohr–Coulomb and Mogi–Coulomb, were used to investigate the potential of solid production of the well in the initial and depleted conditions of the reservoir. Using these two criteria, we estimated critical collapse pressure and compared them to the reservoir pressure. Solid production occurs if collapse pressure is greater than pore pressure. Results indicate that the two failure criteria show different estimations of solid production potential of the studied reservoir. Mohr–Coulomb failure criterion estimated solid production in both initial and depleted conditions, where Mogi–Coulomb criterion predicted no solid production in the initial condition of reservoir. Based on Mogi–Coulomb criterion, the well may not require completion solutions like perforated liner, until at least 60% of reservoir pressure was depleted which leads to decrease in operation cost and time.

  3. The experimental study of establishing local order in binary metallic solid solutions

    International Nuclear Information System (INIS)

    Khwaja, F.A.; Katsnelson, A.A.

    1980-09-01

    The results of investigations of the values of the short-range order parameter are summarized for a number of solid solutions. The values of the short-range order (SRO) parameter are shown to be monotonically dependent upon the annealing temperatures and times and also upon the concentration of the solute atoms in plastically deformed, neutron irradiated or quenched samples of these solid solutions. The appearance of type II SRO, or local order, at a certain stage of annealing has been discussed in a series of transition metal alloys. The possible role of the submicroregions of excess concentration has been analyzed to explain the local order in these alloys. The possibility for the nucleation of Long-Range order in some of the alloys has also been considered. (author)

  4. Current state in adsorption from multicomponent solutions of nonelectrolytes on solids

    International Nuclear Information System (INIS)

    Borowko, M.; Jaroniec, M.

    1983-01-01

    This paper surveys the research carried out on the adsorption from multicomponent liquid mixtures of nonelectrolytes on solids with emphasis on the work performed by the authors. The consistent theoretical treatment of adsorption from concentrated and dilute multicomponent solutions and its application to the liquid adsorption chromatography with the mixed mobile phase are presented. This treatment involved nonideality of the bulk and surface phases, energetic heterogeneity of the adsorbent surface and it may be extended to multilayer adsorption from solutions. The multicomponent liquid/solid adsorption systems, studied experimentally, are reviewed. Many of them have been examined by means of the equations derived for liquid adsorption on heterogeneous surfaces. These studies are summarized in this paper. Moreover, the model studies illustrating the influence of solution nonideality and adsorbent heterogeneity on the excess adsorption isotherms and the distribution coefficient are discussed. (orig.)

  5. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC.

    Science.gov (United States)

    Sekulic, Aleksandar; Migden, Michael R; Lewis, Karl; Hainsworth, John D; Solomon, James A; Yoo, Simon; Arron, Sarah T; Friedlander, Philip A; Marmur, Ellen; Rudin, Charles M; Chang, Anne Lynn S; Dirix, Luc; Hou, Jeannie; Yue, Huibin; Hauschild, Axel

    2015-06-01

    Primary analysis from the pivotal ERIVANCE BCC study resulted in approval of vismodegib, a Hedgehog pathway inhibitor indicated for treatment of adults with metastatic or locally advanced basal cell carcinoma (BCC) that has recurred after surgery or for patients who are not candidates for surgery or radiation. An efficacy and safety analysis was conducted 12 months after primary analysis. This was a multinational, multicenter, nonrandomized, 2-cohort study in patients with measurable and histologically confirmed locally advanced or metastatic BCC taking oral vismodegib (150 mg/d). Primary outcome measure was objective response rate (complete and partial responses) assessed by independent review facility. After 12 months of additional follow-up, median duration of exposure to vismodegib was 12.9 months. Objective response rate increased from 30.3% to 33.3% in patients with metastatic disease, and from 42.9% to 47.6% in patients with the locally advanced form. Median duration of response in patients with locally advanced BCC increased from 7.6 to 9.5 months. No new safety signals emerged with extended treatment duration. Limitations include low prevalence of advanced BCC and challenges of designing a study with heterogenous manifestations. The 12-month update of the study confirms the efficacy and safety of vismodegib in management of advanced BCC. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  6. Helical Oligonaphthodioxepins Showing Intense Circularly Polarized Luminescence (CPL) in Solution and in the Solid State.

    Science.gov (United States)

    Takaishi, Kazuto; Yamamoto, Takahiro; Hinoide, Sakiko; Ema, Tadashi

    2017-07-12

    A series of oligonaphthodioxepins was synthesized, revealing a helically arranged octamer, (R,R,R,R,R,R,R)-3, which showed intense circularly polarized luminescence (CPL) both in solution and in the solid state. The fluorescence quantum yields (Φ FL ) in solution and in the solid state were 0.90 and 0.22, respectively, and the g lum values in solution and in the solid state were +2.2×10 -3 and +7.0×10 -3 , respectively. This is one of the highest solid-state CPL g lum values yet reported. The high Φ FL and g lum values were due to the rigidity, as well as to the fact that (R,R,R,R,R,R,R)-3 was a non-planar molecule. Moreover, (R,R,R,R,R,R,R)-3 was highly stable both chemically and stereochemically. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Modelling plastic deformation in BCC metals: Dynamic recovery and cell formation effects

    International Nuclear Information System (INIS)

    Galindo-Nava, E.I.; Rivera-Díaz-del-Castillo, P.E.J.

    2012-01-01

    A recently developed model for describing plasticity in FCC metals (E.I., Galindo-Nava, P.E.J., Rivera-Díaz-del-Castillo, Mater. Sci. Eng. A 543 (2012) 110–116; E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 60 (2012) 4370–4378) has now been applied to BCC. The core of the theory is the thermostatistical description of dislocation annihilation paths, which determines the dynamic recovery rate of the material. Input to this is the energy for the formation, migration and ordering of dislocation paths; the latter term corresponds to the statistical entropy which features strongly on the solution. The distinctions between FCC and BCC stem primarily from the possible directions and planes for dislocation slip and cross-slip, as well as from the presence of the kink-pair mechanism for dislocation migration in BCC, which are incorporated to the mathematical formulation of the model. The theory is unique in describing the stress–strain response for pure iron, molybdenum, tantalum, vanadium and tungsten employing physical parameters as input; the description is made for wide ranges of temperature and strain rate. Additionally, succinct equations to predict dislocation cell size variation with strain, strain rate and temperature are provided and validated for pure iron.

  8. Thermal Analysis of Tantalum Carbide-Hafnium Carbide Solid Solutions from Room Temperature to 1400 °C

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    2017-07-01

    Full Text Available The thermogravimetric analysis on TaC, HfC, and their solid solutions has been carried out in air up to 1400 °C. Three solid solution compositions have been chosen: 80TaC-20 vol % HfC (T80H20, 50TaC-50 vol % HfC (T50H50, and 20TaC-80 vol % HfC (T20H80, in addition to pure TaC and HfC. Solid solutions exhibit better oxidation resistance than the pure carbides. The onset of oxidation is delayed in solid solutions from 750 °C for pure TaC, to 940 °C for the T50H50 sample. Moreover, T50H50 samples display the highest resistance to oxidation with the retention of the initial carbides. The oxide scale formed on the T50H50 sample displays mechanical integrity to prevent the oxidation of the underlying carbide solid solution. The improved oxidation resistance of the solid solution is attributed to the reaction between Ta2O5 and HfC, which stabilizes the volume changes induced by the formation of Ta2O5 and diminishes the generation of gaseous products. Also, the formation of solid solutions disturbs the atomic arrangement inside the lattice, which delays the reaction between Ta and O. Both of these mechanisms lead to the improved oxidation resistances of TaC-HfC solid solutions.

  9. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Hamad ur

    2016-07-01

    Nickel and cobalt-based superalloys with a γ-γ{sup '} microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ{sup '} phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  10. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    International Nuclear Information System (INIS)

    Rehman, Hamad ur

    2016-01-01

    Nickel and cobalt-based superalloys with a γ-γ ' microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ ' phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  11. Local structure of Th1-xMO2 solid solutions (M = U, Pu)

    International Nuclear Information System (INIS)

    Hubert, S.; Heisbourg, G.; Moisy, Ph.; Dacheux, N.; Purans, J.E.

    2004-01-01

    X-ray absorption spectroscopy of Th 1-x U x O 2 and Th 1-x Pu x O 2 solid solutions was carried out on the Th, U L 3 -edges, and Pu L 3 edge to study the local structure environment of actinide mixed oxides. Various compositions of Th 1-x M x O 2 solid solutions have been prepared through the coprecipitation of the mixed oxalates from chloride or nitrate solutions: x = 0.11, 0.24, 0.37, 0.53, 0.67, 0.81, 0.91 and 1 for Th 1-x U x O 2 , and x = 0.13, 0.32, 0.66 and 1 for Th 1-x Pu x O 2 . They were characterized using X- ray diffraction. XRD analysis allowed to confirm that the variation of the lattice parameters varies linearly with the composition between the end members, suggesting that the atomic volume was conserved regardless of the details of the local distortions of the lattice, following the Vegard's law. Extending X-ray absorption fine structure (EXAFS) provides a direct characterization of the local distortions present in solid solutions. We found that opposite to the lattice parameter obtained by XRD, the interatomic distances given by EXAFS do not follow completely to neither the Vegard's law nor the virtual crystal approximation (VCA). However, the average lattice parameter obtained from EXAFS data for the first and the second shells agrees well with the one calculated from XRD data. (authors)

  12. Symplectic Analytical Solutions for the Magnetoelectroelastic Solids Plane Problem in Rectangular Domain

    Directory of Open Access Journals (Sweden)

    Xiao-Chuan Li

    2011-01-01

    Full Text Available The transversely isotropic magnetoelectroelastic solids plane problem in rectangular domain is derived to Hamiltonian system. In symplectic geometry space with the origin variables—displacements, electric potential, and magnetic potential, as well as their duality variables—lengthways stress, electric displacement, and magnetic induction, on the basis of the obtained eigensolutions of zero-eigenvalue, the eigensolutions of nonzero-eigenvalues are also obtained. The former are the basic solutions of Saint-Venant problem, and the latter are the solutions which have the local effect, decay drastically with respect to distance, and are covered in the Saint-Venant principle. So the complete solution of the problem is given out by the symplectic eigensolutions expansion. Finally, a few examples are selected and their analytical solutions are presented.

  13. Study of the magnetic properties of the La1-xGdxTe solid solution

    International Nuclear Information System (INIS)

    Merah, S.; Gorochov, O.

    1996-01-01

    We present a study of the physical properties of the La 1-x Gd x Te solid solution. Although both LaTe and GdTe crystallize in the fcc structure and are metallic, two domains in the x-dependence of the lattice parameters of their solid solution can be distinguished. At the critical concentration, no anomalies in the magnetic susceptibility or the electrical resistivity can be detected. Both the Neel and paramagnetic Curie temperatures are linearly x-dependent, at x≥0.5, with opposite slopes. The results are discussed within a molecular field treatment of the RKKY exchange interaction in which the disorder generated by spin dilution is averaged out. (orig.)

  14. Calorimetric measurements on plutonium rich (U,Pu)O2 solid solutions

    International Nuclear Information System (INIS)

    Kandan, R.; Babu, R.; Nagarajan, K.; Vasudeva Rao, P.R.

    2008-01-01

    Enthalpy increments of U (1-y) Pu y O 2 solid solutions with y = 0.45, 0.55 and 0.65 were measured using a high-temperature differential calorimeter by employing the method of inverse drop calorimetry in the temperature range 956-1803 K. From the fit equations for the enthalpy increments, other thermodynamic functions such as heat capacity, entropy and Gibbs energy function have been computed in the temperature range 298-1800 K. The results are presented and compared with the data available in the literature. The results indicate that the enthalpies of U (1-y) Pu y O 2 solid solutions with y = 0.45, 0.55 and 0.65 obey the Neumann-Kopp's molar additivity rule

  15. The crystallization of a solid solution in a solvent and the stability of a growth interface

    International Nuclear Information System (INIS)

    Malmejac, Yves

    1971-03-01

    The potential uses of germanium-silicon alloys as thermoelectric generators in hitherto unexploited temperature ranges initiated the present study. Many delicate problems are encountered in the classical methods of preparation. An original technique was sought for crystallization in a metallic solvent. The thermodynamic equilibria between the various phases of the ternary System used were studied in order to justify the method used. The conditions (temperature and composition) were determined in which the cooling of a ternary liquid mixture induces the precipitation of a binary solid solution with the desired composition. If large crystals are to be obtained from the solid solution, metallic solvent precipitation must be replaced by a mono-directional solvent crystallization. The combined effect of a certain number of simple physical phenomena on the stability of a crystal liquid interface was studied: the morphological stability of the crystal growth interface is the first step towards obtaining perfect crystals. (author) [fr

  16. Boron doped bcc-W films: Achieving excellent mechanical properties and tribological performance by regulating substrate bias voltage

    Science.gov (United States)

    Yang, Lina; Zhang, Kan; Zeng, Yi; Wang, Xin; Du, Suxuan; Tao, Chuanying; Ren, Ping; Cui, Xiaoqiang; Wen, Mao

    2017-11-01

    Boron doped bcc-W (WBx, x = B/W) films were deposited on Si(100) substrates by magnetron co-sputtering pure W and B targets. Our results reveal that when the absolute value of substrate bias voltage (Vb) increases from floating to 240 V, the value of x monotonously decreases from 0.18 to 0.04, accompanied by a phase transition from a mixture of tetragonal γ-W2B and body-centered cubic α-W(B) phase (-Vb ≤ 60 V) to α-W(B) single phase (-Vb > 60 V). Hardness, depending on Vb, increases first and then drops, where the maximum hardness of 30.8 GPa was obtained at -Vb = 60 V and far higher than pure W and W2B theoretical value. In the mixed phase structure, the grain boundaries strengthening, Hall-Petch effect and solid-solution strengthening induced by B dominate the strengthening mechanism. Astonishingly, the film grown at -Vb = 120 V still possesses twice higher hardness than pure W, wherein unexpectedly low (6.7 at.%) B concentration and only the single α-W(B) phase can be identified. In this case, both Hall-Petch effect and solid-solution strengthening work. Besides, low friction coefficient of ∼0.18 can be obtained for the films with α-W(B) phase, which is competitive to that of reported B-rich transition-metal borides, such as TiB2, CrB and CrB2.

  17. Hydrogen-Bonding Interactions in T-2 Toxin Studied Using Solution and Solid-State NMR

    Directory of Open Access Journals (Sweden)

    Paul Hazendonk

    2011-10-01

    Full Text Available The structure of T-2 toxin in the solid-state is limited to X-ray crystallographic studies, which lack sufficient resolution to provide direct evidence for hydrogen-bonding interactions. Furthermore, its solution-structure, despite extensive Nuclear Magnetic Resonance (NMR studies, has provided little insight into its hydrogen-bonding behavior, thus far. Hydrogen-bonding interactions are often an important part of biological activity. In order to study these interactions, the structure of T-2 toxin was compared in both the solution- and solid-state using NMR Spectroscopy. It was determined that the solution- and solid-state structure differ dramatically, as indicated by differences in their carbon chemical shifts, these observations are further supported by solution proton spectral parameters and exchange behavior. The slow chemical exchange process and cross-relaxation dynamics with water observed between the hydroxyl hydrogen on C-3 and water supports the existence of a preferential hydrogen bonding interaction on the opposite side of the molecule from the epoxide ring, which is known to be essential for trichothecene toxicity. This result implies that these hydrogen-bonding interactions could play an important role in the biological function of T-2 toxin and posits towards a possible interaction for the trichothecene class of toxins and the ribosome. These findings clearly illustrate the importance of utilizing solid-state NMR for the study of biological compounds, and suggest that a more detailed study of this whole class of toxins, namely trichothecenes, should be pursued using this methodology.

  18. Studying the Super-cooled Solid Solution Breakdown of V-1341 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Yu. A. Puchkov

    2017-01-01

    Full Text Available Deformable alloys of the Al-Mg-Si system are widely used in aviation industry, rocket engineering, shipbuilding, as well as on railway and highway transport. These alloys are characterized by high stamping ability, weld-ability, and machinability with a comparatively high strength and corrosion resistance in a heat-strengthened state. A promising alloy of the Al-Mg-Si system with increased structural strength and manufacturability is on par with foreign analogues in properties is the V-1341 alloy [1, 2].The properties of heat-treatable aluminum alloys strongly depend on the cooling rate of the product during quenching [3-12], which determines the structure and level of residual stresses. Decrease in structural strength, tendency to pitting and inter-crystalline corrosion with slow cooling from the quenching temperature is caused by formation of coarse unequiaxed precipitate, precipitates-free zones, and also by decreasing proportion of inclusions of the strengthening phase [3-12].Thus, the relevant task is to study the effect of isothermal quenching modes on the structure of deformable V-1341 aluminum alloy thermally hardened.The paper studies the impact of isothermal time in quenching on the composition and morphology of breakdown products of the V-1341 alloy solid solution. It is shown that at isothermal time under the solid solution breakdown, at first on the dispersoid surface and then in the solid solution are formed and grow large needle-like crystals of the β'-phase which are structural concentrators of stresses. An increasing isothermal time leads to decreasing solid solution super-saturation by doping elements and vacancies. This leads to a decrease in the fraction of the coherent finely dispersed hardening β '' phase, and also to an increase in the width of the precipitates-free zone.

  19. Description of the magnetic properties of strongly correlated disordered solid solutions in the coherent potential approximation

    Science.gov (United States)

    Korotin, M. A.; Skorikov, N. A.

    2015-06-01

    A method for electronic structure calculations of strongly correlated materials based on the coherent potential approximation is formulated and implemented. Method is applied for investigation of the electronic structure and local magnetic moments of the strongly correlated systems with d- and f-electrons: NiO-ZnO solid solution, nonstoichiometric perovskite LaMnO3-x, doped compound TiO2:Fe, and rare-earth transition-metal intermetallic compound GdNi2:Mn.

  20. Electrical Anisotropy in Extruded Specimens of Bi0.85Sb0.15 Solid Solution

    Science.gov (United States)

    Tagiev, М. М.

    2018-02-01

    The paper deals with the electrical anisotropy resulted from the texture formation in extruded specimens of Bi0.85Sb0.15 solid solution. Experiments show that without the magnetic field strength, in unannealed extruded specimens the electric conductivity at 77 and 300 K in the direction normal to the extrusion axis is higher than in the direction parallel to it. After annealing, an inverse correlation is observed, i.e. electrical anisotropy changes sign.

  1. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide

    Science.gov (United States)

    Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.

    2015-02-01

    A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.

  2. Sensing Native Protein Solution Structures Using a Solid-state Nanopore: Unraveling the States of VEGF

    OpenAIRE

    Varongchayakul, Nitinun; Huttner, Diana; Grinstaff, Mark W.; Meller, Amit

    2018-01-01

    Monitoring individual proteins in solution while simultaneously obtaining tertiary and quaternary structural information is challenging. In this study, translocation of the vascular endothelial growth factor (VEGF) protein through a solid-state nanopore (ssNP) produces distinct ion-current blockade amplitude levels and durations likely corresponding to monomer, dimer, and higher oligomeric states. Upon changing from a non-reducing to a reducing condition, ion-current blockage events from the ...

  3. Structural study of nanocrystalline solid solution of Cu–Mo obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Aguilar, C.; Castro, F.; Martínez, V.; Guzmán, D.; Cuevas, F. de las; Lozada, L.; Vielma, N.

    2012-01-01

    Highlights: ► Extension of solid solution in Cu–Mo system achieved by mechanical alloying. ► X-ray characterization of Cu–Mo system processed by mechanical alloying. ► Structural study of nanocrystalline solid solution of Cu–Mo obtained by mechanical alloying. - Abstract: This work studied the structural evolution of Cu–xMo (x = 5 and 8 wt.%) alloys processed by mechanical alloying using x-ray diffraction profiles, scanning electron microscopy, differential scanning calorimetric and microhardness. X-ray diffraction analysis was done using the modified Williamson–Hall and Warren–Averbach methods. These were used to determine structural properties, such as crystallite size, stacking fault probability and energy, dislocation density of metallic powder as a function of the amount of Mo and milling time. The main results obtained for both alloys were higher dislocation density and Vickers microhardness values were measured and crystallites sizes of around 10 nm were measured for both systems at 50 h of milling. Lattice defects increase the free energy and the free energy curves shift upwards, therefore the solubility limits change and Cu–Mo solid solution is formed.

  4. Structural study of nanocrystalline solid solution of Cu-Mo obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingenieria Metalurgica y de Materiales, Universidad Tecnica Federico Santa Maria, Avenida Espana 1680, Valparaiso (Chile); Instituto de Materiales y Procesos Termomecanicos, Universidad Austral de Chile, General Lagos 2086, Valdivia (Chile); Castro, F. [Centro de Estudios e Investigaciones Tecnicas de Gipuzkoa, Paseo de Manuel Lardizabal, N Degree-Sign 15 20018, San Sebastian (Spain); Martinez, V. [TEKMETALL, Metallurgical Solutions S.L., Paseo neinor, Iribar Kalea 5, F1. B. de Igara 20018, San Sebastian (Spain); Guzman, D. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapo (Chile); Cuevas, F. de las; Lozada, L.; Vielma, N. [Centro de Estudios e Investigaciones Tecnicas de Gipuzkoa, Paseo de Manuel Lardizabal, N Degree-Sign 15 20018, San Sebastian (Spain)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Extension of solid solution in Cu-Mo system achieved by mechanical alloying. Black-Right-Pointing-Pointer X-ray characterization of Cu-Mo system processed by mechanical alloying. Black-Right-Pointing-Pointer Structural study of nanocrystalline solid solution of Cu-Mo obtained by mechanical alloying. - Abstract: This work studied the structural evolution of Cu-xMo (x = 5 and 8 wt.%) alloys processed by mechanical alloying using x-ray diffraction profiles, scanning electron microscopy, differential scanning calorimetric and microhardness. X-ray diffraction analysis was done using the modified Williamson-Hall and Warren-Averbach methods. These were used to determine structural properties, such as crystallite size, stacking fault probability and energy, dislocation density of metallic powder as a function of the amount of Mo and milling time. The main results obtained for both alloys were higher dislocation density and Vickers microhardness values were measured and crystallites sizes of around 10 nm were measured for both systems at 50 h of milling. Lattice defects increase the free energy and the free energy curves shift upwards, therefore the solubility limits change and Cu-Mo solid solution is formed.

  5. Solid solutions of uranium and thorium phosphates: synthesis, characterization and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Dacheux, N.; Brandel, V.; Genet, M.; Bak, K.; Berthier, C.

    1996-01-01

    New solid solutions of uranium-thorium phosphates based on uranium-uranyl phosphate U(U O 2 )(P O 4 ) 2 and thorium phosphate-diphosphate Th 4 (P O 4 ) 4 (P 2 O 7 ) were synthesized in air or under an inert atmosphere via dry and wet chemical processes. The products were characterized by means of chemical analysis, X-ray diffraction and ultraviolet-visible and infrared absorption spectroscopies. Solid solutions of uranium-uranyl-thorium phosphates U 1-x Th x (U O 2 )(P O 4 ) 2 (with O≤ x ≤ 0.6) were obtained in air by substitution of uranium (IV) by thorium. Solid solutions of thorium-uranium phosphate-diphosphate (Th 1-y U y ) 4 (P O 4 ) 4 (P 2 O 7 ) (with Y ≤0.9) were prepared by substitution of thorium by uranium (IV) under an inert atmosphere. These new materials have been studied by XPS (X-ray photoelectron spectroscopy) in order to verify the oxidation states of uranium and to estimate the P/U, P/Th, P/O and U/Th ratios. (authors). 33 refs., 10 figs., 4 tabs

  6. Studies on thermal expansion and XPS of urania-thoria solid solutions

    International Nuclear Information System (INIS)

    Anthonysamy, S.; Panneerselvam, G.; Bera, Santanu; Narasimhan, S.V.; Vasudeva Rao, P.R.

    2000-01-01

    The thermal expansion characteristics of polycrystalline (U y Th 1-y )O 2 solid solutions with y=0.13, 0.55 and 0.91 were determined in the temperature range from 298 to 1973 K by means of X-ray diffraction technique. For these temperatures, the average linear thermal expansion coefficients for (U 0.13 Th 0.87 )O 2 , (U 0.55 Th 0.45 )O 2 and (U 0.91 Th 0.09 )O 2 are 1.033x10 -5 , 1.083x10 -5 and 1.145x10 -5 K -1 , respectively. The measured thermal expansion values were compared with those calculated by applying the equations for linear thermal expansion of pure urania and thoria. It was shown that the stoichiometric (U, Th)O 2 solid solutions are almost ideal at least up to 2000 K. The binding energies of U 4f 7/2 and Th 4f 7/2 electrons of (U 0.1 Th 0.9 )O 2 , (U 0.25 Th 0.75 )O 2 , (U 0.50 Th 0.50 )O 2 , (U 0.75 Th 0.25 )O 2 and (U 0.90 Th 0.10 )O 2 were experimentally determined by X-ray photoelectron spectroscopy. The result showed the presence of only U 4+ and Th 4+ chemical states in the stoichiometric urania-thoria solid solutions

  7. Complex crystallographic study of potassium sulfate-ammonium sulfate solid solutions

    International Nuclear Information System (INIS)

    Punin, Yu.O.; Smetannikov, O.G.; Zhogin, A.N.; Demidova, G.E.

    1999-01-01

    The variation in the morphological, optical, and crystallochemical characteristics of a continuous series of (NH 4 ,K) 2 SO 4 solid solutions have been considered. It has been established that both habit and optical sign of the crystals of these solid solutions change twice. In the composition range studied, the unit-cell parameters have two anomalous ranges of their variation: the dependences of a and c on the (NH 4 ) 2 SO 4 content show the inflections at 8-13 mol%(NH 4 ) 2 SO 4 , whereas the dependences of a and b on the (NH 4 ) 2 SO 4 content show the discontinuities at 43-60 mol%(NH 4 ) 2 SO 4 . The comparison of the experimental and theoretical intensity ratios, I 002 /I 013 , shows that crystals with different degree of order with respect to K + and the (NH 4 ) + cations can exist. The results obtained indicate that the (K,NH 4 ) 2 SO 4 solid solutions are far from being ideal, which is seen from the nonlinear variation of the properties studied for crystals of different compositions. The phase diagram of the system has been refined

  8. Study of the sintering process and the formation of a (Th, U) O2 solid solution

    International Nuclear Information System (INIS)

    Tomasi, Roberto

    1979-01-01

    The effect of some variables in the (Th, U) O 2 sintering process and solid solution formation was studied. ThO 2 , U 3 O 8 and UO 2 powder were prepared. The ThO 2 powders were obtained by calcination of thorium at 500 and 750 deg C; the U 3 O 8 powders were derived from the calcination of ADU at 660 and 750 deg C; the UO 2 powder were prepared from ADU and from ATCU. The different characteristics of these materials were determined by measurements of surface area, by scanning electron microscopy, tap density tests, X-ray diffractometry and by measurements of the O/U ratios. The oxide mixtures were chosen in order to produce a final composition with 10 w/o of UO 2 . A mixture of thorium oxalate and ADU was also prepared by calcining these salts in air at 700 deg C, in order to obtain certain amount of solid solution prior to sintering. The sintering operations were developed in an argon atmosphere at temperatures between 1400 and 1700 deg C, during interval varying from 1 to 4 hours. The effect of the mixture characteristics on the sintering process and solid solution formation were studied considering the results of densification, microstructure development and X-ray diffractometry. The ThO 2 powder characteristics have a main effect on the mixtures compactability and sinterability, the higher calcining temperatures increasing the green density, but decreasing the final density of the sintered pellets. In the sintering of mixtures containing U 3 O 3 , this oxide is reduced to UO 2 and it is possible to obtain pellets with density and microstructures similar to those produced from mixtures containing UO 2 . But if oxygen in excess is present during sintering, the process is affected, occurring exaggerated grain growth. The densification results were related to the Coble's kinetics equation for second stage of sintering, valid for bulk diffusion, grain boundary acting as vacancy sinks. The sintering activation energy is independent from the powder starting

  9. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    International Nuclear Information System (INIS)

    Aguilar, C.; Guzmán, D.; Castro, F.; Martínez, V.; Cuevas, F. de las; Lascano, S.; Muthiah, T.

    2014-01-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol −1 were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system

  10. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  11. Decay property of regularity-loss type for solutions in elastic solids with voids

    KAUST Repository

    Djouamai, Leila

    2014-01-01

    In this paper, we consider the Cauchy problem for a system of elastic solids with voids. First, we show that a linear porous dissipation leads to decay rates of regularity-loss type of the solution. We show some decay estimates for initial data in Hs(R)∩L1(R). Furthermore, we prove that by restricting the initial data to be in Hs(R)∩L1,γ(R) and γ. ∈. [0, 1], we can derive faster decay estimates of the solution. Second, we show that by adding a viscoelastic damping term, then we gain the regularity of the solution and obtain the optimal decay rate. © 2013 Elsevier Ltd.

  12. A structural study of the intermolecular interactions of tyramine in the solid state and in solution

    Science.gov (United States)

    Quevedo, Rodolfo; Nuñez-Dallos, Nelson; Wurst, Klaus; Duarte-Ruiz, Álvaro

    2012-12-01

    The nature of the interactions between tyramine units was investigated in the solid state and in solution. Crystals of tyramine in its free base form were analyzed by Fourier transform infrared (FT-IR) spectroscopy and single-crystal X-ray diffraction (XRD). The crystal structure shows a linear molecular organization held together by "head-to-tail" intermolecular hydrogen bonds between the amino groups and the phenolic hydroxyl groups. These chains are arranged in double layers that can geometrically favor the formation of templates in solution, which may facilitate macrocyclization reactions to form azacyclophane-type compounds. Computational calculations using the PM6-DH+ method and electrospray ionization mass spectrometry (ESI-HRMS) reveal that the formation of a hydrogen-bonded tyramine dimer is favored in solution.

  13. Extraction of heavy metals from municipal solid waste incinerator (MSWI) bottom ash with organic solutions.

    Science.gov (United States)

    Van Gerven, T; Cooreman, H; Imbrechts, K; Hindrix, K; Vandecasteele, C

    2007-02-09

    Municipal solid waste incinerator (MSWI) bottom ash often cannot be recycled as construction material in Flanders, because leaching of Cu exceeds the limit value of 0.5mg/kg. Leaching of other components such as Mo and Sb is critical as well, but limit values for these elements are to date only informal. A treatment technique was investigated to lower pollutant leaching: extraction with solutions of organic complexants to remove Cu. Six different solutions were used, of which washing with citric acid and ammonium citrate decreases Cu leaching to below the limit value. Extraction was then performed with different concentrations of ammonium citrate. Subsequent washing of the extracted material with distilled water appears to be vital to remove all residual ammonium citrate. Extraction with a 0.2M solution of ammonium citrate followed by three washing steps decreases metal leaching to below the limit values.

  14. A new approach to solar hydrogen production: a ZnO-ZnS solid solution nanowire array photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hao Ming; Chen, Chih Kai; Liu, Ru-Shi [Department of Chemistry, National Taiwan University, Taipei (China); Wu, Ching-Chen; Chang, Wen-Sheng [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu (China); Chen, Kuei-Hsien [Institute of Atomic and Molecular Sciences Academia Sinica, Taipei (China); Chan, Ting-Shan; Lee, Jyh-Fu [National Synchrotron Radiation Research Center, Hsinchu (China); Tsai, Din Ping [Department of Physics, National Taiwan University, Taipei (China)

    2011-10-15

    A ZnO-ZnS solid solution nanowire array photoanode is developed based on an alternative sensitization of a ZnO-ZnS solid solution nanowire array for solar hydrogen generation with considerably enhanced photocurrent - more than 195% greater compared to pristine ZnO nanowires. This solid solution structure demonstrates a better photoactivity enhancement effect than traditional quantum dot sensitization, as well as allowing hydrogen generation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. B-site substituted solid solutions on the base of sodium-bismuth titanate

    Directory of Open Access Journals (Sweden)

    V. M. Ishchuk

    2016-12-01

    Full Text Available The paper presents results of studies of the formation of phases during the solid-state synthesis in the [(Na0.5Bi0.50.80Ba0.20](Ti1–yByO3 system of solid solutions with B-site substitutions. The substitutions by zirconium, tin and ion complexes (In0.5Nb0.5 and (Fe0.5Nb0.5 have been studied. It has been found that the synthesis is a multi-step process associated with the formation of a number of intermediate phases (depending on the compositions and calcination temperatures. Single-phase solid solutions have been produced at the calcination temperatures in the interval 1000–1100∘C. An increase in the substituting ions concentration leads to a linear increase of the crystal cell size. At the same time, the tolerance factor gets reduced boosting the stability of the antiferroelectric phase as compared to that of the ferroelectric phase.

  16. Synthesis, characterization and thermal expansion studies on ThO2-SmO1.5 solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.

    2008-01-01

    Full text: A highly homogeneous Th 1-x Sm x O 2 ; 0 ≤ x ≤ 0.8 solid solutions were synthesized by co-precipitation technique and the co-precipitated samples were sintered at 1473 K. Compositions of the solid solutions were characterized by standard wet-chemical analysis. X-ray diffraction measurements were performed in the sintered pellets for structural analysis, lattice parameter calculation and determination of solid solubility of SmO 1.5 in ThO 2 matrix. Bulk and theoretical densities of solid solutions were also determined. A fluorite structure was observed for ThO 2 -SmO 1.5 solid solutions with 0-55.2 mol % SmO 1.5 . Their thermal expansion coefficients were measured using high temperature X-ray diffraction technique. The mean linear thermal expansivity, αm for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mole percent of SmO 1.5 were determined in the temperature range 298 to 2000 K for the first time. The mean linear thermal expansion coefficients for ThO 2 -SmO 1.5 solid solutions are 10.47x10 -6 K -1 , 11.16x10 -6 K -1 and 11.45x10 -6 K -1 , respectively. The percentage linear thermal expansion in this temperature range, for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mol % SmO 1.5 are 1.82,1.94 and 1.99 respectively. It is suggested that the solid solutions are stable up to 2000 K. It is also suggested that the effect and nature of the dopant are the important parameters influenced in the thermal expansion of the ThO 2

  17. Supramolecular stabilization of metastable tautomers in solution and the solid state.

    Science.gov (United States)

    Juribašić, Marina; Bregović, Nikola; Stilinović, Vladimir; Tomišić, Vladislav; Cindrić, Marina; Sket, Primož; Plavec, Janez; Rubčić, Mirta; Užarević, Krunoslav

    2014-12-22

    This work presents a successful application of a recently reported supramolecular strategy for stabilization of metastable tautomers in cocrystals to monocomponent, non-heterocyclic, tautomeric solids. Quantum-chemical computations and solution studies show that the investigated Schiff base molecule, derived from 3-methoxysalicylaldehyde and 2-amino-3-hydroxypyridine (ap), is far more stable as the enol tautomer. In the solid state, however, in all three obtained polymorphic forms it exists solely as the keto tautomer, in each case stabilized by an unexpected hydrogen-bonding pattern. Computations have shown that hydrogen bonding of the investigated Schiff base with suitable molecules shifts the tautomeric equilibrium to the less stable keto form. The extremes to which supramolecular stabilization can lead are demonstrated by the two polymorphs of molecular complexes of the Schiff base with ap. The molecules of both constituents of molecular complexes are present as metastable tautomers (keto anion and protonated pyridine, respectively), which stabilize each other through a very strong hydrogen bond. All the obtained solid forms proved stable in various solid-state and solvent-mediated methods used to establish their relative thermodynamic stabilities and possible interconversion conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dissolution of britholites and monazite / brabantite solid solutions doped with actinides; Etude de la dissolution de britholites et de solutions solides monazite / brabantite dopees avec des actinides

    Energy Technology Data Exchange (ETDEWEB)

    Du Fou De Kerdaniel, E

    2007-12-15

    In the field of the radwaste storage in underground repository, several matrices were considered as promising ceramics for the specific immobilization of actinides. Two of them, britholites and monazite/ brabantite solid solution, have been considered during this work. In order to examine the dissolution mechanisms occurring at the solid liquid interface, several leaching experiments have been conducted on (Ln{sup III}PO{sub 4} ), brabantite (Ca{sup II}An{sup IV}(PO{sub 4}){sub 2}: An = Th, U) and britholites (Ca{sub 9}Nd{sub 0.5}An{sub 0.5}{sup IV} (PO{sub 4}){sub 4.5}(SiO{sub 4}){sub 1.5}F{sub 2}: An = Th, U). Some steady experiments, performed in under saturation conditions for various pH and temperature conditions allowed to evaluate the long term behaviour of such matrices through their chemical durability. On the contrary, the thermodynamic equilibria were examined through the leaching experiments performed near the saturation conditions. By the way, various secondary phases, precipitated onto the surface of altered samples have been identified and characterized. Among them, the (Nd, Ca, Th) - rhabdophane, novelly prepared in over- saturation experiments for a thorium weight loading lower than 11 % appeared to be metastable. Indeed, it turns into TPHPH (Th{sub 2}(PO{sub 4}){sub 2}HPO{sub 4}.H{sub 2}O) and Nd - rhabdophane (NdPO{sub 4}.1/2H{sub 2}O) when increasing leaching time. (author)

  19. Effect of ionizing radiation on solid and water solution Penicillin G

    International Nuclear Information System (INIS)

    Ben Salem, I.; Amine, Kh.M.; Mabrouk, Y.; Saidi, M.; Mezni, M; Boulila, N; Hafez, E

    2015-01-01

    Penicillin G is a conventional antibiotic used for treatment of different kinds of infectious diseases. Due to its huge quantity production and resistance to biodegradability, this molecule has been a serious concern for clinicians and environmentalists. In this study, the effect of ionizing radiation on the penicillin G powder and in water solution was investigated. The Nuclear Magnetic Resonance (NMR) and fourier transform infrared spectroscopy (FTIR) analysis showed that the ionizing radiation at 50 kGy has no effect on the integrity of solid Penicillin G. The anti-microbial assays revealed that the activity of irradiated solid Penicillin G did not reduce and was stable after storage for one month. Ionizing radiation at 50 kGy led to degradation of water solution Penicillin G. The complete disappear of peaks observed in the control sample confirmed the broken of β-lactam ring, the decarboxylation and cleavage of the thiazolidine ring. The product issued from the irradiation of Penicillin G, was completely removed by the bacterium Cupriavidus.metallidurans. Thus, the ionizing irradiation followed by a biological treatment was very effective method for removing of Penicillin G antibiotics residuals from water solution.

  20. An ordered metallic glass solid solution phase that grows from the melt like a crystal

    International Nuclear Information System (INIS)

    Chapman, Karena W.; Chupas, Peter J.; Long, Gabrielle G.; Bendersky, Leonid A.; Levine, Lyle E.; Mompiou, Frédéric; Stalick, Judith K.; Cahn, John W.

    2014-01-01

    We report structural studies of an Al–Fe–Si glassy solid that is a solid solution phase in the classical thermodynamic sense. We demonstrate that it is neither a frozen melt nor nanocrystalline. The glass has a well-defined solubility limit and rejects Al during formation from the melt. The pair distribution function of the glass reveals chemical ordering out to at least 12 Å that resembles the ordering within a stable crystalline intermetallic phase of neighboring composition. Under isothermal annealing at 305 °C the glass first rejects Al, then persists for approximately 1 h with no detectable change in structure, and finally is transformed by a first-order phase transition to a crystalline phase with a structure that is different from that within the glass. It is possible that this remarkable glass phase has a fully ordered atomic structure that nevertheless possesses no long-range translational symmetry and is isotropic

  1. Modelling of solid polymer and direct methanol fuel cells: Phenomenological equations and analytical solutions

    Science.gov (United States)

    Kauranen, P. S.

    1993-04-01

    In the solid state concept of a direct methanol fuel cell (DMFC), methanol is directly oxidized at the anode of a solid polymer electrolyte fuel cell (SPEFC). Mathematical modelling of the transport and reaction phenomena within the electrodes and the electrolyte membrane is needed in order to get a closer insight into the operation of the fuel cell. In the work, macro-homogenous porous electrode and dilute solution theories are used to derive the phenomenological equations describing the transport and reaction mechanisms in a SPEFC single cell. The equations are first derived for a conventional H2/air SPEFC, and then extended for a DMFC. The basic model is derived in a one dimensional form in which it is assumed that species transport take place only in the direction crossing the cell sandwich. In addition, two dimensional descriptions of the catalyst layer are reviewed.

  2. Calculation Of Phonon Dispersion Frequencies For Bcc Tantalum ...

    African Journals Online (AJOL)

    The phonon dispersion frequencies are calculated from first principles for bcc Tantalum using a resonance pseudopotential model. It was also possible, using this scheme, to account for the anomalous feature of the Ta dispersion curve observed experimentally in the (ε,o,o,) direction where the frequencies of the transverse ...

  3. Point defect relaxation in irraddiated B.C.C. metals

    International Nuclear Information System (INIS)

    Moser, P.

    1977-01-01

    Improvements in the preparation of samples has led to substantial progress in the field of point defect relaxation processes in b.c.c. irradiated metals. The recent well established experimental phenomena and current interpretations are reviewed, with a special emphasis on iron, which allows simultaneous study of anelastic and magnetic relaxations

  4. Vibrational properties of vacancy in bcc transition metals using ...

    Indian Academy of Sciences (India)

    The embedded atom method (EAM) potentials, with the universal form of the embedding function along with the Morse form of pair potential, have been employed to determine the potential parameters for three bcc transition metals: Fe, Mo, and W, by fitting to Cauchy pressure (C12−C44)/2, shear constants ...

  5. Vibrational properties of vacancy in bcc transition metals using ...

    Indian Academy of Sciences (India)

    By introducing a few modifications in the Johnson and. Oh model, Guellil and Adams [5] have applied the EAM model for studying phonon dis- persion, thermal and surface properties of alkali and transition metals and their alloys. An empirical many-body interaction potential for the bcc transition metals Nb, Fe and Cr was.

  6. Solute diffusion in Pu and Ce

    International Nuclear Information System (INIS)

    Marbach, Gabriel; Charissoux, Christian; Janot, Christian

    1976-01-01

    The diffusion rate of Co, Au and Ag in the bcc phases of Pu and Ce is studied. In the bcc delta phase of Pu, Au and Ag have the same diffusion rate that the matrix and Co is a very rapid solute. In the bcc phase of Ce, the diffusion coefficients of the three metals are remarkably high. This phenomenon is also observed in certain metallic matrices (Pb, Sn, [fr

  7. Formation of fine solid particles from aqueous solutions of sodium chloropalladate by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Fujita, Iwao; Korekawa, Kei-ichi.

    1994-10-01

    Studies have been carried out on the radiation chemical formation of palladium fine particles in argon saturated aqueous solutions of sodium chloropalladate without organic stabilizer. The solutions were irradiated with gamma-rays from a cobalt gamma-ray source and the irradiated solutions were subjected to the dynamic light scattering analysis for the particle diameter measurements, and to the UV-visible optical absorption spectroscopy for the measurements of turbidity (absorption at 700 nm) and remaining chloropalladate ion concentrations in the solution. In the solution of pH = 1.95 by HCl, the turbidity increased after the irradiation and then decreased with time. The concentration of remaining palladate ion in the solution decreased by the irradiation, but it gradually increased with time after the irradiation. These phenomena were qualitatively explained by the reaction scheme in that a precursor to the solid particles still exists in the solution after the irradiation was terminated, and that intermediates including the precursor reacted with chloride ion to re-form chloropalladate ions. The average diameter of the particles after the irradiation was ca. 20 nm and it increased with time to 40 nm at 2.75 kGy, and to 80 nm at 8.25 kGy absorption of radiation. The solution of pH = 0.65 by HCl was found to give lower yields of particles than those observed for the solution of pH = 1.95, and to give the particles of diameters about 150-200 nm. In the solution containing HClO 4 instead of HCl, palladium particles were also formed by the irradiation, whereas no backward reaction after the irradiation was observed due to the low concentration of chloride ion in the solution. The average diameter of the particles after the irradiation was about 300 nm and increased with time after the irradiation to a final values which was found to depend on pH of the solution and dose. (author)

  8. SOLID SOLUTION CARBIDES ARE THE KEY FUELS FOR FUTURE NUCLEAR THERMAL PROPULSION

    Science.gov (United States)

    Panda, Binayak; Hickman, Robert R.; Shah, Sandeep

    2005-01-01

    Nuclear thermal propulsion uses nuclear energy to directly heat a propellant (such as liquid hydrogen) to generate thrust for space transportation. In the 1960 s, the early Rover/Nuclear Engine for Rocket Propulsion Application (NERVA) program showed very encouraging test results for space nuclear propulsion but, in recent years, fuel research has been dismal. With NASA s renewed interest in long-term space exploration, fuel researchers are now revisiting the RoverMERVA findings, which indicated several problems with such fuels (such as erosion, chemical reaction of the fuel with propellant, fuel cracking, and cladding issues) that must be addressed. It is also well known that the higher the temperature reached by a propellant, the larger the thrust generated from the same weight of propellant. Better use of fuel and propellant requires development of fuels capable of reaching very high temperatures. Carbides have the highest melting points of any known material. Efforts are underway to develop carbide mixtures and solid solutions that contain uranium carbide, in order to achieve very high fuel temperatures. Binary solid solution carbides (U, Zr)C have proven to be very effective in this regard. Ternary carbides such as (U, Zr, X) carbides (where X represents Nb, Ta, W, and Hf) also hold great promise as fuel material, since the carbide mixtures in solid solution generate a very hard and tough compact material. This paper highlights past experience with early fuel materials and bi-carbides, technical problems associated with consolidation of the ingredients, and current techniques being developed to consolidate ternary carbides as fuel materials.

  9. The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites

    International Nuclear Information System (INIS)

    Cui, Yajuan; Fang, Ruimei; Shang, Hongyan; Shi, Zhonghua; Gong, Maochu; Chen, Yaoqiang

    2015-01-01

    Highlights: • The crystallite size of precipitate increases as the precipitation temperature rises. • The stack of large crystallite can form nanoparticles with big pore size. • Big pore sizes are advantageous to improve the thermal stability. • Phase segregation is restricted in CZ solid solution precipitated at 70 °C. • The reducibility and OSC of the solid solution precipitated at 70 °C are improved. - Abstract: The ceria–zirconia composites (CZ) with a Ce/Zr mass ratio of 1/1 were synthesized by a back-titration method, in which the influence of precipitation temperature on the properties of ceria–zirconia precipitates was investigated. The resulting precipitation and mixed oxides at different precipitation temperatures were then characterized by a range of techniques, including textural properties, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR) as well as oxygen storage capacity (OSC) measurement. The results revealed that ceria–zirconia composites were formed as solid solution and such structure is favored of thermostability and texture properties. In particular, the composite CZ-70 synthesized at 70 °C exhibited prominent thermostability with a surface area of 32 m 2 /g as well as a pore volume of 0.15 cc/g after aging treatment at 1000 °C for 5 h. And this was found to be associated with the wider pore size distribution which maybe owed to the formation of large crystal at the primary stage of precipitation. Additionally, the composite CZ-70 showed excellent reduction property and OSC benefiting from stable texture and structure

  10. Study of valence of cerium and praseodymium ions in Pr1-xCexO2 solid solutions

    International Nuclear Information System (INIS)

    Gartsman, K.G.; Kartenko, N.F.; Melekh, B.T.

    1990-01-01

    Effect of preparation conditions of Pr 1-x Ce x O 2 solid solutions on Ce and Pr ion valence within Pr 1-x Ce x O 2 system is studied. The data obtained enable to conclude that praseodymium may depending on annealing conditions change its state from Pr 3+ to Pr 4+ , while Ce 4+ is stable in Pr 1-x Ce x O 2 solid solutions

  11. The X-ray electronic spectra of TiC-NbC solid solution

    International Nuclear Information System (INIS)

    Cherkashenko, V.M.; Ezhov, A.V.; Nazarova, S.Z.; Kurmaev, Eh.Z.; Nojmann, M.

    2001-01-01

    X-ray photoelectronic spectra of inner levels and valency lands in TiC-NbC solid solutions were studied. Results of combining TiL α -, NbL β2.15 -, CK α - X-ray emission spectra and photoelectronic spectra of valency bands in one energy scale in reference to the Fermi level were analyzed. It is shown that a change in crystal lattice parameters, as well as charge redistribution between titanium and niobium atoms, produce a strong effect on electronic structure formation in the mixed carbides mentioned [ru

  12. Formation of solid solutions on the boundary of zinc oxidezinc telluride heterojunction

    International Nuclear Information System (INIS)

    Tsurkan, A.E.; Buzhor, L.V.

    1987-01-01

    Distribution of ZnO x Te 1-x alloy composition on the interface of zinc oxide-zinc telluride heterojunction depending on the production conditions is investigated. A regularity in the formation of an extended area with constant alloy composition is detected. The regularity is explained by the fact that electric Peltier field conditioned by contact of two heterogeneous semiconductors participates in the solid solution formation process. Peltier field levels off the composition at the end length section. So, a possibility of creating a section with the assigned minor thickness alloy constant composition controlled in the interface of heterojunction occurs

  13. Point defect and transport parameters in the CsI-TlI solid solution

    International Nuclear Information System (INIS)

    Schiraldi, A.; Pezzati, E.; Rossi, P.

    1980-01-01

    Transport and point defect parameters of the solid solution CsI-TlI have been obtained through the already reported semiempirical approach. However in this case preliminary calculations concerning pure cubic TlI have been necessary: ionic migration and point defect formation energies in this salt have been attained by working out experimental data and by applying a simplified Boswara-Lidiard approach, respectively. As well as in the analogous systems, CsBr-TlBr and CsCl-TlCl, the role of the point defect concentration seems more relevant than that of the ionic mobility in determining the trend of the conductivity vs composition. (orig.) [de

  14. A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.

    Science.gov (United States)

    Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin

    2018-02-14

    Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.

  15. Local structure in the disordered solid solution of cis- and trans-perinones

    DEFF Research Database (Denmark)

    Teteruk, Jaroslav L.; Glinnemann, Juergen; Heyse, Winfried

    2016-01-01

    preferred local arrangements, ordering lengths, and probabilities for the arrangement of neighbouring molecules. The superposition of the atomic positions of all energetically favourable calculated models corresponds well with the experimentally determined crystal structures, explaining not only the atomic....... The crystal structure of the solid solution was determined by single-crystal X-ray analysis. Extensive lattice-energy minimizations with force-field and DFT-D methods were carried out on combinatorially complete sets of ordered models. For the disordered systems, local structures were calculated, including...

  16. Methods of deoxygenating metals having oxygen dissolved therein in a solid solution

    Science.gov (United States)

    Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Xia, Yang; Zhou, Chengshang

    2017-06-06

    A method of deoxygenating metal can include forming a mixture of: a metal having oxygen dissolved therein in a solid solution, at least one of metallic magnesium and magnesium hydride, and a magnesium-containing salt. The mixture can be heated at a deoxygenation temperature for a period of time under a hydrogen-containing atmosphere to form a deoxygenated metal. The deoxygenated metal can then be cooled. The deoxygenated metal can optionally be subjected to leaching to remove by-products, followed by washing and drying to produce a final deoxygenated metal.

  17. Formation of Ni(Al, Mo) solid solutions by mechanical alloying and their ordering on heating

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tomilin, I.A.; Blinov, A.M.; Kulik, T.

    2002-01-01

    The Ni(Al, Mo) solid solutions with different crystalline lattice periods (0.3592 and 0.3570 nm correspondingly) are formed in the course of the Ni 70 Al 25 Mo 5 and Ni 75 Al 20 Mo 5 powder mixtures mechanical alloying (MA) (through the mechanical activation in a vibrating mill). After MA the Mo atoms in the Ni 75 Al 20 Mo 5 mixture completely replace the aluminium positions with formation of the Ni 75 (AlMo) 25 (the L1 2 -type) ternary ordered phase, whereby such a distribution remains after heating up to 700 deg C. The Ni(Al, Mo) metastable solution is formed by MA in the Ni 75 Al 20 Mo 5 mixture, which decays with the release of molybdenum and the remained aluminide undergoes ordering by the L1 2 -type [ru

  18. Human Thrombin Detection Through a Sandwich Aptamer Microarray: Interaction Analysis in Solution and in Solid Phase

    Science.gov (United States)

    Sosic, Alice; Meneghello, Anna; Cretaio, Erica; Gatto, Barbara

    2011-01-01

    We have developed an aptamer-based microarray for human thrombin detection exploiting two non-overlapping DNA thrombin aptamers recognizing different exosites of the target protein. The 15-mer aptamer (TBA1) binds the fibrinogen-binding site, whereas the 29-mer aptamer (TBA2) binds the heparin binding domain. Extensive analysis on the complex formation between human thrombin and modified aptamers was performed by Electrophoresis Mobility Shift Assay (EMSA), in order to verify in solution whether the chemical modifications introduced would affect aptamers/protein recognition. The validated system was then applied to the aptamer microarray, using the solid phase system devised by the solution studies. Finally, the best procedure for Sandwich Aptamer Microarray (SAM) and the specificity of the sandwich formation for the developed aptasensor for human thrombin were optimized. PMID:22163703

  19. Silicon nitride-aluminum oxide solid solution (SiAION) formation and densification by pressure sintering

    Science.gov (United States)

    Yeh, H. C.; Sanders, W. A.; Fiyalko, J. L.

    1975-01-01

    Stirred-ball-mill-blended Si3N4 and Al2O3 powders were pressure sintered in order to investigate the mechanism of solid solution formation and densification in the Si3N4-Al2O3 system. Powder blends with Si3N4:Al2O3 mole ratios of 4:1, 3:2, and 2:3 were pressure sintered at 27.6-MN/sq m pressure at temperatures to 17000 C (3090 F). The compaction behavior of the powder blends during pressure sintering was determined by observing the density of the powder compact as a function of temperature and time starting from room temperature. This information, combined with the results of X-ray diffraction and metallographic analyses regarding solutioning and phase transformation phenomena in the Si3N4-Al2O3 system, was used to describe the densification behavior.

  20. Fast Adsorption of Soft Hydrogel Microspheres on Solid Surfaces in Aqueous Solution.

    Science.gov (United States)

    Matsui, Shusuke; Kureha, Takuma; Hiroshige, Seina; Shibata, Mikihiro; Uchihashi, Takayuki; Suzuki, Daisuke

    2017-09-25

    The real-time adsorption behavior of polymeric colloidal microspheres onto solid surfaces in aqueous solution was visualized for the first time using high-speed atomic force microscopy (HS-AFM) to reveal how the softness of the microspheres affects their dynamic adsorption. Studies that focus on the deformability of microspheres upon dynamic adsorption have not yet been reported, most likely on account of a lack of techniques that appropriately depict the dynamic adsorption and deformation behavior of individual microspheres at the nanoscale in real time. In this study, the deformability of microspheres plays a crucial role on the adsorption kinetics, that is, soft hydrogel microspheres adsorb faster than harder elastomeric or rigid microspheres. These results should provide insight towards development of new colloidal nanomaterials that exhibit effective adsorption on specific sites in aqueous solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Significance of Strain in Formulation in Theory of Solid Mechanics

    Science.gov (United States)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    2003-01-01

    The basic theory of solid mechanics was deemed complete circa 1860 when St. Venant provided the strain formulation or the field compatibility condition. The strain formulation was incomplete. The missing portion has been formulated and identified as the boundary compatibility condition (BCC). The BCC, derived through a variational formulation, has been verified through integral theorem and solution of problems. The BCC, unlike the field counterpart, do not trivialize when expressed in displacements. Navier s method and the stiffness formulation have to account for the extra conditions especially at the inter-element boundaries in a finite element model. Completion of the strain formulation has led to the revival of the direct force calculation methods: the Integrated Force Method (IFM) and its dual (IFMD) for finite element analysis, and the completed Beltrami-Michell formulation (CBMF) in elasticity. The benefits from the new methods in elasticity, in finite element analysis, and in design optimization are discussed. Existing solutions and computer codes may have to be adjusted for the compliance of the new conditions. Complacency because the discipline is over a century old and computer codes have been developed for half a century can lead to stagnation of the discipline.

  2. Solid solution trends that impact electrical design of submicron layers in dielectric capacitors

    Science.gov (United States)

    Levi, Roni D.

    It is predictable that future thin layer multilayer dielectrics and thin films embedded capacitors will require higher field and higher reliability performance. This thesis explores the fundamental factors that would limit the high field and reliability performance in thin layer dielectrics based on BaTiO3. Those factors have different origins: On one side, the nature of the metal-dielectric interface was shown to affect the high field dielectric properties of capacitive structures. In addition to that, the intrinsic bulk properties of BaTiO3 based solid solutions affect the high field properties of thin dielectric layers depending on composition and annealing conditions. Both effects were investigated in this study. The temperature dependence of the electrical leakage current density of chemical solution deposited BaTiO3 films on high purity Ni foils was investigated as function of the underlying Ni microstructure. The electrical properties were then characterized on capacitors with and without the presence of Ni grain boundaries. When a Ni grain boundary from the substrate was present in the capacitor used during the electrical measurements, the loss tangent of the capacitor rose rapidly for dc biases exceeding ˜25kV/cm. The critical bias increases to ˜100kV/cm when no substrate grain boundaries are included in the capacitor. In addition, the capacitance-voltage curves are much more symmetric when grain boundaries are absent. This disparity in the electrical behavior was analyzed in terms of the mechanisms of charge conduction across the Ni-dielectric interface. While a reverse biased Schottky emission mechanism dominates the current in areas free of Ni grain boundaries, the Schottky barrier at the cathode is less effective when Ni grain boundaries are present due to local enhancement of the electric field. This, leads to a larger leakage current dominated by the forward biased Schottky barrier at the anode. In addition to the interface influence, the

  3. Complexon Solutions in Freon for Decontamination of Solids and SNF Treatment

    International Nuclear Information System (INIS)

    Kamachev, V.; Shadrin, A.; Murzin, A.

    2008-01-01

    Full text of publication follows: The possibility of using complexon solutions in supercritical and compressed carbon dioxide for decontamination of solid surfaces and for spent nuclear fuel (SNF) treatment was demonstrated in the works of Japanese, Russian and American researchers. The obtained data showed that the use of complexon solutions in carbon dioxide sharply decreases the volume of secondary radioactive wastes because it can be easily evaporated, purified and recycled. Moreover, high penetrability of carbon dioxide allows decontamination of surfaces with complex shape. However, one of the disadvantages of carbon dioxide is its high working pressure (10-20 MPa for supercritical CO 2 and 7 MPa for compressed CO 2 ). Moreover, in case of SNF treatment, carbon dioxide solvent will be contaminated with 14 C, which in the course of SNF dissolution in CO 2 containing TBP*HNO 3 adduct stage will be oxidized into CO 2 . These main disadvantages can be eliminated by using complexon solutions in ozone-friendly Freon HFC-134a for decontamination and SNF treatment. Our experimental data for real contaminated materials showed that the decontamination factor for complexon solutions in liquid Freon HFC-134a at 1,2 MPa and 25 deg. C is close to that attained in carbon dioxide. Moreover, the possibility of SNF treatment in Freon HFC-134a was demonstrated in trials using real SNF and its imitators. (authors)

  4. Nanoscale Detection of Intermediate Solid Solutions in Equilibrated LixFePO4Microcrystals.

    Science.gov (United States)

    May, Brian M; Yu, Young-Sang; Holt, Martin V; Strobridge, Fiona C; Boesenberg, Ulrike; Grey, Clare P; Cabana, Jordi

    2017-12-13

    Redox-driven phase transformations in solids determine the performance of lithium-ion batteries, crucial in the technological transition from fossil fuels. Couplings between chemistry and strain define reversibility and fatigue of an electrode. The accurate definition of all phases in the transformation, their energetics, and nanoscale location within a particle produces fundamental understanding of these couplings needed to design materials with ultimate performance. Here we demonstrate that scanning X-ray diffraction microscopy (SXDM) extends our ability to image battery processes in single particles. In LiFePO 4 crystals equilibrated after delithiation, SXDM revealed the existence of domains of miscibility between LiFePO 4 and Li 0.6 FePO 4 . These solid solutions are conventionally thought to be metastable, and were previously undetected by spectromicroscopy. The observation provides experimental verification of predictions that the LiFePO 4 -FePO 4 phase diagram can be altered by coherency strain under certain interfacial orientations. It enriches our understanding of the interaction between diffusion, chemistry, and mechanics in solid state transformations.

  5. Crystalline structure and electrical properties of Dy1-XCaXMnO3 solid solution

    Directory of Open Access Journals (Sweden)

    Durán, P.

    2002-12-01

    Full Text Available Solid solutions corresponding to the Dy1-xCaXMnO3 system, x=0.0 to 0.60 have been studied. The powders were prepared by solid state reaction of the corresponding oxides and carbonates. Sintered bodies were obtained by firing between 1250 and 1450ºC. All the compositions showed single-phased perovskite-type structure with orthorhombic symmetry and Space Group Pbnm. Increase of the CaO content leads to a monotonic decrease of the orthorhombicity factor b/a with the Ca2+ concentration up to x=0.60. All the solid solutions crystallised with the same O’-type orthorhombic perovskite structure such as pure DyMnO3. Electrical measurements have shown semiconducting behaviour for all the solid solutions. The room temperature conductivity increases monotonically with the CaO content. The 60/40 Ca/Dy composition showed a high value of the electrical conductivity and a correlative very low value of the activation energy. Thermally activated small polaron hopping mechanism controls the conductivity of these perovskite ceramics.Se han estudiado soluciones sólidas correspondientes al sistema Dy1-xCaxMnO3, x=0.0 a 0.60. Los polvos cerámicos fueron preparados por reacción en estado sólido de los correspondientes óxidos y carbonatos. Los materiales cerámicos se obtuvieron por sinterización entre 1250º y 1450ºC. Todas las composiciones fueron monofásicas y mostraron una estructura tipo perovskita, con simetría ortorrómbica y Grupo Espacial Pbnm. El aumento del contenido en CaO llevó a una disminución monótona del factor de ortorrombicidad, b/a. Todas las soluciones sólidas cristalizaron con el mismo tipo de estructura perovskita ortorrómbica O’, como la del compuesto puro DyMnO3. Las medidas eléctricas mostraron comportamiento semiconductor en todas las soluciones sólidas. La conductividad a temperatura ambiente aumenta monótonamente con el contenido de CaO. La composición 60/40 mostró un elevado valor de conductividad y un correlativo

  6. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    International Nuclear Information System (INIS)

    Pietraszkiewicz, Marek; Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina; Dutkiewicz, Grzegorz; Borowiak, Teresa; Kaczmarek, Anna M.; Van Deun, Rik

    2016-01-01

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu 3+ to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip) 3 . The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  7. Modeling reactive transport in non-ideal aqueous-solid solution system

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Haibing, E-mail: haibing.shao@ufz.de [UFZ-Helmholtz Centre for Environmental Research, Department Environmental Informatics, Permoserstrasse 15, 04318 Leipzig (Germany)] [Applied Environmental System Analysis, TU Dresden, Helmholtzstrasse 10, 01069 Dresden (Germany); Dmytrieva, Svitlana V. [SSC Technocentre, Nauky Prosp. 46, 03650 Kyiv (Ukraine)] [Laboratory for Waste Management, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Kolditz, Olaf [UFZ-Helmholtz Centre for Environmental Research, Department Environmental Informatics, Permoserstrasse 15, 04318 Leipzig (Germany)] [Applied Environmental System Analysis, TU Dresden, Helmholtzstrasse 10, 01069 Dresden (Germany); Kulik, Dmitrii A.; Pfingsten, Wilfried; Kosakowski, Georg [Laboratory for Waste Management, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2009-07-15

    The numerical simulation of reactive mass transport processes in complex geochemical environments is an important tool for the performance assessment of future waste repositories. A new combination of the multi-component mass transport code GeoSys/RockFlow and the Gibbs Energy Minimization (GEM) equilibrium solver GEM-Selektor is used to calculate the accurate equilibrium of multiple non-ideal solid solutions which are important for the immobilization of radionuclides such as Ra. The coupled code is verified by a widely used benchmark of dissolution-precipitation in a calcite-dolomite system. A more complex application shown in this paper is the transport of Ra in the near-field of a nuclear waste repository. Depending on the initial inventories of Sr, Ba and sulfate, non-ideal sulfate and carbonate solid solutions can fix mobile Ra cations. Due to the complex geochemical interactions, the reactive transport simulations can describe the migration of Ra in a much more realistic way than using the traditional linear K{sub D} approach only.

  8. Lattice parameters and electrical resistivity of Ceria-Yttria solid solutions

    International Nuclear Information System (INIS)

    Rey, Jose Fernando Queiruga

    2002-01-01

    Ce0 2 :u mol% Y 2 O 3 (u=0, 4, 6, 8, 10 and 12) solid solutions were prepared by the conventional powder mixture technique. The main purposes of this work are: the study of the dependence of the lattice parameter of the Ceria cubic phase on the Yttria content, comparing the experimental data with data calculated according to the existing theoretical models; to determine the dependence of the ionic conductivity on the Yttria content; and to study the stability of the cubic fluorite phase after extensive thermal treatments (aging) of the Ceria-Yttria specimens. The results show that the lattice parameter of the solid solutions follows the Vegard's law and can be described by the two reported theoretical models. The 8 mol% Yttria-doped Ceria was found to present the largest value of ionic conductivity. Preliminary results show that a large decrease is found for only 1 h aging at 700 deg C and that the ionic conductivity decreases for ceramic specimens aged for times up to 10 h. (author)

  9. Solubility of jarosite solid solutions precipitated from acid mine waters, Iron Mountain, California

    Science.gov (United States)

    Alpers, Charles N.; Nordstrom, D. Kirk; Ball, J.W.

    1989-01-01

    Because of the common occurrence of 15 to 25 mole percent hydronium substitution on the alkali site in jarosites, it is necessary to consider the hydronium content of jarosites in any attempt at rigorous evaluation of jarosite solubility or of the saturation state of natural waters with respect to jarosite. A Gibbs free energy of 3293.5±2.1 kJ mol-1 is recommended for a jarosite solid solution of composition K.77Na.03(H3O).20Fe3(SO4)2(OH)6. Solubility determinations for a wider range of natural and synthetic jarosite solid solutions will be necessary to quantify the binary and ternary mixing parameters in the (K-Na-H3O) system. In the absence of such studies, molar volume data for endmember minerals indicate that the K-H3O substitution in jarosite is probably closer to ideal mixing than either the Na-K or Na-H3O substitution.

  10. Multiple Multidentate Halogen Bonding in Solution, in the Solid State, and in the (Calculated) Gas Phase.

    Science.gov (United States)

    Jungbauer, Stefan H; Schindler, Severin; Herdtweck, Eberhardt; Keller, Sandro; Huber, Stefan M

    2015-09-21

    The binding properties of neutral halogen-bond donors (XB donors) bearing two multidentate Lewis acidic motifs toward halides were investigated. Employing polyfluorinated and polyiodinated terphenyl and quaterphenyl derivatives as anion receptors, we obtained X-ray crystallographic data of the adducts of three structurally related XB donors with tetraalkylammonium chloride, bromide, and iodide. The stability of these XB complexes in solution was determined by isothermal titration calorimetry (ITC), and the results were compared to X-ray analyses as well as to calculated binding patterns in the gas phase. Density functional theory (DFT) calculations on the gas-phase complexes indicated that the experimentally observed distortion of the XB donors during multiple multidentate binding can be reproduced in 1:1 complexes with halides, whereas adducts with two halides show a symmetric binding pattern in the gas phase that is markedly different from the solid state structures. Overall, this study demonstrates the limitations in the transferability of binding data between solid state, solution, and gas phase in the study of complex multidentate XB donors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R.; Chen, Long-Qing (Penn); (Xian Jiaotong); (CIW); (Simon); (TRS Techn); (Wollongong)

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  12. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.

    Science.gov (United States)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R; Chen, Long-Qing

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50-80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  13. Structure and magnetic properties of metastable Co-Cu solid solution nanowire arrays fabricated by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tao; Li, Fashen; Wang, Ying; Song, Lijing [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou Univesity, Lanzhou 730000 (China)

    2006-08-15

    Nanowire arrays of the metastable Co{sub x}Cu{sub 1-x} (0.20{<=}x{<=}0.85) solid solution system which can not be obtained by equilibrium methods, were prepared by electrodeposition in pores of anodic aluminum oxide (AAO) template, and subsequently annealed at different temperatures. The as-deposited samples all show single phase of fcc structure, and lattice parameters decrease with the increase of Co content and fundamentally accord with Vegard's law. The phase transition with heat treatment was investigated by X-ray diffraction and differential thermal analysis (DTA) which further confirmed the formation of solid solution. With Co content increasing, the coercivity along nanowire axis for as-deposited samples increases, but it decreases for the annealed samples at 700 C. This phenomenon was explained considering the interaction of Co particles through Cu in nanowires after phase separation. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons

    Science.gov (United States)

    Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; Zhang, Li; Wu, Zili; Yang, Shize; Shi, Hongliang; Zhu, Qiulian; Chen, Yinfei; Dai, Sheng

    2015-10-01

    The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C-H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn0.5Ce0.5Ox solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100-120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140-160 °C, conversion: 3-5%). The high activity can be attributed to the formation of a Mn0.5Ce0.5Ox solid solution with an ultrahigh manganese doping concentration in the CeO2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C-H bonds and highly reducible Mn4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface.

  15. Thermodynamic Stability of Actinide-Dioxide Solid Solutions and Surface Interactions with Water

    Science.gov (United States)

    Asta, Mark

    2012-02-01

    Fluorite-structured actinide dioxides are the most common forms of fuel used in nuclear energy production worldwide. This talk will provide an overview of insights into the energetics of these compounds derived through the combination of density-functional-theory-based computational studies (including Hubbard-U corrections) and calorimetric measurements. The talk will focus on two main topics: the mixing energetics of cation solid solutions, and the energetics of water adsorption on the surfaces of these compounds. For the first topic, we present results for ThO2 and UO2 based solid solutions, highlighting the roles of elastic energy arising from cation size mismatch, electrostatic interactions, and charge-transfer reactions, in governing the sign and magnitude of the mixing energetics. For water adsorption, we contrast results for surface and adsorption energies on two fluorite-structured compounds, ThO2 and CeO2, that are relevant for understanding the behavior of water on actinide oxide surfaces more generally. Through a comparison between calorimetric measurements and computational results we assess the level of accuracy achieved in the computational modeling, and suggest areas where further experimental studies would be particularly useful.

  16. Investigating conceptual models for physical property couplings in solid solution models of cement

    International Nuclear Information System (INIS)

    Benbow, Steven; Watson, Claire; Savage, David

    2005-11-01

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste

  17. Investigating conceptual models for physical property couplings in solid solution models of cement

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven; Watson, Claire; Savage, David [Quintesssa Ltd., Henley-on-Thames (United Kingdom)

    2005-11-15

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste.

  18. Solid phases and solution species of different elements in geologic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rai, D.; Serne, R.J.

    1978-03-01

    An investigation was conducted to predict from thermodynamic data the nature of the solid phases and solution species in various weathering environments of different elements (Am, Sb, Ce, Cs, Co, Cm, Eu, I, Np, Pu, Pm, Ra, Ru, Sr, Tc, T, U, and Zr) that are present in radioactive wastes, to predict the degree of adsorption of different elements by the solid matrices and to compare these predictions with observed results, and to determine the influence of different factors (such as Ph, Eh, complexing ligands) on total pore-water concentration and the nature of solution species of selected elements. Based on the nature of the predominant solution species, qualitative predictions regarding the adsorption and movement of various elements can be made. Soils and sediments mainly show cation exchange capacities (since these materials carry a large net negative charge) and to a limited extent, anion exchange capacities. Thus, most cations migrate through the soil or rock column at speeds slower than the groundwater. Relative to each other, the trivalent cations generally move the slowest, the divalent cations at intermediate velocities and the monovalent cations most rapidly. Tritium is unique in that it readily substitutes for hydrogen in water and migrates, therefore, at the same velocity as water. The simple anions tend to migrate through soils and rocks with little reaction because usually a pH of less than 4 is required to activate a significant soil anion exchange capacity. The migration and retention of inorganic complex species (mononuclear and polynuclear) would also be dependent upon the charge and size of the species. The behavior of organic complexed species of elements is difficult to predict because of the lack of knowledge regarding the exact nature of the organic ligands, a wide variation in amounts and types of organic ligands, and the size and solubility of these organics.

  19. High-Performance Hydrogen Evolution from MoS2(1-x) P(x) Solid Solution.

    Science.gov (United States)

    Ye, Ruquan; del Angel-Vicente, Paz; Liu, Yuanyue; Arellano-Jimenez, M Josefina; Peng, Zhiwei; Wang, Tuo; Li, Yilun; Yakobson, Boris I; Wei, Su-Huai; Yacaman, Miguel Jose; Tour, James M

    2016-02-17

    A MoS2(1-x) P(x) solid solution (x = 0 to 1) is formed by thermally annealing mixtures of MoS2 and red phosphorus. The effective and stable electrocatalyst for hydrogen evolution in acidic solution holds promise for replacing scarce and expensive platinum that is used in present catalyst systems. The high performance originates from the increased surface area and roughness of the solid solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Structural aspects of the formation of solid solutions in the NaF-KF-AlF3 system

    Science.gov (United States)

    Samoilo, Alexander S.; Zaitseva, Yulia N.; Dubinin, Peter S.; Piksina, Oksana E.; Ruzhnikov, Sergei G.; Yakimov, Igor S.; Kirik, Sergei D.

    2017-08-01

    The formation of solid solutions in the ternary system NaF-KF-AlF3 has been studied by X-ray diffraction and thermal analysis. Chiolite has been shown to form solid solutions with the composition (Na(5-x)Kx)Al3F14, in the limited range of 0solid solutions are stable in the range from room to melting point temperature. A wide range of solid solutions based on β-cryolite (Na3AlF6) and elpasolite (K2NaAlF6) above 540 °C has been studied in detail. It is only the 8-fold cationic position in the β-cryolite structure which appears to have contributed into the substitution in the full range of solid solutions. The solid solution decays into a mixture of α-Na3AlF6 and K2NaAlF6 upon calcination below 540 °C., followed by further cooling without changing the α-Na3AlF6 composition. Elpasolite initially containing an excess of sodium ions, has yielded cryolite and stoichiometric K2NaAlF6 below 340 °C. The phase K2NaAl3F12 present in two polymorphic forms, has not formed a wide range of solid solutions; however, a slight excess of potassium ions has improved the stability of the high-temperature form.

  1. MANAGEMENT OF SOLID WASTE GENERATED BY THE INTEGRATED STEELWORKS ACTIVITY AND SOLUTIONS TO REDUCE THE ENVIRONMENTAL IMPACT

    Directory of Open Access Journals (Sweden)

    Anişoara CIOCAN

    2010-05-01

    Full Text Available The development of steel industry is subject to solve major problems arising from industry-nature relationship, strictly targeted on pollution control and protection of natural resources and energy. In this paper we discussed about the management of solid waste generated by an integrated steelwork located near a major urban area and the adopted solutions for the reduction of environmental impact. There are summarized technical solutions that are currently applied and were proposed some solutions that can be applied in accordance with the environmental legislations. The new solutions are proposed for integrated management of solid wastes in accordance with: the exact quantification (quantitative, qualitative and the generation sources of emissions and solid wastes; controlled storage; minimization of the wastes and its harmfulness; transformation of the wastes into valuable by-products used directly by the company in a subsequent process, or by external down-stream user.

  2. Iron site occupancies in magnetite-ulvospinel solid solution: A new approach using XMCD

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, C. I.; Henderson, C. M. B.; Telling, N. D.; Pattrick, R. A.D.; Vaughan, D. J.; Charnock, J. M.; Arenholz, E.; Tuna, F.; Coker, V.S.; Laan, G. van der

    2009-06-22

    Ordering of Fe{sup 3+} and Fe{sup 2+} between octahedral (Oh) and tetrahedral (Td) sites in synthetic members of the magnetite (Fe{sub 3}O{sub 4}) - ulvoespinel (Fe{sub 2}TiO{sub 4}) solid-solution series was determined using Fe L{sub 2,3}-edge X-ray magnetic circular dichroism (XMCD) coupled with electron microprobe and chemical analysis, Ti L-edge spectroscopy, Fe K-edge EXAFS and XANES, Fe{sub 57} Moessbauer spectroscopy, and unit cell parameters. Microprobe analysis, cell edges and chemical FeO determinations showed that the bulk compositions of the samples were stoichiometric magnetite-ulvoespinel solid-solutions. Surface sensitive XMCD showed that the surfaces of these oxide minerals were more sensitive to redox conditions and some samples required re-equilibration with suitable solid-solid buffers. Detailed site-occupancy analysis of these samples gave XMCD-Fe{sup 2+}/Fe{sup 3+} ratios very close to stoichiometric values. L{sub 2,3}-edge spectroscopy showed that Ti{sup 4+} was restricted to Oh sites. XMCD results showed that significant Fe{sup 2+} only entered Td when the Ti content was > 0.40 apfu while Fe{sup 2+} in Oh increased from 1 a.p.f.u in magnetite to a maximum of {approx}1.4 apfu in USP45. As the Ti content increased from this point, the steady increase in Fe{sup 2+} in Td sites was clearly observable in the XMCD spectra, concurrent with a slow decrease in Fe{sup 2+} in Oh sites. Calculated magnetic moments showed a steady decrease from magnetite (4.06 {mu}{sub B}) to USP45 (1.5 {mu}{sub B}) and then a slower decrease towards the value for ulvoespinel (0 {mu}{sub B}). Two of the synthesized samples were also partially maghemitized by re-equilibrating with an oxidizing Ni-NiO buffer and XMCD showed that Fe{sup 2+} oxidation only occurred at Oh sites, with concomitant vacancy formation restricted to this site. This study shows the advantage of using XMCD as a direct measurement of Fe oxidation state in these complex magnetic spinels. These results

  3. Direct visualisation of mesh phases at solid/solution interfaces by AFM

    International Nuclear Information System (INIS)

    Blom, A.; Warr, G.G.

    2003-01-01

    Full text: Using soft-contact AFM imaging, the adsorbed layer structure of single chained dodecyltrimethylammonium bromide (DTAB) and double chained didodecyldimethylammonium bromide (DDAB) mixed solutions at varying compositions has been studied. DTAB forms rods on mica and globules on quartz whereas DDAB exists as bilayer on both substrates. On mica, the observed morphologies as composition was changed from DDAB-rich mixtures to DTAB-rich mixtures changed from bilayer to rods but also exhibited an isotropic, periodically textured structure in a narrow intermediate composition range. On quartz, the transition sequence followed bilayer > periodic isotropic texture >rods >globules with increasing DTAB content. Again, the periodic isotropic texture was observed only over a very narrow composition range. We interpret the observed transitions by the formation of a mesh phase on the surface. This phase is consistent with the average curvature progression from bilayer to rods, and consists of branched rods. Studies performed on solution structures of fluorinated surfactants 1 and long-chained polyoxyethylene surfactants 2 have elucidated the balance between headgroup curvature forces and alkyl chain flexibility as responsible for formation of intermediate structures in bulk. It is believed that the resulting balance of forces between structures of high curvature preferred by DTAB and the reduced alkyl chain flexibility of DDAB is being satisfied by the formation of a mesh phase at the solid/solution interface

  4. Insights into the Photophysics and Supramolecular Organization of Congo Red in Solution and the Solid State.

    Science.gov (United States)

    Costa, Ana L; Gomes, Ana C; Pillinger, Martyn; Gonçalves, Isabel S; Pina, João; Seixas de Melo, J Sérgio

    2017-03-03

    Steady-state and time-resolved absorption and fluorescence measurements are reported for Congo Red (CR) in aqueous and dimethylsulfoxide (DMSO) solutions. The very low fluorescence quantum yield (≈10 -4 ) for CR in dilute solutions together with the absence of a triplet state indicates that internal conversion is the dominant deactivation route with more than 99.99 % of the quanta loss (attributed to the energy gap law for radiationless transitions). Although no direct evidence for trans-cis photoisomerization was obtained from absorption or fluorescence data, the global analysis of fs-transient absorption data indicates the presence of a photoproduct with a lifetime of ≈170 ps that is suggested to be associated with such a process. Spectral data for more concentrated CR solutions indicate the presence of oblique or twisted J-type aggregates. These results are compared with spectra for CR in the solid state (sodium salt) and intercalated in a layered double hydroxide via a one-step co-precipitation route. Powder XRD and electronic spectral data for the nanohybrid indicate that the CR guest molecules are intercalated as a monolayer consisting of slipped cofacial J-type aggregates. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Theoretical multi-physics approaches to solid-solution strengthening of Al

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Duancheng; Friak, Martin; Raabe, Dierk; Neugebauer, Joerg [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    2009-07-01

    The strengthening of soft metallic materials has a long tradition and is an important metallurgical topic since the time when ancient smiths forged the first swords. Intense materials research revealed a combination of three mechanisms as decisive for solid-solution strengthening phenomena: (i) the size mismatch of components (Mott and Nabarro's parelastic concept), (ii) the elastic modulus mismatch of atoms (Fleischer's dielastic contribution), and (iii) the concentration of solutes (statistical concept of Friedel and Labusch). Combining density functional theory calculations and linear-elasticity theory, the key parameters that are essential for the classical strengthening theories are determined in order to test them and identify their possible validity limits. The strengthening of fcc aluminium is chosen as an example and a series of binary systems Al-X (with X=Ca,Sr,Ir,Li,Mg,Cu) was considered. Comparing our results with those obtained by applying classical theories we find clear deviations. These deviations originate from non-classical lattice distortions due to the size mismatch of solute atoms in their first coordination shells.

  6. Indium-defect interactions in FCC and BCC metals studied using the modified embedded atom method

    Energy Technology Data Exchange (ETDEWEB)

    Zacate, M. O., E-mail: zacatem1@nku.edu [Northern Kentucky University, Department of Physics, Geology, and Engineering Technology (United States)

    2016-12-15

    With the aim of developing a transferable potential set capable of predicting defect formation, defect association, and diffusion properties in a wide range of intermetallic compounds, the present study was undertaken to test parameterization strategies for determining empirical pair-wise interaction parameters in the modified embedded atom method (MEAM) developed by Baskes and coworkers. This report focuses on indium-solute and indium-vacancy interactions in FCC and BCC metals, for which a large set of experimental data obtained from perturbed angular correlation measurements is available for comparison. Simulation results were found to be in good agreement with experimental values after model parameters had been adjusted to reproduce as best as possible the following two sets of quantities: (1) lattice parameters, formation enthalpies, and bulk moduli of hypothetical equiatomic compounds with the NaCl crystal structure determined using density functional theory and (2) dilute solution enthalpies in metals as predicted by Miedema’s semi-empirical model.

  7. Noble Metal-Free Ceria-Zirconia Solid Solutions Templated by Tobacco Materials for Catalytic Oxidation of CO

    Directory of Open Access Journals (Sweden)

    Donglai Zhu

    2016-09-01

    Full Text Available A series of ceria-zirconia solid solutions were synthesized using tobacco leaves, stems and stem-silks as biotemplates. A combination of physicochemical techniques such as powder X-ray diffraction (XRD, N2 adsorption/desorption measurement, scanning electron microscopy (SEM, and transmission electron microscopy (TEM were used to characterize the as-synthesized samples. The results show that the morphologies of the templates were well replicated in the obtained ceria-zirconia solid solutions. Catalytic oxidation activities of CO over the ceria-zirconia solid solutions were then investigated. The catalyst templated by tobacco stem-silk exhibited higher conversion of CO at lower temperature than that of ceria-zirconia solid solutions templated by tobacco leaves and stems or without templates due to its special morphology. The catalyst even showed similar CO conversion when compared to ceria-zirconia solid solutions doped with 1.0 wt % noble metals such as Pt, Ag and Au. The results highlighted the advantages of using tobacco as biotemplate.

  8. Magnetocaloric properties and solid solution strengthening of Gd-C and Gd-Dy-C alloys

    International Nuclear Information System (INIS)

    Chen Yungui; Wu Jinping; Xiao Sufen; Zhang Tiebang; Tang Yongbai; Tu Mingjing

    2006-01-01

    In this paper, the near room temperature magnetic refrigerating solid solution alloys, Gd 1-x -C x (x ≤ 5 at.%) and Gd 0.98-x Dy x C 0.02 (x ≤ 20 at.%), were investigated together with a consideration of mechanical properties required by the container of the refrigerant material in a magnetic refrigerator. The results show that the micro-hardness of pure gadolinium metal can be much improved by adding carbon. The Curie temperature and adiabatic temperature changes of the Gd 1-x C x (x 0.98-x Dy x C 0.02 alloys can be tuned by adding dysprosium and their adiabatic temperature changes do not change much in a magnetic field change of 0-1 T

  9. Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys

    Science.gov (United States)

    Wang, Xin-Xin; Niu, Liang-Liang; Wang, Shaoqing

    2018-04-01

    Systematic energetics analysis on the shape preference, relative stability and radiation-induced segregation of interstitial loops in nickel-containing single-phase concentrated solid-solution alloys have been conducted using atomistic simulations. It is shown that the perfect loops prefer rhombus shape for its low potential energy, while the Frank faulted loops favor ellipse for its low potential energy and the possible large configurational entropy. The decrease of stacking fault energy with increasing compositional complexity provides the energetic driving force for the formation of faulted loops, which, in conjunction with the kinetic factors, explains the experimental observation that the fraction of faulted loops rises with increasing compositional complexity. Notably, the kinetics is primarily responsible for the absence of faulted loops in nickel-cobalt with a very low stacking fault energy. We further demonstrate that the simultaneous nickel enrichment and iron/chromium depletion on interstitial loops can be fully accounted for by their energetics.

  10. Low-temperature thermal expansion anomalies in indium and its solid solution alloys with thallium

    International Nuclear Information System (INIS)

    Liu, M.; Finlayson, T.R.

    1993-01-01

    Low-temperature thermal expansion measurements have been made for fct, solid solution indium-thallium single-crystal alloys containing 6, 19, 24 and 29 at.% Tl. The expansion coefficients along the 'a' and 'c' axes for the 6, 19 and 24% alloys follow the same anomalous variations with temperature below about 15 K as for those of pure indium, with no change in magnitude. This contrasts with an increased magnitude for the anomalies previously reported for In26.5at.%Tl alloy and reported here for the a-axis expansion for In29at.%Tl. These observations are discussed in terms of the Fermi surface topology for indium and their implications for the fcc to fct transformation in In-Tl alloys being electronically driven. 23 refs., 9 figs

  11. Magnetic and electrical properties in BaNiS2-type solid solutions

    International Nuclear Information System (INIS)

    Irizawa, Akinori; Yoshimura, Kazuyoshi; Kosuge, Koji

    2000-01-01

    The magnetic and electrical properties are reported in the new solid solutions BaCo 1-x Cu x S 2 and BaNi 1-x Fe x S 2 . Both compounds show spin-glass-like behavior, although the type of spin frustrations is different with each other. BaCo 1-x Cu x S 2 shows a competition type spin-glass behavior with reentrant phenomenon from antiferromagnetic to spin-glass at low temperatures. BaNi 1-x Fe x S 2 shows a dilute type spin-glass behavior together with super-paramagnetic properties. The temperature variation of 57 Fe Moessbauer spectra in BaNi 0.8 Fe 0.2 S 2 is explicable in a framework of cluster-glass. (author)

  12. Synthesis, solid and solution studies of paraquat dichloride calixarene complexes. Molecular modelling

    Energy Technology Data Exchange (ETDEWEB)

    Garcia S, I.; Ramirez, F. M., E-mail: flor.ramirez@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    The interaction of the herbicide paraquat dichloride (P Q, substrate) with p-tert-butylcalix arenas (L, receptor) was investigated in both the solution and solid states. The isolated paraquat calixarene complexes were characterised by UV-visible, {sup 1}H NMR, ESI-Ms, Luminescence and IR spectroscopies and elemental analysis. The stoichiometry of complexes 1 and 2 was 1:1 (1 herbicide: 1 calixarene) and both revealed a biexponential luminescence decay with lifetimes depending on the size and the conformational particularity of the calixarenes. Molecular modelling suggested that both calixarenes interact with the herbicide through cation-{pi} interaction. P Q in included in the p-tert butylcalix a rene cavity, a situation favoured by its pinched conformation in polar solvent while it is partially included in the p-tert butylcalix a rene cavity because of its in-out cone conformation. The theoretical results, in particular using Mopac procedures, were in agreement with the experimental findings. (Author)

  13. Synthesis, solid and solution studies of paraquat dichloride calixarene complexes. Molecular modelling

    International Nuclear Information System (INIS)

    Garcia S, I.; Ramirez, F. M.

    2010-01-01

    The interaction of the herbicide paraquat dichloride (P Q, substrate) with p-tert-butylcalix arenas (L, receptor) was investigated in both the solution and solid states. The isolated paraquat calixarene complexes were characterised by UV-visible, 1 H NMR, ESI-Ms, Luminescence and IR spectroscopies and elemental analysis. The stoichiometry of complexes 1 and 2 was 1:1 (1 herbicide: 1 calixarene) and both revealed a biexponential luminescence decay with lifetimes depending on the size and the conformational particularity of the calixarenes. Molecular modelling suggested that both calixarenes interact with the herbicide through cation-π interaction. P Q in included in the p-tert butylcalix a rene cavity, a situation favoured by its pinched conformation in polar solvent while it is partially included in the p-tert butylcalix a rene cavity because of its in-out cone conformation. The theoretical results, in particular using Mopac procedures, were in agreement with the experimental findings. (Author)

  14. Field-effect-induced transport properties of Zn1-x Mg x O nanocrystal solid solution

    Science.gov (United States)

    Kim, Youngjun; Yang, Heesun; Park, Byoungnam

    2017-07-01

    We report electrical properties of Zn1-x Mg x O nanocrystal solid solution (NCSS) depending on the composition of Mg using a bottom-contact field-effect transistor. In the Zn1-x Mg x O NCSS, as the composition of Mg increases, the field-effect mobility decreases with the threshold voltage shifting to a more positive value. The decrease in the field-effect mobility is attributed to the decrease in the size of the Zn1-x Mg x O NCSS. The increase in the electron trap density in the Zn1-x Mg x O NCSS with the addition of Mg caused a more positive threshold voltage shift. Change in the trap density as a function of Mg composition was demonstrated through comparison of the photoluminescence intensity.

  15. Structural parameters of polyethylenes obtained using a palladium catalyst: dilute solution and solid state studies

    International Nuclear Information System (INIS)

    Meneghetti, Simoni Plentz; Lutz, Pierre J.; Duval, M.; Kress, Jacky; Lapp, A.

    2001-01-01

    Polyethylenes were obtained using palladium catalyst [(Ar N=C(Me)-C(Me)=N Ar) Pd(CH 2 ) 3 (COOMe)] + BAr' 4 - (VERSIPOL TM ); Ar2,6-i-Pr 2 -C 6 H 3 and Ar'3,5-(CF 3 ) 2 -C 6 H 3 . The combination of dilute solution and solid state characterization of these polyethylenes revealed strong differences between structural parameters of samples prepared under almost identical conditions except ethylene pressure (6, 3 and 1 bar). These differences can be explained by the fact that samples prepared at 6 bar are almost linear, with only a few short branches, whereas those synthesized at 1 bar are highly branched or even hyper branched. (author)

  16. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, MoO2

    Directory of Open Access Journals (Sweden)

    Felipe Legorreta-García

    2015-05-01

    Full Text Available The synthesis of Fe3+, Mo4+ and Y3+ fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD, scanning electron microscopy (SEM and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe3+, Mo4+ and Y3+ ions in the zirconia tetragonal monophase, even after calcinations.

  17. Radiolysis of KCN aqueous solution in the presesnce of solid catalysts

    International Nuclear Information System (INIS)

    Qi Shengchu; Dong Changzhi; Jilan

    1989-01-01

    γ-radiolysis of KCN aqueous solution contained clay and pd-black has been studied. The product spectrum and the main product yields have also been determined by paper chromatography. A small amounts of clay (0.2 g/5 ml) can lightly increase the yields of amino acids, but a large quantities of clay (2.7 g/5 ml) can inhibit the formation of amino acids. Some solids (such as clay, pd-black) can catalytically polymerize CN - ion to form polymers which produce some amino acids on hydrolysis. There exist some evidence about peptide or quasi-peptide substances in the clay-containing samples. The samples show positive reaction to Folin-Phenol reagent and amino acids are formed on hydrolysis

  18. Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis.

    Science.gov (United States)

    Wang, Chengwei; Wang, Yuan; Graser, Jake; Zhao, Ran; Gao, Fei; O'Connell, Michael J

    2013-12-23

    A facile and scalable solution-based, spray pyrolysis synthesis technique was used to synthesize individual carbon nanospheres with specific surface area (SSA) up to 1106 m(2)/g using a novel metal-salt catalyzed reaction. The carbon nanosphere diameters were tunable from 10 nm to several micrometers by varying the precursor concentrations. Solid, hollow, and porous carbon nanospheres were achieved by simply varying the ratio of catalyst and carbon source without using any templates. These hollow carbon nanospheres showed adsorption of to 300 mg of dye per gram of carbon, which is more than 15 times higher than that observed for conventional carbon black particles. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed, with no capacitance loss after 20,000 cycles.

  19. Distribution of rare-earths in solid solution crandalita- goyazita of Sapucaia (Bonito-Para)

    International Nuclear Information System (INIS)

    Costa, M.L. da; Melo Costa, W.A. de

    1987-01-01

    The Crandallite are predominant in the lateritic phosphates of Sapucaia, in the form of the solid solution Crandallite (Cn)- Goyazite (Gz)-Florencite (Fl). The Crandallite-Goyazite is predominant, where the maximum proportion of Florencite is Cn 60 Cz 34.8 Fl 5.2 - This proportion of Florencite is relatively high for laterites, and for this case having up to 1,374% weight of TR 2 O 3 in the total sample. The light rare elements are predominant over the heavy ores, and are illustrated in the distribution curve normalized for the chondrites. This curve is partially comparable with the curve for Apatite presents slight negative anomaly for the element Europium, and slight positive anomaly for The elements Thulium. The geochemical caracteristics for the rare earths in this group allow the prediction for the original rock for the laterites. (author) [pt

  20. Solid-Phase and Oscillating Solution Crystallization Behavior of (+)- and (-)-N-Methylephedrine.

    Science.gov (United States)

    Tulashie, Samuel Kofi; Polenske, Daniel; Seidel-Morgenstern, Andreas; Lorenz, Heike

    2016-11-01

    This work involves the study of the solid-phase and solution crystallization behavior of the N-methylephedrine enantiomers. A systematic investigation of the melt phase diagram of the enantiomeric N-methylephedrine system was performed considering polymorphism. Two monotropically related modifications of the enantiomer were found. Solubilities and the ternary solubility phase diagrams of N-methylephedrine enantiomers in 2 solvents [isopropanol:water, 1:3 (Vol) and (2R, 3R)-diethyl tartrate] were determined in the temperature ranges between 15°C and 25°C, and 25°C and 40°C, respectively. Preferential nucleation and crystallization experiments at higher supersaturation leading to an unusual oscillatory crystallization behavior as well as a successful preferential crystallization experiment at lower supersaturation are presented and discussed. Copyright © 2016. Published by Elsevier Inc.

  1. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, Mo)O {sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Legorreta-Garcia, F.; Esperanza Hernandez-Cruz, L.; Villanueva-Ibanez, M.; Flores-Gonzalez, M. A.

    2015-10-01

    The synthesis of Fe{sup 3}+, Mo{sup 4+} and Y{sup 3+} fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM) results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe{sup 3+}, Mo{sup 4+} and Y{sup 3+} ions in the zirconia tetragonal monophase, even after calcinations. (Author)

  2. Radiation-induced separation of solid solution in Fe-Ni invar

    Science.gov (United States)

    Danilov, S. E.; Arbuzov, V. L.; Kazantsev, V. A.

    2011-07-01

    Radiation-induced solid solution separation (RISSS) in the Fe-34.7 at.% Ni invar alloy was investigated by residual resistivity and linear thermal expansion coefficient (TEC) measurements. The alloy was irradiated with 5 MeV electrons at 245-570 K and isochronous annealed. It was found that RISSS leads to an increase of 20% in the residual resistivity and an increase of 10 -5 K -1 in the TEC for an electron irradiation dose of 5 × 10 18 cm -2. The kinetics of RISSS are the same, but the irradiation efficiency coefficient increases approximately by a factor of 10 when the irradiation temperature rises in the range of 240-570 K. Vacancy clusters, which are formed under irradiation, retard the decomposition. It was shown that dissociation of the vacancy clusters at temperatures of 320-500 K was followed by the free migration of the formed vacancies, and leads to further RISSS.

  3. Flow-Solution-Liquid-Solid Growth of Semiconductor Nanowires: A Novel Approach for Controlled Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Jennifer A. [Los Alamos National Laboratory; Palaniappan, Kumaranand [Los Alamos National Laboratory; Laocharoensuk, Rawiwan [National Science and Technology Center, Thailand; Smith, Nickolaus A. [Los Alamos National Laboratory; Dickerson, Robert M. [Los Alamos National Laboratory; Casson, Joanna L. [Los Alamos National Laboratory; Baldwin, Jon K. [Los Alamos National Laboratory

    2012-06-07

    Semiconductor nanowires (SC-NWs) have potential applications in diverse technologies from nanoelectronics and photonics to energy harvesting and storage due to their quantum-confined opto-electronic properties coupled with their highly anisotropic shape. Here, we explore new approaches to an important solution-based growth method known as solution-liquid-solid (SLS) growth. In SLS, molecular precursors are reacted in the presence of low-melting metal nanoparticles that serve as molten fluxes to catalyze the growth of the SC-NWs. The mechanism of growth is assumed to be similar to that of vapor-liquid-solid (VLS) growth, with the clear distinctions of being conducted in solution in the presence of coordinating ligands and at relatively lower temperatures (<300 C). The resultant SC-NWs are soluble in common organic solvents and solution processable, offering advantages such as simplified processing, scale-up, ultra-small diameters for quantum-confinement effects, and flexible choice of materials from group III-V to groups II-VI, IV-VI, as well as truly ternary I-III-VI semiconductors as we recently demonstrates. Despite these advantages of SLS growth, VLS offers several clear opportunities not allowed by conventional SLS. Namely, VLS allows sequential addition of precursors for facile synthesis of complex axial heterostructures. In addition, growth proceeds relatively slowly compared to SLS, allowing clear assessments of growth kinetics. In order to retain the materials and processing flexibility afforded by SLS, but add the elements of controlled growth afforded by VLS, we transformed SLS into a flow based method by adapting it to synthesis in a microfluidic system. By this new method - so-called 'flow-SLS' (FSLS) - we have now demonstrated unprecedented fabrication of multi-segmented SC-NWs, e.g., 8-segmented CdSe/ZnSe defined by either compositionally abrupt or alloyed interfaces as a function of growth conditions. In addition, we have studied growth

  4. Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH4–LiI Solid Solution

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Mýrdal, Jón Steinar Garðarsson; Blanchard, Didier

    2013-01-01

    The LiBH4–LiI solid solution is a good Li+ conductor and a promising crystalline electrolyte for all-solid-state lithium based batteries. The focus of the present work is on the effect of heat treatment on the Li+ conduction. Solid solutions with a LiI content of 6.25–50% were synthesized by high...

  5. Comparative analysis of zaleplon complexation with cyclodextrins and hydrophilic polymers in solution and in solid state.

    Science.gov (United States)

    Jablan, Jasna; Szalontai, Gábor; Jug, Mario

    2012-12-01

    The aim of this work was to investigate the potential synergistic effect of water-soluble polymers (hypromellose, HPMC and polyvinylpyrrolidone, PVP) on zaleplon (ZAL) complexation with parent β-cyclodextrin (βCD) and its randomly methylated derivative (RAMEB) in solution and in solid state. The addition of HPMC to the complexation medium improved ZAL complexation and solubilization with RAMEB (K(ZAL/RAMEB)=156±5M(-1) and K(ZAL/RAMEB/HPMC)=189±8M(-1); p0.05). Although PVP increased the ZAL aqueous solubility from 0.22 to 0.27mg/mL, it did not show any synergistic effects on ZAL solubilization with the cyclodextrins tested. Binary and ternary systems of ZAL with βCD, RAMEB and HPMC were prepared by spray-drying. Differential scanning calorimetry, X-ray powder diffraction and scanning electron microscopy demonstrated a partial ZAL amorphization in spray-dried binary and ternary systems with βCD, while the drug was completely amorphous in all samples with RAMEB. Furthermore, inclusion complex formation in all systems prepared was confirmed by solid-state NMR spectroscopy. The in vitro dissolution rate followed the rank order ZAL/RAMEB/HPMC>ZAL/RAMEB=ZAL/βCD/HPMC>ZAL/βCD≫ZAL, clearly demonstrating the superior performance of RAMEB on ZAL complexation in the solid state and its synergistic effect with HPMC on drug solubility. Surprisingly, when loaded into tablets made with insoluble microcrystalline cellulose, RAMEB complexes had no positive effect on drug dissolution, because HPMC and RAMEB acted as a binders inside the tablets, prolonging their disintegration. Oppositely, the formulation with mannitol, a soluble excipient, containing a ternary RAMEB system, released the complete drug-dose in only 5min, clearly demonstrating its suitability for the development of immediate-release oral formulation of ZAL. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    International Nuclear Information System (INIS)

    Bialy, Agata; Jensen, Peter B.; Blanchard, Didier; Vegge, Tejs; Quaade, Ulrich J.

    2015-01-01

    Metal halide ammines are very attractive materials for ammonia absorption and storage—applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides, and with a practically accessible volumetric ammonia densities in excess of 99% of liquid ammonia. - Graphical abstract: Thermal desorption curves of ammonia from Ba x Sr (1−x) Cl 2 mixtures with x equal to 0.125, 0.25 and 0.5 and atomic structure of Sr(NH 3 ) 8 Cl 2 . - Highlights: • Solid solutions of strontium and barium chloride were synthesized by spray drying. • Adjusting molar ratios led to different crystallographic phases and compositions. • Different molar ratios led to different ammonia ab-/desorption properties. • 35–50 mol% BaCl 2 in SrCl 2 yields higher ammonia density than any other metal halide. • DFT calculations can be used to predict properties of the mixtures

  7. Tetragold(I) complexes: solution isomerization and tunable solid-state luminescence.

    Science.gov (United States)

    Dau, Thuy Minh; Chen, Yi-An; Karttunen, Antti J; Grachova, Elena V; Tunik, Sergey P; Lin, Ke-Ting; Hung, Wen-Yi; Chou, Pi-Tai; Pakkanen, Tapani A; Koshevoy, Igor O

    2014-12-15

    In this study, a new family of tetranuclear gold(I) triphosphine derivatives bearing alkynyl and thiolate groups have been efficiently synthesized by treating the polymeric acetylides (AuC2R)n or a thiolate (AuSPh)n sequentially with the (a) phosphine ligand and (b) cationic complex [Au3(P^P^P)2](3+) (P^P^P = PPh2CH2PPhCH2PPh2). The clusters [Au4(P^P^P)2(C2R)2](2+) [R = Ph (1), biphenyl (2), terphenyl (3), C6H4OMe (4), C6H4NMe2 (5), C6H11O (6), and C6H4CF3 (7)] and [Au4(P^P^P)2(SPh)2](2+) (8) were characterized by X-ray crystallography in the solid state. NMR spectroscopic investigations in solution revealed that the majority of alkynyl clusters 1-7 exist as two isomeric species in slow chemical equilibria. All complexes 1-8 exhibit moderate-to-strong photoemission in the solid state with quantum yields from 0.07 to 0.51. The luminescence behavior was rationalized using quantum chemical density functional theory methods. The high emission efficiency of these tetragold(I) compounds and their good stability in film allowed for the fabrication of an organic electroluminescent device (OLED). Employing complex 5 (Φ = 0.51), an OLED was fabricated under a solution process to give a good external quantum efficiency of 3.1%, corresponding to a current efficiency of 6.1 cd/A and a power efficiency of 5.3 lm/W, with Commission Internationale de I'Eclairage coordinates of (0.52, 0.46).

  8. Nanocrystalline Ce1- x La x O2- δ Solid Solutions Synthesized by Hydrolyzing and Oxidizing

    Science.gov (United States)

    Hou, Xueling; Xue, Yun; Han, Ning; Lu, Qianqian; Wang, Xiaochen; Phan, Manh-Huong; Zhong, Yunbo

    2016-05-01

    We undertook a novel batch production approach for the synthesis of CeO2 nanopowders doped with rare earth elements. Solid solution nanopowders of Ce1- x La x O2- δ ( x = 0.15) were successfully synthesized in a large-scale and low-cost production by hydrolyzing and oxidizing Ce-La-C alloys at room temperature and subsequent calcining of their powders at different temperatures (873-1073 K) for 1 h. The Ce-La-C alloys were prepared in a vacuum induction melting furnace. The final products were characterized by x-ray diffraction, transmission electron microscopy, Brunner-Emmet-Teller (BET) surface area analyzer, and Raman spectroscopy. The calculated lattice parameters of the cubic fluorite-type phase of CeO2 tended to increase when La3+ was incorporated into CeO2. The F 2g band shift and the absence of a peak corresponding to La2O3 in the Raman spectra consistently confirmed the incorporation of the La3+ ion into CeO2, and the formation of Ce1- x La x O2- δ solid solutions as manifested by increased oxygen vacancy defects. High-quality Ce1- x La x O2- δ nanopowders of ~10-15 nm diameter with a high BET surface area of ~77 m2 g-1 were obtained. The average crystallite size of Ce1- x La x O2- δ was found to be smaller than that of CeO2 for the same calcination temperature of 1073 K, demonstrating that the introduction of La3+ into CeO2 can stabilize the host lattice and refine the grain size at high temperatures.

  9. High-temperature, Knudsen cell-mass spectroscopic studies on lanthanum oxide/uranium dioxide solid solutions

    International Nuclear Information System (INIS)

    Sunder, S.; McEachern, R.; LeBlanc, J.C.

    2001-01-01

    Knudsen cell-mass spectroscopic experiments were carried out with lanthanum oxide/uranium oxide solid solutions (1%, 2% and 5% (metal at.% basis)) to assess the volatilization characteristics of rare earths present in irradiated nuclear fuel. The oxidation state of each sample used was conditioned to the 'uranium dioxide stage' by heating in the Knudsen cell under an atmosphere of 10% C0 2 in CO. The mass spectra were analyzed to obtain the vapour pressures of the lanthanum and uranium species. It was found that the vapour pressure of lanthanum oxide follows Henry's law, i.e., its value is directly proportional to its concentration in the solid phase. Also, the vapour pressure of lanthanum oxide over the solid solution, after correction for its concentration in the solid phase, is similar to that of uranium dioxide. (author)

  10. High-temperature, Knudsen cell-mass spectroscopic studies on lanthanum oxide/uranium dioxide solid solutions

    International Nuclear Information System (INIS)

    Sunder, S.; McEachern, R.; LeBlanc, J.C.

    2001-01-01

    Knudsen cell-mass spectroscopic experiments were carried out with lanthanum oxide/uranium oxide solid solutions (1%, 2% and 5% (metal at.% basis)) to assess the volatilization characteristics of rare earths present in irradiated nuclear fuel. The oxidation state of each sample used was conditioned to the 'uranium dioxide stage' by heating in the Knudsen cell under an atmosphere of 10% CO 2 in CO. The mass spectra were analyzed to obtain the vapour pressures of the lanthanum and uranium species. It was found that the vapour pressure of lanthanum oxide follows Henry's law, i.e., its value is directly proportional to its concentration in the solid phase. Also, the vapour pressure of lanthanum oxide over the solid solution, after correction for its concentration in the solid phase, is similar to that of uranium dioxide. (authors)

  11. Smooth and robust solutions for Dirichlet boundary control of fluid-solid conjugate heat transfer problems

    KAUST Repository

    Yan, Yan

    2015-01-01

    We study a new optimization scheme that generates smooth and robust solutions for Dirichlet velocity boundary control (DVBC) of conjugate heat transfer (CHT) processes. The solutions to the DVBC of the incompressible Navier-Stokes equations are typically nonsmooth, due to the regularity degradation of the boundary stress in the adjoint Navier-Stokes equations. This nonsmoothness is inherited by the solutions to the DVBC of CHT processes, since the CHT process couples the Navier-Stokes equations of fluid motion with the convection-diffusion equations of fluid-solid thermal interaction. Our objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the fluid system and a prescribed temperature profile and the cost of the control.Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial

  12. Crystalline structure and electrical properties of solid solutions YNixMn1-xO3

    Directory of Open Access Journals (Sweden)

    Moure, C.

    1999-12-01

    Full Text Available Solid solutions belonging to the Mn-rich region of the YNiXMn1-XO3 system have been studied. The powders were prepared by solid state reaction between the corresponding oxides. Sintered ceramics were obtained by firing at 1325-1350ºC. The incorporation of 20 atomic % Ni2+ to the Yttrium manganite induces the formation of a perovskite phase, with orthorhombic symmetry. Increase of the Ni amount leads to an increase of the orthorhombicity factor b/a, up to an amount of 50 atomic % Ni2+. Above this Ni amount, a biphasic system has been observed, with the presence of unreacted Y2O3. DC electrical conductivity measurements have shown semiconducting behaviour for all the solid solutions with perovskite-type structure. The room temperature conductivity increases with Ni until ~33 atomic % Ni, and then decreases. The 50/50 Ni/Mn composition has different values of conductivity and activation energy against those corresponding to samples with lower values of that ionic ratio. Small polaron hopping mechanism controls the conductivity in these ceramics. Results are discussed as a function of the Mn3+/Mn4+ ratio for each composition.Se han estudiado las soluciones sólidas correspondientes a la región rica en Mn del sistema YNiXMn1-XO3, entre 0 y 50 atomic % Ni. Los compuestos fueron preparados por reacción en estado sólido de los óxidos correspondientes. Se sinterizaron materiales cerámicos a 1325-1350ºC. Con cantidades de 20 atomic % Ni se produce la formación de una fase con estructura de perovskita, y simetría ortorrómbica. La distorsión ortorrómbica crece con el contenido de Ni. Por encima de 50 atomic % Ni, aparece Y2O3 sin reaccionar. Las soluciones sólidas muestran semiconducción con valores de σ que aumentan con el contenido de Ni hasta ~33 atomic %, para luego decrecer, hasta x=0.5. La composición 50/50 Ni/Mn muestra un comportamiento eléctrico algo diferente. Se discuten los resultados en función de la razón Mn3+/Mn4+ para cada

  13. Comparable luminescence investigation of the La1-xEuxVO4 solid solutions synthesized by two different methods

    OpenAIRE

    Chukova, O. V.; Nedilko, S. G.; Scherbatskii, V.; Nedilko, S. A.; Voytenko, T.

    2012-01-01

    Luminescence properties of the series of the La1-xEuxVO4 solid solutions were investigated. The samples were synthesized by the solid state and co-precipitation methods. Luminescence spectra of the investigated samples consist of weak wide non-structural band of the matrix emission and narrow spectral lines caused by inner f-f electron transitions in the impurity Eu3+ ions. Dependences of the structure, peak positions and intensity of luminescence on the composition, samples tempe...

  14. High-temperature x-ray diffraction study of HfTiO4-HfO2 solid solutions

    International Nuclear Information System (INIS)

    Carpenter, D.A.

    1975-01-01

    High-temperature x-ray diffraction techniques were used to determine the axial thermal expansion curves of HfTiO 4 -HfO 2 solid solutions as a function of composition. Data show increasing anisotropy with increasing HfO 2 content. An orthorhombic-to-monoclinic phase transformation was detected near room temperature for compositions near the high HfO 2 end of the orthorhombic phase field and for compositions within the two-phase region (HfTiO 4 solid solution plus HfO 2 solid solution). An orthorhombic-to-cubic phase transformation is indicated by data from oxygen-deficient materials at greater than 1873 0 K. (U.S.)

  15. XAFS spectroscopic study of uranyl coordination in solids and aqueous solution

    International Nuclear Information System (INIS)

    Thompson, H.A.; Brown, G.E. Jr.; Parks, G.A.

    1997-01-01

    To evaluate the ability of X-ray absorption fine structure (XAFS) spectroscopy to elucidate the coordination environment of U 6+ at the solid-water interface, we conducted an in-depth analysis of experimental XAFS data from U 6+ solid and solution model compounds. Using the ab initio XAFS code FEFF6, we calculated phase-shift and amplitude functions for fitting experimental data. The code FEFF6 does a good job of reproducing experimental data and is particularly valuable for providing phase-shift and amplitude functions for neighboring atoms whose spectral contributions are difficult to isolate from experimental data because of overlap of Fourier transform features. In solid-phase model compounds at ambient temperature, we were able to fit spectral contributions from axial O (1.8 Angstrom), equatorial O (2.2-2.5 Angstrom), N (2.9 Angstrom), C (2.9 Angstrom), Si (3.2 Angstrom), P (3.6 Angstrom), distant 0 (4.3 Angstrom), and U (4.0, 4.3, 4.9, and 5.2 Angstrom) atoms. Contributions from N, C, Si, P, distant O, and distant U (4.9 and 5.2 Angstrom) are weak and therefore might go undetected in a sample of unknown composition. Lowering the temperature to 10 K extends detection of U neighbors to 7.0 Angstrom. The ability to detect these atoms suggests that XAFS might be capable of discerning inner-sphere U sorption at solid aluminosilicate-water interfaces. XAFS should definitely detect multinuclear U complexes and precipitates. Multiple-scattering paths are minor contributors to uranyl XAFS beyond k = 3 Angstrom -1 . Allowing shell-dependent disorder parameters (σ 2 ) to vary, we observed narrow ranges of σ 2 values for similar shells of neighboring atoms. Knowledge of these ranges is necessary to constrain the fit of XAFS spectra for unknowns. Finally, we found that structures reported in the literature for uranyl diacetate and rutherfordine are not completely correct. 50 refs., 6 figs., 2 tabs

  16. The Diffusion Coefficients Of Cu And Zn In amp913- And amp919- Solid Solutions

    Directory of Open Access Journals (Sweden)

    Adhurim Hoxha

    2015-06-01

    Full Text Available Abstract In this work the multiphase diffusion in the infinite couple Cu-Zn was studied experimentally. The diffusion couples were prepared by platting technique. The samples were annealed in three different temperatures which were taken below the melting temperature of Zn. For each temperature there were used six different annealing times ranging from 1h up to 32h. In the micrographs provided by light microscopy it can be seen the formation of only two of the three intermetalic phases present in the Cu-Zn phase diagram namely amp949- and amp947-phase. WDX EPMA analysis was used to obtain the concentration profiles of the diffusion layers.he diffusion coefficients of Cu and Zn in amp945- and amp951-solid solutions are calculated using the solutions of second Ficks law for independent concentration case. Since the diffusion coefficients depends only on the temperature of annealing and not on the time of it they must be the same for a given temperature. Therefore the diffusion coefficients were averaged for each temperature. Knowing the diffusion coefficients for each temperature enables the calculation of the activation energies and the frequency factors as well.

  17. Cadmium Extraction from Solutions by Solid-Phase and its Trace Determination

    Energy Technology Data Exchange (ETDEWEB)

    Ashrafi, F.; Attaran, A. M. [Payame Noor University, Sari (Iran, Islamic Republic of); Kermani, N. Memar [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2008-04-15

    A new sensitive and selective spectrophotometric method for determination of trace amounts of cadmium using a polyvinyl chloride membrane containing bis-(2-ethylhexyl)phthalate as a solid phase extraction medium was investigated. Bis-(2-ethylhexyl)phthalate has used as a plasticizer. Cd(II) in an aqueous solution was trapped on the membrane in the form of colorful Cd (II)-I{sup -} - MG complexes (which MG is malachite green) and the cadmium complex was concentrated in the membrane. The absorbance of the green membrane was measured at 629 nm using a spectrophotometer, and then, the concentration of the cadmium was calculated using a calibration curve, which expressed the relationship between the Cd(II) concentration and the membrane absorbance after coloring for 25 min. The calibration curve was linear in the range of 10-760 μgL{sup -1} cadmium in the test solution. The detection limit based on the 3S{sub bl} criterion was 1.8199 μgL{sup -1} and the relative standard deviations (RSD) were less than 4 % (n=5). The proposed method has been successfully applied to the determination of trace amounts of cadmium in the Tadjan River water sample (Sari-Iran), and the mean value of 28.7 μgL{sup -1} was obtained.

  18. Dispersion of dielectric permittivity and magnetic properties of solid solution PZT–PFT

    Directory of Open Access Journals (Sweden)

    Skulski Ryszard

    2015-09-01

    Full Text Available In this paper we present the results of investigations into ceramic samples of solid solution (1-x(PbZr0.53Ti0.47O3- x(PbFe0.5Ta0.503 (i.e. (1-xPZT-xPFT with x = 0.25, 0.35 and 0.45. We try to find the relation between the character of dielectric dispersion at various temperatures and the composition of this solution. We also describe the magnetic properties of investigated samples. With increasing the content of PFT also mass magnetization and mass susceptibility increase (i.e. magnetic properties are more pronounced at every temperature. The temperature dependences of mass magnetization and re­ciprocal of mass susceptibility have similar runs for all the compositions. However, our magnetic investigations exhibit weak antiferromagnetic ordering instead of the ferromagnetic one at room temperature. We can also say that up to room tempera­ture any magnetic phase transition has not occurred. It may be a result of the conditions of the technological process during producing our PZT-PFT ceramics.

  19. Sensing Native Protein Solution Structures Using a Solid-state Nanopore: Unraveling the States of VEGF.

    Science.gov (United States)

    Varongchayakul, Nitinun; Huttner, Diana; Grinstaff, Mark W; Meller, Amit

    2018-01-17

    Monitoring individual proteins in solution while simultaneously obtaining tertiary and quaternary structural information is challenging. In this study, translocation of the vascular endothelial growth factor (VEGF) protein through a solid-state nanopore (ssNP) produces distinct ion-current blockade amplitude levels and durations likely corresponding to monomer, dimer, and higher oligomeric states. Upon changing from a non-reducing to a reducing condition, ion-current blockage events from the monomeric state dominate, consistent with the expected reduction of the two inter-chain VEGF disulfide bonds. Cleavage by plasmin and application of either a positive or a negative NP bias results in nanopore signals corresponding either to the VEGF receptor recognition domain or to the heparin binding domain, accordingly. Interestingly, multi-level analysis of VEGF events reveals how individual domains affect their translocation pattern. Our study shows that careful characterization of ssNP results elucidates real-time structural information about the protein, thereby complementing classical techniques for structural analysis of proteins in solution with the added advantage of quantitative single-molecule resolution of native proteins.

  20. Photocatalytic hydrogen production over solid solutions between BiFeO{sub 3} and SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lingwei; Lv, Meilin [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China); Liu, Gang [Shenyang National laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China); Xu, Xiaoxiang, E-mail: xxxu@tongji.edu.cn [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China)

    2017-01-01

    Graphical abstract: We have successfully prepared a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions. These materials own strong visible light absorption and demonstrate appealing photocatalytic activity under both full range and visible light irradiation. - Highlights: • Band gap values can be tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. • Photocatalytic activity is greatly improved after constituting solid solutions. • Photocatalytic activity is influenced by surface area and light absorption. • Fe plays an important role for band gap reduction and catalytic activity. - Abstract: Constituting solid solutions has been an appealing means to gain control over various physicochemical properties. In this work, we synthesized a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions and systematically explored their structural, optical and photocatalytic properties. Our results show that all solid solutions crystallize in a primitive cubic structure and their band gap values can be easily tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. Photocatalytic hydrogen production under both full range and visible light irradiation is greatly improved after forming solid solutions. The highest hydrogen production rate obtained is ∼180 μmol/h under full range irradiation (λ ≥ 250 nm) and ∼4.2 μmol/h under visible light irradiation (λ ≥ 400 nm), corresponding to apparent quantum efficiency ∼2.28% and ∼0.10%, respectively. The activity is found to be strongly influenced by surface area and light absorption. Theoretical calculation suggests that Fe contributes to the formation of spin-polarized bands in the middle of original band gap and is responsible for the band gap reduction and visible light photocatalytic activity.

  1. Radiation-induced protein fragmentation and inactivation in liquid and solid aqueous solutions. Role of OH and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Audette-Stuart, Marilyne [Atomic Energy of Canada Limited, CANDU Life Sciences Center, Chalk River Laboratories, Chalk River Ont., K0J 1J0 (Canada); Houee-Levin, Chantal [Laboratoire de Chimie Physique, UMR-8000 CNRS-Universite Paris XI, Centre Universitaire, F-91405 Orsay Cedex (France)]. E-mail: chantal.houee-levin@lcp.u-psud.fr; Potier, Michel [Service de genetique medicale, Hopital Sainte-Justine, Universite de Montreal, Montreal Que., H3 T 1C5 (Canada)

    2005-02-01

    Irradiation of proteins in diluted liquid aqueous solutions produces cleavages and polymerizations of the peptidic chains. In frozen solutions, fragmentation is observed but polymerization products are absent. Loss of activity occurs in both cases. In the solid state, yields of fragmentation do not vary with the quantity of water. The use of scavengers indicates that hydroxyl radical does not contribute significantly to fragmentation and to inactivation in the solid state. Electrons within the water molecules closely associated with the protein are involved in the processes leading to protein fragmentation.

  2. Evaluation of poly(methyl methacrylate)/poly(vinylpyrrolidone)/poly(ethylene oxide) blends by solution and solid state NMR

    International Nuclear Information System (INIS)

    Diniz, Teresinha M.F.F.; Tavares, Maria Ines B.

    2001-01-01

    Ternary blends formed by poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP)/poly(ethylene oxide) (PEO) have been investigated applying solution and solid state nuclear magnetic resonance. From solution NMR it can be seen that no change in the chemical shift of the microstructure detected in the carbonyl and C quaternary carbons of PMMA was found. However a small change in the form of those signals was observed. This change was attributed to the plasticization effect. The solid state techniques showed that both PEO and PVP acts as a plasticizer in different ways, which depends on these proportions that derives from different dynamical behavior. (author)

  3. A Review of Solid-Solution Models of High-Entropy Alloys Based on Ab Initio Calculations

    Directory of Open Access Journals (Sweden)

    Fuyang Tian

    2017-11-01

    Full Text Available Similar to the importance of XRD in experiments, ab initio calculations, as a powerful tool, have been applied to predict the new potential materials and investigate the intrinsic properties of materials in theory. As a typical solid-solution material, the large degree of uncertainty of high-entropy alloys (HEAs results in the difficulty of ab initio calculations application to HEAs. The present review focuses on the available ab initio based solid-solution models (virtual lattice approximation, coherent potential approximation, special quasirandom structure, similar local atomic environment, maximum-entropy method, and hybrid Monte Carlo/molecular dynamics and their applications and limits in single phase HEAs.

  4. Arsenic Removal By Gypsum and Calcite: The Continuum Between Soption and Solid Solution Precipitation Phenomenon

    Science.gov (United States)

    Ross, G. Roman; Charlet, L.; Cuello, G.

    The sorption of As onto mineral surface, via the precipitation of Ca3(AsO4)2, controls the As solubility in industrial and mining sites. In spite of the progress in environmental chemistry, there is little data on As sorption reactions in calcite and gypsum and on the precipitation/dissolution of Ca3(AsO4)2. Recent studies have reported that As (III) can be adsorbed by the calcite and As(V) by the gypsum. In order to determine the kinetic reactions developed during the As (III, V) uptake by calcite and gypsum from aqueous solutions, we have performed adsorption isotherm and neutron diffraction experiments. The influence of pH and CO2(g) concentration was also tested. Our results show a continuum between adsorption and the formation of solid solutions Ca(SO4,HAsO4) and Ca(CO3, HAsO3 ). Higher As adsorption was registered for both, calcite and gypsum at increasing CO2(g) levels in aqueous solutions and pH conditions between 7 and 10. The study of the interaction of different arsenic compounds with geological materials is of regional relevance concerning both environmental and health aspects. Immobilisation of arsenic in presence of gypsum (CaSO4 .2H2O) and calcite (CaCO3) should be undertaken to remove arsenic in calcium rich sites if their long-term stability is assessed. Understanding the behavior of the different compounds of As is necessary to estimate and predict possible consequences to forecasted or accidental events and to propose remediation actions at the concerned sites.

  5. Comparison of mechanical and thermodynamic properties of fcc and bcc titanium under high pressure

    Science.gov (United States)

    Zhang, Yongmei; Zhao, Yuhong; Hou, Hua; Wen, Zhiqin; Duan, Meiling

    2018-02-01

    The mechanical and thermodynamic properties of fcc and bcc Ti have been discussed based on the first-principles calculation combined with the quasi-harmonic Debye model. We find that the bulk modulus B, shear modulus G, Young’s modulus E of fcc Ti are larger, while Poisson’s ratio σ is smaller than that of bcc Ti under the same pressure, which indicates the better mechanical performance of fcc Ti compared with bcc Ti. The values of B/G and σ indicate that mechanically stable fcc structure is much less ductile than the bcc structure, while mechanically metastable fcc structure has better ductility than stable bcc structure under high pressure. The normalized volume, isothermal bulk modulus, heat capacity, volume thermal expansion coefficient and Debye temperature under pressure and temperature for fcc and bcc Ti are predicted.

  6. Transonic twins in 3D bcc iron crystal

    Czech Academy of Sciences Publication Activity Database

    Spielmannová, Alena; Machová, Anna; Hora, Petr

    2010-01-01

    Roč. 48, č. 2 (2010), s. 296-302 ISSN 0927-0256 R&D Projects: GA AV ČR KJB200760802; GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : transonic twins * bcc iron * molecular dynamic simulation Subject RIV: JG - Metallurgy Impact factor: 1.458, year: 2010 http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=V1mj77dMKmjeKefm7Db&page=1&doc=1

  7. Solid state chemical model for the solubility behaviour of CaCO/sub 3/-MgCO/sub 3/ solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Driessens, F.C.M.; Verbeck, R.M.H.

    1981-08-01

    Mg-calcite can contain up to about 6 mol-% MgCO/sub 3/, dolomite between 40 and 51%. Solid solutions of CaCO/sub 3/ and MgCO/sub 3/ are unstable between 20 and 30 mol-% MgCO/sub 3/. The thermodynamic stability of dolomite with respect to calcite and magnesite amounts to about -6.8 kJ mol/sup -1/. It is shown that both the thermodynamical properties and the solubility behaviour of these solids can be explained with a solid-state chemical model based on the theory of subregular solid solutions. Evaluations of the parameters of the model resulted in a critical cluster size of about one unit cell for the dolomite structure. The fact that normal sea water is close to equilibrium with both calcite and dolomite means that the concentrations of Ca/sup 2 +/, Mg/sup 2 +/ and CO/sub 3//sup 2 -/ ions in sea water are restricted by fixed solubility relations.

  8. Fabrication of nano-sized solid solution of Zn1− xMnxO (x= 0· 05, 0 ...

    Indian Academy of Sciences (India)

    These nanoparticles were characterized using powder X-ray diffraction, transmission electron microscopy and selected area electron diffraction analysis. Structural analysis and optical studies revealed that manganese is incorporated into the ZnO host lattice forming a solid solution. Transmission electron microscopic ...

  9. Community Solutions to Solid Waste Pollution. Operation Waste Watch: The New Three Rs for Elementary School. Grade 6. [Second Edition.

    Science.gov (United States)

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    This publication, the last in a series of seven for elementary schools, is an environmental education curriculum guide with a focus on waste management issues. It contains a unit of exercises selected for sixth grade students focusing on community solutions to solid waste pollution. Waste management activities included in this unit seek to…

  10. Neutron diffraction studies on Ca1− xBaxZr4P6O24 solid solutions

    Indian Academy of Sciences (India)

    P6O24 compositions from combined Rietveld refinements of powder X-ray and neutron diffraction data. All the studied compositions crystallize in rhombohedral lattice (space group R-3 No. 148). A continuous solid solution is concluded from ...

  11. Structural and vibrational investigations on Ge{sub 34}Sb{sub 66} solid solutions produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Rebelo, Q.H.F.; Cotta, E.A. [Departamento de Física, Universidade Federal do Amazonas, 69077-000 Manaus, Amazonas (Brazil); Souza, S.M. de, E-mail: s.michielon@gmail.com [Departamento de Física, Universidade Federal do Amazonas, 69077-000 Manaus, Amazonas (Brazil); Trichês, D.M. [Departamento de Física, Universidade Federal do Amazonas, 69077-000 Manaus, Amazonas (Brazil); Machado, K.D. [Departamento de Física, Centro Politécnico, Universidade Federal do Paraná, 81531-990 Curitiba, Paraná (Brazil); Lima, J.C. de; Grandi, T.A. [Departamento de Física, Centro de Ciências Exatas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina (Brazil); Poffo, C.M. [Departamento de Eng. Mecânica, Centro de Ciências Tecnológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina (Brazil); Manzato, L. [Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, 69075-351 Manaus, Amazonas (Brazil)

    2013-10-25

    Highlights: •A Ge{sub 34}Sb{sub 66} solid solution was prepared by mechanical alloying. •X-ray diffraction results indicate complete dissolution of Ge on the Sb matrix. •Raman measurements indicate the presence of nanocrystalline Ge dispersed in the matrix. -- Abstract: A nanostructured solid solution Ge{sub 34}Sb{sub 66} was produced from Ge and Sb by mechanical alloying and its structural and vibrational properties were investigated by X-ray diffraction (XRD) and micro-Raman spectroscopy. The Rietveld refinement of the XRD measurements allowed the investigation of the evolution of the solid solution with the milling time. The Bragg peaks of the Sb solvent phase showed a strongly reflection-indices-dependent line broadening due to the spatial variation of the Sb/Ge ratio. The asymmetric broadening in the deformed peaks was analyzed considering the Stephens model. Volume fractions of crystalline and interfacial components of the milled powder were estimated from the XRD patterns. Although XRD measurements indicated the formation of a solid solution, Raman measurements revealed the presence of nanocrystalline Ge, and its crystallite size was estimated from the Raman analysis.

  12. Phase Relations in Ternary Systems in the Subsolidus Region: Methods to Formulate Solid Solution Equations and to Find Particular Compositions

    Science.gov (United States)

    Alvarez-Montan~o, Victor E.; Farías, Mario H.; Brown, Francisco; Mun~oz-Palma, Iliana C.; Cubillas, Fernando; Castillon-Barraza, Felipe F.

    2017-01-01

    A good understanding of ternary phase diagrams is required to advance and/or to reproduce experimental research in solid-state and materials chemistry. The aim of this paper is to describe the solutions to problems that appear when studying or determining ternary phase diagrams. A brief description of the principal features shown in phase diagrams…

  13. Formation of a 25 mol% Fe2O3-Al2O3 solid solution prepared by ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Mørup, Steen; Linderoth, Søren

    1996-01-01

    The phase transformation process of a 25 mol% Fe2O3-Al2O3 powder mixture during high-energy ball milling has been studied by x-ray diffraction and Mossbauer spectroscopy. A metastable solid solution of 25 mol % Fe2O3 in Al2O3 with corundum structure has successfully been prepared after a milling...

  14. Fabrication of nano-sized solid solution of Zn1−xMnxO (x = 0·05, 0 ...

    Indian Academy of Sciences (India)

    sized solid solution of Zn1−xMnxO. (x = 0·05, 0·10, 0·15) in reverse microemulsions: Structural characterization and properties. SARVARI KHATOON, APARNA GANGULY and TOKEER AHMAD. ∗. Department of Chemistry, Jamia Millia Islamia, ...

  15. MgAl2 O4–γ-Al2 O3 solid solution interaction: mathematical ...

    Indian Academy of Sciences (India)

    O4 has been observed in the Mg–Al spinel powders ( > 1) when the 1000°C heat treated materials are calcined at 1200°C. In the mathematical framework, unit cell of MgAl2O4 (Mg8Al16O32) has been considered for the solid solution ...

  16. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe

    Directory of Open Access Journals (Sweden)

    Jesús-Alejandro Peña-Jiménez

    2016-09-01

    Full Text Available The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.

  17. First-principles thermodynamics study of phase stability in inorganic halide perovskite solid solutions

    Science.gov (United States)

    Bechtel, Jonathon S.; Van der Ven, Anton

    2018-04-01

    Halide substitution gives rise to a tunable band gap as a function of composition in halide perovskite materials. However, photoinduced phase segregation, observed at room temperature in mixed halide A Pb (IxBr1-x) 3 systems, limits open circuit voltages and decreases photovoltaic device efficiencies. We investigate equilibrium phase stability of orthorhombic P n m a γ -phase CsM (XxY1-x) 3 perovskites where M is Pb or Sn, and X and Y are Br, Cl, or I. Finite-temperature phase diagrams are constructed using a cluster expansion effective Hamiltonian parameterized from first-principles density-functional-theory calculations. Solid solution phases for CsM (IxBr1-x) 3 and CsM (BrxCl1-x) 3 are predicted to be stable well below room temperature while CsM (IxCl1-x) 3 systems have miscibility gaps that extend above 400 K. The height of the miscibility gap correlates with the difference in volume between end members. Also layered ground states are found on the convex hull at x =2 /3 for CsSnBr2Cl ,CsPbI2Br , and CsPbBrCl2. The impact of these ground states on the finite temperature phase diagram is discussed in the context of the experimentally observed photoinduced phase segregation.

  18. A Unified Physical Model for Creep and Hot Working of Al-Mg Solid Solution Alloys

    Directory of Open Access Journals (Sweden)

    Stefano Spigarelli

    2017-12-01

    Full Text Available The description of the dependence of steady-state creep rate on applied stress and temperature is almost invariably based on the Norton equation or on derived power-law relationships. In hot working, the Norton equation does not work, and is therefore usually replaced with the Garofalo (sinh equation. Both of these equations are phenomenological in nature and can be seldom unambiguously related to microstructural parameters, such as dislocation density, although early efforts in this sense led to the introduction of the “natural power law” with exponent 3. In an attempt to overcome this deficiency, a recent model with sound physical basis has been successfully used to describe the creep response of fcc metals, such as copper. The main advantage of this model is that it does not require any data fitting to predict the strain rate dependence on applied stress and temperature, which is a particularly attractive peculiarity when studying the hot workability of metals. Thus, the model, properly modified to take into account solid solution strengthening effects, has been here applied to the study of the creep and hot-working of simple Al-Mg single phase alloys. The model demonstrated an excellent accuracy in describing both creep and hot working regimes, still maintaining its most important feature, that is, it does not require any fitting of the experimental data.

  19. Perovskite solid solutions with multiferroic morphotropic phase boundaries and property enhancement

    Directory of Open Access Journals (Sweden)

    M. Algueró

    2016-06-01

    Full Text Available Recently, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of phases in the BiFeO3–BiCoO3 perovskite binary system, associated with the existence of a discontinuous morphotropic phase boundary (MPB between multiferroic polymorphs of rhombohedral and tetragonal symmetries. This might be a general property of multiferroic phase instabilities, and a novel promising approach for room temperature magnetoelectricity. We review here our current investigations on the identification and study of additional material systems, alternative to BiFeO3–BiCoO3 that has only been obtained by high pressure synthesis. Three systems, whose phase diagrams were, in principle, liable to show multiferroic MPBs have been addressed: the BiMnO3–PbTiO3 and BiFeO3–PbTiO3 binary systems, and the BiFeO3–BiMnO3–PbTiO3 ternary one. A comprehensive study of multiferroism across different solid solutions was carried out based on electrical and magnetic characterizations, complemented with mechanical and electromechanical measurements. An in-depth structural analysis was also accomplished when necessary.

  20. The solid solution Ba5.78Pb1.22F12Cl2

    Directory of Open Access Journals (Sweden)

    Matthias Weil

    2016-01-01

    Full Text Available The title compound, hexabarium lead(II dodecafluoride dichloride, is a solid solution in the system Pb7F12Cl2–Ba7F12Cl2 and crystallizes isotypically with the ordered modification of the parent compounds in the space group P-6. The coordination polyhedra of the three different metal sites are distorted tricapped trigonal prisms with F7Cl2 coordination sets for two of these sites (Wyckoff positions 3k and 3j, each with site symmetry m.., and the remaining site being exclusively coordinated by fluoride ions (1a, -6... By sharing faces, a three-dimensional structure is accomplished. The three metal sites have remarkably different occupancies by the two types of metal ions. Whereas the site on the 3k position shows only a minor incorporation of Pb2+ [occupancy ratio Ba:Pb = 0.93 (4:0.07 (4], the 3j site shows the highest amount of incorporated Pb2+ [Ba:Pb = 0.71 (5:29 (5]. The occupancy ratio with respect to the 1a site is Ba:Pb = 0.86 (5:0.14 (5.

  1. Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory

    KAUST Repository

    Bayliss, Ryan D.

    2014-09-24

    © the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is

  2. Bioadsorption of a reactive dye from aqueous solution by municipal solid waste

    Directory of Open Access Journals (Sweden)

    Abdelkader Berrazoum

    2015-09-01

    Full Text Available The biosorbent was obtained from municipal solid waste (MSW of the Mostaganem city. Before use the MSW was dried in air for three days and washed several times. The sorption of yellow procion reactive dye MX-3R onto biomass from aqueous solution was investigated as function of pH, contact time and temperature. The adsorption capacity of MX-3R was 45.84 mg/g at pH 2–3 and room temperature. MX-3R adsorption decreases with increasing temperature. The Langmuir, Freundlich and Langmuir–Freundlich adsorption models were applied to describe the related isotherms. Langmuir–Freundlich equation has shown the best fitting with the experimental data. The pseudo first-order, pseudo second-order and intra-particle diffusion kinetic models were used to describe the kinetic sorption. The results clearly showed that the adsorption of MX-3R onto biosorbent followed the pseudo second-order model. The enthalpy (ΔH°, entropy (ΔS° and Gibbs free energy (ΔG° changes of adsorption were calculated. The results indicated that the adsorption of MX-3R occurs spontaneously as an exothermic process.

  3. Inelasticity and precipitation of germanium from a solid solution in Al-Ge binary alloys

    Science.gov (United States)

    Kardashev, B. K.; Korchunov, B. N.; Nikanorov, S. P.; Osipov, V. N.

    2015-08-01

    The influence of precipitation of germanium atoms in a solid solution on the dependence of the inelasticity characteristics on the germanium content in aluminum-germanium alloys prepared by directional crystallization has been studied. It has been shown that the Young's modulus defect, the amplitude-dependent decrement, and the microplastic flow stress at a specified cyclic strain amplitude have extreme values at the eutectic germanium content in the alloy. The eutectic composition of the alloy undergoes a ductilebrittle transition. It has been found that there is a correlation between the dependences of the Young's modulus defect, amplitude-dependent decrement, microplastic flow stress, and specific entropy of the exothermal process of germanium precipitation on the germanium content in the hypoeutectic alloy. The concentration dependences of the inelasticity characteristics and their changes after annealing have been explained by the change in the resistance to the motion of intragrain dislocations due to different structures of the Guinier-Preston zones formed during the precipitation of germanium atoms.

  4. Unique Challenges for Modeling Defect Dynamics in Concentrated Solid-Solution Alloys

    Science.gov (United States)

    Zhao, Shijun; Weber, William J.; Zhang, Yanwen

    2017-11-01

    Recently developed concentrated solid solution alloys (CSAs) are shown to have improved performance under irradiation that depends strongly on the number of alloying elements, alloying species, and their concentrations. In contrast to conventional dilute alloys, CSAs are composed of multiple principal elements situated randomly in a simple crystalline lattice. As a result, the intrinsic disorder has a profound influence on energy dissipation pathways and defect evolution when these CSAs are subjected to energetic particle irradiation. Extraordinary irradiation resistance, including suppression of void formation by two orders of magnitude at an elevated temperature, has been achieved with increasing compositional complexity in CSAs. Unfortunately, the loss of translational invariance associated with the intrinsic chemical disorder poses great challenges to theoretical modeling at the electronic and atomic levels. Based on recent computer simulation results for a set of novel Ni-containing, face-centered cubic CSAs, we review theoretical modeling progress in handling disorder in CSAs and underscore the impact of disorder on defect dynamics. We emphasize in particular the unique challenges associated with the description of defect dynamics in CSAs.

  5. Carbonation of municipal solid waste incineration electrostatic precipitator fly ashes in solution.

    Science.gov (United States)

    De Boom, Aurore; Aubert, Jean-Emmanuel; Degrez, Marc

    2014-05-01

    Carbonation was applied to a Pb- and Zn-contaminated fraction of municipal solid waste incineration electrofilter fly ashes in order to reduce heavy metal leaching. Carbonation tests were performed in solution, by Na2CO3 addition or CO2 bubbling, and were compared with washing (with water only). The injection of CO2 during the washing did not modify the mineralogy, but the addition of Na2CO3 induced the reaction with anhydrite, forming calcite. Microprobe analyses showed that Pb and Zn contamination was rather diffuse and that the various treatments had no effect on Pb and Zn speciation in the residues. The leaching tests indicated that carbonation using Na2CO3 was successful because it gave a residue that could be considered as non-hazardous material. With CO2 bubbling, Pb and Zn leaching was strongly decreased compared with material washed with water alone, but the amount of chromium extracted became higher than the non-hazardous waste limits for landfilling.

  6. The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents.

    Science.gov (United States)

    Damjanović, Ljiljana; Rakić, Vesna; Rac, Vladislav; Stošić, Dušan; Auroux, Aline

    2010-12-15

    This work reports results on phenol adsorption from aqueous solutions on synthetic BEA (β) and MFI (ZSM-5) zeolites, studied by heat-flow microcalorimetry. For the sake of comparison, the adsorption was performed on activated carbon, a solid customarily used for removal of phenol from water. The obtained values of heats evolved during phenol adsorption indicate the heterogeneity of active sites present on the investigated systems for the adsorption of phenol. In addition, the amounts of adsorbed pollutant were determined and presented in the form of adsorption isotherms, which were interpreted using Langmuir, Freundlich, Dubinin-Astakov and Sips' equations. The latter was found to express high level of agreement with experimental data. The results obtained in this work reveal that the adsorption of phenol on zeolites depends on both Si/Al ratio and on the pore size. Hydrophobic zeolites that possess higher contents of Si show higher affinities for phenol adsorption. Among investigated zeolites, zeolite β possesses the highest capacity for adsorption of phenol. The possibility of regeneration of used adsorbents was investigated by thermal desorption technique. It has been shown that in the case of β zeolite the majority of adsorbed phenol is easily released in the low temperature region. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys

    Science.gov (United States)

    Shi, Shi; He, Mo-Rigen; Jin, Ke; Bei, Hongbin; Robertson, Ian M.

    2018-04-01

    Quantitative analysis of the impact of the compositional complexity in a series of Ni-containing concentrated solid-solution alloys, Ni, NiCo, NiFe, NiCoCr, NiCoFeCr, NiCoFeCrMn and NiCoFeCrPd, on the evolution of defects produced by 1 MeV Kr ion irradiation at 773 K is reported. The dynamics of the evolution of the damage structure during irradiation to a dose of 2 displacements per atom were observed directly by performing the ion irradiations in electron transparent foils in a transmission electron microscope coupled to an ion accelerator. The defect evolution was assessed through measurement of the defect density, defect size and fraction of perfect and Frank loops. These three parameters were dependent on the alloying element as well as the number of elements. The population of loops was sensitive to the ion dose and alloy composition as faulted Frank loops were observed to unfault to perfect loops with increasing ion dose. These dependences are explained in terms of the influence of each element on the lifetime of the displacement cascade as well as on defect formation and migration energies.

  8. Radiation-induced separation of solid solution in Fe-Ni invar

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, S.E., E-mail: danilov@imp.uran.ru [Institute of Metal Physics, Russian Academy of Sciences, Ural Branch (Russian Federation); Arbuzov, V.L.; Kazantsev, V.A. [Institute of Metal Physics, Russian Academy of Sciences, Ural Branch (Russian Federation)

    2011-07-15

    Radiation-induced solid solution separation (RISSS) in the Fe-34.7 at.% Ni invar alloy was investigated by residual resistivity and linear thermal expansion coefficient (TEC) measurements. The alloy was irradiated with 5 MeV electrons at 245-570 K and isochronous annealed. It was found that RISSS leads to an increase of 20% in the residual resistivity and an increase of 10{sup -5} K{sup -1} in the TEC for an electron irradiation dose of 5 x 10{sup 18} cm{sup -2}. The kinetics of RISSS are the same, but the irradiation efficiency coefficient increases approximately by a factor of 10 when the irradiation temperature rises in the range of 240-570 K. Vacancy clusters, which are formed under irradiation, retard the decomposition. It was shown that dissociation of the vacancy clusters at temperatures of 320-500 K was followed by the free migration of the formed vacancies, and leads to further RISSS.

  9. Removal of Cl adsorbed on Mn-Ce-La solid solution catalysts during CVOC combustion.

    Science.gov (United States)

    Wang, Xingyi; Ran, Le; Dai, Yu; Lu, Yuanjiao; Dai, Qiguang

    2014-07-15

    Mn-Ce-La oxide-mixed catalysts prepared by the method of complexation followed by calcination at 750°C were tested in the catalytic combustion of chlorobenzene (CB) taken as a model of chlorinated aromatics. XRD analyses show that Mn and La enter CeO2 matrix with a fluorite-like structure to form solid solution. The catalysts with high ratio of Mn/Mn+Ce+La exhibit high activity for CB combustion, due to high oxygen mobility. For all Mn-Ce-La catalysts, deactivation due to Cl adsorption is observed at different temperatures, depending on composition. At 330°C or higher temperature, the removal of Cl species from the surface in the forms of Cl2 (produced through Deacon reaction) and HCl (produced through hydrolysis of Cl) occurs and the activity of catalysts for CB combustion becomes thus stable. Either the addition of water or the increase in gaseous oxygen concentration can promote the removal of Cl species, and thus to increase the activity for CB combustion. High stable activity of Mn-Ce-La catalysts can be related to the combination of good oxidation and Deacon reaction performances. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Planet Patrol. An Environmental Unit on Solid Waste Solutions for Grades 4-6.

    Science.gov (United States)

    Procter and Gamble Educational Services, Cincinnati, OH.

    This classroom unit was developed for use in grades 4-6 to help teach the concept of solid waste management. The teacher's guide provides an overview of the issue of solid waste disposal, a description of government, industry, and consumer roles in resolving the solid waste issue, and four lessons involving sanitary landfills, the reduction of…

  11. Determination of boron in aqueous solutions by solid state nuclear track detectors technique, using a filtered neutron beam

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Pugliesi, R.; Khouri, M.T.F.C.

    1985-11-01

    The solid state nuclear track detectors technique has been used for determination of boron in aqueous solutions, using a filtered neutron beam. The particles tracks from the 10 B(n,α)Li 7 reaction were registered in the CR-39 film, chemically etched in a (30%) KOH solution 70 0 C during 90 minutes. The obtained results showed the usefulness of this technique for boron determination in the ppm range. The inferior detectable limit was 9 ppm. The combined track registration efficiency factor K has been evaluated in the solutions, for the CR-39 detector and its values is K= (4,60 - + 0,06). 10 -4 cm. (Author) [pt

  12. Correlated analysis of chemical variations with spectroscopic features of the K-Na jarosite solid solutions relevant to Mars

    Science.gov (United States)

    Ling, Zongcheng; Cao, Fengke; Ni, Yuheng; Wu, Zhongchen; Zhang, Jiang; Li, Bo

    2016-06-01

    Detailed chemical, structural and spectroscopic properties of jarosite solid solution minerals are key information for their potential discoveries by future remote sensing and in-situ detections on Mars. We successfully synthesized seven homogeneous K-Na jarosite solid solutions under hydrothermal conditions at 140 °C, whose phase identifications and chemical compositions are confirmed by X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). The chemical ratios of K/(K+Na) in jarosite solid solutions lead to systematic shifts of their characteristic Raman peaks ν1 (SO4)2- (from 1006 to 1011.3 cm-1), ν3 (SO4)2- (from 1100.6 to 1111.2 cm-1), ν2 (SO4)2- (from 434.2 to 444.8 cm-1) with the increase of Na content. While the OH stretching mode decreases with even larger peak position variations (e.g., ∼3410 cm-1 peak shifts from 3410.5 to 3385.7 cm-1) as the K-Na jarosite solid solutions are enriched in Na content. Raman spectroscopic measurements of the seven K-Na jarosite solid solutions enabled us to build a calibration that uses Raman peak positions to estimate K-Na variation in jarosite, which is the key step for their possible applications in the future Raman applications on Mars' missions (e.g., ExoMars and Mars 2020 missions). The band assignments and compositional related variations of their XRD, near-infrared (NIR) and mid-infrared (MIR) spectra also provide informative clues for identifying the jarosite minerals and inferring their composition during martian in-situ and remote sensing measurements.

  13. Solution and Solid Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) Ultraviolet (UV) 229 nm Photochemistry.

    Science.gov (United States)

    Gares, Katie L; Bykov, Sergei V; Brinzer, Thomas; Asher, Sanford A

    2015-05-01

    We measured the 229 nm deep-ultraviolet resonance Raman (DUVRR) spectra of solution and solid-state hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). We also examined the photochemistry of RDX both in solution and solid states. RDX quickly photodegrades with a solution quantum yield of φ ~ 0.35 as measured by high-performance liquid chromatography (HPLC). New spectral features form over time during the photolysis of RDX, indicating photoproduct formation. The photoproduct(s) show stable DUVRR spectra at later irradiation times that allow standoff detection. In the solution-state photolysis, nitrate is a photoproduct that can be used as a signature for detection of RDX even after photolysis. We used high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) and gas chromatography mass spectrometry (GCMS) to determine some of the major solution-state photoproducts. X-ray photoelectron spectroscopy (XPS) was also used to determine photoproducts formed during solid-state RDX photolysis.

  14. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    Science.gov (United States)

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.

  15. Simple thermodynamic model of the extension of solid solution of Cu-Mo alloys processed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingenieria Metalurgica y de Materiales, Universidad Tecnica Federico Santa Maria, Avenida Espana 1680, Valparaiso (Chile); Guzman, D. [Departamento de Metalurgia, Facultad de Ingenieria, Universidad de Atacama, Av. Copayapu 485, Copiapo (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Pontificia Universidad Catolica de Valparaiso, Av. Los Carrera 01567, Quilpue (Chile); Ordonez, Stella [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. L. Bernardo O' Higgins 3363, Santiago (Chile); Rios, R. [Instituto de Materiales y Procesos Termomecanicos, Facultad de Ciencias de la Ingenieria, Universidad Austral de Chile, General Lagos 2086, Valdivia (Chile)

    2011-08-15

    Highlights: {yields} Extension of solid solution in Cu-Mo systems achieved by mechanical alloying. {yields} Simple thermodynamic model to explain extension of solid solution of Mo in Cu. {yields} Model gives results that are consistent with the solubility limit extension reported in other works. - Abstract: The objective of this work is proposing a simple thermodynamic model to explain the increase in the solubility limit of the powders of the Cu-Mo systems or other binary systems processed by mechanical alloying. In the regular solution model, the effects of crystalline defects, such as; dislocations and grain boundary produced during milling were introduced. The model gives results that are consistent with the solubility limit extension reported in other works for the Cu-Cr, Cu-Nb and Cu-Fe systems processed by mechanical alloying.

  16. Kinetics and thermodynamics of the dissolution of Th1-xMxO2 solid solutions (M = U, Pu)

    International Nuclear Information System (INIS)

    Hubert, S.; Heisbourg, G.; Dacheux, N.; Moisy, Ph.; Purans, J.

    2004-01-01

    Kinetics of the dissolution of Th 1-x M x O 2 (M = U, Pu) solid solutions was investigated as a function of several chemical parameters such as pH, substitution ratio, temperature, ionic strength, and electrolyte. Several compositions of Th 1-x U x O 2 and Th 1-x Pu x O 2 were synthesized and characterized before and after leaching by using several methods such as XRD, EXAFS, BET, PIXE, SEM, and XPS. Leaching tests were performed in nitric, hydrochloric or sulfuric media and groundwater. The normalized dissolution rates were evaluated for Th 1-x U x O 2 , and Th 0.88 Pu 0.12 O 2 leading to the determination of the partial order related to the proton concentration, n, and to the corresponding normalized dissolution rate constant at pH = 0, k'T. While for Th enriched solids, the solid solutions Th 1-x U x O 2 have the same dissolution behaviour than ThO 2 with a partial order n ∼ 0.3, in the case of uranium enriched solids, Th 1-x U x O 2 has the same dissolution behaviour than UO 2 with a partial order of n = 1, indicating that uranium oxidation rate becomes the limiting step of the dissolution process. The stoichiometry of the release of both actinides (U or Pu, Th) was verified until the precipitation of thorium occurred in the leachate for pH > 2, while uranium was released in the solution as an uranyl form. For uranium enriched solid solutions, thermodynamic equilibrium was reached after 100 days, and solubility constant of secondary phase was determined. In the case of Th 1-x Pu x O 2 , the dissolution behaviour is similar to that of ThO 2 , but only kinetic aspect of the dissolution can be studied. From the analysis of XPS and EXAFS data on leached and un-leached Th 1-x U x O 2 samples, the dissolution mechanism of solid solutions was explained and will be discussed. The role of the electrolytes on the dissolution of the solid solutions is discussed. Kinetics parameters of dissolution are also given in groundwater and in neutral media

  17. Preparation, structural, dielectric and magnetic properties of LaFeO3–PbTiO3 solid solutions

    International Nuclear Information System (INIS)

    Ivanov, S.A.; Tellgren, R.; Porcher, F.; Ericsson, T.; Mosunov, A.; Beran, P.; Korchagina, S.K.; Kumar, P. Anil; Mathieu, R.; Nordblad, P.

    2012-01-01

    Highlights: ► Solid-solutions of (1−x)LaFeO 3 –(x)PbTiO 3 were synthesized by solid-state reaction. ► XRPD and NPD evidence orthorhombic (x 0.8) crystal structures. ► LaFeO 3 -rich compositions order antiferromagnetically (x 3 -rich compositions exhibit ferroelectric order (x larger than 0.8). ► Magnetic and dielectric (relaxor) ordering coexist near room-temperature around x = 0.4. -- Abstract: Solid solutions of (1−x)LaFeO 3 –(x)PbTiO 3 (0 3+ cations in the B-site with propagation vector k = (0,0,0). Based on the obtained experimental data, a combined structural and magnetic phase diagram has been constructed. The factors governing the structural, dielectric and magnetic properties of (1−x)LaFeO 3 –(x)PbTiO 3 solid solutions are discussed, as well as their possible multiferroicity.

  18. Ionic conductivity of LISICON solid solutions, Li 2+2 xZn 1- xGeO 4

    Science.gov (United States)

    Bruce, P. G.; West, A. R.

    1982-10-01

    The conductivity of LISICON γII-type solid solutions of general formula Li 2+2 xZn 1- xGeO 4 (-0.36 class of Li + ion conductors, was measured over the temperature range ˜25 to 300°C. Conductivities appear to be very composition dependent near the stoichiometric composition x = 0, but less so in the range 0.15 ≲ x ≲ 0.87. It is shown that interstitial Li + ions rather than cation vacancies give rise to high conductivities. The solid electrolyte properties and possible applications of the solid solutions are evaluated. The LISICON composition, x = 0.75, decomposes readily above ˜300°C by precipitation of Li 4GeO 4, thereby limiting its possible usefulness, but compositions in the range x = 0.45 to 0.55 appear to be stable at all temperatures. However, irreversible decreases in conductivity (aging effects) occur on annealing, even at room temperature. The conductivity data of quenched samples give linear Arrhenius plots, but with anomalously high prefactors, over the range ˜25 to 130°C; at higher temperatures reversible changes of slope to lower activation energies occur. A variety of minor polymorphic transitions occur on annealing γII solid solutions below ˜300°C and their relationship to the conductivity was also determined.

  19. A 2D Substitutional Solid Solution through Hydrogen Bonding of Molecular Building Blocks.

    Science.gov (United States)

    MacLeod, Jennifer M; Lipton-Duffin, Josh; Fu, Chaoying; Taerum, Tyler; Perepichka, Dmitrii F; Rosei, Federico

    2017-09-26

    Two-dimensional (2D) molecular self-assembly allows for the formation of well-defined supramolecular layers with tailored geometrical, compositional, and chemical properties. To date, random intermixing and entropic effects in these systems have largely been associated with crystalline disorder and glassy phases. Here we describe a 2D crystalline self-assembled molecular system that exhibits random incorporation of substitutional molecules. The lattice is formed from a mixture of trimesic acid (TMA) and terthienobenzenetricarboxylic acid (TTBTA), C 3 -symmetric hydrogen-bonding units of very different sizes (0.79 and 1.16 nm, respectively), at the solution-highly oriented pyrolitic graphite (HOPG) interface. Remarkably, the TTBTA substitutes into the TMA lattice at a fixed stoichiometry near 12%. The resulting lattice constant is consistent with Vegard's law prediction for an alloy with a composition TMA 0.88 TTBTA 0.12 , and the substrate orientation of the lattice is defined by an epitaxial relation with the HOPG substrate. The Gibbs free energy for the TMA/TTBTA lattice was elucidated by considering the entropy of intermixing, via Monte Carlo simulations of multiplicity of the substitutional lattices, and the enthalpy of intermixing, via density functional theory calculations. The latter show that both the bond enthalpy of the H-bonded lattice and the adsorption enthalpy of the molecule/substrate interactions play important roles. This work provides insight into the manifestation of entropy in a molecular crystal constrained by both epitaxy and intermolecular interactions and demonstrates that a randomly intermixed yet crystalline 2D solid can be formed through hydrogen bonding of molecular building blocks of very different size.

  20. Thermal expansion and thermal diffusivity properties of Co-Si solid solutions and intermetallic compounds

    International Nuclear Information System (INIS)

    Ruan, Ying; Li, Liuhui; Gu, Qianqian; Zhou, Kai; Yan, Na; Wei, Bingbo

    2016-01-01

    Highlights: • Length change difference between rapidly and slowly solidified Co-Si alloy occurs at high temperature. • Generally CTE increases with an increasing Si content. • The thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi if T exceeds 565 K. • All the CTE and thermal diffusivity variations with T satisfy linear or polynomial relations. - Abstract: The thermal expansion of Co-Si solid solutions and intermetallic compounds was measured via dilatometric method, compared with the results of first-principles calculations, and their thermal diffusivities were investigated using laser flash method. The length changes of rapidly solidified Co-Si alloys are larger than those of slowly solidified alloys when temperature increases to around 1000 K due to the more competitive atom motion. The coefficient of thermal expansion (α) of Co-Si alloy increases with an increasing Si content, except that the coefficient of thermal expansion of Co 95 Si 5 influenced by both metastable structure and allotropic transformation is lower than that of Co 90 Si 10 at a higher temperature. The thermal expansion abilities of Co-Si intermetallic compounds satisfy the relationship of Co 2 Si > CoSi > CoSi 2 , and the differences of the coefficients of thermal expansion between them increase with the rise of temperature. The thermal diffusivity of CoSi 2 is evidently larger than the values of other Co-Si alloys. If temperature exceeds 565 K, their thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi. All the coefficient of thermal expansion and thermal diffusivity variations with temperature satisfy linear or polynomial relations.

  1. The role of edge dislocations in the deformation of BCC metals

    International Nuclear Information System (INIS)

    Lung, C.W.

    1994-08-01

    It was widely accepted that the screw dislocation is responsible for the strong temperature dependence of the yield stresses observed in bcc metals. In this paper, we show the role of edge dislocations in the deformation of bcc metals and point out that in some cases, its main contribution to the yield stress cannot be ignored. (author). 15 refs, 2 figs, 1 tab

  2. Towards true 3-dimensional BCC colloidal crystals with controlled lattice orientation

    NARCIS (Netherlands)

    Dziomkina, N.; Hempenius, Mark A.; Vancso, Gyula J.

    2009-01-01

    A fabrication method of colloidal crystals possessing the BCC crystal structure is described. BCC colloidal crystals with a thickness of up to seven colloidal layers were grown in the direction of the (100) crystal plane. Defect free colloidal crystals with a homogeneous surface coverage were

  3. Solid solutions in the system Nd2(SeO4)3 - Sm2(SeO4)3 - H2O

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Tsybukova, T.N.; Velikov, A.A.

    1984-01-01

    Using the method of isothermal solubility at 25 deg C the system Nd 2 (SeO 4 ) 3 -Sm 2 (SeO 4 ) 3 -H 2 O has been studied. Roentgenographic recording of solid ''residues'' is realized. For solid solutions energies of interchange and formation heats are calculated. Formation heats of solid solutions on the basis of samarium selenates are also found experimentally

  4. Improving the Dissolution of Phosphorus from 2CaO·SiO2-3CaO·P2O5 Solid Solution in Aqueous Solutions

    Science.gov (United States)

    Du, Chuan-ming; Gao, Xu; Kim, Sun-joong; Ueda, Shigeru; Kitamura, Shin-ya

    Steelmaking slag is a potential P resource in Japan, because the P quantity in it is almost equal to that in imported phosphate ores. P2O5 is mainly concentrated in the 2CaO·SiO2-3CaO·P2O5 solid solution in slag. It has been clarified that P can be selectively leached out from C2S-C3P rather than the matrix phase of slag. To recover P from slag, its dissolution ratio from C2S-C3P should be increased. In this study, the effects of leaching agent and Na2SiO3 modification on the dissolution of the C2S-C3P solid solution and slag in aqueous solutions have been investigated. H3C6H5O7 is beneficial for P dissolution from C2S-C3P in aqueous solutions because of the formation of the CaC6H5O{7/-} complex, which can suppress phosphate precipitation. The P-rich phase is changed from the original C2S-C3P to C2S-C2NP with higher water solubility by Na2SiO3 modification, which facilitates P dissolution. At pH=5, 85.7% of P from the modified C2S-C3P can be dissolved in the H3C6H5O7 solution. The selective leaching of P from the CaO-SiO2- Fe2O3 system slag can be achieved by Na2SiO3 modification and leaching in the H3C6H5O7 solution at pH=5. The P dissolution ratio reaches 78.4%, and only 19.7% of Fe is dissolved.

  5. Magnetism and disorder in BCC AlCuFe intermetallics

    International Nuclear Information System (INIS)

    Meyer, M.; Sanchez, F.; Mendoza-Zelis, L.

    2007-01-01

    We present here a systematic study of the structural and magnetic properties of a series of alloys around a central composition Al 50 Cu 20 Fe 30 , obtained by mechanical alloying. The samples have BCC crystalline structure with partial B2 order. Thermal annealing, through differential scanning calorimetry measurements, just removes some defects but does not change the crystalline structure. AC susceptibility measurements show that in spite of their structural similarity these samples have quite different magnetic behaviors. Furthermore, most of the samples show a complex magnetic evolution with temperature. Some samples have a cluster glass-like behavior at low temperatures and a superparamagnetic-like one at higher temperatures. A model of magnetic clusters originating in composition fluctuations across the alloy is proposed to explain the observed magnetic properties

  6. Free energies of formation of WC and WzC and the thermodynamic properties of carbon in solid tungsten

    Science.gov (United States)

    Gupta, D. K.; Seigle, L. L.

    1974-01-01

    The activity of carbon in the two-phase regions - W + WC and W + W2C was obtained from the carbon content of iron rods equilibrated with mixtures of metal plus carbide powders. From this activity data the standard free energies of formation of WC and W2C were calculated. The temperature of the invariant reaction W2C = W + WC was fixed at 1570 + or - 5K. Using available solubility data for C in solid W, the partial molar free energy of C in the dilute solid solution was also calculated. The heat of solution of C in W, and the excess entropy for the interstitial solid solution, were computed, assuming that the carbon atoms reside in the octahedral interstices of bcc W.

  7. Improving the electrocatalytic properties of Pd-based catalyst for direct alcohol fuel cells: effect of solid solution.

    Science.gov (United States)

    Wen, Cuilian; Wei, Ying; Tang, Dian; Sa, Baisheng; Zhang, Teng; Chen, Changxin

    2017-07-07

    The tolerance of the electrode against the CO species absorbed upon the surface presents the biggest dilemma of the alcohol fuel cells. Here we report for the first time that the inclusion of (Zr, Ce)O 2 solid solution as the supporting material can significantly improve the anti-CO-poisoning as well as the activity of Pd/C catalyst for ethylene glycol electro-oxidation in KOH medium. In particular, the physical origin of the improved electrocatalytic properties has been unraveled by first principle calculations. The 3D stereoscopic Pd cluster on the surface of (Zr, Ce)O 2 solid solution leads to weaker Pd-C bonding and smaller CO desorption driving force. These results support that the Pd/ZrO 2 -CeO 2 /C composite catalyst could be used as a promising effective candidate for direct alcohol fuel cells application.

  8. High-temperature thermoelectric properties of the β-As2−xBixTe3 solid solution

    Directory of Open Access Journals (Sweden)

    J.-B. Vaney

    2016-10-01

    Full Text Available Bi2Te3-based compounds are a well-known class of outstanding thermoelectric materials. β-As2Te3, another member of this family, exhibits promising thermoelectric properties around 400 K when appropriately doped. Herein, we investigate the high-temperature thermoelectric properties of the β-As2−xBixTe3 solid solution. Powder X-ray diffraction and scanning electron microscopy experiments showed that a solid solution only exists up to x = 0.035. We found that substituting Bi for As has a beneficial influence on the thermopower, which, combined with extremely low thermal conductivity values, results in a maximum ZT value of 0.7 at 423 K for x = 0.017 perpendicular to the pressing direction.

  9. PRODUCTION, DIELECTRIC PROPERTY AND MICROWAVE ABSORPTION PROPERTY OF SiC(Fe SOLID SOLUTION POWDER BY SOL-GEL METHOD

    Directory of Open Access Journals (Sweden)

    XIAOLEI SU

    2014-03-01

    Full Text Available SiC(Fe solid solution powders were synthesized by sol–gel method under different reaction time, using methyltriethoxysilane as the silicon and carbon source and analytic ferric chloride as the dopant, respectively. The synthesized powders have been characterized by XRD, SEM and Raman spectra. Results show that the lattice constant decreases with increasing reaction time. The electric permittivities of SiC samples were determined in the frequency range of 8.2 ~ 12.4 GHz. Results show that the permittivity of SiC decreases with increasing reaction time. The SiC(Fe solid solution powder with reaction time of 4 h with 2 mm thickness exhibit the best microwave absorption property in X-band range (8.2 - 12.4 GHz. The microwave absorption mechanism has been discussed.

  10. Thermoelectric properties of Bi2Te3 base solid solutions in the Bi2Te3-InS system

    International Nuclear Information System (INIS)

    Safarov, M.G.; Rustamov, P.G.; Alidzhanov, M.A.

    1979-01-01

    The rich Bi 2 Te 3 part ot the Bi 2 Te 3 -InS constitutional diagram has been studied with a view to produce new Bi 2 Te 3 -based solid solutions and to establish the maximum solubility of InS in Bi 2 Te 3 . The methods of differential-thermal, X-ray phase and microstructural analysis have been used. The alloys microhardness, density and thermal electric properties have been measured. A large region of Bi 2 Te 3 -based restricted solid solutions has been detected; it reaches 14.0 mol.% InS at room temperature. Studied have been the thermoelectromotive forces, electric and thermal conductivity of the alloys, containing up to 5 mol.% InS in the 300-700 K temperature range

  11. Structural and magnetic properties of UCo1/3T2/3Al solid solutions (T = Ru, Pt, Rh)

    International Nuclear Information System (INIS)

    Andreev, A. V.; Bordallo, H. N.; Chang, S.; Nakotte, H.; Schultz, A. J.; Sechovsky, V.; Torikachvili, M. S.

    1999-01-01

    We report on neutron diffraction studies of UCo 1/3 T 2/3 Al (T = Ru, Pt, Rh). All three solid solutions form in the hexagonal ZrNiAl structure. The Ru-containing compound is found to be chemically ordered, while the Pt-containing compound is nearly disordered and the Rh-containing compound is purely disordered. All three compounds exhibit long-range magnetic order with rather small U moments

  12. Liquid‐to‐solid ratio control as an advanced process control solution for continuous twin‐screw wet granulation

    DEFF Research Database (Denmark)

    Nicolaï, Niels; Leersnyder, Fien De; Copot, Dana

    2018-01-01

    for the dynamic behavior of the granule liquid‐to‐solid ratio (w) at the end of the granulation unit of a commercial ConsiGmaTM‐25 production line. Near‐infrared spectroscopy was used to monitor the granule composition in‐line. The outcome for both the tracking and regulator problem using either conventional......, and the limited flexibility of the automation software. Applying the proposed advanced process control solution offers an answer to upstream material flow rate deviations....

  13. Synthetic study on cystinyl peptides using solution and solid phase metodology: human IgG1 hinge region

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Gut, Vladimír; Ježek, Jan; Buděšínský, Miloš; Kašička, Václav; Wünsch, Erich; Hlaváček, Jan

    2010-01-01

    Roč. 39, č. 3 (2010), s. 641-650 ISSN 0939-4451 R&D Projects: GA ČR GA203/03/1362; GA ČR GA203/07/1517 Institutional research plan: CEZ:AV0Z40550506 Keywords : hinge region * immunoglobulin * prion protein * solution synthesis * solid phase synthesis Subject RIV: CC - Organic Chemistry Impact factor: 4.106, year: 2010

  14. MgAl2 O4–γ-Al2 O3 solid solution interaction: mathematical ...

    Indian Academy of Sciences (India)

    Administrator

    ration from MgAl2O4 has been observed in the Mg–Al spinel powders (n > 1) when the 1000°C heat treated materials are calcined at 1200°C. In the mathematical framework, unit cell of MgAl2O4 (Mg8Al16O32) has been considered for the solid solution interactions (substitution of Mg. 2+ ions by Al. 3+ ions) with γ-Al2O3.

  15. Modeling retardation effects by barium and strontium solid solutions on radium cations in the near field of radioactive waste repository

    Science.gov (United States)

    Shao, H.; Kosakowski, G.; Kulik, D. A.; Kolditz, O.

    2009-04-01

    In the near field of a radioactive waste repository, bentonite is often used as a buffer material to prevent the migration of hazardous radionuclides into the biosphere. Traditionally the retardation mechanisms are simplified into a linear isotherm concept. The corresponding KD value is thereafter used for safety assessment purposes. Often, due to the lack of experimental data, the retardation based on the formation of solid solutions is ignored and only cation exchange and surface complexation processes are considered in evaluating KDs. In this contribution, we use the newly coupled code GeoSys-GEM to simulate the reactive transport of radium in a bentonite column. In a first step, a chemical model was set up which contained non-ideal radium, barium, and strontium sulfate and carbonate solid solutions. Our reactive transport simulations suggest that the formation of such solid solutions strongly contributes to the retardation of radium. The aqueous Ra2+ concentration will be lower by 3 ~ 4 orders of magnitudes in the presence of sulfate solid solutions. However, its fixation capacity is highly influenced by the sulfate inventory available in the medium. In a second step, the chemical model was further extended to include ion exchange effects, with the clay mineral montmorillonite acting as an ion-exchanger. A sensitivity analysis was conducted to find out to what extent the mechanisms and compounds influence the retardation of radium. With this model, we are able to predict the transport of radionuclides in a more realistic way and reduce the conservatism of the simplified models (linear isotherms) used for performance assessment.

  16. A New Thermodynamic Parameter to Predict Formation of Solid Solution or Intermetallic Phases in High Entropy Alloys (Postprint)

    Science.gov (United States)

    2015-11-02

    AFRL-RX-WP-JA-2016-0345 A NEW THERMODYNAMIC PARAMETER TO PREDICT FORMATION OF SOLID SOLUTION OR INTERMETALLIC PHASES IN HIGH ENTROPY ...INTERMETALLIC PHASES IN HIGH ENTROPY ALLOYS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-10-D-5226-0005 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...simple thermodynamic criterion is proposed to predict the presence or absence of equilibrium intermetallic phases in a high entropy alloy at a given

  17. (1-xPux)Sb solid solutions. 1. Magnetic configurations

    DEFF Research Database (Denmark)

    Normile, P.S.; Stirling, W.G.; Mannix, D.

    2002-01-01

    Neutron and resonant x-ray magnetic scattering studies have been performed on single crystals of three compositions, x=0.25, 0.50, and 0.75 of the (U1-xPux)Sb solid solution. Neutron diffraction has established the ordering wave vector (k=1 for x=0.25 and 0.50, as in x=0, USb, and k=0.25 for x=0....

  18. Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, Laszlo, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Gyoergy, Krisztina; Kardos, Marta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Osan, Janos; Alfoeldy, Balint [Institute for Atomic Energy Research, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Varga, Imre [Department of Analytical Chemistry, Institute of Chemistry, Lorand Eoetvoes University, P.O. Box 32, H-1518 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyarovar, Lucsony u. 15-17 (Hungary); Szoboszlai, Norbert [Department of Analytical Chemistry, Institute of Chemistry, Lorand Eoetvoes University, P.O. Box 32, H-1518 Budapest (Hungary); Stefanka, Zsolt [Institute for Isotope Research, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Hungarian Atomic Energy Authority, H-1136 Budapest, Fenyes Adolf u. 4 (Hungary); Szeles, Eva [Institute for Isotope Research, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Kovacs, Laszlo [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2012-05-13

    Highlights: Black-Right-Pointing-Pointer Solid sampling GFAAS was studied for Cr, Fe and Mn determination in lithium niobate. Black-Right-Pointing-Pointer Solution based GFAAS, FAAS, ICP-OES and ICP-MS were elaborated for method validation. Black-Right-Pointing-Pointer The performances of the elaborated spectrochemical methods have been compared. Black-Right-Pointing-Pointer The chemical forms of the matrix produced in GFAAS cycles were studied by XANES. - Abstract: Solid sampling (SS) graphite furnace atomic absorption spectrometry (GFAAS) and solution-based (SB) methods of GFAAS, flame atomic absorption spectrometry (FAAS), inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) were elaborated and/or optimized for the determination of Cr, Fe and Mn trace elements used as dopants in lithium niobate optical crystals. The calibration of the SS-GFAAS analysis was possible with the application of the three-point-estimation standard addition method, while the SB methods were mostly calibrated against matrix-matched and/or acidic standards. Spectral and non-spectral interferences were studied in SB-GFAAS after digestion of the samples. The SS-GFAAS method required the use of less sensitive spectral lines of the analytes and a higher internal furnace gas (Ar) flow rate to decrease the sensitivity for crystal samples of higher (doped) analyte content. The chemical forms of the matrix produced at various stages of the graphite furnace heating cycle, dispensed either as a solid sample or a solution (after digestion), were studied by means of the X-ray near-edge absorption structure (XANES). These results revealed that the solid matrix vaporized/deposited in the graphite furnace is mostly present in the metallic form, while the dry residue from the solution form mostly vaporized/deposited as the oxide of niobium.

  19. Luminescence of Ce3+ ions in Y3Al5O12 - Y3Ga5O12 solid solution

    International Nuclear Information System (INIS)

    Zorenko, Yu.V.; Nazar, I.V.; Limarenko, L.N.; Pashkovskij, M.V.

    1996-01-01

    Regularities of changes in spectral and energetic characteristics of the Ce 3+ ions radiation in the Y 3 Al 5-x Ga x O 12 solid solutions, related to change in the matrix crystal field force and dissipation of the luminescence excitation energy because of transfers between the valency zone ceiling and the Ce 3+ excited ion basis state are obtained. 9 refs., 3 figs., 1 tab

  20. The effect of scandium, transition metals and in purities on hardening of aluminium alloys upon decomposition of solid solutions

    International Nuclear Information System (INIS)

    Zakharov, V.V.; Rostova, T.D.

    2007-01-01

    Strengthening of aluminum alloys of the Al-Sc system in ingots due to decomposition of the solid solution of scandium in aluminum is studied as a function of the content of scandium (varied from 0.14 to 0.55%), the presence of Zr, Ti, Hf, V, and Co additives at the same content of scandium (0.2%), of the Sc/Zr proportion at the same total content of Sc + Zr, and as a function of iron and silicon admixtures. Zirconium addition produces the highest effect, increasing the hardness and stabilizing the strengthening, extending it to a wider temperature range of aging. Additions of Ti, Hf produce a similar, though a less pronounced effect. Vanadium addition decreases the hardness of Al-0.2%Sc alloy. The presence of zirconium neutralizes the negative effect of vanadium. Cobalt addition does not effect the hardness of Al-0.2%Sc. The greatest strengthening during decomposition of solid solution in the Al-Sc-Zr system alloys is achieved at equal content of Sc and Zr. In this case, the maximum saturation of the solid solution with scandium and zirconium occurs during melting of ingots and as a result of subsequent heating, judging by the alloy location in the phase diagram, the phase Al 3 (Sc 1-x , Zr x ), where scandium atoms are replaced with zirconium atoms to utmost extent, is separated [ru

  1. Crystal-chemistry insight into the photocatalytic activity of BiOCl x Br1- x nanoplate solid solutions

    Science.gov (United States)

    Xu, Huan-Yan; Han, Xu; Tan, Qu; Wu, Ke-Jia; Qi, Shu-Yan

    2017-06-01

    In this study, a facile alcoholysis method was developed to synthesize BiOCl x Br1- x nanoplates at room temperature and atmospheric pressure. In this route, strong acid or alkaline environment was absolutely avoided to realize the high exposure of {001} crystal facets. The regular changes in XRD peaks and cell parameters as a function of the Br content strongly declared that the obtained BiOCl x Br1- x products belonged to a group of solid solutions. The 2D nanosheets with in-plane wrinkles were clearly observed in TEM images. Interestingly, as the Br content increased, band gaps of BiOCl x Br1- x solid solutions gradually decreased. The photocatalytic degradation of RhB under simulated sunlight irradiation indicated that BiOCl0.5Br0.5 had the best photocatalytic activity. From the viewpoint of crystal chemistry, the photocatalytic activity of BiOCl x Br1- x solid solutions was closely related with the exposure amount of {001} facets, interlayer spacing of (001) plane and energy-level position of valence band.

  2. Magnetic and structural phase diagram of the solid solution LaCoxMn1-xO3

    Science.gov (United States)

    Bull, C. L.; Playford, H. Y.; Knight, K. S.; Stenning, G. B. G.; Tucker, M. G.

    2016-07-01

    We present a structural and magnetic phase diagram of the solid solution LaCoxMn1-xO3 . We show by neutron diffraction that the monoclinic structure previously observed for the elpasolite form La2CoMnO6 (LaCo0.5Mn0.5O3 ) is also observed for another member of the solid solution x =0.35 . We also present the transition temperatures for the orthorhombic/monoclinic structures of the series to the rhombohedral structure and determine the expected transition temperatures from rhombohedral to cubic symmetry. We present the magnetic structures as determined by neutron diffraction for materials with lower cobalt content and provide evidence, including ac and dc susceptibility measurements, for the possible glassy nature of the magnetism in the cobalt-rich materials in the series. Based on high-resolution neutron diffraction, we also suggest that there is a limit to the LaCoxMn1-xO3 solid solution at x =0.85 . Finally we present a possible, previously unreported, low-temperature monoclinic structure for the sample LaCo0.75Mn0.25O3 .

  3. PAC experiments for a short range study of the Zr(10%Pr)O{sub 2} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J. A.; Caracoche, M. C., E-mail: cristina@fisica.unlp.edu.ar [Universidad Nacional de La Plata, Departamento de Fisica - IFLP, Facultad de Ciencias Exactas (Argentina); Rivas, P. C. [Universidad Nacional de La Plata, IFLP - Facultad de Ciencias Agronomicas y Forestales (Argentina); Rodriguez, A. M. [Universidad Nacional de La Plata, Departamento de Fisica - IFLP, Facultad de Ciencias Exactas (Argentina)

    2006-07-15

    A Zr(10 mol % Pr)O{sub 2} powder obtained by high-energy ball milling has been investigated at nanoscopic scale using primarily the Perturbed Angular Correlations technique. The aim has been to determine the nanoconfigurations around Zr{sup 4+} cations present in the solid solution and their thermal evolution with the intention of providing knowledge on the stability of the system. Results indicate that the milled product is a substitutional cubic solid solution described by two hyperfine interactions: a highly disordered interaction due to oxygen vacancies located very close to Zr{sup 4+} and an ordered interaction probably depicting a charge distribution including Pr{sup 3+} as nearest neighbor to Zr{sup 4+} probes. On cooling from high temperatures, monoclinic zirconia appears mostly at the expense of the oxygen defective cubic form. A gradual cooling indicates that destabilization of the solid solution takes place around 500{sup o}C. Thermal cycling leads to increasing amounts of the monoclinic phase.

  4. Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions

    Science.gov (United States)

    Khajehtourian, Romik

    Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization of the elastodynamic properties of the medium. The first part of the dissertation examines the propagation of a large-amplitude elastic wave in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities on the dispersion relation. Considering a thin rod, where the thickness is small compared to the wavelength, an exact, closed-form formulation is presented for the treatment of two types of nonlinearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived relation is then verified by direct time-domain simulations, examining both instantaneous dispersion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation). A high-order perturbation analysis is also conducted yielding an explicit analytical space-time solution, which is shown to be spectrally accurate. The results establish a perfect match between theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism that unfolds as an arbitrary-profiled wave evolves in the medium. In the second part of the dissertation, the analysis is extended to a continuous periodic thin rod exhibiting multiple phases or embedded local resonators. The

  5. Reactive transport in a partially molten system with binary solid solution

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2017-12-01

    Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the

  6. Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys

    Science.gov (United States)

    Messina, Luca; Nastar, Maylise; Garnier, Thomas; Domain, Christophe; Olsson, Pär

    2014-09-01

    Defect-driven diffusion of impurities is the major phenomenon leading to formation of embrittling nanoscopic precipitates in irradiated reactor pressure vessel (RPV) steels. Diffusion depends strongly on the kinetic correlations that may lead to flux coupling between solute atoms and point defects. In this work, flux coupling phenomena such as solute drag by vacancies and radiation-induced segregation at defect sinks are systematically investigated for six bcc iron-based dilute binary alloys, containing Cr, Cu, Mn, Ni, P, and Si impurities, respectively. First, solute-vacancy interactions and migration energies are obtained by means of ab initio calculations; subsequently, self-consistent mean field theory is employed in order to determine the exact Onsager matrix of the alloys. This innovative multiscale approach provides a more complete treatment of the solute-defect interaction than previous multifrequency models. Solute drag is found to be a widespread phenomenon that occurs systematically in ferritic alloys and is enhanced at low temperatures (as for instance RPV operational temperature), as long as an attractive solute-vacancy interaction is present, and that the kinetic modeling of bcc alloys requires the extension of the interaction shell to the second-nearest neighbors. Drag occurs in all alloys except Fe(Cr); the transition from dragging to nondragging regime takes place for the other alloys around (Cu, Mn, Ni) or above (P, Si) the Curie temperature. As far as only the vacancy-mediated solute migration is concerned, Cr depletion at sinks is foreseen by the model, as opposed to the other impurities which are expected to enrich up to no less than 1000 K. The results of this study confirm the current interpretation of the hardening processes in ferritic-martensitic steels under irradiation.

  7. NUMERICAL AND ANALYTIC SOLUTION OF PRANDTL’S EQUATION FOR SOLID BODIES WITH AGREED CONTACT SURFACES

    Directory of Open Access Journals (Sweden)

    A. Chigarev

    2013-01-01

    Full Text Available The paper considers a method for problem solution pertaining to compression of elastic bodies bounded by cylindrical surfaces whose radii are almost equal. The objective aim does not allow to apply the Hertz theory and reduces to finding approximate solutions of the Prandtl’s equation. The  resulting solution is compared with the solution in the ANSYS system. 

  8. The Crystal-T algorithm: a new approach to calculate the SLE of lipidic mixtures presenting solid solutions.

    Science.gov (United States)

    Maximo, Guilherme J; Costa, Mariana C; Meirelles, Antonio J A

    2014-08-21

    Lipidic mixtures present a particular phase change profile highly affected by their unique crystalline structure. However, classical solid-liquid equilibrium (SLE) thermodynamic modeling approaches, which assume the solid phase to be a pure component, sometimes fail in the correct description of the phase behavior. In addition, their inability increases with the complexity of the system. To overcome some of these problems, this study describes a new procedure to depict the SLE of fatty binary mixtures presenting solid solutions, namely the "Crystal-T algorithm". Considering the non-ideality of both liquid and solid phases, this algorithm is aimed at the determination of the temperature in which the first and last crystal of the mixture melts. The evaluation is focused on experimental data measured and reported in this work for systems composed of triacylglycerols and fatty alcohols. The liquidus and solidus lines of the SLE phase diagrams were described by using excess Gibbs energy based equations, and the group contribution UNIFAC model for the calculation of the activity coefficients of both liquid and solid phases. Very low deviations of theoretical and experimental data evidenced the strength of the algorithm, contributing to the enlargement of the scope of the SLE modeling.

  9. Solution and interfacial behavior of modified silicone polymers and their interactions with solid substrates

    Science.gov (United States)

    Purohit, Parag

    Surface treatment is very important step in many applications such as fabric finishing, coatings, cosmetics and personal care. Silicone polymers are a class of organic/inorganic materials that show unique properties such as weak intermolecular forces and high flexibility enabling even a very high molecular weight chain to achieve optimal orientation on surfaces. Material properties such as softness, repellency, bounciness and friction can therefore be tailored by using appropriately modified silicone polymers. Despite wide applications, the underlying mechanisms of material modification are unknown and tailoring silicones for applications remains mostly empirical. Thus the objective of this research is to understand the solution and interfacial behavior of functionalized silicone polymers, which govern their performance in material modification. Modified silicones are simultaneously hydrophobic and oleophobic in nature and due to this nearly universal non-compatibility, the studies of these polymers present unusual challenges. Due to this incompatible nature, the functionalized silicone polymers were emulsified into O/W emulsions to study their solution and interfacial properties. The colloidal properties such as electrokinetic and droplet distribution of these emulsions are assumed to play an important role in the observed surface and physical properties of solid substrates (in present study, cellulosic substrates) as well the stability of emulsions itself. To understand the effects of modified silicones on cellulosic substrates a variety of techniques such as frictional analysis, scanning electron microscopy and atomic force microscopy that can probe from macro to nano level were used. It is hypothesized that the size distribution and charge of silicone emulsions as well as the physiochemical conditions such as pH, control silicone conformation which in turn affect the modification of the substrate properties. With bimodal droplet distribution of silicone

  10. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.

    Science.gov (United States)

    Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A

    2014-10-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the

  11. Thermodynamics of the solid solution - Aqueous solution system (Ba,Sr,Ra)SO$_{4}$ + H$_{2}$O: I. The effect of strontium content on radium uptake by barite

    OpenAIRE

    Vinograd, Victor; Kulik, D. A.; Brandt, F.; Klinkenberg, M.; Weber, J.; Winkler, B.; Bosbach, D.

    2017-01-01

    Thermodynamic properties of mixing in the ternary (Ba,Sr,Ra)SO4 solid solution are determined using first principles based total energy calculations and Monte Carlo simulations. Two levels of theory, which correspond to the regular mixing and the generalized Ising model, are considered. The results show that the regular mixing parameters increase along the row of Ba-Ra, Ba-Sr and Sr-Ra binary systems proportionally to the squared difference of molar volumes of the end-members. The magnitudes ...

  12. The incidence of metastatic basal cell carcinoma (mBCC) in Denmark, 1997-2010.

    Science.gov (United States)

    Nguyen-Nielsen, Mary; Wang, Lisa; Pedersen, Lars; Olesen, Anne Braae; Hou, Jeannie; Mackey, Howard; McCusker, Margaret; Basset-Seguin, Nicole; Fryzek, Jon; Vyberg, Mogens

    2015-01-01

    Few data exist on the occurrence of metastatic basal cell carcinoma (mBCC). To identify all cases of mBCC in Denmark over a 14-year period. We searched the Danish National Patient Registry covering all Danish hospitals, the Danish Cancer Registry, the National Pathology Registry and the Causes of Death Registry during the period 1997 to 2010 for potential cases of mBCC registered according to the International classification of diseases ICD-10 and the International Systemized Nomenclature of Medicine (SNOMED). We identified 126,627 patients with a history of primary basal cell carcinoma (BCC) in the registries during the 14-year study period. Using case identifications from the four registries, a total of 170 potential mBCC cases were identified. However, after a pathology review, only five cases could be confirmed, of which three were basosquamous carcinomas. The 14-year cumulative incidence proportion of mBCC was 0.0039% (95% CI 0.0016-0.0083) among individuals with a history of previous BCC (n = 126,627) and 0.0001% (95% CI 0.0000-0.0002) in the general population. MBCC is a rare disease and only a small proportion of potential cases identified in automated clinical databases or registries can be confirmed by pathology and medical record review.

  13. Tetraphenylimidodiphosphinate as solid phase extractant for preconcentrative separation of thorium from aqueous solution

    International Nuclear Information System (INIS)

    Na Liu; Yanfei Wang; Chuhua He

    2016-01-01

    A simple and reliable method for solid phase extraction of thorium using tetraphenylimidodiphosphinate is presented. The solid phase extraction process was optimized at equilibrium time 3 h, pH = 4.5, initial concentration 30 mg L -1 and extractant dosage 0.01 g with 98.95 % of removal efficiency and 29.68 mg g -1 of adsorption capacity. The interfering ions experiments indicated that it had almost no effect on thorium adsorption. Kinetics data follow the pseudo-first-order model and equilibrium data agreed with the Langmuir isotherm model very well. FT-IR analysis indicated that imino group and phosphoryl acted as the significant roles in the solid phase extraction process. (author)

  14. Magnetoelectric effect in (BiFeO3x–(BaTiO31-x solid solutions

    Directory of Open Access Journals (Sweden)

    Kowal Karol

    2015-03-01

    Full Text Available The aim of the present work was to study magnetoelectric effect (ME in (BiFeO3x-(BaTiO31-x solid solutions in terms of technological conditions applied in the samples fabrication process. The rapidly growing interest in these materials is caused by their multiferroic behaviour, i.e. coexistence of both electric and magnetic ordering. It creates possibility for many innovative applications, e.g. in steering the magnetic memory by electric field and vice versa. The investigated samples of various chemical compositions (i.e. x = 0.7, 0.8 and 0.9 were prepared by the solid-state sintering method under three sets of technological conditions differing in the applied temperature and soaking time. Measurements of the magnetoelectric voltage coefficient αME were performed using a dynamic lock-in technique. The highest value of αME was observed for 0.7BiFeO3-0.3BaTiO3 solid solution sintered at the highest temperature (T = 1153 K after initial electrical poling despite that the soaking time was reduced 10 times in this case.

  15. Fabrication of platinum nanoparticles in aqueous solution and solid phase using amphiphilic PB-b-PEO copolymer nanoreactors

    International Nuclear Information System (INIS)

    Hoda, Numan; Budama, Leyla; Çakır, Burçin Acar; Topel, Önder; Ozisik, Rahmi

    2013-01-01

    Graphical abstract: TEM image of Pt nanoparticles produced by reducing by NaBH 4 within PB-b-PEO micelles in aqueous media (scale bar 1 nm). - Highlights: • Pt nanoparticles were synthesized within amphiphilic diblock copolymer micelles. • The effects of reducing agents and precursor dose on Pt np size were investigated. • The effect on fabrication of Pt np by reducing in aqueous and solid phases was compared. • The size of nanoparticles was about 1.4 nm for all doses and reducing agents types. - Abstract: Fabrication of Pt nanoparticles using an amphiphilic copolymer template in aqueous solution was achieved via polybutadiene-block-polyethyleneoxide copolymer micelles, which acted as nanoreactors. In addition, Pt nanoparticles were synthesized using hydrogen gas as the reducing agent in solid state for the first time to compare against solution synthesis. The influences of loaded precursor salt amount to micelles and the type of reducing agent on the size of nanoparticles were investigated through transmission electron microscopy. It was found that increasing the ratio of precursor salt to copolymer and using different type of reducing agent, even in solid phase reduction, did not affect the nanoparticle size. The average size of Pt nanoparticles was estimated to be 1.4 ± 0.1 nm. The reason for getting same sized nanoparticles was discussed in the light of nucleation, growth process, stabilization and diffusion of nanoparticles within micelles

  16. Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution

    Science.gov (United States)

    Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.

    2018-02-01

    A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.

  17. Fabrication of platinum nanoparticles in aqueous solution and solid phase using amphiphilic PB-b-PEO copolymer nanoreactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoda, Numan, E-mail: nhoda@akdeniz.edu.tr [Department of Chemistry, Faculty of Sciences, Akdeniz University, 07058 Antalya (Turkey); Budama, Leyla; Çakır, Burçin Acar; Topel, Önder [Department of Chemistry, Faculty of Sciences, Akdeniz University, 07058 Antalya (Turkey); Ozisik, Rahmi [Department of Materials Science and Engineering and Renssleaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2013-09-01

    Graphical abstract: TEM image of Pt nanoparticles produced by reducing by NaBH{sub 4} within PB-b-PEO micelles in aqueous media (scale bar 1 nm). - Highlights: • Pt nanoparticles were synthesized within amphiphilic diblock copolymer micelles. • The effects of reducing agents and precursor dose on Pt np size were investigated. • The effect on fabrication of Pt np by reducing in aqueous and solid phases was compared. • The size of nanoparticles was about 1.4 nm for all doses and reducing agents types. - Abstract: Fabrication of Pt nanoparticles using an amphiphilic copolymer template in aqueous solution was achieved via polybutadiene-block-polyethyleneoxide copolymer micelles, which acted as nanoreactors. In addition, Pt nanoparticles were synthesized using hydrogen gas as the reducing agent in solid state for the first time to compare against solution synthesis. The influences of loaded precursor salt amount to micelles and the type of reducing agent on the size of nanoparticles were investigated through transmission electron microscopy. It was found that increasing the ratio of precursor salt to copolymer and using different type of reducing agent, even in solid phase reduction, did not affect the nanoparticle size. The average size of Pt nanoparticles was estimated to be 1.4 ± 0.1 nm. The reason for getting same sized nanoparticles was discussed in the light of nucleation, growth process, stabilization and diffusion of nanoparticles within micelles.

  18. Evaluation of the presence of microorganisms in solid-organ preservation solution

    Directory of Open Access Journals (Sweden)

    André Marcelo Colvara Mattana

    Full Text Available OBJECTIVE: To assess the presence of microorganism contamination in the preservation solution for transplant organs (kidney/pancreas. Method: Between August 2007 and March 2008, 136 samples of preservation solution were studied prior to graft implantation. Variables related to the donor and to the presence of microorganisms in the preservation solution of organs were evaluated, after which the contamination was evaluated in relation to the "recipient culture" variable. Univariate and multivariate statistical analyses were performed. RESULTS: The contamination rate of the preservation solution was 27.9%. Coagulase-negative Staphylococcus was the most frequently isolated microorganism. However, highly virulent agents, such as fungi and enterobacteria, were also isolated. In univariate analysis, the variable "donor antibiotic use" was significantly associated to the contamination of the preservation solution. On the other hand, multivariate analysis found statistical significance in "donor antibiotic use" and "donor's infectious complications" variables. CONCLUSIONS: In this study, 27.9% of the preservation solutions of transplant organs were contaminated. Infectious diseases and non-use of antibiotics by the donor were significantly related to the presence of microorganisms in organ preservation solutions. Contamination in organ preservation solutions was not associated with infection in the recipient.

  19. Dislocations and Plasticity in bcc Transition Metals at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L H; Tang, M; Moriarty, J A

    2009-01-23

    Using first-principles electronic structure calculations, quantum-based atomistic simulations and atomistically informed dislocation dynamics (DD) simulations, we have studied individual dislocation behavior and the multiscale modeling of single-crystal plasticity in the prototype bcc transition metals Ta, Mo and V under both ambient and high pressure conditions. The primary focus in this work is on the pressure-dependent structure, mobility and interaction of a/2<111> screw dislocations, which dominate the plastic deformation properties of these materials. At the electronic scale, first-principles calculations of elasticity, ideal strength and generalized stacking fault energy surfaces have been used to validate quantum-based multi-ion interatomic potentials. At the atomistic scale, these potentials have been used in flexible Green's function boundary condition simulations to study the core structure, Peierls stress {tau}{sub P}, thermally activated kink-pair formation and mobility below {tau}{sub P}, and phonon-drag mobility above {tau}{sub P}. These results have then been distilled into analytic velocity laws and used directly in predictive microscale DD simulations of flow stress and resolved yield stress over wide ranges of pressure, temperature and strain rate.

  20. Solid dispersions in oncology: a solution to solubility-limited oral drug absorption

    NARCIS (Netherlands)

    Sawicki, Emilia

    2017-01-01

    This thesis discusses the formulation method solid dispersion and how it works to resolve solubility-limited absorption of orally dosed anticancer drugs. Dissolution in water is essential for drug absorption because only dissolved drug molecules are absorbed. The problem is that half of the arsenal

  1. Community Solutions for Solid Waste Pollution, Level 6. Teacher Guide. Operation Waste Watch.

    Science.gov (United States)

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…

  2. Ab initio study of compositional trends in solid solution strengthening in metals with low Peierls stresses

    Czech Academy of Sciences Publication Activity Database

    Ma, D.; Friák, Martin; von Pezold, J.; Neugebauer, J.; Raabe, D.

    2015-01-01

    Roč. 98, OCT (2015), s. 367-376 ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : DFT * alloys * Mg alloys * Ni alloys * Mg basal slip Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.058, year: 2015

  3. Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Sandlöbes, S.; Pei, Z.; Friák, Martin; Zhu, L.-F.; Wang, F.; Zaefferer, S.; Raabe, D.; Neugebauer, J.

    2014-01-01

    Roč. 70, MAY (2014), s. 92-104 ISSN 1359-6454 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:68081723 Keywords : Magnesium * Rare-earth elements * Ductility * Modeling * Ab initio Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.465, year: 2014

  4. Cu-Containing Fe-Ni Corrosion-Resistant Alloys Designed by a Cluster-Based Stable Solid Solution Model

    Science.gov (United States)

    Li, Baozeng; Wang, Qing; Wang, Yingmin; Li, Chunyan; Qiang, Jianbing; Ji, Chunjun; Dong, Chuang

    2012-02-01

    Copper is a good corrosion resisting element, but due to its immiscibility with Fe, it is only used as a minor-alloying element in stainless steels. In this work, we introduced a double-cluster structure model [CuNi12][NiFe12] m for stable solid solutions in Cu-containing Fe-Ni corrosion-resistant invar alloys. Our model takes into account all of the enthalpies between the element pairs by assuming Fe-Ni and Ni-Cu nearest neighbors and by avoiding Fe-Cu ones, so that the ideally stabilized structures are described by mixing two cuboctahedral clusters in the fcc lattice, NiFe12 and CuNi12. Two alloy series were designed by varying the relative proportions of the two clusters and the Cu contents. It was proved that the alloys with Cu contents below those prescribed by this model could easily be solutionized and water-quenched to a monolithic fcc solid solution, and resultant alloys possessed good corrosion-resisting properties in 3.5 wt pct NaCl solution.

  5. Comparison of the Solid Solution Properties of Mg-RE (Gd, Dy, Y Alloys with Atomistic Simulation

    Directory of Open Access Journals (Sweden)

    Yurong Wu

    2008-01-01

    Full Text Available Molecular dynamic simulations have been performed to study the solid solution mechanism of Mg100-xREx (RE=Gd,Dy,Y, x=0.5,1,2,3,4  at.%. The obtained results reveal that the additions of Gd, Dy and Y increase the lattice constants of Mg-RE alloys. Also the axis ratio c/a remains unchanged with increase in temperature, restraining the occurrence of nonbasal slip and twinning. Furthermore, it is confirmed that bulk modulus of Mg alloys can be increased remarkably by adding the Gd, Dy, Y, especially Gd, because the solid solubility of Gd in Mg decrease sharply with temperature in comparison with Dy and Y. Consequently, the addition of the RE can enhance the strength of Mg-based alloys, which is in agreement with the experimental results.

  6. Processing by both classical and mechanosynthesis routes and characterization of a new solid solution of tungsten-bronze structure ceramics

    International Nuclear Information System (INIS)

    Khachane, M.; Moure, A.; Elaatmani, M.; Zegzouti, A.; Daoud, M.; Castro, A.

    2006-01-01

    A new family of ferroelectric compounds with Ba 2-x Na 1+x Li x Nb 5 O 15 composition (0 ≤ x ≤ 1) and tetragonal tungsten-bronze structure is processed for the first time. This new family of materials derived from Ba 2 NaNb 5 O 15 compound was processed by classical solid-state reaction and by mechanosynthesis. The powders prepared by these two routes were characterized by X-ray diffraction (at room and high temperature), differential thermal analysis, thermogravimetry and scanning electron microscopy. The results confirm the formation of the solid solution in the whole range of composition. The influence of Li addition on the dielectric permittivity and losses and on the ferro-paraelectric transition temperature is also studied

  7. Dynamic cyclone for solids removal: innovative sand management solutions for oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    Furnes, Olav [Inter Scandic a.s (Norway); Arefjord, Anders [CleanUp AS (Norway)

    2004-07-01

    Sand and other solids inevitably occurring in connection with drilling and production operations for exploitation of offshore and onshore petroleum resources represent an increasing challenge for operators and main contractors worldwide. The adherent sand problems can cause severe erosion of conductors, pipelines and critical processing equipment, such as valves, pumps and separator internals, etc. Proliferation of sand could clog up and severely diminish processing capacity in separators, calling for unscheduled shutdowns for separator jetting and equipment cleaning. These and other consequential problems incur considerable costs to the industry, affecting availability and reliability of production as well as undue cost outlays for equipment monitoring, renewal and refurbishment. Such cost impacts could have decisive effects on commercial viability of marginal fields or deep water prospects. Problematic aspects of produced solids could arise at early stages of reservoir drainage, pending geological profile. As sand volumes tend to increase when oil and gas fields mature, viable tail production to recover remaining reserves becomes decisive for operating costs and investment trade-off. The dynamic de-sanding cyclone system described herein is designed to operate without any pressure drop, thus avoiding loss of flow pressure. It consists of an inner and outer cylindrical chamber, allowing for a second separation run for removal of the smaller particles down to 50 micron or less. In additional to tangential flow inlet, an impeller driven by a hydraulic motor adds significantly to centrifugal separation effects, assisting cleaning of solids as part of the process. As the cyclone is designed to perform online de-gassing as well, it can sustain severe slugging during the solids removal operations. Removed solids can be either accumulated in closed, swapping containers or piped as slurry for final disposal. (author)

  8. Structure and some magnetic properties of (BiFeO3x-(BaTiO31−x solid solutions prepared by solid-state sintering

    Directory of Open Access Journals (Sweden)

    Kowal Karol

    2015-03-01

    Full Text Available This paper presents the results of the study on structure and magnetic properties of the perovskite-type (BiFeO3x-(BaTiO31−x solid solutions. The samples differing in the chemical composition (x = 0.9, 0.8, and 0.7 were produced according to the conventional solid-state sintering method from the mixture of powders. Moreover, three different variants of the fabrication process differing in the temperatures and soaking time were applied. The results of X-ray diffraction (XRD, Mössbauer spectroscopy (MS, and vibrating sample magnetometry (VSM were collected and compared for the set of the investigated materials. The structural transformation from rhombohedral to cubic symmetry was observed for the samples with x = 0.7. With increasing of BaTiO3 concentration Mössbauer spectra become broadened reflecting various configurations of atoms around 57Fe probes. Moreover, gradual decreasing of the average hyperfine magnetic field and macroscopic magnetization were observed with x decreasing.

  9. Defect and phase stability of solid solutions of Mg2X with an antifluorite structure: An ab initio study

    International Nuclear Information System (INIS)

    Viennois, Romain; Jund, Philippe; Colinet, Catherine; Tédenac, Jean-Claude

    2012-01-01

    First principles calculations are done for Mg 2 X (X=Si, Ge or Sn) antifluorite compounds and their solid solutions in order to investigate their pseudo-binary phase diagram. The formation energies of the end-member compounds agree qualitatively with the experiments. For X=Si and Ge, there is a complete solubility, but we observe a miscibility gap in the pseudo-binary phase diagram Mg 2 Si–Mg 2 Sn. This agrees with the most recent experiments and phase diagram assessments. Calculated electronic properties of Mg 2 Si 1−x Sn x alloys qualitatively agree with experiments and in particular the energy bandgap decreases when Si is substituted by Sn. Supercell calculations are also done in order to determine the most stable defects and the doping induced by these defects in the three end-member compounds. We find that the intrinsic n-doping in pure Mg 2 Si can be attributed to the presence of magnesium atoms in interstitial positions. In Mg 2 Ge and Mg 2 Sn, since other defects are stable, they can be also of p-type. - Graphical abstract: Evidence of a miscibility gap from the plot of the formation energy vs x Si (silicon content) for the solid solutions Mg 2 Si–Mg 2 Sn. Highlights: ► First-principles study of the stability of Mg 2 Si–Mg 2 X alloys (X=Ge or Sn) and their defects. ► Mg 2 Si–Mg 2 Ge alloys form a complete series of solid solutions. ► Miscibility gap is found in Mg 2 Si–Mg 2 Sn alloys. ► Interstitial defects are more stable in Mg 2 Si and induce n-doping.

  10. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH

    NARCIS (Netherlands)

    Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.

    2008-01-01

    In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total

  11. Analytical solutions for non-linear conversion of a porous solid particle in a gas–II. Non-isothermal conversion and numerical verification

    NARCIS (Netherlands)

    Brem, Gerrit; Brouwers, J.J.H.

    1990-01-01

    In Part I, analytical solutions were given for the non-linear isothermal heterogeneous conversion of a porous solid particle. Account was taken of a reaction rate of general order with respect to the gas reactant, intrinsic reaction surface area and effective pore diffusion, which change with solid

  12. Luminescent properties of solid solutions in the PbF2-Euf3 system and lead fluoroborate glass ceramics doped with Eu3+ ions

    Science.gov (United States)

    Sevostjanova, T. S.; Khomyakov, A. V.; Mayakova, M. N.; Voronov, V. V.; Petrova, O. B.

    2017-11-01

    Lead fluoroborate glasses doped with Eu3+ are synthesized, studied, and used to produce glassceramics by heat treatment. The structure of glass-ceramics is determined by X-ray diffraction. The optical, mechanical, and luminescent properties of the glass-ceramics are studied. The structure and spectral-luminescent properties of solid solutions in the PbF2-EuF3 system obtained by both solid-phase reaction and coprecipitation from solutions are investigated.

  13. Effective scintillation materials based on solid solutions ZnS1–xTex and perspectives of their application

    Directory of Open Access Journals (Sweden)

    Katrunov K. A.

    2011-04-01

    Full Text Available The optimal technological regime of formation ZnS1–xTex solid solution at spacing 0,0≤х≤0,1 has been determined, and has been shown that fritting in hydrogen atmosphere results in more rapid reaction in comparison to argon due to chemical-thermal etching the ZnO layer out. Further annealing in the inert Ar atmosphere leads to the increase of the light output, to the intensive emission band formation and causes afterglow level reduction and the crystalline lattice rearrangement.

  14. αB-Crystallin: A Hybrid Solid-Solution State NMR Investigation Reveals Structural Aspects of the Heterogeneous Oligomer

    OpenAIRE

    Jehle, Stefan; van Rossum, Barth; Stout, Joseph R.; Noguchi, Satoshi R.; Falber, Katja; Rehbein, Kristina; Oschkinat, Hartmut; Klevit, Rachel E.; Rajagopal, Ponni

    2008-01-01

    Atomic level structural information on αB-Crystallin (αB), a prominent member of the small Heat Shock Protein (sHSP) family has been a challenge to obtain due its polydisperse, oligomeric nature. We show that magic-angle spinning solid-state NMR can be used to obtain high-resolution information on ∼ 580 kDa human αB assembled from 175-residue, 20 kDa subunits. An ∼100-residue α-crystallin domain is common to all sHSPs and solution-state NMR was performed on two different α-crystallin domain c...

  15. αB-Crystallin. A Hybrid Solid-State/Solution-State NMR Investigation Reveals Structural Aspects of the Heterogeneous Oligomer

    Energy Technology Data Exchange (ETDEWEB)

    Jehle, Stefan [Freie Univ., Berlin (Germany); Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); van Rossum, Barth [Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); Stout, Joseph R. [Univ. of Washington, Seattle, WA (United States); Noguchi, Satoshi M. [Univ. of Washington, Seattle, WA (United States); Falber, Katja [Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); Rehbein, Kristina [Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); Oschkinat, Hartmut [Freie Univ., Berlin (Germany); Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); Klevit, Rachel E. [Univ. of Washington, Seattle, WA (United States); Rajagopal, Ponni [Univ. of Washington, Seattle, WA (United States)

    2008-11-14

    Atomic-level structural information on αB-Crystallin (αB), a prominent member of the small heat-shock protein family, has been a challenge to obtain due its polydisperse oligomeric nature. We show that magic-angle spinning solid-state NMR can be used to obtain high-resolution information on an ~580-kDa human αB assembled from 175-residue 20-kDa subunits. An ~100-residue α-crystallin domain is common to all small heat-shock proteins, and solution-state NMR was performed on two different α- crystallin domain constructs isolated from αB. In vitro, the chaperone-like activities of full-length αB and the isolated α-crystallin domain are identical. Chemical shifts of the backbone and Cβ resonances have been obtained for residues 64–162 (α-crystallin domain plus part of the C-terminus) in αB and the isolated α-crystallin domain by solid-state and solution-state NMR, respectively. Both sets of data strongly predict six β-strands in the α-crystallin domain. A majority of residues in the α-crystallin domain have similar chemical shifts in both solid-state and solution-state, indicating similar structures for the domain in its isolated and oligomeric forms. Sites of intersubunit interaction are identified from chemical shift differences that cluster to specific regions of the α-crystallin domain. Multiple signals are observed for the resonances of M68 in the oligomer, identifying the region containing this residue as existing in heterogeneous environments within αB. Evidence for a novel dimerization motif in the human α-crystallin domain is obtained by a comparison of (i) solid-state and solution-state chemical shift data and (ii) 1H–15N heteronuclear single quantum coherence spectra as a function of pH. The isolated α-crystallin domain undergoes a dimer–monomer transition over the pH range 7.5–6.8. This steep pHdependent switch may be important for αB to function optimally (e.g., to preserve the filament integrity

  16. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.

    2011-06-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag controls; however, AgNW ss-DSC devices consistently had higher fill factors (0.6 versus 0.69), resulting in comparable power conversion efficiencies (2.7%) compared to thermally evaporated Ag control (2.8%). Laminated Ag NW electrodes enable higher throughput manufacturing and near unity material usage, resulting in a cheaper alternative to thermally evaporated electrodes. © 2011 Elsevier B.V. All rights reserved.

  17. Synthesis, sintering and dissolution of thorium and uranium (IV) mixed oxide solid solutions: influence of the method of precursor preparation

    International Nuclear Information System (INIS)

    Hingant, N.

    2008-12-01

    Mixed actinide dioxides are currently considered as potential fuels for the third and fourth generations of nuclear reactors. In this context, thorium-uranium (IV) dioxide solid solutions were studied as model compounds to underline the influence of the method of preparation on their physico-chemical properties. Two methods of synthesis, both based on the initial precipitation of oxalate precursors have been developed. The first consisted in the direct precipitation ('open' system) while the second involved hydrothermal conditions ('closed' system). The second method led to a significant improvement in the crystallization of the samples especially in the field of the increase of the grain size. In these conditions, the formation of a complete solid solution Th 1-x U x (C 2 O 4 ) 2 .2H 2 O was prepared between both end-members. Its crystal structure was also resolved. Whatever the initial method considered, these compounds led to the final dioxides after heating above 400 C. The various steps associated to this transformation, involving the dehydration of precursors then the decomposition of oxalate groups have been clarified. Moreover, the use of wet chemistry methods allowed to reduce the sintering temperature of the final thorium-uranium (IV) dioxide solid solutions. Whatever the method of preparation considered, dense samples (95% to 97% of the calculated value) were obtained after only 3 hours of heating at 1500 C. Additionally, the use of hydrothermal conditions significantly increased the grain size, leading to the reduction of the occurrence of the grain boundaries and of the global residual porosity. The significant improvement in the homogeneity of cations distribution in the samples was also highlighted. Finally, the chemical durability of thorium-uranium (IV) dioxide solid solutions was evaluated through the development of leaching tests in nitric acid. The optimized homogeneity especially in terms of the cations distribution, allowed to limit the

  18. On the number of free energy extremums of a solid solution with two long-range order parameters

    International Nuclear Information System (INIS)

    Dateshidze, N.A.; Ratishvili, I.G.

    1977-01-01

    The free energy of ordering f.c.c. lattice solid solution is investigated. The ordering is regarded as homogeneous in the whole bulk of the crystal (i.e. resistant towards formation of antiphase domains). It is described by one of the appropriate distribution functions which contains two long-range order parameters. The calculations have revealed the extrema of the free energy function, and their shape and behaviour upon variations of temperature are analyzed. It is shown that under certain circumstances the system can display more than one minimum of free energy within the ordered phase

  19. Beyond chemical accuracy: The pseudopotential approximation in diffusion Monte Carlo calculations of the HCP to BCC phase transition in beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Shulenburger, Luke [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas Kjell Rene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desjarlais, Michael Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Motivated by the disagreement between recent diffusion Monte Carlo calculations of the phase transition pressure between the ambient and beta-Sn phases of silicon and experiments, we present a study of the HCP to BCC phase transition in beryllium. This lighter element provides an opportunity for directly testing many of the approximations required for calculations on silicon and may suggest a path towards increasing the practical accuracy of diffusion Monte Carlo calculations of solids in general. We demonstrate that the single largest approximation in these calculations is the pseudopotential approximation and after removing this we find excellent agreement with experiment for the ambient HCP phase and results similar to careful calculations using density functional theory for the phase transition pressure.

  20. Ab initio electronic structure calculations of solid, solution-processed metallotetrabenzoporphyrins

    Science.gov (United States)

    Shea, Patrick B.; Kanicki, Jerzy

    2012-04-01

    An ab initio study of the electronic structures of solid metallotetrabenzoporphyrins (MTBPs) utilized in organic transistors and photovoltaics is presented. Band structures, densities of states, and orbitals are calculated for H2, Cu, Ni, and Zn core substitutions of the unit cell of solid TBP, as deposited via soluble precursors that are thermally annealed to produce polycrystalline, semiconducting thin-films. While the unit cells of the studied MTBPs are nearly isomorphous, substitution of the core atoms alters the structure of the bands around the energy bandgap and the composition of the densities of states. Cu and Ni core substitutions introduce nearly dispersionless energy bands near the valence and conduction band edges, respectively, that form acceptor or deep generation/recombination states.

  1. Synthesis and characterization of β type solid solution in the binary ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. We have investigated Bi2O3–Eu2O3 binary system by doping with Eu2O3 in the composition range from 1 to 10 mole% via solid state reactions and succeeded to stabilize β-Bi2O3 phase which is metastable when pure. Stability of β-Bi2O3 polymorph was influenced by heat treatment temperature. Tetragonal type.

  2. Dynamical coupling in Pb(Zr,Ti)O.sub.3./sub. solid solutions from first principles

    Czech Academy of Sciences Publication Activity Database

    Wang, D.; Weerasinghe, J.; Bellaiche, L.; Hlinka, Jiří

    2011-01-01

    Roč. 83, č. 2 (2011), "020301-1"-"020301-4" ISSN 1098-0121 R&D Projects: GA MŠk ME08109 Institutional research plan: CEZ:AV0Z10100520 Keywords : first-principles * ferroelectric * PZT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011 http://link.aps.org/doi/10.1103/PhysRevB.83.020301

  3. Comparison of thermally activated overcoming of barriers in creep of aluminum and its solid solutions

    Czech Academy of Sciences Publication Activity Database

    Dobeš, Ferdinand; Milička, Karel

    387ů389, - (2004), 595ů598 ISSN 0921-5093. [International Conference on the Strength of Materials /13./. Budapest, 25.08.2003-30.08.2003] R&D Projects: GA AV ČR IAA2041202; GA AV ČR IAA2041203 Institutional research plan: CEZ:AV0Z2041904 Keywords : creep * thermal activation * dislocation density Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.445, year: 2004

  4. Kinetics of photochromic processes in substituted dihydropyridines in the solid state and in solution

    Czech Academy of Sciences Publication Activity Database

    Sworakowski, J.; Nešpůrek, Stanislav; Lipinski, J.; Lewanowicz, A.; Sliwinska, E.

    2001-01-01

    Roč. 356, - (2001), s. 163-173 ISSN 1058-725X. [International Conference on the Chemistry of the Organic Solid State /14./. Cambridge , 25.07.1999-30.07.1999] R&D Projects: GA AV ČR IAA1050901; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : dihydropyridine * photochromism * reaction kinetics Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.457, year: 2001

  5. Sonochemical synthesis of Cd{sub 1−x}Zn{sub x}S solid solutions for application in photocatalytic reforming of glycerol to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Paula A.L., E-mail: paulaaparecida_lopes@hotmail.com [Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-115 Salvador, BA (Brazil); Mascarenhas, Artur J.S., E-mail: artur@ufba.br [Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-115 Salvador, BA (Brazil); Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, 40170-290 Salvador, BA (Brazil); Silva, Luciana A., E-mail: las@ufba.br [Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-115 Salvador, BA (Brazil); Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, 40170-290 Salvador, BA (Brazil)

    2015-11-15

    A simple sonochemical method for the preparation of Cd{sub 1−x}Zn{sub x}S solid solutions was successfully applied. The sonochemical method has shown to be fast, with low energy demand and allowed to obtain nano-sized particles. The obtained materials were characterized by XRD, EDX, SEM and DRS UV/vis. The Pt-loaded photocatalysts were evaluated in photoinduced reforming of glycerol under visible light irradiation (λ > 418 nm). Pure CdS and solid solutions obtained by sonochemical method have shown photocatalytic activity with respect to hydrogen gas production. The maximum hydrogen evolution rate achieved was 239 μmol g{sup −1} h{sup −1}, when the solid solution Cd{sub 0.6}Zn{sub 0}.{sub 4}S contaminated with γ-Zn(OH){sub 2} was irradiated with visible light. - Highlights: • Cd{sub 1−x}Zn{sub x}S solid solutions were successfully prepared by a sonochemical method. • The solid solutions are active in photocatalytic reforming of glycerol. • The solid solution Cd{sub 0.6}Zn{sub 0.4}S contaminated with γ-Zn(OH){sub 2} was the more active photocatalyst.

  6. Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion.

    Science.gov (United States)

    Kobayashi, Hirokazu; Kusada, Kohei; Kitagawa, Hiroshi

    2015-06-16

    Currently 118 known elements are represented in the periodic table. Of these 118 elements, only about 80 elements are stable, nonradioactive, and widely available for our society. From the viewpoint of the "elements strategy", we need to make full use of the 80 elements to bring out their latent ability and create innovative materials. Furthermore, there is a strong demand that the use of rare or toxic elements be reduced or replaced while their important properties are retained. Advanced science and technology could create higher-performance materials even while replacing or reducing minor or harmful elements through the combination of more abundant elements. The properties of elements are correlated directly with their electronic states. In a solid, the magnitude of the density of states (DOS) at the Fermi level affects the physical and chemical properties. In the present age, more attention has been paid to improving the properties of materials by means of alloying elements. In particular, the solid-solution-type alloy is advantageous because the properties can be continuously controlled by tuning the compositions and/or combinations of the constituent elements. However, the majority of bulk alloys are of the phase-separated type under ambient conditions, where constituent elements are immiscible with each other. To overcome the challenge of the bulk-phase metallurgical aspects, we have focused on the nanosize effect and developed methods involving "nonequilibrium synthesis" or "a process of hydrogen absorption/desorption". We propose a new concept of "density-of-states engineering" for the design of materials having the most desirable and suitable properties by means of "interelement fusion". In this Account, we describe novel solid-solution alloys of Pd-Pt, Ag-Rh, and Pd-Ru systems in which the constituent elements are immiscible in the bulk state. The homogeneous solid-solution alloys of Pd and Pt were created from Pd core/Pt shell nanoparticles using a

  7. Lixiviation of plutonium contaminated solid wastes by aqueous solution of electro-generated reducing agents

    International Nuclear Information System (INIS)

    Agarande, Michelle

    1991-01-01

    This study concerns the development of the new concept for the decontamination of plutonium bearing solid wastes, based on the lixiviation of the wastes using electro-generated reducing agents. First, a comparative study of the kinetics of the dissolution of pure PuO 2 (prepared by calcination of Pu (IV) oxalate at 450 C) in sulfuric acid media, with different reducing agents, was realized. Qualitatively these reagents can be sorted in three groups: 1 / fast kinetics for Cr(II), V(II) and U(III); 2 / slow kinetics for Ti(III); 3 / very slow kinetics for V(III) and U(VI). In order to contribute to the design of an electrochemical reactor for the generation of the reducing agents usable for the lixiviation of plutonium bearing solid wastes, the study of the diffusion coefficients of both oxidized and reduced forms of different redox couples, at different temperatures, was undertaken. The results of this study also permits, from the knowledge of the diffusional activation energy of the ions, to conclude that the dissolution of pure plutonium dioxide under the action of these reducing agents is not diffusion limited. The feasibility of the plutonium decontamination treatment of synthetic or real solid wastes was then studied at laboratory scale using electro-generated V(II), which is with Cr(II) among the best reagents. The efficiency of the treatment was good, (80 pc Pu solubilisation yield), especially in the case of cellulosic or miscellaneous organic wastes. (author) [fr

  8. Dislocation glide in Ni-Al solid solutions from the atomic scale up: a molecular dynamics study; Etude du glissement des dislocations dans la solution solide Ni-Al par simulation a l'echelle atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rodary, E

    2003-01-01

    The glide of an edge dislocation in solid solutions is studied by molecular dynamics, at fixed temperature and imposed external stress. We have optimized an EAM potential for Ni(1 a 8% A1): it well reproduces the lattice expansion, local atomic order, stacking fault energy as a function of composition, as well as the elastic properties of the {gamma}' phase with L1{sub 2} structure. On increasing the stress, the dislocation is first immobile, then glides with a velocity proportional to the stress and the velocity saturates on reaching the transverse sound velocity. However, only beyond a static threshold stress, {sigma}{sub s}, does the dislocation glide a distance large enough to allow macroscopic shear; the linear part of the velocity-stress curve extrapolates to zero at a dynamical threshold stress, {sigma}{sub d}, The friction coefficient, and the threshold stresses ({sigma}{sub s} and {sigma}{sub d}), increase with the A1 concentration and decrease with temperature (300 and 500 K). Close to the critical shear stress, {sigma}{sub s}, the dislocation glide is analysed with a 'stop and go' model. The latter yields the flight velocity between obstacles, the mean obstacle density and the distribution of the waiting time on each obstacle as a function of stress, composition and temperature. The obstacle to the glide is proposed to be the strong repulsion between Al atoms brought into nearest neighbour position by the glide process, and not the dislocation-solute interaction. The microscopic parameters so defined are introduced into a micro-mechanical model, which well reproduces the known behaviour of nickel base solid solutions. (author)

  9. Solution and solid state NMR studies of the structure and dynamics of C60 and C70

    International Nuclear Information System (INIS)

    Johnson, R.D.; Yannoni, C.S.; Salem, J.; Meijer, G.; Bethune, D.S.

    1991-01-01

    This paper investigates the structure and dynamics of C 60 and C 70 with 13 C NMR spectroscopy. In solution, high-resolution spectra reveal that C 60 has a single resonance at 143 ppm, indicating a strained, aromatic system with high symmetry. This is strong evidence for a C 60 soccer ball geometry. A 2D NMR INADEQUATE experiment on 13 C-enriched C 70 reveals the bonding connectivity to be a linear string, in firm support of the proposed rugby ball structure with D 5h symmetry, and furnishes resonance assignments. Solid state NMR spectra of C 60 at ambient temperatures yield a narrow resonance, indicative of rapid molecular reorientation. Variable temperature T 1 measurements show that the rotational correlation time is ∼ 10 - 9 s at 230 K. At 77 K, this time increases to more than 1 ms, and the 13 C NMR spectrum of C 60 is a powder pattern due to chemical shift anisotropy (tensor components 220, 186, 40 ppm). At intermediate temperatures a narrow peak is superimposed on the powder pattern, suggesting a distribution of barriers to molecular motion in the sample, or the presence of an additional phase in the solid state. A Carr-Purcell dipolar experiment on C 60 in the solid state allows the first precise determination of the C 60 bond lengths: 1.45 and 1.40 Angstrom

  10. Hydrogen storage and stability properties of Pd-Pt solid-solution nanoparticles revealed via atomic and electronic structure.

    Science.gov (United States)

    Kumara, Loku Singgappulige Rosantha; Sakata, Osami; Kobayashi, Hirokazu; Song, Chulho; Kohara, Shinji; Ina, Toshiaki; Yoshimoto, Toshiki; Yoshioka, Satoru; Matsumura, Syo; Kitagawa, Hiroshi

    2017-11-06

    Bimetallic Pd 1-x Pt x solid-solution nanoparticles (NPs) display charging/discharging of hydrogen gas, which has relevance for fuel cell technologies; however, the constituent elements are immiscible in the bulk phase. We examined these material systems using high-energy synchrotron X-ray diffraction, X-ray absorption fine structure and hard X-ray photoelectron spectroscopy techniques. Recent studies have demonstrated the hydrogen storage properties and catalytic activities of Pd-Pt alloys; however, comprehensive details of their structural and electronic functionality at the atomic scale have yet to be reported. Three-dimensional atomic-scale structure results obtained from the pair distribution function (PDF) and reverse Monte Carlo (RMC) methods suggest the formation of a highly disordered structure with a high cavity-volume-fraction for low-Pt content NPs. The NP conduction band features, as extracted from X-ray absorption near-edge spectra at the Pd and Pt L III -edge, suggest that the Pd conduction band is filled by Pt valence electrons. This behaviour is consistent with observations of the hydrogen storage capacity of these NPs. The broadening of the valence band width and the down-shift of the d-band centre away from the Fermi level upon Pt substitution also provided evidence for enhanced stability of the hydride (ΔH) features of the Pd 1-x Pt x solid-solution NPs with a Pt content of 8-21 atomic percent.

  11. Band edge tuned ZnxCd1-xS solid solution nanopowders for efficient solar photocatalysis.

    Science.gov (United States)

    Ghosh, Shrabani; Sarkar, Samrat; Das, Bikram Kumar; Sen, Dipayan; Samanta, Madhupriya; Chattopadhyay, Kalyan Kumar

    2017-11-15

    This work highlights the synthesis of zinc blende Zn x Cd 1-x S ternary solid solutions with a tunable bandgap. Composition dependent band gaps are realized due to the effective band edge tuning of the solid solutions which in turn show decent photocatalytic behaviour. The bandgap of Zn x Cd 1-x S increases as Zn composition increases. It is interesting to note that the highest catalytic activity is observed for Zn 0.8 Cd 0.2 S (E g = 2.83 eV) in the visible spectra due to the presence of defect states in the bandgap around 2.35 eV which has been explicated according to the results of photoluminescence spectra. Density of states (DOS) analysis provides further theoretical insight into the more negative conduction band edge for x = 0.8 than other samples. It also determines generation of intermediate states due to sulfur vacancy which is responsible for more electron-hole generation and the highest rate of Methyl Orange (MO) degradation under natural sunlight irradiation.

  12. Accurate solid solution range of BiMnxFe3-xO6 and low temperature magnetism

    Science.gov (United States)

    Jiang, Pengfei; Yue, Mufei; Cong, Rihong; Gao, Wenliang; Yang, Tao

    2017-11-01

    BiMnxFe3-xO6 (x = 1) represents a new type of oxide structure containing Bi3+ and competing magnetic super-exchanges. In literature, multiple magnetic states were realized at low temperatures in BiMnFe2O6, and the hypothetical parent compounds (BiMn3O6, BiFe3O6) were predicted to be different in magnetism. Herein, we performed a careful study on the syntheses of BiMnxFe3-xO6 at ambient pressure, and the solid solution range was determined to be 0.9 ≤ x ≤ 1.3 by Rietveld refinements on high-quality powder X-ray diffraction data. Due to the very similar cationic size of Mn3+ and Fe3+, and possibly the structural rigidity, there was no significant structure change in the whole range of solid solution. The magnetic behavior of BiMnxFe3-xO6 (x = 1.2, 1.22, 1.26, 1.28 and 1.3) was generally similar to BiMnFe2O6, while the relative higher concentration of Mn3+ led to the decreasing of the antiferromagnetic ordering temperature.

  13. Structural analysis and magnetic properties of solid solutions of Co–Cr system obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Betancourt-Cantera, J.A.; Sánchez-De Jesús, F.; Bolarín-Miró, A.M.; Betancourt, I.; Torres-Villaseñor, G.

    2014-01-01

    In this paper, a systematic study on the structural and magnetic properties of Co 100−x Cr x alloys (0 1−x Cr x (0 2 /kg) for the Co 90 Cr 10 , which decreases with the increasing of the Cr content up to x=80, as a consequence of the dilution effect of the magnetic moment which is caused by the Cr content and by the competition between ferromagnetic and antiferromagnetic exchange interactions. The coercivity increases up to 34 kA/m (435 Oe) for Co 40 Cr 60 . For Cr rich compositions, it is observed an important decrease reaching 21 kA/m (272 Oe) for Co 10 Cr 90, it is related to the grain size and the structural change. Besides, the magnetic anisotropy constant was determined for each composition. Magnetic thermogravimetric analysis allowed to obtain Curie temperatures corresponding to the formation of hcp-Co(Cr) and fcc-Co(Cr) solid solutions. - Highlights: • Mechanical alloying (MA) induces the formation of solid solutions of Co–Cr system in non-equilibrium. • We report the crystal structure and the magnetic behavior of Co–Cr alloys produced by MA. • MA improves the magnetic properties of Co–Cr system

  14. Atomistic simulations of nanocrystalline U0.5Th0.5O2 solid solution under uniaxial tension

    Directory of Open Access Journals (Sweden)

    Hongxing Xiao

    2017-12-01

    Full Text Available Molecular dynamics simulations were performed to investigate the uniaxial tensile properties of nanocrystalline U0.5Th0.5O2 solid solution with the Born–Mayer–Huggins potential. The results indicated that the elastic modulus increased linearly with the density relative to a single crystal, but decreased with increasing temperature. The simulated nanocrystalline U0.5Th0.5O2 exhibited a breakdown in the Hall–Petch relation with mean grain size varying from 3.0 nm to 18.0 nm. Moreover, the elastic modulus of U1-yThyO2 solid solutions with different content of thorium at 300 K was also studied and the results accorded well with the experimental data available in the literature. In addition, the fracture mode of nanocrystalline U0.5Th0.5O2 was inclined to be ductile because the fracture behavior was preceded by some moderate amount of plastic deformation, which is different from what has been seen earlier in simulations of pure UO2.

  15. Nonlinear photoluminescence of graded band-gap Al sub x Ga sub 1 sub - sub x As solid solutions

    CERN Document Server

    Kovalenko, V F; Shutov, S V

    2002-01-01

    The dependence of the photoluminescence (PL) intensity of undoped and doped graded band-gap Al sub x Ga sub 1 sub - sub x As (x <= 0.36) solid solutions on the excitation level J (1 x 10 sup 1 sup 9 <= J <= 1 x 10 sup 2 sup 2 quantum cm sup - sup 2 s) for different values of built-in quasi-electrical field E (85 <= E <= 700 V/cm) has been studied. It is found that the dependence of the near-band-edge PL intensity I in the excitation level J at an accelerating action of the field E has a complex character. The nonlinearity of I(J) dependence is explained by contribution of the two-photon absorption of the radiating recombination in the process of its remission. The optimum range of E values (120 <= E <= 200 V/cm) providing the greatest contribution of the two-photon absorption in the reemission in undoped solid solutions is determined

  16. Knudsen cell-mass spectroscopic studies of strontium vapour pressures over strontium oxide/uranium dioxide mixtures and solid solutions

    International Nuclear Information System (INIS)

    Sunder, S.; O'Connor, R.F.

    2003-01-01

    High temperature, Knudsen cell-mass spectroscopic (KC-MS) experiments were performed to determine the volatility of strontium oxide dissolved in UO 2 fuel. KC-MS experiments were carried out with finely ground and pre-heated mixtures of SrO and UO 2 and 'solid solutions' of SrO in UO 2 , prepared using the sob-gel method. It was found that the main strontium gaseous species over these samples was Sr atoms. The KC-MS experiments showed that the vapour pressures of Sr over pre-heated-mixtures of SrO and UO 2 , at high temperatures, were similar to those over pure SrO. The vapour pressures of Sr, over 'sol-gel prepared solid solutions' of compositions SrO:UO 2 equal to 1:100 and 2:100 were similar to each other and to those reported over pure SrO by Lamoreaux et al. (for congruent vapourization); but were lower than those over pure SrO observed in this work, and over SrUO 3 reported by Huang et al. and Yamawaki et al. (author)

  17. Synthesis and surface physicochemical properties of (CdTe)0.03(ZnSe)0.97 solid solution

    Science.gov (United States)

    Podgornyi, S. O.; Podgornaya, O. T.; Skutin, E. D.; Demesko, I. P.; Lukoyanova, O. V.; Muromtsev, I. V.

    2018-01-01

    The research is centered on (CdTe)0.03(ZnSe)0.97 solid solutions. The article is aimed at developing innovative primary transducer material for semi-conductor sensors, investigating their surface physicochemical properties and evaluation their applicability in carbon monoxide diagnostics. Powders and nanofilms of (CdTe)0.03(ZnSe)0.97 solid solutions were obtained by isothermal diffusion and discrete thermal evaporation in vacuum. (CdTe)0.03(ZnSe)0.97 applicability in gas analysis was investigated. IR spectroscopy of multiple disturbed complete internal reflections and hydrolytic adsorption were used to study chemical composition and acid-base properties of (CdTe)0.03(ZnSe)0.97. Adsorption properties of the given material for carbon oxide (II) and oxygen were studied by the piezoquartz microweighing and volumetrically. The principles of adsorption, depending on the process conditions, were established. Based on the obtained experimental data, CO micro-impurities sensors were developed, the laboratory tests passed successfully

  18. Synthesis and characterization of Ti1-2x Nb x Ni x O2-x/2 solid solutions

    International Nuclear Information System (INIS)

    Martos, Monica; Julian, Beatriz; Dehouli, Hakim; Gourier, Didier; Cordoncillo, Eloisa; Escribano, Purificacion

    2007-01-01

    Doped-rutile has been traditionally used in ceramic pigments for its intense optical properties. In this paper, we compare the classical ceramic synthesis of Ti 1-2 x Nb x Ni x O 2- x /2 system with the sol-gel methodology, which allows a reduction of the anatase-rutile transformation temperature. The composition was optimised in order to obtain a unique rutile phase with the minimum amount of pollutant Ni(II) and enhanced chromatic coordinates. Incorporation of the doping ions in the rutile structure was corroborated by XRD and Rietveld refinements. The species responsible for the colour mechanism were studied by different techniques. UV-VIS spectroscopy showed the characteristic features of Ni 2+ ions, whose existence was corroborated by EPR and magnetic measurements. From these results, (Ni,Nb)doped-TiO 2 powder samples can be now shaped as thin films, monoliths, etc. by using sol-gel methodology without modifying their properties. This study introduces new possibilities of coloured TiO 2 -based solid solutions in new combined advanced applications (colouring agent and photocatalyst, etc.). - Graphical abstract: The synthesis and characterization of the Ti 1-2 x Nb x Ni x O 2- x /2 system prepared by traditional solid-state and sol-gel methodologies is reported. The incorporation of the doping ions in the rutile structure by Rietveld refinements and the magnetic response are discussed. The similarity found by both procedures introduces new possibilities of coloured TiO 2 -based solid solutions

  19. Characterization of Solid Dispersion of Itraconazole Prepared by Solubilization in Concentrated Aqueous Solutions of Weak Organic Acids and Drying.

    Science.gov (United States)

    Parikh, Tapan; Sandhu, Harpreet K; Talele, Tanaji T; Serajuddin, Abu T M

    2016-06-01

    The purpose of this study was to develop an amorphous solid dispersion (SD) of an extremely water-insoluble and very weakly basic drug, itraconazole (ITZ), by interaction with weak organic acids and then drying that would enhance dissolution rate of drug and physical stability of formulation. Aqueous solubility of ITZ in concentrated solutions of weak organic acids, such as glutaric, tartaric, malic and citric acid, was determined. Solutions with high drug solubility were dried using vacuum oven and the resulting SDs having 2 to 20% drug load were characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The dissolution of SDs was initially studied in 250 mL of 0.1 N HCl (pH 1.1), and any undissolved solids were collected and analyzed by PXRD. The pH of the dissolution medium was then changed from 1.1 to 5.5, particle size of precipitates were measured, and drug concentrations in solution were determined by filtration through membrane filters of varying pore sizes. The aqueous solubility of ITZ was greatly enhanced in presence of weak acids. While the solubility of ITZ in water was ~4 ng/ mL, it increased to 25-40 mg per g of solution at 25°C and 200 mg per g of solution at 65°C at a high acid concentration leading to extremely high solubilization. PXRD of SDs indicated that ITZ was present in the amorphous form, wherein the acid formed a partially crystalline matrix. ATR-FTIR results showed possible weak interactions, such as hydrogen bonding, between drug and acid but there was no salt formation. SDs formed highly supersaturated solutions at pH 1.1 and had superior dissolution rate as compared to amorphous drug and physical mixtures of drug and acids. Following the change in pH from 1.1 to 5.5, ITZ precipitated as mostly nanoparticles, providing high surface area for relatively rapid redissolution. A method of highly solubilizing an

  20. Thermodynamics of the 2CaO·SiO2-3CaO·P2O5 Solid Solution at Steelmaking Temperature

    Science.gov (United States)

    Matsuura, Hiroyuki; Zhong, Ming; Gao, Xu; Tsukihashi, Fumitaka

    Recently the application of CaO-based multi-phase flux has received much attention and thus various physicochemical properties of the CaO-FeO-SiO2 slags have been investigated. In the present paper, the thermodynamic properties of the 2CaO·SiO2-3CaO·P2O5 solid solution which is the main solid phase constituting the multi-phase flux were studied. The activity of P2O5 was measured by the chemical equilibration method between molten iron and the solid solution, the solid solution and CaO mixture, or the solid solution and MgO mixture at 1823 and 1873 K with low oxygen partial pressure. The activities of P2O5, 3CaO·P2O5 and 3MgO·P2O5 were calculated by analyzed compositions and reported thermodynamic data. The activity of P2O5, 3CaO·P2O5 or 3MgO·P2O5 increased with the increase of 3CaO·P2O5 content in the solid solution.

  1. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures

    International Nuclear Information System (INIS)

    Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P.

    2014-01-01

    Compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. To clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 −3 s −1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. To better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due

  2. Dislocation glide in Ni-Al solid solutions from the atomic scale up: a molecular dynamics study

    International Nuclear Information System (INIS)

    Rodary, E.

    2003-01-01

    The glide of an edge dislocation in solid solutions is studied by molecular dynamics, at fixed temperature and imposed external stress. We have optimized an EAM potential for Ni(1 a 8% A1): it well reproduces the lattice expansion, local atomic order, stacking fault energy as a function of composition, as well as the elastic properties of the γ' phase with L1 2 structure. On increasing the stress, the dislocation is first immobile, then glides with a velocity proportional to the stress and the velocity saturates on reaching the transverse sound velocity. However, only beyond a static threshold stress, σ s , does the dislocation glide a distance large enough to allow macroscopic shear; the linear part of the velocity-stress curve extrapolates to zero at a dynamical threshold stress, σ d , The friction coefficient, and the threshold stresses (σ s and σ d ), increase with the A1 concentration and decrease with temperature (300 and 500 K). Close to the critical shear stress, σ s , the dislocation glide is analysed with a 'stop and go' model. The latter yields the flight velocity between obstacles, the mean obstacle density and the distribution of the waiting time on each obstacle as a function of stress, composition and temperature. The obstacle to the glide is proposed to be the strong repulsion between Al atoms brought into nearest neighbour position by the glide process, and not the dislocation-solute interaction. The microscopic parameters so defined are introduced into a micro-mechanical model, which well reproduces the known behaviour of nickel base solid solutions. (author)

  3. Boundary layers of aqueous surfactant and block copolymer solutions against hydrophobic and hydrophilic solid surfaces

    International Nuclear Information System (INIS)

    Steitz, Roland; Schemmel, Sebastian; Shi Hongwei; Findenegg, Gerhard H

    2005-01-01

    The boundary layer of aqueous surfactants and amphiphilic triblock copolymers against flat solid surfaces of different degrees of hydrophobicity was investigated by neutron reflectometry (NR), grazing incidence small angle neutron scattering (GISANS) and atomic force microscopy (AFM). Solid substrates of different hydrophobicities were prepared by appropriate surface treatment or by coating silicon wafers with polymer films of different chemical natures. For substrates coated with thin films (20-30 nm) of deuterated poly(styrene) (water contact angle θ w ∼ 90), neutron reflectivity measurements on the polymer/water interface revealed a water depleted liquid boundary layer of 2-3 nm thickness and a density about 90% of the bulk water density. No pronounced depletion layer was found at the interface of water against a less hydrophobic polyelectrolyte coating (θ w ∼ 63). It is believed that the observed depletion layer at the hydrophobic polymer/water interface is a precursor of the nanobubbles which have been observed by AFM at this interface. Decoration of the polymer coatings by adsorbed layers of nonionic C m E n surfactants improves their wettability by the aqueous phase at surfactant concentrations well below the critical micellar concentration (CMC) of the surfactant. Here, GISANS experiments conducted on the system SiO 2 /C 8 E 4 /D 2 O reveal that there is no preferred lateral organization of the C 8 E 4 adsorption layers. For amphiphilic triblock copolymers (PEO-PPO-PEO) it is found that under equilibrium conditions they form solvent-swollen brushes both at the air/water and the solid/water interface. In the latter case, the brushes transform to uniform, dense layers after extensive rinsing with water and subsequent solvent evaporation. The primary adsorption layers maintain properties of the precursor brushes. In particular, their thickness scales with the number of ethylene oxide units (EO) of the block copolymer. In the case of dip-coating without

  4. Radiation polymerization and crosslinking of N-isopropylacrylamide in aqueous solution and in solid state

    International Nuclear Information System (INIS)

    Safranj, A.; Yoshida, Masaru; Omichi, Hideki; Nagaoka, Noriyasu; Kubota, Hitoshi; Katakai, Ryoichi.

    1995-01-01

    Poly(N-isopropylacrylamide) hydrogels were synthesized by radiation induced simultaneous polymerization and cross-linking. Aqueous monomer solutions and pure monomer, without crosslinker, were irradiated in nitrogen atmosphere at a 60 Co gamma source. The conversion from monomer to polymer and cross-linked gel was investigated as a function of temperature and monomer concentration. The swelling behavior of the gels showed clear dependence on the synthesis conditions. (author)

  5. Miscibility Studies of Hydroxypropyl Cellulose/Poly(Ethylene Glycol) in Dilute Solutions and Solid State

    OpenAIRE

    Sudharsan Reddy, K.; Prabhakar, M. N.; Kumara Babu, P.; Venkatesulu, G.; Kumarji Rao, U. Sajan; Chowdoji Rao, K.; Subha, M. C. S.

    2012-01-01

    The miscibility of Hydroxypropyl cellulose (HPC)/poly(ethylene glycol) (PEG) blends over an extended range of concentrations in water. The viscosity, ultrasonic velocity, and refractive index of the above blend solutions have been measured at 30°C. The interaction parameters such as and μ proposed by Chee and α proposed by Sun have been obtained using the viscosity data to probe the miscibility of the polymer blends. The values indicated that the blends were miscible when HPC content is more...

  6. From solid solution to cluster formation of Fe and Cr in α-Zr

    International Nuclear Information System (INIS)

    Burr, P.A.; Wenman, M.R.; Gault, B.; Moody, M.P.; Ivermark, M.; Rushton, M.J.D.; Preuss, M.; Edwards, L.; Grimes, R.W.

    2015-01-01

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques — atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  7. General traveling wave solutions of the strain wave equation in microstructured solids via the new approach of generalized (G′/G-expansion method

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2014-03-01

    Full Text Available The new approach of generalized (G′/G-expansion method is significant, powerful and straightforward mathematical tool for finding exact traveling wave solutions of nonlinear evolution equations (NLEEs arise in the field of engineering, applied mathematics and physics. Dispersive effects due to microstructure of materials combined with nonlinearities give rise to solitary waves. In this article, the new approach of generalized (G′/G-expansion method has been applied to construct general traveling wave solutions of the strain wave equation in microstructured solids. Abundant exact traveling wave solutions including solitons, kink, periodic and rational solutions have been found. These solutions might play important role in engineering fields.

  8. Structural and compositional characterization of synthetic (Ca,Sr)-tremolite and (Ca,Sr)-diopside solid solutions

    Science.gov (United States)

    Gottschalk, M.; Najorka, J.; Andrut, M.

    Tremolite (CaxSr1-x)2Mg5[Si8O22/(OH)2] and diopside (CaxSr1-x)Mg[Si2O6] solid solutions have been synthesized hydrothermally in equilibrium with a 1 molar (Ca,Sr)Cl2 aqueous solution at 750°C and 200 MPa. The solid run products have been investigated by optical, electron scanning and high resolution transmission electron microscopy, electron microprobe, X-ray-powder diffraction and Fourier-transform infrared spectroscopy. The synthesized (Ca,Sr)-tremolites are up to 2000 µm long and 30 µm wide, the (Ca,Sr)-diopsides are up to 150 µm long and 20 µm wide. In most runs the tremolites and diopsides are well ordered and chain multiplicity faults are rare. Nearly pure Sr-tremolite (tr0.02Sr-tr0.98) and Sr-diopside (di0.01Sr-di0.99) have been synthesized. A continuous solid solution series, i.e. complete substitution of Sr2+ for Ca2+ on M4-sites exists for (Ca,Sr)-tremolite. Total substitution of Sr2+ for Ca2+ on M2-sites can be assumed for (Ca,Sr)-diopsides. For (Ca,Sr)-tremolites the lattice parameters a, b and β are linear functions of composition and increase with Sr-content whereas c is constant. For the diopside series all 4 lattice parameters are a linear function of composition; a, b, c increase and β decreases with rising Sr-content. The unit cell volume for tremolite increases 3.47% from 906.68 Å3 for tremolite to 938.21 Å3 for Sr-tremolite. For diopside the unit cell volume increases 4.87 % from 439.91 Å3 for diopside to 461.30 Å3 for Sr-diopside. The observed splitting of the OH stretching band in tremolite is caused by different configurations of the next nearest neighbors (multi mode behavior). Resolved single bands can be attributed to the following configurations on the M4-sites: SrSr, SrCa, CaCa and CaMg. The peak positions of these 4 absorption bands are a linear function of composition. They are shifted to lower wavenumbers with increasing Sr-content. No absorption band due to the SrMg configuration on the M4-site is observed. This indicates

  9. Decay property of regularity-loss type of solutions in elastic solids with voids

    KAUST Repository

    Said-Houari, Belkacem

    2013-12-01

    In this article, we consider two porous systems of nonclassical thermoelasticity in the whole real line. We discuss the long-time behaviour of the solutions in the presence of a strong damping acting, together with the heat effect, on the elastic equation and establish several decay results. Those decay results are shown to be very slow and of regularity-loss type. Some improvements of the decay rates have also been given, provided that the initial data belong to some weighted spaces. © 2013 Copyright Taylor and Francis Group, LLC.

  10. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution.

    Science.gov (United States)

    Basirun, Wan J; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R; Ebadi, Mehdi

    2013-09-24

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  11. A self-consistent model for thermodynamics of multicomponent solid solutions

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.

    2016-01-01

    The self-consistent concept recently published in this journal (108, 27–30, 2015) is extended from a binary to a multicomponent system. This is possible by exploiting the trapping concept as basis for including the interaction of atoms in terms of pairs (e.g. A–A, B–B, C–C…) and couples (e.g. A–B, B–C, …) in a multicomponent system with A as solvent and B, C, … as dilute solutes. The model results in a formulation of Gibbs-energy, which can be minimized. Examples show that the couple and pair formation may influence the equilibrium Gibbs energy markedly.

  12. Vitrification of galvanic solid wastes: solutions for the east area of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Mattos, Cleiton dos Santos; Castanho, Sonia Regina Homem de Mello

    2011-01-01

    Galvanic solid waste have elevated levels of heavy metals and usually are stocked in the industry, creating a worrisome environmental liabilities. This disturbing fact is aggravated in areas densely populated as the area east of Sao Paulo, which has a pole of industrial electroplating of chrome. The present paper, we describe and provide a technological option for the disposal of waste generated by this activity using techniques that allow the incorporation of these in a glass matrix. The wastes were characterized by XRF, EDS, ICP-AES, AAS, DTA/TGA, XRD and SEM-FEG and embedded in glass and frits made from the system SiO - CaO-Na O , with additions of up to 30% by weight. The results of the analysis of residues showed the majority presence of Ni, Cr, B, Cu, Ca and S. The resulting glasses showed that heavy metals were incorporated into its structure and probably replacing the Ca and Na. In addition, the products showed specific colors indicating the possibility of use in some segments of manufacturing in ceramics with glazes, loading and pigments. (author)

  13. Sorption of uranium (VI) species on zircon: structural investigation of the solid/solution interface.

    Science.gov (United States)

    Lomenech, C; Simoni, E; Drot, R; Ehrhardt, J-J; Mielczarski, J

    2003-05-15

    This work is an investigation of the mechanisms of interaction between uranium (VI) ions and zirconium silicate. The speciation of uranium (VI) sorbed on zircon was studied using four complementary techniques as probes of the local structure around the uranium atom: laser spectrofluorimetry, X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier-transformed (DRIFT) spectroscopy, and EXAFS spectroscopy. The sorption of uranyl on zirconium oxide was also studied to allow structural comparisons. Spectrofluorimetry and XPS results allowed an identification of the silicate sorption sites on the solid. These methods associated with spectrofluorimetry and DRIFT led to a characterization of the sorbed surface complexes, taking into account the influence of the nature of the background salt and of the pH on the structure of the U(VI) surface species. EXAFS measurements, either on air-dried samples or in situ, were then carried out on well-characterized samples and allowed identification of the sorption mechanism on zircon as the formation of an inner-sphere polydentate surface complex.

  14. Biological changes of APA-BCC analgesic microcapsule in cerebrospinal fluid of patients with carcinomatous pain

    International Nuclear Information System (INIS)

    Luo Yun; Li Yanling; Xue Yilong; Guo Shulong; Gao Yuhong; Cui Xin

    2005-01-01

    To explore the changes of alginate-polylysine-alginate microcapsulated bovine adrenal medullary chromaffin cells (APA-BCC microcapsules) in morphology, survival rate and leucine- enkephalin secretion after they were transplanted into CSF of cancerpain patients, the APA- BCC microcapsules were Implanted into cavitas subarachnoidealis of cancer-pain patients by conventional lumbar puncture. After 7 or 8 days, cerebrospinal fluid was collected and the morphology of the APA-BCC microcapsule, the survival rate of cells were observed and secretory volume of leucine-enkephalin was assayed by radioimmunity method. Seven days after trans- plantation, the mean VAS decreased from 8.8 to 2.4, the survival rate of cells averagely reduced from 91.2% to 89.1%, morphology of APA-BCC microcapsules did not change obviously and secretory volume of leucine-enkephalin went up 1.65 times compared with that at pretrans- plantation. In conclusion, APA-BCC can survive, secret leucine-enkephalin and produce analgesic effect after transplanted into CSF of cancer-patients. (authors)

  15. Interstitial positions of tin ions in alpha-(FerichSn)(2)O-3 solid solutions prepared by mechanical alloying

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lin, Rong; Nielsen, Kurt

    1997-01-01

    The microstructure of samples of 91, 85, and 71 mol % alpha-Fe-2-O-3-SnO2. prepared by mechanical alloying, has been studied by x-ray diffraction with Rietveld structure refinements, On the basis of the structure refinements to the whole x-ray diffraction patterns for the four as-milled samples, ......, it is found that tin ions do not substitute iron ions in the solid solution, although this model is generally assumed in the literature. The Sn4+ ions occupy the empty octahedral holes in the lattice of the alpha-Fe2O3 phase.......The microstructure of samples of 91, 85, and 71 mol % alpha-Fe-2-O-3-SnO2. prepared by mechanical alloying, has been studied by x-ray diffraction with Rietveld structure refinements, On the basis of the structure refinements to the whole x-ray diffraction patterns for the four as-milled samples...

  16. STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Minoru; Kawatate, Yutaka; Funabiki, Atsushi; Jeong, Soon-Ki; Abe, Takeshi; Ogumi, Zempachi [Kyoto University (Japan). Graduate School of Engineering

    1999-07-01

    Lithium intercalation within graphite was studied in an electrolyte system. 1 M LiClO{sub 4} dissolved in trifluoropropylene carbonate (TFPC). Lithium was intercalated within graphite in TFPC. The reversible capacity obtained (275 mAh g{sup -1}) was smaller than that in ethylene carbonate-based solutions while the irreversible capacity was larger (335 mAh g{sup -1}). The morphology change of the basal plane of highly oriented pyrolytic graphite (HOPG) was observed by electrochemical scanning tunnelling microscopy (STM) to obtain information about passivating film (solid electrolyte interface, SEI) formation in this solvent system. The exfoliation of graphite layers was observed at 1.1 and 1.0 V vs. Li{sup +}/Li, and then swelling of graphite layers appeared along step edges at 0.5 V. The feature observed at 0.5 V was considered as SEI itself in this solvent system. (Author)

  17. Liquid-phase epitaxy of InGaAsP solid solutions on profiled substrates of InP(100)

    International Nuclear Information System (INIS)

    Dvoryankin, V.F.; Kaevitser, L.R.; Komarov, A.A.; Telegin, A.A.; Khusid, L.B.; Chernushin, M.D.

    1990-01-01

    Peculiarities of selective growth of InGaAsP solid solutions under liquid-phase epitaxy in shallow grooves are considered. InGaAsP crystals grown in grooves oriented along crystallografic [110] and [011] directions are determined to trend to equilibrium form under two-phase epitaxy, while wedge-shaped form of In 0.77 Ga 0.23 As 0.53 P 0.45 and In 0.53 P o.45 and IN 0.59 Ga 0.41 As 0.83 P 0.12 epitaxial layers obtained in grooves is determined by their composition only and does not depend on groove configuration

  18. User's guide to PROTOCOL, a numerical simulator for the dissolution reactions of inorganic solids in aqueous solutions

    International Nuclear Information System (INIS)

    Pickrell, G.; Jackson, D.D.

    1984-10-01

    This report provides a user's manual for PROTOCOL, a comprehensive coupled kinetic/equilibrium computer program for analyzing the dissolution reactions of solids with aqueous solutions, specifically applied to the potential corrosion of vitrified nuclear waste by groundwater. The capabilities and available options are summarized as well as instructions for setting up and running problems. Also described in this report and included in the PROTOCOL software package are MASTER, a master file of species thermodynamic data, MANEQL, a preprocessor program and POSTP, a postprocessor. POSTP provides offline plotting using the CRAY-1 DISSPLA 9.0 graphics library. PROTOCOL is operational on the CDC-7600 and CRAY-1 computers at the Lawrence Livermore National Laboratory. 7 references, 10 figures, 2 tables

  19. Simulation of ceramic materials relevant for nuclear waste management: Case of La1-xEuxPO4 solid solution

    Science.gov (United States)

    Kowalski, Piotr M.; Ji, Yaqi; Li, Yan; Arinicheva, Yulia; Beridze, George; Neumeier, Stefan; Bukaemskiy, Andrey; Bosbach, Dirk

    2017-02-01

    Using powerful computational resources and state-of-the-art methods of computational chemistry we contribute to the research on novel nuclear waste forms by providing atomic scale description of processes that govern the structural incorporation and the interactions of radionuclides in host materials. Here we present various results of combined computational and experimental studies on La1-xEuxPO4 monazite-type solid solution. We discuss the performance of DFT + U method with the Hubbard U parameter value derived ab initio, and the derivation of various structural, thermodynamic and radiation-damage related properties. We show a correlation between the cation displacement probabilities and the solubility data, indicating that the binding of cations is the driving factor behind both processes. The combined atomistic modeling and experimental studies result in a superior characterization of the investigated material.

  20. (RbxK1-x)3C60 superconductors: Formation of a continuous series of solid solutions

    International Nuclear Information System (INIS)

    Chia-Chun Chen; Kelty, S.P.; Lieber, C.M.

    1991-01-01

    By means of an approach that employs alkali-metal alloys, bulk single-phase (Rb x K 1-x ) 3 C 60 superconductors have been prepared for all x between 0 and 1. For x = 1 it is shown that the maximum superconducting fraction, which approaches 100% in sintered pellets, occurs at a Rb to C 60 ratio of 3:1. More importantly, single-phase superconductors are formed at all intermediate values of x, and it is shown that the transition temperature (T c ) increases linearly with x in the series of materials. The formation of a continuous range of solid solutions demonstrates that the rubidium- and potassium-doped C 60 superconducting phases must be isostructural, and furthermore, suggests that the linear increase in T c with x results from a chemical pressure effect

  1. Hopping conduction via highly localized impurity states of indium in PbTe and its solid solutions. Review

    CERN Document Server

    Ravich, Y I

    2002-01-01

    Results of experimental investigation of the transport phenomena in PbTe and Pb sub 1 sub - sub x Sn sub x Te solid solutions with high contents of In impurity (up to 20 at %) at temperatures up to 400 K have been considered. An analysis of the experimental data has been made on the base of an idea of hopping conductivity via highly localized impurity states creates by indium atoms. The temperature dependences of transport coefficients unusual for the IV-VI-type semiconductors, the change of sing of the thermoelectromotive force at negative Hall coefficient, the positive Nernst-Ettingshausen coefficient are explained. The activation energy of the hoping conductivity, characterizing discrepancy between impurity energy levels the effective wave function radius and the density of localized states as the energy function are found experimentally

  2. Neutron diffraction study of TiN0.40H0.19D0.19 solid solution

    International Nuclear Information System (INIS)

    Khidirov, I.; Mukhtarova, N.N.; Padurets, L.N.; Shilov, A.L.; Zaginaichenko, S.Yu.; Schur, D.V.; Pishuk, V.K.

    2006-01-01

    Full text: It is of interest to study the distribution of hydrogen isotopes in solid solutions of nitrogen and hydrogen in α-Ti lattice by neutron diffraction. Results of this research can give the important information about the role of hydrogen and solvent atoms as well as of strain interaction energy of interstitial atoms in the formation of structure and phase relationship in hydrogen - containing solid solutions of nitrogen in α-Ti. The aim of the present work is neutron and X-ray diffraction study of distribution of interstitial atoms in α-Ti lattice when isotopic compound of hydrogen atoms is shifted, namely in TiN 0.40 H 0.19 D 0.19 . Neutron diffraction patterns were obtained using the neutron diffractometer D N-500 of INP AS RUz ( λ = 1.085 A), X-ray patterns - using the X-ray diffractometer DRON-3M ( λ = 1.5418 A). The treatment of neutron diffraction patterns was carried out using the Rietveld full-profile analysis (program of DBW 3.2). The sample was prepared by Siverts method in the Institute of General and Inorganic Chemistry of RAS. According to X-ray diffraction pattern, the sample was single-phase and had hexagonal unit cell (a = 3.009; c = 4.875 A). Neutron diffraction pattern of the solid solution was indexed within the framework of space group. The neutron diffraction pattern can be accounted for only if to assume that all nitrogen atoms locate in the octahedral interstices 1(a) with coordinates 0, 0, 0; and hydrogen and deuterium isotopes locate in one type of tetrahedral interstices of two - 2 (d) - with coordinates 1/3, 2/3, z; 2/3, 1/3, z, but with different coordinate z: z H = 0.795± 0.007 and z D = 0.582± 0.004. At that, the divergence factors on Bragg maxima R Br = 5.9 %. If to assume that N and D have identical coordinate z, firstly, R Br increases up to 20 %; secondly, at that the error of determining z sharply increases, so that dz ≅ z. Therefore, the crystal structure of the sample under study is analogous with the structure

  3. Phase Behaviour and Miscibility Studies of Collagen/Silk Fibroin Macromolecular System in Dilute Solutions and Solid State.

    Science.gov (United States)

    Ghaeli, Ima; de Moraes, Mariana A; Beppu, Marisa M; Lewandowska, Katarzyna; Sionkowska, Alina; Ferreira-da-Silva, Frederico; Ferraz, Maria P; Monteiro, Fernando J

    2017-08-18

    Miscibility is an important issue in biopolymer blends for analysis of the behavior of polymer pairs through the detection of phase separation and improvement of the mechanical and physical properties of the blend. This study presents the formulation of a stable and one-phase mixture of collagen and regenerated silk fibroin (RSF), with the highest miscibility ratio between these two macromolecules, through inducing electrostatic interactions, using salt ions. For this aim, a ternary phase diagram was experimentally built for the mixtures, based on observations of phase behavior of blend solutions with various ratios. The miscibility behavior of the blend solutions in the miscible zones of the phase diagram was confirmed quantitatively by viscosimetric measurements. Assessing the effects of biopolymer mixing ratio and salt ions, before and after dialysis of blend solutions, revealed the importance of ion-specific interactions in the formation of coacervate-based materials containing collagen and RSF blends that can be used in pharmaceutical, drug delivery, and biomedical applications. Moreover, the conformational change of silk fibroin from random coil to beta sheet, in solution and in the final solid films, was detected by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. Scanning electron microscopy (SEM) exhibited alterations of surface morphology for the biocomposite films with different ratios. Surface contact angle measurement illustrated different hydrophobic properties for the blended film surfaces. Differential scanning calorimetry (DSC) showed that the formation of the beta sheet structure of silk fibroin enhances the thermal stability of the final blend films. Therefore, the novel method presented in this study resulted in the formation of biocomposite films whose physico-chemical properties can be tuned by silk fibroin conformational changes by applying different component mixing ratios.

  4. Ambient Mechanochemical Solid-State Reactions of Carbon Nanotubes and Their Reactions via Covalent Coordinate Bond in Solution

    Science.gov (United States)

    Kabbani, Mohamad A.

    In its first part, this thesis deals with ambient mechanochemical solid-state reactions of differently functionalized multiple walled carbon nanotubes (MWCNTs) while in its second part it investigates the cross-linking reactions of CNTs in solution via covalent coordinate bonds with transitions metals and carboxylate groups decorating their surfaces. In the first part a series of mechanochemical reactions involving different reactive functionalities on the CNTs such as COOH/OH, COOH/NH2 and COCl/OH were performed. The solid-state unzipping of CNTs leading to graphene formation was confirmed using spectroscopic, thermal and electron microscopy techniques. The non-grapheme products were established using in-situ quadruple mass spectroscopy. The experimental results were confirmed by theoretical simulation calculations using the 'hot spots' protocol. The kinetics of the reaction between MWCNT-COOH and MWCNT-OH was monitored using variable temperature Raman spectroscopy. The low activation energy was discussed in terms of hydrogen bond mediated proton transfer mechanism. The second part involves the reaction of MWCNTII COOH with Zn (II) and Cu (II) to form CNT metal-organic frame (MOFs) products that were tested for their effective use as counter-electrodes in dyes sensitized solar cells (DSSC). The thesis concludes by the study of the room temperature reaction between the functionalized graphenes, GOH and G'-COOH followed by the application of compressive loads. The 3D solid graphene pellet product ( 0.6gm/cc) is conductive and reflective with a 35MPa ultimate strength as compared to 10MPa strength of graphite electrode ( 2.2gm/cc).

  5. Impact of molecular flexibility on double polymorphism, solid solutions and chiral discrimination during crystallization of diprophylline enantiomers.

    Science.gov (United States)

    Brandel, Clément; Amharar, Youness; Rollinger, Judith M; Griesser, Ulrich J; Cartigny, Yohann; Petit, Samuel; Coquerel, Gérard

    2013-10-07

    The polymorphic behavior of racemic and enantiopure diprophylline (DPL), a chiral derivative of theophylline marketed as a racemic solid, has been investigated by combining differential scanning calorimetry, powder X-ray diffraction, hot-stage microscopy and single-crystal X-ray experiments. The pure enantiomers were obtained by a chemical synthesis route, and additionally an enantioselective crystallization procedure was developed. The binary phase diagram between the DPL enantiomers was constructed and revealed a double polymorphism (i.e., polymorphism both of the racemic mixture and of the pure enantiomer). The study of the various equilibria in this highly unusual phase diagram revealed a complex situation since mixtures of DPL enantiomers can crystallize either as a stable racemic compound, a metastable conglomerate, or two distinct metastable solid solutions. Crystal structure analysis revealed that the DPL molecules adopt different conformations in the crystal forms suggesting that the conformational degrees of freedom of the substituent that carries the only two H-bond donor groups might be related to the versatile crystallization behavior of DPL. The control of these equilibria and the use of a suitable solvent allowed the design of an efficient protocol for the preparative resolution of racemic DPL via preferential crystallization. Therefore, the resolution of DPL enantiomers despite the existence of a racemic compound stable at any temperature demonstrates that the detection of a stable conglomerate is not mandatory for the implementation of preferential crystallization.

  6. Recovery of uranium from the Syrian phosphate by solid-liquid method using alkaline solutions

    International Nuclear Information System (INIS)

    Shlewit, H.; Alibrahim, M.

    2007-01-01

    Uranium concentrations were analyzed in the Syrian phosphate deposits. Mean concentrations were found between 50 and 110 ppm. As a consequence, an average phosphate dressing of 22 kg/ha phosphate would charge the soil with 5-20 g/ha uranium when added as a mineral fertilizer. Fine grinding phosphate produced at the Syrian mines was used for uranium recovery by carbonate leaching. The formation of the soluble uranyl tricarbonate anion UO 2 (CO 3 ) 3 4- permits use of alkali solutions of sodium carbonate and sodium bicarbonate salts for the nearly selective dissolution of uranium from phosphate. Separation of iron, aluminum, titanium, etc., from the uranium during leaching was carried out. Formation of some small amounts of molybdates, vanadates, phosphates, aluminates, and some complexes metal was investigated. This process could be used before the manufacture of TSP fertilizer, and the final products would contain smaller uranium quantities. (author)

  7. Monte Carlo simulations for describing the ferroelectric-relaxor crossover in BaTiO3-based solid solutions

    International Nuclear Information System (INIS)

    Padurariu, Leontin; Enachescu, Cristian; Mitoseriu, Liliana

    2011-01-01

    The properties induced by the M 4+ addition (M = Zr, Sn, Hf) in BaM x Ti 1-x O 3 solid solutions have been described on the basis of a 2D Ising-like network and Monte Carlo calculations, in which BaMO 3 randomly distributed unit cells were considered as being non-ferroelectric. The polarization versus temperature dependences when increasing the M 4+ concentration (x) showed a continuous reduction of the remanent polarization and of the critical temperature corresponding to the ferroelectric-paraelectric transition and a modification from a first-order to a second-order phase transition with a broad temperature range for which the transition takes place, as commonly reported for relaxors. The model also describes the system's tendency to reduce the polar clusters' average size while increasing their stability in time at higher temperatures above the Curie range, when a ferroelectric-relaxor crossover is induced by increasing the substitution (x). The equilibrium micropolar states during the polarization reversal process while describing the P(E) loops were comparatively monitored for the ferroelectric (x = 0) and relaxor (x = 0.3) states. Polarization reversal in relaxor compositions proceeds by the growth of several nucleated domains (the 'labyrinthine domain pattern') instead of the large scale domain formation typical for the ferroelectric state. The spatial and temporal evolution of the polar clusters in BaM x Ti 1-x O 3 solid solutions at various x has also been described by the correlation length and correlation time. As expected for the ferroelectric-relaxor crossover characterized by a progressive increasing degree of disorder, local fluctuations cause a reducing correlation time when the substitution degree increases, at a given temperature. The correlation time around the Curie temperature increases, reflecting the increasing stability in time of some polar nanoregions in relaxors in comparison with ferroelectrics, which was experimentally proved in

  8. Machine learning assisted first-principles calculation of multicomponent solid solutions: estimation of interface energy in Ni-based superalloys

    Science.gov (United States)

    Chandran, Mahesh; Lee, S. C.; Shim, Jae-Hyeok

    2018-02-01

    A disordered configuration of atoms in a multicomponent solid solution presents a computational challenge for first-principles calculations using density functional theory (DFT). The challenge is in identifying the few probable (low energy) configurations from a large configurational space before DFT calculation can be performed. The search for these probable configurations is possible if the configurational energy E({\\boldsymbol{σ }}) can be calculated accurately and rapidly (with a negligibly small computational cost). In this paper, we demonstrate such a possibility by constructing a machine learning (ML) model for E({\\boldsymbol{σ }}) trained with DFT-calculated energies. The feature vector for the ML model is formed by concatenating histograms of pair and triplet (only equilateral triangle) correlation functions, {g}(2)(r) and {g}(3)(r,r,r), respectively. These functions are a quantitative ‘fingerprint’ of the spatial arrangement of atoms, familiar in the field of amorphous materials and liquids. The ML model is used to generate an accurate distribution P(E({\\boldsymbol{σ }})) by rapidly spanning a large number of configurations. The P(E) contains full configurational information of the solid solution and can be selectively sampled to choose a few configurations for targeted DFT calculations. This new framework is employed to estimate (100) interface energy ({σ }{{IE}}) between γ and γ \\prime at 700 °C in Alloy 617, a Ni-based superalloy, with composition reduced to five components. The estimated {σ }{{IE}} ≈ 25.95 mJ m-2 is in good agreement with the value inferred by the precipitation model fit to experimental data. The proposed new ML-based ab initio framework can be applied to calculate the parameters and properties of alloys with any number of components, thus widening the reach of first-principles calculation to realistic compositions of industrially relevant materials and alloys.

  9. Structural and Microstructural Correlations of Physical Properties in Natural Almandine-Pyrope Solid Solution: Al70Py29

    Science.gov (United States)

    Sibi, N.; Subodh, G.

    2017-12-01

    Garnets are naturally occurring minerals with the general formula X3Y2Z3O12 having various applications. In the present study, the structural and physical properties of a garnet mineral obtained from Indian Rare Earth Ltd., Manavalakurichi, Tamil Nadu, India were comprehensively investigated. The compositional analysis using electron probe micro analysis (EPMA) revealed that the mineral belongs to almandine-pyrope solid solution (Al70Py29) with the chemical formula (Fe1.72Mg0.8Mn0.01Ca0.02) (Fe0.04Al2.36) Si2.93O12. Rietveld refinement of the x-ray diffraction pattern confirms that the space group is Ia{ - }\\overline{3} d with refined cubic lattice parameter a = 11.550(4) Å. The refined occupancy values of multiple cations in the dodecahedral and octahedral sites are in agreement with the EPMA data. Fourier transform infrared and FT Raman spectra show bands corresponding to almandine-pyrope solid solution. Peak splitting of IR and Raman bands confirms presence of multiple cations in the dodecahedral site. Thermogravimetric/differential thermal analysis shows that the mineral is stable up to 600°C in spite of the presence of Fe2+ ions. Low temperature magnetic susceptibility data is in agreement with the amount of Fe2+ ions present in the mineral. The dielectric constant of the mineral varied from 6 to 16.5 when sintered at temperatures ranging from 600°C to 1250°C.

  10. Co-extruded solid solutions as immediate release fixed-dose combinations.

    Science.gov (United States)

    Dierickx, L; Van Snick, B; Monteyne, T; De Beer, T; Remon, J P; Vervaet, C

    2014-10-01

    The aim of this study was to develop by means of co-extrusion a multilayer fixed-dose combination solid dosage form for oral application characterized by immediate release for both layers, the layers containing different drugs with different water-solubility. In this study polymers were selected which can be combined in a co-extruded dosage form. Several polymers were screened on the basis of their processability via hot-melt extrusion, macroscopic properties, acetylsalicylic acid (ASA) decomposition and in vitro drug release. ASA and fenofibrate (FF) were incorporated as hydrophilic and hydrophobic model drugs, respectively. Based on the polymer screening experiments Kollidon® PF 12 and Kollidon® VA 64 were identified as useful ASA carriers (core), while Soluplus®, Kollidon® VA 64 and Kollidon® 30 were applicable as FF carriers (coat). The combination of Kollidon® 30 (coat) with Kollidon® PF 12 or Kollidon® VA 64 (core) failed in terms of processability via co-extrusion. All other combinations (containing 20% ASA in the core and 20% FF in the coat) were successfully co-extruded (diameter core: 2mm/thickness coat: 1mm). All formulations showed good adhesion between core and coat. ASA release from the core was complete within 15-30 min (Kollidon® PF 12) or 30-60 min (Kollidon® VA 64), while FF release was complete within 20-30 min (Kollidon® VA 64) or 60 min (Soluplus®). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) revealed that both drugs were molecularly dispersed in the carriers. Raman mapping exposed very little intermigration of both drugs at the interface. Fixed-dose combinations with good in vitro performance were successfully developed by means of co-extrusion, both layers providing immediate release. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Reduction of the Curie temperature in the multiferroic Bi5Fe1+xTi3−xO15 solid solution

    International Nuclear Information System (INIS)

    Salazar-Kuri, U; Mendoza, M E; Silva, R; Siqueiros, J M; Gervacio-Arciniega, J J

    2014-01-01

    In this work, the phase diagram of the system Bi 4 Ti 3 O 12 -BiFeO 3 in the region of the solid solution Bi 5 Fe 1+x Ti 3−x O 15 was refined. The limit of solubility was determined to be at x = 0.1. The Curie temperature (T C ) of the ferroelectric phase transition was determined by dielectric permittivity measurements at 100 kHz for the phase Bi 5 FeTi 3 O 15 as well as for the solid solution. A decrease in T C from 750 °C to 742 °C (solid solution at x = 0.1) was found. These results can be explained in terms of the perturbation of the oxygen octahedral perovskite layers resulting from the substitution of Ti 4+ by Fe 3+ ions. (paper)

  12. Structural and Optical Investigations of Heterostructures Based on AlxGa1-xAsyP1-y:Si Solid Solutions Obtained by MOCVD

    Directory of Open Access Journals (Sweden)

    P. V. Seredin

    2014-01-01

    Full Text Available We investigated MOCVD epitaxial heterostructures based on AlxGa1−xAs ternary solid solutions, obtained in the range of compositions x~0.20–0.50 and doped with high concentrations of phosphorus and silicon atoms. Using the methods of high-resolution X-ray diffraction, scanning electron microscopy, X-ray microanalysis, Raman spectroscopy, and photoluminescence spectroscopy we have shown that grown epitaxial films represent five-component (AlxGa1−xAs1−yPy1−zSiz solid solutions. The implementation of silicon in solid solution with a concentration of ~ 0.01 at.% leads to the formation of the structure with deep levels, DX centers, the occurrence of which fundamentally affects the energy characteristics of received materials.

  13. Systematic group-specific trends for point defects in bcc transition metals: An ab initio study

    International Nuclear Information System (INIS)

    Nguyen-Manh, D.; Dudarev, S.L.; Horsfield, A.P.

    2007-01-01

    Density functional theory calculations have been performed to study the systematic trends of point defect behaviours in bcc transition metals. We found that in all non-magnetic bcc transition metals, the most stable self-interstitial atom (SIAs) defect configuration has the symmetry. The calculated formation energy differences between the dumbbell and the lowest-energy configuration of metals in group 5B (V, Nb, Ta) are consistently larger than those of the corresponding element in group 6B (Cr, Mo, W). The predicted trends of SIA defects are fundamentally different from those in ferromagnetic α-Fe and correlate very well with the pronounced group-specific variation of thermally activated migration of SIAs under irradiation depending on the position of bcc metals in the periodic table

  14. Displacive processes in systems with bcc patent lattice

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav

    2011-01-01

    Roč. 56, č. 6 (2011), s. 841-851 ISSN 0079-6425 R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : diffusionless phase transformations * displacive processes * gamma surfaces Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 18.216, year: 2011

  15. Mechanical behavior and coupling between mechanical and oxidation in alloy 718: effect of solide solution elements

    International Nuclear Information System (INIS)

    Max, Bertrand

    2014-01-01

    Alloy 718 is the superalloy the most widely used in industry due to its excellent mechanical properties, as well as oxidation and corrosion resistance in wide range of temperatures and solicitation modes. Nevertheless, it is a well-known fact that this alloy is sensitive to stress corrosion cracking and oxidation assisted cracking under loading in the range of temperatures met in service. Mechanisms explaining this phenomenon are not well understood: nevertheless, it is well established that a relation exists between a change in fracture mode and the apparition of plastic instabilities phenomenon. During this study, the instability phenomenon, Portevin-Le Chatelier effect, in alloy 718 was studied by tensile tests in wide ranges of temperatures and strain rates. Different domains of plastic instabilities have been evidenced. Their characteristics suggest the existence of interactions between dislocations and different types of solute elements: interstitials for lower temperatures and substitutionals for higher testing temperatures. Mechanical spectroscopy tests have been performed on alloy 718 and various alloys which composition is comparable to that of alloy 718. These tests prove the mobility of molybdenum atoms in the alloy in the studied temperature range. Specific tests have been performed to study interaction phenomenon between plasticity and oxidation. These results highlight the strong effect of plastic strain rate on both mechanical behavior and intergranular cracking in alloy 718. The subsequent discussion leads to propose hypothesis on coupling effects between deformation mechanisms and oxidation assisted embrittlement in the observed cracking processes. (author)

  16. Preparation of Ag/PVP Nanocomposites as a Solid Precursor for Silver Nanocolloids Solution

    International Nuclear Information System (INIS)

    Hong, Hyun Ki; Park, Chan Kyo; Gong, Myoung Seon

    2010-01-01

    A polyvinylpyrrolidone (PVP)/Ag nanocomposites was prepared by the simultaneous thermal reduction and radical polymerization route. The in situ synthesis of the Ag/PVP nanocomposites is based on the finding that the silver n-propylcarbamate (Ag-PCB) complex can be directly dissolved in the NVP monomer, and decomposed by only heat treatment in the range of 110 to 130 .deg. C to form silver metal. Silver nanoparticles with a narrow size distribution (5 - 40 nm) were obtained, which were well dispersed in the PVP matrix. A successful synthesis of Ag/PVP nanocomposites then proceeded upon heat treatment as low as 110 .deg. C. Moreover, important advantages of the in situ synthesis of Ag/PVP composites include that no additives (e.g. solvent, surface-active agent, or reductant of metallic ions) are used, and that the stable silver nanocolloid solution can be directly prepared in high concentration simply by dissolving the Ag/PVP nanocomposites in water or organic solvent

  17. Halogen and Hydrogen Bonding between (N-Halogeno)-succinimides and Pyridine Derivatives in Solution, the Solid State and In Silico.

    Science.gov (United States)

    Stilinović, Vladimir; Horvat, Gordan; Hrenar, Tomica; Nemec, Vinko; Cinčić, Dominik

    2017-04-19

    A study of strong halogen bonding within three series of halogen-bonded complexes, derived from seven para-substituted pyridine derivatives and three N-halosuccinimides (iodo, bromo and chloro), has been undertaken with the aid of single-crystal diffraction, solution complexation and computational methods. The halogen bond was compared with the hydrogen bond in an equivalent series based on succinimide. The halogen-bond energies are in the range -60 to -20 kJ mol -1 and change regularly with pyridine basicity and the Lewis acidity of the halogen. The halogen-bond energies correlate linearly with the product of charges on the contact atoms, which indicates a predominantly electrostatic interaction. The binding enthalpies in solution are around 19 kJ mol -1 less negative due to solvation effects. The optimised geometries of the complexes in the gas phase are comparable to those of the solid-state structures, and the effects of the supramolecular surroundings in the latter are discussed. The bond energies for the hydrogen-bonded series are intermediate between the halogen-bond energies of iodine and bromine, although there are specific differences in the geometries of the halogen- and hydrogen-bonded complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evaluation of Solid-Solution Hardening in Several Binary Alloy Systems Using Diffusion Couples Combined with Nanoindentation

    Science.gov (United States)

    Kadambi, Sourabh B.; Divya, V. D.; Ramamurty, U.

    2017-10-01

    Analysis of solid-solution hardening (SSH) in alloys requires the synthesis of large composition libraries and the measurement of strength or hardness from these compositions. Conventional methods of synthesis and testing, however, are not efficient and high-throughput approaches have been developed in the past. In the present study, we use a high-throughput combinatorial approach to examine SSH at large concentrations in binary alloys of Fe-Ni, Fe-Co, Pt-Ni, Pt-Co, Ni-Co, Ni-Mo, and Co-Mo. The diffusion couple (DC) method is used to generate concentration ( c) gradients and the nanoindentation (NI) technique to measure the hardness ( H) along these gradients. The obtained H -c profiles are analyzed within the framework of the Labusch model of SSH, and the c^{2/3} dependence of H predicted by the model is found to be generally applicable. The SSH behavior obtained using the combinatorial method is found to be largely consistent with that observed in the literature using conventional and DC-NI methods. This study evaluates SSH in Fe-, Ni-, Co-, and Pt-based binary alloys and confirms the applicability of the DC-NI approach for rapidly screening various solute elements for their SSH ability.

  19. Simultaneous surface coating and chemical activation of the Li-rich solid solution lithium rechargeable cathode and its improved performance

    International Nuclear Information System (INIS)

    Wu, Yingqiang; Ming, Jun; Zhuo, Linhai; Yu, Yancun; Zhao, Fengyu

    2013-01-01

    In this study, highly dispersive spherical Li-rich solid solution (Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 ) particles are successfully synthesized by a co-precipitation method. Then these particles are treated with aluminum nitrates ethanol solution at 80 °C. The treatment can extract lithium (Li 2 O) from the Li 2 MnO 3 component in the composite of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 . Simultaneously, a thin layer of Al 2 O 3 can be precipitated on the surface of the electrode particles via direct thermal decomposition of aluminum nitrates. After treatment, the first-cycle coulombic efficiency of the electrode increases from 72.1% to 93.6%, meanwhile it shows a superior cycling stability at 100 mA g −1 with a discharge capacity of around 220 mAh g −1 and retention of 92.5% after 100 cycles, which is much higher than that of the pristine electrode (83.2%). Even at a high current density of 2 A g −1 (10 C), the discharge capacity could still achieve and well maintain as high as 140 mAh g −1

  20. Geochemical and geomechanical solid-solutions interactions in unsaturated media. Prospects for the storage of nuclear waste

    International Nuclear Information System (INIS)

    Bouzid, M.

    2010-01-01

    Porous materials, especially the unsaturated ones, are complex systems in which several physicochemical parameters interact (eg relative humidity, T C, pore solution composition, geometry of the pore network). The precipitation of secondary phases inside and the associated changes (e.g. topology of the porous spaces) are important to understand for several applied topics: civil engineering, soil science or geology of deep wastes disposal. This experimental work was undertaken to better understand the mechanisms linking geochemical phase transitions and physicochemical properties of multiphasic porous media. The precipitation of salts in porous synthetic materials allowed us to identify two types of geochemistry-geomechanics coupling: the crystallization pressure (compression phenomenon, already known in the literature), and the capillary traction. These secondary precipitates are also responsible for a porous networks heterogenization which modifies the transfer functions. But we also show that the portions of liquid may be isolated by salts 'corks' and thus develop new thermochemical properties. In particular, we have observed cavitation events in some of these occluded solutions which indicate that they underwent a metastable superheated state. Finally, differential extraction experiments showed that the solubility changes with the pore size, and an interpretation based on pore geometry (solid curvature) has been proposed. Some evidence that these phenomena may actually be active in natural processes were collected, and this extension to the natural environment must now be treated extensively. (authors)

  1. Reaction of hydrogen peroxide with uranium zirconium oxide solid solution - Zirconium hinders oxidative uranium dissolution

    Science.gov (United States)

    Kumagai, Yuta; Takano, Masahide; Watanabe, Masayuki

    2017-12-01

    We studied oxidative dissolution of uranium and zirconium oxide [(U,Zr)O2] in aqueous H2O2 solution to estimate (U,Zr)O2 stability to interfacial reactions with H2O2. Studies on the interfacial reactions are essential for anticipating how a (U,Zr)O2-based molten fuel may chemically degrade after a severe accident. The fuel's high radioactivity induces water radiolysis and continuous H2O2 generation. Subsequent reaction of the fuel with H2O2 may oxidize the fuel surface and facilitate U dissolution. We conducted our experiments with (U,Zr)O2 powder (comprising Zr:U mole ratios of 25:75, 40:60, and 50:50) and quantitated the H2O2 reaction via dissolved U and H2O2 concentrations. Although (U,Zr)O2 reacted more quickly than UO2, the dissolution yield relative to H2O2 consumption was far less for (U,Zr)O2 compared to that of UO2. The reaction kinetics indicates that most of the H2O2 catalytically decomposed to O2 at the surface of (U,Zr)O2. We confirmed the H2O2 catalytic decomposition via O2 production (quantitative stoichiometric agreement). In addition, post-reaction Raman scattering spectra of the undissolved (U,Zr)O2 showed no additional peaks (indicating a lack of secondary phase formation). The (U,Zr)O2 matrix is much more stable than UO2 against H2O2-induced oxidative dissolution. Our findings will improve understanding on the molten fuels and provide an insight into decommissioning activities after a severe accident.

  2. Infiltration of Solution-Processable Solid Electrolytes into Conventional Li-Ion-Battery Electrodes for All-Solid-State Li-Ion Batteries.

    Science.gov (United States)

    Kim, Dong Hyeon; Oh, Dae Yang; Park, Kern Ho; Choi, Young Eun; Nam, Young Jin; Lee, Han Ah; Lee, Sang-Min; Jung, Yoon Seok

    2017-05-10

    Bulk-type all-solid-state lithium-ion batteries (ASLBs) have the potential to be superior to conventional lithium-ion batteries (LIBs) in terms of safety and energy density. Sulfide SE materials are key to the development of bulk-type ASLBs because of their high ionic conductivity (max of ∼10 -2 S cm -1 ) and deformability. However, the severe reactivity of sulfide materials toward common polar solvents and the particulate nature of these electrolytes pose serious complications for the wet-slurry process used to fabricate ASLB electrodes, such as the availability of solvent and polymeric binders and the formation of ionic contacts and networks. In this work, we report a new scalable fabrication protocol for ASLB electrodes using conventional composite LIB electrodes and homogeneous SE solutions (Li 6 PS 5 Cl (LPSCl) in ethanol or 0.4LiI-0.6Li 4 SnS 4 in methanol). The liquefied LPSCl is infiltrated into the tortuous porous structures of LIB electrodes and solidified, providing intimate ionic contacts and favorable ionic percolation. The LPSCl-infiltrated LiCoO 2 and graphite electrodes show high reversible capacities (141 and 364 mA h g -1 ) at 0.14 mA cm -2 (0.1 C) and 30 °C, which are not only superior to those for conventional dry-mixed and slurry-mixed ASLB electrodes but also comparable to those for liquid electrolyte cells. Good electrochemical performance of ASLBs employing the LPSCl-infiltrated LiCoO 2 and graphite electrodes at 100 °C is also presented, highlighting the excellent thermal stability and safety of ASLBs.

  3. Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO2-fS2 conditions

    Science.gov (United States)

    Liu, Yanan; Brenan, James

    2015-06-01

    In order to better understand the behavior of highly siderophile elements (HSEs: Os, Ir, Ru, Rh, Pt, Pd, Au, Re), Ag, Pb and chalcogens (As, Se, Sb, Te and Bi) during the solidification of sulfide magmas, we have conducted a series of experiments to measure partition coefficients (D values) between monosulfide solid solution (MSS) and sulfide melt, as well as MSS and intermediate solid solution (ISS), at 0.1 MPa and 860-926 °C, log fS2 -3.0 to -2.2 (similar to the Pt-PtS buffer), with fO2 controlled at the fayalite-magnetite-quartz (FMQ) buffer. The IPGEs (Os, Ir, Ru), Rh and Re are found to be compatible in MSS relative to sulfide melt with D values ranging from ∼20 to ∼5, and DRe/DOs of ∼0.5. Pd, Pt, Au, Ag, Pb, as well as the chalcogens, are incompatible in MSS, with D values ranging from ∼0.1 to ∼1 × 10-3. For the same metal/sulfur ratio, D values for the IPGEs, Rh and Re are systematically larger than most past studies, correlating with higher oxygen content in the sulfide liquid, reflecting the significant effect of oxygen on increasing the activity coefficients for these elements in the melt phase. MSS/ISS partitioning experiments reveal that Ru, Os, Ir, Rh and Re are partitioned into MSS by a factor of >50, whereas Pd, Pt, Ag, Au and the chalcogens partition from weakly (Se, As) to strongly (Ag, Au) into ISS. Uniformly low MSS- and ISS- melt partition coefficients for the chalcogens, Pt, Pd, Ag and Au will lead to enrichment in the residual sulfide liquid, but D values are generally too large to reach early saturation in Pt-Pd-chalcogen-rich accessory minerals, based on current solubility estimates. Instead, these phases likely precipitate at the last dregs of crystallization. Modeled evolution curves for the PGEs and chalcogens are in reasonably good agreement with whole-rock sulfide compositions for the McCreedy East deposit (Sudbury, Ontario), consistent with an origin by crystallization of MSS, then MSS + ISS from sulfide magma.

  4. Correlation of Solid State and Solution Coordination Numbers with Infrared Spectroscopy in Five-, Six-, and Eight-Coordinate Transition Metal Complexes of DOTAM.

    Science.gov (United States)

    Nagata, Maika K C T; Brauchle, Paul S; Wang, Sen; Briggs, Sarah K; Hong, Young Soo; Laorenza, Daniel W; Lee, Andrea G; Westmoreland, T David

    2016-08-16

    Three new DOTAM (1,4,7,10-tetrakis(acetamido)-1,4,7,10-tetraazacyclododecane) complexes have been synthesized and characterized by X-ray crystallography: [Co(DOTAM)]Cl 2 •3H 2 O, [Ni(DOTAM)]Cl 2 •4H 2 O, and [Cu(DOTAM)](ClO 4 ) 2 •H 2 O. Solid state and solution IR spectroscopic features for a series of [M(DOTAM)] 2+ complexes (M=Mn, Co, Cu, Ni, Ca, Zn) correlate with solid state and solution coordination numbers. [Co(DOTAM)] 2+ , [Ni(DOTAM)] 2+ , and [Zn(DOTAM)] 2+ are demonstrated to be six-coordinate in both the solid state and in solution, while [Mn(DOTAM)] 2+ and [Ca(DOTAM)] 2+ are eight-coordinate in the solid state and remain so in solution. [Cu(DOTAM)] 2+ , which is five-coordinate by X-ray crystallography, is shown to increase its coordination number in solution to six-coordinate.

  5. Magnetic ground state and Fermi surface of bcc Eu

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Laskowski, R.

    2004-01-01

    Roč. 70, č. 17 (2004), 174415/1-174415/6 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA1010214; GA MŠk(CZ) ME 547 Grant - others:DE-FG(XX) 03-01ER45876 Institutional research plan: CEZ:AV0Z1010914 Keywords : europium * spin structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  6. Synthesis, characterization, kinetic and thermodynamic studies of the dissolution of ThO2 and of solid solutions Th1-xMxO2 (M = U, Pu)

    International Nuclear Information System (INIS)

    Heisbourg, G.

    2003-12-01

    The aim of this work was to understand the mechanisms of dissolution of ThO 2 and of thorium mixed oxides such as Th 1-x U x O 2 and Th 1-x Pu x O 2 in aqueous, oxygenated or inert media. Several solids have been synthesized by precipitation in oxalic medium: Th 1-x U x O 2 (x= 0.11; 0.24; 0.37; 0.53; 0.67; 0.81 and 0.91) and Th 1-x Pu x O 2 (x= 0.13; 0.32 and 0.66). They have been characterized by XRD, SEM, TEM, XPS, XAS, PIXE and EPMA. The sintering conditions of these materials have been studied and optimized in order to obtain sintered samples with a measured density very near the theoretical densities. A kinetic study of the dissolution of ThO 2 and of solid solutions Th 1-x U x O 2 has been carried out in several aqueous media (HNO 3 , HCl, H 2 SO 4 ) in terms of several parameters: protons concentration, temperature, pH, ionic strength, nature of the electrolyte solution and uranium molar ratio for the solid solutions Th 1-x U x O 2 in order to determine the kinetic laws of dissolution of the solid solutions having different compositions comparatively to ThO 2 . The leaching tests carried out in natural waters of compositions near those of the deep geologic sites considered for the storage of nuclear wastes have shown that the dissolution of the solids was bound to the complexing effect of the constitutional ions of the water considered. The leaching tests carried out on sintered samples of the same composition have led to the same normalized dissolution velocities. The thermodynamic aspect of the dissolution of the solid solutions Th 1-x U x O 2 in nitric medium has been studied at last. (O.M.)

  7. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011)B3 single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Higuchi, Jumpei; Yabuhara, Osamu; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011) B3 single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar] bcc || GaAs(011)[011-bar] B3 . The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{011} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011) B3 substrates.

  8. Evidence on unusual way of cocaine smuggling: cocaine-polymethyl methacrylate (PMMA) solid solution--study of clandestine laboratory samples.

    Science.gov (United States)

    Gostic, T; Klemenc, S

    2007-07-04

    An abandoned clandestine laboratory was seized in Slovenia. All confiscated exhibits were analysed in a forensic laboratory, where the following analytical methods were applied: capillary gas chromatography coupled with mass spectrometry (GC-MS) combined also by solid-phase micro extraction (SPME) and pyrolysis (Py) technique, Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy with energy dispersive X-ray detector (SEM-EDX). The most interesting analytical findings can be summarised as follows: at the crime scene some plastic pieces, which contained cocaine dissolved (as solid solution) in polymethyl methacrylate-plexiglass (PMMA), were found. The highest cocaine concentration measured in the plastic sample was about 15% by weight. Two larger lumps of material (12 and 3 kg) were composed mainly of PMMA and CaCO3 and contained only 0.4 and 0.5% of cocaine, respectively. As for the low cocaine concentration, we assume that those two lumps of material represent discarded waste product--residue after the isolation of cocaine from plastic. Higher quantities of pure solvents (41 l) and solvent mixtures (87 l) were seized. We identified three types of pure solvents (acetone, gasoline and benzine) and two different types of solvent mixtures (benzine/acetone and gasoline/acetone). The total seized volume (87 l) of solvent mixtures holds approximately 395 g of solid residue formed mainly of PMMA and cocaine. Obviously solvent mixtures were used for isolation of cocaine from the plastic. Small quantities of relatively pure cocaine base were identified on different objects. There were two cotton sheets, most probably used for filtration. One sheet had traces of cocaine base (76% purity) on the surface, while cocaine in hydrochloride form (96%) was identified on the other sheet. GC-MS analyses of micro traces isolated from analytical balances showed the presence of cocaine and some common adulterants: phenacetine, lidocaine and procaine. A cocaine

  9. Synthesis of (Cr,V){sub 2}(C,N) solid solution powders by thermal processing precursors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Anrui [School of Materials Science & Engineering, Sichuan University, Chengdu, 610065 (China); Liu, Ying [School of Materials Science & Engineering, Sichuan University, Chengdu, 610065 (China); Key Laboratory of Advanced Special Material & Technology, Ministry of Education, Chengdu, 610065 (China); Ma, Shiqing; Qiu, Yuchong; Rong, Pengcheng; Ye, Jinwen [School of Materials Science & Engineering, Sichuan University, Chengdu, 610065 (China)

    2017-06-01

    The single-phase (Cr,V){sub 2}(C,N) solid solution powders were fabricated via carbothermal reduction-nitridation (CRN) processing technique. The effects of heat treatment temperature, nitrogen pressure and carbon proportion were experimentally studied in detail by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and thermal analysis. The chemical transformations of vanadium and chromium compounds were as follows: precursors → V{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} → Cr{sub 3}C{sub 2}, Cr{sub 2}O{sub 3}, (Cr,V){sub 2}(C,N) → (Cr,V){sub 2}(C,N). When the heat-treated temperature was below 1200 °C, chromium oxides didn’t completely react. However, higher temperature ∼1300 °C could not only lead to the segregation of some nitrides and carbon black, but also to the occurrence of fiber-bridged particles. The system nitrogen pressure over 0.03 MPa would cause a subtle transformation of (Cr,V){sub 2}(C,N) to VCrN{sub 2}. When the carbon proportion was below 15 wt%, the oxides could not be completely reduced, while when the carbon proportion was above 15.5 wt%, some undesired carbides, like Cr{sub 23}C{sub 6} and Cr{sub 3}C{sub 2}, would form. Ultimately, the homogeneously distributed pure-phase (Cr,V){sub 2}(C,N) spherical particles with the average size of ∼1.5 μm were obtained at the optimal conditions of the treatment of precursors at 1200 °C for 1 h with the nitrogen pressure of 0.03 MPa and carbon content of 15.5 wt%. The chemical composition of the solid solution with the optimal process could be drawn as (Cr{sub 0.85}V{sub 0.15}){sub 2}(C{sub 0.57}N{sub 0.43}). Thermal processing precursors method shows the advantages of lower synthesis temperature, shorter period and finer particles when comparing with the conventional preparations. - Highlights: • Single phase of (Cr,V){sub 2}(C,N) powders were synthesized for the first time. • Precursors were used to prepared the powders by carbothermal

  10. Structural determination of new solid solutions [Y2-x Mx ][Sn2-x Mx ]O7-3x/2 (M = Mg or Zn by Rietveld method

    Directory of Open Access Journals (Sweden)

    Mohamed Douma

    2010-12-01

    Full Text Available New [Y2-x Mx][Sn2-x Mx]O7-3x/2 (0 ≤x≤ 0.30 for M = Mg and 0 ≤x≤ 0.36 for M = Zn solid solutions with the pyrochlore structure were synthesized via high-temperature solid-state reaction method. Powder X-ray diffraction (PXRD patterns and Fourier transform infrared (FT-IR spectra showed that these materials are new non-stoichiometric solid solutions with the pyrochlore type structure. The structural parameters for the solids obtained were successfully determined by Rietveld refinement based on the analysis of the PXRD diagrams. Lattice parameter (a of these solid solutions decreases when x increases in both series. All samples obtained have the pyrochlore structure Fd-3m, no. 227 (origin at center -3m with M2+ (M = Mg2+ or Zn2+ cations in Y3+ and Sn4+ sites, thus creating vacancies in the anionic sublattice.

  11. Investigation of irradiation strengthening of bcc metals and their alloys. Progress report, January 1977--October 1977

    International Nuclear Information System (INIS)

    1977-01-01

    Progress is reported in the areas of (a) the effect of neutron damage on the dislocation kinetics in bcc metals and their alloys, and (b) the effect of 3 He on the deformation characteristics of body centered cubic metals and their alloys. Results obtained from these projects are discussed

  12. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    International Nuclear Information System (INIS)

    Higuchi, Jumpei; Ohtake, Mitsuru; Sato, Yoichi; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    NiFe epitaxial films are prepared on Cr(211) bcc and Cr(100) bcc underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211) bcc and Cr(100) bcc underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  13. Solubility of hydrogen and deuterium in bcc-uranium-titanium alloys

    International Nuclear Information System (INIS)

    Powell, G.L.; Kirkpatrick, J.R.

    1996-01-01

    For the bcc-U-Ti alloy system, H and D solubility measurements have been made on 12 alloy specimens ranging in composition from pure U to pure Ti and temperature range bounded by 900 K to 1,500 K. The results are described by a model within a standard error of 3%

  14. Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe

    NARCIS (Netherlands)

    Kvashnin, Y.O.; Cardias, R.; Szilva, A.; Di Marco, I.; Katsnelson, M.I.; Lichtenstein, A.I.; Nordstrom, L.; Klautau, A.B.; Eriksson, O.

    2016-01-01

    By means of first principles calculations, we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the 3d orbitals of E-g and T-2g symmetries. The latter ones define the shape of the

  15. Towards an unbiased comparison of CC, BCC, and FCC lattices in terms of prealiasing

    KAUST Repository

    Vad, Viktor

    2014-06-01

    In the literature on optimal regular volume sampling, the Body-Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band-limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face-Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well-known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner-Lobb test signal such that an undue advantage is not given to either lattice. © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  16. Role of intrinsic hydrogen bonds in the assembly of perylene imide derivatives in solution and at the liquid-solid interface.

    Science.gov (United States)

    Guo, Zongxia; Wang, Kun; Yu, Ping; Zhang, Shengyue; Sun, Kai; Li, Zhibo

    2017-08-30

    The impact of hydrogen bond formation on the supramolecular assembly of two perylene imide derivatives (PMAMI and PDINH) was systematically investigated in solution and at the liquid-solid interface. PDINH has intrinsic hydrogen bond sites, but this is not the case for PMAMI. The solution assembly was explored by morphological methods (SEM, AFM, TEM and cryo-TEM) and spectral characterization (UV-vis, FL, XRD, and FTIR spectra). The surface assembly at the liquid-solid interface was detected by scanning tunneling microscopy (STM). It was found that in a mixed solution (THF/MeOH, 10 v%/90 v%), PMAMI formed nanofibers together with large sheet structures and PDINH assembled into uniform nanosheets, suggesting different molecular packing routes. The assembled structures could be adjusted by varying the solvent polarity for both molecules. At the liquid-solid interface, clearly distinguished surface nanostructures from PMAMI and PDINH were easily observed. Based on all spectral and morphological characterizations, it was suggested that in solution the assembly of PMAMI was mainly derived by π-π stacking interactions; on the other hand, the synergetic interaction of hydrogen bonds and π-π stacking was the reason for the hierarchical assembly of PDINH. Hydrogen bonds could be formed both for PMAMI and PDINH and stabilized nanostructures at the liquid-solid interface. This investigation could be useful in designing perylene imide-based building blocks for fabricating supramolecular assemblies with predetermined nanostructures and properties.

  17. Enhanced detection of explosives by turn-on resonance Raman upon host-guest complexation in solution and the solid state

    DEFF Research Database (Denmark)

    Witlicki, Edward H.; Bähring, Steffen; Johnsen, Carsten

    2017-01-01

    The recognition of nitroaromatic explosives by a tetrakis-tetrathiafulvalene-calix[4]pyrrole receptor (TTF-C[4]P) yields a "turn on" and fingerprinting response in the resonance Raman scattering observed in solution and the solid state. Intensity changes in nitro vibrations with analyte...

  18. Solid-state and solution-state coordination chemistry of lanthanide(III) complexes with (pyrazol-1-yl)acetic acid.

    Science.gov (United States)

    Chen, Xiao-Yan; Goff, George S; Scott, Brian L; Janicke, Michael T; Runde, Wolfgang

    2013-03-18

    As a precursor of carboxyl-functionalized task-specific ionic liquids (TSILs) for f-element separations, (pyrazol-1-yl)acetic acid (L) can be deprotonated as a functionalized pyrazolate anion to coordinate with hard metal cations. However, the coordination chemistry of L with f-elements remains unexplored. We reacted L with lanthanides in aqueous solution at pH = 5 and synthesized four lanthanide complexes of general formula [Ln(L)3(H2O)2]·nH2O (1, Ln = La, n = 2; 2, Ln = Ce, n = 2; 3, Ln = Pr, n = 2; 4, Ln = Nd, n = 1). All complexes were characterized by single crystal X-ray diffraction analysis revealing one-dimensional chain formations. Two distinct crystallographic structures are governed by the different coordination modes of carboxylate groups in L: terminal bidentate and bridging tridentate (1-3); terminal bidentate, bridging bidentate, and tridentate coordination in 4. Comparison of the solid state UV-vis-NIR diffuse reflectance spectra with solution state UV-vis-NIR spectra suggests a different species in solution and solid state. The different coordination in solid state and solution was verified by distinctive (13)C NMR signals of the carboxylate groups in the solid state NMR.

  19. Novel chemistry of alpha-tosyloxy ketones: applications to the solution- and solid-phase synthesis of privileged heterocycle and enediyne libraries

    DEFF Research Database (Denmark)

    Nicolaou, K C; Montagnon, T; Ulven, T

    2002-01-01

    New synthetic technologies for the preparation and elaboration of alpha-tosyloxy ketones in solution- and on solid-phase are described. Both olefins and ketones serve as precursors to these relatively stable chemical entities: olefins via a novel one-pot epoxidation, arylsulfonic acid displacement...

  20. Pebble fabrication of super advanced tritium breeders using a solid solution of Li2+xTiO3+y with Li2ZrO3

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hoshino

    2016-12-01

    Full Text Available Lithium titanate with excess lithium (Li2+xTiO3+y is one of the most promising candidates among advanced tritium breeders for demonstration power plant reactors because of its good tritium release characteristics. However, the tritium breeding ratio (TBR of Li2+xTiO3+y is smaller than that of e.g., Li2O or Li8TiO6 because of its lower Li density. Therefore, new Li-containing ceramic composites with both high stability and high Li density have been developed. Thus, this study focused on the development of a solid solution with a new characteristic. The solid-solution pebbles of Li2+xTiO3+y with Li2ZrO3 (Li2+x(Ti,ZrO3+y, designated as LTZO, were fabricated by an emulsion method. The X-ray diffraction patterns of sintered LTZO pebbles are approximately the same as those of Li2+xTiO3+y pebbles, and no peaks attributable to Li2ZrO3 are observed. These results demonstrate that LTZO pebbles are not a two-phase material but rather a solid solution. Furthermore, LTZO pebbles were easily sintered under air. Thus, the LTZO solid solution is a candidate breeder material for super advanced (SA tritium breeders.

  1. Synthesis of Ba3ZnNb2O9–Sr3ZnNb2O9 solid solution and their ...

    Indian Academy of Sciences (India)

    Unknown

    Department of Chemistry, Indian Institute of Technology, New Delhi 110 016, India. MS received 6 October 2001; revised 31 May ... An earlier study (Onoda et al 1982) on the solid solution Ba3–xSrxZnNb2O9, reported .... However, there was no sign of melting as observed in the x = 1 composition. Dielectric constant for the ...

  2. Long-time Luminescence Kinetics of Localized excitons and conduction Band Edges Smearing in ZnSe(1-c)Tec Solid Solutions

    DEFF Research Database (Denmark)

    Klochikhin, O.; Ogloblin, S. G.; Permogorov, S.

    2000-01-01

    It is shown that the integrated luminescence intensity of localized excitons in solid solutions ZnSe(1 - c)Tec has a component slowly decaying with time. After the excitation above the mobility threshold, the long-time intensity decreases exponentially, with a fractional exponent changing from...

  3. Local structure and phase transformation in Zr and Ti based bcc solutions

    International Nuclear Information System (INIS)

    Chang, A.L.J.

    1975-01-01

    High resolution direct lattice imaging and dark field electron microscopy were used to examine the omega phase transformation in Zr--Nb alloys. Direct lattice imaging demonstrates the existence of three subvariants within each omega variant. The kinematic intensity sum, which is evaluated based on the combination of certain atomic arrangements, was carried out to include both untransformed beta phase and the omega phase. An ordered sequence of subvariants was found to be responsible for the diffraction effects in high Nb content alloys. However, the existence of such an ordered sequence among omega subvariants could not be checked out because of the small size of the omega regions. Omega domains of different variant do not interweave. Isolated particles with diameters of 3 to 5 A also are present away from the domains. As the Nb content is increased the omega domains decrease in size while the isolated particles (3 to 5 A) are present over the entire range studied, from 8 to 30 wt percent Nb. It is suggested that fluctuations in structure occur between the beta and omega phases. The isolated particles, also changing with time, are believed to be images of single or small groups of displaced atoms. (Diss. Abstr. Int., B)

  4. Raman spectroscopic features of Al- Fe3+- poor magnesiochromite and Fe2+- Fe3+- rich ferrian chromite solid solutions

    Science.gov (United States)

    Kharbish, Sherif

    2017-08-01

    Naturally occurring Al- Fe3 +- poor magnesiochromite and Fe2+- Fe3 +- rich ferrian chromite solid solutions have been analyzed by micro-Raman spectroscopy. The results reflect a strong positive correlation between the Fe3 + # [Fe3+/(Fe3 ++Cr + Al)] and the positions of all Raman bands. A positive correlation of the Raman band positions with Mg# [Mg/(Mg + Fe2 +)] is less stringent. Raman spectra of magnesiochromite and ferrian chromite show seven and six bands, respectively, in the spectral region of 800 - 100 cm- 1. The most intense band in both minerals is identified as symmetric stretching vibrational mode, ν 1(A 1g ). In the intermediate Raman-shift region (400-600 cm- 1), the significant bands are attributed to the ν 3(F 2g ) > ν 4(F 2g ) > ν 2(E g ) modes. The bands with the lowest Raman shifts (< 200 cm- 1) are assigned to F 2g (trans) translatory lattice modes. Extra bands in magnesiochromite (two bands) and in ferrian chromite (one weak band) are attributed to lowering in local symmetry and order/disorder effects.

  5. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    Energy Technology Data Exchange (ETDEWEB)

    Leach, James [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  6. Crystal structure of the solid solution (Sr1.65Pb0.35Al6O11

    Directory of Open Access Journals (Sweden)

    Matthias Weil

    2014-09-01

    Full Text Available The title compound, di(strontium/lead hexaaluminate, is a member of the solid solution series (Sr2-xPbxAl6O11. It contains two statistically occupied M2+ (M = Sr, Pb sites [both with site symmetries ..m; Sr:Pb occupancy ratios = 0.756 (2:0.244 (2 and 0.8968 (19:0.1032 (19] that are located in the voids of an aluminate framework. The M2+ sites are surrounded by six and seven O atoms, respectively, if a cut-off M—O distance of 3 Å is chosen, resulting in considerably distorted MOx polyhedra. The aluminate framework consists of three AlO6 octahedra (two with point-group symmetries ..2/m and one with ..2 sharing edges to form partially filled layers extending parallel to (100 and located at x = 0, 0.5. Adjacent AlO6 layers are linked by a network made up from two crystallographically different AlO4 tetrahedra by sharing corners.

  7. Limitations and Extensions of the Lock-and-Key Principle: Differences between Gas State, Solution and Solid State Structures

    Directory of Open Access Journals (Sweden)

    Hans-Jörg Schneider

    2015-03-01

    Full Text Available The lock-and-key concept is discussed with respect to necessary extensions. Formation of supramolecular complexes depends not only, and often not even primarily on an optimal geometric fit between host and guest. Induced fit and allosteric interactions have long been known as important modifications. Different binding mechanisms, the medium used and pH effects can exert a major influence on the affinity. Stereoelectronic effects due to lone pair orientation can lead to variation of binding constants by orders of magnitude. Hydrophobic interactions due to high-energy water inside cavities modify the mechanical lock-and-key picture. That optimal affinities are observed if the cavity is only partially filled by the ligand can be in conflict with the lock-and-key principle. In crystals other forces than those between host and guest often dominate, leading to differences between solid state and solution structures. This is exemplified in particular with calixarene complexes, which by X-ray analysis more often than other hosts show guest molecules outside their cavity. In view of this the particular problems with the identification of weak interactions in crystals is discussed.

  8. Discovery of a thermally persistent h.c.p. solid-solution phase in the Ni-W system

    International Nuclear Information System (INIS)

    Kurz, S. J. B.; Leineweber, A.; Maisel, S. B.; Höfler, M.; Müller, S.; Mittemeijer, E. J.

    2014-01-01

    Although the accepted Ni-W phase diagram does not reveal the existence of h.c.p.-based phases, h.c.p.-like stacking sequences were observed in magnetron-co-sputtered Ni-W thin films at W contents of 20 to 25 at. %, by using transmission electron microscopy and X-ray diffraction. The occurrence of this h.c.p.-like solid-solution phase could be rationalized by first-principles calculations, showing that the vicinity of the system's ground-state line is populated with metastable h.c.p.-based superstructures in the intermediate concentration range from 20 to 50 at. % W. The h.c.p.-like stacking in Ni-W films was observed to be thermally persistent, up to temperatures as high as at least 850 K, as evidenced by extensive X-ray diffraction analyses on specimens before and after annealing treatments. The tendency of Ni-W for excessive planar faulting is discussed in the light of these new findings

  9. A space-charge treatment of the increased concentration of reactive species at the surface of a ceria solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Zurhelle, Alexander F.; Souza, Roger A. de [Institute of Physical Chemistry, RWTH Aachen University (Germany); Tong, Xiaorui; Mebane, David S. [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Klein, Andreas [Institute of Materials Science, TU Darmstadt (Germany)

    2017-11-13

    A space-charge theory applicable to concentrated solid solutions (Poisson-Cahn theory) was applied to describe quantitatively as a function of temperature and oxygen partial pressure published data obtained by in situ X-ray photoelectron spectroscopy (XPS) for the concentration of Ce{sup 3+} (the reactive species) at the surface of the oxide catalyst Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}. In contrast to previous theoretical treatments, these calculations clearly indicate that the surface is positively charged and compensated by an attendant negative space-charge zone. The high space-charge potential that develops at the surface (>0.8 V) is demonstrated to be hardly detectable by XPS measurements because of the short extent of the space-charge layer. This approach emphasizes the need to take into account defect interactions and to allow deviations from local charge neutrality when considering the surfaces of oxide catalysts. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. A Synthetic Pseudo-Rh: NOx Reduction Activity and Electronic Structure of Pd-Ru Solid-solution Alloy Nanoparticles.

    Science.gov (United States)

    Sato, Katsutoshi; Tomonaga, Hiroyuki; Yamamoto, Tomokazu; Matsumura, Syo; Zulkifli, Nor Diana Binti; Ishimoto, Takayoshi; Koyama, Michihisa; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Nagaoka, Katsutoshi

    2016-06-24

    Rh is one of the most important noble metals for industrial applications. A major fraction of Rh is used as a catalyst for emission control in automotive catalytic converters because of its unparalleled activity toward NOx reduction. However, Rh is a rare and extremely expensive element; thus, the development of Rh alternative composed of abundant elements is desirable. Pd and Ru are located at the right and left of Rh in the periodic table, respectively, nevertheless this combination of elements is immiscible in the bulk state. Here, we report a Pd-Ru solid-solution-alloy nanoparticle (PdxRu1-x NP) catalyst exhibiting better NOx reduction activity than Rh. Theoretical calculations show that the electronic structure of Pd0.5Ru0.5 is similar to that of Rh, indicating that Pd0.5Ru0.5 can be regarded as a pseudo-Rh. Pd0.5Ru0.5 exhibits better activity than natural Rh, which implies promising applications not only for exhaust-gas cleaning but also for various chemical reactions.

  11. Bioleaching of fly ash from municipal solid waste incineration using kitchen waste saccharified solution as culture medium

    International Nuclear Information System (INIS)

    Wei, S.; Juan, W.; Qunhui, W.

    2013-01-01

    Summary: Reduced sugar in saccharified solution from kitchen waste was used as the carbon source. Domesticated A. niger AS 3.879C , which can withstand 20% of kitchen waste, was used as the inoculum in the bioleaching process of municipal solid waste incineration fly ash. The effect of reduced sugar concentration, fly ash concentration, and medium volume on the heavy metal extraction and yield of fly ash as well as the optimum bioleaching conditions; the inoculation amount of AS 3 .879C 1% (v/v), reduced sugar concentration of 80 g/l, fly ash concentration of 20 g/l, medium volume of 200 ml, and the addition of fly ash (20 g/l) after culturing for 4 days at 30 degree C and 140 r/min were obtained. Under the optimum condition, the extraction yield of the seven tested heavy metals are in the order of Cd > Zn > Cu > Mn > Pb > Cr > Fe; the extraction yield of Cd and Zn reached 88.7% and 73.1% respectively. Fly ash satisfied the Standard for Pollution Control on the Security Landfill Site for Hazardous Wastes (GB 18598-2001) after heavy metal extraction. (author)

  12. First-principles investigation of competing magnetic interactions in (Mn ,Fe )Ru2Sn Heusler solid solutions

    Science.gov (United States)

    Decolvenaere, Elizabeth; Gordon, Michael; Seshadri, Ram; Van der Ven, Anton

    2017-10-01

    Many Heusler compounds possess magnetic properties well suited for applications as spintronic materials. The pseudobinary Mn0.5Fe0.5Ru2Sn , formed as a solid solution of two full Heuslers, has recently been shown to exhibit exchange hardening suggestive of two magnetic phases, despite existing as a single chemical phase. We have performed a first-principles study of the chemical and magnetic degrees of freedom in the Mn1 -xFexRu2Sn pseudobinary to determine the origin of the unique magnetic behavior responsible for exchange hardening within a single phase. We find a transition from antiferromagnetic (AFM) to ferromagnetic (FM) behavior upon replacement of Mn with Fe, consistent with experimental results. The lowest energy orderings in Mn1 -xFexRu2Sn consist of chemically and magnetically uniform (111) planes, with Fe-rich regions preferring FM ordering and Mn-rich regions preferring AFM ordering, independent of the overall composition. Analysis of the electronic structure suggests that the magnetic behavior of this alloy arises from a competition between AFM-favoring Sn-mediated superexchange and FM-favoring RKKY exchange mediated by spin-polarized conduction electrons. Changes in valency upon replacement of Mn with Fe shifts the balance from superexchange-dominated interactions to RKKY-dominated interactions.

  13. High Temperature Magneto-Elastic Instability of Dislocations in bcc Iron

    International Nuclear Information System (INIS)

    Dudarev, S.; Bullough, R.; Gilbert, M.; Derlet, P.

    2007-01-01

    Full text of publication follows: Density functional calculations show that the low temperature structure of self-interstitial defects in iron is fundamentally different from the structure of self-interstitial defects in all the other bcc metals. The origin of this anomaly is associated with the magnetic part of the cohesive energy of iron, where the Stoner exchange term stabilizes the body centred cubic phase, and where the magnetic part of energy is strongly affected by the large strain associated with the core region of an interstitial defect. At elevated temperatures magnetic excitations erode the stability of the bcc phase, giving rise to the gradual softening of the 110 transverse acoustic phonon modes and to the α-γ bcc-fcc martensitic phase transition occurring at 912 deg. C at normal pressure. Elastic moduli of bcc iron vary as a function of temperature with c' = (C 11 - c 12 )/2 vanishing at the α-γ transition point. This has significant effects on the magnitude of both the elastic interactions between dislocations and other defects in the material and on the intrinsic structural stability of the dislocations and other defects themselves. To evaluate structural stability of defects at elevated temperatures we investigate elastic self-energies of dislocations in the continuum anisotropic elasticity approximation. We also develop atomistic models of dislocations and point defects based on a generalised form of the magnetic potential. By varying the magnetic part of the potential we are able to reproduce the experimentally observed variation of elastic moduli as a function of temperature, and assess relative stability of various types of defect structures. Our analysis shows that, in complete contrast to other straight dislocations, the elastic self-energy of straight 100 edge dislocations actually sharply decreases as we approach the α-γ transition, indicating that this surprising fact is a probable explanation of the frequent observation of the 100

  14. Analytical solutions for the temperature field in a 2D incompressible inviscid flow through a channel with walls of solid fuel

    Directory of Open Access Journals (Sweden)

    Sorin BERBENTE

    2011-12-01

    Full Text Available A gas (oxidizer flows between two parallel walls of solid fuel. A combustion is initiated: the solid fuel is vaporized and a diffusive flame occurs. The hot combustion products are submitted both to thermal diffusion and convection. Analytical solutions can be obtained both for the velocity and temperature distributions by considering an equivalent mean temperature where the density and the thermal conductivity are evaluated. The main effects of heat transfer are due to heat convection at the flame. Because the detailed mechanism of the diffusion flame is not introduced the reference chemical reaction is the combustion of premixed fuel with oxidizer in excess. In exchange the analytical solution is used to define an ideal quasi-uniform combustion that could be realized by an n adequate control. The given analytical closed solutions prove themselves flexible enough to adjust the main data of some existing experiments and to suggest new approaches to the problem.

  15. In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Suppa, Mariano; Miyamoto, Makiko

    2016-01-01

    High-definition optical coherence tomography (HD-OCT) features of basal cell carcinoma (BCC) have recently been defined. We assessed in vivo optical properties (IV-OP) of BCC, by HD-OCT. Moreover their critical values for BCC subtype differentiation were determined. The technique of semi-log plot...

  16. Phase relations and linear thermal expansion of cubic solid solutions in the Th1-xMxO2-x/2 (M=Eu, Gd, Dy) systems

    International Nuclear Information System (INIS)

    Mathews, M.D.; Ambekar, B.R.; Tyagi, A.K.

    2005-01-01

    Cell parameters and linear thermal expansion studies of the Th-M oxide systems with general compositions Th 1-x M x O 2-x/2 (M=Eu 3+ , Gd 3+ and Dy 3+ , 0.0= 1.5 in the ThO 2 lattice. The upper solid solubility limits of EuO 1.5 , GdO 1.5 and DyO 1.5 in the ThO 2 lattice under conditions of slow cooling from 1673K are represented as Th 0.50 Eu 0.50 O 1.75 , Th 0.60 Gd 0.40 O 1.80 and Th 0.85 Dy 0.15 O 1.925 , respectively. The linear thermal expansion (293-1123K) of MO 1.5 and their single-phase solid solutions with thoria were investigated by dilatometery. The average linear thermal expansion coefficients (α-bar ) of the compounds decrease on going from EuO 1.5 to DyO 1.5 . The values of α-bar for EuO 1.5 , GdO 1.5 and DyO 1.5 containing solid solutions showed a downward trend as a function of the dopant concentration. The linear thermal expansion (293-1473K) of the solid solutions investigated by high-temperature XRD also showed a similar trend

  17. Indications of the formation of an oversaturated solid solution during hydrogenation of Mg-Ni based nanocomposite produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama, CRIDESAT, Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Instituto de Materiales y Procesos Termomecanicos, Facultad de Ciencias de la Ingenieria, Universidad Austral de Chile, Av. General Lagos 2086, Valdivia (Chile)

    2009-07-15

    An oversaturated solid solution of H in a nanocomposite material formed mainly by nanocrystalline Mg{sub 2}Ni, some residual nanocrystalline Ni and an Mg rich amorphous phase has been found for the first time. The nanocomposite was produced by mechanical alloying starting from Mg and Ni elemental powders, using a SPEX 8000D mill. The hydriding characterization of the nanocomposite was carried out by solid-gas reaction method in a Sievert's type apparatus. The maximum hydrogen content reached in a period of 21 Ks without prior activation was 2.00 wt.% H under hydrogen pressure of 2 MPa at 363 K. The X-ray diffraction analysis showed the presence of an oversaturated solid solution between nanocrystalline Mg{sub 2}Ni and H without any sign of Mg{sub 2}NiH{sub 4} hydride formation. The dehydriding behaviour was studied by differential scanning calorimetry and thermogravimetry. The results showed the existence of two desorption peaks, the first one associated with the transformation of the oversaturated solid solution into Mg{sub 2}NiH{sub 4}, and the second one with the Mg{sub 2}NiH{sub 4} desorption. (author)

  18. Kinetics behaviour of metastable equiatomic Cu–Fe solid solution as function of the number of collisions induced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Contini, A., E-mail: alessandro.contini@hotmail.com [Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari (Italy); Delogu, F. [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari (Italy); Garroni, S.; Mulas, G.; Enzo, S. [Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari (Italy)

    2014-12-05

    Graphical abstract: - Highlights: • Cu–Fe powders were studied as a function of the number of hits during MA. • An impulsive model describes the kinetics curves of solid solution formation. • The kinetic curve indicates that powders must undergo 6 critical events to transform. - Abstract: We have addressed a new study by mechanical alloying on the nominally immiscible Cu{sub 50}Fe{sub 50} system with the aim of relating the solid state transformation process, with formation of a disordered unstable solid solution having the face centered cubic habit, to parameters reflecting the impulsive, discontinuous nature of the process. The milling set-up, tools and powder were adjusted in order to ensure completely anelastic hits. Phase analysis, structure and microstructure parameters of such powder system have been followed accurately in the course of the kinetics by X-ray Diffraction using the Rietveld method. The experimental kinetics data points of the amount of transformed solid solution show a typical sigmoidal behavior. It was assumed that dissolution only occurs in the volumes of material that have undergone the necessary critical loading conditions, which is accounted by a discrete series expansion. The mass fraction effectively processed at each collision can be regarded as an apparent rate constant for the microstructural refinement and phase transformation processes. Analysis of model curves fitting the experimental data suggests that it takes up an average of 6 impacts of coupled powder particles to drive the system to the new unstable nano-crystalline state.

  19. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    Science.gov (United States)

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  20. SOLUTIONING

    Directory of Open Access Journals (Sweden)

    Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.

    2004-11-01

    Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.

  1. Novel chemistry of alpha-tosyloxy ketones: applications to the solution- and solid-phase synthesis of privileged heterocycle and enediyne libraries

    DEFF Research Database (Denmark)

    Nicolaou, K C; Montagnon, T; Ulven, T

    2002-01-01

    New synthetic technologies for the preparation and elaboration of alpha-tosyloxy ketones in solution- and on solid-phase are described. Both olefins and ketones serve as precursors to these relatively stable chemical entities: olefins via a novel one-pot epoxidation, arylsulfonic acid displacement......-tosyloxy ketones are engaged by "hard" versus "soft" nucleophiles. The accessibility and site-selectivity of the chemistry demonstrated herein offer the promise of an expanded use for this moiety in solid-phase library construction, in particular, and in the field of organic synthesis, in general....

  2. Intercomparison of Cement Solid-Solution Models. Issues Affecting the Geochemical Evolution of Repositories for Radioactive Waste

    International Nuclear Information System (INIS)

    Benbow, Steven; Savage, David; Walker, Colin

    2007-05-01

    Many concepts for the geological storage of radioactive waste incorporate cement based materials, which act to provide a chemical barrier, impede groundwater flow or provide structural integrity of the underground structures. Thus, it is important to understand the long-term behaviour of these materials when modelling scenarios for the potential release and migration of radionuclides. In the presence of invasive groundwater, the chemical and physical properties of cement, such as its pH buffering capacity, resistance to flow, and its mechanical properties, are expected to evolve with time. Modelling the degradation of cement is complicated by the fact that the long term pH buffer is controlled by the incongruent dissolution behaviour of calcium-silicate-hydrate (C-S-H) gel. It has been previously shown (SKI Report 2005:64) that it is possible to simulate the long term evolution of both the physical and chemical properties of cement based materials in an invasive groundwater using a fully coupled geochemical transport model. The description of the incongruent dissolution of C-S-H gel was based on a binary solid solution aqueous solution (SSAS) between end-member components portlandite (Ca(OH) 2 ) and a C-S-H gel composition expressed by its component oxides (CaH 2 SiO 4 ). The models considered a range of uncertainties including different groundwater compositions, parameterised couplings between the evolution of porosity with permeability and diffusivity and alternative secondary mineral assemblages. The results of the modelling suggested that alternative evolutions were possible under these different conditions. The focus of this report is to address the uncertainty regarding the choice of model for the C-S-H gel dissolution. We compare two alternative C-S-H SSAS models with the one that was used in the previous report, with an emphasis on a direct comparison of the model predictions. Thus we have chosen one simple simulated experimental model based on those in the

  3. Mathematical Analysis of the Solidification Behavior of Plain Steel Based on Solute- and Heat-Transfer Equations in the Liquid-Solid Zone

    Science.gov (United States)

    Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.

    2018-04-01

    An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.

  4. Development of methods for immobilisation of crown ethers onto solid supports for separation of metal ions from solution

    International Nuclear Information System (INIS)

    Wagh, Sandip Janardan; Renjithkumar, A.U.; Maithania, K.N.; Mukhopadhyay, Sulekha; Shenoy, K.T.; Ghosh, Sunil Kumar

    2014-01-01

    Since the serendipitous discovery of dibenzo-18-crown-6 (1) by C.J. Pedersen in 1967, many significant developments have been made in the field of host-guest chemistry. The very important use of these molecules in nuclear industry is removal of metal ions selectively. The removal of 90 Sr from the nuclear waste solution is very essential in order to reduce the vitrification period. Dicyclohexyl 18 Crown 6 ether (hydrogenated form of 1) has been reported to be efficient selective ligand for recovery of 90 Sr from nitrate medium. The application of crown ether in liquid-liquid extraction mode has some issue related to choice of diluents and aqueous solubility. Both of these problems can be overcome by the incorporation of crown ethers onto polymers. Polymer supported reagents offer many advantages, including ease of handling and recoverability when used in the removal of toxic metal ions from the environment. Due to increased concern with the remediation of wastewater, polymer-supported reagents, including immobilized crown ethers, have been studied for the selective removal of targeted metal ions. This will allow ease of handling, recyclability and adaption to continuous processes. There are three principal methods by which crown ethers can be incorporated into polymer matrices a) step-growth mechanism; b) chain-growth mechanism; c) post-functionalization wherein a crown ether is covalently bound to a pre-formed polymer backbone. The last method requires the crown to have a reactive functional group that can bond to the polymer. The immobilisation of (1) and (2) onto a solid support zeocarb-226 via amide linkage is successfully achieved by our group. We have synthesized novel extraction chromatographic resins by covalently binding on polymeric substrate. The covalent bonding in synthesized polymeric material has characterized by the FTIR. The resultant material is providing a simple and effective means of isolating 90 Sr and 6 Li

  5. Tuning the magnetocaloric response in half-Heusler/Heusler MnNi1 +xSb solid solutions

    Science.gov (United States)

    Levin, Emily E.; Bocarsly, Joshua D.; Wyckoff, Kira E.; Pollock, Tresa M.; Seshadri, Ram

    2017-12-01

    Materials with a large magnetocaloric response are associated with a temperature change upon the application of a magnetic field and are of interest for applications in magnetic refrigeration and thermomagnetic power generation. The usual metric of this response is the gravimetric isothermal entropy change Δ SM . The use of a simple proxy for the Δ SM that is based on density functional theory (DFT) calculations of the magnetic electronic structure suggests that half-Heusler MnNiSb should be a better magnetocaloric than the corresponding Heusler compound MnNi2Sb . Guided by this observation, we present a study of MnNi1 +xSb (x =0 , 0.25, 0.5, 0.75, and 1.0) to evaluate relevant structural and magnetic properties. DFT stability calculations suggest that the addition of Ni takes place at a symmetrically distinct Ni site in the half-Heusler structure and support the observation using synchrotron x-ray diffraction of a homogeneous solid solution between the half-Heusler and Heusler end members. There is a maximum in the saturation magnetization at x =0.5 and the Curie temperature systematically decreases with increasing x . Δ SM for a maximum magnetic field change of Δ H =5 T monotonically decreases in magnitude from -2.93 J kg-1K-1 in the half-Heusler to -1.35 J kg-1K-1 in the Heusler compound. The concurrent broadening of the magnetic transition results in a maximum in the refrigerant capacity at x =0.75 . The Curie temperature of this system is highly tunable between 350 K and 750 K, making it ideal for low grade waste heat recovery via thermomagnetic power generation. The increase in Δ SM with decreasing x may be extendable to other MnNi2Z Heusler systems that are currently under investigation for use in magnetocaloric refrigeration applications.

  6. Unraveling the Solution-State Supramolecular Structures of Donor-Acceptor Polymers and their Influence on Solid-State Morphology and Charge-Transport Properties.

    Science.gov (United States)

    Zheng, Yu-Qing; Yao, Ze-Fan; Lei, Ting; Dou, Jin-Hu; Yang, Chi-Yuan; Zou, Lin; Meng, Xiangyi; Ma, Wei; Wang, Jie-Yu; Pei, Jian

    2017-11-01

    Polymer self-assembly in solution prior to film fabrication makes solution-state structures critical for their solid-state packing and optoelectronic properties. However, unraveling the solution-state supramolecular structures is challenging, not to mention establishing a clear relationship between the solution-state structure and the charge-transport properties in field-effect transistors. Here, for the first time, it is revealed that the thin-film morphology of a conjugated polymer inherits the features of its solution-state supramolecular structures. A "solution-state supramolecular structure control" strategy is proposed to increase the electron mobility of a benzodifurandione-based oligo(p-phenylene vinylene) (BDOPV)-based polymer. It is shown that the solution-state structures of the BDOPV-based conjugated polymer can be tuned such that it forms a 1D rod-like structure in good solvent and a 2D lamellar structure in poor solvent. By tuning the solution-state structure, films with high crystallinity and good interdomain connectivity are obtained. The electron mobility significantly increases from the original value of 1.8 to 3.2 cm 2 V -1 s -1 . This work demonstrates that "solution-state supramolecular structure" control is critical for understanding and optimization of the thin-film morphology and charge-transport properties of conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Facile Synthesis of ZnxCd1-xS Solid Solution Microspheres through Ultrasonic Spray Pyrolysis for Improved Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Jianhui Huang

    2017-01-01

    Full Text Available Nanocrystal ZnxCd1-xS solid solutions were successfully prepared using a facile and reproducible method of ultrasonic spray pyrolysis with Cd(Ac2·2H2O, ZnCl2, and thiourea as precursors. Scanning electron microscopy and transmission electron microscopy images show that the prepared particles possess microspherical morphology. The band gaps of the solid solutions can be tuned by changing the constituent stoichiometries of Cd and Zn. The X-ray diffraction peaks gradually shift to small angle, and the absorption edge shifts to long wavelength with increasing Cd molar fraction in the solid solution. The sample prepared at the Cd/Zn ratio of 1 : 1 displays the optimal activity by using the photocatalytic degradation of methyl orange in the aqueous solution as model reactions under visible light irradiation. This study provides an effective route to prepare spherical ternary photocatalysts with mesoporous structure for further investigations and practical applications.

  8. Solid-solid phase transitions in Fe nanowires induced by axial strain

    International Nuclear Information System (INIS)

    Sandoval, Luis; Urbassek, Herbert M

    2009-01-01

    By means of classical molecular-dynamics simulations we investigate the solid-solid phase transition from a bcc to a close-packed crystal structure in cylindrical iron nanowires, induced by axial strain. The interatomic potential employed has been shown to be capable of describing the martensite-austenite phase transition in iron. We study the stress versus strain curves for different temperatures and show that for a range of temperatures it is possible to induce a solid-solid phase transition by axial strain before the elasticity is lost; these transition temperatures are below the bulk transition temperature. The two phases have different (non-linear) elastic behavior: the bcc phase softens, while the close-packed phase stiffens with temperature. We also consider the reversibility of the transformation in the elastic regimes, and the role of the strain rate on the critical strain necessary for phase transition.

  9. Dielectric relaxation in SrTiO.sub.3./sub.-based solid solutions with heterovalent substitutions

    Czech Academy of Sciences Publication Activity Database

    Markovin, P.A.; Lemanov, V. V.; Guzhva, M.E.; Trepakov, Vladimír

    2014-01-01

    Roč. 469, č. 1 (2014), s. 43-49 ISSN 0015-0193 Institutional support: RVO:68378271 Keywords : quantum paraelectric * dielectric relaxation * local charge compensation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2014

  10. Twin nucleation in Fe-based bcc alloys—modeling and experiments

    Science.gov (United States)

    Ojha, A.; Sehitoglu, H.; Patriarca, L.; Maier, H. J.

    2014-10-01

    We develop an analytical expression for twin nucleation stress in bcc metal and alloys considering generalized planar fault energy and the dislocations bounding the twin nucleus. We minimize the total energy to predict the twinning stress relying only on parameters that are obtained through atomistic calculations, thus excluding the need for any empirical constants. We validate the present approach by means of precise measurements of the onset of twinning in bcc Fe-50at% Cr single crystals showing excellent agreement. The experimental observations of the three activated slip systems of symmetric configuration in relation to the twinning mechanism are demonstrated via transmission electron microscopy techniques along with digital image correlation. We then confirm the validity of the model for Fe, Fe-25at% Ni and Fe-3at% V alloys compared with experiments from the literature to show general applicability.

  11. Simulation of He embrittlement at grain boundaries in bcc transition metals

    International Nuclear Information System (INIS)

    Suzudo, Tomoaki; Yamaguchi, Masatake

    2015-01-01

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  12. First-principles study of atomic ordering in bcc Cu-Al

    Science.gov (United States)

    Lanzini, F.; Gargano, P. H.; Alonso, P. R.; Rubiolo, G. H.

    2011-01-01

    The order-disorder transitions and phase stability in the body centered cubic structure of Cu-Al binary alloys are studied by means of theoretical methods. The total energy of different ordered compounds sharing a common bcc Bravais lattice was calculated within the framework of density functional theory. A set of effective cluster interactions was calculated through a cluster expansion (CE) of the total energies. The finite temperature phase diagram of bcc Cu-Al was obtained using the CE formalism coupled with the cluster variation method calculation of the configurational entropy. These results are confronted with a simpler semi-empirical approach based on effective pair interactions obtained from experiment. Both approaches predict a single first-order A2/DO3 transition for compositions close to Cu3Al, in agreement with the most recent experimental results.

  13. The interfacial free energy of solid Sn on the boundary interface with liquid Cd-Sn eutectic solution

    International Nuclear Information System (INIS)

    Saatci, B; Cimen, S; Pamuk, H; Guenduez, M

    2007-01-01

    Equilibrated grain boundary groove shapes for solid Sn in equilibrium with Cd-Sn liquid were directly observed after annealing a sample at the eutectic temperature for about 8 days. The thermal conductivities of the solid phase, K S , and the liquid phase, K L , for the groove shapes were measured. From the observed groove shapes, the Gibbs-Thomson coefficients were obtained with a numerical method, using the measured G, K S and K L values. The solid-liquid interfacial energy of solid Sn in equilibrium with Cd-Sn liquid was determined from the Gibbs-Thomson equation. The grain boundary energy for solid Sn was also calculated from the observed groove shapes

  14. Solubility and hydrolysis of Np(V) in dilute to concentrated alkaline NaCl solutions. Formation of Na-Np(V)-OH solid phases at 22 C

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Vladimir G. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; Fellhauer, David; Gaona, Xavier; Dardenne, Kathy; Rothe, Joerg; Altmaier, Marcus [Karlsruhe Institute of Technology (Germany). Inst. for Nuclear Waste Disposal; Kalmykov, Stepan N. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; NRC Kurchatov Institute, Moscow (Russian Federation)

    2017-03-01

    The solubility of Np(V) was investigated at T=22±2 C in alkaline NaCl solutions of different ionic strength (0.1-5.0 M). The solid phases controlling the solubility at different -log{sub 10} m{sub H{sup +}}(pH{sub m}) and NaCl concentration were characterized by XRD, quantitative chemical analysis, SEM-EDS and XAFS (both XANES and EXAFS). Aqueous phases in equilibrium with Np(V) solids were investigated for selected samples within 8.9≤pH{sub m}≤10.3 by UV-vis/NIR absorption spectroscopy. In 0.1 M NaCl, the experimental solubility of the initial greenish NpO{sub 2}OH(am) solid phase is in good agreement with previous results obtained in NaClO{sub 4} solutions, and is consistent with model calculations for fresh NpO{sub 2}OH(am) using the thermodynamic data selection in NEA-TDB. Below pH{sub m}∝11.5 and for all NaCl concentrations studied, Np concentration in equilibrium with the solid phase remained constant during the timeframe of this study (∝2 years). This observation is in contrast to the aging of the initial NpO{sub 2}OH(am) into a more crystalline modification with the same stoichiometry, NpO{sub 2}OH(am, aged), as reported in previous studies for concentrated NaClO{sub 4} and NaCl. Instead, the greenish NpO{sub 2}OH(am) transforms into a white solid phase in those systems with [NaCl]≥1.0 M and pH{sub m}≥11.5, and into two different pinkish phases above pH{sub m}∝13.2. The solid phase transformation is accompanied by a drop in Np solubility of 0.5-2 log{sub 10}-units (depending upon NaCl concentration). XANES analyses of green, white and pink phases confirm the predominance of Np(V) in all cases. Quantitative chemical analysis shows the incorporation of Na{sup +} in the original NpO{sub 2}OH(am) material, with Na:Np ≤ 0.3 for the greenish solids and 0.8 ≤ Na:Np ≤ 1.6 for the white and pinkish phases. XRD data confirms the amorphous character of the greenish phase, whereas white and pink solids show well-defined but discrepant XRD patterns

  15. Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4}: Novel keesterite type solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Vergara, F., E-mail: fer_martina@u.uchile.cl [Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Galdamez, A., E-mail: agaldamez@uchile.cl [Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Manriquez, V. [Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Barahona, P. [Facultad de Ciencias Basicas, Universidad Catolica del Maule, Talca (Chile); Pena, O. [Institut des Sciences Chimiques de Rennes, UMR 6226, Universite de Rennes 1, Rennes (France)

    2013-02-15

    A new family of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} chalcogenides has been synthesized by conventional solid-state reactions at 850 Degree-Sign C. The reactions products were characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray analysis (SEM-EDS), Raman spectroscopy and magnetic susceptibility. The crystal structures of two members of the solid solution series Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4} have been determined by single-crystal X-ray diffraction. Both phases crystallize in the tetragonal keesterite-type structure (space group I4{sup Macron }). The distortions of the tetrahedral volume of Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4} were calculated and compared with the corresponding differences in the Cu{sub 2}MnSnS{sub 4} (stannite-type) end-member. The compounds show nearly the same Raman spectral features. Temperature-dependent magnetization measurements (ZFC/FC) and high-temperature susceptibility indicate that these solid solutions are antiferromagnetic. - Graphical abstract: View along [100] of the Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} structure showing tetrahedral units and magnetic measurement ZFC-FC at 500 Oe. The insert shows the 1/{chi}-versus-temperature plot fitted by a Curie-Weiss law. Highlights: Black-Right-Pointing-Pointer Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} solid solutions belong to the family of compounds adamantine. Black-Right-Pointing-Pointer Resolved single crystals of the solid solutions have space group I4{sup Macron }. Black-Right-Pointing-Pointer The distortion of the tetrahedral volume of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} were calculated. Black-Right-Pointing-Pointer These solid solutions are antiferromagnetic.

  16. 18-Electron Resonance Structures in the BCC Transition Metals and Their CsCl-type Derivatives.

    Science.gov (United States)

    Vinokur, Anastasiya I; Fredrickson, Daniel C

    2017-03-06

    Bonding in elemental metals and simple alloys has long been thought of as involving intense delocalization, with little connection to the localized bonds of covalent systems. In this Article, we show that the bonding in body-centered cubic (bcc) structures of the group 6 transition metals can in fact be represented, via the concepts of the 18-n rule and isolobal bonding, in terms of two balanced resonance structures. We begin with a reversed approximation Molecular Orbital (raMO) analysis of elemental Mo in its bcc structure. The raMO analysis indicates that, despite the low electron count (six valence electrons per Mo atom), nine electron pairs can be associated with any given Mo atom, corresponding to a filled 18-electron configuration. Six of these electron pairs take part in isolobal bonds along the second-nearest neighbor contacts, with the remaining three (based on the t 2g d orbitals) interacting almost exclusively with first-nearest neighbors. In this way, each primitive cubic network defined by the second-nearest neighbor contacts comprises an 18-n electron system with n = 6, which essentially describes the full electronic structure of the phase. Of course, either of the two interpenetrating primitive cubic frameworks of the bcc structure can act as a basis for this discussion, leading us to write two resonance structures with equal weights for bcc-Mo. The electronic structures of CsCl-type variants with the same electron count can then be interpreted in terms of changing the relative weights of these two resonance structures, as is qualitatively confirmed with raMO analysis. This combination of raMO analysis with the resonance concept offers an avenue to extend the 18-n rule into other transition metal-rich structures.

  17. Atomistic model application to the problem of magnetite adhesion on iron BCC

    International Nuclear Information System (INIS)

    Forti; M; Alonso, P; Gargano, P; Rubiolo, G

    2012-01-01

    Oxide scale adhesion on a metal substrate has been investigated in the Magnetite - BCC Iron system. An Universal Binding Energy Relation (UBER) has been applied to obtain the interface energy from a fitting parameter. The interface energy thus calculated is in a reasonable order of magnitude when compared to experimental data for similar systems. This result allows this technique to be used to develop a comparative scale based on quantitative data which otherwise would require complex experiments to be obtained (author)

  18. Crack-induced stress, dislocations and acoustic emission by 3-D atomistic simulation in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Spielmannová, Alena; Machová, Anna; Hora, Petr

    2009-01-01

    Roč. 57, č. 14 (2009), s. 4065-4073 ISSN 1359-6454 R&D Projects: GA ČR GA101/09/1630; GA AV ČR KJB200760802; GA ČR(CZ) GA101/07/0789 Institutional research plan: CEZ:AV0Z20760514 Keywords : bcc iron * crack * dislocation emisision Subject RIV: JG - Metallurgy Impact factor: 3.760, year: 2009

  19. 3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Machová, Anna; Hora, Petr

    2011-01-01

    Roč. 33, č. 9 (2011), s. 1182-1188 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional research plan: CEZ:AV0Z20760514 Keywords : 3D molecular dynamics * fatigue * bcc iron * mode I Subject RIV: JG - Metallurgy Impact factor: 1.546, year: 2011 http://www.sciencedirect.com/science/article/pii/S0142112311000600

  20. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  1. Shell model for BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions

    Science.gov (United States)

    Vielma, J.; Jackson, D.; Roundy, D.; Schneider, G.

    2010-03-01

    Even though the composition of BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions is similar to other ferroelectric compounds, the dielectric response is unusual. Results of permittivity measurements as a function of temperature show a diffuse phase transition indicative of a weakly coupled relaxor behavior.footnotetextC. C. Huang and D. P. Cann, J. Appl. Phys. 104, 024117 (2008) To investigate the weakly coupled relaxor behavior in these materials at intermediate length scales we are developing a newly calibrated shell model based on first-principles supercell calculations of both the solid solution and its compositional endpoints. Initial results for its phase diagram will presented.

  2. Magnetic susceptibility of solid solutions Bi2SrNb2-2xFe2xO9-δ

    Science.gov (United States)

    Zhuk, N. A.; Chezhina, N. V.; Belyy, V. A.; Makeev, B. A.; Yermolina, M. V.; Miroshnichenko, A. S.

    2018-04-01

    The state of iron atoms and their interatomic interactions were investigated by the method of magnetic dilution in Bi2SrNb2-2xFe2xO9-δ with a layered perovskite-like structure. It was found that the solid solutions are characterized by increased values of the magnetic moment of iron atoms, compared with purely spin values of Fe(III). This was explained by the presence of exchange-bound aggregates of Fe(III) atoms with antiferro- and ferromagnetic types of exchange. The dependencies of the exchange parameters and cluster distribution on the iron content of Bi2SrNb2-2xFe2xO9-δ solid solutions were calculated.

  3. Structure, elastic stiffness, and hardness of Os 1- xRu xB 2 solid solution transition-metal diborides

    KAUST Repository

    Kanoun, Mohammed

    2012-05-31

    On the basis of recent experiments, the solid solution transition-metal diborides were proposed to be new ultra-incompressible hard materials. We investigate using density functional theory based methods the structural and mechanical properties, electronic structure, and hardness of Os 1-xRu xB 2 solid solutions. A difference in chemical bonding occurs between OsB 2 and RuB 2 diborides, leading to significantly different elastic properties: a large bulk, shear moduli, and hardness for Os-rich diborides and relatively small bulk, shear moduli, and hardness for Ru-rich diborides. The electronic structure and bonding characterization are also analyzed as a function of Ru-dopant concentration in the OsB 2 lattice. © 2012 American Chemical Society.

  4. Density-of-states effective mass in solid solutions of the (Ag/sub x/2/Pb/sub 1-x/Sb/sub x/2/)Te type

    International Nuclear Information System (INIS)

    Borisova, L.

    1984-01-01

    The density-of-states effective mass in the valence band extremum of solid solutions of the (Ag/sub x/2/Pb/sub 1-x/Sb/sub x/2/)Te type has been studied as a function of composition and temperature of the alloys. The band edge density-of-states effective mass has been derived from the experimental values of the thermoelectric power, carrier concentration and the band gap width. The results obtained are explained in terms of the changes in the band structure with composition. It has been concluded that the physical properties of PbTe and AgSbTe 2 and of the solid solutions existing between them cannot be described by application of the same model

  5. Combustion and gasification of solid biomass: energy solutions for the Amazon; Combustao e gasificacao de biomassa solida: solucoes energeticas para a Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Eduardo Jose Fagundes; Rendeiro, Goncalo; Nogueira, Manoel Fernandes Martins; Brasil, Augusto Cesar de Mendonca; Cruz, Daniel Onofre de Almeida; Guerra, Danielle Regina da Silva; Macedo, Emanuel Negrao; Ichihara, Jorge de Araujo

    2008-07-01

    For electrify isolated rural communities in the Amazon, the Ministerio de Minas e Energia - MME (Brazilian Mining and Energy Ministry), promoted under the 'Luz para todos' (Light for All) program, a series of activities aimed at the development and implementation of projects for small- scale power generation and training professionals, in the region, for the deployment of alternative energy solutions from renewable energy sources. Among these activities are the production of the collection 'Energy Solutions for the Amazon', consisting of five volumes. This is the fourth volume in the series that presents an overview of the combustion and gasification of solid biomass.

  6. Adsorption and nanowear properties of bovine submaxillary mucin films on solid surfaces: Influence of solution pH and substrate hydrophobicity

    DEFF Research Database (Denmark)

    Sotres, Javier; Madsen, Jan Busk; Arnebrant, Thomas

    2014-01-01

    The adsorption and mechanical stability of bovine submaxillary mucins (BSM) films at solid-liquid interfaces were studied with respect to both substrate hydrophobicity and solution pH. Dynamic light scattering revealed a single peak distribution in neutral aqueous solution (pH 7.4) and a small...... fraction with enhanced aggregation was observed in acidic solution (pH 3.8). Both substrate hydrophobicity and solution pH were found to affect the spontaneous adsorption of BSM onto solid surfaces; BSM adsorbed more onto hydrophobic surfaces than hydrophilic ones, and adsorbed more at pH 3.8 than at pH 7.......4. Thus, the highest "dry" adsorbed mass was observed for hydrophobic surfaces in pH 3.8 solution. However, a highest "wet" adsorbed mass, i.e. which includes the solvent coupled to the film, was observed for hydrophobic surfaces at pH 7.4. The mechanical stability of the films was studied...

  7. Nanostructure of Solid Precipitates Obtained by Expansion of Polystyrene-block-Polybutadiene Solutions in Near Critical Propane: Block Ratio and Micellar Solution Effects

    Energy Technology Data Exchange (ETDEWEB)

    Green, Jade [University of Wyoming, Laramie; Tyrrell, Zachary [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie; Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

    2011-01-01

    In contrast to incompressible liquid solutions, compressible near-critical solutions of block copolymers allow for controlling rapid structure transformations with pressure alone. For example, when dissolved in near-critical propane, polystyrene-block-polybutadiene can form a random molecular solution at high pressures, a micellar solution at moderate pressures, and a solvent-free precipitate at low pressures. In contrast to the unstructured virgin copolymer, such a propane-treated precipitate rapidly self-assembles toward structures characteristic of equilibrated block copolymers, such as lamellae, spheres, or cylinders, which depend on the block ratio rather than on the decompression rate or temperature, at least within the rate and temperature ranges investigated in this work. At lower temperatures, however, say below 40 C, glass transition of the styrene-butadiene diblocks can inhibit independent structure formation, while crystallization of their hydrogenated-butadiene analogues can preserve the micellar-solution structure.

  8. Aromatic hydrazones derived from nicotinic acid hydrazide as fluorimetric pH sensing molecules: Structural analysis by computational and spectroscopic methods in solid phase and in solution

    Science.gov (United States)

    Benković, T.; Kenđel, A.; Parlov-Vuković, J.; Kontrec, D.; Chiş, V.; Miljanić, S.; Galić, N.

    2018-02-01

    Structural analyses of aroylhydrazones were performed by computational and spectroscopic methods (solid state NMR, 1 and 2D NMR spectroscopy, FT-IR (ATR) spectroscopy, Raman spectroscopy, UV-Vis spectrometry and spectrofluorimetry) in solid state and in solution. The studied compounds were N‧-(2,3-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (1), N‧-(2,5-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (2), N‧-(3-chloro-2-hydroxy-phenylmethylidene)-3-pyridinecarbohydrazide (3), and N‧-(2-hydroxy-4-methoxyphenyl-methylidene)-3-pyridinecarbohydrazide (4). Both in solid state and in solution, all compounds were in ketoamine form (form I, sbnd COsbnd NHsbnd Ndbnd Csbnd), stabilized by intramolecular H-bond between hydroxyl proton and nitrogen atom of the Cdbnd N group. In solid state, the Cdbnd O group of 1-4 were involved in additional intermolecular H-bond between closely packed molecules. Among hydrazones studied, the chloro- and methoxy-derivatives have shown pH dependent and reversible fluorescence emission connected to deprotonation/protonation of salicylidene part of the molecules. All findings acquired by experimental methods (NMR, IR, Raman, and UV-Vis spectra) were in excellent agreement with those obtained by computational methods.

  9. Aromatic hydrazones derived from nicotinic acid hydrazide as fluorimetric pH sensing molecules: Structural analysis by computational and spectroscopic methods in solid phase and in solution.

    Science.gov (United States)

    Benković, T; Kenđel, A; Parlov-Vuković, J; Kontrec, D; Chiş, V; Miljanić, S; Galić, N

    2018-02-05

    Structural analyses of aroylhydrazones were performed by computational and spectroscopic methods (solid state NMR, 1 and 2D NMR spectroscopy, FT-IR (ATR) spectroscopy, Raman spectroscopy, UV-Vis spectrometry and spectrofluorimetry) in solid state and in solution. The studied compounds were N'-(2,3-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (1), N'-(2,5-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (2), N'-(3-chloro-2-hydroxy-phenylmethylidene)-3-pyridinecarbohydrazide (3), and N'-(2-hydroxy-4-methoxyphenyl-methylidene)-3-pyridinecarbohydrazide (4). Both in solid state and in solution, all compounds were in ketoamine form (form I, CONHNC), stabilized by intramolecular H-bond between hydroxyl proton and nitrogen atom of the CN group. In solid state, the CO group of 1-4 were involved in additional intermolecular H-bond between closely packed molecules. Among hydrazones studied, the chloro- and methoxy-derivatives have shown pH dependent and reversible fluorescence emission connected to deprotonation/protonation of salicylidene part of the molecules. All findings acquired by experimental methods (NMR, IR, Raman, and UV-Vis spectra) were in excellent agreement with those obtained by computational methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Hydrogen storage performance of Ti-V-based BCC phase alloys with various Fe content

    International Nuclear Information System (INIS)

    Yu, X.B.; Feng, S.L.; Wu, Z.; Xia, B.J.; Xu, N.X.

    2005-01-01

    The effect of Fe content on hydrogen storage characteristics of Ti-10Cr-18Mn-(32-x)V-xFe (x = 0, 2, 3, 4, 5) alloys has been investigated at 353 K. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images of the alloys present BCC and C14 two-phase structures for all of the Fe-containing alloys. With the increasing Fe content, the lattice parameters of the BCC phase decrease, which results in an increase of the hydrogen desorption plateau pressure of the alloys. Among the studied alloys, Ti-10Cr-18Mn-27V-5Fe alloy exhibits the smallest PCT plateau slope and a more suitable plateau pressure (0.1 MPa equ <1 MPa). The maximum and effective capacities of the alloy are 3.32 wt.% and 2.26 wt.%, respectively, which are higher than other reported Fe-containing BCC phase alloys. In addition, the V/Fe ratio in this alloy is close to that of (VFe) alloy, whose cost is much lower than that of pure V

  11. bcc-iron as a promising new monochromator material for thermal neutrons

    Science.gov (United States)

    Kirscht, Patrick; Sobolev, Oleg; Eckold, Götz

    2018-04-01

    The development of high-performance neutron monochromators is a long-standing and still actual topic in neutron instrumentation. Due to its high scattering cross section, iron is a particularly interesting material since it offers the possibility to obtain high reflectivities at small wavelength and good resolution. Phase transitions between bcc- and fcc-phases hindered the growth of large and high-quality single crystals in the past and only recently bcc-crystals became commercially available. We have characterized the reflecting properties of as-grown and deformed crystals using γ-rays and thermal neutrons. Absolute reflectivities well above 30% for neutron wavelengths near 1 Å could be obtained that are superior to that of all other existing monochromator materials. Hence, the progress in crystal growth along with the knowledge of directed plastic deformation makes the development of bcc-Fe neutron monochromators feasible. Their application in crystal-monochromator instruments is suitable to increase the useful neutron flux at large energies considerably.

  12. Ab initio search for a high permeability material based on bcc iron

    Science.gov (United States)

    Ostanin, S.; Staunton, J. B.; Razee, S. S.; Demangeat, C.; Ginatempo, B.; Bruno, Ezio

    2004-02-01

    Using the fully relativistic spin-polarized Korringa-Kohn-Rostoker method, we study the prototypical soft magnet, bcc iron. We investigate how its magnetic anisotropy (MAE) varies as a function of volume, band filling, and tetragonal distortions of the crystal lattice. We follow the trends of the linear magnetostriction and magnetic permeability. We find that a slight reduction in band filling and modest lattice expansion produces a significant magnetic softening of this model system. We explore whether this situation can be realized by doping bcc Fe with vanadium. Treating the compositional disorder with the coherent potential approximation, we calculate the magnetic anisotropy and magnetostriction trends of iron-rich Fe1-cVc disordered alloys and find the behavior to accord with the predictions from the bcc Fe model. In particular we find that for c≈0.1 the MAE is very small and the linear magnetostriction is zero. We propose Fe0.9V0.1 as a high permeability material. Fair agreement with experimental values for the MAE and magnetostriction of both Fe and FeV is found.

  13. Experimental and theoretical investigation of Cr1-xScxN solid solutions for thermoelectrics

    DEFF Research Database (Denmark)

    Kerdsongpanya, Sit; Sun, Bo; Eriksson, Fredrik

    2016-01-01

    by magnetron sputtering. Pure CrN exhibits a high power factor, 1.7 × 10−3 W m−1 K−2 at 720 K, enabled by a high electron concentration thermally activated from N vacancies. Disordered rocksalt-Cr1-xScxN solid solutions are thermodynamically stable, and calculated DOS suggest the possibility for power...

  14. Structural characterization of the solid solution (Fe1-x Mnx)2 O3 using data of X-ray diffraction in polycrystalline samples

    International Nuclear Information System (INIS)

    Rodulfo B, S.M.; Gonzalez C, S.L.; Orozco, J.; Mora, A.J.; Delgado, G.

    2003-01-01

    This work presents the structural characterization of the system (Fe 1-x Mn x ) 2 O 3 , precursor of Fe-Mn catalysts. The X-ray powder diffraction analysis shows that the system forms a solid solution in the range 0 < : < 0.33, with all the compositions investigated displaying a rhombohedral structure, space group R-3c. As expected, the gradual incorporation of manganese in the crystalline structure is accompanied by a linear decrease in the cell volume. (Author)

  15. (Nbx, Zr1-x)4AlC3 MAX Phase Solid Solutions: Processing, Mechanical Properties, and Density Functional Theory Calculations.

    Science.gov (United States)

    Lapauw, Thomas; Tytko, Darius; Vanmeensel, Kim; Huang, Shuigen; Choi, Pyuck-Pa; Raabe, Dierk; Caspi, El'ad N; Ozeri, Offir; To Baben, Moritz; Schneider, Jochen M; Lambrinou, Konstantina; Vleugels, Jozef

    2016-06-06

    The solubility of zirconium (Zr) in the Nb4AlC3 host lattice was investigated by combining the experimental synthesis of (Nbx, Zr1-x)4AlC3 solid solutions with density functional theory calculations. High-purity solid solutions were prepared by reactive hot pressing of NbH0.89, ZrH2, Al, and C starting powder mixtures. The crystal structure of the produced solid solutions was determined using X-ray and neutron diffraction. The limited Zr solubility (maximum of 18.5% of the Nb content in the host lattice) in Nb4AlC3 observed experimentally is consistent with the calculated minimum in the energy of mixing. The lattice parameters and microstructure were evaluated over the entire solubility range, while the chemical composition of (Nb0.85, Zr0.15)4AlC3 was mapped using atom probe tomography. The hardness, Young's modulus, and fracture toughness at room temperature as well as the high-temperature flexural strength and E-modulus of (Nb0.85, Zr0.15)4AlC3 were investigated and compared to those of pure Nb4AlC3. Quite remarkably, an appreciable increase in fracture toughness was observed from 6.6 ± 0.1 MPa/m(1/2) for pure Nb4AlC3 to 10.1 ± 0.3 MPa/m(1/2) for the (Nb0.85, Zr0.15)4AlC3 solid solution.

  16. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.

    Science.gov (United States)

    Wang, Dong-Hong; Wang, Lei; Xu, An-Wu

    2012-03-21

    Visible light photocatalytic H(2) production from water splitting is of great significance for its potential applications in converting solar energy into chemical energy. In this study, a series of Zn(1-x)Cd(x)S solid solutions with a nanoporous structure were successfully synthesized via a facile template-free method at room temperature. The obtained solid solutions were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS) and N(2) adsorption-desorption analysis. The solid solutions show efficient photocatalytic activity for H(2) evolution from aqueous solutions containing sacrificial reagents S(2-) and SO(3)(2-) under visible-light irradiation without a Pt cocatalyst, and loading of the Pt cocatalyst further improves the visible-light photocatalytic activity. The optimal photocatalyst with x = 0.20 prepared at pH = 7.3 displays the highest activity for H(2) evolution. The bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S nanoparticles exhibit a high H(2) evolution rate of 193 μmol h(-1) and 458 μmol h(-1) under visible-light irradiation (λ ≥ 420 nm), respectively. In addition, the bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S catalysts show a high H(2) evolution rate of 252 and 640 μmol h(-1) under simulated solar light irradiation, respectively. Moreover, the Zn(0.80)Cd(0.20)S catalyst displays a high photocatalytic stability for H(2) evolution under long-term light irradiation. The incorporation of Cd in the solid solution leads to the visible light absorption, and the high content of Zn in the solid solution results in a relatively negative conduction band, a modulated band gap and a rather wide valence bandwidth, which are responsible for the excellent photocatalytic performance of H(2) production and for the high photostability

  17. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties.

    Science.gov (United States)

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-02-27

    P-type SnS compound and SnS 1-x Se x solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS-pressurizing direction in the temperature range 323-823 Κ. SnS compound and SnS 1-x Se x solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m -1  K -1 at 823 K for the composition SnS 0.5 Se 0.5 . With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS 0.2 Se 0.8 along the parallel direction.

  18. The ionic conductivity and defect structure of fluorite-type solid solutions Basub(1-x)Usub(x)Fsub(2+2x)

    International Nuclear Information System (INIS)

    Ouwerkerk, M.

    1986-01-01

    The crystal growth and the characterization of the solid solutions Msub(1-x)Usub(x)Fsub(2+2x) (M = Ca, Sr, Ba and Pb) are described. X-ray diffraction and X-ray fluorescence methods have been utilized to determine the U 4+ content of the solid solutions. The incorporation of UF 4 in PbF 2 is found to have a stabilizing effect on the β-PbF 2 (fluorite) structure. A study of the conductivity properties of Basub(1-x)Usub(x)Fsub(2+2x) and of Pbsub(1-x)Usub(x)Fsub(2+2x) is presented. The effect of an anion excess on the diffuse phase transition and the specific heat anomaly of single crystals Msub(1-x)Usub(x)Fsub(2+2x) was studied with impedance spectroscopy and calorimetric measurements. Finally, a study of the fluorite-type solid solutions Basub(1-x)Lasub(x)Fsub(2+x) and Basub(1-x)Usub(x)Fsub(2+2x) using the Thermally Stimulated Depolarization Current (TSDC) technique is presented. (Auth.)

  19. Magnetic properties of solid solutions between BiCrO3 and BiGaO3 with perovskite structures.

    Science.gov (United States)

    Belik, Alexei A

    2015-04-01

    Magnetic properties of BiCr 1- x Ga x O 3 perovskite-type solid solutions are reported, and a magnetic phase diagram is established. As-synthesized BiCrO 3 and BiCr 0.9 Ga 0.1 O 3 crystallize in a monoclinic ( m ) C2/c structure. The Néel temperature ( T N ) decreases from 111 K in BiCrO 3 to 98 K in BiCr 0.9 Ga 0.1 O 3 , and spin-reorientation transition temperature increases from 72 K in BiCrO 3 to 83 K in BiCr 0.9 Ga 0.1 O 3 . o -BiCr 0.9 Ga 0.1 O 3 with a PbZrO 3 -type orthorhombic structure is obtained by heating m -BiCr 0.9 Ga 0.1 O 3 up to 573 K in air; it shows similar magnetic properties with those of m -BiCr 0.9 Ga 0.1 O 3 . T N of BiCr 0.8 Ga 0.2 O 3 is 81 K, and T N of BiCr 0.7 Ga 0.3 O 3 is 63 K. Samples with x = 0.4, 0.5, 0.6 and 0.7 crystallize in a polar R3c structure. Long-range antiferromagnetic order with weak ferromagnetism is observed below T N = 56 K in BiCr 0.6 Ga 0.4 O 3 , T N = 36 K in BiCr 0.5 Ga 0.5 O 3 and T N = 18 K in BiCr 0.4 Ga 0.6 O 3 . BiCr 0.3 Ga 0.7 O 3 shows a paramagnetic behaviour because the Cr concentration is below the percolation threshold of 31%.

  20. Crack growth in Fe-2.7 wt% Si single crystals under cyclic loading and 3D atomistic results in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Landa, Michal; Machová, Anna; Uhnáková, Alena; Pokluda, J.; Lejček, Pavel

    2016-01-01

    Roč. 87, June (2016), s. 63-70 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698; GA ČR GAP108/12/0144; GA ČR(CZ) GA15-20666S; GA ČR GA13-13616S Institutional support: RVO:61388998 ; RVO:68378271 Keywords : grack growth * cyclic loading * Bcc iron Subject RIV: JL - Materials Fatigue, Friction Mechanics; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.899, year: 2016 http://ac.els-cdn.com/S014211231500448X/1-s2.0-S014211231500448X-main.pdf?_tid=96e3e5a0-fb08-11e5-92cb-00000aab0f02&acdnat=1459845181_19fcdd93d31b1f140714e52b835b33d8